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Abstract

Accurate descriptions of many-particle quantum systems subject to
laser interactions can be found using real-time ab initio methods. Of
these the arguably most popular and exact is the multi-configuration
time-dependent Hartree-Fock (MCTDHF) method. However, MCTDHF
suffers from computational limitations in that it quickly becomes too
time consuming. The orbital-adaptive time-dependent coupled-cluster
(OATDCC) method represents a hierarchy of approximations to MCTDHF
that are less computationally expensive while retaining as much accuracy
as possible. Building on an existing codebase we have in this thesis
generalized the OATDCC method to include Q-space orbital equations. A
novel ground state solver is implemented, employing adiabatic switching,
since imaginary time propagation is not feasible "out of the box".
Furthermore, we implement a sinc-discrete variable representation basis
for one-dimensional model systems. We demonstrate that ionization
and high-harmonic processes can be described using the OATDCCD
method. Comparison with the more accurate, yet more expensive,
multiconfigurational time-dependent Hartree-Fock method indicates that
the OATDCCD method is an excellent approximation.
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CHAPTER 1

Introduction

Since the discovery of the Schrödinger equation in 1926, the theory of quantum
mechanics has been extremely effective at describing the smallest constituents
of our universe. Quantum mechanics is the fundamental theory of nature in
the realm of small time and length scales, where the behaviour of objects
takes unintuitive forms. The central equation in quantum mechanics is the
Schrödinger equation[42],

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (1.1)

It governs the wave-like behaviour of matter at the quantum scales in terms
of the time-dependent wavefunction |Ψ(t)〉. Depending on the contents of the
Hamiltonian operator Ĥ(t), the wave function can be made to describe any
quantum system, from a single particle in one dimension to many-particle
systems with complex external interactions. Solving the Schrödinger equation
then involves either finding the stationary properties of quantum systems such
as atoms and molecules, or finding their time dependence given a pertubation
or interaction.

For systems larger than the hydrogen atom, there are very few closed form
solutions for the Schrödinger equation. However, the massive increase in
computational power over the last half century has allowed for the study of
more and more complicated systems using numerical methods.

Even then, the exact solution of the Schrödinger equation is not possible for
even moderately sized systems. For any numerical method, an approximation
has to be made to be able to represent the solution on a computer, which
has finite memory and storage. The complexity of a quantum system also
increases exponentially with the number of particles, as the wavefunction
couples the description of every particle at every point in space. With great
complexity comes great computational cost, in terms of both CPU hours and
memory storage, and finding the correct approximation to reduce the cost while
simultaneously retaining an accurate description of the important many-body
effects can be challenging.

Such approximative methods must also be able to model phenomena that
are relevant and interesting. One particularly challenging field of numerical
study is strong-field processes. The interaction between electronic systems and
high-intensity laser pulses has received great interest lately due to the recent
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1. Introduction

advances in the field of experimental attosecond physics. This is exemplified by
the 2018 nobel prize in physics[48], which partly was attributed the development
of ultra-short, high intensity pulses for probing electronic systems. These pulses
almost rip apart electronic systems.

One important consequence of strong-field process is high harmonic generation
(HHG)[29]. It can be thought of as a process where electrons are ejected
from the atom and subsequently pushed back to collide with the remaining
electrons, generating high frequency oscillations of high harmonic order of the
laser frequency. It gives a very specific signature of the processes involved.
Another important side-effect of strong-field laser pulses is the ionization of
systems, which is an important topic to study and quantify.

To study these effects in many-body systems, we need accurate real-time ab
initio time-dependent methods that recover as much of the correlation effects
between electrons as possible. A common, highly accurate method is multi-
configurational time-dependent Hartree-Fock method (MCTDHF)[23], which
can be considered exact in a given single-particle basis. However, MCTDHF
suffers from exponential scaling with system size, and truncated approximations
of MCTDHF such as restricted active space self-consistent field (RASSCF)[34]
do not provide a size extensive treatment of the problem. Therefore, we consider
the coupled-cluster (CC) hierarchy of methods[7]. The time-dependent variants
of time-dependent coupled-cluster (TDCC) provide a hiearchy of size-extensive
and increasingly accurate methods, at polynomial cost. Our work concerns a
special form of TDCC called orbital-adaptive time-dependent coupled-cluster
theory (OATDCC), which was developed recently and is an ongoing point of
research.

The choice of basis set is imperative in any many-body calculation. A ground
state calculation does not get better than the basis describing the single-particle
orbitals. Even more importantly, in time-dependent methods the basis set needs
to provide the electrons with the flexibility needed by the powerful pertubations
of the laser. Our choice of basis is the discrete variable representation (DVR)[30],
which provides localized basis functions located at grid points.

1.1 Goals

The main goal of this thesis is to study quantum mechanical systems in
strong electromagnetic fields, with the doubles approximation of OATDCC
(OATDCCD) theory on a DVR basis set. The OATDCC method is in general
more stable than regular TDCC for strong electromagnetic fields[38], and allows
for orbital rotations of a small computational basis set within a larger underlying
basis set.

To use the OATDCCD method for this purpose, some changes must be made
to the existing implementation by Schøyen and Winther-Larsen. The rotations
of the elements of the small basis set are governed by both the P- and Q-space
equations, where the P-space govern internal changes in the basis and the
Q-space equations govern rotations into the underlying basis. The Q-space
equations is not implemented in the given OATDCCD method. Finally, the DVR
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1.1. Goals

basis provides a symmetry in the matrix elements. To exploit this symmetry it
is necessary to adapt the equations of the OATDCCD-method explicitly.

Several subgoals are formulated in order to achieve the main goal;

• Implement the DVR basis set as part of the QuantumSystems library.

• To validate the DVR basis implementation, solve the single-particle
problem numerically using the finite-difference method (FDM), for
arbitrary potential surfaces in one dimension.

• Implement a Hartree-Fock (HF) solver in order provide a many-body
reference state for the later coupled-cluster calculations with static orbitals.
The Hartree-Fock method is a standard first step of any many-body
calculations, and the methods of coupled-cluster and FCI are called post-
Hartree-Fock methods due to this. Furthermore, the HF solver will provide
a cheap method for experimenting with techniques, compared with the
more expensive method of OATDCC.

• Implement a time-dependent solver for independent particle states, like
single-particle and Hartree-Fock states.

• Get familiar with the coupled-cluster theory by implementing simple CCD
solver.

• Adapt the CCD solver to allow for spin restriction.

• Implement spin restricted OATDCCD, which will be faster than
OATDCCD without spin restriction for systems of interest.

• Implement the Q-space equations for OATDCCD. and find its ground
staate Possible methods for ground state computations include the
imaginary time relaxation method and adiabatic switching.

• Implement a DVR-adapted solver for OATDCCD with Q-space equations.

• Apply OATDCCD with the DVR basis to the study of strong-field
phenomena, such as HHG and ionization.

One-dimensional systems provide a simple model of otherwise computationally
expensive problems. Note that one-dimensional systems do not necessarily
represent physical systems directly. Even then, in strong-field simulations,
one-dimensional systems exhibit the same phenomena of HHG and ionization as
higher dimensional systems. In one dimension, we can use a very fine resolution
for the DVR grid, providing a cheap way of both qualitatively studying the
phenomena of strong fields with great accuracy, and validating the chosen many-
body method for this study. Thus, one-dimensional problems are useful, and
have been studied extensively using methods such as MCTDHF and RASSCF.

The existing framework allows for higher-dimensional computations. Any
further contributions or extensions as a result of this work should adhere to this
standard. For example, after implementation, the DVR adapted OATDCCD
method should function in higher dimensions as well as one dimension, like the
pre-existing OATDCCD method.
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1. Introduction

1.2 Code standards

The programming language chosen for our implementation in this project has
been Python. It gives an ease of code development compared to other languages,
mainly because it is dynamically typed which lets us define abstractions and
generalize the code easily. Though it is not the fastest of programming languages,
it is popular in many scientific communities due to its well developed libraries
for fast numerical calculation. These include numpy and scipy, which under
the hood utilizes the routines of Linear Algebra PACKage (LAPACK)[2] and
Basic Linear Algebra Subprograms (BLAS)[1], written in the fast language of
Fortran.

The code of developed in this project can be found in four separate locations. Our
work builds on the work of the previous master students at the computational
science at UiO, Schøyen, Winther-Larsen and Kristiansen [26, 41, 51]. Their
code is located in two github repositories, specifically quantum-systems1 and
coupled-cluster2. Of these, the second is a private repository, but access
can be granted upon request. Our implementation of the DVR basis set has
been implemented in the former, while the latter contains our implementation
of the OATDCCD Q-space orbital equations in both regular and DVR-adapted
versions.

The remaining developed code, which is typically not meant for inclusion in any
of the two preexisting libraries, is found in our two repositories py-master3

and master4. These contain a plethora of smaller scripts, functions and classes.
Example simulations and analysis code to reproduce the main figures can be
found in jupyter notebooks in the master-repository. It also contains scripts to
reproduce the main data, which is not included in the repositories due to size
constraints but can easily be granted upon request. Access to the code base of
this thesis is also granted upon request, but it will be made publicly available
for the sake of transparency and reproducibility.

1.3 Outline

The rest of the text is organized as follows:

chapter 2 is a brief introduction of selected topics in quantum mechanics
relevant in this work.

chapter 3 entails the solution of the single-particle problem, and introduces
the discrete variable representation.

chapter 4 asserts the main theories we will use to solve the many body
schroedinger equation.

chapter 5 demonstrates the methods used and their implementations

chapter 6 features results.
1https://www.github.com/schoyen/quantum-systems
2https://www.github.com/schoyen/coupled-cluster
3https://www.github.com/halvarsu/py-master
4https://www.github.com/halvarsu/master
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1.3. Outline

chapter 7 consists of discussion and future work.
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CHAPTER 2

Quantum mechanics

2.1 Schrödinger equation

The most important equation in quantum mechanics is the Schrödinger equation,

i~
d
dt |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (2.1)

where Ĥ(t) is the Hermitian Hamiltonian operator describing the system and its
interactions with the environment, |φ〉 a vector in Hilbert space H representing
the state of the system. The Schrödinger equation is a first order differential
equation in time, and governs the time evolution of quantum systems.

For a time-independent Hamiltonian Ĥ(t) = H, we can find stationary solutions
which do not depend on time. The Schrödinger equation then reduces to an
eigenvalue equation to be solved for the energy eigenpair (E, |φ〉),

Ĥ |φ〉 = E |φ〉 . (2.2)

The solutions of the Schrödinger equation form an orthonormal basis {φn}∞n=1
which we can use to expand any other function,

|ψ〉 =
∑

cn |φn〉 , 〈φn|φm〉 = δnm. (2.3)

We name eqs. (3.1) and (3.2) the time-dependent Schrödinger equation and the
time-independent Schrödinger equation, respectively.

Here both the operator Ĥ and the state |Ψ(t)〉 are time-dependent, where the
former represent changes in the environment (changes in the system are reflected
in Ψ(t)). In the case of no external influence, the eigensolutions of Ĥ(t) = Ĥ
are time independent up to a complex phase,

i
d
dt |φn(t)〉 = Ĥ |φn(t)〉 = En |φn(t)〉 =⇒ |φn(t)〉 = eiEnt |φn(0)〉 . (2.4)

We see that the time-evolution of any other state becomes

|Ψ(t)〉 =
∑
n

cn(t)φn, where cn(t) = eiEntcn(0). (2.5)
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2. Quantum mechanics

2.1.1 Atomic units

To simplify notation, we use atomic units, defined to make the Schrödinger
equation for the Hydrogen atom dimensionless. The original form of said
equation is the following,(

− ~2

2me
∇2 − e2

4πε0r

)
φ(r) = Eφ(r), (2.6)

where ~ is the reduced Planck constant, e and me are the charge and mass of
the electron, respectively, and ε0 is the vacuum permittivity, and r = |r| is the
distance to the nucleus. We define the dimensionless position vector r′ such
that r′ = r/a0, where a0 is the Bohr radius,

a0 = 4πε0~2

mee2 = 5.291772× 10−12 m. (2.7)

A unit of length in atomic units is consequently equal to the Bohr radius. The
Laplacian in atomic units becomes ∇2′ = a2

0∇2, and inserting into eq. (2.6), we
get

mee
4

(4π)2ε20~2

(
−1

2∇
2′ − 1

r′

)
φ′(r′) = Eφ′(r′). (2.8)

Note that the wavefunction is rescaled such that φ′(r′) = φ(r). Next we rescale
the energy E′ = E/Ea, such that a unit of atomic energy is given by the Hartree
Ea. It is defined as

Ea = mee
4

(4π)2ε20~2 = 4.35974× 10−18 J. (2.9)

The Schrödinger equation in atomic units is finally(
−1

2∇
2′ − 1

r′

)
φ(r′) = E′φ(r′). (2.10)

2.2 Lasers

We consider interactions in the dipole approximation of the electromagnetic
interaction, which is valid when the size of the system is much smaller than
the wavelength of the interaction. We write the time-dependent part of the
Hamiltonian as1

ĤI(t) = −d̂ ·E(t). (2.11)
Here d̂ is the dipole moment of the system and E(t) is the time-dependent,
polarized electric field. We will use

E(t) = εE0(t) cosωt (2.12)

ε is the polarization vector, E0(t) includes the field strength and a time-
dependent envelope, and the cosine terms describes a monochromatic light of
frequency ω. We write the dipole moment in the length gauge,

d̂ = er̂, (2.13)
1Note that this is the one-body part. We will also consider time dependence in the form

of adiabatic switching for the two-body operator elements.
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2.3. The Variational Principle

where r̂ is the position operator, and e is the electron charge, equal to unity in
atomic units. The systems of study in this thesis project are one dimensional,
and as such we use linearly polarized interactions polarized in the same direction
as the system. Equation (2.14) then becomes

HI(t) = −x̂E(t) cosωt. (2.14)

2.3 The Variational Principle

In quantum mechanics, physical observables are represented mathematically as
operators on Hilbert space. To calculate the expectation value of an observable
for a given state |Φ〉, we need to find the expectation value of the corresponding
operator. Let the operator in question be Â. The expectation value can be
written in terms of the expectation value functional,

EA [|Ψ〉] = 〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉 . (2.15)

The brackets imply a functional dependence on the whole form of |Ψ〉. By
performing a variation of the wavefunction |Ψ〉 → |Ψ〉+ |δ〉, it can be shown[21]
that the first order variations in the functional disappear if and only if the
state |Ψ〉 is an eigenvalue of the operator A. If we let the operator be the
Hamiltonian of the system, Â = Ĥ, then finding the extremal points of EH
thus corresponds to solving the time-independent Schrödinger equation. This is
called the variational principle.

2.3.1 The Variational Method

The variational method is a practical tool derived from the variational principle.
When working with methods for solving the Schrödinger equation for complex
systems, such as many-body systems described later in this thesis, it becomes
necessary to introduce some approximation of the wavefunction, |Ψ(T )〉, in
terms of a set of parameters T . The ground state in terms of this ansatz
for the true wavefunction will then be an approximation to the true ground
state. However, we know from the variational principle that the true ground
state is the state that minimizes the energy functional; the energy of the state
represented by |Ψ(T )〉 will as such be greater or equal to the exact ground state
energy E0. The expectation value of the energy for the parametrized function
is then

EH(T ) = 〈Ψ(T )|Ĥ|Ψ(T )〉
〈Ψ(T )|Ψ(T )〉 ≥ E0. (2.16)

Notice that we here use regular parantheses for the expectation value. This
is because the functional dependence in eq. (2.15) has been replaced by a
dependence on T , which does not have a functional form but is instead a
discrete set of values.

The variational method is then the minimization of this energy in terms of
the parameters T , which gives the ground state of the ansatz. The strength
of the variational method is that it ensures that the energy is bounded from
below, and as such if changing the ansatz produces a lower energy then it is by
definition a better approximation of the ground state.
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2. Quantum mechanics

The proof of eq. (2.16) is the following. Consider that Ĥ is Hermitian.
Assuming Ĥ is diagonalizable, then we can find an orthonormal basis of
eigenfunctions {Φk} with real eigenvalues Ek for k = 0, 1, 2, . . . . Any
normalizable wavefunction, including |Ψ(T )〉, can be expanded in this basis,

|Ψ〉 =
∑
k

ck |Φk〉 . (2.17)

Inserting this into eq. (2.16) we get

EH(T ) =
∑
klEkc

∗
l ck 〈Φl|Φk〉∑

kl c
∗
l ck 〈Φl|Φk〉

=
∑
k Ek|ck|

2∑
k |ck|

2 ≥ E0

∑
k |ck|

2∑
k |ck|

2 = E0.

Here we used the orthonormality of the basis 〈Φk|Φl〉 = δkl, and the inequality
follows from the fact that the ground state is in fact the minimum of the
variational functional in eq. (2.15).

2.3.2 The Time-Dependent Variational Principle

Extending the variational principle to the time-domain, we get the time-
dependent variational principle. It is given by the principle of least action,
which states that the physical time-dependent state is the one that minimizes
the action functional,

S[Ψ(·)] =
∫ T

0
d
〈Ψ(t)|

(
i~∂t − Ĥ(t)

)
|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉 . (2.18)

The dot-notation indicates that the functional is dependent on the entire shape
of |Ψ(t)〉. The equation of motion for |Ψ(t)〉 is found by requiring that the
functional is stationary, such that δS = 0. In the general case, this recovers
the Schrödinger equation, but for a specific ansatz it can be used to derive the
equations of motion for parameters of the ansatz.

2.3.3 The Bivariational Principle

In the following, we will be following the theory section of [27]. The variational
principle can be generalized to operators that are not necessarily Hermitian,
where the right and left eigenvalues are different. Let A be an operator which
can work two on separate, independent Hilbert spaces H and H′. We define the
bivariational functional related to A as a functional EA : H ×H′ → C which
takes as argument two wavefunctions 〈Ψ′| ∈ H′ and |Ψ〉 ∈ H, and produces a
complex number,

EA
[
〈Ψ′| , |Ψ〉

]
≡ 〈Ψ

′|A|Ψ〉
〈Ψ′|Ψ〉 . (2.19)

The critical points of this functional are given by the condition that the functional
is stationary under variations in the two wavefunctions, or δEA = 0. This
corresponds to the wavefunctions |Ψ〉 and 〈Ψ′| being simultaneous right and
left eigenvectors, respectively, of A with the same eigenvalue,

(A− a) |Ψ〉 = 0, 〈Ψ′| (A− a) = 0, (2.20)
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2.3. The Variational Principle

where a is the corresponding eigenvalue and the value of the functional at this
point,

a = EA
[
〈Ψ′| , |Ψ〉

]∣∣
δEA=0 . (2.21)

To demonstrate this we perform the variations in |Ψ〉 and 〈Ψ′| individually. We
will only do the variation in |Ψ〉, as the one in 〈Ψ′| is completely analogous:

0 = δEA
δ |Ψ〉

[
〈Ψ′| , |Ψ〉

]
= δ

δ |Ψ〉
〈Ψ′|A|Ψ〉
〈Ψ′|Ψ〉

=A |Ψ〉 〈Ψ′|Ψ〉 − 〈Ψ′|A|Ψ〉 |Ψ〉
〈Ψ′|Ψ〉2

= A |Ψ〉
〈Ψ′|Ψ〉 −

EA |Ψ〉
〈Ψ′|Ψ〉

=⇒ A |Ψ〉 = EA |Ψ〉 = a |Ψ〉 , (2.22)

where a ∈ C.

Computing the eigenpair of A by solving δEA = 0 is called the bivariational
principle, and is in our cases most relevant when the operator is the Hamiltonian,
giving the bivariational energy functional

EH
[
〈Ψ′| , |Ψ〉

]
≡ 〈Ψ

′|Ĥ|Ψ〉
〈Ψ′|Ψ〉 . (2.23)

Proceeding to the time-dependent case, we express the bivariational generaliza-
tion of the action functional as

S
[
〈Ψ′| , |Ψ〉

]
≡
∫ T

0

〈Ψ′(t)|i ∂∂t − Ĥ|Ψ(t)〉
〈Ψ′(t)|Ψ(t)〉 . (2.24)

Demanding stationarity for arbitrary variations in the wave functions with the
endpoints fixed, we can extract the time-dependent Schröedinger equation and
its complex conjugate,

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , and − i ∂

∂t
〈Ψ′(t)| = 〈Ψ′(t)| Ĥ. (2.25)

2.3.4 The Magnus Expansion

Another description of the time-evolution of a system is using the time-
propagator U(t, t0), a unitary operator which propagates a state from time t0
to a time t,

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 . (2.26)

Inserting into eq. (3.2), we see that U(t, t0) obeys the Schrödinger equation,

i~
d
dtU(t, t0) = Ĥ(t)U(t, t0). (2.27)

Now we assume that U(t, t0) can be represented as an exponential,

U(t, t0) = exp{Ω(t, t0)}. (2.28)
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2. Quantum mechanics

If the commutator of the Hamiltonian satisfies
[
Ĥ(t1), Ĥ(t2)

]
= 0 for all times

t1 and t2, which is the case for the time-independent hamiltonian Ĥ = Ĥ(t),
then eq. (2.27) can be solved like a normal ordinary differential equation, with

U(t, t0) = e

∫ t
t0
Ĥ(t)dt/i~

U(t0, t0) = e

∫ t
t0
Ĥ(t)dt/i~

, (2.29)

where we used that U(t0, t0) = I. However, this is normally not the case for
Hamiltonians of interest. For the general case, Magnus [32] proved that Ω(t, t0)
satisfies

∂

∂t
Ω(t, t0) = 1

i~
Ĥ(t) + 1

i~

∞∑
k=1

(−1)kBk
k!

[
Ω(t, t0),

[
· · · ,

[
Ω(t, t0), Ĥ(t)

]]]
,

(2.30)
where Bk(t) are the Bernoulli numbers

Bk(t) = 1, 1
2 ,

1
6 , 0,−

1
30 , . . . , for k = 0, 1, 2, 3, 4, . . . . (2.31)

Integrating eq. (2.30) we get

Ω(t, t0) = 1
i~

∫ t

t0

{
Ĥ(t1) +

[
Ω(t, t0),

[
· · · ,

[
Ω(t, t0), Ĥ(t)

]]]}
dt1, (2.32)

which can be iteratively inserted into itself to yield a pertubation series called
the Magnus expansion. The first order approximation includes only one power
of Ω(t, t0),

Ω(t0, t) = 1
i~

∫ t

t0

dt1Ĥ(t1). (2.33)

Including more orders of Ω(t, t0) (or rather, more iterations of inserting Ω(t, t0)
on the right hand side) and ordering in terms of the number of Hamiltonian
operators, we get better approximations. Up to third order, the expansion is

Ω(t0, t) = 1
i~

∫ t

t0

dt1Ĥ1

− 1
2~2

∫ t

t0

dt1
∫ t1

t0

dt2
[
Ĥ1, Ĥ2

]
− 1
i6~3

∫ t

t0

dt1
∫ t1

t0

dt2
∫ t2

t0

dt3
([
Ĥ1,

[
Ĥ2, Ĥ3

]]
+
[
Ĥ3,

[
Ĥ2, Ĥ1

]])
+ . . . ,

(2.34)

where we used the abbreviated Ĥi ≡ Ĥ(ti).

The key point for all the integrators resulting from the Magnus expansion is
that they are symplectic, meaning they conserve the phase space relation of the
wavefunction, where the real and imaginary parts of the quantum wavefunction
serve as generalized coordinates and conjugate momenta[38].
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2.4. Ground state calculations

2.4 Ground state calculations

Finding the ground state of many-body quantum systems is an important but
challenging task. We use it as the initial state of our dynamics simulations,
because chemical systems tend to be in the ground state before an interaction
takes place. The ground state of a system is stationary, and as such we don’t
need to worry about any dependence on the initial time of a simulation.

Methods such as Hartree-Fock and coupled-cluster have a set of equations
that can be solved to give the parameters of the ground state. However, the
orbital-adapative coupled-cluster method, which one of the main topics of this
thesis, does not have a such a ground state solver. Under the condition of a
zero Q-space, a concept to be defined later, the ground state of the OATDCC
method equals the one of the non-orthogonal orbital optimized coupled-cluster
method (NOCC), and the NOCCD root solver can be used to find the ground
state[37].

In this section we present two different methods for the ground state of many-
body theories. These are imaginary time evolution and adiabatic switching.

2.4.1 Imaginary time

We now show that evolving a quantum mechanical system in imaginary time is
one way of finding the ground state of a given Hamiltonian. To show this, we
expand an the initial wave function |Ψ(0)〉 in terms of solutions to the stationary
Hamiltonian, |Φi〉,

|Ψ(0)〉 =
∑
i

ci |Φi〉 . (2.35)

In the case of a time-independent Hamiltonian, the time-dependent Schrödinger
equation then has solutions

|Ψ(t)〉 = exp
{
−iĤt

}∑
i

ci |Φi〉 =
∑
i

ci exp{−iEit} |Φi〉 . (2.36)

Letting τ = it, we we see that the components of the eigenfunctions decrease in
norm according to the exponential of the energy

|Ψ(τ)〉 =
∑
i

ci exp{−Eiτ} |Φi〉 . (2.37)

However, states with a higher energy dissipate more quickly, and as such the
ground state will quickly dominate,

|Ψ(τ)〉 =τ→∞ c0 exp{−E0τ} |Φ0〉 . (2.38)

This is based on the assumptions that the difference in energy between the lowest
lying state is not too small, and that the initial state |Ψ(0)〉 has a non-zero
overlap with the ground state.
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2. Quantum mechanics

2.4.2 Adiabatic theorem

Suppose that Ĥ(t) describes a time-dependent Hamiltonian, with eigenpairs
{E(t), ψ(t)} at each time t. The time-independent Schrödinger equation is at
each time-step then fulfilled as

Ĥ(t)ψ(t) = E(t)ψ(t), (2.39)

The adiabatic theorem tells us that as long as the change in Ĥ(t) is slow enough,
then a system prepared in an eigenstate of Ĥ(t1) at one time t1 will be in the
eigenstate of Ĥ(t) at all times t[5]. In general, a state initially prepared as

|Ψ(0)〉 =
∑
n

cn |ψn(0)〉 (2.40)

will at a any later time be written as

|Ψ(t)〉 =
∑
n

cne
iθn(t)eiγn(t) |ψn(t)〉 , (2.41)

where
θn(t) ≡ −1/~

∫ t

0
dt′En(t′), (2.42)

is the dynamic phase, and

γn(t) ≡ i
∫ t

0
dt′ 〈ψn(t)|∂tψn(t)〉 , (2.43)

is the geometric phase.

What does slow enough mean? We can recognize two characteristic times in the
system, the internal time Ti which characterizes internal oscillations and changes
in the wavefunction, and the external time Te characterizing the changes of
the external system or Hamiltonian itself. Slow enough then translates into
Te � Ti.

2.4.3 Adiabatic switching

Adiabatic switching is, like imaginary time propagation, a time evolution process.
It is based on the adiabatic theorem, where initially the system is described by
the non-interacting parts of the Hamiltonian, and the initial state is the ground
state of the non-interacting Hamiltonian. The system is then evolved in time
while the many-body interactions are slowly turned on. We can rewrite the
many-body hamiltonian as

Ĥ(t) = Ĥ0 + F (t)V̂ , (2.44)

where Ĥ0 is the non-interacting hamiltonian , F (t) is an adiabatic switching
function which determines the speed and form of the process, and V̂ is the
two-body operator we wish to introduce over time.

If change in the Hamiltonian over time is slow enough, then the adiabatic
theorem tells us that the system will stay in the ground state of H(t) at each
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2.4. Ground state calculations

time-step througout the process. If F (t) then also converges towards 1, then
the many-body interactions will be at full strength we will have recovered the
many-body Hamiltonian as well as the many-body ground state. In theory,
slow enough means infinitely slow. However, we show that the error of the
process decreases exponentially with the length of the process, as long as we
also introduce some favourable switching function.

We will construct the adiabatic switching function F (t) such that it gives a
smooth and tunable transition for a time evolution t ∈ [0, T ]. We also want
F (0) ≈ 0 and F (T ) ≈ 1, such that the system starts and ends as close as
possible to the non-interacting and the full many-body system, repsectively. In
addition to this, we believe it to be desirable for the derivatives to start and
end as close to 0 as possible, as we show that the linear switching function
performs poorly no matter how slow the process is. However, as it is impossible
to construct a function from 0 to 1 where all the derivatives start and end at
zero, we have to make do with an exponential convergence towards the given
start and end values. One example of a such a function is the Fermi function[22],
given by

F (t) = 1− 1
1 + exp

(
(t− T1/2)/τ

) , (2.45)

with a half-time of T1/2 and a decay time of τ . If τ is small enough, then the
Fermi function gives the desired properties stated above.
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CHAPTER 3

The Discrete Variable
Representation

All methods for solving the many-body Schrödinger equation described later in
this thesis are formulated with reference to some single particle basis {φp}Lp=1,
and is based on the matrix elements of operators for orbitals in this basis.
Solutions for the eigenvalue problem of the single-particle Hamiltonian ĥ are
used as the constituents of the reference Slater determinant of the many-body
problem, either directly or by first rotating into a better suited basis, for
example by performing a HF computation first. The quality of the many-body
wavefunction is thus limited by the quality of the single-particle orbitals.

Many basis sets have been designed for use in molecules and atoms. The key
quality of a basis set is to provide a good and efficient representation of the
matrix elements of the Hamiltonian. For ground state calculations, one usually
seeks orbitals that provide a good description of the domain of the ground state
wavefunction, while calculations of excited states usually require some more
diffuse orbitals to allow electrons to move out of the core region. Our goal is to
be able to simulate strong-field processes where ionization needs to be handled,
which means that we need to cover an area large enough for electrons to be in
some sense disconnected from the remaining wavefunction.

For this purpose, we study the discrete variable representation (DVR). The DVR
is a grid representation based on Gaussian Quadrature. The main advantage of
the DVR in many-body calculations is that it provides sparse two-body matrix
elements. This lets us utilize many DVR functions in a given calculation, and
thus represent a large spatial extent.

In this chapter, we start with a presentation of regular grid methods, specifically
the finite difference method (FDM). We then move on to the presentation of
DVR, starting with the quadrature methods which gives the DVR its accuracy,
and continuing with the details of DVR, with Gaussian DVR as an example.
Finally, we briefly present the matrix elements of sinc-DVR, which is the basis
we use for our many-body calculations.
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3.1 One-body ground state

We consider the single-particle, time-independent Schrödinger equation in one
dimension,

E |ψ〉 = ĥ |ψ〉 = (T̂ + V̂ ) |ψ〉 , (3.1)

where T̂ = − 1
2

d2

dx2 is the kinetic energy operator and V̂ is the potential energy
operator. The more general time-dependent version is

i
∂

∂t
|ψ(t)〉 = ĥ(t) |ψ(t)〉 , (3.2)

where both the Hamiltonian h(t) and the state |ψ(t)〉 can be time-dependent.

The standard approach in numerical quantum mechanics is to expand the true
single particle wave function |Ψ〉 in terms of a truncated basis {|φn〉}N−1

n=0 of
size N . In this approximative representation, the one-body Hamiltonian ĥ
is projected from the original infinite-dimensional Hilbert space into the N -
dimensional subspace spanned by the basis. We can write this in terms of a
projection operator P =

∑N−1
n=0 |φn〉〈φn|,

ĥ = T̂ + V̂ → ĥ′ = PĥP =
N−1∑
m,n=0

(Tmn + Vmn) |φm〉〈φn| . (3.3)

From now on, we will use ĥ for the projected one-body Hamilton operator. Such
a representation is called a finite basis representation (FBR), which is a spectral
basis. Our goal is to find ways to easily represent the kinetic and potential
matrix elements, respectively Tmn = 〈φm|T̂ |φn〉 and Vmn = 〈φm|V̂ |φn〉. By
easily, we mean either in terms of computational complexity or in terms of
storage requirements. For single particle basis sets with applications in many-
body problems, we are also interested in the form of the Coulomb operator,
upqrs = 〈φpφq|û|φrφs〉.

We now present the methods to solve eq. (3.1), and later describe a prescription
for eq. (3.2).

3.1.1 Particle on a grid

Equation (3.1) is an eigenvalue equation, which can be written

ĥ |ψλ〉 = Eλ |ψλ〉 . (3.4)

Here (|ψλ〉 , Eλ) are eigenpairs for a given confining potential V (x). We can
convert this to a position basis representation by inserting a complete position
basis

∫
dx |x〉〈x| and left multiplying by a basis element 〈x′|,∫

dxhx′,xψλ(x) = Eλ

∫
dxψλ(x)δ(x′ − x) = Eλψλ(x′), (3.5)

where hx′,x = 〈x′|h|x〉, ψλ(x) = 〈x|ψλ〉, and the Dirac delta function δ(x′ − x)
comes from the normalization of the basis functions 〈x′|x〉 = δ(x′ − x).

The simplest way to solve this is to use a discrete representation on a uniformly
spaced grid of N points, over a certain domain x ∈ [a, b]. The discretized
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3.1. One-body ground state

grid points are xn = a + n∆x for n = 0, . . . , N − 1, with a grid spacing of
∆x = (b− a)/(N − 1). The spatial wave function ψ(x) is also represented in
the discretized grid basis,

ψ(xn) ≡ 〈xn|ψ〉 . (3.6)

When discretizing, normalization of the grid basis becomes 〈xn|xm〉 = δnm, and
the inner product is changed from an integral to a sum over the given basis,∫

dx→ ∆x
∑
n.

The action of the Hamiltonian on the wavefunction is also discretized,

ĥψ(x) =
(
−1

2
d2

dx2 + V̂ (x)
)
ψ(x) (3.7)

→ ĥψ(xn) =− 1
2
ψ(xn−1)− 2ψ(xn) + ψ(xn+1))

∆x2 + V (xn)ψ(xn), (3.8)

where we used a finite difference scheme for the second derivative operator.
This leads gives us the finite difference method. The matrix elements of the
Hamilton operator are

hnm ≡ 〈xn|h|xm〉 = −1
2
δn,m−1 − 2δn,m + δn,m+1

∆x2 + V (xn)δnm. (3.9)

Inserting these definitions into eq. (3.5), we get∑
n

hnmψλ(xm) = Eλψλ(xn), (3.10)

which is a simple matrix eigenvalue equation to be solved for the vectors ψλ(xn).

Note on grid spacing

The quality of the representation of the wavefunction with respect to the
spacing of the grid points ∆x is given by the momentum of the wave function.
Consider that momentum is the Fourier transform of the position basis, i.e. the
spatial frequencies. The Nyquist-Shannon sampling theorem[43] tells us that
the maximal frequency of a discretized Fourier transform is given by half the
sampling frequency. Translated into our problem, the maximal momentum we
can represent is then half that of the reciprocal grid spacing (in atomic units).

Matrix elements

To use the single-particle basis in further calculations, we are interested in
computing matrix elements. The first is the overlap matrix, which for a general
basis is

Spq = 〈φp|φq〉 =
∫

dxφ∗p(x1)φq(x1). (3.11)

For time-dependent problems we will be using the length gauge for
electromagnetic interactions. This introduces a one-body operator given by

ĥI(t) = F (t)x̂. (3.12)
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3. The Discrete Variable Representation

Here F (t) is a regular function which can be applied at each time-step, and as
such it is sufficient to store the matrix elements of the position operator,

Xpq = 〈φp|x̂|φq〉 =
∫

dxψ∗p(x1)xφq(x1). (3.13)

Next, for a many-body calculation, we are interested in the two-body matrix
elements

〈ψpψq|û(x1, x2)|ψrψs〉 =
∫ ∫

dx1dx2 ψ
∗
p(x1)ψ∗q (x2)u(x1, x2)φr(x1)φs(x2),

(3.14)
where û(x1, x2) is some two-body operator. For electronic systems in sufficiently
many dimensions, this is the Coulomb operator, which in atomic units is

û(x1, x2) = 1
|x1 − x2|

. (3.15)

Using a grid representation for the Coulomb potential can be challenging due to
the singularity when x1 = x2. In three dimensions, this problem can be avoided
by considering that the Coulomb operator is the Greens function of the Laplace
operator[24]. This results in the expression

uαβγδ = 2πδαγδβδ
T−1
αβ

(∆x)3 , (3.16)

where T−1
αγ is the matrix elements of the inverse of the kinetic energy operator

in the infinite size grid limit. However, in one dimension the integrals over
the Coulomb potential diverge. Consequently, in the one-dimensional case we
circumvent both of these problems by using the shielded Coulomb potential,

û′(x1, x2) = 1√
(x1 − x2)2 + a2

, (3.17)

where a is a shielding parameter that removes the singularity. The amtrix
elements can now be safely evaluated at the grid points.

3.2 DVR

A useful way of representing the basis of single particle Hamiltonian is the
discrete variable representation (DVR). A definition of DVR is given by
Groenenboom and Colbert [17]. They define a DVR as consisting of three
ingredients, first an orthonormal single particle basis set,

{θα(x), α = 1, . . . , Nb}, 〈θα|θβ〉 = δαβ . (3.18)

This is connected in a one-to-one correspondence to a Nb-point quadrature with
a set of grid points and weights,

{(xβ , ωβ), β = 1, . . . , Nb}, (3.19)
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3.2. DVR

Finally, the basis functions needs to have the property that when evaluated at
the grid points of the quadrature, only the corresponding grid point gives a
non-zero value,

θα(xβ) = ω
−1/2
β δαβ . (3.20)

The DVR is always connected to a FBR by a unitary transformation, meaning
that the quality of the DVR is given by the quality of the corresponding FBR.
There are several ways of constructing a DVR, but it is always necessary to
know the value of the kinetic energy operator for the system in question, either
for the FBR or the DVR.

The diagonality of the position operator in the DVR basis allows us to easily
evaluate and store the matrix elements of both the potential energy operator
V̂ (x) and, more importantly, the Coulomb operator û(x1, x2). In a DVR basis,
operators given as functions of the coordinates are evaluated at the grid points
of the quadrature. The matrix elements of the potential matrix operator in the
DVR basis are

Vαβ = 〈θα|V̂ (x)|θβ〉 ≈ V (xα)δαβ , (3.21)
and similarly the Coulomb matrix elements are

uαβγδ = 〈θαθβ |û(x1, x2)|θγθδ〉 ≈ δαγδβδu(xα, xβ). (3.22)

This diagonality greatly reduces the memory cost of storage, but also the
cost of any calculation where uαβγδ is involved. As an example, consider the
transformation uαβγδ → upqrs given by

|φp〉 = Cαp |θα〉 ,
〈
φ̃p
∣∣ = C̃pα

〈
θ̃α
∣∣ . (3.23)

The transformation is explicitly

upqrs = C̃pαC̃
q
βC

γ
rC

δ
su

αβ
γδ . (3.24)

If we let the size of the two basis sets be L and K for |φp〉 and |θα〉, respectively,
and assume L > K, then evaluating the expression using intermediates normally
requires O(KL4) operations. However, with diagonal Coulomb matrix elements
the expression becomes

upqrs =
∑
αβ

C̃pαC̃
q
βC

α
r C

β
s u

αβ
αβ . (3.25)

The present expression requires just O(LK4 +K2L2) operations to evaluate,
which is a lot smaller than O(KL4), especially when L/K becomes big.
Consequently, we can expand a smaller computational basis of size K (such as
the Hartree Fock basis or the OA basis associated with OATDCC) in a much
larger DVR grid of size L, and get a highly flexible basis at a low cost. This is a
large advantage when doing time-evolution in strong electromagnetic fields, as
the time-dependent wavefunction might be far removed from any initial ground
state basis.

The following section contains a presentation of the underlying theory of DVR-
basis sets, starting with the quadrature rule which follows a DVR, and continuing
with the natural extension into Gauss-DVR based on orthogonal polynomials
before venturing into the theory of sinc-DVR basis functions, which are the
basis functions we have utilized.
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3. The Discrete Variable Representation

3.2.1 Quadrature

According to the second ingredient of a DVR method in eq. (3.19), there is a
quadrature underlying any DVR basis, and in the following we briefly clarify
what this entails. The name "quadrature" stems from the antique method of
calculating the area of a shape by the geometrical construction of a square with
equal area, but has become more or less synonymous with numerical integration
in the last century. An N -point quadrature rule approximates a definite integral
of a function f(x), over a domain Ω, as a weighted sum,∫

Ω
dxω(x)f(x) ≈

N∑
α=1

ωαf(xα). (3.26)

Here ω(x) is the weight function specific to the quadrature used, and xα and
ωα are the grid points and their associated weights.

For a domain Ω = [a, b] and weight function ω(x) = 1, a typical example is
the midpoint rule, where the single grid point is just the middle of the interval
x0 = (a+ b)/2, and the weight is the width of the interval ω0 = b− a,∫ b

a

dx f(x) ≈ (b− a)f
(
a+ b

2

)
. (3.27)

This is perhaps the simplest quadrature possible; the area of the function is
approximated as the rectangle with width equal to the integral and height equal
to the function value in the middle of the interval. A better approximation
can be achieved by taking the composite midpoint rule, where one splits the
integral into N pieces of width h = (b− a)/N and applies the midpoint rule to
each of them. The grid points are then xα = a+ αh+ 1/2 and the grid weights
are ωα = h for α = 0, . . . , N − 1.

3.2.2 Gaussian Quadrature

Another important approach is the N -point Gaussian quadrature. In Gaussian
quadrature, the grid points xα and grid weights ωα of the quadrature are defined
by a set of orthogonal polynomials Cn(x),∫

Ω
dxω(x)Cn(x)Cl(x) = δnl, (3.28)

where ω(x) is a weight function. The polynomials satisfy a recursion relationship,

xCn(x) = anCn+1(x) + bnCn(x) + cnpn−1(x). (3.29)

We use the normalized polynomials above, but an equivalent definition is the
monic polynomials, where an = 1 for all n ≥ 0. Examples of common orthogonal
polynomials for different domains can be found in table 3.1, and the grid points
and weights can be found in tabulated form. In ?? we show that a Gauss
quadrature of degree N approximates a function with a polynomial of degree
2N − 1, ∫

Ω
dxω(x)f(x) ≈

∫
Ω

dxP2N−1(x) =
∑
α

ωαf(xα). (3.30)
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3.2. DVR

The grid points are here given by the roots xα of CN (x), while the weights are
given by

ωα = (C−1)α0

k0
, (3.31)

where (C−1)αn is the inverse of the matrix Cnα ≡ Cn(xα), and k0 ≡ C0(x), as
C0(x) is a constant. The weights and grid points can be constructed efficiently
using the Golub-Welsh algorithm[15].

Table 3.1: Examples of orthogonal polynomials. Definitions of the different
polynomials are not subject to this thesis.

Polynomial class of C Domain Ω Weight ω(x)
Legendre [−1, 1] 1
Jacobi (−1, 1) (1− x)α(1 + x)β , α, β > −1

Chebyshev (−1, 1) 1/
√

1− x2

Laguerre [0,∞) e−x

Hermite (−∞,∞) e−x
2

3.2.3 Gauss Quadrature DVR

Now that we have defined a quadrature, and shown that the usage of orthogonal
polynomials can provide an accurate value for the integral of a function, we
are ready to bridge the gap to DVR. The DVR is the representation where
the position-operator is diagonal, with diagonal elements corresponding to grid
points of the quadrature.

We start by defining the so-called finite basis representation (FBR) [30], by
using weighted versions of the polynomials Cn(x) as basis functions for a Hilbert
space on the corresponding domain Ω. The FBR basis functions are expressed
in terms of the N first polynomials of the given class as

φn(x) =
√
ω(x)Cn(x), n = 0, . . . , N − 1, (3.32)

where the weight ensures orthonormality,

〈φn|φl〉 =
∫

dxφn(x)φl(x) =
∫

dxω(x)Cn(x)Cl(x) = δnl. (3.33)

We now consider the matrix elements of the position operator x̂. In the DVR
basis, they are given as

Xnl = 〈φn|x|φl〉 =
∫ b

a

dxφn(x)∗xφl(x). (3.34)

We can rewrite the integrand as

xφ∗n(x)φl(x) = xω(x)Cn(x)Cl(x) = ω(x)Pn+l+1. (3.35)

Here Pn+1+l is a polynomial of degree n + l + 1 ≤ 2N − 1, and as such the
Gaussian quadrature relation for the coordinate matrix in the FBR basis holds
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3. The Discrete Variable Representation

exactly. Using the quadrature rule, we get a closed exact expression for the
matrix elements of the Gauss quadrature FBR basis,

Xnl =
N∑
α=1

ωα
ω(xα)φ

∗
n(xα)xαφl(xα). (3.36)

The DVR basis is defined as the one where Xnl is diagonal, found by
diagonalizing with a unitary transformation T ,

X = T †XDVRT. (3.37)

The exact analytical expression for T is found by rewriting eq. (3.36),

Xnl =
N∑

α,β=1

√
ωα

ω(xα)φ
∗
n(xα)xαδαβ

√
ωβ

ω(xβ)φl(xβ)

≡
N∑

α,β=1
(T †)nαXDVR

αβ Tβl, (3.38)

where we defined the diagonal position operator in the DVR basis XDVR
αβ =

xαδαβ , and we identified the square transformation matrix,

Tαl =
√

ωα
ω(xα)φl(xα), T ∈ RN×N . (3.39)

Note that T is unitary due to the orthonormality of the basis functions,

δnl = 〈φn|φl〉 =
∫ b

a

dxφn(x)∗φl(x) =
N∑
α=1

ωα
ω(xα)φ

∗
n(xα)φl(xα) =

N∑
α=1

(T †)nαTαl.

(3.40)

DVR Basis functions

We can define a DVR wave function localized around the grid point xα as

θα(x) =
∑
n

T ∗αnφn(x), (3.41)

with the inverse transformation

φm(x) =
∑
α

Tαmθα(x). (3.42)

Matrix elements belonging to the DVR basis will be exclusively represented by
greek letters. The DVR wavefunctions θα(x) are nonzero at their corresponding
grid point xα and zero at all other grid points xβ (β 6= α), as we see by
evaluating,

θα(xβ) =
∑
n

T ∗αnφn(xβ) =
∑
n

T ∗αnTβn

√
ω(xβ)
ωβ

= δαβ

√
ω(xβ)
ωβ

, (3.43)

Where we inserted for φn(xβ) = Tβn
√
ω(xβ)/ωβ from eq. (3.39).
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Potential matrix elements

A strength of the DVR basis is that the matrix elements of the potential
energy operator, or any local operator, can be approximated as diagonal. For a
potential energy operator V̂ (x), we get

〈θα|V̂ (x)|θβ〉 =
∫

dx θα(x)∗V (x)θβ(x) (3.44)

=
∑
nm

T ∗αnTβm

∫
dxφ∗n(x)V (x)φm(x) (3.45)

≈
∑
nm

T ∗αnTβm
∑
γ

ωγ
ω(xγ)φn(xγ)V (xγ)φm(xγ) (3.46)

=
∑
γ

ωγ
ω(xγ)θα(xγ)V (xγ)θβ(xγ) (3.47)

=
∑
γ

ωγ
ω(xγ)

√
ω(xα)
ωα

δαγV (xγ)

√
ω(xβ)
ωβ

δβγ (3.48)

= δαβV (xβ). (3.49)

Here we explicitly performed the transition to the FBR basis and back, to show
that the DVR basis has the same level of accuracy as the FBR basis. This is
expected, as the transformation Tαn between the two basis sets is unitary. Any
error comes from the quadrature approximation, because we are approximating
the integrals as sums. However, in the DVR basis the sums only contain a
single non-zero element, at the grid-point of the matching bra and ket.

The other way to consider the error of the potential energy matrix is by recalling
that the position operator is diagonal in the DVR basis. By Taylor expanding
the potential energy operator and invoking the resolution of the identity, we
can achieve the same result. We write the Taylor expansion of a function f as

f(x) =
∑
n

f (n)(0)(x)n
n! . (3.50)

We define the operator evaluated function f(Â) by using the Taylor expansion
of f(x) and inserting the operator Â instead of x,

f̂(Â) =
∑
n

f (n)(0)Ân
n! . (3.51)

The spectral decomposition of Â is, in a complete basis,

Â =
∞∑
α=0

λα |λα〉〈λα| , (3.52)

where (λα, |λα〉) for α = 0, . . . ,∞ is the eigenpairs of Â. Inserting into the
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Taylor expansion we find the spectral decomposition of the operator function,

f̂(Â) =
∑
n

f (n)(0) (
∑
α λα |λα〉〈λα|)

n

n! (3.53)

=
∑
α

|λα〉〈λα|
∑
n

f (n)(0)λnα
n! (3.54)

=
∑
α

f(λα) |λα〉〈λα| . (3.55)

In the second step we used the orthonormality of the eigenvectors, 〈λα|λβ〉 = δαβ
to convert the product over sums (

∑
α λα |λα〉〈λα|)

n, into a sum over products∑
α |λα〉〈λα|λnα. We are left with an operator with the same eigenvectors |λα〉,

but with different eigenvalues f(λα). With a complete DVR basis, we could
have used this exact relationship with Â = X̂, and λα = θα. However, the
second step above is in effect a resolution the identity, which is not exact for a
finite basis. Consequently, some approximation is made when evaluating the
matrix elements in this way. We can write this approximation as

〈θα|V̂ (x)|θβ〉 = V̂ (x)αβ ≈ V (XDVR
αβ ) = V (xα)δαβ . (3.56)

Light and Carrington [30] name this error the product approximation, but for
quadrature DVR the error is exactly the same as the quadrature error. This
view of the error is, however, independent of the quadrature, and lets us generate
a "product" DVR from any FBR basis. The only requirement is that we know
both the kinetic energy matrix of the underlying FBR, and the transformation
to the DVR basis with diagonal position operator X̂. Importantly, one such
basis is the sinc-DVR basis, which we will cover in the next section.

Additional note on the error

A downside of DVR is that the eigenvalue results of the hamiltonian is not
variational. The potential energy operator is approximated as diagonal, and
in the case of Gaussian-DVR, this error is equal to the quadrature error.
Unfortunately, this error is not guaranteed to increase the energy, and might as
well decrease the total energy below the true groundstate. However, this error
quickly disappears with basis size, at least for lower lying states, due to the
accuracy of Gauss quadrature.

3.3 Sinc-DVR

Many other DVRs than Gauss-DVR have been developed, with examples such
as the In this section we will cover the sinc-DVR basis, which is not based on
orthogonal polynomials. Instead we start with a continuous Fourier basis for

|φk(x)〉 = eikx√
2π
, −∞ < x <∞, (3.57)

where k is the continuous momentum component of the wavefunction. We
restict ourselves to a band-limited part of the Hilbert space, which means that
the momentum component is limited to −K < k < K. In appendix A we show
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3.3. Sinc-DVR

that for an infinite sized grid, the Fourier basis functions turn into sinc-DVR
functions,

sn(x) = sin(π(x− xn)/∆x)
π(x− xn) , (3.58)

The quadrature grid for sinc-DVR spans the entire real line, and is defined by
the points xn = n∆x for n = 0,±1,±2, . . . , with spacing ∆x.

The elements of the kinetic energy operator are also derived in the appendix,

Tmn = (−1)m−n
2(∆x)2

{
π2

3 , m = n,
2

(m−n)2 , m 6= n.
(3.59)

The infinite order evaluation of the kinetic operator causes the kinetic energy
operator to be evaluated exactly for functions which are also band-limited[].
This is only true when the size of the grid is infinite, and in practice we are
forced to truncate the grid at some distance. However, the error that this
introduces reduces quickly with the size of the grid representation, as we will
see from the quality of the DVR basis.

27





CHAPTER 4

Many-body theory

4.1 Basic many body theory

Now that we are fairly certain of how to solve the single-particle Schroedinger
equation, we look towards systems with more electrons. Due to the fermionic
nature of electrons, we need a wavefunction that is antisymmetric to interchange
of particles. A mathematical object implementing this property is the Slater
determinant. Given N identical particles at coordinates {xj}Nj=1 (including
spin) and a basis of L ≥ N single particle orbitals {φi(xj)}Li=1, we represent a
manybody state up to a sign using the Slater determinant as

|Φ(x1,x2, . . . ,xN )〉 = 1√
N !

∣∣∣∣∣∣∣∣∣
φp1(x1) φp2(x1) · · · φpn(x1)
φp1(x2) φp2(x2) · · · φpn(x2)

...
... . . . ...

φp1(xN ) φp2(xN ) · · · φpn(xN )

∣∣∣∣∣∣∣∣∣ (4.1)

where pi ∈ 1, . . . , L. As an example, consider the two-particle case. A
wavefunction consisting of two orbitals φa(x) and φb(x) for two particles of
coordinates x1 and x2 becomes

|Φ(x1,x2)〉 = 1√
2

∣∣∣∣φa(x1) φb(x1)
φa(x2) φb(x2)

∣∣∣∣ = 1√
2

(φa(x1)φb(x2)− φa(x2)φb(x1)),

(4.2)
As expected, the explicit expression is antisymmetric under switching the
coordinates of the two particles,

|Φ(x2,x1)〉 = 1√
2

(φa(x2)φb(x1)− φa(x1)φb(x2)) = − |Φ(x1,x2)〉 . (4.3)

We will build approximate solutions to the many-body wave functions using
the Slater determinants in two ways. The first involves rotating the basis set to
optimize a single Slater determinant, such as for Hartree-Fock. The other is to
add together different Slater determinants built from the same basis. The latter
is necessary to account for many-body correlations in the system, and is the
principle of all post Hartree-Fock methods. Orbital adaptive coupled-cluster
theory, which is an important part of this thesis project, rotates the orbitals
and combines the Slater determinants built from these using the coupled cluster
expansion of the wave function. As such it combines both of these approaches
simultaneously.
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4. Many-body theory

4.2 Second quantization

Using the Slater determinants directly to describe many-body fermionic systems
can be cumbersome, and we want a unified description of systems of arbitrary
basis sets and particle numbers. Introducing a Fock space we are able to consider
all possible determinants resulting from a set of basis functions. A Fock space is
simply put a direct product of Hilbert spaces for different number of particles.

4.2.1 Occupation Number representation

We will in the coming sections be representing the basis elements of the Fock
space with the Occupation-Number (ON) representation. Througout we follow
the presentation given by Helgaker et al. [21] closely.

In the ON representation, an occupation number is associated with each single
particle basis function, giving the number of particles that inhabit each orbital.
The Pauli exclusion principle states that the only possible occupation number
for a fermionic single particle orbital is 0 or 1, a property related to the
antisymmetric nature of the wavefunction. We can therefore represent an
orthonormal many body basis vector in the ON representation in terms of a
binary string k consisting of zeros and ones,

|k〉 = |k1, k2, . . . , kL〉 , kp =
{

0 if φp occupied,
1 if φp unoccupied.

(4.4)

A general nonorthonormal vector is defined later. For any Fock space we can
produce one-to-one mappings between the ON basis vectors and the Slater
determinants with spin orbitals in a given ordering, the latter forming a basis
of the Fock space. Consequently, the ON representation naturally also forms a
basis for the Fock space. For a Fock space of L single particle orbitals with an
arbitrary number of particles N = 0, . . . , L, we now see that the total number of
Slater determinants is Ns = 2L. If instead the number of particles is fixed, then
the number of possible Slater determinants is given by the binomial coefficient,

Ns =
(
L
N

)
= L!

(L−N)!N ! . (4.5)

The inner product of two ON-vectors is given by

〈k|m〉 = δk,m =
L∏
p=1

δkpmp . (4.6)

With the inner product we now have the necessary tools to do mathematical
operations on wavefunctions. States are vectors written in terms of the basis
elements |k〉 with coefficients ck for each basis element,

|c〉 =
∑

k

ck |k〉 . (4.7)

The inner product between two states |c〉 and |d〉 is

〈c|d〉 =
∑
km

c∗kdm 〈k|m〉 =
∑

k

c∗kdk, (4.8)
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4.2. Second quantization

and the normalization condition for a state is given by

〈c|c〉 =
∑

k

|ck|2 = 1. (4.9)

The vacuum state is defined as the state with kp = 0∀p,

|−〉 ≡ |0, 0, . . . , 0〉 . (4.10)

4.2.2 Creation operators

The next important building blocks of second quantization are the creation and
annihilation operators, a†p and ap respectively. These are operators that change
the number of particles in the state they act on. Starting with the creation
operator, its action on an arbitrary ON-vector is defined depending on the
occupancy of spin-orbital p,

a†p |k1, . . . , kp, . . . , kL〉 ≡

{
Γk
p |k1, . . . , 1p, . . . , kL〉 , if kp = 0,

0, if kp = 1,
(4.11)

where Γk
p is a phase factor and 1p is shorthand for a 1 in the p’th position. The

first case is just the addition of a fermion to an unoccupied position, and the
second is a result of the Fermi exclusion principle. The sign-factor Γk comes
from having to rearrange the vector; returning to the Slater determinant picture
we can picture this as adding a column with φp all the way to the left (and
an extra row for the extra coordinate), and subsequently switching pairs of
columns until the basis function is in the correct position according to the
chosen mapping of ON-vectors to Slater determinants. This gives us a real
phase factor as Γk

p =
∏p−1
q=1(−1)kq , since all the occupied states to the left of

p contribute one column switch, i.e. a minus sign. We will not give Γk
p much

attention, as it drops out in the coming expressions.

We can rewrite eq. (4.11) as

a†p |k〉 = δkp0Γk
p |k1, . . . , 1p, . . . , kL〉 . (4.12)

The creation operator is nilpotent, as its action on any vector twice is zero,

(a†p)2 |k〉 = a†pa
†
p |k〉 = Γk

pδkp0a
†
p |k1, . . . , 1p, . . . , kL〉 = 0 (4.13)

For two different creation operators, a†p and a†q, the effect on a state is dependent
on the ordering of p and q. Letting p < q gives

a†pa
†
q |k〉 = a†pδkq0Γk

q |. . . , kp, . . . , 1q, . . .〉
= δkp0Γk

pδkq0Γk
q |. . . , 1p, . . . , 1q, . . .〉 (4.14)

while the commuted case gives

a†qa
†
p |k〉 = a†qδkp0Γk

p |. . . , 1p, . . . , kq, . . .〉
= δkq0(−Γk

q )δkp0Γk
p |. . . , 1p, . . . , 1q, . . .〉 . (4.15)
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4. Many-body theory

We can see that these two expressions are equal up to a sign difference due
to the extra occupancy of p when applying a†q. When q = p, both expressions
are zero due to the nilpotency of the creation operator, and q < p follows from
simply renaming p and q. Adding eq. (4.14) and eq. (4.15), we see that the two
operators fulfill the anticommutation relations when acting on a test vector |k〉,

{a†p, a†q} |k〉 =
(
a†pa
†
q + a†qa

†
p

)
|k〉 =

(
a†pa
†
q − a†pa†q

)
|k〉 = 0. (4.16)

This holds for any vector |k〉, so we might as well drop it and write the
anticommutation relations on the form

{a†p, a†q} = 0. (4.17)

4.2.3 Annihilation operators

Annihilation operators are the hermitian adjoint of the creation operators,
defined as ap ≡ (a†p)†. They remove particles from a given state, and all their
properties can be found from the creation operators. Its anticommutation
relation is found by hermitian conjugation of eq. (4.17),

{ap, aq} = {a†p, a†q}
† = 0. (4.18)

To find the action of an annihilation operator on a state |k〉 we insert an identity
1 =

∑
m |m〉〈m| and take the complex conjugate of the resulting inner product,

aq |k〉 =
∑
m
|m〉 〈m|aq|k〉 =

∑
m
|m〉 〈k|a†q|m〉

∗

=
∑
m

mq=0

|m〉 〈k|Γm
q |m1, . . . 1q, . . .mL〉∗ , (4.19)

Notice that we already have the restriction mq = 0 from the action of the
creation operator, and the fact that the phase factor is real. We find restrictions
on the remaining indices in m by using the definition of the inner product of
eq. (4.6),

aq |k〉 =
∑
m

mq=0

|m〉Γm
q

 L∏
p=1
p 6=q

δkpmp

 δkq1

= Γm
q δkq1 |k1, . . . , 0q, . . . , kL〉 . (4.20)

The annihilation operator ap has the opposite effect of the creation operator
and removes a state from position p. It has the same phase factor, as the same
number of permutations on antisymmetric states have to be performed to move
state p to the front of the operator.

4.2.4 Anticommutation relations

The final result we need for the annihilation and creation operators is the
anticommutation relations between operators of different kind, {a†q, ap}. There
are three cases: p = q, p < q and p > q. Again we only consider the first two,
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4.2. Second quantization

as the last is just a renaming of the second when it comes to anticommutation
relations.

For the latter of the two, p < q, we have

a†paq |k〉 = a†pΓk
q δkq1 |k1, . . . kp, . . . , 0q, . . . , kL〉

= Γk
pΓk

q δkp1δkq0 |k1, . . . , 1p, . . . , 0q, . . . , kL〉 . (4.21)

Similarly to eq. (4.15), the commuted version is equal up to an extra minus
sign due to the extra occupancy when applying the second operator,

aqa
†
p |k〉 = aqΓk

pδkp0 |k1, . . . 1p, . . . , kq, . . . , kL〉
= Γk

p

(
−Γk

q

)
δkp1δkq0 |k1, . . . , 1p, . . . , 0q, . . . , kL〉

= −a†paq |k〉 . (4.22)

This gives {a†p, aq} = 0. For p = q on the other hand, we have

a†pap |k〉 = a†pΓk
pδkp1 |k1, . . . , 0p, . . . , kL〉

= Γk
pΓk

pδkp1 |k1, . . . , 1p, . . . , kL〉 = δkp1 |k〉 , (4.23)

and

apa
†
p |k〉 = a†pΓk

pδkp0 |k1, . . . , 1p, . . . , kL〉
= Γk

pΓk
pδkp0 |k1, . . . , 0p, . . . , kL〉 = δkp0 |k〉 . (4.24)

This is the only nonzero anticommutation relation, {a†p, ap} = 1. By putting
these results together, we find the anticommutator of a creation and an
annihilation operator as

{a†p, aq} = δpq. (4.25)
To summarize, the anticommutation relations of the fundamental operators ap
and a†p are

??{ap, aq} = 0, (4.26)
{a†p, a†q} = 0, (4.27)
{a†p, aq} = δpq. (4.28)

4.2.5 Second quantized Hamiltonian

To complete the transition to second quantization, we need to make sure that
our new mathematics give the same expectation values and matrix elements.
These represent the only observables in quantum mechanics, and as such after
a careful translation we will be ready to use our new theory.

In second-quantization, any one-particle operator can be written as[44]

ĥ =
∑
pq

〈φp|ĥf |φq〉 a†paq ≡
∑
pq

hpqa
†
paq, (4.29)

where the superscript f of ĥf denotes that it is the corresponding first
quantization operator. The matrix elements hpq are given by

hpq = 〈φp|ĥ|φq〉 =
∫

dxφ∗p(x)ĥ(x)φq(x). (4.30)
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4. Many-body theory

Likewise, two-body operators can be written on second quantized form as

û = 1
2
∑
pqrs

〈φpφq|uf |φrφs〉 a†pa†qasar

= 1
2
∑
pqrs

upqrsa
†
pa
†
qasar. (4.31)

Again we drop the superscript of ûf . This operator has the following expectation
value in the coordinate representation,

upqrs = 〈φpφq|û|φrφs〉 =
∫

dx1 dx2 φ
∗
p(x1)φ∗q(x2)û(x1,x2)φr(x1)φs(x2).

(4.32)
All particles involved are identical particles, and as such two-body operators
have the permutation symmetry upqrs .

The two-body operator can also be rewritten in an alternate form that will
prove useful,

û = 1
4
∑
pqrs

upqrs,ASa
†
pa
†
qasar. (4.33)

Here we used the anticommutation rules of as and ar given in ??, and defined
the antisymmetric matrix elements

upqrs,AS ≡ u
pq
rs − upqsr . (4.34)

Using Wick’s theorem (which we will define later) result in expressions which
are antisymmetric with respect to interchange of two particles, and using the
already anti-symmetric matrix elements upqrs,AS will remove half of the terms.

The full form of the first-quantized hamiltonian for electronic problems, where
only one- and two-body operators are involved, is then written as

Ĥ =
∑
pq

hpq â
†
paq + 1

4
∑
pqrs

upqrs,ASa
†
pa
†
qasar, (4.35)

where the matrix elements hpq and upqrs,AS are defined by the problem at hand.

Note on notation

In many problems in quantum mechanics, there is a transformation from one
single-particle basis to another,

|φp〉 =
∑
α

Cαp |χα〉 . (4.36)

In such cases, we will consistently use two different sets of indices to separate
the two basis sets; One will have exclusively greek indices, while the other will
have exclusively latin ones. This lets us use a short-hand notation for matrix
elements, where the index shows which basis function is involved. For an n-body
operator Ô, we write the matrix elements as

Oα1,α2,...,αn
β1,β2,...,βn

≡ 〈χα1χα2 · · ·χαn |Ô|χβ1χβ2 · · ·χβn〉 , (4.37)
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4.2. Second quantization

for the greek basis, and

Op1,p2,...,pn
q1,q2,...,qn ≡ 〈φp1φp2 · · ·φpn |Ô|φq1φq2 · · ·φqn〉 , (4.38)

for the latin basis.

4.2.6 Wick’s theorem

A very important result for many body theory is Wick’s theorem[11, 44]. The
main purpose of Wick’s theorem is to alleviate the calculation of vacuum
expectation values of operators, and their action on the vacuuum state. We will
now present two building blocks required for Wick’s theorem, and then state
the theorem itself.

Normal ordering

First, the normal ordering of a string (i.e. product) of creation and annihilation
operators Ā = A1 · · ·An, where Ai ∈ {a†, a}, is defined as any ordering of the
string where all annihilation operators are to the right of all creation operators.
Mathematically, we can write this as

{Ā} ≡ (−1)|σ|Aσ(1) · · ·Aσ(n) = (−1)|σ|[creation ops.]× [annihilation ops.].
(4.39)

Here, σ ∈ Sn is a permutation of the indices, and |σ| is the sign of the
permutation. The normal ordering is not unique, as any permutation of two
operators in either the creation operator block or the annihilation operator block
will lead to a change in the sign of the permutation, due to the anticommutation
rules.

Notably, a normal ordered operator has zero vacuum expectation value,

〈−|{Ā}|−〉 = 0. (4.40)

Contractions

The other ingredient is the contraction. The contraction between two
annihilation or creation operators Â1 and Â2 is defined as

A1A2 ≡ Â1Â2 − {Â1A2} = 〈−|A1A2|−〉 . (4.41)

The four possible values of a contraction for creation and annihilation operators
a†p and ap (relative to the vacuum state |−〉) is

apaq = 0, a†pa
†
q = 0, (4.42)

a†paq = 0, apa
†
q = δpq. (4.43)

The contraction of two operators Aj and Ak in a normal ordered string
Ā = A1 · · ·Aj · · ·Ak · · ·An, possibly separated by other operators, is found
by permuting the string such that the operators are side by side outside the
string. We regard this as a definition,

{A1 · · ·Aj · · ·Ak · · ·An} ≡ (−1)|σ|AjAk{Aσ(3) · · ·Aσ(n)}, (4.44)
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4. Many-body theory

where the permutation σ is now such that σ(1) = j and σ(2) = k. For normal
ordered strings containing contractions of multiple pairs of operators, this
operation is done for each pair subsequently.

Wick’s theorem

Finally, Wick’s theorem states that any string of operators Ā = A1 · · ·An can
be written as a sum of all normal ordered terms, where the sum is over all
possible combinations of contractions performed between operators. The formal
way of writing Wick’s theorem is

Ā ={Ā}

+
∑

one contraction
{A1 · · ·Ak · · ·Aj · · ·An}

+ . . .

+
∑

bn/2c contraction

{A1· · ·Ak· · ·Aj · · ·An}. (4.45)

Here bn/2c is the floor function, equal to n/2 if n is even, and (n− 1)/2 if n is
odd.
Note that if n is even, then the terms in the final sum have no uncontracted
operators, while in the case that n is odd there is always one remaining
uncontracted operator. This has consequences when considering the vacuum
expectation value of second quantized operators, which is the main purpose
of Wick’s theorem. In fact, we see that the vacuum expectation value of any
operator is given by the final sum in eq. (4.45),

〈−|Ā|−〉 =
∑

bn/2c contraction

〈−|{A1· · ·Ak· · ·Aj · · ·An}|−〉

=

∑bn/2c contraction{A1· · ·Ak· · ·Aj · · ·An}, if n even,
0, if n odd.

(4.46)

Generalization

Consider that applying Wick’s theorem to a string of operators that is already
normal ordered does nothing. This is because the only non-zero contraction
possible is apa†q, which can’t be part of a normal ordered string. The same
reasoning holds for a substring of operators within the original string; all
contractions within a normal ordered substring give zero. This brings us to the
generalized Wick’s theorem, which states that for a string of operators ĀB̄ · · · Z̄,
where Ā, B̄ and Z̄ are normal ordered substrings, we get the same result as in
eq. (4.45), but with no contractions within a single substring.

4.3 Fermi Vacuum

With Wick’s theorem in place, we can calculate the vacuum expectation value
of any second quantized operator Ā. Furthermore, consider that any two basis
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4.3. Fermi Vacuum

Slater determinants |ΦP 〉 and |ΦQ〉 can be written

|ΦP 〉 =
N∏
p=1

a†Pp |−〉 , (4.47)

|ΦQ〉 =
N∏
q=1

a†Qq |−〉 , (4.48)

where P and Q are sets of indices defining which orbitals are occupied in the two
Slater determinants. Consequently, any expectation value or matrix element of
Slater determinants is on the following form,

〈ΦP |Ā|ΦQ〉 = 〈−|
(

N∏
p=1

aPN−p

)
Ā

(
N∏
q=1

a†Qq

)
|−〉 . (4.49)

This is the form of eq. (4.46), which mean that we can use Wick’s generalized
theorem to calculate the expressions. Even though this is alot simpler than
performing all anticommutations manually, the number of possible contractions
increase very quickly with the number of particles. In addition, any theory
derived from such a vacuum state would become particle dependent, as adding a
single particle adds a pair of contractions and changes expression for expectation
values of operators.

Instead, we define the Fermi vacuum as part of the solution to the stated
problem. The Fermi vacuum is also called the reference state, and is the Slater
determinant built from the N first orbitals in the given single-particle basis
{φp}Lp=1,

|Φ〉 ≡
N∏
i=1

a†i |−〉 . (4.50)

We must now take care when chosing the functions in {φp}Lp=1 and their ordering,
as changing the basis functions will change the reference determinant. Formally,
the single particle basis is now divided into two distinct sets,

{φp}Lp=1 = {φi}Ni=1 ∪ {φa}La=N+1. (4.51)

The orbitals in the former are called occupied states, while the remaining are
called unoccupied or virtual states. To make the distinction, we use the eight
first letters for virtual states,

a, b, . . . , h > N, (4.52)

the next eight for occupied states,

i, j, . . . , o ≤ N, (4.53)

and the remaining letters of the alphabet designate an arbitrary state from
both sets,

p, q, · · · = 1, 2, . . . . (4.54)
This is especially important when using the Einstein summation convention, as
the type of the index will determine the range of the summation.
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4. Many-body theory

4.3.1 Excitation and de-excitation operators

We define excitation operators as operators that replace occupied states with
virtual states,

X̂ab...
ij... ≡ · · · a

†
baja

†
aai. (4.55)

Excited states are created by acting on the reference state with an excitation
operator, ∣∣Φab...ij...

〉
≡ Xab...

ij... |Φ0〉 . (4.56)

A general excitation index is written µ = {ij . . . , ab . . . }, and can represent any
excitation level. This lets us write a general excited state as

|Φµ〉 = X̂µ |Φ0〉 . (4.57)

The adjoint of the excitation operator is the deexcitation operator, or relaxation
operator, which replaces virtual states with occupied ones,

[X̂ab...
ij... ]† ≡ X̂ ...ji

...ba = a†iaaa
†
jab · · · . (4.58)

Note that the deexcitation operator annihilates the reference state, as the final
operator is an annihilation operator.

4.3.2 Quasiparticles

Continuing with the treatment of the Fermi vacuum, we recognize two sets of
creation and annihilation operators that annihilate the Fermi vacuum,

a†i |Φ0〉 = 0, aa |Φ0〉 = 0. (4.59)

The former is due to the Pauli exclusion principle, and the latter is due to
the orbital φa being unoccupied in |Φ0〉. Accordingly we define the so called
quasiparticle annihilation operators as

bp =
{
ap for p > N,

a†p for p ≤ N.
(4.60)

Its adjoint is the quasiparticle creation operator,

b†p =
{
a†p for p > N,

ap for p ≤ N.
. (4.61)

We see that these operators have the same behaviour as regular creation and
annihilation operators when acting on virtual states p > N , where b†a creates
particles in unoccupied states and ba removes them. For occupied states,
however, they serve the opposite role; a creation operator b†p with p ≤ N instead
creates a hole in the Fermi vacuum, and the annihilation operator bp with
p ≤ N annihilates the hole.

With respect to the creation of the quasiparticles (that are particles for virtual
states and holes for occupied states), the Fermi vacuum is indeed the vacuum,
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4.3. Fermi Vacuum

which is where the name comes from. The anticommutation relations are
preserved, {

bp, b
†
q

}
= δpq, {bp, bq} =

{
b†p, b

†
q

}
= 0. (4.62)

Normal ordering with respect to the Fermi vacuum gives us the contraction of
the quasiparticle operators. Contractions between quasiparticle operators are
defined relative to the fermi vacuum, where they have the same contraction
results as their regular conterparts, and using eq. (4.41) we find them to be

bpbq ≡ 〈Φ0|bpbq|Φ0〉 = 0,

b†pbq ≡ 〈Φ0|b†pbq|Φ0〉 = 0,

b†pb
†
q ≡ 〈Φ0|b†pb†q|Φ0〉 = 0,

bpb
†
q ≡ 〈Φ0|bpb†q|Φ0〉 = δpq.

The two ingredients for Wick’s theorem are as such in place, i.e. anticommuta-
tion rules and contractions with respect to a vacuum. This means that we can
use Wick’s theorem with respect to the Fermi vacuum. This proves to be a very
large simplification, because all the creation operators needed to create the refer-
ence state are absorbed into the Fermi vacuum. The remaining operators come
from either excitation operators mentioned above, or from Hamiltonian, which
has a maximum of four operators for a two-body Hamiltonian. This is used
in many-body theories such as Configuration Interaction and coupled-cluster,
where the missing correlation is found by exciting the reference state.

4.3.3 Normal ordered Hamiltonian

The Hamiltonian expectation value of the reference state is called the reference
energy,

E0 ≡ 〈Φ0|Ĥ|Φ0〉 . (4.63)

It is also common to introduce the normal ordered Hamiltonian HN as the
Hamiltonian minus its expectation value in the Fermi vacuum,

HN ≡ Ĥ − 〈Φ0|Ĥ|Φ0〉 = Ĥ − E0. (4.64)

To find the explicit expressions for these two values, we apply Wick’s theorem
to the two-body Hamiltonian Ĥ relative to the Fermi vacuum. Recall that Ĥ is
given in terms of the one-body operator ĥ and the two-body operator û,

Ĥ = ĥ+ û =
∑
pq

hpq â
†
pâq + 1

4
∑
pqrs

upqrs,AS â
†
pâ
†
qâsâr. (4.65)

By converting the â†p and âq to their quasi-particle relatives, applying Wick’s
theorem, and converting back again, we get the following result for the one-body
operator,

ĥ =
∑
i

hii +
∑
pq

hpq{â†pâq}, (4.66)
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where {. . . } determines normal ordering relative to the Fermi vacuum.
Correspondingly for the two-body operator, we can refactor it into the following
terms

û = 1
2u

ij
ij +

∑
pq

upiqi{â
†
pâq}+ 1

4
∑
pqrs

upqrs,AS{â
†
pâ
†
qâsâr}. (4.67)

The normal ordered strings annihilates the vacuum, and as such the vacuum
expectation value is given by the fully contracted terms of the two above
operators,

E0 = hii + 1
2u

ij
ij . (4.68)

The normal ordered Hamiltonian HN is determined by the remaining terms,

ĤN =
∑
pq

(
hpq{â†pâq}+

∑
i

upiqi{â
†
pâq}

)
+ 1

4
∑
pqrs

upqrs,AS{â
†
pâ
†
qâsâr} (4.69)

= F̂N + V̂N . (4.70)

We defined the Fock operator F̂N and the normal ordered two-body operator
V̂N to be the normal-ordered one-body and two-body terms of Ĥ, respectively,

F̂N ≡
∑
pq

(
hpq{â†pâq}+

∑
i

upiqi{â
†
pâq}

)
, (4.71)

V̂N ≡
1
4
∑
pqrs

upqrs,AS{â
†
pâ
†
qâsâr}. (4.72)

4.3.4 Density matrices

An alternative representation of the expectation values of operators in a state
is given in terms of density matrices[31]. For a general one- and two-electron
hermitian operator, we have the form

Ω̂ =
∑
pq

Ωpqa†paq + 1
2
∑
pqrs

Ωpqrsa†pa†rasaq + Ω0. (4.73)

The expectation value of this in a normalized state |Ψ〉, given by

|Ψ〉 =
∑

k

ck |k〉 , 〈Ψ|Ψ〉 = 1, (4.74)

is then
〈Ψ|Ω̂|Ψ〉 =

∑
pq

ρqpΩpq + 1
2
∑
pqrs

ρrspqΩpqrs + Ω0. (4.75)

We here introduced the one- and two-body density matrices
ρqp ≡ 〈Ψ|a†paq|Ψ〉 , (4.76)
ρrspq ≡ 〈Ψ|a†pa†rasaq|Ψ〉 . (4.77)

They hold all the information of the quantum state in question, and will
be used in the calculation of various observables. Anticommutation of the
annihilation and creation operators show us that ρrspq has the same symmetries
as the anti-symmetrised two-body operator uAS ,

ρrspq = −ρrsqp = −ρsrpq = ρsrqp. (4.78)
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4.4. Hartree-Fock

4.4 Hartree-Fock

Hartree Fock (HF) is a that seeks to find the single Slater determinant with
the lowest energy, i.e. we minimize the energy function

EHF (Φ) = 〈Φ|Ĥ|Φ〉 . (4.79)

The Slater determinant that minimizes EHF (Φ) is then denoted |ΦHF 〉. The
HF Slater determinant is given in terms the HF orbitals φi,

|ΦHF 〉 = |φ1φ2 · · ·φN 〉 . (4.80)

The orbitals are required to be orthonormal,

〈φi|φj〉 = δij , i, j = 1, . . . , N, (4.81)

such that the HF Slater determinant is normalized,

〈ΦHF |ΦHF 〉 = 1. (4.82)

With H on the second quantized form of eq. (4.35), the expectation value
functional under the Hartree Fock ansatz becomes

EHF [ΦHF ] = 〈ΦHF |H|ΦHF 〉 =
∑
i

〈φi|ĥ|φi〉+ 1
2
∑
ij

〈φiφj |û|φiφj〉 . (4.83)

Using the variational method, Szabo and Ostlund [47] shows that extremizing
eq. (4.83) corresponds to solving the Hartree-Fock equations for the orbitals,ĥ+

∑
j 6=i
L̂j −

∑
j 6=i
K̂j

 |φi〉 = εi |φi〉 , (4.84)

where Ĵj and K̂j are the direct and exchange terms. They are first-quantized
operators dependent on all the other particle states,

Ĵj |φi〉 ≡
[∫

dx2φj(x2)û(x1, x2)φj(x2)
]
|φi〉 , (4.85)

K̂j |φi〉 ≡
[∫

dx2φj(x2)û(x1, x2)φi(x2)
]
|φj〉 . (4.86)

By recognizing that [K̂i − Ĵi]φi = 0, we can remove the summation restrictions
in eq. (4.84) and introduce the fock operator,

f̂ ≡ ĥ+
∑
j

[
Ĵj − K̂j

]
. (4.87)

The form of the hartree fock equations is now that of an eigenvalue problem,

f̂ |φp〉 = εp |φp〉 . (4.88)

However, the non-locality of the K̂-operator makes solving this equations a
non-trivial problem. In addition to being an eigenvalue equation, it is also an
integro-differential equation, with integrals over all other solution present in the
equation for each solution. Integro-differential equations are in general hard to
solve directly, and we need some way of approximating solutions to the problem.
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4.4.1 The Roothan Hall Equations

A common way to solve the Hartree Fock equations is to use a finite sized basis
set {|χα〉}Lα=1 to approximate the one-dimensional Hilbert space. Note that
we do not require the |χα〉’s to be orthogonal. This means that we define the
overlap matrix Sαβ ≡ 〈χβ |χα〉. The HF orbitals are expanded in this basis as

|φp〉 =
L∑
α=1

Cαp |χα〉 , for 1 ≤ p ≤ L. (4.89)

To find the transformation Cαp, we insert eq. (4.89) into eq. (4.88) and left-
project with 〈χβ | to get∑

α

Cαp 〈χβ |f̂ |χα〉 = εp
∑
α

Cαp 〈χβ |χα〉 . (4.90)

This can be rewritten as a set of matrix eigenvalue equations called the Roothan-
Hall equations[47],

F (C)C = εSC. (4.91)

Here we defined the Fock matrix F , overlap matrix S, eigenvalue vector ε and
coefficient matrix C, with elements Fαβ = 〈χβ |f̂ |χα〉, Sαβ = 〈χβ |χα〉, εp and Cαp ,
respectively.

The Roothan-Hall equations are non-linear and need to be solved iteratively,
because the elements of the Fock matrix are dependent on the coefficients,

F βα = 〈χβ |f̂ |χα〉 = 〈χβ |ĥ|χα〉+
N∑
i=1
〈χβφi|û|χαφi〉AS

= 〈χβ |ĥ|χα〉+
N∑
i=1

L∑
γ,δ=1

(C†)iγCδi 〈χβχγ |û|χαχδ〉AS . (4.92)

4.4.2 Restricted Hartree Fock

For a more explicit treatment of spin, we split the Hilbert space into a spatial
and a spin part, H = Hspatial ⊗Hspin. Each basis function is split accordingly,

|φp〉 = |ϕp〉 ⊗ |σp〉 , (4.93)

where |ϕp〉 is a spatial orbital ϕ(~x) and |σp〉 is a general spinor, which is a vector
in the two-dimensional Hilbert space Hspin (in the case of spin half particles).

If we restrict ourself to a spin-independent Hamiltonian and closed shell system,
then we can usually (with some exceptions) make the assumption that the basis
set reduces to a set of doubly occupied spatial orbitals,

|φp〉 =
∣∣φPσp〉 = |ϕP 〉 ⊗ |σp〉 , (4.94)

where P is an index over the set of spatial basis functions {|ϕP 〉}L/2P=1 and
σp = 1, 2 is an index of the spin basis functions {|σp〉}σp=1,2. The spin basis
functions are orthonormalized,

〈σp|σq〉 = δσpσq . (4.95)
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4.4. Hartree-Fock

Writing the original indices as composite indices, p = (P, σp), etc, then matrix
elements of the operators in Hartree-Fock theory become block-diagonal with
two equal blocks,

hpq = δσpσqh
P
Q, (4.96)

and

upiri,AS = 〈σp|σq〉 〈σi|σi〉uPIQI−〈σp|σi〉 〈σi|σq〉uPIIQ = 2 〈σp|σq〉uPIQI−〈σp|σq〉uPIIQ.
(4.97)

In Restricted Hartree Fock, we then represent only spatial part of the Fock
matrices, and store only a single block given by

FPQ = hPQ +
N/2∑
I=1

(
2uPIQI − uPIIQ

)
. (4.98)

The coefficient matrices are also assumed to be block-diagonal, and the RHF
Roothan-Hall equations are solved by only considering a single of the two blocks.

There is also a method called unrestricted Hartree-Fock (UHF), where the
orbitals are allowed to be independent for different spin directions[47]. We will
not consider the UHF method in this work, as we we do not utilize UHF for
any results in this thesis, and as such we will not be presenting it here.

4.4.3 Time-dependent Hartree-Fock

As seen in eq. (4.88), the ansatz of HF to approximate the solution of the
TISE with a single reference turns the problem into a single-particle problem,
where solutions are independent of each other. The many-body parts of the
Hamiltonian are projected out, and we end up with the Fock operator acting
on the reference state. The same is the case in Time-Dependent Hartree-Fock
(TDHF), where the TDSE for the time-dependent HF ansatz |ΦHF (t)〉 can be
written as a single-particle problem[23],

− i ∂
∂t
|φp(t)〉 = f̂(t) |φp(t)〉 , (4.99)

where f̂(t) is the time-dependent Fock operator found by letting the one- and
two-body operators of eq. (4.88) become time-dependent,

ĥ(x1)→ ĥ(x1, t), û(x1, x2)→ û(x1, x2, t). (4.100)

As in section 4.4.1, we restrict the single-particle Hilbert space to a subset
spanned by a finite basis {|χα〉}Lα=1. Note that the basis is independent of time,
and the time-evolution of the Hartree Fock orbitals is now given in terms of the
time-dependent expansion coefficients Cαp (t). The time-dependent orbitals are
explicitly given by

|φp(t)〉 =
∑
α

Cαp (t) |χα〉 . (4.101)

Inserting this into eq. (4.99), we get the following equation for the time-evolution
of C(t),

iSĊ(t) = F (t)C(t). (4.102)
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4. Many-body theory

Here F (t) is the time-dependent Fock matrix, defined as the matrix elements of
the time-dependent fock operator,

F βα (t) = 〈χβ |ĥ(t)|χα〉+
N∑
i=1

L∑
γ,δ=1

(C(t)†)iγCδi (t) 〈χβχγ |û(t)|χαχδ〉AS . (4.103)

Note that the time-dependence of F is both due to the time-dependence of the
operators ĥ(t) and û(t) and due to the coefficients C(t). The overlap matrix
Sαβ = 〈χα|χβ〉 present in eq. (4.102), and can be handled by either using a
diagonalization algorithm[47] or by using orthonormal basis functions Sαβ = δαβ .

4.5 Configuration Interaction

Having introduced the single-reference theory of Hartree-Fock, we now turn
to the logical next step, which is to represent the wavefunction in terms of a
linear combination of Slater determinants. This theory is called configuration
interaction[47]. In Full Configuration Interaction theory (FCI), the wavefunction
is given by a linear of all determinants that can be constructed from the given
set of orbitals,

|ΨJ〉 =
∑
I

CIJ |ΦI〉 . (4.104)

Here I is a general excitation index, such that |ΦI〉 represents both the reference
determinant for I = 0 as well as all possible excitations of the reference
determinants, and CIJ is the matrix of coefficients determining the weight for
each Slater determinant. The CI energy function is

E (C) = 〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

, (4.105)

which has a dependency on the coefficient matrix C = [CIJ ]. To find the ground
state, we employ the variational method,

0 = ∂

∂CIJ
E (C) = ∂

∂CIJ

〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

. (4.106)

Due to the simple form of the derivatives of the CI wave function,

∂

∂CIJ
|ΨJ〉 = |ΦI〉 , (4.107)

it is straight forward to work out the derivatives in eq. (4.106) and find the
Schroedinger equation for the CI-wavefunction,

〈ΦI |H|ΨJ〉 = EJ 〈ΦI |ΨJ〉 . (4.108)

Inserting eq. (4.104), we see that this is an eigenvalue equation for the
coefficients, ∑

K

HIKCKJ = EJCIJ , (4.109)

where we assumed that 〈ΦI |ΦJ〉 = δIJ , and we wrote the matrix elements ofH as
HIK ≡ 〈ΦI |H|ΦK〉. The coefficients CIJ are then given by the (unitary) matrix
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4.6. Coupled-Cluster theory

that diagonalizes H, where the columns of C give the different eigenfunctions
of H.

The sum in eq. (4.104) is naturally truncated at N -fold excitations for an
N -particle system. However, even then the number of Slater determinants Ns
for a given basis of size L with N particles scales as

Ns =
(
L
N

)
, (4.110)

which is a factorial dependency of the basis size L. Thus, solving eq. (4.109)
quickly becomes unfeasible for even moderate systems. However, FCI is still a
valuable tool for benchmarking since it can provide exact solutions within the
given basis, provided the system is small enough.

4.5.1 Truncated CI

A common technique to avoid the exponential scaling of FCI is to truncate the
linear CI-expansion and include only a subset of excited Slater determinants.
This reduces the cost to polynomial scaling with the number of basis functions,
with the exponent dependent on the excitation level. However, this both reduces
the accuracy of the method in a haphazard manner, and also destroys size
extensivity and size consistency[11].

Shortly put, a size-consistent treatment of a system composite of two non-
interacting subsystems will equal the same treatment applied to the two
subsystems independently. When applying truncated CI to the composite
system, the total excitation level of the states will be limited by the maximal
excitation level of the CI-operator. On the other hand, applying CI truncated
at the same level to each of the subsystems individually, we get twice a total
excitation level which is twice that of the composite system. This causes a failure
of Truncated CI to produce consistent results when noninteracting subsystems
are put together. All in all, size consistency and size extensivity are important
concepts for the study of quantum systems, and are discussed in more detail by
Helgaker et al. [21].

4.6 Coupled-Cluster theory

Coupled-cluster was introduced in the late 60’s by Čižek and Paldus [7–9].
It is often dubbed the gold standard of quantum chemistry, and has been
used extensively to obtain ab initio calculations in both chemistry and nuclear
physics.

Coupled-cluster is a post-Hartree-Fock method, which means that it provides an
improvement of the description of correlation effects in a HF wavefunction, which
is often used as the reference state. Further, it does not have the exponential
scaling that FCI has, but is simultaneously a reliable and accurate step toward
the full wavefunction. It is more affordable, as the cost of solving the CC
equations scales polynomially with system size. Even though the exponent of
the polynomial can be relatively large, N6 for CCSD, the cost is low compared
to the exponential scaling of Full Configuration Interaction theory.
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Compared to truncated Configuration Interaction, it can be shown that if the
corrections to the reference state can be considered a pertubation, then CC
includes more orders of the correct wavefunction and energy than CI at a
given truncation level[paldus]. This is because while the CI wavefunction only
contains excitation up to the truncation level, the coupled-cluster wavefunction
is represented by the exponential of the cluster operator, which allows for higher
level excitations. In addition to this, it gives size-extensive results for the
energy[11].

This section will cover the essentials of the coupled-cluster theory, starting
with the exponential ansatz, via the amplitude equations to the bivariational
formulation of coupled-cluster. We then introduce time-dependent coupled-
cluster for static orbitals (TDCC), and the generalization to orbital-adaptive
time-dependent coupled-cluster, where the orbitals also get a time-dependence
similar to Hartree-Fock.

A thourough treatment of coupled-cluster theory can be found in the paper by
Crawford and Schaefer [11] or textbook by Shavitt and Bartlett [44].

4.6.1 The exponential ansatz

We introduce the coupled-cluster method by rewriting the configuration
interaction wavefunction into an exponential form,

|Ψ〉 = (C0 +
∑
µ

Ĉµ) |Φ0〉 → |Ψ〉 = eT̂ |Φ0〉 . (4.111)

This is the so called exponential ansatz of coupled-cluster, and it connects the
wavefunction |Ψ〉 to the reference determinant |Φ0〉 through the cluster operator
T̂ . The cluster operator is an excitation operator, and in the untruncated limit
coupled-cluster converges to FCI, as then T̂ includes all possible excitation and
all slater determinants are included in the coupled-cluster wavefunction. The
full cluster operator is split into excitation operators of different excitation level,

T̂ = T̂1 + T̂2 + . . . (4.112)

where the n′th level cluster operator T̂n is given by a linear combination of all
possible n-tuple excitations,

T̂n = 1
(n!)2

∑
i1,...,in
a1,...,an

τa1,...,an
i1,...,in

{ai1a†a1
· · · aina†an} (4.113)

Here τµ are the cluster amplitudes, which are antisymmetric under change of
any two indices of the same type (occupied or virtual). The prefactor 1/(n!)2

accounts for the unrestricted summations, which give multiple contributions
from the same excitations, as switching two indices gives a minus from the
amplitudes due to antisymmetry as well as from the operators due to the
anticommutation rules.

As with truncated CI, we truncate the cluster operator to only include certain
levels of excitation. However, higher order excitations are included in the
coupled-cluster wavefunction due to the exponential ansatz. For a given
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truncation level, CC includes more excitations than truncated CI. The different
CC methods are named by which excitation levels are included in the cluster
operator, such as coupled-cluster coubles (CCD), coupled-cluster singles doubles
(CCSD), etc. We will mostly be working with CCD in our calculations, but we
derive the theory independent of truncation level.

4.6.2 The Coupled-Cluster equations

Inserting the CC ansatz into the Schroedinger equation gives,

HeT̂ |Φ0〉 = EeT̂ |Φ0〉 . (4.114)

Here E is now the coupled-cluster energy. It is common to project out the
reference energy and instead write the coupled-cluster equations in terms of the
normal-ordered Hamiltonian HN as

HNe
T̂ |Φ0〉 = ∆E0e

T̂ |Φ0〉 . (4.115)

The unknowns of this equation is the coupled-cluster correlation energy ∆E0,
defined as the couped cluster energy minus the reference energy ∆E0 = E−E0,
and the amplitudes tµ. We see that applying the reference state 〈Φ0| and
excited states 〈Φµ| from the left would yield one equation for each unknown.
However, the resulting equations would be the unlinked form of the coupled-
cluster equations. Even though solving them gives the correct coupled-cluster
amplitudes, they are impractical for numerical implementation[21].

To obtain the linked form of the CC equations, we instead apply e−T̂ to
eq. (4.115),

e−T̂HNe
T̂ |Φ0〉 = E0 |Φ0〉 . (4.116)

Here we recognize a similarity transform of the normal ordered Hamiltonian
H̄N = e−T̂HNe

T̂ . Using the Baker-Campbell-Hausdorff-expansion, we can
rewrite H̄ as

H̄N ≡ e−T̂HNe
T̂ = HN +

[
HN , T̂

]
+ 1

2!

[[
HN , T̂

]
, T̂
]

(4.117)

+ 1
3!

[[[
HN , T̂

]
, T̂
]
, T̂
]

+ 1
4!

[[[[
HN , T̂

]
, T̂
]
, T̂
]
, T̂
]

(4.118)

Here, the expansion is naturally truncated after four nested commutators for
a Hamiltonian containing at most two-body operators, due to the connected
cluster theorem[11, 44], which greatly simplifies any calculations. Another
way to view this is by the so called connected-cluster form of the Schrödinger
equation [8]. It was introduced by Čížek in 1966[8], where he showed that the
Schroedinger equation could be written in a connected form,

(HNe
T̂ )C |Φ0〉 = ∆E0 |Φ0〉 . (4.119)

The subscript C indicates that only terms where all operators are connected are
included. This means that in each term, one should be able to find a "path" of
contracted indices from one operator to any other, possibly via other operators.
The cluster operators are excitation operators, but in terms of quasi-particle
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annihilation operators they contain no annihilation operators. Consequently,
contractions between them with respect to the Fermi vacuum give zero. For a
term to be connected, every cluster operator thus has to be contracted with
the Hamiltonian. We can represent this diagrammatically as

(HNe
T̂ )C =HN + HN T + HN

T

T

+ HN T

T

T

+ HN

T

T

T

T

, (4.120)

where each connecting line indicates that at least one contraction is made
between the two operators.

Any of the forms of the CC equations above can be used to express and derive
the coupled cluster amplitude equations. We will be using the final one due
to its connection to diagrammatic coupled-cluster theory, to which [11] is an
excellent introduction (even though this thesis does not contain diagrammatic
coupled cluster theory explicitly, it has been our way to derive expressions
for the coupled cluster amplitude equations). When using diagrams, the term
connected has an intuitive meaning, as it means that parts of the diagram
separate from the other parts.

4.6.3 Coupled-cluster energy

The coupled-cluster energy expression is found by projecting eq. (4.120) with
the reference determinant,

∆E0 = 〈Φ0|(HNe
T̂ )C |Φ0〉 . (4.121)

By considering that all terms have to be fully connected and that the normal
ordered Hamilton operator contains maximally two excitation operators, only
the three following terms survive,

∆E0 = 〈Φ0|(FN T̂1)C + (VN T̂2)C + 1
2(VN T̂ 2

1 )C |Φ0〉 . (4.122)

This can be expressed in terms of the singles-amplitudes τai , doubles-amplitudes
τabij , and the matrix elements of the one- and two-body parts of the normal
orderd Hamiltonian, f ia and uijab, respectively, as

∆E0 = f iaτ
a
i + 1

2u
ij
ab

[
1
2τ

ab
ij + τai τ

b
j

]
(4.123)

Se appendix A for a derivation. Note that for excitations above singles-
and doubles, this expression is independent of truncation level. Higher level
excitations only affect the energy indirectly through their effect on the other
amplitudes though the non-linear amplitude equations.
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4.6.4 The Coupled-Cluster amplitude equations

The amplitude equations are found by projecting with excited determinants,
〈Φµ| = 〈Φ0|X†µ,

〈Φµ|(HNe
T̂ )C |Φ0〉 = 0. (4.124)

This gives exactly one equation for each unknown, considering that there is a one
to one correspondance between unknowns in the cluster operator and excited
determinants. As an example, for coupled-cluster singles doubles (CCSD), the
amplitude equations for the singles amplitudes τai are given by

〈Φai |(HNe
T̂ )C |Φ0〉 = 0, (4.125)

and for the doubles amplitudes τabij ,〈
Φabij
∣∣(HNe

T̂ )C
∣∣Φ0
〉

= 0. (4.126)

4.6.5 Variational Coupled-Cluster

For variational problems, the properties of a wavefunction are calculated
using Hellmann-Feynman theorem, which states that observables of variational
wavefunctions can be calculated from derivatives of the energy with respect
to given parameters. However, the above formulation of coupled-cluster is not
variational, and calculation of observables and properties of the coupled cluster
wave function formulated as such is a challenge.

There have been made efforts to reformulate coupled-cluster by applying the
variational principle to an energy functional in terms of the coupled cluster
wavefunction[8, 14],

∆E0 = 〈Φ0|eT̂
†
HNe

T̂ |Φ0〉
〈Φ0|eT̂

†
eT̂ |Φ0〉

. (4.127)

However, expressions like this involve the adjoint of the Cluster operator T̂ ,
and neither the Baker-Campbell-Hausdorff-expansion of the numerator nor the
series expansion of the denominator terminate, which leaves us with a number
of terms equal to the FCI expansion.

Two solutions to this problem was developed separately by Helgaker and
Jørgensen [20] and Arponen [4]. They are quite different approaches to the same
problem, but end up with the same solution. The approach of Helgaker and
Jørgensen is to formulate coupled-cluster in terms of a constrained optimization
problem, where the method of Lagrange undetermined multipliers is used. The
Lagrange multipliers are a set of parameters with corresponding equations
ensure that the coupled cluster wavefunction is a critical point of the so-called
Lagrangian. As we now have a critical point for the energy, we can apply
Hellman-Feynman to calculate other observables.

However, as noted in [28], there is also another less known approach. It was
developed by Arponen [4] and is based on the bivariational principle, which is a
generalization of the variational principle where the left and right eigenfunctions
are independent. It gives the same parameters and equations for the coupled
cluster wavefunction, and is equivalent to the approach of [20]. In the next
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sections, we first demonstrate the use of the bivariational principle to get the
equations of coupled-cluster theory and its time-dependent counterpart, before
applying it to the OATDCC energy functional and deriving the OATDCCD
equations of motion.

4.6.6 Bivariational CC

We now consider a bivariational treatment of coupled-cluster, as first developed
by Arponen[4]. As usual in coupled-cluster, we parametrize the many-body
wavefunction in terms of excitations of the reference state |Φ〉 given by the
cluster operator. However, we use a separate parametrization for the bra-state,
in terms of a separate reference state

〈
Φ̃
∣∣. In total we get

|Ψ〉 = eT̂ |Φ〉 (4.128)

〈Ψ′| =
〈
Φ̃
∣∣ eT̂ ′ (4.129)

where the two reference states are required to be biortonormalized,〈
Φ̃
∣∣Φ〉 = 1 (4.130)

Note that T̂ ′ is a de-excitation operator, as it excites the bra-state. Inserting the
CC parametrization into eq. (2.23) we obtain the bivariational energy functional
of coupled-cluster,

EH
[
T̂ ′, T̂

]
= 〈Ψ′|H|Ψ〉
〈Ψ′|Ψ〉 =

〈
Φ̃
∣∣eT̂ ′HeT̂ ∣∣Φ〉〈
Φ̃
∣∣eT̂ ′eT̂ ∣∣Φ〉 . (4.131)

However, to find a more tractable form, of these equations, We immediately
perform a change of variables (T̂ ′, T̂ )→ (Λ̂, T̂ ), where Λ̂ is another deexcitation
operator Λ̂ =

∑
µ λµ(X†)µ (µ represents an excitation of arbitrary level) such

that we get a new bra-state

〈
Ψ̃
∣∣ = 〈Ψ′|
〈Ψ′|Ψ〉 =

〈
Φ̃
∣∣ (1 + Λ̂)e−T̂ , (4.132)

or, solving for 〈Ψ′|,
〈Ψ′| = 〈Ψ′|Ψ〉

〈
Φ̃
∣∣ (1 + Λ̂)e−T̂ . (4.133)

Note that in Arponens paper, the change of variables give the expression
eSe−T̂ instead of (1 + Λ̂)e−T̂ . However, similarly to how the coupled-cluster
corresponds FCI in the untruncated limit (with eT̂ = 1 + C including all
possible excitations), there is the equality eS = 1 + Λ̂ in the untruncated case
here. When truncating however, we get different theories depending on the
parametrization used. Accordingly, a truncated eS corresponds to the Extended
coupled-cluster-theory of Arponen, while 1 + Λ̂ corresponds to the variational
coupled-cluster of Helgaker et al. [21].

Inserting eq. (4.133) into eq. (4.131), we get the coupled-cluster expectation
functional,

EH
[
Λ̂, T̂

]
=
〈
Φ̃
∣∣(1 + Λ̂)e−T̂HeT̂

∣∣Φ〉 . (4.134)
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This expression is very similar to the coupled-cluster Lagrangian developed by
[21], and indeed it gives the exact same equations for τ and λ. However, in this
case the λ-amplitudes are not considered Lagrangian multipliers, but they are
instead part of the description of the left wavefunction

〈
Ψ̃
∣∣ =

〈
Φ̃
∣∣ (1 + Λ̂)e−T̂ ,

constructed to make the right and left eigenvalues of the Hamiltonian equal,
i.e., 〈

Ψ̃
∣∣ Ĥ = E, Ĥ |Ψ〉 = E. (4.135)

That is,
〈
Ψ̃
∣∣ and |Ψ〉 are left and right eigenvectors with the same eigenvalue E.

Bivariational Coupled-Cluster Equations

Performing the variations of the expectation functional eq. (4.134) with respect
to the λµ-amplitudes, we get the coupled-cluster τ -equations. These correspond,
and are equal, to the regular coupled-cluster equations,

∂EH
∂λµ

= ∂

∂λµ

〈
Φ̃
∣∣(1 + Λ̂)e−T̂HeT̂

∣∣Φ〉 =
〈
Φ̃µ
∣∣e−T̂HeT̂ ∣∣Φ〉 = 0. (4.136)

This is expected, as the right hand eigenvalue problem is still the same. However,
the derivative with respect to the τ amplitudes give us a new set of equations,

∂EH
∂τµ

= ∂

∂τµ

〈
Φ̃
∣∣(1 + Λ̂)e−T̂ ĤeT̂

∣∣Φ〉
=
〈
Φ̃
∣∣(−X̂µe

−T̂ ĤeT̂ + e−T̂ ĤX̂µe
T̂
)∣∣Φ〉

=
〈
Φ̃
∣∣e−T̂ [H, X̂µ

]
eT̂
∣∣Φ〉 = 0. (4.137)

These are called the Λ̂-equations, because solving them give us expressions for
the λ-amplitudes. As mentioned above, the λ-amplitudes are needed in order
to compute expectation values of other operators than the energy, such as the
dipole moment[28], consistent with the Hellmann-Feynman theorem.

4.6.7 Time-dependent Coupled-Cluster

We can now use the bivariational treatment to find the equations of motion for
the amplitudes of coupled-cluster. We start by inserting eqs. (4.128) and (4.133)
into the action-like functional in eq. (2.24)[27],

S
[
T̂ (·), Λ̂(·)

]
=
∫ T

0
i 〈Φ|(1 + Λ̂(t))e−T̂ (t) ∂

∂t
eT̂ (t)|Φ〉 − EH

[
Λ̂(t), T̂ (t)

]
dt,
(4.138)

where T̂ (·) and Λ̂(·) indicate dependency on the whole time domain t ∈ [0, T ].
The first term gives

〈Φ|(1 + Λ̂(t))e−T̂ (t) ∂

∂t
eT̂ (t)|Φ〉 = 〈Φ|(1 + Λ̂(t))e−T̂ (t)

∑
µ

X̂µτ̇µe
T̂ (t)|Φ〉

=
∑
µ

λµτ̇µ. (4.139)
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The CC action then becomes

S
[
T̂ (·), Λ̂(·)

]
=
∫ T

0
i
∑
µ

λµτ̇µ − EH
[
Λ̂(t), T̂ (t)

]
dt. (4.140)

Alternatively we can subtract a total derivative d
dt (i

∑
µ λµτµ), up to which the

action is invariant, and get

S
[
T̂ (·), Λ̂(·)

]
=
∫ T

0
i
∑
µ

−λ̇µτµ − EH
[
Λ̂(t), T̂ (t)

]
dt. (4.141)

From these two expressions we get the equation of motion for the τ - and λ-
amplitudes, by the vanishing first order variations with respect to λµ and τµ,
respectively,

iτ̇µ = ∂

∂λµ
EH
[
Λ̂(t), T̂ (t)

]
, (4.142)

−iλ̇µ = ∂

∂τµ
EH
[
Λ̂(t), T̂ (t)

]
. (4.143)

This is the schrödinger equation for the bivariational time-dependent coupled-
cluster theory, identical to what is found by [38].

4.7 OATDCC

In 2012, Kvaal introduced the orbital adaptive time-dependent coupled-cluster
theory[27], or OATDCC for short. It is based on the bivariational formulation
of coupled-cluster, where there are separate parametrizations of T̂ and T̂ ′

associated with the ket- and bra-wavefunctions, respectively. However, as can
be inferred from the name of the method, there is an additional flexibility in
that the orbitals are allowed to adapt with time.

Starting from bivariational representation of the wavefunctions found in
section 4.6.6, the OATDCC bivariational expecation value is

EH
[
Λ̂, T̂ , Φ̃,Φ

]
=
〈
φ̃
∣∣(1 + Λ̂)e−T̂HeT̂

∣∣φ〉 (4.144)

Note that in addition to the dependency of the amplitudes through T̂ and Λ̂,
there is also an implicit dependence on the set of orbitals Φ = (ϕ1, ϕ2, . . . , ϕL)
and their duals Φ̃ = (ϕ̃1; ϕ̃2; . . . ; ϕ̃L). We will refer to these orbitals as the OA
orbitals. These two sets of orbitals are as independent of each other as possible,
with the only restriction being the biortogonality of the dual vectors,

〈ϕ̃q|ϕp〉 = δqp. (4.145)

Defining the basis of OA Slater determinants from the OA orbitals

〈φ̃p1,...,pN | = 〈ϕ̃p1 · · · ϕ̃pN | , (4.146)

and
|φq1,...,qN 〉 = |ϕp1 · · ·ϕpN 〉 , (4.147)

52



4.7. OATDCC

with overlap 〈
φ̃p1,...,pN

∣∣φq1,...,qN

〉
= δp1,q1 · · · δp1,q1, (4.148)

the constraint of biortogonality is equivalent to the statement that for every
|Ψ〉 ∈ V[Φ] there exists a

〈
Ψ̃
∣∣ ∈ V ′[Φ′] such that

〈
Ψ̃
∣∣Ψ〉 6= 0 (or equivalently

with the roles of |Ψ〉 and
〈
Ψ̃
∣∣ reversed)[27]. In other words,

The creation and annihilation operators of the orbitals are defined as

c†p ≡
∫

dxϕp(x)ψ(x)†, (4.149)

c̃p ≡
∫

dx ϕ̃p(x)ψ(x), (4.150)

where the field operators adhere to the normal anticommutation rules,{
ψ(x)†, ψ(x′)

}
= δ(x− x′), (4.151)

and δ(x − x′) is the Dirac delta. It is readily shown that these creation and
annihilation operators fulfill anticommutation rules,{

c†p, c̃q
}

=
∫∫

ϕp(x)ϕ̃q(x′)
{
ψ(x)†, ψ(x′)

}
dxdx′

=
∫
ϕp(x)ϕ̃q(x)dx ≡ 〈ϕ̃p|ϕq〉 = δpq,

by biortogonality. As such, Wicks theorem holds, which lets us consider
the biortogonal orbitals just as we would normal orbitals with regards to
derivations of coupled-cluster equations. The only difference is that we let
〈ϕp| = (|ϕp〉)† → 〈ϕ̃p|.

Seeing as Wicks theorem holds, we can define the one- and two-body density
matrices as

ρqp ≡
〈
φ̃
∣∣(1 + Λ̂)e−T̂ c†pc̃q

∣∣φ〉 eT̂ , (4.152)

ρpspr ≡
〈
φ̃
∣∣(1 + Λ̂)e−T̂ c†pc†r c̃sc̃qeT̂

∣∣φ〉 . (4.153)

Consider an Hamiltonian (or any operator) containing only one- and two-body
interactions,

Ĥ =
∑
pq

hpqc
†
q c̃q + 1

4
∑
pqrs

upqrs,ASc
†
pc
†
r c̃sc̃q. (4.154)

Inserting into the bivariational expectation value, we then get only terms coupled
to the one- and two-body operators stated above,

EH
[
Λ̂, T̂ , Φ̃,Φ

]
= ρqph

p
q + 1

4ρ
qs
pru

pr
qs,AS . (4.155)

This is a very practical description, as the dependency of the amplitudes is
completely captured in the density operators, while the orbital dependency is
captured in the matrix elements. We can write this as

ρqp = ρqp(λ, τ), (4.156)
ρqspr = ρqspr(λ, τ), (4.157)
hqp = ρqp(Φ̃,Φ), (4.158)

uprqs,AS = uprqs,AS(Φ̃,Φ). (4.159)
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4. Many-body theory

The corresponding action of OATDCC is also deceptively similar to the TDCC-
action,

S
[
T̂ (·), Λ̂(·), Φ̃(·),Φ(·)

]
=
∫ T

0
i~
〈
φ̃(t)

∣∣(1 + Λ̂(t))e−T̂ (t) ∂

∂t
eT̂ (t)∣∣φ(t)

〉
− EH

[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
dt. (4.160)

However, some of the expressions are more involved. We start with the time-
derivative ∂

∂te
T̂ (t) |φ(t)〉 = ∂

∂t |Ψ(t)〉, and introduce the projection operator

Π =
∣∣φ〉〈φ̃∣∣+

∑
µ

∣∣φµ〉〈φ̃µ∣∣ , (4.161)

which projects a dual state onto V ′[Φ′] and a state onto V[Φ]. Any dual state
|Ψ〉 or state

〈
Ψ̃
∣∣ already in the respective subspace will be unaffected by this

operator, and as such

|Ψ〉 = Π |Ψ〉 = |φ〉+
∑
µ

〈
φ̃µ
∣∣eT̂ ∣∣φ〉 |φµ〉

≡ |φ〉+
∑
µ

Aµ |φµ〉 . (4.162)

Computing the derivative then gives

∂

∂t
|Ψ(t)〉 = ∂

∂t
Π |Ψ(t)〉 = ∂

∂t
|φ〉+

∑
µ

Ȧµ |φµ〉+
∑
µ

Aµ
∂

∂t
|φµ〉 . (4.163)

For the first and third terms, we need the derivative of a Slater determinant,

∂

∂t
|φ〉 = ∂

∂t
c†p1
c†p2
· · · c†pN |0〉

=
(∑

q

ċ†q c̃q

)
c†p1
c†p2
· · · c†pN |0〉 (4.164)

= Dc†p1
c†p2
· · · c†pN |0〉 (4.165)

where the sum in the operator D ≡
∑
q ċ
†
q c̃q is unconstrained. The second term

can be calculated by the consideration that creation and annihilation operators
in the definition of Aµ can be dealt with using Wicks theorem, leaving only a
dependence on the amplitudes in T̂ , Aµ = Aµ(τ). Using the chain rule, we get

∂

∂t
Aµ(τ) =

∑
ν

τ̇ν
∂

∂τν
Aµ(τ). (4.166)

Combining the above with a zero-term 0 =
∑
µ τ̇µ

∂1
∂τµ
|φ〉, we get

∂

∂t
|Ψ(t)〉 = D |Ψ〉+

∑
µ

τ̇µ
∂

∂τµ
|Ψ〉 =

(
D +

∑
µ

τ̇µXµ

)
|Ψ〉 . (4.167)

We recognize the second term from eq. (4.139). It is only dependent on the
amplitudes, and results the same term as in time-dependent coupled-cluster
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∑
µ λµτ̇µ. Superficially, the operator D then represents the difference between

the current theory and TDCC. In total, the first term of the OATDCC action
becomes

i~
〈
φ̃
∣∣(1 + Λ̂)e−T̂ ∂

∂t
eT̂
∣∣φ〉 =

∑
µ

λµτ̇µ + i~
〈
φ̃
∣∣(1 + Λ̂)e−T̂DeT̂

∣∣φ〉
=
∑
µ

λµτ̇µ + i~
〈
φ̃
∣∣(1 + Λ̂)e−T̂ΠDΠeT̂

∣∣φ〉 (4.168)

=
∑
µ

λµτ̇µ − E−i~D0

[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
,

(4.169)

where we introduced the projected operator D0 = ΠDΠ. The explicit form of
this operator is

D0 ≡
L∑

p,q=1
〈ϕ̃p|ϕq〉 c†pc̃q ≡

∑
pq

ηpq c
†
pc̃q. (4.170)

Note that the one-body matrix element ηpq is dependent on the orbitals and the
time-derivative of the orbitals as ηpq = ηpq (Φ̃, Φ̇). Exploiting the linearity of the
bivaritational expectation functional EA and inserting into eq. (4.160) gives

S
[
T (·), Λ̂(·), Φ̃(·),Φ(·)

]
=
∫ T

0
i~
∑
µ

λµτ̇
µ − EH−i~D0

[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
dt

(4.171)

A more explicit expression of the expectation value functional is in terms of
metrix elements according to section 4.3.4, giving

S
[
T (·), Λ̂(·), Φ̃(·),Φ(·)

]
=
∫ T

0
i~
∑
µ

λµτ̇
µρqp(hpq − iηpq ) + 1

4ρ
qs
pru

pr
q sdt. (4.172)

Here we have defined the one-body and two-body density matrices,

ρqp ≡
〈
Φ̃0
∣∣(1 + Λ)e−T̂ c†pc̃qeT

∣∣Φ0
〉
, (4.173)

ρrspq ≡
〈
Φ̃0
∣∣(1 + Λ)e−T̂ c†pc†q c̃sc̃reT

∣∣Φ0
〉
. (4.174)

These depend only on the amplitudes, as the elements are evaluated using
Wick’s theorem. Further we have the one-body and anti-symmetrized two-body
matrix elements of the Hamiltonian, and the one-body matrix elements of the
the time-dependent,

hpq ≡
〈
φ̃p
∣∣ĥ∣∣φq〉 , (4.175)

upqrs ≡
〈
φ̃pφ̃q

∣∣û∣∣φrφs〉AS , (4.176)

ηpq ≡
〈
φ̃p
∣∣ ∂
∂t

∣∣φq〉 . (4.177)

These do not depend on the amplitudes, but instead vary over time due to the
dependence of the orbitals, like in TDHF.
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4. Many-body theory

4.7.1 Gauge freedom

As noted by Kvaal [27], there is a gauge freedom in the representation of the
wavefunction. All of the τµ, λµ and the orbitals of Φ and Φ̃ are free parameters,
which makes it overdetermined. We can therefore find useful gauge-conditions
to simplify calculations. Similarly to NOCC and MCTDHF, we perform orbital
rotations on the wavefunction, such that singles excitations are included in
the wavefunction. The singles cluster operator is not necessary and we set
τµ = λµ = 0, giving us OATDCCD as the simplest method of OATDCC. Due
to the orbital rotations, OATDCCD includes singles accuracy as well as doubles
accuracy.

In addition to this, we have the freedom to let the rotation of the orbitals over
time be such that time-dependent rotations are zero between occupied-occupied
and virtual-virtual orbitals,

ηij = ηab = 0, (4.178)
This decouples the Q-space from the P-space equations, and allow us to write
the OATDCC orbital equations in a simpler form.

4.7.2 OATDCCD

We will be working with the simplest scheme of OATDCC, in which the
amplitudes are truncated at the doubles level,

τµ = τabij λµ = λijab.

This is the doubles scheme, giving OATDCCD. Varying the action with respect
to the amplitudes gives an expression very similar to that of eqs. (4.142)
and (4.143) for the doubles amplitudes,

i~τ̇abij = ∂

∂λijab
EH−i~D0

[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
, (4.179)

−i~λ̇ijab = ∂

∂τabij
EH−i~D0

[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
, (4.180)

The difference is a one-body term −i~D0 = −i~
∑
pq η

p
q c
†
pc̃q added to the

Hamiltonian. This term couples to the one-body operator according to
eq. (4.155). In CCD, the matrix elements of the one-body density operator are
block diagonal, with ρia = ρai = 0. Given that ηab = ηij = 0, the terms ρqpηpq
disappears, and there is no contribution from D0 to the action. Consequently,
the equations of motion of the amplitudes and the orbitals separate. The
amplitude equations become equal to the TDCCD amplitude equations,

i~τ̇abij = ∂

∂λijab
EH
[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
, (4.181)

−i~λ̇ijab = ∂

∂τabij
EH
[
Λ̂(t), T̂ (t), Φ̃(t),Φ(t)

]
. (4.182)

The orbital equations are those that govern the time-evolution of the orbitals.
We define the projection operator onto the subspace defined by the OA orbitals,

P =
∑
p

∣∣φp〉〈φ̃p∣∣ . (4.183)

56



4.7. OATDCC

The projection operator onto the remaining parts of the single-particle Hilbert
space is denoted Q = 1 − P . With the chosen gauge conditions, it is only
necessary to consider variations of the action which are governed by orbitals in
the two orbital subsets separately. The orbital equations thus split into P-space
equations and Q-space equations.

The P-space equations can be said to govern the matrix elements ηpq , and are a
set of equations given in [27] as

i~Aibajη
j
b = hapρ

i
p − hiqρqa + 1

2u
pq
osρ

as
pq −

1
2u

aq
rsρ

sr
iq , (4.184)

for the occupied-virtual block of the matrix elements of η̂ in our basis, and

− i~ηbjA
ja
bi = hpi ρ

a
p − haqρ

q
i + 1

2u
pq
is ρ

sa
pq −

1
2u

aq
rsρ

sr
iq + i~∂tρai , (4.185)

for the virtual-occupied block. These equations are then solved for ηia and ηai ,
where all other elements are defined to be zero in the chosen gauge.

The Q-space equations are given by

i~ρqpQ̂∂t |φq〉 = ρqpQ̂ĥ |φq〉+ ρrspqQ̂Ŵ
q
s |φr〉 , (4.186)

for the ket-part, and

− i~ρqp
(
∂t 〈φ̃p|

)
= ρqp 〈φ̃p| ĥQ̂+ ρrspq 〈φ̃p| Ŵ q

s Q̂, (4.187)

for the bra-part. Here we have defined the mean-field operator

Ŵ q
s =

∫
dx1φ̃q(x1)û(x1, x2)φs(x1) > (4.188)

We will expand the OA orbitals {〈φp| , |φp〉}Kp=1 in terms of a possibly larger
computational basis {〈χ̃α| , |χα〉}Lα=1, given by C̃pα and Cαp for the bra and ket
transformations, respectively. In appendix A we derive expressions for the
time-evolution of these coefficients. The ket-parts are given by

i~Ċαq = i~ηp
′

q C
α
p′ +Cβq h

α
β − hp

′

q C
α
p′ + (ρ−1)pqρq

′s
pr

(
Cβq′W

αr
βs − u

p′r
sq′C

α
p′

)
, (4.189)

The corresponding bra-equation is

− i~ ˙̃Cpα = i~ηpp′C̃
p′

α + C̃pβh
β
α−h

p
p′C̃

p′

α +(ρ−1)pqρ
qs
p′r(C̃

p′

β W
βr
αs −u

p′r
q′sC̃

q′

α ). (4.190)

If P spans the entire Hilbert space, which when we use a basis expansion means
that the C-matrices are square and unitary, then we say that the Q space is
zero, and the orbital equations reduce to just the first term given by the P-space
equations,

−i~ ˙̃Cpα = i~ηpp′C̃
p′

α , (4.191)

i~Ċαq = i~ηp
′

q C
α
p′ . (4.192)
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CHAPTER 5

Implementation

The process of this master thesis in Computational Science has been threefold,
and is reflected in the structure of the thesis; in general terms it involved delving
into a theoretical framework, translating the theory into computer code and
finally using the computer code to study physical systems. We have now laid
the theoretical foundation in the previous chapters. The present chapter is
focused on the details of implementing solvers for the aforementioned equations
on a computer. The ultimate goal is of ionization using our own implementation
of a novel combination of a DVR basis set and the OATDCC method, and this
chapter introduces the builing blocks needed to get to this point.

This chapter is divided into several sections; the first is an overview of the
two main libraries involved in the thesis, including the QuantumSystems
and CoupledCluster libraries developed by Schøyen, Winther-Larsen and
Kristiansen [26, 41, 51]. A large part of the work on this thesis has been
contributing to these two libraries, and we will here highlight the changes we
have made.

The next section concerns the specifics of solving the time-independent
Schrödinger equation (TISE) numerically. The hierarchy of methods from
finding a single particle basis set, via Hartree-Fock (HF) to coupled-cluster
(CC) ground state solvers are presented. The different methods are illustrated
with Python implementations, which are benchmarked against known results.

The third section presents numerical solutions of the time-dependent Schrödinger
equation (TDSE), with implementation details for the problems relevant to this
thesis. We have used two approaches to solve the TDSE. The first approach is
to approximate the unitary time propagation operator U(t1, t0) described in
section 2.3.4. This lets us evolve a state from time t0 to time t1,

|Φ(t1)〉 = U(t1, t0) |Φ(t0)〉 . (5.1)

We use this approach to propagate independent particle methods, both for
single particles on a grid and int time-dependent Hartree-Fock theory. The
second approach described in this section is to solve the TDSE as an ordinary
differential equation (ODE) on the form

ẏ = f(y, t), (5.2)
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where y(t) is the time-dependent parameters of the ansatz used. This is used
for the many-body action-based methods of time-Dependent coupled-cluster
(TDCC) and orbital adaptive time-dependent coupled-cluster (OATDCC).

Finally there are some topics that does not naturally fit under the main sections,
but are still very important. These topics are discussed in the final section
called "special considerations". This includes topics such as imaginary time
propagation, adiabatic switching, regularization, etc.

5.1 Overview

The main results of this thesis builds on the work done by previous students at
the department. The first master thesis on the topic of Time-dependent coupled-
cluster was the one of Kristiansen [26]. He was succeded by Winther-Larsen [51]
and Schøyen [41], who together with Kristiansen developed a substantial code
base in the form of two repositories, coupled-cluster and quantum_systems.
This section present a brief overview of these two libraries, enough to understand
the basic flow of a program that use them. Following this is a summary of the
changes introduced as of late. These changes are improvements to the structure
and new features, and the focus will be on the changes that facilitate a sparse
DVR basis to be utilized in time-dependent coupled-cluster calculations.

Installation procedures for the repositories can be found in the documentation
of the packages. The use of a virtual environment such as conda or virtualenv
is highly recommended, as the libraries have some specific requirements when
it comes to dependency versions.

5.1.1 The Quantum Systems Library

The Python library quantum-systems1 contains the machinery to calculate
and represent the basic elements of a quantum system. Currently, its
main components are the class BasisSet (from now on the basis-set) with
derivatives and the abstract class QuantumSystem (from now on the system)
with derivatives. They have an aggregate relationship, where the constructor
of a system object requires the input of a basis-set such that the methods and
attributes of the former use the methods and attributes of the latter, but not
vice versa.

While the basis-set contains the matrix elements of the single-particle
hamiltonian, the basis functions and their domain and so on, it has no notion
of occupancy. The basis-set can be viewed as a single-particle instance. The
system, on the other hand, stores both the number of particles present and any
external interactions. It also has a more explicit notion of anti-symmetrization
and inclusion of spin than the basis-set. We now go into more detail on the two.

BasisSet

As stated above, an instance of BasisSet defines the single-particle problem
underlying the system at hand. It stores the matrix elements of the hamiltonian
operator ĥ and the Coulomb operator û upon initialization, in addition to the

1https://github.com/schoyen/quantum-systems

60

https://github.com/schoyen/quantum-systems


5.1. Overview

overlap matrix sij = 〈φi|φj〉 and other quantities relevant to the single-particle
basis. It contains methods to operate on the matrix elements with respect
to the symmetries of the system, and to change the basis through a discrete
transformation,

|φp〉 = Cαp |χα〉 (5.3)

Figure 5.1 contains an overview of the BasisSet class and its subclasses. A
BasisSet object can be created directly and then supplied with matrix elements
manually, but the preferred method is to use an existing or implement a subclass.
In this case the matrix elements are produced on instantation.

There are currently four types of subclasses of BasisSet implemented:

1. One-dimensional quantum dots, which uses numerical integration (or
analytical eigenfunctions in the case of ODHO) on a 1d grid to find
eigenfunctions for arbitrary potentials in one dimension.

2. Two-dimensional quantum dots, which implements the numerical
expression of [3] to find Coulomb integrals for the eigenfunctions of the
two-dimensional harmonic oscillator potential. These basis sets have yet
to be updated to the new formalism of Quantum Systems, and won’t work
at the moment.

3. Sinc-DVR, our implementation, which calculates and represents sinc-DVR
matrix elements, with options for a sparse (2d) representation of the
Coulomb matrix elements.

4. Random basis set, which provides a random matrix elements with correct
symmetries, for testing purposes.

As an example, we can construct a one-dimensional quantum dot with a 1d
harmonic oscillator potential and access its matrix elements in the following
way,
from quantum_systems import ODQD

basis_set = ODQD(
l=10,
num_grid_points=201,
grid_length=10,
potential = ODQD.HOPotential(omega=0.25)

)
print(basis_set.h)
print(basis_set.u)

The arguments here are the number of basis functions l, the number of grid
points and grid length for numerical evaluation of the Hamiltonian as described
in section 3.1, and the potential energy operator, which has to be represented
as a callable Python object. Since l = 10 in this example, the dimensions of
the matrix elements are R10×10 and R10×10×10×10 for h and u respectively.

For a comprehensive list of the methods and attributes of a BasisSet, one can
check the documentation.
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Figure 5.1: Snapshot of the abstract class basis set, its subclasses and its relation
to the quantum system class at the moment of writing. Thin gray lines represent
inheritance, with dashed representing multi-level inheritance. Thicker gray
lines represent aggregation, such as between QuantumSystem and BasisSet.
Blue dashed lines are labeled with ambiguous use by the SourceTrail software,
and is due to QuantumSystem having properties referencing the corresponding
properties of BasisSet.
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QuantumSystem

Whereas a BasisSet represents a single-particle system, an instance of a derived
class of QuantumSystem (which we will call a system from now on) represents
the entire many-body system. It includes the number of particles, and the
external influences such as the electromagnetic interactions.

There are currently two subclasses of quantum-system implemented, the
GeneralOrbitalSystem and the SpatialOrbitalSystem. The distinction
between the two is that while the former has spin included for an explicit
treatment of spin, the latter has the resctriction that all orbitals are
double occupied, one for each spin. We demonstrate the generation of a
SpatialOrbitalSystem (SOS) from a spin-independent basis set,
from quantum_systems import SpatialOrbitalSystem

n_electrons = 2
sos = SpatialOrbitalSystem(n_electrons, basis_set)
print(sos.l)

The print statement here should produce the same l as the basis set was
generated with. To create a GeneralOrbitalSystem (GOS), we can either use
the method construct_general_orbital_system of the SOS (this creates a
copy of the BasisSet and its matrix elements before spin doubling), or directly
generate a GOS (this changes the BasisSet when spin doubling),
from quantum_systems import GeneralOrbitalSystem

# either this:
gos = sos.construct_general_orbital_system()
# or this:
gos = GeneralOrbitalSystem(n_electrons, basis_set)
print(gos.l)

In any case, l will now be the double of what it was in the case of the SOS. This
is because when a GOS is initialized with a spin-independent basis-set, each
basis-function is assumed to be a spatial orbital that can be doubly occupied.
As such, it doubles the number of orbitals, and effectively quadruples the size
of the matrix elements (or times 16 in the case of the Coulomb matrix elements
uαβγδ ).

In the code snippet above the gos object now holds a reference to the basis set,
which is mutable. As such, the basis set should not be used outside the system,
as that might lead to unintended consequences. An example is the following
method
gos.change_basis(C)

This changes the matrix elements of the basis-set in place, such that for example
the one-body operator becomes

hαβ → hpq = (C†)pαCβq hαβ . (5.4)

To prepare a time-dependent calculation, we can set up the quantum system
with an external electromagnetic interaction represented as a callable Python
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object, which is then equipped to the QuantumSystem using the time-evolution
operator LaserField,

from quantum_systems.time_evolution_operators import LaserField
import numpy as np

F0 = 0.04
laser = lambda t: F0*np.sin(omega*t)
operator = LaserField(laser)
gos.set_time_evolution_operator(operator)

5.1.2 The Coupled-Cluster Library

We have covered how we can use the Quantum System library to set up a
system of several particles, and the main usage of such a system is in a many-
body solver. The solvers we will cover are part of the coupled-cluster
repository2, where both ground state solvers and time-dependent solvers are
implemented. The solvers are implemented in two hierarchies, the first which are
the ground state solvers implemented by abstract base class CoupledCluster
with subclasses, and the time-dependent solvers of the abstract base class
TimeDependentCoupledCluster with subclasses. An overview of the currently
implemented subclasses can be seen fig. 5.2 and fig. 5.3, respectively, and include
different symmetries and truncation levels of CC as well as orbital adaptive
versions.

Coupled-Cluster Ground State Solvers

The ground state solvers are dependent on the anti-symmetrized matrix elements,
and a more indepth explanation of the details of a ground state coupled-cluster
calculation is given later in section 5.2.3. To use the coupled-cluster library, a
fully set up system with matrix elements is required. We can use the ground
state solver to find the coupled-cluster ground state of the harmonic oscillator
potential using the GeneralOrbitalSystem that we set up in the previous
section,

from coupled_cluster import CCD

ccd_solver = CCD(gos, verbose=True)
ccd_solver.compute_ground_state()
print(ccd_solver.compute_energy().real)

Here we have used the CCD class, which is the ground state solver implementation
of the coupled-cluster doubles truncation level, to calculate the value of the
coupled-cluster doubles energy for the given system. Using the HO basis and
GeneralOrbitalSystem as shown above, the CCD energy is calculated to be
1.052 (alternatively, if the change_to_HF_basis method was called, the value
is 0.838).

The amplitudes of the ground state can be retrieved with the get_amplitudes
method. This constructs and returns an AmplitudeContainer, which are

2https://github.com/schoyen/coupled-cluster. Note that this repository is hidden. A copy of
the code can be sent on request.
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objects that store the amplitudes for easy unpacking in different methods. An
example on how to extract the amplitudes from such a container is the following,

amplitudes = ccd_solver.get_amplitudes(get_t_0=False)
t, l = amplitudes

Here amplitudes is an instance of the AmplitudeContainer class, and t and
l are lists of matrices for the different truncation levels. One can also include
the parameter t0, which is a global phase.

For descriptions of the methods and attributes of the AmplitudeContainer
class, see the master theses of Schøyen and Winther-Larsen [41, 51]. In addition
to the AmplitudeContainer class for the coupled-cluster methods, there is
also a subclass called OACCVector for the OATDCC-methods. Whereas the
former only stores the λ and τ amplitudes for coupled-cluster at the given levels
of excitation, the latter also stores the coefficients for the basis change to the
OA-basis.

The coupled-cluster library also contains a ground state solver for orbital
adaptive coupled-cluster doubles in general and spin-restricted versions (OACCD
and ROACCD). Note, though, that the OACCD solver is in reality a Non-
Orthogonal CCD (NOCCD) solver [37], and does not have support for a non-zero
Q-space. As such it is not useful in the context of using a DVR basis, but it
will prove an important benchmark for our ground state methods.

Figure 5.2: Inheritance of coupled-cluster classes. The abstract class
CoupledCluster can not be instantiated. Instead, the subclasses are
instantiated. To solve the corresponding amplitude equations (and, in the
case of OA, orbital equations), and find the ground state of the included
QuantumSystem, the method compute_ground_state is called.

Time-dependent Coupled-Cluster

We have adapted the time-dependent methods of the coupled-cluster library
to be on the same form, where the time-derivative of the parameters y(t) are in
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Figure 5.3: Inheritance of time-dependent coupled-cluster classes. The abstract
class TimeDependentCoupledCluster can not be instantiated. Instead, the
subclasses are instantiated. To solve the corresponding time-dependent
equations, the class is used as a callable for an ode-solver such as those found
in scipy.integrate.

terms of some vector evaluated function f(t, y),

ẏ = f(t, y). (5.5)

There are sofisticated numerical libaries for solving the above equation, which
is the standard form for an ODE. As such, with our changes we can now use
the ODE solvers of the Python library scipy to integrate the equations of
motion of coupled-cluster. The different implementation of TDCC subclasses
in the current version of the coupled-cluster library therefore all have a
__call__ method which implements the corresponding f(t), y). In Python,
any class with a __call__-method makes the instances of this class callable,
which allows us to pass an instance of the class on to ode-wrappers such as
scipy.integrate.complex_ode for solving.

The code snippet for time-dependent calculation of TDCC are a bit more
involved than for the ground state calculations. This is natural as the set of
possible numerical time-dependent experiments is much larger than the different
ways of using a specialized ground state solver. Like the CC objects, the
TDCC objects also require a reference to a QuantumSystem object, and this
should be the same system if the TDCC simulation is based on a CC ground
state. In the following snippets, we assume that the all the snippets presented
previously in this chapter has been run, such that we now have a system gos
for a harmonic oscillator hamiltonian with two particles in a Hartree-Fock basis,
that is also equipped with an sinusoidal electromagnetic interaction at the
oscillator frequency.

We also need the initial amplitudes in a raveled array, which is one where all
the values are stored in a single one-dimensional array y. We here use the
precalculated amplitudes from the CCD ground state solver to get the initial
amplitudes on this form
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y0 = ccd_solver.get_amplitudes(get_t_0=True).asarray()

A corollary of the harmonic potential theorem[12] states that for a many-body
harmonic oscillator system with an interaction at the oscillator frequency, the
state should exhibit rigid translations. We test this for TDCCD with the
following small script
from coupled_cluster import TDCCD
from gauss_integrator import GaussIntegrator
from scipy.integrate import complex_ode

tdcc = TDCCD(gos)

r = complex_ode(tdcc).set_integrator("GaussIntegrator")
r.set_initial_value(y0)

t_final = 2*np.pi/omega
dt = 1e-1
num_steps = int(t_final / dt) + 1
time_points = np.linspace(0, t_final, num_steps)

energy = np.zeros(num_steps, dtype=np.complex128)
energy[0] = tdcc.compute_energy(r.t, r.y)

particle_density = np.zeros((num_steps, num_grid_points))
particle_density[0] = tdcc.compute_particle_density(r.t, r.y)

for i, t in enumerate(time_points[1:]):
particle_density[i+1] = tdcc.compute_particle_density(r.t, r.y)
energy[i+1] = tdcc.compute_energy(r.t, r.y)
r.integrate(t)

Note that we save the particle-density of the state at each time-step. In fig. 5.4
we plot the time evolution of the particle density, and see that there is almost
no dynamics for this system using TDCCD. On the other hand, performing the
same calculations with TDCCSD instead (just setting CCD to CCSD in all the
above snippets), we see that qualitatively the expected rigid translations are
present. This difference between the two methods is attributed to the fact that
the electromagnetic field we used is a one-body operator, which will not affect
the CCD state directly due to the lack of one-body excitation operators in the
wavefunction.

Changes to TDCC

Previous versions of the coupled-cluster library did not use scipy for numerical
calculation, but instead manual implementations of ODE solvers such as the
Runge Kutta and Gauss integrators. They where designed to accept instances
of the AmplitudeContainer and OACCVector classes, as this was what the
classes in coupled-cluster used to represent the amplitudes and coefficients.

However, scipy has a suite of fully implemented and tested ODE solvers for
problems on the form of eq. (5.5), such as high orders of RungeKutta with
adaptive step size[19], or the Variable-Coefficient ODE (VODE) methods[6].
An overview of the available integrators can be found at the scipy website3.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

67

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html


5. Implementation

Figure 5.4: Simple numerical experiment of rigid translation of a harmonic
oscillator of frequency ω = 0.25 a.u. with two particles, using TDCCD and
TDCCSD. The former fails to properly include the effects of the electromagnetic
interaction, which is a sinusoidal laser of frequency ω and strength F0 = 0.04.

Integrators not available in scipy, can be readily adapted into the same framework
and used with the ode wrappers of scipy such as scipy.integrate.ode or .
This has been done for the GaussIntegrator, which is described later in the
section on integration ??. .

To utilize the power of the integrators of scipy, we changed the time-dependent
methods of the coupled_cluster library such that we could use the integrators
of scipy.

The coupled-cluster libraries used the AmplitudeContainer and OACCVector
objects to store and propagate the amplitudes and coefficients. This was
changed, as the solvers of scipy expects and returns the a single raveled vector
y(t), where all the values are stored in a single one-dimensional array. This is
according to eq. (5.5). In the case of coupled-cluster, the vector y(t) eq. (5.5)
contains all the different sized amplitudes λµ(t) and τµ(t), with µ representing
an arbitrary excitation of any truncation level. In the case of orbital adaptive
coupled cluster, the coefficients of C and C̃ are included as well.
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We also removed the stateful amplitude attributes of the coupled-cluster classes,
which were instances of AmplitudeContainer. Instead we use a template object
called the amp_template to convert between the amplitudes and Numpy arrays.
It is autogenerated based on the sizes of the system and the truncation level.
Conversion back and forth between the two views of the amplitudes (and
possibly coefficients) is done in the following way for TDCC,
amplitudes = tdcc.amp_template.fromarray(y) # returns an AmplitudeContainer
t, l = amplitudes
y = amplitudes.asarray()

and correspondingly for OATDCC,
amplitudes = oatdcc.amp_template.fromarray(y) # returns an OACCVector
t, l, C, C_tilde = amplitudes
y = amplitudes.asarray()

The ordering and size of the input array y is given uniquely by the
AmplitudeContainer (or OACCVector) constructor. As an example, the size of
the amplitudes vector for CCD is

size(y) = 1 + 2m2n2,

as it contains both the phase t0, and the two sets of doubles amplitudes of τabij
and λijab.

In the new scipy-friendly convention, the signature of all methods of the time-
dependent solvers are also unified to accept the raveled array of amplitudes
instead of using the internal state of the ground state solver. As an example,
consider a method which all TDCC (and OATDCC) subclasses implements,
compute_energy, with the following signature
tdcc.compute_energy(t, y)

OATDCC

A strength of the OATDCC method is the fact that there are two separate
bases involved in the parametrization of the wavefunction. One is static,
and is typically chosen such that matrix elements of the one- and two-body
hamiltonians can be readily pre-calculated or evaluated on the fly. The other
basis covers a subset of the first and is used to construct the Slater determinants
of coupled-cluster. This subspace is governed by the P-space equations, while
the other is correspondingly governed by the Q-space equations.

The Q-space equations have been implemented as part of this thesis. Without
them, OATDCC can still work as long as the Q-space is zero, i.e. the size of
the two basis sets are equal. However, this removes some of the computational
advantage of OATDCC; using different sized basis sets lets us cover a large
spatial domain with a large number of basis functions, while simultaneously
keeping the number of coupled-cluster determinants low.

Without Q-space equations, the OATDCC method is very similar in
usage to the TDCC methods, except that there is the implicit change of
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basis through the coefficient matrices. Example code can be found in
notebooks/TDCC_Harmonic_Oscillator.ipynb.

On our branch in the coupled-cluster repository4, we have implemented the
necessary changes to OATDCC, enabling the use of the Q-space equations. See
for the details of our implemention of the OATDCC equation of motion.

To implement the Q-space equations, we had to make some changes to the base
class of OATDCC in our branch given above. Most important is the fact that
the equations now expect the non-anti-symmetrized matrix elements for the
coulomb operator. The consequence of this is that the GOS that is given to
the OATDCC-subclasses upon instantiation has to be set up with the parameter
anti_symmetrize set to false. The OATDCC-based classes also expect the
initial coefficients C and C̃ upon instantiation(the latter can be dropped, upon
which C̃ = C† is used). The size of the second axis of C decide the size of the
OA basis.

4https://github.com/Schoyen/coupled-cluster/tree/fix_q_space
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5.1.3 Sinc-DVR basis set

Implementation and utilization of the Sinc-DVR basis set is a central part of this
thesis. It is implemented as a subclass of the BasisSet in quantum_systems5,
called ODSincDVR, as can be seen in fig. 5.1.

When an object ODSincDVR is created, the one- and two-body hamiltonians hαβ
and uαβγδ are generated in the following way. Following section 3.3, the former is
given as the Toeplitz and Hermitian matrix,

hαβ = Tαβ + Vαβ . (5.6)

Here, the kinetic energy elements are given by eq. (A.36) as

Tαβ = (−1)α−β
2(∆x)2

{
2

(α−β)2 , for α 6= β,
π2

3 , for α = β,
(5.7)

with ∆x being the uniform grid spacing, and the potential energy matrix
elements are just evaluations of the potential energy on grid points along the
diagonal,

Vαβ = V (xα)δαβ . (5.8)

Instead we use the shielded Coulomb operator of ??. With the DVR property
that local operators are approximated as evaluated at the grid points in a DVR
basis, we get

uαβγδ = 〈θαθβ |u′(x1, x2)|θγθδ〉

=
∫ ∫

dx1dx2θθ(x1)θβ(x2)u′(x1, x2)θγ(x2)θδ(x1)

≈ δαγδβδu(xα, xβ). (5.9)

Upon initialization of a basis set of the type ODSincDVR, the following is the
signature of the method.

basis_set = ODSincDVR(l, grid_length, potential=potential, u_repr="2d")

Here, l gives the number of grid points, grid_length gives the grid extent
in the positive and negative directions and potential is a callable defining
the value of the potential at the grid V (x). The final parameter decides the
representation of the Coulomb matrix elements, and should be a string of either
"4d" for a 4d matrix representation upqrs, or "2d" for a 2d matrix upq = upqpq.
The former is primarily for testing, and removes the purpose of using a DVR.

The matrix elements are calculated from the potential on setup of the basis, but
this is a very fast procedure, and little care has to be made with respect to the
size of the basis. In addition, the method construct_sinc_dvr_functions
is provided to give values of the basis functions at arbitrary points.

5https://github.com/Schoyen/quantum-systems/blob/master/quantum_systems/sinc_dvr/
one_dim/sinc_dvr.py
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Sparse implementation

In earlier implementations we also had support for the COO-format via the
Python library sparse6, which provides efficient storage of sparse matrices.
With it, the data is stored in three vectors (row, column, value), where the first
two vectors store the coordinate of the corresponding value. The COO-format
is an efficient format for sparse matrices, where most of the elements are zeros.
Due to diagonality in two of the indices of the Coulomb matrix, the ratio of
zero to non-zero elements are L2, where L is the basis size.

However, this implemetation currently suffers from computational inefficiency,
as the implementation of numpy functions such as einsum and tensordot are
not optimized in the current version of sparse. The format ended up being
impractical and we decided to remove the COO-format entirely. Sparsity of
the Coulomb matrix elements should instead be exploited by using the two-
dimensional matrix representation described above. However, with specialized
code for the contraction of sparse matrices utilizing the COO-format, symmetries
like the local symmetry of DVR may more easily be exploited in a generalized
manner.

5.1.4 Other libraries

For reusability of code and ease of installation, we have placed our own code in
a separate github repository, called py-master7. It contains four small python
libraries:

• adiabatic_switching, for time-evolution of systems with or without an
adiabatic switching function. It contains the different adiabatic switching
functions in switching_functions.py, the main time-evolution function
for OATDCC classes in run.py, and sampler classes for sampling the relevant
Coupled-cluster parameters in sample.py. Both tools for the other
modules and methods for preparing non-interacting ground states for
adiabatic switching is found in tools.py.

• coupledcluster contains coupled cluster code based on equations
generated with symbolic programming, described later in this chapter.
Not to be confused with coupled-cluster described above. The working
and tested implementations are the CCD and the restricted CCD methods,

• quantum_grid contains our one-dimensional grid solver in onedim.py
with potentials in potential.py, our Hartree-Fock implementations in
hf.py, single-particle time-evolution methods in crank.py, and various
convenience tools and tools for the other modules in tools.py and
miyagimadsen_tools.py. There is also a small class structure for the
calculation of Gauss-DVR functions in dvr.py.

• quantum_grid.io contains two input/output classes for storing, loading
and organizing simulation data.

6https://pypi.org/project/sparse/
7https://www.github.com/halvarsu/py-master
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In the parts of the code relating to simulation of OATDCC a variable called
par can be seen. This is a dictionary containing all the relevant parameters of
the simulation, which is generated from a par.yaml to serve as input to scripts
that combine code to a full simulation with output. We have two such scripts,
found in the folder scripts/OACCD_gs in the main thesis repository8.

The first is adiabatic_groundstate.py, and covers the ground state
calculations of OATDCC using adiabatic switching. An input yaml-file specifiec
a range of parameters from an arbitrary choice of potential, via the basis set
type (ODQD or ODSincDVR) to the choice of integrator and arguments to
it. After a calculation, the script saves the output in the subfolder output.
Example input files can be found in the subfolder input/atomic.

The second script is mm_oa_laser.py, which covers OATDCC simulations
with a laser field interaction. The input par.yaml should now contain
parameters such as the length of the time-simulation and other time-evolution
parameters, whether the grid should be expanded in the case of a DVR basis,
and the laser parameters. Example input files can be found in the subfolder
input/mm_oa_laser.

Note that these repositories also contain both deprecated and unfinished code.
That being said, we are fairly confident that the code is written in such a
manner that it should be understandable for the somewhat experienced python
user.

The libraries are all installed by running the single setup.py in the main folder
of py-master, as the different libraries are packages in a larger python library.

5.2 Ground state solvers

The previous section contained an overview of both the python libraries that
we have used and developed, and the contributions we have made to already
existing libraries. In the two coming sections we’ll go into more detail on
how the solvers can be implemented. The present section is on solving the
time-independent Schrödinger equation (TISE) numerically,)

H |Ψ〉 = E |Ψ〉 . (5.10)

The TISE is an eigenvalue equation, which means that solving it involves
finding the eigenpairs of the Hamiltonian, or, in our cases, just the lowest
lying eigenpairs. The different many-body methods of quantum mechanics such
as Hartree-Fock, Configuration Interaction and coupled-cluster are given by
their respective ansatzes for the wave function. In mathematical terms this
corresponds to taking different subspaces of the total Fock space which H
and |Ψ〉 act on and live in, respectively. We will now present the hierarchy of
methods from single-particle methods used to find a single-particle basis used
in a many-body calculation, via Hartree-Fock, arguably one of the simplest, but
also most essential, many-body methods, before we present a simple ground-
state solver for the Coupled-Cluster ansatz. The goal of this section is to present
some straightforward ways of implementating these methods in Python.

8https://www.github.com/halvarsu/master
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5.2.1 QuantumGridSolver

The theory behind this subsection is found in section 3.1, regarding the grid
representation of a spectral basis for the single-particle problem in one dimension.
The systems we are working with are simple enough that we will be able to
represent the matrix elements of operators directly on a computer as matrices.
To find the spectral basis, we set up and diagonalize the tridiagonal Hamiltonian
given in eq. (3.9) as

hnm = −1
2
δn,m−1 − 2δn,m + δn,m+1

∆x2 + V (xn)δnm. (5.11)

This gives us the eigenpairs (φn(x), En), where φp(x) are the wavefunctions in
the grid representation that diagonalize hnm.

A simple implementation of the above perscription for solving the single-
particle problem using Python is given by the class QuantumGridSolver
in the library quantum_grid. This is our own implementation, though it is
similar in nature to the ODHO class of QuantumSystems. Upon creation of an
instance of quantum_grid the tridiagonal Hamiltonian is set up. The next step
is to call the solve method, which first diagonalizes and then uses the wave
functions φp(x) to carry out the integrals of eqs. (3.11), (3.13) and (3.14) in
the grid basis. The process is given by the following steps,

from quantum_grid.onedim import QuantumGridSolver, HOPotential

grid_solver = QuantumGridSolver(
Ngrid, L, potential = HOPotential(omega=1)
)

energies, vecs = grid_solver.solve(k, a, calc_mel=True, **solver_kwargs)

# access matrix elements as attributes
u = grid_solver.u
x = grid_solver.dipole

Here Ngrid and L defines the number of grid points and the interval, respectively.
The argument potential is any callable, in this example one of the implemented
potential classes found in the same module as QuantumGridSolver. Here we
use HOPotential, which uses V (x) = 1

2ω
2x2 as the potentialenergy .

In the above example, the solve method returns the eigenpairs of the k
lowest lying states. If the boolean calc_mel is true, then matrix elements
of the Coulomb operator u, the dipole moment x and the overlap matrix S
are stored as parameters as shown above. The matrix elements of u are given
by the shielded Coulomb operator of eq. (3.17), and the parameter a is the
corresponding shielding parameter. Consequently, the grid solver now has the
form required for many-body calculations by QuantumSystem.

Under the hood, grid_solver.solve uses scipy.linalg.eigh_tridiagonal
to diagonalize the matrix, which is based on the S/DSTEMR routines from
LAPACK (the Linear Algebra PACKage)9. The matrix is a tridiagonal her-
mitian matrix, which means that a large number of grid points can be used to

9http://www.netlib.org/lapack/
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solve for the k first eigenpairs in a fast manner. Examples can be found in the
notebook Onebody Grid Solver.ipynb 10.

To integrate the matrix elements we use the implementation of Simpson’s rule
of scipy.integrate.simps11. Simpson’s rule is based on a uniformly spaced
grid xα = a+ α∆x, for α = 0, . . . , n, where n is odd. and where the weights
are given as

ωα =


∆x
3 if α = 0, n

4∆x
3 if α 6= 0, n and α odd

2∆x
3 if α 6= 0, n and α even

(5.12)

For even n, scipy.integrate.simps has a choice of different ways to handle
the extra interval. We use the default version which is calculate the integral
twice each time omitting either the first or last point, using the trapezoidal rule
for the missing interval, and averaging over the two resulting values.

5.2.2 Hartree-Fock

Hartree-Fock is the natural first use case for our basis sets in a manybody
context. To recap, finding the Hartree-Fock state in a given basis is synonymous
with solving the Roothan-Hall (RH) equations, given by

f(C)C = SCε (5.13)

here C is a matrix of coefficients giving the transformation from an initial basis
|χα〉 to the Hartree-Fock basis |φp〉 = Cαp |χα〉, f(C) is the fock matrix,

fαβ = hαβ + uαiβi,AS (5.14)

Further, S is the overlap matrix of the computational basis

Sαβ = 〈χα|χβ〉 , (5.15)

and ε is a vector of eigenvalues for the Fock matrix.

We are using the notation described in section 4.2.5, which means that the latin
letter i in uαiβi indicates the use of an occupied HF-basis element, which involves
the coefficients, hence the dependency of C. Writing out this dependency, we
get

fαβ = hαβ + (C†)iγCδi u
αγ
βδ,AS = hαβ +Dδ

γu
αγ
βδ,AS (5.16)

Here we recognized that an intermediate matrix Dδ
γ = (C†)iγCδi could be

constructed, to reduce the computational cost of the contractions. Dδ
γ is also

called the density matrix.

The Hartree-Fock energy can be calculated from the density matrix and the
Fock matrix as

EHF = Dβ
αh

α
β + 1

2D
β
αD

δ
γu

αγ
βδ,AS . (5.17)

10https://github.com/halvarsu/master/blob/master/notebooks/Onebody Grid Solver.ipynb
11https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html
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We rewrite this in terms of the precalculated Fock matrix to reduce the number
of contractions,

EHF = 1
2D

β
α(fαβ + hαβ). (5.18)

Due to the non-linearity of the RH equations, the way to solve them is iteratively
through a self-consistent procedure. In a given spin-restriction scheme, we use
the following procedure to solve the RH equations

• Calculate an initial guess for the coefficients C0, the density matrix D0
and the Fock matrix f0,

• while not converged:

– Iterate the RH equations by solving the eigenvalue problem for the
current Fock matrix, for a new set of coefficients C(n),

– calculate the density matrix D(n),
– calculate the Fock matrix f (n),
– calculate the energy for convergence calculation E(n),
– check convergence by some measure.

The convergence criteria is typically a test if the difference in energy between
two subsequent steps is less than some tolerance,∣∣∣E(n)

HF − E
(n−1)
HF

∣∣∣ < ε. (5.19)

Another commonly used measure is the Frobenius norm of the difference in
density matrices of two subsequent steps,∣∣∣D(n) −D(n−1)

∣∣∣
F
< ε. (5.20)

The self-consistent procedure above is not guaranteed to converge, and a remedy
is to use so-called mixing. With mixing, the density matrix of step n is a mix of
the density matrix of the previous step D(n−1) and the density matrix calculated
from the current coefficients. If the latter is written D̄(n), then at each step the
density matrix is given by

D(n) = αD(n−1) + (1− α)D̄(n) (5.21)

Another popular procedure is the Direct Inversion of the Iterative Subspace
(DIIS)[ref]. We have not implemented DIIS for HF, but we have used it as part
of the coupled-cluster library and will therefore explain it in the section on
coupled-cluster.

Implementation

Our Python implementation of Hartree-Fock is with an object-oriented approach,
to help reusability and readability of our code. The core is the abstract base-
class called HFBase. The self-consistent procedure for solving the Roothan Hall
equations are implemented in the solve method, which can be seen in ?? 1.
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5.2. Ground state solvers

The different subclasses are based on the different spin and spatial symmetries
of the basis.

A typical usage of our HF solver is the following,
from quantum_grid.hf import RHF
hf = RHF(system, check_convergence=check_conv)
C_hf = hf.solve(C0=None, tol=1e-8, max_iter=100, verbose=True, alpha=0.5)

Here the RestrictedHartreeFock subclass (which we will describe in more
detail later) was used as an example of a subclass, and system is either a
fully set up QuantumGridSolver or a QuantumSystem. Note that the matrix
elements have to be on a restricted form to use RHF, which means that the
spin is projected out. The function check_conv is optional, though if it is
supplied then it should be callable which returns a boolean calculated from the
local()-parameters of the solve method.

The fact that HFBase is abstract means that only subclasses of it can be
instantiated. It also has four abstract methods which need to be overwritten by
said subclasses, which are

• density_matrix, for the creation of the density matrix from the
coefficients Cαp,

• fock_matrix, for the creation of the Fock matrix fαβ from the matrix
elements of hαβ and uαβγδ and the density matrix Dαβ ,

• iterate, to iterate the RH equations by diagonalizing the Fock matrix,
and

• hf_energy to calculate the energy from the density matrix and matrix
elements.

Spin symmetries

The implementation of the methods is given by the symmetries of the system at
hand. As such, there are in total six different Hartree-Fock solvers, one normal
and one DVR-adapted version for all three types of spin-symmetries, general,
unrestricted and restricted.

The definition of the three types of spin-symmetries can be summarized as
follows. In general Hartree-Fock, no assumptions are made about the spin or
spatial degrees of freedom, and in theory all kinds of systems can be studied. In
restricted Hartree-Fock, the restriction is that the system should be unaffected
by spin, with the consequence that all spatial orbitals can be real and that all
spatial orbitals are doubly occupied. In unrestricted Hartree-Fock, this strict
restriction is eased and the spatial orbitals are allowed to be singly occupied
and have different energy based on spin. This allows studies of spin-degenerate
systems, such as larger separations of H2.

The entire code base can be displayed efficiently using an open source software
called Sourcetrail12. In fig. 5.5, we have used Sourcetrail to index the entire

12https://www.sourcetrail.com/
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Listing 1 Solve method of HFBase, common to all our HF solvers.
def solve(

self,
C0: Optional[np.array] = None,
tol: float = 1e-8,
max_iter: int = 100,
verbose: bool = False,
alpha: float = 0,

) -> Tuple[np.array, np.array]:
"""Iteratively solves the Hartree-Fock equations on basis form,

$F(C)C = S C eps$
for a given initial C0.
Parameters
==========
C0 : initial coefficients (optional), default is identity matrix
tol : tolerance criteria for convergence (depends on self.check_convergence)
max_iter : maximum number of iterations before convergence
verbose : to print or not to print. If int, then prints every verbose number of step
alpha : mixing parameter for improved convergence.

Returns
=======

C : coefficients
"""

assert type(verbose) in (bool, int), "verbose must be bool or int"
if C0 is None:

C0 = np.eye(self.system.l)

# initial density matrix and fock operator
D = self.density_matrix(C0)
D_prev = D
F = self.fock_matrix(D)
C = self.iterate(F)

# some high initial energy to initialize convergence
E = 1e8

converged = False
for it in range(max_iter):

prev_E = E
prev_D = D
D = alpha * D + (1 - alpha) * self.density_matrix(C)
F = self.fock_matrix(D)
E = self.hf_energy(D, F)

if verbose and ((it % verbose) == 0):
print(it, E)

if callable(self.check_convergence):
converged = self.check_convergence(locals())

else:
converged = np.abs((prev_E - E) / E) < tol

if converged:
break

C = self.iterate(F)

if not converged:
import warnings

warnings.warn("did not converge before max_iter was reached")
return C
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class hierarchy, with calls to methods and references to parameters shown in
blue and yellow, respectively.

Figure 5.5: Code graph of our minimalistic HF implementation. The dependency
of the system parameter is apparent. For boxes and arrows respectively then
gray indicates classes and class inheritance, yellow indicates functions and
function calls, blue indicates parameters and parameter references.

5.2.3 Coupled-Cluster

The next step in the hierarchy is coupled-cluster. The parameters of the coupled-
cluster ansats are the amplitudes τµ and λµ, as formulated in section 4.6.6.
We will here only focus on the τµ-equations (the λµ are found analogously),
and we follow the presentation of Helgaker et al. [21]. The τ -equations for the
coupled-cluster ground state are given as

〈Φµ|(HNe
T )C |Φ0〉 = 0. (5.22)

where µ represents an arbitrary excitation such that

|Φµ〉 ∈ {a†aai |Φ0〉 , a†aaia
†
baj |Φ0〉 , . . . }a,b,...=N,...,Li,j,...=1,...,N , (5.23)
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H is the Hamiltonian, and T̂ (τ ) is the cluster operator, which depends on the
vector of amplitudes τ with elements τµ.

The amplitude equations can be formulated as a single vector equation, where
we wish to find the roots of the vector-evaluated function that evaluates the
right hand side of the τ -equations,

Ωµ(τ ) = 〈Φµ|e−T̂ (τ )ĤeT̂ (τ )|Φ0〉 (5.24)

Because Ωµ(τ ) is nonlinear in τµ, finding the roots must be done iteratively.
One possibility would be to use Newton’s method, which is derived by Taylor
expanding and neglecting terms higher than first order in the update step ∆τµ.
This gives an equation to solve for ∆τµ,

Ωµ(τ (n) + ∆τ (n)) ≈ Ωµ(τ (n)) + Jµν(τ (n))∆τ (n)
ν = 0,

Jµν(τ (n))∆τ (n)
ν = −Ωµ(τ (n)) (5.25)

Here we defined the Jµν(τ (n)) as the Jacobian matrix

Jµν(τ (n)) = ∂

∂τν
Ω(τ )

∣∣∣∣
τ=τ (n)

, (5.26)

However, solving eq. (5.25) directly is impractical due to the number of
amplitudes in coupled-cluster, which makes a direct approach to solving for ∆τ
unfeasible. Instead we write the Hamiltonian in terms of the one-body Fock
operator F̂ and a two-body pertubation operator Ŵ ,

Ĥ = F̂ + Ŵ . (5.27)

Note that F̂ is here the second quantized version of F̂ in section 4.4. We
can further split the fock operator into a diagonal and a non-diagonal part,
F̂ = F̂diag + F̂non−diag, given as

F̂diag =
∑
p

fppa
†
pap, F̂non−diag =

∑
p 6=q

fpq a
†
paq. (5.28)

Then the part of the amplitude equations involving F̂diag becomes

〈Φµ|e−T̂ F̂diageT̂ |Φ0〉 = Dµτµ, (5.29)

where Dµ is the difference in single-particle energy between the unoccupied
orbitals and the occupied orbitals of a given excitation,

Dµ =
∑
a∈µ

haa −
∑
i∈µ

hii. (5.30)

This lets us write the vector evaluated function and its Jacobian as

Ωµ(τ (n)) = Dµτ
(n)
µ + 〈Φµ|e−T (τ (n))(F̂non−diag + Ŵ )eT (τ (n))|Φ0〉 , (5.31)

Jµν(τ (n)) = Dµδµν + ∂

∂τν
〈Φµ|e−T (F̂non−diag + Ŵ )eT |Φ0〉

∣∣∣∣
τ=τ (n)

(5.32)
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We get the so-called quasi-Newton approach by assuming the second term of
the Jacobian can be neglected. This is a valid assumption if the reference state
is such that F̂non−diag + Ŵ is small. If the reference state is the Hartree-Fock
state then Brillouins theorem [46] states that the non-diagonal parts of the Fock
operator are zero. Other reference states can be used, but the Fock operator
should be diagonally dominant to ensure convergence.

Inserting into eq. (5.25), we find the quasi-Newton update to be

∆τ (n)
µ = −Ωµ(τ (n))

Dµ
, (5.33)

and the expression for the amplitudes in the next iteration is

τ (n+1) = τ (n) + ∆τ (n) = τ (n) − Ωµ(τ (n))
Dµ

. (5.34)

For the initial amplitudes, we use the zero amplitudes t(0) = 0. This is continued
until convergence is met, which is defined to be when the difference in norm
between two sets of amplitudes are less than a given tolerance ε,

|τ (n+1) − τ (n)| < ε. (5.35)

.

The case for coupled-cluster with λµ amplitudes is completely analogous, though
the iteration procedure is carried out subsequently by first iterating the τ -
amplitudes and then the λ-amplitudes.

The quasi-Newton can in some cases be slow and is not guaranteed to converge.
To increase the speed and likelyhood of convergence, it is common to use mixing
as when solving the Roothan-Hall equations. While we explained Alpha mixing
in the previous section, for coupled-cluster we use a more sophisticated procedure
called Direct Inversion of The Active Subspace (DIIS) [21]. In this procedure,
the amplitudes in the next iteration is instead obtained by interpolating between
the previous estimates,

τ (n+1) =
n∑

m=1
cmτ

(n). (5.36)

The weights are constrained to sum to 1,
n∑

m=1
cm = 1 (5.37)

Under this constraint we wish to set the weights as to minimize the error vector
en given by the function that we wish to find the roots of

en = Ω(τ (n)). (5.38)

Minimization of an error vector under a constraint is given by Lagrange’s
multiplier method, see for example [21]. By minimizing the error vector given
above, we are guaranteed that an optimal error vector corresponds to the
solution of the coupled-cluster equations.
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Automatic Derivation of Coupled-Cluster Equations and Codes

We have implemented a simple coupled-cluster doubles solver (CCD) and a
restricted coupled-cluster doubles sovler (RCCD) for demonstration purposes.
The resulting Python modules was tested, and produces consistent results with
existing coupled-cluster solvers. None of the results of this thesis are calculated
using these implementations, and they only serve illustrative purposes with
regards to the implementation of the code, and for the difference in time usage
between general and spin restricted versions. This latter serves as a possible
next step for the OATDCCD-method.

Note that for the actual calculations with OATDCCD in this thesis, we decided
to use the coupled-cluster library of Schoyen and Winther-Larsen, as it is a well
coded library which is easily extended to other systems and methods.

To generate the amplitude equations of CCD and RCCD we used the generative
Python library drudge13, based on the symbolic programming library sympy14.
A typical use case can be seen in the notebook RCCD derivation with
DandG.ipynb. 15. We first define a particle-hole context, which contains
definitions of dummy indices p, . . . , i, . . . , a . . . etc, excitation operators Eai and
the two-body Hamiltonian H. We then use the excitation operators to define
the doubles cluster operator,

T̂2 = 1
2 t
ab
ij Ê

a
i Ê

b
j , (5.39)

The similarity transformed hamiltonian is then calculated by iteratively
producing and adding on nested commutators as

H̄ =
4∑

n=0
H(n), (5.40)

where H(n) = 1
n

[
H(n−1), T2

]
, H(0) = H. The final step is to calculate the

coupled-cluster equations

〈Φ0|H̄|Φ0〉 = ∆E, (5.41)〈
Φabij
∣∣H̄∣∣Φ0

〉
= 〈Φ0|EiaE

j
b H̄|Φ0〉 = 0. (5.42)

by taking the vacuum expectation value of the two expressions with drudge.
The resulting equations can be seen in the appendix, along with the script to
generate the equations.

We then use gristmill, another excellent Python library by the same
author[ref], to produce code for languages such as Python or c++ directly.

Code

With the amplitude equations gotten from the methods described above, we have
implemented a small coupled-cluster library in Python called coupledcluster

13https://github.com/tschijnmo/drudge
14https://www.sympy.org/
15https://github.com/halvarsu/master/blob/master/notebooks/RCCD derivation with DandG.

ipynb
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5.2. Ground state solvers

(not to be confused with the library coupled-cluster described earlier). We
use an object-oriented approach similar to our Hartree-Fock implementation.
The core is the abstract class CCBase, and the quasi-Newton algorithm for
solving the coupled-cluster equations are implemented in the calc_amp method,
which can be seen in ?? 2. In addition to this, CCBase also covers setting up
the pertubation-theory like numerator Dµ as described above.

Listing 2 The solve method of CCBase, common to all our CC solvers.
def calc_amp(self, max_iter=100, tol=1e-5, alpha=0.4, verbose=True):

no = self._no
nv = self._nv

t = zeros((nv, nv, no, no))

D = self.make_diagthing()
v, o = self._v, self._o

t1 = self._system.u[v, v, o, o] / D
print(self.corr_energy(t))

i = 0
prev_energy = np.inf
energy = self.corr_energy(t)
residue = 0

if verbose:
print("{:4} {:10} {:10}".format("i", "residue", "energy"))

while (np.abs(energy - prev_energy) > tol) and (i < max_iter):
rhs = self.calc_rhs(t)
residue = np.linalg.norm(rhs)
t = rhs / D
# t = (1-alpha)*t + alpha*rhs/D

prev_energy = energy
energy = self.corr_energy(t)

if verbose:
print("{:<4} {:<10.6f} {:<10.6f}".format(i + 1, residue, energy))

i += 1
self.t = t
return t

The specific amplitude equation and energy expressions are implemented in the
subclasses of CCBase. Currently only the CCD truncation level is implemented,
though using drudge and gristmill it should be simple to define other
subclasses as well, especially the spin restricted CCD method. Using PYSCF for
calculation of matrix elements, we can find the CCD correlation energy of a
Helium system,

from quantum_systems import construct_pyscf_system_rhf
from coupledcluster.ccd import CCD

system = construct_pyscf_system_rhf(’HE’)

ccd_solver = CCD(system)
ccd_solver.calc_amp(max_iter = 100, tol = 1e-5, verbose=False)
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e_HF = calc_HF_energy(system)
e_CCD = ccd_solver.corr_energy()

total_energy = e_HF + e_CCD

Here construct_pyscf_system_rhf is a method from the quantum_systems
library16, which, given an input describing the molecule according to the PySCF
standard17, constructs a system class with matrix elements from PySCF in the
given basis. If omitted, the basis argument defaults to cc-pVDZ, which are
Gaussian basis sets part of the correlation-consistent polarized valence basis
sets class[13]. Similar calculations for all noble gases up to Krypton can be
found in the notebook CCD Calculations.ipynb18, both for CCD and RCCD.
The total energy given by the HF energy plus the CCD correlation energy is
shown in table 5.1. We included a graph of the time usage in fig. 5.6. For
small systems the overhead of Python dominates, but for the larger ones the
reduction of each dimension by a factor half in restricted CCD provides a great
speedup.

Table 5.1: Total CCD energy (HF energy plus correlation energy) in atomic
units for the noble gases up to Krypton. The basis is HF constructed from
cc-PVDZ orbitals using pySCF, and the CCD energy is calculated using our
coupledcluster Python library.

Atom CCD energy rCCD energy
He -2.88759 -2.88759
Be -14.6169 -14.6169
Ne -128.6795 -128.6795
Ar -526.9561 -526.9561
Kr -2752.121 -2752.121

For future work with many-body theory it is clear that the drudge and gristmill
libraries are powerful tools when it comes to deriving both equations in second
quantization, and for producing effective implementations. Using gristmill, we
could also have optimized the equations using intermediates.

5.3 Time-dependent problems

Having found the ground state properties of the system, we move on to the
main task at hand, namely dynamics. To do this we solve the TDSE,

i
∂

∂t
|Ψ〉 = H |Ψ〉 . (5.43)

The TDSE is a partial differential equation, where time and space is coupled.
However, by expanding the wavefunction in the same basis sets used to solve

16https://github.com/Schoyen/quantum-systems/blob/master/quantum_systems/custom_
system.py

17https://sunqm.github.io/pyscf/gto.html
18https://github.com/halvarsu/master/blob/master/notebooks/CCD Calculations.ipynb
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Figure 5.6: Time usage for the calculation of CCD ground state for the noble
gases up to Krypton using both a regular CCD solver with explicit spin, and
spin restriced CCD solver. The basis is HF constructed from cc-PVDZ orbitals
using pySCF. For small systems, the overhead of Python dominates.

the TISE, we can get a time-dependent description by evolving the coefficients
of this expansion in time.

We divide this into to separate cases. To propagate independent particle
wavefunctions such as those of single-particle problems and time-dependent
Hartree-Fock, we are varying the coefficients of a single-particle basis expansion.
For many-body problems such as time-dependent coupled-cluster we are instead
changing amplitudes of the many-body wavefunction in a basis of Slater
determinants. In the case of orbital adaptive time-dependent coupled-cluster,
the coefficients of the single-particle basis is also evolved simultaneously with
the amplitudes describing the slater determinant.

We use two different formulations of the TDSE to solve the two separate cases.
For the former, we use the time-propagator Û(t, t0) described in section 2.3.4
which propagates a wave-function in time from t0 to t. This is possible because
we have an explicit representations of the Hamiltonian, and can construct
approximations for Û(ti+1, ti) at each time-step ti. This is formulated as a
matrix equation at each step, where the coefficient matrix of the single-particle
basis expansion in the next step, C(ti+1)αp , is solved for.

For the latter case of TDCC and OATDCC we do not have explicit representation
of the Hamiltonian. Instead we consider the equations of motion for the
coefficients and amplitudes, derived from a principle of least action. These
equations of motions are ordinary differential equations, which we solve
numerically using the Gauss integrator[38].

5.3.1 Unitary time propagation operator

As stated above, to propagate independent particle methods in time we
approximate the unitary time propagation operator U(ti+1, ti) at each time-step
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ti, which lets us evolve a state along a discretized time step

|Φ(ti+1)〉 = U(ti+1, ti) |Φ(ti)〉 , i = 0, . . . , Nt. (5.44)

We use the approximations from the Magnus expansion descibed in section 2.3.4.

In other words, we discretize the time domain [t0, t] into a series of N time steps
ti = t0 + i∆t for i = 0, . . . , N − 1, with tN−1 = t and ∆t = (t − t0)/(N − 1).
We then evolve a state from time t0 to time t by splitting the total unitary
operator U(t, t0) into a series of subsequent unitary operators,

U(t, t0) =
N∏
i=0

U(ti+1, ti) (5.45)

In section 2.3.4 we wrote U in terms of the exponential of an operator, and
truncating the Magnus expansion after the first term gives us

U(t+ ∆t, t) ≈ exp
{

1
i~

∫ t+∆t

t

dt′H(t′)
}

(5.46)

We get a forward Euler-like integrator of order O(∆t) if we approximate the
Hamiltonian as constant over the time interval. This gives

U(t+ ∆t, t) ≈ exp
{

1
i~

∆tH(t)
}
, (5.47)

Higher order integrators are completely analogous to the solvers of regular
ordinary differential equations, such as the midpoint method or leapfrog
methods.

Using eq. (5.47) requires calculating the exponential of a matrix. The brute force
way to do this numerically is to do a spectral decomposition like in section 3.2.3.
We first diagonalize the operator A into its eigenpairs, (λi,vi),

A =
∑
i

λivivTi (5.48)

This can be done with the function numpy.linalg.eigh for a Hermitian matrix.
The exponential of A can then be found by applying the exponential function
to the eigenvalues and then taking the outer product of the eigenvectors again

eA =
∑
i

eλivivTi (5.49)

A simple implementation of a step with the Forward Euler like method using
Python is the following
E, vecs = np.linalg.eigh(H)
U = vecs * (np.exp(-1j * dt * E)) @ vecs.T

Here H is the Hamiltonian evaluated at the current time and dt is the step length
∆t. Alternatively, in Python we can use the function scipy.linalg.expm,
which uses a more sofisticated approach[36] to get correct results for the
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exponential of a matrix to machine precision in a faster way. Its usage is
described in the documentation19.

An alternative method is to instead approximate the Hamiltonian with its
Taylor expansion,

ex = 1 + x+ . . . . (5.50)
The simplest approach is to then truncate the series after the first terms,

U(t, t0) ≈ exp
{

∆t
i~
H(t)

}
≈ 1 + ∆t

i~
H(t) +O(∆t2). (5.51)

However, the resulting operator is now not unitary. We can see this if we apply
its conjugate to itself(

1 + ∆t
i~
H(t)

)(
1− ∆t

i~
H(t)

)
=
(

1 + ∆t2
~2 H(t)H(t)

)
6= 1 (5.52)

Non-unitarity leads to a serious energy drift over time, something we have
confirmed with our implementation. Instead, a common method called the
Crank-Nicholson algorithm[39] is found by using the approximation

ex = 1 + x/2
1− x/2 +O(x3), (5.53)

Crank-Nicholson is correct to second order in the step length, which can be
shown by taylor expanding both sides above and comparing order by order.
This gives the following expression for U(t, t0),

U(t, t0) ≈
[
1− ∆t

2i~H(t)
]−1 [

1 + ∆t
2i~H(t)

]
. (5.54)

The Crank-Nicholson method is unitary, as seen by writing

UU† = (1 + iH̃)−1(1− iH̃)(1 + iH̃)(1− iH̃)−1

= (1 + iH̃)−1(1 + iH̃)(1− iH̃)(1− iH̃)−1 = 1, (5.55)

where we defined H̃ ≡ ∆tH/2~ and recognized that the two middle terms
commute. Rewriting eq. (5.54), we can formulate Crank-Nicholson as an
implicit scheme on the form,[

1− ∆t
2i~H(t)

]
|ψ(ti+1)〉 =

[
1 + ∆t

2i~H(t)
]
|ψ(ti)〉 (5.56)

Using the grid basis of the time-independent problem of the previous section,
the Crank-Nicholson method can be written[

1− ∆t
2i~Hnm(t)

]
ψ(ti+1, xm) =

[
1 + ∆t

2i~Hnm(t)
]
ψ(ti, xm), (5.57)

with the unknown vector ψ(t+∆t, xm) to be solved for in a matrix equation of the
type Ax = b. The explicit form of the time dependent part of the Hamiltonian
will be adressed later, but in the dipole approximation it is diagonal the grid
basis, HI

nm(t) = HI
nn(t)δnm. As such, the position basis Hamiltonian is still

tridiagonal just like in the time-independent case, and we can solve the linear
equation in linear time with respect to the number of basis functions[49].

19https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html
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CrankEvolution

The class CrankEvolution uses the methods described above to evolve
a position basis wave function in time. When creating an instance of
CrankEvolution, the user can choose between one of the many evolve_step_*
methods. However, in the grid basis the tridiagonal Crank-Nicholson method
evolve_step_crank_tridiag is by far the optimal in terms of speed. It uses
the tridiagonal form of the Hamiltonian to calculate the next time step in linear
time.

Time evolution is generally a bit more involved than ground state calculations,
but in the following code snippet we first find the ground state and first excited
state of a Harmonic Oscillator potential using the QuantumGridSolver, and
then use the tridiagonal Crank-Nicholson method to evolve it in time with
frequency given by the resonance frequency.

import numpy as np
import matplotlib.pyplot as plt
from quantum_grid.crank import CrankEvolution, HOLaser
from quantum_grid.onedim import HOPotential, QuantumGridSolver

dx = 1e-1
L = 8
N = int(2*L/dx + 1)
print(’N = {}’.format(N))
m = omega = 1
pot = HOPotential(omega=omega)

solver = QuantumGridSolver(N, L, potential=pot)
k = 2
energies, v0 = solver.solve(k=k)

# Time evolution
dt = 0.05

T = 500
dt = 0.01
Nt = int(T/dt)

amp = 0.1
laser = HOLaser(amp = amp, omega = omega)
HOevolver = CrankEvolution(dt, solver=solver, external=laser).setup(solver)

laser_interval=[0,5]
v_values, t_values = HOevolver.evolve(Nt, T, v0[:,0], ret_t=True, laser_interval=laser_interval)

5.3.2 Time dependent Hartree-Fock

To have a benchmark to compare our new methods, we first started with the
implementation of a Time-dependent Hartree-Fock method. We made our own
implementation of hartree fock in the Python module quantum_grid.hf, which
includes RHF, UHF, GHF (general hartree fock for spin systems), and versions
of these tailored to DVR-basis sets. The classes only require a system-class
containing the h- and u-matrix elements to operate, and can be subsequently
solved through the solve method. All contractions have been implemented
with the einsum-method for its great tradeoff between simplicity and speed.
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With the ground state hf-solver in place, the implementation of TDHF is very
straightforward. According to ??, the time evolution of the C-coefficients
is governed directly by the fock matrix. Remembering to update the fock
matrix each time step, we can then solve the time dependent Schrödinger
equation for this problem using some standard method such as crank-nicholson
to approximate the propagation operator U , or by calculating the exponential
of the Hamiltonian in the current time step.

5.3.3 Equations of motion

The second approach we use to solve the TDSE in the many-body case is by
considering the equations of motions of the parameters in the specific ansatz
used. These equations of motion can be rewritten in the form of a set of coupled
ordinary differential equation (ODE)

ẏ = f(y, t), (5.58)

where y(t) is the time-dependent parameters of the ansatz used. The simplest
conceivable method to numerically solve an ODE is with the forward Euler
method, where the derivative of a function is approximated using the forward
finite difference formula

f(y(ti), ti) = ẏ = y(ti+1)− y(ti)
∆t (5.59)

⇒ y(ti+1) = y(t1) + ∆tf(y(ti), ti). (5.60)

This is an explicit method, where the solution in the next step is an explicit
function of the previous step. However, forward euler is too simplistic for our
needs, as it leads to severe energy deviations due to non-symplicity and also
does not provide a good convergence with step size. We will now present other
integrators with better accuracy and more favourable properties, specifically
Runge-Kutta 4 (RK4) and the symplectic Gauss integrator[37], in a later section.

do this for the many-body action-based methods of time-dependent coupled-
cluster (TDCC) and orbital adaptive time-dependent coupled-cluster (OAT-
DCC).

5.3.4 Time-Dependent Coupled-Cluster

The equations of motion for TDCC is given in eqs. (4.142) and (4.143) in
terms of the right-hand sides of the regular amplitude equations, which is more
explicitly

τ̇µ = −i 〈Φµ|e−T̂ (t)Ĥ(t)eT̂ (t)|Φ〉 ,

λ̇µ = i 〈Φ|
(

1 + Λ̂(t)
)
e−T̂ (t)

[
Ĥ(t), X̂µ

]
eT̂ (t)|Φ〉 .

These are general equations which holds for any truncation level of coupled-
cluster. The equations above are formulated as differential equations on the
form that scipy requires, and as such it is simple to perform time-depdendent
calculations on a coupled cluster state. For each step, one first updates the
single-particle matrix elements of the Hamiltonian, hpq(t) and upqrs(t). As written,
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these updates might be in both the one-body parts of the two-body parts,
such as for a dipole laser or the adiabatic switching function, respectively. In
the normal-ordered formulation of the coupled cluster equations, the matrix
elements of the fock-operator are then calculated fpq (t) = hpq + 1

2u
pi
qi. We then

use the updated matrix elements and the set of amplitudes to evaluate the
right hand side of the amplitude equations, where they are the unmodified
equations unlike the quasi-Newton approach. Note that the τ -equations are still
independent of the λ-amplitudes The number of evaluations of the right hand
side above depends on the integrator used, with RK4 using four evaluations
per time-step as an example.

We have not implemented a separate TDCC solver but use the one implemented
in the library coupled_cluster described earlier.

5.3.5 Orbital Adaptive Time-dependent Coupled-Cluster

The equations of motion for the OATDCCD method quite a bit is more involved.
Recall that the parametrization of the many-body wavefunction in OACC is

|Ψ(C, τ )〉 = eT |Φ0〉 (5.61)〈
Ψ̃(C̃, τ ,λ)

∣∣ =
〈
Φ̃0
∣∣ (1 + Λ)e−T (τµ) (5.62)

With this representation the wavefunction is parametrized by the two sets of
amplitudes τ = [τ ]µ and λ = [λ]µ indexed by an index µ which goes over all
possible excitations at the given truncation level, and the coefficient matrices C
and C̃ giving the transformation between the original basis to the OA-basis20,

|ϕp〉 = Cαp |χα〉 , 〈ϕ̃p| = C̃pα 〈χα| . (5.63)

As long as the original basis is biortonormal 〈χ̃α|χβ〉 = δαβ , demanding
biortonormality in the OA-basis gives

δpq = 〈ϕ̃p|ϕq〉 = C̃pαC
α
q (5.64)

We are able to use Wick’s theorem to derive the regular coupled-cluster
amplitudes due to the creation and annihilation operators of the OA-basis,
obeying the anticommutation rules{

d†p, d̃q
}

= δpq. (5.65)

In the time-dependent case of OATDCC, both the amplitudes and the coefficients
are allowed to vary in time,

τ ,λ,C, C̃→ τ (t),λ(t),C(t), C̃(t) (5.66)

With an integrator from scipy, our goal is to expose the right-hand side of the
equations of motions via the __call__-method of the CC-classes as described
in section 5.1.2. For OATDCC, a single time-step can be summarized as two
computational steps,

20Note that in this section latin indices p, q, r, . . . (also with primes) exclusively label the
OA-basis {〈ϕ̃p| , |ϕp〉}Kp=1, and similarly the greek indices α, β exclusively label the original
basis {〈χ̃α| , |χα〉}Lα=1.
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1. Calculate the change in the amplitudes using the amplitude equations,
which takes matrix elements from the OA-basis.

2. Calculate the change in the coefficients using the P andQ orbital equations,
which takes a mix of matrix elements both the OA-basis and the original
basis.

In the doubles approximation OATDCCD, the amplitude equations are the
standard CCD equations with matrix elements from the OA-basis. As such,
they require the transformed anti-symmetrized Coulomb matrix elements

upqrs,AS = 〈ϕ̃pϕ̃q|u|ϕrϕs〉 − 〈ϕ̃pϕ̃q|u|ϕsϕr〉 . (5.67)

The orbital equations are two-fold; the P-space equations only uses anti-
symmetrized Coulomb matrix elements of the OA-basis shown above. The
Coulomb matrix elements involved in the Q-space equations, on the other hand,
are the un-anti-symmetrized variants,

upqrs = 〈ϕ̃pϕ̃q|u|ϕrϕs〉 . (5.68)

The P-space equations involve solving for ηia and ηai in the P-space equations,
given in eqs. (4.184) and (4.185) as

i~Aibajη
j
b = hjaρ

j
i − h

i
bρ
b
a + 1

2u
pr
as,ASρ

is
pr −

1
2u

ir
qs,ASρ

qs
ar, (5.69)

for the occupied-virtual block of the matrix elements of η̂ in our basis, and

− i~ηbjA
ja
bi = hbiρ

a
b − hajρ

j
i + 1

2u
pr
is,ASρ

as
pr −

1
2u

ar
qs,ASρ

qs
ir , (5.70)

for the virtual-occupied block, where

Aibaj = δbaρ
i
j − δijρba. (5.71)

We are only interested in finding ηia and ηai , as all other elements are zero in the
chosen gauge. To solve this, we first need to calculate the updated amplitudes
to find the density matrices ρqp and ρsrqp, where we have listed the non-zero
elements in appendix A.1.2. We also need the transformed matrix elements
with the current coefficients,

hpq(t) = C̃pα(t)Cβq (t)hαβ (5.72)
upqrs,AS(t) = = C̃pα(t)C̃qβ(t)Cγr (t)Cδs (t)(uαβγδ − u

αβ
δγ ). (5.73)

(5.74)

The P-space ket equations are then solved by considering composite indices
A = (i, a) and B = (b, j), which gives us the left hand side as Aibajηib = AABη

B,
and then solving as a matrix equation for ηB. The same strategy is used for
the bra-equations.
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Next we consider the Q-space equations, on the form of eqs. (A.8) and (A.9). The
Coulomb contribution to the Q-space equations are summarized in eqs. (A.10)
and (A.11) as

i~Ċαq = i~ηp
′

q C
α
p′ + Cβq h

α
β − hp

′

q C
α
p′ + (ρ−1)pqρq

′s
pr U

αr
q′s, (5.75)

−i~ ˙̃Cpα = i~ηpp′C̃
p′

α + C̃pβh
β
α − h

p
p′C̃

p′

α + (ρ−1)pqρ
qs
p′rŨ

p′r
αs . (5.76)

All the contribution from the two-body Coulomb matrix elements is summarized
in two tensors,

Uαrq′s = (Cβq′Wαr
βs − u

p′r
sq′C

α
p′), (5.77)

Ũp
′r
αs = (C̃p

′

β W
βr
αs − u

p′r
q′sC̃

q′

α ). (5.78)

Here, Ŵ r
s is the mean field operator,

Ŵ r
s (x2) =

∫
φ̃r(x1)û(x1, x2)φs(x1) dx1, (5.79)

with matrix elements
Wαq
βs = 〈χ̃α|Ŵ ρ

σ |χβ〉 . (5.80)

Code

We here present the technicalities of our implementations of the Q-space
equations for OATCC.

As the first step of the above procedure, we make sure to update the Hamiltonian
of the original basis, with the same steps as in TDCC. This is done with
the method update_hamiltonian, which updates the matrix elements of the
instance of the class QuantumSystem stored in the OATDCC-object.

Next, the steps to calculate all the necessary Coulomb matrix elements with
or without a non-zero Q-space have been implemented into a method for the
OATDCC class called update_oa_hamiltonian, seen in ?? 3. The OATDCC
method also has a new parameter has_non_zero_Q_space, which determines
how the Coulomb contribution is calculated and whether the simlified form of
the Q-space equations given in eq. (4.191) should be used.

The tensors Uαpqr and Ũpqαs which contain the Coulomb contributions to the
Q-space equations are named u_quart_ket and u_quart_bra in the code,
respectively. To save some computational cost, we are careful about the
order by which we update the matrix elements upqrs. If the parameter
has_non_zero_Q_space is false, then we just calculate the elements upqrs
according to regular transformation,

upqrs =
∑
αβγδ

C̃pαC̃
q
βC

γ
rC

δ
su

αβ
γδ . (5.81)

If it is true, on the other hand, then several intermediate steps are performed.
First, the matrix elements of the mean field operator Wαq

βs is calculated,
and its contributions are added to the Uαrq′s, Ũp

′r
αs This is done using the

methods construct_mean_field_operator, contract_W_partially_ket
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Listing 3 Method to update the matrix elements of OATDCCD.
def update_oa_hamiltonian(self, C, C_tilde=None):

np = self.np

h = self.h
u = self.u

if C_tilde is None:
C_tilde = C.T.conj()

if self.has_non_zero_Q_space:
self.construct_mean_field_operator(

u, C, C_tilde, np=self.np, out=self.W
)

self.contract_W_partially_ket(
self.W, C, C_tilde, np=self.np, out=self.u_quart_ket

)
self.contract_W_partially_bra(

self.W, C, C_tilde, np=self.np, out=self.u_quart_bra
)

# non-antisymmetrized
np.einsum(

"bq,prbs->prqs",
C,
self.u_quart_bra,
optimize=True,
out=self.u_prime,

)

self.u_quart_ket -= np.tensordot(C, self.u_prime, axes=((1), (0)))
self.u_quart_bra -= np.tensordot(

self.u_prime, C_tilde, axes=((2), (0))
).transpose(0, 1, 3, 2)

else:
# non-antisymmetrized
self.u_prime = self.system.transform_two_body_elements(

self.u, C=C, C_tilde=C_tilde,
)

self.h_prime = self.system.transform_one_body_elements(h, C, C_tilde)
self.u_prime = self.system._basis_set.anti_symmetrize_u(self.u_prime)
self.f_prime = self.system.construct_fock_matrix(

self.h_prime, self.u_prime
)
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and contract_W_partially_ket. Since the object u_quart_ket now contains
the matrix elements Cβq′Wαr

βs , we use it to calculate the fully transformed
elements upqrs = C̃pβ(CβrW

αq
βs ), before u_quart_ket and u_quart_bra are

completed by subtracting the second terms of eq. (5.77).

We now have all the needed matrix elements. The next two steps are to calculate
the updated amplitudes τµ and λµ according to the amplitude equations, and
the matrix elements of ηpq according to the P-space equations. This is done as
described in [41, 51]. The update to the coefficients in terms of the P-space
contributions is added,

C_update = np.dot(C, eta)
C_tilde_update = -np.dot(eta, C_tilde)

In the case of non-zero Q-space, we then regularize the one-body density matrix
according to section 5.3.5. We calculate the exponential of the matrix using
the Python function scipy.expm. Finally, remaining parts of the eqs. (A.10)
and (A.11) in terms of the Q-space contribution to the coefficient matrices is
added,
C_new += -1j * self.compute_q_space_ket_equations(

C,
self.h,
self.h_prime,
self.u_quart_ket,
self.rho_qspr,
rho_inv_pq,

)
C_tilde_new += 1j * self.compute_q_space_bra_equations(

C_tilde,
self.h,
self.h_prime,
self.u_quart_bra,
self.rho_qspr,
rho_inv_pq,

)

We have implemented compute_q_space_ket_equations and compute_q_space_bra_equations
as
def compute_q_space_ket_equations(

self, C, h, h_prime, u_quart_ket, rho_qspr, rho_inv_pq
):

np = self.np

rhs = np.dot(h, C)
rhs -= np.dot(C, h_prime)

temp_ap = np.tensordot(
u_quart_ket, rho_qspr, axes=((1, 2, 3), (3, 0, 1))

)
rhs += np.dot(temp_ap, rho_inv_pq)

return rhs

def compute_q_space_bra_equations(
self, C_tilde, h, h_prime, u_quart_bra, rho_qspr, rho_inv_pq

):
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np = self.np

rhs = np.dot(C_tilde, h)
rhs -= np.dot(h_prime, C_tilde)

temp_qb = np.tensordot(
rho_qspr, u_quart_bra, axes=((1, 2, 3), (3, 0, 1))

)
rhs += np.dot(rho_inv_pq, temp_qb)

return rhs

Note that the lines np = self.np is to allow using other numerical frameworks
than numpy.

Regularization

In MCTDHF and OATDCC with non-zero Q-space, the orbital equations involve
the inverse of the one-body density matrix ρqp, as seen in eqs. (4.186) and (4.187).
This object tends to become singular in certain systems, at which point the
matrix inversion breaks down. This is a problem common to MCTDHF as well.
To fix this, we regularize the one-body density matrix, adding small elements
along the diagonal given. We use the exponential regularization given by

ρqp → ρqp + 1
ε
e−ερqp . (5.82)

Here ε is a regularization parameter which we set to ε = 10−6 to ensure
convergence of the equations.

OATDCCD-DVR

The OATDCCD-DVR method we have implemented utilizes the "2d"
representation of ODSincDVR. The two-body Coulomb operator is now
represented as a 2-dimensional matrix. With our representation of the Q-
space equations presented above, the only change needed is the computation of
the tensors u_quart_ket and u_quart_bra, given in eq. (5.77).

Computational cost of OATDCCD

This section covers the computational cost of one time step in the OATDCCD
method. We use Nb as the number of grid points and L = 2Nb and K as the
number of basis functions in the grid and OA bases, respectively, N as the
number of particles (or occupied states) and M = K − N as the number of
virtual states in the OA-basis.

The amplitude equations are equal to a normal coupled-cluster calculations,
where the worst scaling term is the non-linear contraction of the amplitudes
with the matrix elements u[k, l, d, c] (only dummy indices). There are several
terms with equal cost. One of them is

τacik τ
bd
kl u

kl
dc (5.83)

which has a scaling of O(K4M4). Using so-called intermediates, this can be
reduced to O(K6).
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In the P -space orbital equations, we are solving for ηai and ηia, which has a
total size of 2KM . The cost of this operation is maximally O((KM)3). The
right hand side of the equation is dominated by the four two-body terms, which
has a cost of O(NMK3).

Matrix element transformation

As shown in section 3.2, transformation of matrix elements from the DVR basis
is given as

upqrs =
∑
αβ

C̃pαC̃
q
βC

α
r C

β
s u

αβ
αβ . (5.84)

5.3.6 Antisymmetrization

Normally in a coupled-cluster calculation one can use the anti-symmetrized
matrix elements directly in all calculations. The non-anti-symmetrized matrix
elements never appear in any equation, and we are free to only store uASpqrs =
upqrs − upqsr, saving computational power by removing half of the amplitude
terms that would be present in a non-anti-symmetrized treatment of the
amplitude equations.

In OA with non-zero Q-space, on the other hand, we need access to the non-
anti-symmetrized matrix elements for the Q-space equations. This is a shame,
since we are then forced to store twice the amount of matrix elements.

Another problem appears when using a DVR-basis, where anti-symmetrization
breaks the symmetry of sparseness. Consider the DVR Coulomb matrix elements
upqrs , which can be written in terms of a sparse matrix, upqrs = upqδprδqs, with
upq = upqrs. Antisymmetrization of this gives

uASpqrs = upqδprδqs − upqδpsδqr. (5.85)

where uASpq would be the sparse anti-symmetrized Coulomb matrix elements
corresponding to upq. This is not possible to write on the form uASpq δprδqs.
However, we are saved by the fact that the anti-symmetrized matrix elements
only appear in the transformed basis, and all expressions involving matrix
elements of the DVR basis are un-anti-symmetrized. The solution to both of
these problem was to force the system class to be non anti-symmetrized in the
OATDCC method.

5.3.7 Orbital Adaptive Coupled-Cluster Ground State

The ground state of OACC with non-zero Q-space is notoriously hard to find.
There are no existing solvers for it, and the biorthogonality. We have tried
two methods to find the ground state of our systems. The first is imaginary
time evolution, where we perform a Wick rotation on the governing equations
of motion, which has the effect of propagating the system in imaginary time.
Due to the structure of the eoms, imaginary time propagation can be shown
to be equal to gradient descent towards the ground state. However, this also
turned out to be challenging for the biorthogonal states of OATDCC. The
main challenge is that the system of equations in OATDCC are poisson and
not symplectic, and the structure matrix is unknown. In more physical terms,
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the ket and the bra states need to be propagated in opposite time directions,
and it is not clear how the Wick rotation should affeect different parts of the
parametrization of the OATDCC ansatz.

The second way of finding the OATDCC ground state is using adiabatic
switching. Adiabatic switching described in section 2.4.2. Using adiabatic
switching for coupled-cluster, we start with a reference based on the single-
particle functions and get the initial state by simply setting all amplitudes to
zero. The correct amplitudes are then found through time-evolution with the
time-dependent two-body operator F (t)V̂ . This is also the case with OATDCC,
but here we also set the initial coefficient matrix to the identity matrix, which
corresponds to using the spectral basis as the initial basis.

To be able to benchmark the quality of these solutions, we will compare our
results to the root solver of NOCC, which provides a good ground state for
OACC with nonzero Q-space.

5.3.8 Integration

When integrating in time, we will be solving ordinary differential equations
(ODEs) on the form

q̇(t) = f(q, t), (5.86)
Here q(t) is the function we are solving for.

Symplectic integrators can be derived from the classical Hamiltons principle,
which states that the physical solution of the path q(t) for some particle is the
one that extremizes the action S,

S =
∫ tN

t0

L(q, q̇) dt. (5.87)

Here L(q, q̇) is the Lagrangian for the system. In the discretized case, this
Hamilton’s principle is also discretized, and we seek solutions that extremize
the discretized action

Sh({qn}N0 ) =
N−1∑
n=0

Lh(qn, qn+1). (5.88)

The discretized Lagrangian Lh(qn, qn+1) is here an approximation of the integral
of the Lagrangian over a small step h,

Lh(qn, qn+1) ≈
∫ tn+1

tn

L(q(t), q̇(t)) dt. (5.89)

In [18] they show that symplectic methods can be constructed from different
ways of approximating this integral, and Gauss integration is the method we
get if we use Gauss Legendre quadrature to approximate the integral.

5.3.9 Gauss Integrator

For the complicated equations of motion for the amplitudes of TDCC and
amplitudes and coefficients of OATDCC, a symplectic integrator is favourable.
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This is because the equations of motion of the τµ and λµ amplitudes have the
structure of a complex form of the classical Hamilton’s equations, as can be seen
from eqs. (4.142) and (4.143), with τµ and λµ corresponding to the coordinates
and their conjugate momenta, respectively[38].

The Gauss integrator is based on Gauss quadrature, which we covered in
section 3.2.1. The idea is to implicitly find the next step by integrating and
using a converging series, until the differential equation is satisfied at each
quadrature point.

The Gauss integrator is symplectic, and for the integral over a step, each
parameter is approximated as a polynomial according to Gauss-Legendre
quadrature. It is an implicit approach, where the values at the quadrature is
improved iteratively until the ODE is required to be satisfied at each of the
quadrature points. This gives a symplectic and reversible integrator[18, 38].
The specific quadrature used is the Gauss-Legendre quadrature, as it has a
weight function ω(x) = 1 and is on a domain Ω = [−1, 1].

5.4 Special considerations

5.4.1 Absorbing boundary conditions

For a physical bound system, i.e. one that is bound in a well which is not
infinitely deep, it is possible to ionize the system with a strong enough laser.

A measure we use on ionization in one dimension is the integral of the one-
particle density,

I(t) =
∫ b

a

dx ρ(x, t). (5.90)

If the interval [a, b] is such that the it contains the bound parts of the
wavefunction, then we can calculate a measure of ionization as N − I(t), where
N is the number of particles. This is the case of absorbing boundary conditions,
where we are ensured that unbound states will eventually propagate out of
the system. For reflecting boundary conditions, on the other hand, some
parts of the wavefunction might reflect and reenter the interval above. It is
therefore important that the grid is large enough when studying ionization, to
allowintervals when studying ionization.

5.4.2 Adiabatic switching

Using the time-evolution operator functionality of QuantumSystems, it is simple
to implement the required time-dependent operators for adiabatic switching.
When chosing a switching function, a property we are looking for is that it
should start and end as close as possible to 0 and 1, respectively. If the initial
value is non-zero, then initially prepared non-interacting state won’t be the
ground state anymore, and equally if the final value is not unity then the final
state won’t have become the ground state of the system.
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We have tested three different switching functions. The simplest and most naive
switching function is just a linear switching,

F0(t) =


0, if t < 2T,
t/(2T ), if 0 < t < 2T,
1, if t > 2T.

(5.91)

where T is the half-time of the switching function. However, this switching
function has severe discontinuities in the derivaties, and leads to artifacts in
the wavefunction which increase the total energy.

A more sophisticated switching function is the Fermi function[22]

F1(t) = 1− 1
1 + e(t−T )/τ . (5.92)

The deviation of F1(t) from 0 and 1 at the start and end of the interval,
respectively, decays exponentially with the parameter τ .

Another proposal is the error function given by

erf z = 2√
π

∫ z

0
dt e−t

2
. (5.93)

It converges even stronger towards the asymptotal values. We scale this to
ensure that it converges towards 0 for t→ −∞ and 1 for t→∞. The form of
the final switching function is then

F2(t) = 1
2

[
1 + erf

(
t− T
τ2

)]
, (5.94)

Setting the derivative of F1(t) and F2(t) equal in the midpoint gives us the
relation τ2 = 4τ/π, which gives us

F2(t) = 1
2

[
1 + erf

(√
π
t− T

4τ

)]
, (5.95)

The three functions can be seen in fig. 5.7.

To implement the switching functions, we use classes that implement the
__call__-method in Python. The classes are set up with the parameters T
and τ , such that they then behave like functions of a single parameter t. As an
example, consider the following snippet
from adiabatic_switching.switching_functions import FermiFunction
f = FermiFunction(tau=6, half_time=50)

Here adiabatic_switching is a convenience Python library for the time-
propagation of a system through an adiabatic switching process. It is part of
the py-master repository, described above, and contains three modules

For the FermiFunction and Erf switching functions, we want to ensure that
the slope is equal at the midway point, and as such also implemented the
ErfScaled, which has equal slope the the FermiFunction at t = 0.
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Figure 5.7: The three switching functions we have used, the linear F0(t), the
fermi function F1(t) and the error function F2(t). The two latter are scaled such
that their derivatives are equal in the midpoint. The midpoint is at T = 50,
and the exponential parameter is τ = 6. The values at t = 0 are F0(0) = 0,
F1(0) = 2.4× 10−4 and F2(0) = 8.8× 10−8.

5.4.3 Imaginary time propagation

We implemented a perscription for imaginary time propagation for coupled-
cluster in the coupled-cluster library, on the branch imag_time_method.
The time-dependent coupled-cluster base class TDCC is modified to accept
an argument time_direction, which when set to "imaginary" modifies
the equations to propagate the system in imaginary time. Imaginary time
propagation used to find the CCSD ground state for helium in the cc-pVDZ
basis is seen in fig. 5.8. Both the difference in energy between two subsequent
time steps |∆Ei| = |Ei+1 − Ei| and the deviance from the CCSD ground state
at each time step |Ei − ECCSD| is plotted.

Non-feasibility of imaginary time-propagation for OATDCC

Imaginary time propagation for the ground state of OATDCCD was also
attempted. Kvaal states that imaginary time-progation is infeasible for
OATDCC[27]. His main argument is that the energy should be complex analytic
and as such the energy is also conserved under imaginary time-propagation.
However, there are other challenges to the direct implementation of imaginary
time-propagation. Consider that the parametrization of the two wavefunctions
|Ψ〉 and 〈Ψ| are independent. Under bivariational imaginary time-propagation,
parameters related to the former should be propagated forward in imaginary
time while parameters related to the latter should be propagated backwards.
The OATDCCD equations are unlike the TDCCD equations coupled in a non-
trivial way, which comes down to the Poisson nature of the equations of motion.
Assigning the direction of the wick rotation is as such a non-trivial procedure.

However, for the time-dependent optimized coupled-cluster (TDOCC), which is
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Figure 5.8: Imaginary time propagation for the CCSD ground state of helium.

similar to OATDCC but with orthogonal orbitals, imaginary time relaxation
turns out to be feasible[40]. To chose the direction of the Wick rotation
for different parameters in the equations of motion of OATDCC, we used a
perscription obtained through communication with Sato et al. in the imaginary-
time propagation branch of coupled-cluster21. As seen with a simple
numerical experiment in fig. 5.9, the energy does not converge, and the method
ends up breaking down. Clearly, OATDCCD requires a more careful treatment
to allow imaginary time propagation, if it is indeed possible. If possible, then
a more thorough theoretical analysis is needed to identify how the different
parameters should be treated.
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Figure 5.9: Imaginary time propagation for the OATDCCD ground state of
helium.

21https://github.com/Schoyen/coupled-cluster/tree/imag_time_method
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CHAPTER 6

Results

The purpose of this thesis project was to implement DVR for OATDCCD. In
this chapter, we therefore present the results of this endeavour, split into three
sections. The first concerns single-particle problems, where we compare our
DVR basis to a basis found with the finite difference method (FDM) using the
QuantumGridSolver. We compare the quality of the eigenvalues for a single
particle in a harmonic oscillator, and then study the difference of the time-
evolution of said system under the influence of a time-dependent electromagnetic
interaction.

In the second section we present results regarding the Hartree-Fock and OACCD
groundstates with a DVR basis. Adiabatic switching is verified on the HF state
and is subsequently used to find the OACCD ground state with a non-zero
Q-space. We reproduce ground state values calculated with MCTDHF for the
one-dimensional atoms of helium, beryllium and carbon.

The third section covers the dynamics of TDHF and OATDCCD, where the
one-dimensional atoms of the previous section are subjected to a strong electric
field, and we study the both ionization of atoms as well as high harmonic
generation.

Additional results for this thesis can be found in Jupyter notebooks in the main
github repository1. All results in this chapter are presented in atomic units,
abbreviated a.u.

6.1 Single-particle problem

To test our implementation of the sinc-DVR basis functions, we compare them
against the finite difference method (FDM) described in section 3.1.1, which is a
simple and commonly used method to solve the one-body Schrödinger equation.
We show that DVR gives a good representation of the wavefunction with only
a few grid points, making it applicable to even three-dimensional systems.

6.1.1 Onebody Ground State

As our single particle ground state problem, we consider the the ground state
of a single particle in a harmonic oscillator potential in one dimension. The

1https://www.github.com/halvarsu/master
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6. Results

one-body Hamiltonian for a quantum harmonic oscillator system is

ĥ = −1
2

d2

dx2 + 1
2ω

2x̂2, (6.1)

where ω is the oscillator frequency. This system has an analytic, closed form
solution with eigenfunctions

ψn(x) = CnHn(x)e−ωx
2

2 , (6.2)

where Hn(x) are the Hermite polynomials and Cn is a normalization factor.
The analytical expression for the n’th eigenenergy is given by En = ω(n+ 1/2).
A plot of the seven first wave functions can be found in fig. 6.1.
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Figure 6.1: The first seven eigenfunction of a harmonic oscillator with ω = 1,
given in terms of the hermite polynomials Hn(x). The eigenenergy is added to
the corresponding eigenfunction.

We have used both the FDM and the DVR basis to find solutions of this
potential. We set up and subsequently diagonalize the Hamiltonian for both
grid methods, resulting in representations of the eigenfunctions in discretized
position basis, ψn(xα).

The maximal extent of a classical harmonic oscillator with energy En is given
by the distance to the origin L such that V (L) = En. Solving for L gives

ω(n+ 1
2) = 1

2ω
2L2

=⇒ |L| =
√

2n+ 1
ω

In the quantum case, the wavefunction has non-zero amplitude outside this area,
but it is exponentially decaying. Consequently, L(n) gives a lower bound on
the grid size needed to represent the n’th wavefunction. We also know that the
wave function of quantum number n has n+ 1 equally spaced nodes. We need
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6.1. Single-particle problem

at least two grid point per node, and as such Ndvr = 2(n+ 1) is an estimate of
a lower bound for the sinc-DVR functions required to ψn.
For a harmonic oscillator frequency of ω = 1, we test the representation of
the n = 100 first wavefunctions on a grid of length L =

√
201 ≈ 14.2 a.u

consisting of Ndvr = 201 grid points. Figure 6.2 shows the relative error of
the n’th wavefunction calculated with FDM using both our implementation
in QuantumGridSolver and ODQD of the quantum_systems library. This is
compared to our implementation of sinc-DVR in ODSincDVR. We see that while
FDM gives a poor representation of the system with such a low number of grid
points, the sinc-DVR basis represents the system to machine preciscion for the
60 first wavefunctions.
In figs. 6.3 and 6.4 depict results from the same calculation as above for multiple
times for grid lengths between 5 and 20. Again we measure the relative error in
the energy of the both the FDM and the DVR basis functions as a function of
quantum number n. In fig. 6.4 we also plot the classically allowed area L(n),
and see that the error in the DVR wavefunction is only due to the lack of grid
representation.
While the grid solver needs many grid points per node of the wavefunction
for a proper representation, the DVR performs very well for grids larger than
the classically allowed area, which we have plotted in fig. 6.4. The difference
between the two methods is due to the poor representation of the kinetic energy
operator in the finite difference scheme.
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Figure 6.2: Relative error of the energy of the nmax = 100 first wave
functions of a harmonic oscillator with ω = 1 a.u. Calculated using a
sinc-DVR representation with Ndvr = 2(nmax + 1) and a grid length of
L =

√
(2nmax + 1)/ω.

DVR quality with spacing

With a low number of quadrature points to represent a wavefunction, the quality
of the fit of the sinc-DVR basis is sensitive to the specific placement of the grid
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6. Results

Figure 6.3: Relative error in the numerical energy of the finite difference method
for the harmonic oscillator, compared with the analytical energy En = 0.5 + n
a.u. for ω = 1 a.u. The logarithmic value is taken for the 100 first wavefunctions
for a fixed number of grid points Ngrid with varying grid extent L. The number
of grid points is fixed to 201.

Figure 6.4: Relative error in the numerical energy of a DVR basis set for the
harmonic oscillator, compared with the analytical energy En = 0.5 + n a.u. for
ω = 1 a.u. The logarithmic value is taken for the 100 first wavefunctions for a
fixed number of grid points Ngrid with varying grid extent L. The number of
grid points is fixed to 201, and the classically allowed area for the harmonic
oscillator is plotted as a dashed line.
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6.1. Single-particle problem

points. Using a sinc-DVR basis for the one-dimensional atom model with Ndvr
basis points, we construct the wave function for the ground state from, using
the spatial representation of the sinc-DVR basis functions. Figure 6.5 shows
this for the 1d beryllium-atom, given by a shielded coulomb,

V̂ (x) = Za√
x2 + c2

, (6.3)

with Za = 4 corresponding to the Beryllium atom. We use c = 1 as shielding
parameter. It is clear that the placement of the grid points is important for the
representation of the wavefunction. It also shows the non-variational nature
of this problem; more points does not necessarily give a better description.
This is not relevant for our results, where the number of grid points completely
eliminate this source of error, but it can be relevant when using DVR in higher
dimensions, where the number of grid points is more limited. Consider 2000 grid
points, which in one dimension this gives a very high quality description of the
wavefunction, but in three dimensions correspond to a cube with 13 grid points
per dimension. A possible way to overcome this error is to use extrapolation to
infinitesimal grid spacings, such as the one used in [24].
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Figure 6.5: DVR basis functions for the one dimensional beryllium atom. The
quality of the DVR-representation is highly dependent on placement of the grid
points, and is not necessarily monotonic increasing with the number of grid
points.

6.1.2 Driven harmonic oscillator

A simple dynamics problem for the one-dimensional harmonic oscillator is a
sinusoidal dipole laser. The dipole laser interaction is given as a one-body
operator,

hI(t) = F0 sin(Ωt)x̂, (6.4)
where F0 is the laser amplitude and Ω is the laser frequency. We set the laser
frequency and the harmonic oscillator frequencies equal to Ω = ω = 0.5 a.u.
When they correspond, the system is resonant and quickly increases in energy.
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We numerically set up the ground state of the system using a grid length of
20 a.u. and a grid spacing of ∆x = 0.1 a.u. for both the sinc-DVR and the
finite difference method. The Crank-Nicholson method is used to propagate
both the DVR- and the grid systems. We apply the sinusoidal laser for a period
of Tperiod = 2π/E0 ≈ 25.13 a.u, without an envelope, and with an amplitude
of F0 = 1 a.u.. This is not a realistic laser pulse 2, but its purpose is to excite
the system so that we can test the one-body systems and the time-propagation
algorithms. After the laser pulse, we propagate the system without an external
interaction until T = 1000 a.u., corresponding to almost 80 periods. The
time-step is set to ∆t = 0.01 a.u.

A corollary of the harmonic potential theorem[12] states that a dipole interaction
onto a harmonic oscillator induces rigid translations. As seen in fig. 6.6, both
methods show this phenomena for short times, but the FD wavefunction slowly
deteriorates with time. A possible explanation is that the DVR gives a better
representation of the matrix elements of the harmonic oscillator, and therefore
also conserves its properties better.

The energy is conserved for both basis sets, as can be seen in ?? in appendix A. A
Fourier transform of the induced dipole moment, calculated as the expectation
value of the position operator d(t) = 〈φ|x(t)|φ〉 can be seen in fig. 6.7. It
shows the dipole allowed transition energies in the system, which for the HO is
En+1 −En = ω. The FD representation has a slightly lower frequency than the
DVR.

The notebook Onebody Harmonic Oscillator Time Evolution.ipynb3 re-
produces the results of this section.
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Figure 6.6: Snapshots of the wavefunction for a single particle harmonic
oscillator. The DVR basis shows more stable rigid translation over time.

6.2 Many-body ground states

Having verified our DVR implementation for the harmonic oscillator, we now
turn our attention to systems of interacting electrons. We compare the ground

2Realistic laser pulses have a ramp up and ramp down at both ends.
3https://github.com/halvarsu/master/blob/master/notebooks/Onebody Harmonic Oscillator

Time Evolution.ipynb
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6.2. Many-body ground states
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Figure 6.7: Normalized fast Fourier transform of the induced dipole moment d(t)
for the harmonic oscillator system described above, using the finite difference
method and the DVR basis set. The frequency is in units of the system’s
oscillator frequency ω.

state of many-body systems using our DVR basis for both the Hartree-Fock
and the orbital adaptive coupled-cluster doubles (OACCD) groundstates.

6.2.1 Adiabatic switching

To test our adiabatic switching operators, we use the adiabatic switching
process to find the RHF ground state for one-dimensional atoms. To avoid the
divergence of the coulomb potential, the one-dimensional atomic potential is
given by the shielded Coulomb potential

V̂ (x) = Za√
x2 + c2

. (6.5)

Here c is the shielding parameter, and Za the strength parameter or atomic
number. In this section, we consider the one-dimensional beryllium atom with
Za = 4, and use the shielding parameter c = 1.

To simulate the system, we first set up a ODSincDVR basis set using 64 DVR
functions, which serves as input to a SpatialOrbitalSystem with n = 4
electrons. We then used our RHF implementation to solve the Roothan-
Hall equations with a tolerance of ε = 10−12, giving an RHF energy of
ERH = −6.73944772244 a.u. to use as a reference4.

We initially set the Hartree-Fock coefficients to coefficients of the single-particle
solutions of the Hamiltonian. In other words, we set them to the unitary matrix
C0 that diagonalizes the one-body DVR Hamiltonian,

(C†0)pαhαβ(C0)βq = δpqεp, (6.6)

where εp are the single-particle energies of the system. These are then evolved
in time using the Crank-Nicholson method. During the adiabatic switching
process, we adjust the magnitude of the two-body operator according to the
switching function F (t) at each time step, û(t) = F (t)û. For F (t) we use

4This is equal to the value stated in [34] up to the digits given there.
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the three functions LinearSwitching, ErfScaled and FermiFunction, all
described in section 5.4.2.

In fig. 6.8, we compare the results of the three switching functions for three
different base values of the decay parameter τ . Each data point constitutes
a new simulation for a different final time, where the half-time and decay
parameters of the switching functions are updated proportionally, such that the
value of the switching function in the initial and final times remains the same.

Evident from the results, the linear switching functions performs poorly for all
values of the final time, and converges very slowly towards the Roothan-Hall
solution. The error function and the Fermi function perform similarly for steep
switching processes given by a small τ or small T . For gentler processes, the
value of the start and end-points become significantly different from 0 and 1,
respectively. In this case the error function outperforms the Fermi function due
to the lower deviance for the expected values.

Additionally, we see that the convergence of the final state of the adiabatic
switching process towards the ground state is exponential with the time length
of the switching when the values in the end points are negligible.
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Figure 6.8: Erf vs fermi

6.2.2 OACCD Ground state energies

The one-dimensional atomic model has been studied extensively. In this section,
we compare the adiabatic switching process as a means to finding the OACCD
ground state with non-zero Q-space. We compare our OACCD energies for the
one-dimensional atoms with those obtained with Multiconfigurational Time-
Dependent Hartree-Fock (MCTDHF)[23, 34].

Using the one-dimensional atomic potential, we set up NDVR = 256 sinc-DVR
grid basis functions on a grid of extent 25 a.u., for an atomic potential with
the default values (c = 1, a = 1, Z = n). This is done for one-dimensional
helium, beryllium and carbon, i.e. n = 2, 4 and 6, respectively. We find the

110



6.2. Many-body ground states

ground state with an adiabatic switching simulation. The adiabatic switching
operator used is the Fermi function described in ??, with parameters τ = 6,
Thalf = 50. The system is integrated in time from t = 0 to t = 100. After such
an adiabatic switching calculation, the interaction matrix elements u are not
restored fully to max since we stop the calculation after a finite time T , and we
get F (100) = 0.99976 with the stated parameters. To get the correct energy
for the final state, we are careful to reset F (T )u → u before calculating the
OATDCCD energy.

The resulting energies can be seen in tables 6.1 to 6.3, for different values of
the OA basis size K. For n = 2 electrons, OATDCCD is equal to MCTDHF,
and we expect the ground state energy to be equal for the two methods[27].
Comparing table 6.1 with results for the MCTDHF ground state calculated
with imaginary time propagation, we see that this is indeed the case[23].

For N > 2, OATDCCD is an approximation to MCTDHF. In tables 6.2 and 6.3,
we compare our results for beryllium and carbon with those of Miyagi and
Madsen [34]. For K = N , OATDCCD reduces to TDHF[27], and we use
adiabatic switching for TDHF to calculate the value listed as HF. We see
that our energies are close to the MCTDHF energies, especially for beryllium.
However, note the discrepancy of the HF energies in both cases, which is even
more significant in the case of carbon.

As the systems gets larger, the adiabatic switching process must be slower
for the system to stay in the ground state. We consider the total correlation
energy to be the difference in energy between MCTDHF and converged HF,
which for carbon is ∆E = EMCTDHF−EHF = −0.10037 a.u[34]. Given that our
OATDCCD ground state converges toward a value of EOATDCCD = −13.32024,
we recover 89% of the correlation energy. The discrepancy in the adiabatic
switching energy for HF compared to the Roothan-Hall converged state is 5%
of this energy. Assuming that this discrepancy is the same for the OATDCCD
ground state, then OATDCCD recovers between 90% and 95% of the MCTDHF
energy.

Table 6.1: OATDCCD ground state energy (in atomic units) of the one-
dimensional helium atom (Z = N = 2), calculated with adiabatic switching.
The case K = 2 is the RHF ground state energy calculated with adiabatic
switching. We compare with the MCTDHF ground state energies of Hochstuhl
et al. [23]. Note that the energies are converging toward the exact energy.

K EOATDCCD EMCTDHF

HF -2.2242 -2.2242
4 -2.2365 -2.2365
6 -2.2381 -2.2381
8 -2.2382 -2.2382
10 -2.23825 -2.23825

Exact -2.23826
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Table 6.2: OATDCCD ground state energy (in atomic units) of the one-
dimensional beryllium atom (Z = N = 4), calculated with adiabatic switching.
The case K = 4 is the RHF ground state energy calculated with adiabatic
switching. We compare with the MCTDHF ground state of Miyagi and
Madsen [34].

K EOATDCCD EMCTDHF

HF -6.739442 -6.739450
6 -6.771284 -6.771296
8 -6.779852 -6.780026
16 -6.784570 -6.785041
24 -6.784598 -6.785077
32 -6.784599 -6.785078
40 -6.784600 -6.785078

Table 6.3: OATDCCD ground state energy (in atomic units) of the one-
dimensional carbon atom (Z = N = 6), calculated with adiabatic switching. The
case K = 6 is the RHF ground state energy calculated with adiabatic switching.
We compare with the MCTDHF ground state of Miyagi and Madsen [34].

K EOATDCCD EMCTDHF

HF -13.22568 -13.23117
8 -13.29216 -13.29860
10 -13.30422 -13.31127
12 -13.31236 -13.32016
16 -13.31922 -13.33009
20 -13.32012 -13.33133
24 -13.32023 -13.33151
28 -13.32024 -13.33154

6.3 Many-body dynamics

Using TDHF we are able to simulate ionization directly using boundary
conditions. We use the system given in [34], which is a one-dimensional beryllium
atom interacting with a dipole laser. The laser is given by a vector potential on
the form

A(t) = F0

ω
sin2(ωt

T
) sinωt, (6.7)

with frequency ω = 0.0570 a.u, corresponding to a wave length of 800 nm.
The field is active for three cycles, T = 3 2π

ω = 331 a.u. This gives a one-body
interaction term of F (t)x̂, where F (t) is the electric field defined as

F (t) ≡− ∂A(t)
∂t

=
[

sin2
(
πt

T

)
cos(ωt) + 2π

Tω
sin
(
πt

T

)
cos
(
πt

T

)
sin(ωt)

]
x̂Θ(T − t)Θ(t),

where Θ(t) is the Heaviside function. The strength is set to F0 = 0.0755 a.u.
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6.3. Many-body dynamics

We implemented two types of boundary conditions, the first one using a complex
absorbing potential (CAP) W (x). It is given as a non-hermitian one-body
contribution to the wavefunction,

Ĥ = ĥ+ v̂(x)− iW (x), (6.8)

where W (x) is some function that is zero for most of the domain, and then
increases smoothly towards the edges. For W (x), we used the function defined
in [35],

W (x) = 1− cos
(
π(|x| − xcap)
2(L− xcap)

)
, (6.9)

with xcap = 250 a.u.

As an alternative to CAP, we also implemented a real masking function. The
coefficients of the grid points are then multiplied by a mask m(x) at each time
step to remove the electron density at the edges[50]. With the DVR basis, this
is equal to performing the following operation at each time step,

Cαp (t)→ Cαp (t)m(xα). (6.10)

Contrary to the CAP W (x), the mask m(x) is equal to 1 inside of xcap, and
goes smoothly towards 0 outside. We use a mask given by

m(x) = cos
(
π(|x| − xcap)
2(L− xcap)

)1/4
. (6.11)

To validate the use of these absorbing boundary conditions, we first set up a
DVR with NDVR = 256 grid points, for a grid size of L = 60 a.u.. We then
solve for the RHF ground state of the beryllium atom with N = Za = 4 and
shielding parameters c = a = 1 for the nuclear and two-body potentials. Using
the above laser parameters, we simulate for 6 cycles of the laser frequency. This
is done for the three cases of regular case of reflecting boundary, CAP and real
masking function. In fig. 6.9 we plot the overlap of the RHF state |Φ(t)〉 with
the initial state 〈Φ(0)|, calculated as

〈Φ(t)|Φ(0)〉 = det
[
(C†)iα(t)Cαj (0)

]4
. (6.12)

We see that the result closely match that of [35]. Also, both the absorbing
boundary conditions give close results, which validates the implementation of
both methods.

6.3.1 OATDCCD

Using the OATDCCD ground state of the one-dimensional atomic system
as a starting point, we performed dynamics simulations, with the goal of
studying the phenomena of ionization and HHG. During the implementation
process, implementing boundary conditions for OATDCCD turned out to be a
challenge. In the case of the CAP, the non-hermiticity of −iW (x) causes different
behaviour for the right and left states |Ψ〉 and 〈Ψ|, which are independent in
the bivariational description. The non-hermitian term has opposite effects on
time-evolution of the two wavefunctions, where it will either reduce or increase
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Figure 6.9: TDHF overlap with the initial state for a 1d beryllium atom subject
to a laser with electric field strength F0 = 0.0755 a.u. and frequency ω = 0.057
a.u., for three types of boundary conditions: one reflecting and two absorbing
described in the text.

the norm depending on the sign of the time . This is a similar challenge to
the one of imaginary time propagation for OATDCC described in section 5.4.3.
The masking function m(x) is also unavailable for OATDCCD, because the loss
of norm breaks biorthonormality of the OA orbitals, which in turn breaks the
amplitude equations indirectly by rendering Wick’s theorem invalid. To prevent
reflection of the wavefunction affecting the observables of interest, we instead
made sure to make the grid large enough. What large enough means depends
of course on the strength of the laser field and the time of the simulation.

One-dimensional Helium

For the one-dimensional helium atom we use the parameters of [34]. We set
up a sinc-DVR basis of NDVR = 256 sinc-DVR basis functions in the domain
[−25, 25], for an atomic potential with the default values (c = 1, a = 1, Z = 2).
This is a sufficiently large grid to represent the ground state, which we find
with adiabatic switching. To get the full size of L = 300 used in the paper cited
above, prior to simulating the dynamics of the system we add 896 grid points
to each, for a total of 2048 grid points.

One-dimensional Beryllium

Using values for the laser obtained from correspondance with Takeshi Sato, we
simulate the one-dimensional beryllium system. He uses a strong electric field
strength of F0 = 0.1194 a.u., which is enough to excite the system strongly.

Snapshots of the particle density can be seen in fig. 6.10, with the laser waveform
inset showing the corresponding snapshot times5. Evident from the figure is
that each subsequent cycle increases the spatial frequency of the electrons.

To measure ionization, we integrate the particle density ρ(x) over an area which
is far enough away from the nucleus. However, as the integral of ρ(x) over

5An animation of the wavefunction can be seen on the main github page of this
thesishttps://github.com/halvarsu/master
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Figure 6.10: Snapshots of the OATDCCD particle density for a one-dimensional
beryllium atom subjected to an intense laser field. The inset figure shows the
waveform of the laser pulse with the times of the snapshots marked.
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the whole grid equals the number of particles, in this case 4, we can instead
integrate over just the atomic nucleus. We thus define ionization as

i(t) = 4−
∫ xcap

xcap

dx ρ(x). (6.13)

Using xcap = 25, we plot the ionization of the current system in fig. 6.11. We see
that the present laser completely disrupts the atom, and there is a significant
chance of more than a single electron being expelled.
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Figure 6.11: Ionization of the 1d beryllium atom subject to a strong
electromagnetic field. Ionization is defined as the integral over the electron
density that is away from the nucleus by a distance of 25 a.u..

6.3.2 High Harmonic Generation

An interesting effect in the study of quantum systems subject to electromagnetic
fields is high harmonic generation (HHG). It was discovered in 1987[33], where
gas atoms in intense laser fields emitted radiation of frequency of many
times the laser frequency, specifically frequencies given by high harmonics
of the laser frequency. It can also be observed from short-pulse lasers. A
qualitative understanding of the phenomenon is that electrons expelled from
the nucleus in the start of one laser cycle, are pushed back into the core when
the electromagnetic field switches sign on the second half of the laser cycle.
Collision with the remaining core electrons subsequently generate high frequency
photons.

A common theoretical approach is to use the single active electron approximation,
where the motion of a single electron is studied[16]. However, this fails to
reproduce the many-electron contribution to the HHG spectrum[45]. Numerical
ab initio methods have lately been used to describe more of the observed HHG
spectrum than single active electron methods have been able to, as shown by
Miyagi and Madsen [34]. In their paper, they use the time-dependent restriced-
active-space self-consistent field method, which is an approximation to the

116



6.3. Many-body dynamics

MCTDHF method. We here test the OATDCCD method for a similar purpose,
and are able to qualitatively reproduce high-harmonic spectra.

To measure the HHG spectrum, we use the dipole acceleration of the electron.
It can be given in two forms, either in velocity form,

Pv(t) = d
dt 〈Ψ(t)|p̂ + A(t)|Ψ(t)〉 , (6.14)

or length form,

Pr(t) = d2

dt2 〈Ψ(t)|r̂|Ψ(t)〉 . (6.15)

Above, p is the momentum operator, and A is the vector potential of the
electric field, which we will drop as it does not contribute to the HHG spectrum.
For the exact wavefunction, the two forms are equal, as can be shown using
commutator relations. However, these relations do not hold in the approximate
case, and as such they give different results. Which form to use depends on
what properties are of interest. Where the length form depends on the quality of
the electron distribution in space, the velocity form depends on the momentum
distribution only[25].

Applying Ehrenfests theorem, we can rewrite the velocity form as

d
dt 〈Ψ(t)|p̂|Ψ(t)〉 = 〈Ψ(t)|−

ˆdV (x)
dx |Ψ(t)〉 , (6.16)

where we have written the derivative of the potential operator as an operator
in itself. The one-body matrix elements of this operator in second quantized
form are

apq(t) ≡ 〈φp(t)|−
ˆdV (x)

dx |φq(t)〉 = C̃pα(t)Cβq (t) 〈χα|−
ˆdV (x)

dx |χβ〉 (6.17)

= C̃pα(t)Cβq (t)aαβ , (6.18)

where we rewrote in terms of the original time-independent basis |χα〉 and the
OA coefficients C̃pα(t) and Cαp (t). The dipole acceleration in the velocity form
is then calculated using the one-body density matrix ρqp as

Pv(t) = ρqp(t)apq(t) = ρqp(t)C̃pα(t)Cβq (t)aαβ . (6.19)

To measure the dipole acceleration in the length form, we measure instead the
dipole moment, given as the expectation value of the position operator,

d(t) = 〈Ψ(t)|x̂|Ψ(t)〉 = ρqp(t)dpq = ρqp(t)C̃pα(t)Cβq (t)dαβ . (6.20)

We then calculate the numerical second derivative of this with respect to time
to get the dipole acceleration in the length form,

Px(t) = d2

dt2 d(t). (6.21)

In the sinc-DVR basis for the one-dimensional atomic model, the matrix elements
of the acceleration operator aαβ are given as

aαβ =
(
−

ˆdV (x)
dx

)α
β

= δαβ

(
Za

x

(x2 + c2)3/2

)∣∣∣∣
x=xα

= δαβ
xαZa

(x2
α + c2)3/2 , (6.22)
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where we used the DVR basis to evaluate the local operator directly at the grid
points.

The induced dipole moment d(t) of the above dynamics simulation for one-
dimensional beryllium can be seen in fig. 6.12. This is a severe dipole moment,
due to the powerful electric field of F0 = 0.1194 a.u., corresponding to 5× 1014

W/cm2.
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Figure 6.12: Strong dipole oscillations of the one-dimensional beryllium atom,
for an electric field strength of F0 = 0.1194 a.u.

To find the dipole acceleration, we use both the velocity form described above,
and the length form. For the latter we compute the second derivative of the
dipole moment numerically. As seen in fig. 6.10, there are some reflections at the
boundaries towards the end of the simulation. To remove any artifacts resulting
from this, we calculate the Fourier transform of particle density only for times
in the interval t ∈ [0, Tstop], and compare two values of Tstop = 270, 331 a.u..

We also calculate an expected value for the first cutoff in the harmonic spectrum.
The first cutoff is given as 3Up + I

(1)
p = 63ω according to Lewenstein theory[29],

where Up = F 2
0 /(4ω2) = 1.097 a.u is the ponderomotive energy, i.e. the mean

energy of an electron oscillating in the given electric field, and I(1)
p = 0.3123 a.u.

is the first ionization potential for the atom, calculated in [35] using the energy
of the highest occupied orbital in the HF approximation. It is, however, based
on a single active electron-theory, and does not incorporate many-body effects.

The Fourier spectrum of the dipole acceleration is shown in length form
in fig. 6.13, calculated for the two different values of Tstop. The plateau
corresponding to the first cutoff can be seen clearly, though in a slightly higher
energy than expected. One explanation is the low value of K, which brings
it closer to the TDHF solution. The many-body interactions could serve to
distribute the kinetic energy between the electrons such that the maximal energy
per electron is lower, and a poor many-body description can then lead to higher
cutoff energies.
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Figure 6.13: The HHG spectrum of one-dimensional beryllium, calculated in the
length form as the numerical second derivative of the dipole moment. The first
cutoff calculated using semi-empirical considerations is plotted, and roughly
matches the expected plateau.

The reflections are seen to not affect the main outcome. This is expected since
the dipole acceleration should be relatively small towards the end of the third
laser cycle for the electron density far away from the nucleus.

In fig. 6.15, we compare the FFT of the velocity and length forms of the dipole
acceleration, where the Fourier transform of the entire signal for t ∈ [0, 331a.u.]
is used. We find an exact correspondance between the two forms. We speculate
that this is due to the gauge invariance of the OATDCC method, inherited from
the closely related NOCC method[37]. We also did a wavelet analysis of the
dipole acceleration signal, where the signal is convolved with wavelets that pick
out different frequencies. Using K = 32, we plot the log of the absolute value
of the wavelet transform in fig. 6.14. The HHG spectrum is seen to be emitted
during the second and at the start of the third cycle, during snapshots two to
four of fig. 6.10. The classical calculated cutoff was calculated to harmonic order
66ω, but we here observe even higher frequencies at the start of the second
cycle, when the large lump of particle density of the third snapshot above hits
the core again.

Unfortunately, we did not have the time to run more simulations for different
K values to study the convergence with K for beryllium, and we did not have
the time to study the carbon atom subject to an intense laser field either.
The focus in this thesis has not been optimization of the implementation, and
consequently the simulations take a long time to run, especially for extended
grid sizes. Nonetheless, we have been able to produce the qualitative results,
such as the HHG spectrum and the first cutoff.
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Figure 6.14: Wavelet transform of the dipole acceleration in length form, for a
one-dimensional Beryllium atom subject to a laser pulse of three optical cycles.
Note that the edge effects is an artifact of the wavelet transformation.
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Figure 6.15: Comparison of the length and velocity forms of the dipole
acceleration.
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CHAPTER 7

Conclusion and Future Work

The main goal of this thesis was to implement the DVR basis set for the
OATDCCD method. We successfully implemented the Q-space orbital equations
for the OATDCCD method. The ground state of one-dimensional atoms
represented with a DVR basis and the OATDCCD-dvr method was found using
adiabatic switching, and proved to converge toward corresponding results from
the highly accurate method of multiconfigurational time-dependent Hartree-
Fock. This proved a validation of our implementation of both DVR method,
the Q-space orbital equations and the adiabatic switching method. Further,
we reproduced the qualitative time-dependent behaviour of one-dimensional
systems under the influence of short-pulsed strong-field electromagnetic lasers.
The computed spectrum corresponded to results expected from both more
accurate methodsd such as MCTDHF, and gave the qualitative results expected
from the theory of high harmonic generations. We provided the results in both
the length form and the velocity form.

In addition to this, we solved the given subgoals described. The independent-
particle time-propagation scheme for single-particle and Hartree-Fock solutions
provided an important benchmarking tool. We used it both to validate the
DVR implementation using the single-particle implementation of FDM, and to
study the processes of imaginary time propagation and adiabatic switching in
the case of HF.

7.1 Future work

A clear improvement of the implementation would be to rewrite the code in a
low level language such as C++, which has far superior speed and better access
to memory handling than Python. This would allow the code to utilize high
performance computing facilities, allowing the study of much larger systems.

As seen from the time-use studies of the general CCD solver versus the restricted
vesion, another significant speedup can be obtained by summing out the spin-
degrees of freedom. The current use of the OATDCCD implementation is
highly wasteful, as we study closed-shell systems with no spin-effects in the
Hamiltonian. This is mainly because it provides a general treatment which is
then easy to specialize later. However, implementing a restricted OATDCCD
solver is an obivious next step for the coupled-cluster library.
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A highly relevant avenue of research which would increase the cost, and as such
require an implementation of effectivization is to implement the next step in the
hierarchy of OATDCC theory by including triples. The resulting OATDCCDT
method would provide an expensive but interesting point of study. This could
also be done in a perturbative way, such as is commonly done in regular CC
theory for with the CCSD(T)-method. However, it is unclear whether the
perturbative triples provides the relevant contributions of the triples cluster in
a strong-field regime, which is inherently non-perturbative. The perturbative
triples would provide an interesting

Other points for future work include

• The theoretical study of the imaginary time OATDCC will determine its
feasibility

• For studies of relativistic effects and magnetic fields, the inclusion of a
B-field is highly interesting.

• The DVR basis set holds great interest for studies of infinite systems.
This includes both the infinite electron gas, but even more important is
the study of nuclear matter. In nuclear physics, operators of more bodies
than two are relevant, which increases the importance of basis sets with
symmetries in the matrix elements.
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APPENDIX A

Mathematical derivations

A.1 OATDCCD derivation

A.1.1 P and Q-space equations

We will here derive the OATDCCD Q-space equations by performing the
variations of the action with respect to the single-particle orbitals.
Solving eqs. (4.184) and (4.185), we have a way to construct the matrix elements
of η̂, we use the Q-space equations to find the time-evolution of the orbitals.
Or rather, the P-space and Q-space equation together constitute the equations
of motion of the orbital rotations. Defining first the mean-field potential as the
one-particle operator with elements

Ŵ q
s =

∫
dx1̃̃φq(x1)û(x1, x2)φs(x1) (A.1)

we write the ket-part of the Q-space equations as
i~ρqpQ̂∂t |φq〉 = ρqpQ̂ĥ |φq〉+ ρrspqQ̂Ŵ

q
s |φr〉 . (A.2)

The bra-part is given as
− i~ρqp

(
∂t 〈φ̃p|

)
= ρqp 〈φ̃p| ĥQ̂+ ρrspq 〈φ̃p| Ŵ q

s Q̂. (A.3)
We now wish to express these differential equations in terms of the coefficient
matrices Cαp and C̃pα. We focus on the ket-equations (the bra-equations are
completely analogous), and first insert for Q, giving

i~ρqp
(
1−

∣∣φp′〉〈φ̃p′ ∣∣) ∣∣φ̇q〉 = ρqp
(
1−

∣∣φp′〉〈φ̃p′ ∣∣) ĥ |φq〉
+ ρrspq

(
1−

∣∣φp′〉〈φ̃p′ ∣∣) Ŵ q
s |φr〉

which, with some rearrangement, becomes
i~ρqp

∣∣φ̇q〉 = i~ρqpηp
′

q |φp′〉+ ρqpĥ |φq〉 − ρqphp
′

q |φp′〉

+ ρqsprŴ
r
s |φq〉 − ρqsprup

′r
sq |φp′〉

Recalling that |φq〉 = Cβq |χβ〉, we apply 〈χ̃α| from the left. This gives us the
following matrix elements to consider,

〈χ̃α|φp〉 = Cβp 〈χ̃α|χβ〉 = Cβp δ
α
β = Cαp (A.4)

〈χ̃α|ĥ|φp〉 = Cβp h
α
β (A.5)

〈χ̃α|Ŵ r
s |φp〉 = CβpW

αr
βs (A.6)
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where the mixed-representation mean-field operator matrix elements are
explicitly

Wαr
βs =

∫ ∫
χ̃α(x1)φ̃r(x2)û(x1, x2)χβ(x1)φs(x2) dx1dx2. (A.7)

Inserting gives

i~ρqpĊαq = i~ρqpηp
′

q C
α
p′ + ρqpC

β
q h

α
β − ρqphp

′

q C
α
p′

+ ρqsprC
β
qW

αr
βs − ρqsprup

′r
sq C

α
p′

The final equation of motion for the ket-amplitudes is then found by inverting
the one-body density matrix ρqp. Contracting the free index p with this and
renaming some indices we get the final Q-space ket equation,

i~Ċαq = i~ηp
′

q C
α
p′ + Cβq h

α
β − hp

′

q C
α
p′ + (ρ−1)pqρq

′s
pr U

αr
q′s, (A.8)

The corresponding bra-equation can be found similarly, and is

− i~ ˙̃Cpα = i~ηpp′C̃
p′

α + C̃pβh
β
α − h

p
p′C̃

p′

α + (ρ−1)pqρ
qs
p′rŨ

p′r
αs . (A.9)

Note that in these equations we have defined

Uαrq′s = (Cβq′Wαr
βs − u

p′r
sq′C

α
p′), (A.10)

Ũp
′r
αs = (C̃p

′

β W
βr
αs − u

p′r
q′sC̃

q′

α ). (A.11)

These are the equations that we have implemented in our code, which we use
to update the coefficients of the OA-basis.

A.1.2 Density operators

We need the one- and two-body density operators for OATDDCCD, as given in
[27]. The non-zero elements of the one-body density operator are

ρji = δji −
1
2λ

kj
abτ

ab
ki , (A.12)

ρba = δba −
1
2λ

ij
acτ

bc
ij , (A.13)

and the non-zero elements of the two-body density operator are

ρklij =P (ij)δki δlj − P (ij)P (kl)1
2δ

k
i λ

lm
cd τ

cd
jm + 1

2λ
kl
cdτ

cd
ij , (A.14)

ρabij =− P (ab)1
2λ

kl
cdτ

ac
ij τ

bd
kl + P (ij)1

2λ
kl
cdτ

ac
ik τ

bd
jl (A.15)

+ P (ij)1
2λ

kl
cdτ

ab
ij τ

cd
kl + 1

4λ
kl
cdτ

ab
kl τ

cd
ij + τabij , (A.16)

ρjbia =− ρbjia = −ρjbai = ρbjai = 1
2δ

j
i λ
kl
acτ

bc
kl − λjkacτ bcij , (A.17)

ρijab =λijab, (A.18)

ρcdab =1
2τ

cd
ij λ

ij
ab. (A.19)
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A.2 Gauss Quadrature

To calculate the value of the weights ωα and the position of the integration
points xα, we need some sort of connection between the orthogonal polynomials
and the integral. To start with, we approximate the function f(x) with a
polynomial of degree 2N − 1,∫

Ω
dxω(x)f(x) ≈

∫
Ω

dxω(x)P2N−1(x) (A.20)

The specific degree of P2N−1(x) might appear to be arbitrary, but it is chosen
for a specific reason. Using polynomial division, we can rewrite P2N−1(x) in
terms of the known orthogonal polynomial CN (x) of degree N and two unknown
degree N − 1 polynomials PN−1(x) and QN−1(x),

P2N−1(x) = CN (x)PN−1(x) +QN−1(x). (A.21)
The first term here will cancel under the integral in eq. (A.20). To see this,
consider that the set of polynomials {Cn}N−1

n=0 forms a basis for PN−1, the space
of polynomials of degree N − 1. We can expand PN−1(x) in this basis,

PN−1(x) =
N−1∑
n=0

pnCn(x). (A.22)

However, from eq. (3.28) we know that CN (x) is orthogonal with all other
Cn(x) for n 6= N . As such, for the integration over the specific domain and
corresponding weight function, it has to be orthogonal to all polynomials of
degree lower than N , including PN−1(x). Using this and eq. (A.21) on the right
hand side of eq. (A.20) we find the important relation∫

Ω
dxω(x)P2N−1(x) =

∫
Ω

dxω(x) (CNPN−1 +QN−1) =
∫

Ω
dxω(x)QN−1(x),

(A.23)
where we dropped the arguments in the middle for brevity. Additionally, let
xα be the roots of CN (x), such that CN (xα) = 0. We find another relationship
between P2N−1(x) and QN−1(x) by evaluating,

P2N−1(xα) = CN (xα)PN−1(xα) +QN−1(xα) = QN−1(xα) (A.24)

Continuing, we now wish to evaluate the integral
∫

Ω dxω(x)QN−1 in order
to find the wanted approximation of the original integral. We first expand
QN−1(x) in terms of the Cn(x) up to order N − 1,

QN−1(x) =
N−1∑
n=0

αnCn(x) (A.25)

Inserting into the approximate integral gives∫
Ω

dxω(x)QN−1(x) =
N−1∑
n=0

αn

∫
Ω

dxω(x)Cn(x)

=
N−1∑
n=0

αn
k0

∫
Ω

dxω(x)Cn(x)C0(x)

= α0

k0
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where we multiplied and divided with the constant value of C0(x) = k0.

To find the value of α0, we need to find the coefficients of the expansion
eq. (A.25). We know the values of QN−1(xα) to be given by the approximation
QN−1(xα) = P2N−1(xα) ≈ f(xα) for α = 0, . . . , N − 1. Evaluating eq. (A.25)
at the points xα, it turns into a matrix equation,

fα =
N−1∑
n=0

αnCnα, (A.26)

where fα ≡ f(xα) and Cnα ≡ Cn(xα). Solving for αn gives

αn =
N−1∑
α=0

(C−1)nαfα, (A.27)

which is an valid as long as Cnα has an inverse. In the case of Gauss quadrature,
the inverse of Cnα is guaranteed by the fact that the orthogonal polynomials
are linearly independent. Setting n = 0 and putting it all together, we can
recognize the following quadrature rule

∫
Ω

dxω(x)f(x) ≈
N−1∑
α=0

(C−1)0α

k0
f(xα) (A.28)

where the weights are given by ωα = (C−1)0α/k0 and the grid points by the
roots of CN (x).

A.3 Sinc-DVR

A.3.1 Kinetic energy matrix elements

A fourier basis taken to the infinite grid gives us a sinc-dvr basis. We will show
this a bit later, however we will use this fact to find analytical values for the
kinetic energy matrix elements of the Sinc-DVR basis.

The fourier basis wave functions on a grid xi = a+ i(b−a)/N (i = 1, . . . , N −1)
are given by

φn(x) =
(

2
b− a

)1/2
sin
(
nπ(x− a)
b− a

)
, n = 1, . . . , N − 1, (A.29)

where the endpoints are 0 for an infinite well potential. The grid point
representation of the kinetic energy is then given by

Tii′ = −1
2∆x

N−1∑
n=1

φn(xi)
d2φn(x)

dx2

∣∣∣∣
x=xi′

= 1
2

(
π

b− a

)2 2
N

N−1∑
n=1

n2 sin
(
nπi

N

)
sin
(
nπi′

N

)
(A.30)
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Focusing on the sum, we rewrite

N−1∑
n=1

n2 sin
(
nπi

N

)
sin
(
nπi′

N

)
= 1

2

N−1∑
n=1

n2
[
cos
(
nπ(i− i′)

N

)
− cos

(
nπ(i+ i′)

N

)]

≡ 1
2

N−1∑
n=1

n2 [cos(nB)− cos(nA)]

with A ≡ π(i+ i′)/N and B ≡ π(i− i′)/N . These two terms require the exact
same treatment, so we focus on the first. Using a couple of tricks referenced in
[10], we first rewrite

1
2

N−1∑
n=1

n2 [cos(nA)] = ∂

∂A

1
2

N−1∑
n=1

n [sin(nA)] = − ∂2

∂A2
1
2

N−1∑
n=1

[cos(nA)] (A.31)

This sum can be rewritten as a geometric series as

N−1∑
n=1

cos(nA) = Re
{
N−1∑
n=1

einA

}
= Re

{
eiA − eiAN

1− eiA

}
where we rewrote the sum as a geometric series. We now pull out a factor of
eiA/2 from the denominator, find an explicitly real numerator and then use
Re
{
ieix

}
= Re{i cosx− sin x} = − sin x,

Re
{
eiA − eiAN

1− eiA

}
= Re

{
eiA/2 − eiA(N−1/2)

e−iA/2 − eiA/2

}
=

Re
{
ieiA/2 − ieiA(N−1/2)}

2 sin(A/2)

= 1
2

sin(A(N − 1/2))
sin(A/2) − 1

2

Some labourious derivation is ahead when we consider again the original
expression gained from eq. (A.31),

− ∂2

∂A2
1
2 Re

{
eiA − eiAN

1− eiA

}
= −1

4
∂2

∂A2

[
sin(A(N − 1/2))

sin(A/2) − 1
]

= −1
4
∂2

∂A2 [sinAN cotA/2− cosAN ]

= −1
4
∂

∂A

[
N cosAN cotA/2− 1

2 sinAN cot′A/2 +N sinAN
]

= −1
4

[
−N2 sinAN cotA/2−N cosAN cot′A/2

+ 1
4 sinAN cot′′A/2 +N2 cosAN

]
Considering that sin(AN) = sin(π(i− i′)) = 0 and similarly cos(AN) =
(−1)i−i′ , and that the derivative of cotA/2 is cot′A/2 = −1/ sin2(A/2) =
−1/ sin2(π(i− i′)/2N), we get

− ∂2

∂A2
1
2 Re

{
eiA − eiAN

1− eiA

}
= N

(−1)i−i′

4

[
1

sin2(π(i− i′)/2N)
−N

]
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A. Mathematical derivations

A calculation for B is completely analogous, but with i + i′ instead of i − i′.
We even have (−1)i−i′ = (−1)i−i′+2i′ = (−1)i+i′ . Inserting into eq. (A.30), the
opposite sign makes the N -term disappear, and we get

Tii′ = 1
2

(
π

b− a

)2 (−1)i−i′

2N

[
1

sin2(π(i− i′)/2N)
− 1

sin2(π(i+ i′)/2N)

]
, i 6= i′

(A.32)
Also, for i = i′ the calculations are very similar, although the initial sum now
reads

N−1∑
n=1

n2

2 (cos(nA)− 1) (A.33)

with A = 2nπi/N . We then get

Tii = 1
2

(
π

b− a

)2 [ 1
sin2 πi/N

− N3

3 + N2

2 −
N

6

]
(A.34)

Infinite size grid limit

The infinite grid limit is found by simultaneously letting a→∞, b→∞, and
N →∞ with ∆x = (b− a)/N kept fixed. Consider that with increasing N we
get

1
sin2(π(i− i′)/2N)

≈
(

2N
π(i− i′)

)2
(A.35)

which gives us the infinite size limit as

Tij = (−1)i−j
2(∆x)2

{
π2

3 , i = j
2

(i−j)2 , i 6= j
(A.36)

A.3.2 Connection to Sinc-DVR

We now take a look at the wavefunction in the infinite grid limit. The
wavefunction for the infinite sized grid is

〈x|xi〉 = 2
n− a

N−1∑
n=1

sin
(
nπ(x− a)
b− a

)
sin
(
nπ(xi − a)
b− a

)
(A.37)

Using the same methods as in the previous section, the analytical expression
for the wave function is

〈x|xi〉 = sin(π(x− xi)/∆x)
π(x− xi)

= si(x), (A.38)

which we recognize as the sinc-dvr function associated with grid point i.

A.3.3 Size extensivity of Coupled Cluster

In literature, the usage of the terms of size extensivity and size consistency is
extensively non-consistent!
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A.3. Sinc-DVR

Assume that we have a system composite of two non-interacting systems.
Consequently it can described by a hamiltonian H(AB) which is a direct sum of
hamiltonians of the subsystems H(A) and H(B)

H(AB) = H(A) +H(B) (A.39)

and solutions of the composite system are direct products of solutions of the
subsystems

|Ψ(AB)〉 = |Ψ(A)〉 |Ψ(B)〉 (A.40)

The cluster operator is a connected operator, which means that for two
disconnected systems all parts will contain diagrams from either one or the
other, but never both simultaneously. It can subsequently also be separated
into cluster operators of the two subsystems,

T (AB) = T (A) + T (B) (A.41)

Cluster operators of different systems commute
[
T (A), T (B)] = 0, which gives

us
eT (A)+T (B) = eT (A)eT (B). (A.42)

The wavefunction then becomes

|Ψ(AB)〉 = e(AB) |Φ(AB)
0 〉 = e(A)e(B) |Φ(A)

0 〉 |Φ
(B)
0 〉 = |Ψ(A)〉

∣∣∣Ψ(B)
〉
. (A.43)

Comparing this to eq. (A.40) we see that the CC wavefunction has the proper
behaviour and is size extensive, a result which holds for any truncation level of
the cluster operator.
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