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Abstract

Argument Mining consists of finding and extracting argument structures
from natural language texts. In this thesis we investigate the task of
Argument Mining for Norwegian, and introduce the first annotated dataset
for Argument Mining in Norwegian, dubbed NorArg. We also provide
annotation guidelines describing the annotation process, allowing for easy
expansion of NorArg in future research. In addition we perform analyses of
several cross-lingual argument component classification systems, trained
on annotated data in a resource-rich language, English, and tested on
Norwegian data. We also provide detailed overviews of results from the
cross-lingual systems being tested on NorArg.
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Chapter 1

Introduction

The goal of argument mining is to identify, extract and link arguments in
textual documents, in order to structure and prepare them for further pro-
cessing. The study of argumentation is a complex field which encompasses
many different sub-tasks and disciplines like logic, philosophy, law and
computer science (Lippi and Torroni, 2016). Argument mining is consid-
ered by some as a natural next step in sentiment mining (Lippi and Torroni,
2015), the key difference being that where sentiment mining looks at what
people think about something, argument mining focuses on the reasons
why they think that (Lippi and Torroni, 2015).

Some cognitive science theories suggest that argumentation is a central
part of human reasoning (Lippi and Torroni, 2015), and achieving technol-
ogy that automatically identifies argument structures could be a major step
on the path to a computer program capable of reasoning. Argument min-
ing is today considered to be one of the most promising research areas in
artifical intelligence (Cabrio and Villata, 2018).

As with so many Natural Language Processing (NLP) tasks, the lack
of high quality annotated data is a problem in argument mining. Where
other tasks in Machine Learning (ML), like image recognition, can easily
be performed by just about anyone, many tasks in NLP require expert
annotators to produce high quality datasets. For this reason, many
researchers look for ways of circumventing this lack of resources by
using alternative sources to increase the performance of low-resource NLP
systems. What is considered low-resource may vary depending on the task.
Schulz et al. (2018) investigate different sets of training data consisting
of datasets of various sizes, and examine the effects of applying multi-
task learning to the task of argument component detection in a limited
resource environment, by using a small portion of a data set. They
argue that due to the subjective nature of arguments, and the difficulty of
correctly annotating arguments, even for trained experts, obtaining a large
annotated dataset of high quality is difficult (Schulz et al., 2018).

At the present time there are no annotated datasets for argument
mining in Norwegian. The first contribution of this thesis is then to create
the first annotated dataset for argument mining in Norwegian dubbed
NorArg.
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The second contribution of this thesis is a comprehensive set of
guidelines describing the annotation process in detail, allowing for the
expansion of the existing dataset in the future. We also provide inter-
annotator agreement scores to verify the effectiveness of the guidelines.

In the field of argument mining, most of the existing research so far
has been focused on using a single language (Eger et al., 2018). Because
of the complexity of the argument mining task, and in particular the
difficulties related to producing high quality annotated datasets for the task
and the resulting lack of a sufficiently large dataset for Norwegian, we set
out to investigate techniques for cross-lingual which allow us to leverage
annotations from a high-resource language, namely English.

The third contribution of this thesis is then an experimental comparison
of two cross-lingual learning techniques; the first using annotation projec-
tion, the second using multilingual transfer learning.

1.1 Outline

This thesis is structured in the following way.

Chapter 2 provides an overview of the previous work done in the field of
argument mining, as well as descriptions of the neural architectures used
in this thesis.

Chapter 3 describes the datasets used to train and test the models used
in our experiments, as well as the underlying dataset used to create No-
rArg.

Chapter 4 describes the process of annotating in order to create NorArg,
and provides guidelines for further annotation. This chapter also contains
statistics for the finished dataset as well as inter-annotator agreement from
the annotation process.

Chapter 5 describes the process required to format our datasets for annota-
tion projection, as well as the translation and projection processes.

Chapter 6 details the model settings and training process of our experi-
ments.

Chapter 7 gives an extensive overview of the various results from our ex-
periments.

Chapter 8 summarises the results obtained in the thesis, and gives sug-
gestions for possible future work.
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Chapter 2

Background

In this chapter we take a look at what has been done in argumentation the-
ory, the previous work done in the field of computational argumentation,
and the current state of the art systems.

2.1 A brief history of argumentation theory

The idea that systems of logic could be applied to everyday life in rhetoric
and debates has existed since the philosophers of ancient Greece (Groarke,
2017). The traditional way of looking at an argument has been to use what
is known as a monological approach, looking at an argument in isolation,
and deciding whether a conclusion logically follows from some premises.
Intermittently, other approaches have been attemped, but a real change
in direction happened in the last half of last century, particularly after
Hamblin’s Fallacies (1970). Hamblin adopted a dialogical approach by
viewing arguments in the context of a dialogue with two opposing sides.
This new approach, known as informal logic or argumentation, examines
how two sides of an argumentation interact, with one side attacking
and the other defending. Informal logic typically has four distinct tasks
(Walton, 2009):

1. Identification: Identify the premises and the conclusion of an
argument. (explained in more detail later)

2. Analysis: Find implicit arguments or conclusions. Implicit parts of
the argument that are presumed to be already known by the reader,
typically relations that are considered to be general knowledge. These
are very common in natural texts.

3. Evaluating argument strengths: Determine the strength of argu-
ments.

4. Invention: Construct new arguments to prove a specific conclusion.

Whereas in argumentation theory the focus is often on deciding which
side has the more convincing arguments or whether a conclusion logically
follows from its premises, the focus in argument mining is primarily
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separating out the arguments themselves and identifying the relations
between them.

2.2 Definition of an argument in computational argu-
mentation

Argument models used in computational argumentation can be divided
into two subgroups.

Abstract argumentation models: Each argument is represented without
any particular internal structure, and the aim is typically to analyse the re-
lations between arguments. This style of modelling is based mostly on the
work done by Dung (Lippi and Torroni, 2015).

Structured argumentation models: In these models each argument has a
defined internal structure. This is crucial in most forms of computational
argumentation mining, where an important sub-task is to identify the
different components of an argument. There are many ways of structuring
arguments, the minimal definition described in Walton (2009) defines an
argument as a set of statements which can be split into three parts:

1. A conclusion. A controversial statement, typically the main compo-
nent of the argument.

2. A set of premises: Evidence that supports or attacks the conclusion.

3. An inference from the premises to the conclusion.

This example sentence from Eger et al. (2017) contains all three:

"Since it killed many marine lives Premise
tourism has threatened nature" Claim.

The premise being "it killed many marine lives", which supports the
claim "tourism has threatened nature", due to the implicit inference; ma-
rine lives are part of nature, and killing them threatens nature.

Toulmin’s model: In The Uses of Argument (1958). Stephen Toulmin
proposed a variation on the standard argumentation model. Instead of
viewing arguments as being composed of statements that can either be
claims or premises, Toulmin proposes six different roles:

1. Claims: the same as conclusion described above.

2. Data: Facts that explain or justify claims, the same as premises.

3. Warrants: Statements that explain the links between data and claims.

4. (Modal) qualifiers: Expressions that indicate the various strengths
of warrants. The warrant can for instance lead to the data being
"necessarily" true or "probably" true, hence why Toulmin uses the
modifier modal.
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5. Rebuttal: some warrants are not universally valid, and there are some
cases where they can be falsified and have to be set aside.

6. Backing: in similar cases where the warrant is not universally valid
or the warrant is challenged in some other way, a backing can be
introduced to strengthen it (Freeman, 2011).

2.3 Argument Mining tasks

Due to the complexity of the argument mining problem, it has historically
been divided into several subtasks, each requiring specific parts of the NLP
toolset to complete.

Argument detection: The first problem is identifying the arguments in
a document. This is a typical classification problem, determining which
sentences contain arguments and extracting them. Historically, the main
focus of the research done on this task has been on which feature sets to
employ (Lippi and Torroni, 2015). One of the biggest issues with this task
is that feature sets have shown to be very domain specific.
Argument segmentation: The problem of separating arguments, and
identifying the components defined in the argumentation model we are
using (usually a claim/premise model as described above). There are three
ways an argument could be split across sentences:

1. A sentence contains only part of an argument component:
"A significant number of republicans assert that hereditary monarchy is
unfair and elitist. Claim" (Lippi and Torroni, 2015)

2. Two or more argument components in one sentence.
"Since it killed many marine lives Premise
tourism has threatened nature." Claim

3. An argument component contains several sentences.
"When New Hampshire authorized a state lottery in 1963, it represented a
major shift in social policy. Claim
No state governments had previously directly run gambling operations to
raise money. Other states followed suit, and now the majority of the states
run some type of lottery to raise funds for state operations." Premise
(Lippi and Torroni, 2015)

Argument structure prediction: The final, and perhaps most difficult
task is identifying the relations between the components of an argument.
Historically, this is the task that has yielded the fewest results. (Lippi and
Torroni, 2015).
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2.4 Automated identification and extraction of argu-
ment structures

Whereas the theorists have gone into great depths regarding the validity
and logical truthfulness of an argument, most practical applications have
focused on detecting the argument components and the structure of
arguments in natural language. In this section we attempt to give a
comprehensive overview of previous work done in the field of argument
mining.

2.4.1 Annotation for argument mining

As with many machine learning and NLP tasks, achieving good results
in argumentation mining depends largely on the quality and quantity of
data. Although information and data is steadily becoming more and more
available, argument mining typically requires data annotated by experts,
which takes a lot of time and money to produce. Several approaches have
been used to overcome this issue. One of such is the use of crowdsourcing.
Crowdsourcing means enlisting a large number of people to do the job you
want, either paid or unpaid, typically through an internet platform. It has
proven to be a good source of annotated data for less complicated tasks.

However, annotating the arguments present in a text has shown to be
very difficult for non-expert annotators, compared to e.g. the classification
of images which is a task that most non-expert individuals can perform.

2.4.2 Annotation Schemes

There are several existing annotated data sets for argument mining freely
available. An extensive overview of the existing corpora is given in Cabrio
and Villata (2018).

However, most annotation schemes typically only address one or a few
of the tasks in the argument mining pipeline. For our own annotation
scheme, we chose to use the scheme from Stab and Gurevych (2017)
which has a more general approach and annotates components as well as
relations, covering all of the argument mining tasks. Unlike most of the
other studies, Stab and Gurevych (2017) also provide detailed guidelines
which make our own annotation process much easier.

Stab and Gurevych (2017) look at the domain of persuasive essays
and expand on their previous annotation scheme from Stab and Gurevych
(2014), which covers every aspect of argumentation mining by annotating
argument components as well as relations between arguments. They also
provide comprehensive guidelines to assist readers in putting the scheme
into action.

The most distinctive difference from the standard structured model, is that
each persuasive essay has a major claim, a claim that the whole essay re-
volves around and attempts to justify. The scheme also includes support
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Figure 2.1: Diagram of the annotation structure. (Stab and Gurevych, 2014)

Figure 2.2: Diagram from (Stab and Gurevych, 2014) showing the inner
structure of the argument described in section 2.4.1

and attack relations between claims and premises within arguments. In ad-
dition, each argument has a stance attribute expressing whether it supports
or attacks the major claim. The inner relation labels allow for correctly la-
beling the relations within a more complicated sentence, like this example
from Stab and Gurevych (2014):

"Living and studying overseas is an irreplaceable experience when it comes
to learn standing on your own feet.Claim One who is living overseas will
of course struggle with loneliness, living away from family and friends
Premise1 but those difficulties will turn into valuable experiences in the fol-
lowing steps of life. Premise2 Moreover, the one will learn living without
depending on anyone else Premise3"

In the above argument, premise1 attacks the claim, while premise2
refutes premise1. Premise3 supports the claim. The argument structure
of this argument is shown in figure 2.2.

This scheme seems to be suitable for our own dataset, as reviews can be
seen to have a major claim in the form of the reviewers final opinion on the
object being reviewed.

2.4.3 Previous work

In this section we attempt to give an overview of some of the research done
in the field of argument mining.
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Argument mining domains

Argument mining systems have been applied to several different domains.
In their paper, Cabrio and Villata (2018) give an overview of some of the
more recently used ones, we list some of them here:

• Education: Within the education domain most of the research has
been focused on two particular fields:

– Persuasive essays: Essays concerning a specific topic where
the author attempts to convince the reader that their particular
point of view is the right one. In Stab and Gurevych (2017) the
authors propose using sequence labeling on the token level to
identify argument components, and create a corpus of annotated
persuasive essays.

– Scientific articles: Described in some of the earliest work on
argument mining, Teufel et al. (2009). Arguments here typically
consist of the author’s view of related work, and opinions about
problem-solving processes (Cabrio and Villata, 2018).

• Web Based Content:

– Wikipedia: Researched in several papers, for instance in some
earlier work by IBM, as a part of their effort to develop debating
technologies (Cabrio and Villata, 2018).

– Microblogs and web debating platforms: This is an interesting
domain, containing user-generated discourse that is more natu-
ral and unrefined than what can be found in the other domains.
Several works have been done in this domain focusing on tasks
like argument detection and relation prediction (Cabrio and Vil-
lata, 2018).

– Online product reviews: Argument mining in this domain
to some extent overlaps with sentiment mining. Sentiments
about the different aspects of the product also often contain the
reasoning behind the author’s view. (Cabrio and Villata, 2018)

Feature sets

Features are tools used to identify and single out the parts of the text that
we are most interested in. They are often handcrafted and can be very
specialised. Aker et al. (2017) describe and evaluate some of the most
common feature sets used in argument mining:

• Structural features: Statistical features containing info about tokens
and punctuation. Found to be the most significant feature set for both
the argument identification and argument structure prediction tasks
in Aker et al. (2017).
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• Lexical features: Unigram frequencies and verbs and adverbs that
stand out. Second most significant feature set in Aker et al. (2017).

• Syntactic features: Occurences of frequent POS-sequences. The least
relevant feature set in Aker et al. (2017).

• Indicators: A list of keywords that indicate the presence of claims or
premises.

• Contextual features: Structural and lexical features of surrounding
sentences.

• Word embeddings: Every word is represented as a vector of
numbers. Word embeddings that are pre-trained on large corpora can
be used, as in Aker et al. (2017), where they used word embeddings
trained on the Google News Corpus.

2.5 Neural approach

In recent years, neural network architectures have outperformed the
previous state of the art in most fields within NLP, as well as in machine
learning in general. One big difference from previous architectures is that
neural networks in most cases do not depend on handcrafted feature sets,
which means that they are far less time-consuming to implement.
In this section we attempt to give a comprehensive overview of the most
popular forms of neural networks architectures used in NLP in general,
and the field of Argument Mining in particular. We also go into more detail
about the specific architectures used in our thesis, and their components.

2.5.1 Recurrent neural networks (RNN)

The RNN (Elman, 1990) is a neural network that is well suited to sequences
of input, due to its ability to "remember" previous parts of the sequence.
The RNN can be visualised as a number of timesteps, one for each part of
the input (if the input is a sentence, each timestep corresponds to a word
in the sentence) with a corresponding set of weights for each timestep. At
each timestep, the RNN learns from a part of the input, but it also takes into
account some information from what was learnt at the preceding timestep,
from the preceding part of the input. In this way the RNN preserves some
of the inputs structural information. Figure 2.3 shows the basic architecture
of the RNN. In the figure, each box represents a timestep. sn indicates
the state information being passed from timestep to timestep containing
information about previous words in the sequence. xn are the input tokens
and yn the output usually function of sn and xn at each timestep. Due to
the fact that the RNN remembers some information from each and every
timestep, if the input sentence sequence is very long it’s "memory" over
time grows very large, and this in turn leads to long-range depencies
between different parts of input maybe being lost. This problem is known
as vanishing or exploding gradients.
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Figure 2.3: Illustration from Goldberg and Hirst (2017) showing the
architecture of a basic RNN. xn are the input tokens, yn the output at each
timestep, and sn the current state information at each timestep, used to
calculate the output based on information from the previous timesteps. θ
symbolises the models parameters, indicating that they are the same for all
timesteps (Goldberg and Hirst, 2017).

2.5.2 Long Short-term memory

The LSTM is a variant of the RNN architecture, first introduced in
Hochreiter and Schmidhuber (1997). It contains different types of gates,
which at a given timestep, determine how much of the input should be
taken in, how much of the information from the previous states should
be remembered, and how much should be included in the output. This
alleviates the problem of exploding or vanishing gradients. For each token,
the input is sent through a tanh (hyperbolic tangent) activation function
and a component label is predicted. The component label, in embedding
form, is then used as history input for the next token. The LSTM can be
expressed mathematically as shown in equation 2.1 from Goldberg and
Hirst (2017),

it = σ(W(i)xt + U(i)ht−1 + b(i)),

ft = σ(W( f )xt + U( f )ht−1 + b( f )),

ot = σ(W(o)xt + U(o)ht−1 + b(o)),

ut = tanh(W(u)xt + U(u)ht−1 + b(i)),
ct = it � ut + ft � ct−1,
ht = ot � tanh(ct)

(2.1)

where the gates at time t are expressed by it (input gate), ot (output
gate), and ft (forget gate). The gate values are computed using a sigmoid
activation function and a linear combination of the current input xt and
the previous hidden state ht−1 (Goldberg and Hirst, 2017). The update ut
is computed using a tanh activation function and a linear combination of
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the current input xt and the previous hidden state ht−1. The memory, ct is
then computed using the input gate it to control how much of the update
to keep, and the forget gate ft to control how much of the info from the
previous memory ct−1 to keep. Then the hidden state ht is computed by
using the output gate and the memory cell passed through a tanh activation
layer. The hidden state in this case corresponds to the output yt in figure
2.3 (Goldberg and Hirst, 2017).

2.5.3 Attention

Bahdanau et al. (2014) introduced a model that uses two RNNs, an encoder
and a decoder, to translate an input sentence from a source language to a
sentence in a target language.

The encoder RNN transforms the input sentence from the source
language into a fixed size vector, which becomes the input for the decoder
RNN. The decoder then outputs a sentence in the target language. The
problem with this technique according to Bahdanau et al. (2014), is the fact
that the decoder requires a fixed size vector as input. This means that no
matter the length of the input sentence, the encoder needs to compress
it into a vector of a fixed size, which might lead to a loss of information
when the input sentence is long, especially if the sentence is longer than
any sentence in the models training set. Bahdanau et al. (2014) propose a
solution to this by creating a mechanism that lets the model focus on the
most relevant parts of the input and use those parts to output a word in the
target language.

The mechanism, later known as attention, consists of an addition to the
traditional encoder-decoder architecture which allows the model to align
and translate jointly (Bahdanau et al., 2014). When the model predicts
a word in the target language, it searches for the positions in the source
sentence that have the most relevant information for the predicted word,
and predicts a target word based on the information from these positions
and information from the previously generated target words (Bahdanau
et al., 2014). This allows the model to no longer rely on fixed input vectors
as input to its decoder, but instead encodes a context vector for each word
in the input sentence, and lets the decoder choose a subset of these context
vectors to output a target word, based on the alignment information which
shows what words are the most important for deciding the output.

Bahdanau et al. (2014) evaluated their model on the task of English-
French translation, while comparing it to a model introduced in (Cho et al.,
2014). This paper uses a similar architecture, a RNN Encoder-Decoder, but
without the attention mechanism. They train two models: one based on
their own architecture, which they refer to as RNNsearch, and one based
on Cho et al. (2014), called RNNencdec. They train two version of each
model. One version where the training set is restricted to sentences of
up to 30 words, and one version where the sentences are up to 50 words
long. As is shown in figure 2.4, the models using the attention mechanism
outperform the other models consistenly, especially when tested on long
sentences. RNNsearch-30 even outperforms RNNenc-50 when tested on
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Figure 2.4: Illustration from Bahdanau et al. (2014) showing BLEU scores
from the two models they tested. Each model was trained twice, once with
sentences of up to 30 words, and once with sentences of up to 50 words.

sentences of length 50, even though RNNenc-50 has sentences of the same
length in its training set, while RNNsearch-30 does not. This indicates that
the model using attention is indeed better at understanding long sentences
even when not trained on sentences of the same length (Bahdanau et al.,
2014).

2.5.4 Transformers

Vaswani et al. (2017) introduced the Transformer which is a sequence
transduction model that is basically a model that receives an input
sequence and transforms it in some way to produce an output sequence.
It is the first sequence transduction model that relies solely on the attention
mechanism by Bahdanau et al. (2014) discussed in the previous section. At
the time the paper was written, most other neural sequence transduction
models relied on recurrent or convolutional networks acting as encoders
and decoders (Vaswani et al., 2017).

The Transformer uses the same encoder-decoder architecture, but
instead of RNNs uses layers of attention. The Transformer architecture
is shown in figure 2.5. The encoder part of the Transformer consists of 6
identical layers. Each layer has two sub-layers; a self-attention layer and a
fully connected feed-forward layer. Self-attention is a form of attention that
focuses on the most important parts of the input itself to use in the encoding
of the input. The self-attention in the Transformer is implemented in a way
that makes it attend to each position in the output from the previous layer
in the encoder (Vaswani et al., 2017).

The feed-forward network consists of two linear transformations and
a ReLU activation function. After each layer some normalization methods
are applied to the output (Vaswani et al., 2017), as shown in figure 2.5.
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Figure 2.5: Illustration from Vaswani et al. (2017) showing the Transformer
architecture. The left part of the figure shows the encoder, and the right
side is the decoder. The encoder has 6 layers, each consisting of a self-
attention layer and a fully connected feed-forward network. The decoder
has 6 similar layers, but in addition to the two sub-layers in the encoder,
each layer in the decoder has a multi-head attention layer for the output
from the encoder stack.

The decoder has a very similar architecture, also with 6 identical layers.
Each layer in the decoder, however, has an additional sub-layer that applies
attention to the output from the encoder stack, as is illustrated in figure 2.5.

Because the model doesn’t use RNNs or CNNs, which naturally
incorporate information about the order of the sequence by iteratively
moving through the sequence from left to right or right to left, the model
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needs some way to include information about the ordering of the sequence.
This is solved by applying something called positional encoding to the
inputs of both the encoder and decoder. The chosen form of positional
encoding in Vaswani et al. (2017) is to apply sine and cosine functions of
different frequencies to the inputs, which transforms each position into
relative positions. Using this method means that for two given positions,
one position can be expressed as a linear function of the other (Vaswani
et al., 2017)

. Vaswani et al. (2017) hypothesize that this will allow the model
to gain information about positioning of each word in the sequence.
When tested on the WMT (Workshop for Machine Translation) 2014
English-to-German and WMT 2014 English-to-French translation tasks, the
Transformer architectures outperform all previous state-of-the-art models
(Vaswani et al., 2017).

2.5.5 Word Embeddings

Word embeddings were first introduced in Mikolov et al. (2013), and
have come to be a more or less required component in most modern
implementations of NLP. Word embeddings are a way of presenting words
in a form that reflects the context in which they usually appear, based on
on large collections of text. Several pre-trained word embeddings are freely
available for use.

2.5.6 Model settings

There are some aspects of neural models that are shared across most
different types of models, for instance techniques to avoid being stuck
in local maxima, normalizing inputs or mapping outputs to a probability
distribution. In this section we describe some of the mechanisms used
in this thesis, as well as types of hyperparameters used to train different
models.

Dropout

Dropout (Hinton et al., 2012; Srivastava et al., 2014) is a regularisation
method that has a chance to zero out some elements of an input. This helps
diversify the inputs, and can prevent overfitting. Removing different parts
of the input from iteration to iteration by some of the elements being zeroed
out to some extent simulates using different types of, or more input. This
alleviates some of the need for large amounts of data.

2.6 Toolkits and systems

Neural systems are typically built up of many different components,
consisting of the different neural architectures in different combinations.
In this section we describe the toolkits and systems we have used in this
thesis to perform our experiments.
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LSTM-ER

In Eger et al. (2017), the authors set out to build a single neural system to
perform all the argument mining tasks on an annotated data set consisting
of persuasive essays. The single system architecture is different from most
earlier attempts, where several models are combined in a pipeline, each
one trained on a particular task and/or domain. These architectures often
heavily depend on domain specific feature sets. Another critique of the
pipeline approach is that it doesn’t take into account the relations between
the sub-tasks, which can lead to errors propagating through the pipeline
(Eger et al., 2017).
Eger et al. (2017) approach the task in four different ways, then compare
the results: first as a dependency parsing problem, due to the tree-like
structure arguments often form, second as a sequence tagging problem
(using a BiLSTM to classify sequences), which seems natural, as a big part
of argumentation mining is defining the span of the different argument
components. The challenge in this approach is identifying the relations
between arguments, as they can be very far apart. This is solved
using the standard BIO (beginning, inside, outside) tagging common in
entity recognition problems, and coding the distances between linked
components into the tag label (Eger et al., 2017). Their third approach
frames the problem as a multi-task (tagging) problem, using sub-tasks of
argument mining as auxiliary tasks to see if this increases performance.
In the fourth and final approach they used a previous system, the LSTM-
ER (Miwa and Bansal, 2016), which combines sequential (entity) and tree
structure (relation) information (Eger et al., 2017).

They found that treating argument mining as a token-based depen-
dency parsing problem is largely ineffective (Eger et al., 2017), and that
the sequence tagging approach performed well across domains, and gener-
ally better than the current state of the art at the time. They also found that
multi-task learning increased performance (Eger et al., 2017). For our initial
experiments we decided to implement our own version of the LSTM-ER.

NCRF++

NCRF++ was introduced in Yang and Zhang (2018), and is a toolkit
for neural sequence labeling. Sequence labeling is a central part of
many NLP tasks like named entity recognition (NER), chunking, word
segmentation and part-of-speech (POS) tagging (Yang and Zhang, 2018).
Sequence labelling has traditionally been performed using statistical
models (Yang and Zhang, 2018), in which the addition of the CRF
architecture (Lafferty et al., 2001) has proven to be an effective tool (Yang
and Zhang, 2018). While there exists several open-source toolkits that
allow you to implement CRF sequence labeling models, there are not
so many available choices for complete neural sequence labeling toolkits
(Yang and Zhang, 2018). NCRF++ aims to provide an easy-to-use base
for neural sequence labeling tasks, and provides implementations of
the most commonly used neural sequence models, such as LSTM-CRF
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Figure 2.6: Illustration of a configuration file from Yang and Zhang (2018),
showing part of the module setup. NCRF++ allows for switching between
different pre-implemented architecture components simply by changing
the configuration files, making it possible to use several different model
setups without having to code anything.

(Yang and Zhang, 2018). NCRF++ is fully configurable with premade
model architectures through configuration files as shown in figure 2.6.
The configuration files also allow for setting hyperparameters, making it
relatively easy to modify your experiments. NCRF++ is written using the
PyTorch library, which allows for implementation of your own custom
modules and using them in the NCRF++ setup. The architecure of the
NCRF++ system consists of three layers, a character sequence layer, a word
sequence layer and an inference layer (Yang and Zhang, 2018), as shown
in figure 2.7. The character sequence layer and word sequence layers turn
input sentences into character and word embeddings, respectively, then
pass their input to the inference layer which assigns labels to each word
(Yang and Zhang, 2018).

In accordance with the idea that NCRF++ should be easily modifiable,
there are several interchangeable modules that can be used to serve as
the different layers. The character sequence layer has several different
encoders available, such as an RNN, along with variants of RNN such
as GRU or LSTM, or a CNN (convolutional neural network). The same
architectures are available for the word sequence layer (Yang and Zhang,
2018). The inference layer turns the output from the previous layers into
labels to apply to the words in the input sentence. There are two main
inference mechanisms available for the inference layer, Softmax and CRF.

Yang and Zhang (2018) compared their system to several state-of-the-
art models and found their own results to be comparable, showing that
their system is up to par with most contemporary systems.

BERT

BERT (Bidirectional Encoder Representations from Transformers) was intro-
duced in Devlin et al. (2018). It is a language representation model, with a
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Figure 2.7: Illustration of the architecture of the NCRF++ framework from
Yang and Zhang (2018). In the figure, the input is the sentence "I love
Bruce Lee." The character sequence layer receives each character as input
in the form of its embedding, encodes it, and sends it to the word sequence
layer, where word embeddings, character sequence representations and
embeddings of handcrafted features are encoded into word sequence
representations. Finally the inference layer assigns each word a label by
using word sequence representations from the word sequence layer (Yang
and Zhang, 2018).

Transformer based architecture (Vaswani et al., 2017). The main difference
between BERT and most of the contemporary Transformer based models,
is that BERT aims to have a bidirectional approach to training and fine-
tuning. This means that when the model is fine-tuned for a specific task,
each token is encoded with context information from tokens on both the left
and right sides of it. Most other transformer based models at the time, such
as OpenAI GPT (Generative Pre-trained Transformer) (Radford et al., 2018)
and ELMo (Peters et al., 2018) are unidirectional, meaning that each token
only receives context information from the left or right side of it (Devlin
et al., 2018). Devlin et al. (2018) argue that obtaining context from both the
left and right sides is essential when performing sentence level tasks, and
propose a novel model which aims to do exactly that.

There are two separate parts of the BERT architecture; pre-training
and fine-tuning (Devlin et al., 2018). The architecture is a multi-layer
bidirectional Transformer encoder, and is more or less built the same
way as in Vaswani et al. (2017), as was explained in the section about
the Transformer. During the pre-training phase, the model uses two
forms of unsupervised learning with the goal to make the model more
bidirectional than previous architectures. The first technique is using a
"masked language model" (Devlin et al., 2018). The masked language
model works by masking some of the tokens in the input at random, then
having the model learn how to predict the masked token by using the non-
masked context around it. This forces the model to predict a token based
only on the context surrounding it, allowing it to use both the left and right
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Figure 2.8: Illustration from Devlin et al. (2018) showing the architecture of
BERT. The left side shows the pre-training techniques used, Masked LM
and Next Sentence Prediciton (NSP). The right side shows some down-
stream tasks used for fine-tuning. The same Transformer architecture, apart
from the output layers, is used for both pre-training and fine-tuning (De-
vlin et al., 2018).

sides.
The second technique is a "next sentence prediction" task (Devlin et al.,

2018), which consists of a binary sentence prediction task. Given an
input sentence pair, the model classifies whether the second sentence is
a natural continuation of the first sentence. The reasoning behind why this
technique is useful is that many NLP tasks are based on understanding
the relationship between sentences, for instance in question answering or
natural language inference (Devlin et al., 2018). The sentence pairs are
made by pairing sentences from the corpus. 50% of the sentence pairs
are actual sentences that follow each other in the training corpus and are
labeled as positive examples. The remaining half of the sentence pairs are
two unrelated sentences and are labeled as negative examples (Devlin et al.,
2018).

The fine-tuning begins with the BERT model being initialized with the
pre-trained parameters. Because of the self-attention mechanism inherent
in the Transformer architecture, switching between fine-tuning for different
downstream tasks simply consists of changing the inputs and outputs.
There are some differences in the input format required by BERT and other
contemporary transformer models (Devlin et al., 2018).

In order for BERT to be able to handle several different NLP tasks,
(Devlin et al., 2018) allow their input to be both a single sentence, and a
pair of sentences. This is possible because of the self-attention mechanism
which makes the model encode the input sequence with cross attention,
attending to each word in both of the input sentences. This is useful for
instance for the question answering task, where both the question and the
answer is needed. Figure 2.9 shows the format of BERT inputs for various
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Figure 2.9: Illustration from Devlin et al. (2018) showing BERT input
formats for various NLP tasks.

NLP tasks. Every sequence begins with the classification token [CLS], and
if the input sequence contains two sentences, the sentences are separated
by the [SEP] token.

Multilingual BERT

Not long after the initial release of BERT, a version of BERT trained to
understand several languages was released. Multilingual BERT is simply
a BERT model trained to understand several languages, by training on
articles from the 100 languages with the largest Wikipedias. Because the
sizes of the Wikipedias for the different languages vary greatly, a number of
smoothing techniques were applied to weight the various input languages.
Multilingual BERT was tested on the XNLI dataset1, an evaluation corpus

1https://github.com/facebookresearch/XNLI
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for cross-lingual sentence translation in 15 languages, with results showing
that BERT performs better than the XNLI baseline on all languages2.

2https://github.com/google-research/bert/blob/master/multilingual.md
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Chapter 3

Existing datasets

In this chapter we describe some of the existing Argument Mining datasets,
as well as the underlying dataset using to create our annotated dataset for
Argument Mining in Norwegian, NoReC.

3.1 English - Persuasive essays

The first version of the persuasive essay dataset was introduced in Stab
and Gurevych (2014). At the time, there were no other existing datasets
of persuasive essays annotated with an annotation scheme as detailed as
the one used in Stab and Gurevych (2014). The first version consisted of 90
essays selected from essayforum 1. Each text was manually reviewed, and
in the end the corpus contained 1673 sentences with 34917 tokens (Stab
and Gurevych, 2014). In Stab and Gurevych (2017) the original argument
mining dataset from Stab and Gurevych (2014) is expanded from 90 essays
to 402 essays. Some statistics for the set are shown in table ??.

3.2 Annotation Guidelines

While the annotation process might sound straight forward in theory, in
real life situations, as with so many things, that is rarely the case. In order
to demystify the process and assist anyone who might want to attempt
reproducing it at a later stage, it is good practice to include guidelines
to elaborate on the choices made in the process. For the most part,
our annotation guidelines are modeled on the very detailed guidelines
produced in Stab and Gurevych (2014), with some small changes to make it
more suitable to our domain of reviews. Our annotation process consists of
two steps; annotating argument components, and identifying the relations
between them.

Stab and Gurevych (2017) describe the process they went through in
order to come up with a working annotation scheme. Their scheme consists
of the argument components claims and premises, as well as two forms of
relations; support and attack. Because their scheme is made for persuasive

1http://www.essayforum.com
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all average per essay
Sentences 7116 18
Tokens 147271 366
Paragraphs 1833 5
Arg.components 6089 15
MajorClaims 751 2
Claims 1506 4
Premises 3832 10
Claims (for) 1228 3
Claims (against) 278 1

Table 3.1: Table from Stab and Gurevych (2017) showing the various inter-
annotator agreement scores on the different argument components.

essays, it also includes a major claim, which can be thought of as the
conclusion of the essay, the main point the author is arguing for. This
translates well to our own domain (reviews), where each review can be
expected to contain some final conclusion on the target of the review, a
final verdict on whether the reviewer likes it or not.

3.2.1 Pre-study

To determine whether the initial scheme was usable and how efficient
it was, Stab and Gurevych (2017) performed a pre-study. 14 short text
snippets (1-2 sentences) were produced, either by gathering them from
example essays or by the authors writing them themselves. Five non-
trained annotators were then asked to identify which of the sentences
were argumentative, and identify claims and premises in the sentences
marked as argumentative. Their first results were not very convincing
(inter-rater agreement of 58.6%), which they found was mostly caused by
the annotators not knowing the context of the text snippets. To prevent this
when annotating the actual corpus, the annotators were instructed to read
the entire texts before annotating.

3.2.2 Top-down process

After conducting their pre-study the annotation is generalised in these
three steps:

1. Topic and stance identification: Annotators identify the topic and
stance of the essay by reading the whole text before annotating.

2. Annotation of argument components: First, annotate the major claim
(usually found in the introduction or conclusion of the essay). Then
the annotators find claims and premises in each paragraph. Each
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Component type Observed agreement Fleiss’ κ αU
MajorClaim 97.9% .877 .810

Claim 88.9% .635 .524
Premise 91.6% .833 .824

Table 3.2: Table from Stab and Gurevych (2017) showing the various inter-
annotator agreement scores on the different argument components.

argument component is annotated as a statement covering an entire
sentence or less.

3. Annotation of argumentative relations: The final step is linking
claims and premises within each paragraph and linking claims to the
major claim with a support or attack relation.

3.2.3 Inter-annotator agreement

In Stab and Gurevych (2017), three annotators annotated a subset of the
dataset consisting of 80 essays. The rest of the essays were annotated
by an expert on argument mining. Stab and Gurevych (2017) begin by
evaluate whether annotators agree on the presence of argument component
in a given sentence, using the metrics observed agreement and Fleiss’ κ
Fleiss (1971). In addition to that they use a metric that takes into account
the component boundaries, Krippendorff’s αU Krippendorff (2004). Their
results in table 3.2 show that their guidelines provide a good explanation of
how to annotate argument components, judging by the agreement between
annotators.

3.3 Norwegian - Reviews

The data for our Norwegian dataset is taken from NoReC, the Norwegian
review corpus. NoReC consists of more than 35,000 full text reviews from
various genres, in Norwegian. The corpus was created in collaboration
with the Norwegian Broadcasting Corporation (NRK), Schibsted Media
Group and Aller Media, three of Norway’s largest media groups (Velldal
et al., 2017). Although these reviews typically have an unstructured quality
about them (at least compared to the persuasive essays our model is trained
on), they are in essence argumentative in nature. NoReC is categorised into
9 different categories. For our experiments we selected 100 texts at random
from the ’screen’ category, which consists of 13,085 reviews of movies and
TV-series. Although reviews inherently have an unstructured quality about
them (at least compared to the persuasive essays our model is trained on),
they are in essence argumentative in nature.
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Chapter 4

Annotating arguments in
Norwegian

A vital part of our contribution in this thesis is the creation of the first
Argument Mining dataset in Norwegian, NorArg, as well as guidelines for
how to proceed in the annotation process. In this chapter we describe in
detail how we constructed these guidelines, and the process of annotating
our data set.

4.1 Guidelines

Our annotation process consisted of the main annotator annoting 40
documents randomly selected from the 100 screen reviews we began with,
which were taken from NoReC, as described in chapter 3. To follow up, we
had two additional annotators annotate the first 10 documents of the set, in
order to look at the agreement between annotators.

4.2 Annotating argument components

Since inter-annotator agreement was found to increase significantly after
the annotators familiarised themselves with the context of the components
(Stab and Gurevych, 2014), we had the annotators read the entire document
and understand it well before beginning the annotation. We made sure they
understood the object of the review and the author’s view towards it before
beginning.

Following the annotation scheme described earlier, there are three
different components to annotate, major claims, claims and premises, each
uniquely identifiable. There are some general rules that apply for all the
components:

• Punctuation should not be included (full stops, commas, exclamation
marks)

• As much as possible, try to include complete sentences (this is harder
in our domain than in persuasive essays, as reviews typically are less
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structured.)

4.2.1 Major claims

As previously explained, major claims can be seen as statements that sum
up the entire text (if appearing in the conclusion), or as a statement that
the whole text revolves around attempting to justify (if appearing in the
introduction). After reading the entire document and understanding the
contents of it, the annotator should find a statement that sums up the view
of the author regarding the item being reviewed. As in persuasive essays
(Stab and Gurevych, 2014), these are typically found in the introduction
or conclusion of the review (and often both). If there are several statements
that express the same sentiment, choose the most explicit, or the one closest
to a complete sentence. In some rare cases there is no clear major claim,
and in such cases no major claim should be marked. Once a major claim is
identified, the annotator marks the stance of the major claim in regards to
the topic of the review (for, against or neutral).

These questions might help in deciding whether a sentence contains a
major claim (Stab and Gurevych, 2014):

• Does the sentence include a statement that represents the major
stance of the author with respect to the topic?

• Does the sentence include the most explicit stance expression in the
introduction and conclusion of the essay?

4.2.2 Claims

Because claims are so context dependent, Stab and Gurevych (2014) advise
looking at one paragraph at a time and trying to identify the most general
claim in each paragraph. In persuasive essays a paragraph in most cases
contains a single argument with one claim and reasons supporting that
claim (Stab and Gurevych, 2014). Because reviews are typically not as
structured as persuasive essays, this does not work as well in our case.
Instead, it seems sensible to identify a section of the document discussing
a certain topic, and marking the most general claim about that topic before
moving on to the next topic being discussed and identifying the next claim,
and so on.

Claims typically come in two forms, either as an initial assertion backed
up by following premises, or as a conclusion supported by preceding
premises. In some cases it appears in both forms, in that case both should
be marked (Stab and Gurevych, 2014). Each time we identified a claim, we
annotated it and marked the stance of the claim (in reviews, claims some
times only describe the plot of the show, in those cases the stance is not
marked), whether it is against or for the opinion expressed by the major
claim.

Then we continued in this manner until all claims in the document had
been found and annotated.
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Stab and Gurevych (2014) describe a simple test to check whether
you have found a claim. The statement "It is true that, <claim>" should
be grammatically correct. It might be necessary to rearrange the claim
statement to make this test work. (Or add missing words, especially in
the case of subheadings)

Stab and Gurevych (2014) also provide us with some questions the
annotator can use to decide whether a given sentence or statement is a
claim:

• Is the statement supported by at least one other statement?

• Is there a reason given why the statement should be considered as
true? (This one is not required for there to be a claim, sometimes
claims appear without support)

• Is the statement an assertion with respect to a certain aspect?

4.2.3 Premises

Premises are statements that support or attack claims. In order to find the
premises we went through the whole document again, topic by topic as
when annotating claims, looking at the previously annotated claims, and
finding the premises that supported or attacked them. Most likely a fair
few of them were already identified in the previous step.

These questions might be helpful in deciding whether a statement is in
fact a premise (Stab and Gurevych, 2014):

• Is the statement a reason or justification (or an attack) for the
considered claim?

• Is the statement supporting another premise?

• Does the statement contribute to the confirmation of the claim?

4.2.4 Annotating argument relations

After all the components in the document had been identified, the next step
was to annotate the relations linking them together. Possible relations are
attack or support relations, and they can be between a premise and another
premise, or a premise and a claim (Stab and Gurevych, 2014).

Attack relations describe source statements that try to disprove or
undermine their target statement. A simple test to see if a relation between
a source and a target is an attack relation is to see if the following sentence
makes sense: "It is not true that <target statement> because <source
statement>" (Stab and Gurevych, 2014). If it does, the relation is an attack
relation and should be labeled as such. (in the Brat annotation tool, this
corresponds to the label "against")

Support relations, on the other hand, attempt to justify and validate the
target statement. A similar test for a support relation would be: "It is true
that <target statement> because <source statement>"(Stab and Gurevych,
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2014). If a support relation is found, it should be labeled as such (the "for"
label in the Brat annotation tool).

4.2.5 Linking claims and premises

The first part of annotating argument relations was to systemically go
through the document again, iteratively looking at each topic being
discussed, in the same way as before. For each topic, we linked premises
and claims in the way described above, while keeping in mind that
premises can be related to claims or other premises. All the while we used
the tests to ascertain what type of relation to mark. As in previous cases,
it was often necessary to reformulate the sentences in order for the tests to
make any sense.

Stab and Gurevych (2014) give a good summary of the process:

1. For each topic start with a claim.

2. If a premise obviously supports or attack the claim, link it to the claim.

3. For all not connected premises in the paragraph, test if it could be
connected to an already connected premise. if that is not possible
reformulate the premise and connect it to a matching claim or premise
in the same paragraph.

If there are more than one claim connected to a topic, repeat the process
until all premises concerning said topic are linked.

To reiterate, these questions will help in deciding whether two compo-
nents are linked, and which relation type to assign (Stab and Gurevych,
2014):

• Is the target statement underpinned or rebutted by the source
sentence?

• Is one of the following patterns meaningful?

– support relation: it is true that <target> because <source>

– attack relation: it is not true that <target> because <source>

4.2.6 Linking claims and major claim

Once all relations between claims and premises had been marked, the final
step consisted of linking claims in all the topics being discussed, to the
major claim. The major claim was usually found in the introduction or
in the conclusion and should already have been identified at this point.
Again we iteratively went through all the topics, and linked each claim to
the major claim, and designated whether the claim was for or against the
major claim. This process was fairly similar to linking claims and premises
in the previous step (Stab and Gurevych, 2014). Some times the claim could
be a statement relating to something other than what was being discussed
in the review, in those cases it was not linked to the major claim.
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4.3 Differences between persuasive essays and re-
views

Major claim

In persuasive essays (Stab and Gurevych, 2017), the major claim is usually
located in the conclusion or introduction to the essay. This seems to be
the case with reviews as well. It seems natural to conclude with your
personal opinion about the item in question in a review. However, in
persuasive essays the major claim is usually expressed in a complete
sentence. Reviews are not as explicit, and the form the major claim takes
can vary a lot.

Claim

(Stab and Gurevych, 2017) look at one paragraph at a time and try to
identify the most general claim in that paragraph. Because persuasive
essays follow a stricter pattern than reviews, this does not work as well for
claims in our case. Instead, it seems sensible to identify a part of the text
discussing a certain topic, and identify the most general claim about that
topic before moving on to the next topic being discussed and identifying
the next claim.

In certain cases, the reviews have subheadings that work well as claims:

4.4 Inter-annotator agreement

For our annotation process, we had one main annotator annotating all 40
reviews of the dataset, with 2 additional annotators annotating the first 10
texts, in order to provide a measure of agreement in the annotation. We
used the same metrics as in Stab and Gurevych (2017); observed agreement,
Fleiss’ κ Fleiss (1971) and Krippendorff’s αU , as described in chapter 3.
Our inter-annotator agreement scores are shown in table 4.1. Our results
are not quite up to par with the ones achieved by Stab and Gurevych
(2017). This might be due to some aspect of the guidelines being unclear,
or it might simply be due to the fact that reviews are in essence harder to
perform argument annotation on than persuasive essays. How structured
a review is depends in large part on the author, where in persuasive essays
an inherent structure in the text is more or less required in order for the text
to convey its point.
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Component type Observed agreement Fleiss’ κ αU
MajorClaim 97.5% .505 .454

Claim 79.7% .426 .508
Premise 79.6% .546 .492

Table 4.1: Table showing the inter-annotation scores after 3 annotators
annotated the first 10 texts of NorArg.
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Chapter 5

A dataset for annotation
projection

Because of the limited scope of our project, it was never feasible to produce
a dataset large enough to be able to train a model exclusively on our own
annotated data in the time frame of the project. The difficulty of argument
annotation also means that the cost of producing such data is relatively
high, and outside the scope of our project. Instead we decided to use
the existing dataset of persuasive essays produced by Stab and Gurevych
(2017) to train a model, then evaluate its performance on our own smaller
dataset in Norwegian, which meant that we needed to find a way to make
our system multilingual.

5.1 Cross-lingual NLP

Due to the importance of high quality datasets in NLP, and the significant
costs in acquiring such datasets, there has been a lot of focus on cross
lingual work in recent research across a range of different topics within
NLP, including part-of-speech-tagging (Zhang et al., 2016), dependency
parsing (Agić et al., 2016) and other fields (Eger et al., 2018).

As for the field of argument mining, most of the existing research
so far has been focused on using a single language (Eger et al., 2018).
Because of the complexity of the argument mining task, especially the
difficulties related to producing high quality annotated datasets for the
task, investigating the possibilities of cross-lingual systems could prove
very beneficial.

Eger et al. (2018) set out to do exactly that. They find that existing
argument mining data sets are not sufficiently homogeneous to facilitate
cross lingual argumentation mining (Eger et al., 2018), and investigate the
effectiveness of different translation and projection strategies for mapping
data sets from one language to another. In addition, they produce several
novel data sets based on the existing data set consisting of persuasive
essays published by Stab and Gurevych (2017).

The two main techniques Eger et al. (2018) investigate are annotation
projection and bilingual word embeddings based direct transfer. Eger et al.
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Original English phrase English explanation shown to evaluators
1 fly out of London take an airplane from London
2 like a bat out of hell escaping as quickly as possible
3 out cold unconscious
4 out of bounds unacceptable
5 out of breath gasping for air (for example, after running)
6 out of curiosity because a person is casually interested in something
7 out of focus not clear to see (blurry)
8 out of his mind crazy
9 out of milk the supply of milk is finished

10 out of order does not function (broken)
11 out of pocket paid for something from personal money
12 out of steam no more energy (exhausted)
13 out of style unfashionable
14 out of the closet openly homosexual
15 out of the game no longer participating in a game
16 out of the office away from the office
17 out of this world excellent
18 out of time a deadline has passed
19 out of wedlock between partners who are not married
20 out on the town having a fun time going shopping or to bars/restaurants(carousing)

Table 5.1: Phrases used in the Google Translate study (Benjamin, 2019).

(2018) conclude that annotation projection performs considerably better
than direct transfer. Annotation projection consists of mapping each word
in a sentence in the source language, to a word in the same sentence in
the target language, in order to transfer the annotations from the source
sentence to the target sentence. The first step in applying annotation
projection to our dataset is translating our data. Based on the findings
from Eger et al. (2018), that translations produced by machine translation
services is near as good as human produced translation, we decided to use
Googles translation API for the job.

5.2 Google Translate

Eger et al. (2018) compare human translation and machine translation,
and find that for the languages they use (German, English, Chinese)
the resulting translations produced by human and machine translation
respectively, were perceived to be of comparable (Eger et al., 2018).

5.2.1 Analysis

A recent study of Google Translate (GT) investigates its performance on 107
different languages. For each language, 20 English phrases (Table 5.1) are
translated then rated by native or highly competent speakers (Benjamin,
2019).

The readers are not shown the original phrase, only the intended
meaning of the phrase. The study found that reading the original phrase
could cause readers to be more lenient in scoring, perhaps giving points

32



Description Scoring

Bard A weighted ranking that indicates the pro-
portion of translations that were judged close
to human quality.

A = 5, B = 2.5, C = 0.
Maximum score = 100.

Tarzan Indicates the percentage of times that trans-
lations could be understood, regardless of
whether they were judged as human quality.

A = 5, B = 5, C= 0.
Maximum score = 100.

Fail The percentage of times that translations
were judged as completely wrong.

A = 0, B = 0, C = 5.
Maximum score = 100.

Table 5.2: Scoring scheme in Benjamin (2019).

Language Bard Tarzan Fail
Danish 40 70 30

Norwegian 27.5 45 55
Swedish 45 60 40

Table 5.3: Scores for Danish, Norwegian, and Swedish (Benjamin, 2019).

for individual words being correctly translated (Benjamin, 2019). Each
translation is scored using three different scores, as shown in Table 5.2.

In the study, Norwegian translations scored lower than many other
western European languages (Benjamin, 2019). Swedish and Danish,
both being for the most part mutually intelligible with Norwegian, and
members of the same language family, scored considerably higher (Table
5.3). The phrases that are used in the study are most likely phrases
that are particularly difficult to translate, and no context was given to
each expression, something that might have improved the accuracy of the
translation.

5.2.2 Review corpus

As opposed to the dataset used in Eger et al. (2018) the writing style of our
dataset tends to be more focused on being entertaining, with the writers
often being very creative in their choice of words. This is probably due
to the commercial nature of our dataset, where the authors have extra
incentive to write witty and amusing texts. This writing style makes these
types of phrases and expressions that GT typically performs worse on,
abundant in our dataset. And, despite having plenty of context, many of
these expressions found in our own texts were equally poorly translated:

(5.1) Jeg kunne tenkt meg og sett Ashes to Ashes uten halvgjort tidsreisetull,
og heller som en rendyrka krimserie satt til tidlig åttitall Original

(5.2) I could have imagined seeing Ashes to Ashes without half time travel
duties, and rather as a pure culture crime series set to the early eighties
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Translation

(5.3) Russell Crowe og Denzel Washington braker sammen i ”American
Gangster”, men på en overraskende fredelig måte Original

(5.4) Russell Crowe and Denzel Washington break up in "American Gangster",
but in a surprisingly peaceful way Translation

Nevertheless, we felt the translations for the most part were adequate
for our use, in that they preserved most of the structures we were interested
in analysing. As far as intelligibility is concerned, GT performed above
our initial expectations. Most sentences were understandable and felt
natural to the reader. The possibly dubious quality of the translations
should however be kept in mind as a possible source of inaccuracy when
assessing error factors. It did have problems with some words and
word combinations that perhaps appear less frequently, but the general
semantics of the sentence was usually mostly intact, and the argument
structure is in most cases not significantly altered.

(5.5) Dette er nemlig ikke en gangsterfilm med skuddvekslinger Original

(5.6) This is not a gangster movie with gunfire every ten minutes Translation

It also performed consistently poorly on idioms.

(5.7) Nå tilspisser intrigene seg , vår kjære favorittdverg er ute i hardt vær
og serien tar en mørkere vending , for som vi alle vet : Original

(5.8) Now the intrigue is peaking , our dear favorite dwarf is out in severe
weather and the series is taking a darker turn , as we all know : Translation

5.3 Fast-align

The second part of annotation projection, is the projection itself. Because it
is not a given that the order of the words is the same in the source and target
language, it is necessary to apply some sort of mapping function from the
sentence in the source language to the sentence in the target language in
order to transfer the annotations from the source sentence. Eger et al. (2018)
used Fast-align, the algorithm described in Dyer et al. (2013). Fast-align is
a form of a lexical translation model (Dyer et al., 2013), and works in the
following way: given a source sentence and a target sentence, a number
is generated for each of the words in the target sentence. These numbers
indicate which word in the source sentence the target word was translated
from. The program returns a list of number pairs, the first number being
the index of the source word, the second number the index of the target
word. After the texts were translated and the annotations projected onto
the translated texts, the amount of different components in the dataset
changed slightly, as can be seen figures 5.1 and 5.2.
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Figure 5.1: Distribution of component types for the two versions of the
persuasive essay test set from Eger et al. (2017). On the left, the original
version, on the right, the translated Norwegian version.

Figure 5.2: Distribution of component types for the two versions of the
NoReC test set. On the left, the English translated version, on the right, the
original Norwegian version.
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Chapter 6

Experimental Setup

When choosing which architecture to use in our experiments, we wanted
a pipeline to cover all the different tasks in argument mining; argument
detection, argument segmentation, and argument structure prediction.
Historically, most research has been focused on completing only one of
the tasks. Eger et al. (2017) focus on achieving a complete system that
encompasses all the different argument mining tasks. One of the systems
they experiment with is the model from Miwa and Bansal (2016), a system
designed for extracting entities and relations from sequence based data.
The system can be used on any similarly framed problem, and is well suited
for the task of argument mining. Therefore, for our pipeline architecture,
we have chosen to use the model from Miwa and Bansal (2016) referred
to in Eger et al. (2017) as the LSTM-ER, as this was the model that
produced the best overall results. In addition, we investigate how other
models perform. We use a model based on the NCRF++ framework for
sequence labeling tasks, and a model using Multilingual BERT, to serve as
comparison systems.

As described in the previous chapter, the corpus we extracted our test
set from is in Norwegian, and the training set we use to train our model is
in English. Our goal is to explore the effectiveness of our English trained
model on a translated version of our Norwegian test dataset. This requires
using techniques for cross-lingual mapping and annotation projection in
order to translate our dataset to English and prepare it for testing.

In this chapter we start by describing the process to prepare our data
(Illustrated in Figure 6.1). Most of the preprocessing is applied only to our
own annotated test set, but some steps of the process is required for the
training set used in Eger et al. (2017) as well, in order to make it suitable for
our implementation of LSTM-ER. We also describe our models, NCRF++,
Multilingual BERT and LSTM-ER, the modifications we made to LSTM-ER,
and the tools we used to implement our own version of the model, namely
the machine learning library PyTorch and a selection of its modules.
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6.1 Data pre-processing

In order to convert our data into a format that is suitable for the machine
learning models to use for training, and create a parallell dataset in English
and Norwegian, a number of pre-processing steps are required. Figure
6.1 illustrates the process: first we select a number of texts from the
NoReC corpus. Then we annotate the texts using the annotation tool
brat and format the resulting files into a CoNLL-format, and complete the
Norwegian version of our dataset. To create the English version of the
dataset, we first translate the texts using Google Translate, and tokenise
them using the UDPipe Tokeniser. In order to transfer our annotations
to the English version of the dataset we use Fast-Align, which creates a
mapping between two sentences in different languages. This allows us to
transfer our annotations to the English sentences, and create the English
version of the dataset. Finally, we obtain some additional information
about our texts using the Stanford POS tagger, which is used when training
the LSTM-ER. In the following sections we describe each part of the process
in more detail.

6.1.1 NoReC to Brat

Our test set, as described in chapter 3, consists of screen reviews randomly
selected from the NoReC corpus. The very first step in preparing our test
data is formatting it for annotation in the annotation tool brat (as shown
in figure 6.1). Brat comes with its own standalone server functionality
which allows you to run a local server from which you can handle all your
annotation, and setting it up is relatively straight forward. Since the NoReC
texts come pre-tokenised and preprocessed, preparing them does not take
much extra work. For each review, Brat requires a .txt file containing the
review, and an empty .ann file with the same filename, so all we needed to
do was to copy all the selected text files from NoReC into the designated
data folders, and create a .ann file for each text file. Any annotations made
using the software is then stored in a text format in the accompanying .ann-
files, ready for further processing.

6.1.2 Brat to CoNLL

The next step in the data processing is converting the output files from
the Brat annotation tool into a CoNLL format (figure 6.1). Eger et al.
(2017) devise a scheme to convert argument component annotations into
a CoNLL format, complete with BIO-tag, component type, relation type,
and distance to related component (if applicable). The scheme is defined
by this equation from Eger et al. (2017), where each token is assigned a
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Figure 6.1: Overview of the data preprocessing.

label which is a part of Y, where

Y = {(b, t, d, s) | b ∈ {B, I, O},
t ∈ {P, C, MC,⊥},
d ∈ {...,−2,−1, 1, 2, ...,⊥},
s ∈ {Supp, Att, For, Ag,⊥}}.

(6.1)

Which means that each token label has a b, indicating whether the
token is not part of an argument (O), the beginning of a component (B),
or inside a component (I); t tells us the type of the component the token
is a part of, "P" if a premise, "C" if a claim, "MC" if a major claim, or "⊥"
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if outside a component. "d" indicates the distance measured in number of
argument components to the related component, and finally, "s" indicates
the relation type or stance, "Support" or "Attack" for premises, "For" or
"Against" for claims, indicating their stance towards the major claim, or
"⊥" if not applicable (Eger et al., 2017).

Input size

The dataset of persuasive essays used in Eger et al. (2017) is for the most
part written in a style that uses paragraphs to separate different subtopics
of discussion, leaving each argument neatly structured into a paragraph
of its own. A side effect of this is that the argumentation structures in
the essays are all completely contained within one paragraph (Eger et al.,
2017). This means that argument components in a paragraph are never
related to components outside said paragraph, and it follows that a natural
document size to use for training on the essays is one paragraph. Since
the whole argumentation structure is contained within a paragraph, a
paragraph is very likely to contain both claims and premises; premises
don’t appear in a paragraph without there being a claim present to support
or attack. Claims can appear alone in paragraphs in theory, but in most
cases they are accompanied by at least one premise. Because a paragraph
contains fewer components than the whole essay would, it is also easier
to predict relations on paragraph sized documents, as there are fewer
possible component pairs to choose from. The dataset used in Eger et al.
(2017) contains 2235 paragraphs in total, with each paragraph having an
average length of 66 tokens (Eger et al., 2017). In theory, using the whole
essay as a document size allows for relations spanning the entire length
of the document. However, Eger et al. (2017) found no such relations in
their dataset. In fact, in the persuasive essay dataset, 30% of all related
components immediately follow the component they are related to, and
two thirds of all relations are less than 3 components apart (Eger et al.,
2017).

Intuition also tells us that most authors would prefer to keep their
claims and premises close to each other, in order to not confuse the reader,
ideally containing their argumentation about a given subtopic within a
single paragraph. Eger et al. (2017) created two versions of their dataset.
One where the document size is the paragraph, and another where each
essay is an input, and used both versions in some of their experiments.
For the most part, the models trained and tested on the paragraph version
performed better (table 6.1).

The first obstacle then, in converting the test set to the CoNLL format
used in Eger et al. (2017) (Table 6.2), consisted of splitting the text into
paragraphs. As discussed earlier, the structure of reviews is less clear than
that of persuasive essays, and producing a paragraph separated version
of our dataset similar to the original dataset took some thinking. The
NoReC dataset already contains information to separate the reviews into
paragraphs, but we found that the division didn’t really separate each
argument into its own paragraph in the same way it did in the persuasive
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Models Paragraph level
Acc. C-F1 R-F1 F1

100% 50% 100% 50% 100% 50%
MST-PARSER 31.23 0 6.90 0 1.29 0 2.17
Mate 22.71 2.72 12.34 2.03 4.59 2.32 6.69
Kiperwasser 52.80 26.65 61.57 15.57 34.25 19.65 44.01
LSTM-Parser 55.68 58.86 68.20 35.63 40.87 44.38 51.11
STagBLCC 59.34 66.69 74.08 39.83 44.02 49.87 55.22
LSTM-ER 61.67 70.83 77.19 45.52 50.05 55.42 60.72
ILP 60.32 62.61 73.35 34.74 44.29 44.68 55.23

Essay level
STagBLCC 60.46 63.23 69.49 34.82 39.68 44.90 50.51
LSTM-ER 54.17 66.21 73.02 29.56 32.72 40.87 45.19

Table 6.1: This table from Eger et al. (2017) shows their results from running
various models on the persuasive essay corpus. From the top, MST-
PARSER and Mate are feature-based dependency parses, Kiperwasser and
LSTM-Parser are neural dependency parsers, STagBLCC and LSTM-ER are
neural sequence taggers, and ILP is the feature based model from Stab
and Gurevych (2017), acting as a comparison system (Eger et al., 2017).
Highest scores are in bold. C-F1 indicates component prediction score, R-
F1 relation prediction score. The scores clearly indicate that most systems
perform better on paragraph sized documents. Most argument structures
in persuasive essays are completely contained within the paragraph unit.
Few relations go outside the paragraph they originate from, which might
explain why there are less errors made when using the paragraph as a
document size. The paragraph size also limits the amount of possible
targets for a given relation, reducing the probability of wrong predictions.
Only the STagBLCC and LSTM-ER models were run with essays as input
documents, because the task was too memory heavy for the dependency
parsers (Eger et al., 2017). However, the scores from STagBLCC and LSTM-
ER indicate that paragraph units produce better results overall.

essays, so we decided to use a different approach. Based on the idea that a
change of paragraphs also signifies a change of topic being discussed, we
decided to center each paragraph around one claim. Once a new claim was
encountered, or a premise linking to a new claim (or linking to another
premise, which recursively linked to a new claim), we started a new
paragraph. This problem forced some new considerations in the outline
of the annotation guidelines; namely, a premise can not link to claim in a
paragraph other than the one it itself is part of. In practice, this lead to few
changes, premises rarely relate to far off claims without there being another
claim closer in distance that is more or less equivalent in meaning. Once
we solved the problem of splitting the text into paragraphs, the rest was
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Figure 6.2: Cross-lingual mapping for the sentences in table 6.4 and
alignments in 6.3. A good example of how the alignments work are
the mappings of both "nemlig" and "ikke" to the word "not" in the first
sentence pair. The alignments are not always as accurate as we would
want however. For instance, in the first sentence, the word "gangsterfilm"
is aligned with the word "gangster", even though it might seem better if it
were aligned to the word "movie", or ideally, to both.

not too complicated. The CoNLL-format used by Eger et al. (2017) displays
one token per line, along with its BIO-tag, argument component type,
and relation type if applicable, following the sequence tagging framework
defined in equation 6.1, with an example in table 6.2.

6.1.3 Google translate

As mentioned in chapter 5, we used Google Translate to translate our
Norwegian corpus into English. This is done in a parallell branch of
the data processing, as illustrated in figure 6.1. As was also discussed
in chapter 5, the translations are not always as good as we had hoped
they would be, but we refrained from changing them manually. For the
translation we used the Google Cloud Translation API1. We also used the
UDPipe tokeniser (Straka and Straková, 2017) with the help of the very
useful UDPipe toolkit for Python2, to tokenise both our Norwegian and
English sentences after translation.

6.1.4 Fast-Align

The next step, as shown in figure 6.1, was preparing the sentences for
alignment. The Fast-Align (Dyer et al., 2013) system requires a particular
type of format for its input; the source and target language sentences
separated by three vertical pipes, as illustrated in table 6.4. When given
the four sentences in table 6.4 as input, Fast-Align produces the alignments

1https://cloud.google.com/translate/docs
2https://github.com/eivindbergem/ud-toolkit
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Figure 6.3: Dependency graph and POS tags for the sentence International
tourism is now more common than ever before, described in table 6.5, using the
lemmatised version of the words.

in figure 6.2, where the first number in each number pair indicates the
index of the word in the source language, and the second number indicates
the index of the word in the target language the first word translates to.
The finished alignment of the sentences in table 6.4 is shown in figure 6.2,
where each word in the sentence from the source language has an arrow
pointing to a word in the target language sentence, which corresponds to
the number pair mapping produced by Fast-Align.

6.1.5 Stanford POS

The LSTM-ER model used in Eger et al. (2017) is based on the model
from Miwa and Bansal (2016). The first layer of the model takes inputs
comprised of embeddings of words and their parts of speech (POS). In
order to acquire POS tags and dependencies (which are required for a later
step in the pipeline) for their dataset, Miwa and Bansal (2016) employ the
Stanford neural dependency parser3 (Chen and Manning, 2014). We used
scripts4 from Eger et al. (2017) to convert our test set to the format required
by the Stanford parser. The output from the Stanford parser, for the sample
sentence "International tourism is now more common than ever before" is
shown in table 6.5, corresponding to the POS and dependencies illustrated
in figure 6.3.

6.1.6 Modifying the data for our model

We use the same training set as the one used in Eger et al. (2017). However,
because we implemented our own version of the LSTM-ER from Eger et al.
(2017), some further pre-processing of the data was required. For both
our test set and the training set from Eger et al. (2017), we followed the

3https://stanfordnlp.github.io/CoreNLP/
4https://github.com/UKPLab/acl2017-neural_end2end_am/tree/master/progs/LSTM-

ER
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instructions and used the scripts described in Eger et al. (2017), and parsed
the resulting Stanford POS files into suitable datafiles for our PyTorch
implementation. The Stanford files contain several types of information;
lemmatised tokens, part of speech tags and dependency relations, as well
as dependency targets. Lemmatisation is the practice of reducing a word to
its base form. For instance, a lemmatised version of "was" is "be", as can be
seen in figure 6.5. The idea behind it is that it gives a more general form of
the word, meaning that a potential model parsing the words understands
that the words "was" and "is", for instance, serve much of the same purpose
in a context. For our implementation, we disregarded using the lemmatised
tokens because it was unclear whether they had used them in Eger et al.
(2017). We instead extracted the tokens from the accompanying textfiles.
Using the lemmatised version of the tokens is something that could be
included in potential future work.

6.1.7 PyTorch

Because of recent successful innovations in the field of NLP like word
embeddings (Mikolov et al., 2013), it has become increasingly important
to use deep learning techniques as opposed to more traditional methods
when doing NLP. In recent years, several of the world’s largest tech
companies have joined the race to create a good machine learning library.
PyTorch (Paszke et al., 2019) is an open source machine learning library
developed mainly by Facebook’s Research AI lab. PyTorch provides easy
to use implementations of the most popular machine learning models,
and makes it relatively easy to modify these models to suit your purpose.
For our system we mainly used the LSTM module5, making some
modifications to fit it to our dataset and hyperparameters. For loading
our data into PyTorch, we used torchtext, a fairly recent addition to the
library. It provides an interface for loading and preprocessing textual data.
Among other things, it provides tools for batching data, padding inputs
to the same length, preprocessing documents by applying tokenising and
similar procedures. It also has built in methods for numericalising and
converting your input text to embeddings. In addition, it provides easy
access to the most commonly used word embeddings.

6.2 Neural Modeling

As previously mentioned, when considering what type of model to use for
our project, we ended up deciding to find a system that could perform all
of the tasks in the argument mining pipeline. Those tasks, as described in
chapter 2, are the following: argument detection, argument segmentation,
and argument structure prediction. Eger et al. (2017) describe several
different approaches to achieving this type of system; framing the problem
as a dependency parsing problem, sequence tagging problem, a multi-
task tagging problem, and using a combined sequence tagging and tree

5https://pytorch.org/docs/stable/nn.html#lstm
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structure model. Among all the models tested in Eger et al. (2017), the best
performing model on paragraph size inputs (table 6.1) was the combined
sequence tagging and tree structure model, named LSTM-ER, based on
a model by Miwa and Bansal (2016). The architecture of LSTM-ER is
illustrated in figure 6.4.

6.2.1 LSTM-ER

LSTM-ER is based on a general model for extracting entities and identi-
fying relations between them, by Miwa and Bansal (2016). The architec-
ture of LSTM-ER consists of three parts; an embedding layer that converts
raw inputs to embeddings, a sequence layer that predics labels given the
word and POS tag embeddings, and a dependency layer that receives de-
pendency and label embeddings and predicts relations between different
argument components. Figure 6.4 illustrates the LSTM-ER model architec-
ture. Due to the limited time of our project, we decided to focus on the
first two layers of the model, the part of the model that predicts component
labels. Our dataset contains the information types required to complete
the entire model, which would make it easier for a possible future work to
implement relation prediction as well.

Embedding layer

The first part of LSTM-ER is an embedding layer, where each token and
its POS tag (obtained from the Stanford POS tagger) are converted into
embeddings. Following Eger et al. (2017), we used the pretrained GloVe
(Pennington et al., 2014) embeddings with a dimension size of 50. These
embeddings are easy to download and apply to our input tokens using
the Torchtext library described in section 6.1.7. The POS embeddings
are randomly initialised based on the POS tags, using PyTorch with a
dimension size of 25. The word embeddings and POS embeddings are
then concatenated and sent to the sequence layer. The embedding layer
also handles embeddings for labels and dependencies, which are both
randomly initialised using a normal distribution between 0 and 1, with
dimensions of 100 and 25, respectively.

Sequence layer

The sequence layer consists of a bi-directional LSTM (chapter 2) which
is ideal for working on sequences of inputs, in our case, sentences. The
input is comprised of the word embeddings concatenated with the POS
embeddings.

Hyperparameters

In machine learning, hyperparameters is a term that describes parameters
that are used to optimise the learning process of the model. A typical way
to decide the optimal values of hyperparameters is through trial and error,
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Figure 6.4: LSTM-ER as described in Miwa and Bansal (2016)

testing different combinations of values for the parameters, and finding
a combination that produces the best results, based on different metrics.
Miwa and Bansal (2016) tuned their hyperparameters on several different
development sets and tested a range of different settings before ending on
the settings shown in table 6.6. In this section we will explain some of
the different settings used in Eger et al. (2017). Eger et al. (2017) did less
hyperparameter tuning on the LSTM-ER model than on their other models,
citing the fact that the LSTM-ER has more regularisation techniques than
the others, namely scheduled sampling and entity pretraining, as the
reason why they deemed it less necessary for the LSTM-ER to be fine-
tuned. Eger et al. (2017) also mention that LSTM-ER took a lot longer to
train.

Dropout

In Miwa and Bansal (2016), dropout is applied to the embedding layer, and
to the layers for classifying entities and relations (Miwa and Bansal, 2016)
(Figure 6.4). In Eger et al. (2017) however, only the embedding dropout
and dropout for the relation classifying layer is applied, so we follow suit
and do the same. And because our model doesn’t include the final relation
classification layers, the only dropout we apply is the input dropout, which
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Figure 6.5: Development set accuracy and average loss per epoch from
training LSTM-ER on the original training set for 100 and 25 epochs.

is set to a value of 0.5 in Eger et al. (2017). This means that there is a 50%
chance for a given unit to be dropped. The PyTorch implementation of
dropout6, samples from a Bernoulli distribution as described in Srivastava
et al. (2014).

Training

This section describes the process of training our LSTM-ER on the training
set of persuasive essays from Eger et al. (2017), using the accuracy on the
development set as an indicator of the models performance. The results
we achieved were not as good as we had initially hoped, but there are a
number of factors that might help account for this discrepancy, which we
will discuss in greater detail in the next chapter. Where Eger et al. (2017)
decided to train their model for 100 epochs, judging from our loss and
accuracy, that seemed not to be necessary for our training. As figure 6.5
indicates, judging by how early the growth in accuracy on the development
set peters out, training for 100 epochs might only cause us to overfit the
model on the training set. In fact, our model seems to reach the same
level of score after only 25 epochs, as can be seen in figure 6.5. The fact
that our model requires fewer epochs is probably a side effect of only
using a simplified version of the model. In the original model, the label
embeddings are shared between the label classification task and the relation
prediction task, and training and fine-tuning them is a more complicated
task than in our case, where they are only used for the label classification
task.

6.2.2 NCRF++

NCRF++ (Yang and Zhang, 2018) is a toolkit written in Python that allows
you to implement different neural models for sequence labeling tasks. The
toolkit allows for easy modification of the model architecture through the

6https://pytorch.org/docs/stable/nn.html?highlight=dropout#torch.nn.Dropout
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Figure 6.6: Illustration of the architecture of the NCRF++ framework from
https://github.com/jiesutd/NCRFpp

use of configuration files, which means you can change the model setup
and hyperparameters virtually without coding anything yourself.

When used "out of the box", NCRF++ consists of three layers, a
character sequence layer, a word sequence layer and an inference layer.
The model architecture is illustrated in figure 6.6. The character layer and
word layers can be either CNNs or RNNs, or various subtypes of the two
architectures. The inference layer can be a Softmax layer or a CRF layer
(Yang and Zhang, 2018). It is also possible to exchange any of these layers
with your own implementations fairly easily. For our experiments we used
the default settings for the basic architecture, which means a CNN for the
character sequence layer, an LSTM in the word sequence layer, and a CRF
in the inference layer.

Hyperparameters

Because of the limited time available for hyperparameter search, we
restricted our search to different values of learning rates, number of epochs,
batch size and LSTM layers, as shown in table 6.7. In the end we
chose the settings that gave the best results on the various development
sets, displayed in table 6.8. All the models used a dropout of 0.5. For
the Norwegian data set we used GloVe embeddings trained on Norsk
Aviskorpus, and the NoWaC and NBDigital corpora. When training on
the English dataset we used GloVe 300 dimension embeddings trained on
Wikipedia and the Gigaword corpora.

Training

When training our NCRF models, we tried a number of different settings,
as displayed in table 6.7. The configuration that proved to give the best
performance among the limited settings we tested, had a number of epochs
set to 70, with a learning rate of 1e-3, batch size of 16, and 2 LSTM layers for
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Figure 6.7: Development set accuracy and average loss per epoch on the
Norwegian (left) and English (right) training sets. The model trained on
the Norwegian data had a learning rate of 0.001, batch size 8 and two
LSTM layers, and was trained for 70 epochs. The model trained on the
English data set had the same settings except for a batch size of 16. (The
configurations are listed in table 6.8)

the model trained on the English data set, and the same settings except for
a batch size of 8 for the model trained on the Norwegian data. (Although
the difference in accuracy between the model with a batch size of 8 and
the model with a batch size of 16 was not very large). (Table 6.8) When
looking at the graphs in figure 6.7, it seems clear that the model had a
much harder time learning the structures of the Norwegian data set, and
the model trained on the Norwegian data had a much lower performance
as a result. We will discuss the possible reasons behind this in more detail
in chapter 7.

Vocabulary

The Norwegian data set has a vocabulary that consists of 12935 unique
words. For the model trained on the Norwegian data set, using the
aforementioned GloVe embeddings trained on Norsk Aviskorpus and the
NoWaC and NBDigital corpora, 704 words were unknown, meaning they
did not occur in the corpora the embeddings were trained on. The English
version of the data set has a vocabulary size of 9779. When using the GloVe
embeddings trained on Wikipedia and the Gigaword corpora, there were
234 unrecognised words in our data set.

6.2.3 Multilingual BERT

Multilingual BERT is trained on the 100 largest languages on Wikipedia,
which includes both Norwegian and English. The model is available
through the huggingface/transformers library7, which provides an easy-
to-use interface to load and run the model.

7https://huggingface.co/transformers/multilingual.html#bert
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Hyperparameters

Again we were limited by time, but we tested a small set of different
hyperparameters to find the best model, shown in table 6.7, before ending
on the models with the highest performance, using the settings shown in
6.8.
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84 Minst B-Claim
85 like I-Claim
86 viktig I-Claim
87 er I-Claim
88 den I-Claim
89 som I-Claim
90 nasjonal I-Claim
91 myte I-Claim
92 : O
93 Den B-Premise:-1:Support
94 markerte I-Premise:-1:Support
95 på I-Premise:-1:Support
96 mest I-Premise:-1:Support
97 mulig I-Premise:-1:Support
98 brutalt I-Premise:-1:Support
99 vis I-Premise:-1:Support
100 brudd I-Premise:-1:Support
101 med I-Premise:-1:Support
102 den I-Premise:-1:Support
103 « I-Premise:-1:Support
104 uskyldige I-Premise:-1:Support
105 » I-Premise:-1:Support
106 og I-Premise:-1:Support
107 idealistiske I-Premise:-1:Support
108 hippietiden I-Premise:-1:Support
109 i I-Premise:-1:Support
110 California I-Premise:-1:Support
111 . O
112 Tilværelsen B-Premise:-1:Support
113 var I-Premise:-1:Support
114 nå I-Premise:-1:Support
115 ikke I-Premise:-1:Support
116 engang I-Premise:-1:Support
117 peace I-Premise:-1:Support
118 & I-Premise:-1:Support
119 love I-Premise:-1:Support
120 . O

121 Dertil B-Premise:-3:Support
122 kom I-Premise:-3:Support
123 det I-Premise:-3:Support
124 skremmende I-Premise:-3:Support
125 faktum I-Premise:-3:Support
126 at I-Premise:-3:Support
127 drapsmannen I-Premise:-3:Support
128 manipulerte I-Premise:-3:Support
129 både I-Premise:-3:Support
130 media I-Premise:-3:Support
131 og I-Premise:-3:Support
132 politiet I-Premise:-3:Support
133 : O
134 Han B-Premise:-1:Support
135 sendte I-Premise:-1:Support
136 stadige I-Premise:-1:Support
137 meldinger I-Premise:-1:Support
138 til I-Premise:-1:Support
139 aviser I-Premise:-1:Support
140 og I-Premise:-1:Support
141 TV-stasjoner I-Premise:-1:Support
142 . O
143 Og B-Premise:-2:Support
144 sørget I-Premise:-2:Support
145 selv I-Premise:-2:Support
146 for I-Premise:-2:Support
147 helt I-Premise:-2:Support
148 ualminnelig I-Premise:-2:Support
149 offentlighet I-Premise:-2:Support
150 omkring I-Premise:-2:Support
151 drapene I-Premise:-2:Support
152 han I-Premise:-2:Support
153 utførte I-Premise:-2:Support
154 . O
1 Filmen B-MajorClaim
2 er I-MajorClaim
3 rett I-MajorClaim
4 og I-MajorClaim
5 slett I-MajorClaim
6 glimrende I-MajorClaim
7 ; I-MajorClaim
8 spennende I-MajorClaim
9 , I-MajorClaim
10 omfattende I-MajorClaim
11 , I-MajorClaim
12 uhyre I-MajorClaim
13 velspilt I-MajorClaim

Table 6.2: Example of the different BIO-tags in the CoNLL format used in
Eger et al. (2017).
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0-0 1-1 2-2 3-2 4-3 5-4 6-6 7-7 8-8 9-9 10-10 11-11
0-0 1-1 2-2 3-3 4-4 5-5 6-8 7-7 8-9 9-11 10-11 11-13 12-14
0-0 1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8 9-9 10-10 11-11 12-12
0-0 1-1 2-2 3-3 4-4 5-4 6-6 7-6 8-7 9-8 10-9 11-10 12-11

Table 6.3: Output from running fast-align on the four sentences in table 6.4

Dette er nemlig ikke en gangsterfilm
med skuddvekslinger hvert tiende
minutt .

This is not a gangster movie with
gunfire every ten minutes .

Joda, skyting skjer, men det er
snakkingen som skaper dramatikken

Sure, shooting happens, but it ’s the
talk that drives the drama .

Regissør Ridley Scott forteller godt
og levende basert på en sann historie
.

Director Ridley Scott tells well and
vividly based on a true story .

Jeg skulle bare ønske at jeg ble litt
mer engasjert av den .

I just wish I was a little more engaged
with it .

Table 6.4: Example of four sentences translated from Norwegian to English,
formatted for Fast-Align.

0 57 sentence id="s0" parse_status="success"
0 13 tok id="t0" base="International" pos="NNP" nn="t1"
14 21 tok id="t1" base="tourism" pos="NN" nsubj="t5"
22 24 tok id="t2" base="be" pos="VBZ" cop="t5"
25 28 tok id="t3" base="now" pos="RB" advmod="t5"
29 33 tok id="t4" base="more" pos="RBR" advmod="t5"
34 40 tok id="t5" base="common" pos="JJ" ROOT="ROOT"
41 45 tok id="t6" base="than" pos="IN" prep="t5"
46 50 tok id="t7" base="ever" pos="RB" pobj="t6"
51 57 tok id="t8" base="before" pos="IN" dep="t5"

Table 6.5: Stanford parser output from parsing the sentence International
tourism is now more common than ever before. From left to right, the first
two numbers indicate the token position in the text, the next column gives
the token id, base indicates the lemmatised form of the token, pos is the
part of speech using Penn treebank tags, and the last column indicates the
dependency relation type of the current token as well as the token id of its
target token. The dependency graph of the sentence is shown in figure 6.3.
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Dimensions
Embeddings

Words 200
Part of speech tags 25
Dependencies 25
Entities 25

Intermediate layers
SequenceLSTM 100
TreeLSTM 100
Hidden Relation 100
Hidden Entity 100

Table 6.6: Experiment settings used in Miwa and Bansal (2016)

NCRF++
Learning rate 1e-1, 1e-2, 1e-3, 1e-4, 1e-5
Epochs 30, 50, 70
Batch size 8, 16
LSTM layers 1, 2

Multilingual BERT
Learning rate 1e-5, 1e-6
Epochs 10, 25

Table 6.7: Hyperparameter values used in our experiments with NCRF++
and BERT.

Training set Learning rate Epochs Batch size LSTM layers
NCRF++

English set 1e-3 70 16 2
Norwegian set 1e-3 70 8 2

Multilingual BERT
English set 1e-5 25 - -
Norwegian set 1e-5 25 - -

Table 6.8: Settings used for the final NCRF++ and Multilingual BERT
models
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Chapter 7

Results

In this chapter we give an overview of the results of the different
experiments we have run. Our goal was to investigate the possibilities
of using a model trained on a training set in English, on a dataset in
Norwegian. In the end we tried two different approaches. First we used
Google Translate and Fast-Align to translate our Norwegian test set into
English. Then we used the same techniques to translate the training and
test sets used in Eger et al. (2017) from English to Norwegian. This second
approach allowed for further evaluation through comparison, comparing
the results from models trained on the Norwegian and English versions of
the training data.

There are several potential error factors originating from using these
techniques to translate and project annotations, and we attempt to give an
overview of them at the end of this chapter. The fact that our test set is
comprised of text from a significantly different domain than the data the
model is trained on, is also very likely to be a large cause of lower scoring
results. We trained three different model architectures on the training sets
as described in the previous chapter, before evaluating them on our test
sets. In this chapter we begin by discussing the results of our experiments
on the English data set, then move on to the Norwegian set. Our model
architectures are the modified LSTM-ER, NCRF++, and Multilingual BERT,
as described in chapter 2.

7.1 Evaluation

Eger et al. (2017) use the evaluation metric described in Persing and Ng
(2016) where they measure the F1-score on how many complete argument
component matches are found. They use two different ranges of overlap
between predicted argument components and true components to define a
complete match; 100% overlap and 50% overlap. Before testing for overlap,
they apply some heuristics to make modifications to their predicted labels.
There are two main rules they follow when correcting the predicted labels.
First, every component must start with a "B"-tag. Second, a component
can only contain one component type. We applied the same modifications
to our own results. Their scores and the various models they tested are
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shown in tables 6.1. In addition to the scores used by Eger et al. (2017),
we give the results for label classification, when looking at each predicted
token label.

7.2 LSTM-ER

The first model we look at is our implementation of the LSTM-ER from
Eger et al. (2017). In this section we begin by looking at the results from
the model trained on the English dataset, then look at the results from the
model trained on the Norwegian dataset.

7.2.1 English test sets

The initial part of our experiments consisted of testing the model trained
on the original English persuasive essay data set on the original test set and
on the translated version of NorArg.

Persuasive essay test set

Our results on the persuasive essays test set using the LSTM-ER were
comparable to the scores achieved by Eger et al. (2017), on the task of
component identification (Table 7.18). Some more detailed information
about the scores for the different component types can be seen in the per
class scores in figure 7.1 and the confusion matrix in 7.2. The numbers the
two figures are based on can be seen in Table 7.1.

Figure 7.1 shows that the highest F1-score is on the I-premise tag,
followed by the score for the O tag. These two tags are also the most
frequent occurring tags in the dataset, which might explain why the model
is especially good at classifying them. For the B-premise and I-premise tags,
both their recall scores are higher than their precision scores, meaning that
the model managed to label most of the true I-premises and B-premises that
exist in the text, but in the process they mislabeled many other components.
This could mean that the model has learned that in most cases it is
beneficial to guess that a word is in a Premise component, simply because
premises are so prevalent in the data.

For both of the MajorClaim tags, precision is much higher than recall.
This might be explained by the fact that they do not occur very often in
the dataset, by definition at most once per essay. Because of this the model
rarely labels something as MajorClaim, because it is such a rare occurrence.
Looking at the confusion matrix in figure 7.2, 854 of the true I-MajorClaim
words are correctly tagged as I-MajorClaim while 601 are misclassified as I-
Claim, and 485 as I-Premise. Which intuitively makes sense, as the structure
of the three components is not necessarily very different. Premises and
claims can some times be very similar, and some times the only difference
between them is their role in a given paragraph (where a premise can
be thought of as a subclaim supporting the main claim, while it itself is
supported by other premises). Similarly for the B-MajorClaim tag, the main
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Figure 7.1: Recall, F1-score, precision, and percentage of total component
amount per component class. The model used is LSTM-ER trained on the
English training set, and the test set is the English version of the persuasive
essays test set.

Precision Recall F1-score Support
I-Premise 0.75 0.93 0.83 14487
O 0.95 0.63 0.75 7206
I-Claim 0.50 0.48 0.49 4493
I-MajorClaim 0.76 0.41 0.53 2101
B-Premise 0.65 0.79 0.71 809
B-Claim 0.45 0.42 0.44 304
B-MajorClaim 0.84 0.42 0.57 153
Micro average 0.74 0.74 0.74 29553
Macro average 0.70 0.58 0.62 29553
Weighted average 0.75 0.74 0.73 29553

Table 7.1: Results of testing LSTM-ER trained on the English training set on
the English version of the persuasive essay test set.

tag it is confused with is the B-Claim tag, followed by the B-Premise tag. For
the Claim tags, the models seems to confuse them with the corresponding
Premise tags. Roughly half of the time it chooses the wrong one, for both
B-claim and I-claim. This is likely due to the high amount of premise
components compared to all the other components in the dataset, as well
as the similarities between premises and claims, as mentioned earlier.

NorArg test set

Next we tested the LSTM-ER on our translated test set of screen reviews,
NorArg. This did not give close to the same results as testing on the
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Figure 7.2: Confusion matrix of the predicted and true labels for argument
mining components on the English persuasive essays test set. The model
used is trained on the English version of the training set for 25 epochs.

Precision Recall F1-score Support
I-Premise 0.32 0.90 0.47 5745
O 0.52 0.07 0.12 9284
I-Claim 0.26 0.07 0.11 3005
I-MajorClaim 0.00 0.00 0.00 733
B-Premise 0.21 0.48 0.29 345
B-Claim 0.15 0.04 0.06 210
B-MajorClaim 0.00 0.00 0.00 38
Micro average 0.32 0.32 0.32 19360
Macro average 0.21 0.22 0.15 19360
Weighted average 0.39 0.32 0.22 19360

Table 7.2: Results of testing LSTM-ER trained on the English training set on
the English version of NorArg.

persuasive essays set, which was not completely unexpected. There are
a number of potential error factors in the process of translating the texts
and projecting the annotations that might help to explain this large drop
in performance. Not to mention the difference in the domain of our set
and the persuasive essays. Judging by the results in figures 7.3 and 7.4, it
seems the model has not learned to distinguish components very well at
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Figure 7.3: Recall, F1-score, precision, and percentage of total component
amount per component class. The model used is LSTM-ER trained on the
English training set, and the test set is the English version of NorArg.

Figure 7.4: Confusion matrix of the predicted and true labels for argument
mining components on the English version of NorArg. The model used is
trained on the English version of the training set for 25 epochs.

all, and that it simply predicts the most common class in the set (I-Premise),
which can be more clearly seen in the confusion matrix in figure 7.4, and the
actual numbers in table 7.2. In fact, the premise tag is the most predicted
tag for every class; B-Premise is the most predicted tag when the gold label
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Precision Recall F1-score Support
I-Premise 0.75 0.85 0.80 12984
O 0.74 0.71 0.73 7511
I-Claim 0.46 0.40 0.43 4100
I-MajorClaim 0.58 0.56 0.57 2117
B-Premise 0.37 0.15 0.22 782
B-Claim 0.21 0.05 0.08 298
B-MajorClaim 0.25 0.06 0.10 152
Micro average 0.69 0.69 0.69 27944
Macro average 0.48 0.40 0.42 27944
Weighted average 0.67 0.69 0.68 27944

Table 7.3: Results of testing LSTM-ER trained on the Norwegian training
set on the Norwegian version of the persuasive essay test set.

is B-Claim or B-MajorClaim, and I-Premise for every other label. This is also
reflected in the very low macro F1-score it achieves as shown in table 7.2.

7.2.2 Norwegian test sets

For our second round of experiments using LSTM-ER, we translated the
English training set to Norwegian using the procedure described in chapter
6.

Persuasive essay test set

Our results on the Norwegian version of the Persuasive essay test set are
quite a bit worse than on the English version of the set, although they
were about as good as expected from what we saw during the training.
The scores resembled the relationship between development set scores and
test set scores from training and testing on the English version of the set.
There are many possible reasons for why the scores are lower than on the
English test set, the most obvious reason being that the translation and
annotation projection process is inaccurate enough to account for the loss
in performance after the translation.

One interesting aspect of the results in figure 7.5 and table 7.3, is that
all beginning labels(labels beginning with B-) have lower scores than on
the original test set. As can be seen in the confusion matrix of the results
in figure 7.6, O is the most common labeling of all the B-tags, except for
B-premise, where I-premise is the most frequent label assigned.

NorArg test set

The performance on the NorArg test set was, as in the previous experiment,
not very impressive. However, some aspects were slightly better in this
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Figure 7.5: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the Norwegian version of
the persuasive essays test set. This model was trained on the Norwegian
version of the persuasive essays set for 25 epochs.

Precision Recall F1-score Support
I-Premise 0.38 0.78 0.51 5828
O 0.56 0.34 0.42 8001
I-Claim 0.33 0.11 0.17 2779
I-MajorClaim 0.12 0.02 0.04 701
B-Premise 0.37 0.13 0.19 371
B-Claim 0.20 0.01 0.02 219
B-MajorClaim 0.00 0.00 0.00 39
Micro average 0.42 0.42 0.42 17938
Macro average 0.28 0.20 0.19 17938
Weighted average 0.44 0.42 0.39 17938

Table 7.4: Results of testing LSTM-ER trained on the Norwegian training
set on the Norwegian version of NorArg.

case than when we tested the English trained model on the translated
version of the set. But, as in the previous case, it seems to be the case that
the model simply predicts the most common component type (I-Premise),
as is reflected in the per class scores in table 7.4 and figure 7.7, and the
confusion matrix in figure 7.8.
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Figure 7.6: Confusion matrix of the predicted and true labels for argument
mining components on the Norwegian version of the persuasive essays test
set. The model used is trained on the Norwegian version of the training set
for 25 epochs.

7.3 NCRF++

The first of our comparison systems is the NCRF++ toolkit, described in
chapter 2. We follow the same procedure as with the LSTM-ER, and first
train a model on the English training set, then train another model on the
Norwegian dataset, before testing them on the corresponding test sets.

7.3.1 English test sets

As with the LSTM-ER, we begin our testing of NCRF++ by training our
model on the original persuasive essay training set, and testing the model
on the original persuasive essay test set, as well as on the English version
of NorArg.

Persuasive essay test set

NCRF++ gives similar results on the Persuasive essay test set to what
LSTM-ER did. The scores are slightly higher, but the most visible difference
seems to be that the recall is generally higher for most classes, as can be
seen in figure 7.9 and table 7.5 which shows F1-score, precision and recall
per class for the results on the test set. Another clear difference is that the
precision for the Claim tags has decreased, while recall has gone up slightly.
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Figure 7.7: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the Norwegian version
of NorArg. This model was trained on the Norwegian version of the
persuasive essays set for 25 epochs.

Figure 7.8: Confusion matrix of the predicted and true labels for argument
mining components on the Norwegian version of NorArg. The model used
is trained on the Norwegian version of the training set for 25 epochs.

Figure 7.10 shows a confusion matrix of results per class, and shows that
only 972 I-claim tags have been correctly classified, less than half of what the
LSTM-ER managed. The main component I-claim is confused with is still
the I-premise, with 2387 I-claim components being misclassified as I-premise.

63



Precision Recall F1-score Support
B-Claim 0.58 0.41 0.48 304
B-MajorClaim 0.63 0.60 0.62 153
B-Premise 0.76 0.78 0.77 809
I-Claim 0.60 0.38 0.46 4493
I-MajorClaim 0.55 0.69 0.61 2101
I-Premise 0.83 0.91 0.87 14487
O 0.83 0.82 0.83 7206
Micro average 0.78 0.78 0.78 29553
Macro average 0.72 0.70 0.71 29553
Weighted average 0.77 0.78 0.77 29553

Table 7.5: Results of testing NCRF++ trained on the English training set on
the English persuasive essay test set.

Figure 7.9: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the English version of the
persuasive essays test set. This model was trained using the NCRF++
toolkit, on the English version of the persuasive essays set.

NorArg test set

The results from testing NCRF++ on the English version of NorArg are
again quite similar to the results from LSTM-ER on the same set. Figure
7.11 and table 7.6 shows F1-score, recall, precision and percentage of total
components per class. The differences from the LSTM-ER results are more
or less the same as the differences on the persuasive essay test set in the
previous section, as can be seen in the confusion matrix in figure 7.12.
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Figure 7.10: Confusion matrix of the predicted and true labels for argument
mining components on the English version of the persuasive essays test set.
The model was trained using the NCRF++ toolkit on the English version of
the training set.

Precision Recall F1-score Support
B-Claim 0.23 0.02 0.03 187
B-MajorClaim 0.00 0.00 0.00 28
B-Premise 0.22 0.46 0.30 270
I-Claim 0.38 0.03 0.05 2557
I-MajorClaim 0.00 0.00 0.00 527
I-Premise 0.34 0.89 0.49 4245
O 0.58 0.20 0.29 6107
Micro average 0.37 0.37 0.37 13921
Macro average 0.34 0.32 0.27 13921
Weighted average 0.43 0.37 0.29 13921

Table 7.6: Results of testing NCRF++ trained on the English training set on
the English version of NorArg.

The model does worse than LSTM-ER on the claim tags, most of the time
assigning them the premise label. Although this model in general assigns
the premise label to every word, similar to what the LSTM-ER did.
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Figure 7.11: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the English version of
NorArg. This model was trained using the NCRF++ toolkit, on the English
version of the persuasive essays training set.

Figure 7.12: Confusion matrix of the predicted and true labels for argument
mining components from testing on the English version of NorArg. The
model was trained using the NCRF++ toolkit, on the English version of the
training set.

7.3.2 Norwegian test sets

The second part of our experiment using NCRF++ consists of training a
NCRF++-model on the Norwegian version of the persuasive essay training
set, and testing it on the Norwegian version of the persuasive essay test set,
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Precision Recall F1-score Support
B-Claim 0.11 0.07 0.09 298
B-MajorClaim 0.16 0.09 0.11 152
B-Premise 0.34 0.20 0.25 782
I-Claim 0.29 0.49 0.36 4100
I-MajorClaim 0.48 0.39 0.43 2117
I-Premise 0.74 0.74 0.74 12984
O 0.74 0.56 0.63 7511
Micro average 0.60 0.60 0.60 27944
Macro average 0.32 0.28 0.29 27944
Weighted average 0.63 0.60 0.61 27944

Table 7.7: Results of testing NCRF++ trained on the Norwegian training set
on the Norwegian version of the persuasive essay test set.

Figure 7.13: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the Norwegian version of
the persuasive essays test set. This model was trained using the NCRF++
toolkit, on the Norwegian version of the training set.

as well as on the original NorArg test set.

Persuasive essays

As with the LSTM-ER, the NCRF++ does worse on the translated version
of the persuasive essay test set than on the original. Figure 7.13 shows
the per class scores, and figure 7.14 shows the confusion matrix containing
predicted and true labels. The confusion matrix shows that this model
makes similar mistakes as the other models, confusing Claims and Premises,
and generally overestimating the number of Premises in the text.
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Figure 7.14: Confusion matrix of the predicted and true labels for argument
mining components on the Norwegian version of the persuasive essays test
set. The model was trained using the NCRF++ toolkit, on the Norwegian
version of the training set.

Precision Recall F1-score Support
B-Claim 0.04 0.00 0.01 212
B-MajorClaim 0.00 0.00 0.00 36
B-Premise 0.23 0.25 0.24 333
I-Claim 0.28 0.04 0.08 2629
I-MajorClaim 0.00 0.00 0.00 606
I-Premise 0.36 0.89 0.52 5130
O 0.41 0.13 0.19 6588
Micro average 0.36 0.36 0.36 15534
Macro average 0.15 0.15 0.12 15534
Weighted average 0.35 0.36 0.27 15534

Table 7.8: Results of testing NCRF++ trained on the Norwegian training set
on the NorArg test set.

NorArg

Again, as with the LSTM-ER experiments, the results from testing NCRF++
on the Norwegian version of NorArg are not very promising. The different
scores, shown in figure 7.15 and table 7.8.
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Figure 7.15: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing on the Norwegian version of
NorArg. This model was trained using the NCRF++ on the Norwegian
version of the training set.

7.4 Multilingual BERT

The final part of our experiments were conducted using our second
comparison system, Multilingual BERT. The tests were done in the same
as the previous two experiments, but because this is a multilingual model,
we also tested it cross-lingually. Meaning that we tested the model trained
on the English training set on the Norwegian test sets, and vice versa.

7.4.1 English test sets

As with the previous two models, we begin by testing on the English test
sets. What is different from the previous models however, is that we use
both the model trained on the English training set and the model trained
on the Norwegian training set.

Persuasive essays

Multilingual BERT did the best overall of all the models tested on this set.
But as can be seen in figure 7.17 and table 7.9, it struggles most with some of
the same tags as the other models, namely B-claim and I-claim. As is the case
in the previous experiments, the Claims are typically mistaken for Premises
or MajorClaims, as can be seen in the confusion matrix in figure 7.18.
As mentioned earlier, because of its capacity for understanding different
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Figure 7.16: Confusion matrix of the predicted and true labels for argument
mining components on the Norwegian version of NorArg. The model was
trained with the NCRF++ toolkit, on the Norwegian version of the training
set.

Precision Recall F1-score Support
B-Claim 0.55 0.55 0.55 305
B-MajorClaim 0.72 0.78 0.75 153
B-Premise 0.78 0.82 0.80 817
I-Claim 0.57 0.62 0.59 4511
I-MajorClaim 0.71 0.75 0.73 2101
I-Premise 0.88 0.88 0.88 14649
O 0.91 0.85 0.88 8107
Micro average 0.82 0.82 0.82 30643
Macro average 0.73 0.75 0.74 30643
Weighted average 0.82 0.82 0.82 30643

Table 7.9: Results of testing BERT trained on the English training set on the
English version of the persuasive essay test set.

languages, we tested the Multilingual BERT trained on the Norwegian
training set on the English sets. Judging by the results in figure 7.19 table
7.10 and the confusion matrix in figure 7.20 the results are worse than using
the English version of the training set, but comparable to the previous
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Figure 7.17: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the English
training set on the English version of the persuasive essays test set.

Figure 7.18: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the English training set
on the English version of the persuasive essays test set.

models’ results on the translated version of the persuasive essay test set.
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Figure 7.19: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the Norwegian
training set on the English version of the persuasive essays test set.

Figure 7.20: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the Norwegian training
set on the English version of the persuasive essays test set.

NorArg

The next test is on the translated version of NorArg. As with previous tests
on this set, the results are not very convincing, shown in figure 7.21, table
7.11 and in the confusion matrix in figure 7.22

What is interesting when testing the Multilingual BERT trained on the
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Precision Recall F1-score Support
B-Claim 0.32 0.13 0.19 305
B-MajorClaim 0.60 0.02 0.04 153
B-Premise 0.63 0.32 0.43 817
I-Claim 0.43 0.51 0.47 4511
I-MajorClaim 0.63 0.39 0.48 2101
I-Premise 0.75 0.90 0.82 14649
O 0.81 0.59 0.68 8107
Micro average 0.70 0.70 0.70 30643
Macro average 0.60 0.41 0.44 30643
Weighted average 0.70 0.70 0.68 30643

Table 7.10: Results of testing BERT trained on the Norwegian training set
on the English version of the persuasive essay test set.

Figure 7.21: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the English
training set on the English version of the NorArg test set.

Norwegian training set and tested on the English version of NorArg, is
that it does slightly better than the model trained on the English training
set, perhaps indicating that it has picked up some structures from the
Norwegian training set that were absent in the English training set. Results
from this test are shown in figure 7.23, table 7.12 and the confusion matrix
in figure 7.24.
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Figure 7.22: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the English training set
on the English version of the NorArg test set.

Precision Recall F1-score Support
B-Claim 0.21 0.05 0.08 205
B-MajorClaim 0.00 0.00 0.00 33
B-Premise 0.23 0.43 0.30 321
I-Claim 0.20 0.07 0.11 2933
I-MajorClaim 0.02 0.03 0.03 639
I-Premise 0.32 0.72 0.45 5343
O 0.51 0.22 0.31 8638
Micro average 0.34 0.34 0.34 18112
Macro average 0.22 0.22 0.18 18112
Weighted average 0.38 0.34 0.30 18112

Table 7.11: Results of testing BERT trained on the English training set on
the English version of NorArg.

7.4.2 Norwegian test sets

The last section of our Multilingual BERT experiments consists of, as with
the two previous models, testing on the Norwegian versions of our test
sets; the translated version of the persuasive essay test set, and the NorArg
test set.
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Figure 7.23: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the Norwegian
training set on the English version of the NorArg test set.

Precision Recall F1-score Support
B-Claim 0.43 0.01 0.03 205
B-MajorClaim 0.00 0.00 0.00 33
B-Premise 0.43 0.14 0.22 321
I-Claim 0.27 0.18 0.21 2933
I-MajorClaim 0.07 0.08 0.07 639
I-Premise 0.35 0.67 0.46 5343
O 0.60 0.36 0.45 8638
Micro average 0.40 0.40 0.40 18112
Macro average 0.31 0.21 0.21 18112
Weighted average 0.45 0.40 0.39 18112

Table 7.12: Results of testing BERT trained on the Norwegian training set
on the English version of NorArg

Persuasive essays

Multilingual BERT trained on the Norwegian data set is the model that
performed the best on the Norwegian version of the Persuasive Essays test
set, as can be seen in table 7.20. The specific scores for the test are shown in
figure 7.25 and table 7.13. The confusion matrix in 7.26 gives an overview
of the distribution of predictions from the experiment.

The results from Multilingual BERT trained on the English training set
and tested on this set can be seen in figure 7.27 and table 7.14. Again they
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Figure 7.24: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the Norwegian training
set on the English version of the NorArg test set.

Precision Recall F1-score Support
B-Claim 0.23 0.03 0.06 299
B-MajorClaim 0.00 0.00 0.00 153
B-Premise 0.35 0.18 0.24 788
I-Claim 0.51 0.54 0.52 4104
I-MajorClaim 0.64 0.62 0.63 2136
I-Premise 0.77 0.88 0.82 13094
O 0.82 0.71 0.76 8233
Micro average 0.73 0.73 0.73 28807
Macro average 0.48 0.42 0.43 28807
Weighted average 0.72 0.73 0.72 28807

Table 7.13: Results of testing BERT trained on the Norwegian training set
on the Norwegian version of the persuasive essay test set.

are better than may be expected, and show off the cross-lingual capabilities
of Multilingual BERT.
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Figure 7.25: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the Norwegian
training set on the Norwegian version of the persuasive essays test set.

Precision Recall F1-score Support
B-Claim 0.13 0.07 0.09 299
B-MajorClaim 0.22 0.08 0.12 153
B-Premise 0.22 0.29 0.25 788
I-Claim 0.36 0.41 0.39 4104
I-MajorClaim 0.70 0.23 0.34 2136
I-Premise 0.64 0.86 0.73 13094
O 0.77 0.44 0.56 8233
Micro average 0.60 0.60 0.60 28807
Macro average 0.43 0.34 0.35 28807
Weighted average 0.62 0.60 0.58 28807

Table 7.14: Results of testing BERT trained on the English training set on
the Norwegian version of the persuasive essay test set.

NorArg

Finally, we tested the various Multilingual BERT models on the Norwegian
version of our own test set, NorArg. The results from testing the
Multilingual BERT trained on the Norwegian training set can be seen in
figure 7.29, table 7.15 and the confusion matrix in figure 7.30.

While the Norwegian version of BERT did comparably well on this
corpus (although not very well at all), the model that did best in regards
to complete component identification, is somewhat surprisingly, the BERT
trained on the English training set, as shown in table 7.19. There can be
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Figure 7.26: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the Norwegian training
set, tested on the Norwegian version of the persuasive essays test set.

many reasons for this, perhaps the translation and annotation projection
removes some key structures in the translated Norwegian training set, that
are preserved in the English version, and enables to Multilingual BERT
trained on the English set to perform better. More details about the results
from the English trained version are shown in figure 7.31, table 7.16, and
the confusion matrix in figure 7.22
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Figure 7.27: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the English
training set on the Norwegian version of the persuasive essays test set.

Precision Recall F1-score Support
B-Claim 0.67 0.01 0.02 220
B-MajorClaim 0.00 0.00 0.00 39
B-Premise 0.56 0.20 0.29 380
I-Claim 0.21 0.17 0.19 2795
I-MajorClaim 0.11 0.16 0.13 701
I-Premise 0.40 0.61 0.48 5961
O 0.57 0.41 0.48 8800
Micro average 0.42 0.42 0.42 18896
Macro average 0.36 0.22 0.23 18896
Weighted average 0.45 0.42 0.41 18896

Table 7.15: Results of testing BERT trained on the Norwegian training set
on the Norwegian version of NorArg
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Figure 7.28: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the English training
seton the Norwegian version of the persuasive essays test set.

Figure 7.29: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the Norwegian
training set on the Norwegian version of the persuasive essays test set.
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Figure 7.30: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the Norwegian training
set on the Norwegian version of the persuasive essays test set.

Figure 7.31: Recall, F1-score, precision, and percentage of total component
amount per component class, from testing BERT trained on the English
training set on the Norwegian version of the persuasive essays test set.
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Figure 7.32: Confusion matrix of the predicted and true labels for argument
mining components, from testing BERT trained on the English training set
on the Norwegian version of the persuasive essays test set.

Precision Recall F1-score Support
B-Claim 0.24 0.05 0.09 220
B-MajorClaim 0.00 0.00 0.00 39
B-Premise 0.33 0.54 0.41 380
I-Claim 0.29 0.10 0.15 2795
I-MajorClaim 0.05 0.03 0.03 701
I-Premise 0.37 0.72 0.49 5961
O 0.46 0.28 0.35 8800
Micro average 0.38 0.38 0.38 18896
Macro average 0.25 0.25 0.22 18896
Weighted average 0.39 0.38 0.35 18896

Table 7.16: Results of testing BERT trained on the English training set on
the Norwegian version of NorArg.
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NorArg(ENG) Acc. C-F1
Models 100% 50%
Multilingual BERT (ENG) 0.34 0.07 0.30
Multilingual BERT (NOR) 0.40 0.00 0.28
LSTM-ER (ENG) 0.32 0.06 0.30
NCRF++ (ENG) 0.37 0.28 0.41

Table 7.17: Component overlap scores from the various models tested on
the English translated version of NorArg. (NOR) after a model name
indicates that the model was trained on the Norwegian training set, (ENG)
that it was trained on the English.

Persuasive Essays (ENG) Acc. C-F1
Models 100% 50%
Multilingual BERT (ENG) 0.82 0.69 0.77
Multilingual BERT (NOR) 0.70 0.16 0.60
LSTM-ER (ENG) 0.74 0.56 0.65
NCRF++ (ENG) 0.77 0.72 0.77

Table 7.18: Component overlap scores from the various models tested on
the English version of the Persuasive Essay test set. (NOR) after a model
name indicates that the model was trained on the Norwegian training set,
(ENG) that it was trained on the English.

NorArg (NOR) Acc. C-F1
Models 100% 50%
Multilingual BERT (ENG) 0.38 0.06 0.29
Multilingual BERT (NOR) 0.42 0.002 0.26
LSTM-ER (ENG) 0.43 0.01 0.16
NCRF++ (ENG) 0.36 0.02 0.20

Table 7.19: Component overlap scores from the various models tested on
the Norwegian version of the NorArg test set. (NOR) after a model name
indicates that the model was trained on the Norwegian training set, (ENG)
that it was trained on the English.

Persuasive Essays (NOR) Acc. C-F1
Models 100% 50%
Multilingual BERT (ENG) 0.60 0.12 0.54
Multilingual BERT (NOR) 0.73 0.17 0.54
LSTM-ER (NOR) 0.69 0.09 0.37
NCRF++ (NOR) 0.60 0.14 0.41

Table 7.20: Component overlap scores from the various models tested
on the Norwegian version of the Persuasive Essays test set. (NOR) after
a model name indicates that the model was trained on the Norwegian
training set, (ENG) that it was trained on the English.
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Chapter 8

Conclusion

This thesis has deal with the task of Argument Mining in Norwegian
text. We have created the first annotated data set for argument mining
in Norwegian: NorArg. In addition, we provide guidelines that make it
easier for future research efforts expand upon that dataset. We modeled
our guidelines on the guidelines provided by Stab and Gurevych (2017). To
assess the quality of our guidelines we provde inter-annotator agreement
scores based on a quality test set of 10 documents. Our scores reflect the
fact that identifying arguments is a complex task, and we hypothesize
that especially the choice of domain is very influential in how easy it is
to successfully detect arguments. How structured and organised a review
is differs greatly from the structure in a persuasive essay, for instance,
often depending on the style of the author. Details about various domain
differences are discussed more in detail in chapter 4.

The next part of this thesis consists of an experimental analysis of two
forms of cross-lingual learning techniques, which are evaluated on our
annotated dataset NorArg. The first technique, annotation projection, is
described in detail in chapters 5 and 6. In chapter 5 we describe the process
of translating our corpora using Google Translate and using Fast-Align
to project our annotations from the text in the original language to the
translated text. This process also includes many potential inaccuracies,
which are further analysed in chapter 5. The second cross-lingual learning
technique consists of using multilingual transfer learning by using a
Multilingual BERT model. The results from all our experiments are
discussed in detail in chapter 7. Overall, we find that Multilingual BERT
performs better than the other models. Even so, evaluation shows that
none of the models perform very well on our new dataset. As discussed
in chapter 7 there are probably many reasons for this, such as errors in
translation and projection annotation when using the translated versions
of the training and test sets and the fact that our training set is from a
domain that is significantly different from our test set. In addition, the task
of argument mining is a complex task that is challenging both to annotate
manually and to automate.

85



8.1 Future Work

When creating our dataset we included information about the relations
between components in the texts. The plan was to also create a system
that would include these, but due to an increased complexity in modeling
we decided to leave the relation analysis for future work. However, the
relations are already annotated and are available in NorArg, making it easy
to include them in potential future work.

As mentioned earlier, our thesis includes guidelines on how to annotate
arguments in review texts, making it easier to continue annotating
arguments in Norwegian reviews and expanding NorArg. The bottleneck
in NLP tasks is often the amount of data available, so this is something that
could improve the results of similar experiments greatly.

Lastly, because of the limited time and scope of the thesis, we did not
perform a very thorough hyperparameter search for our various models,
and could possibly have achieved better results if this had been done.
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