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A state-specific multireference coupled-cluster method based on Arponen’s bivari-

ational principle is presented, the bivar-MRCC method. The method is based on

single-reference theory, and therefore has a relatively straightforward formulation and

modest computational complexity. The main difference from established methods is

the bivariational formulation, in which independent parameterizations of the wave-

function (ket) and its complex conjugate (bra) are made. Importantly, this allows

manifest multiplicative separability of the state (exact in the extended bivar-MRECC

version of the method, and approximate otherwise), and additive separability of the

energy, while preserving polynomial scaling of the working equations. A feature of

the bivariational principle is that the formal bra and ket references can be included as

bivariational parameters, which eliminates much of the bias towards the formal refer-

ence. A pilot implementation is described, and extensive benchmark calculations on

several standard problems are performed. The results from the bivar-MRCC method

are comparable to established state-specific multireference methods. Considering the

relative affordability of the bivar-MRCC method, it may become a practical tool for

non-experts.
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I. INTRODUCTION

In this article, we demonstrate how Arponen’s bivariational principle1,2 (BIVP) can

be employed to derive a state-specific multireference coupled-cluster (MRCC) method for

electronic-structure theory, avoiding many of the problems associated with the currently

established state-specific methods, such as sufficiency conditions, non-commuting cluster

operators, and so on. The present proof-of-concept method is based on single-reference the-

ory, and uses a complete-active space (CAS) approach, but avoids, at least in principle, a

bias towards an arbitrary formal reference via an optional bivariational optimization. Thus,

the method is not a “genuine” multireference method, but should be nearly free of the prob-

lems associated with reference bias. We name the method the bivariational (state-specific)

multireference coupled-cluster method (bivar-MRCC). When reference optimization is in-

cluded, we name it the orbital-adaptive bivariational multireference coupled-cluster (bivar-

OAMRCC) method. In the same manner as standard single-reference coupled-cluster theory

can be viewed as an approximation to Arponen’s extended coupled-cluster (ECC) method,

we also obtain an extended version, bivar-(OA)MRECC. The bivariational approach allows

a manifestly multiplicatively separable state parameterization, automatically providing size-

consistency of the energy and computed properties, including size-intensivity of excitation

energies, whilst being of relative simplicity. Moreover, the bivariational MRCC ansatz should

be amenable to relatively straightforward mathematical analysis, e.g., a priori error analy-

sis, such as done previously for the ECC method.3 Hence, this approach has the potential

of being a powerful quantum chemical tool usable for the non-expert.

Arponen’s bivariational approach is top-down, starting with potentially different but ex-

act parameterizations for both a bra and a ket vector 〈Ψ̃| and |Ψ〉. The exact Schrödinger

equation is then obtained by requiring the bivariate Rayleigh quotient (or expectation value

functional) 〈Ψ̃|H|Ψ〉 / 〈Ψ̃|Ψ〉 to be stationary. Approximations are in turn obtained by trun-

cating the state parameters, i.e., a nonlinear Galerkin approach in the language of numerical

analysis.4 Mathematical statements of the convergence of the computed results can be made

from this top-down approach using basic results from non-linear functional analysis.3,4 We

stress that, while there are “two wavefunctions” in bivariational approaches, they form a

unique state approximation ρ = |Ψ〉 〈Ψ̃| / 〈Ψ̃|Ψ〉. Since this state is obtained variationally,

expectation values are obtained in a straightforward manner using the Hellmann–Feynman
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theorem.5 Equations for excited states and response theory are also readily formulated.

In his original analysis of conventional single-reference CC theory (and the introduction

of the ECC method),1,2 Arponen used the bivariational approach to write down an expec-

tation value functional which is today known as the coupled-cluster Lagrangian6–8 in the

quantum chemistry community. The latter term originates from the work of Helgaker and

Jørgensen who independently discovered this expression.6,7 Compared to Arponen’s formal-

ism, the conventional derivation of the CC Lagrangian can be claimed to be bottom-up:

Starting from the projected similarity-transformed Schrödinger equation, one realizes that

its approximate fulfillment via projection is a constrained optimization of the CC energy,

and that the corresponding Lagrangian can be conveniently written as an expectation value

using an auxiliary bra vector involving the Lagrange multipliers. Thus, in a sense, the bi-

variational point of view is now standard in quantum chemistry, but its power is not fully

utilized: the conventional view is very “ket centric”, while the bivariational top-down ap-

proach places equal importance to the bra and ket, the left and right Schrödinger equations,

and hence all state parameters. Indeed, for general bivariational methods, the standard

notion of a “projection manifold” is not meaningful, since the stationary conditions do not

decouple bra and ket Schrödinger equations. Finally, let us remark, that all current MRCC

theories are similarly focused on the ket side, being based on projections of a similarity

transformed Schrödinger equation (or the Bloch equation for state-universal theories). A

complete overview of existing state-specific MRCC approaches is beyond the scope of this

work. We direct the reader towards the excellent reviews by Köhn et al.,9 Lyakh et al.,10 as

well as the perspective article by Evangelista.11

The bivar-MRCC method resembles the complete-active space coupled-cluster (CASCC)

method pioneered by Oliphant, Adamowicz, and Piecuch.12–14 Indeed, the ket ansatz is

identical. However, whereas CASCC is based on the projection of the corresponding ket

Schrödinger equation, we instead provide an exact bra parameterization and appeal to

the BIVP. Moreover, the BIVP allows optimization of the formal reference by means of

non-orthogonal orbital rotations akin to the non-orthogonal orbital-optimized CC (NOCC)

method developed by Pedersen and coworkers.15 For systems with multireference character,

this may lead to significantly more compact wave function representations, in particular of

single-reference type.16,17 Care is taken so that both the bra and the ket vectors are sepa-

rable, and a balanced treatment of the model space (i.e., the CAS) is obtained for the bra
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and the ket.

We present first numerical benchmark calculations for the bivar-MRCC and bivar-

MRECC methods, performed with a full-configuration interaction (FCI) based pilot im-

plementation. As a multireference method should be be reasonably accurate for both single-

and multireference problems, we opted for an example which incorporates both, namely the

insertion of Be into H2, a standard example for testing novel multireference coupled-cluster

methods, since it is computationally feasible even for complicated methods.10,18,19 We also

performed numerical experiments on the dissociation of the HF, H8, and N2 molecules.

Whenever possible, we compare our results with MRCC calculations presented in the liter-

ature.

The article is organized as follows: In Section II we discuss the BIVP and its Galerkin

approximation. We outline how a bivariational method can be analyzed mathematically in

order to obtain a priori error estimates for the Galerkin approximations. In Section III we

introduce the bivar-MRCC method, including the bivariational optimization of the formal

reference. We discuss size-consistency in the sense of separability of the energy and the state

in Section IV, and prove that bivar-MR(E)CC is separable. In Section V we discuss our

implementation of the bivar-MRCC method, before we present some numerical results in

Section VI. Finally, in Section VII we present our conclusions and future perspectives.

II. THE BIVARIATIONAL PRINCIPLE

A complete mathematical exposition of the present material, including the exact infinite-

dimensional case, is out of scope for the present article, and will be presented elsewhere. The

current treatment is compatible with a finite-dimensional Hilbert space H , or alternatively

a bounded Hamiltonian H. Virtually all Hamiltonians of interest in molecular quantum me-

chanics are unbounded as they contain a kinetic energy term. On the other hand, whenever

one thinks of a finite-dimensional FCI model as “exact”, the present setting is sufficient.

A. Bivariate Rayleigh quotient

The BIVP, introduced by Arponen in his seminal coupled-cluster treatise,1,2 and also

studied by Löwdin around the same time,20 is a generalization of the Rayleigh–Ritz vari-
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ational principle to Hamiltonians H that are not necessarily self-adjoint, even if the most

important application is to these Hamiltonians. The approach introduces, in addition to the

usual ket vector |Ψ〉, the dual vector 〈Ψ̃| as a truly independent variable, since relaxing the

requirement H = H† makes the left and right eigenvectors independent. The starting point

is then the bivariate Rayleigh quotient

E (Ψ̃,Ψ) =
〈Ψ̃|H|Ψ〉
〈Ψ̃|Ψ〉

, (1)

which is stationary if and only if

H |Ψ〉 = E |Ψ〉 , 〈Ψ̃|H = E 〈Ψ̃| , 〈Ψ̃|Ψ〉 6= 0, (2)

where E = E (Ψ̃,Ψ). This is the bivariational principle. The basic idea is to introduce

potentially different approximations to 〈Ψ̃| and |Ψ〉, a flexibility which turns out to be

very useful. However, as the bivariate Rayleigh quotient is not below bounded, unlike the

usual variational Rayleigh quotient for a self-adjoint H, one cannot insert any trial bra-ket

pair into E and hope for a meaningful result. In Sec. II B we outline how bivariational

approximations can be made.

A potentially confusing aspect of the BIVP is the fact that we now have “two wavefunc-

tions”. However, the state formed is unique, i.e., it is a non-Hermitian rank-one density

operator ρ = |Ψ〉 〈Ψ̃| / 〈Ψ̃|Ψ〉. Since ρ is determined variationally, the Hellmann–Feynman

approach5 can be used to define expectation values of arbitrary observables A, i.e.,

〈A〉 ≡ Tr ρA =
〈Ψ̃|A|Ψ〉
〈Ψ̃|Ψ〉

. (3)

By introducing the time-dependent BIVP,2,21 we can take the leap to the time domain. The

bra and ket time-dependent Schrödinger equations are obtained as stationary points of the

action-like integral

S =

∫ T

0

〈Ψ̃(t)| (i∂t −H) |Ψ(t)〉 dt, (4)

where we have assumed, for simplicity, the normalization 〈Ψ̃(t)|Ψ(t)〉 = 1. This opens up

the route to not only response theory22 and the approximation of excited states,2,23 but also

real-time propagation of quantum systems far from the ground-state.24–27
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B. Parameterization maps and discretization

As mentioned, the bivariate Rayleigh quotient is not below bounded. In fact, even the

ground state is a saddle point. In lieu of the below boundedness, a parameterization of the

pair (Ψ̃,Ψ) must be made that can get arbitrarily close to the exact ground state.

Suppose that we are given a parameterization map χ : Ṽ ⊕V → H̃ ⊕H , where V is some

Hilbert space, and where H̃ (resp. Ṽ ) is the dual space of H (resp. V ), i.e., the space of bra

vectors. The map χ is assumed to be smooth and with a smooth inverse near a ground-state

pair (Ψ̃∗,Ψ∗), i.e., the parameterization is exact near the ground state. The map induces an

energy expectation value functional Eχ : Ṽ ⊕ V → C, with Eχ(ṽ, v) = E (Ψ̃(ṽ, v),Ψ(ṽ, v)),

which is smooth, and whose critical points are in one-to-one correspondence with the solu-

tions of Eq. (2) that can be reached with χ. In particular, the ground state is parameterized

by a point (ṽ∗, v∗) ∈ Ṽ ⊕ V . It follows that the Schrödinger equation and its dual can be

written: Find (ṽ∗, v∗) ∈ Ṽ ⊕ V such that

∂

∂ṽ
Eχ(ṽ∗, v∗) = 0,

∂

∂v
Eχ(ṽ∗, v∗) = 0. (5)

A bivariational approximation is now obtained by a Galerkin approach defined by projection

in the space V , i.e., we restrict Eq. (5) to the space Ṽd ⊕ Vd, where the subscript d is a

discretization parameter: Find (ṽd∗, vd∗) ∈ Ṽd ⊕ Vd such that

PVd
∂

∂ṽd
Eχ(ṽd∗, vd∗) = 0, PṼd

∂

∂vd
Eχ(ṽd∗, vd∗) = 0. (6)

Here, PVd is the projector onto Vd. In any Galerkin approach, it is assumed that any v ∈ V

can be approximated sufficiently well by the projections vd = PVdv ∈ Vd, i.e., ‖vd−v‖ → 0 as

d→∞, and similarly for the dual element. The example to keep in mind is that of V being

the space of cluster amplitudes (or operators), and Vd being a a single (S), double (D), etc.,

truncation. The limit d → ∞ corresponds to the untruncated limit (and also the basis set

limit in the infinite dimensional case). Typically, V consists of excitation amplitude vectors,

and Ṽ consists of de-excitation amplitude vectors.

C. Local strong monotonicity analysis

Several questions arise: First, does the discrete bivariational Schrödinger equation (6)

have a solution? Is this solution unique? As d → ∞, do the solution (ṽd∗, vd∗) and the

6



corresponding energy Ed = Ed(ṽd∗, vd∗) converge to the exact solution (ṽ∗, v∗) and energy

E∗ = Eχ(ṽ∗, v∗), respectively? For an approximation that is variational in the usual sense,

these questions are easily answered due to the below boundedness of the Rayleigh quotient.28

However, for a bivariational approximation an analysis must be made to obtain sufficient

conditions for convergence. In this section, which can be skipped on first reading, we outline

how this can be done, even if the actual error analysis for bivar-MR(E)CC is relegated to

future work.

The outline is extracted from an error analysis for Arponen’s ECC method obtained

by Laestadius and Kvaal.3,29 Under reasonable conditions the ECC method was shown to

be convergent, implying the same results for the standard coupled-cluster method. For an

analysis of standard CC without the BIVP, see the works of Rohwedder and Schneider.30,31

A key analysis tool for studying CC theory3,29–33 was that of local strong monotonicity4

of the flipped gradient F : Ṽ ⊕ V → Ṽ ⊕ V given by

F (ṽ, v) =

(
∂

∂v
Eχ(ṽ, v),

∂

∂ṽ
Eχ(ṽ, v)

)
. (7)

Local strong monotonicity can be rephrased as the Jacobian of F being positive definite at

the ground state. Flipping the gradient is motivated by the following: The simple gradient

of the original bivariate Rayleigh quotient E is not monotone, since every eigenvalue is a

saddle point. However, it can be demonstrated that flipping the gradient turns the ground-

state saddle point into something like a local minimum under reasonable conditions on the

Hamiltonian. Thus, it makes sense to consider Eq. (7) and find conditions on χ such that

local strong monotonicity is inherited.

For such an analysis, it is easiest to work with a parameterization in which the normal-

izations of the bra and ket are fixed. In the setting of ECC, the bra-ket pair is normalized

according to 〈Ψ̃|Ψ〉 = 〈Φ0|Ψ〉 = 1, where |Φ0〉 is the reference determinant in single-reference

theory.

When F is locally strongly monotone near the ground-state, Zarantonello’s Theorem3,4,29

on local form implies vd∗ → v∗ and ṽd∗ → ṽ∗ as d → ∞. The critical point formulation of

the Schrödinger equation immediately implies a quadratic error estimate,

|E∗ − Ed| ≤ C(‖v∗ − vd∗‖2 + ‖ṽ∗ − ṽd∗‖2), (8)

for some constant C, which holds for sufficiently large d, i.e., for sufficiently large Galerkin

subspaces Vd. We remark, that this is a local result. There may be solutions of the discrete
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equations that are not related to exact solutions, and the local convergence is only achieved

sufficiently far into the Galerkin sequence of spaces, i.e., for large enough d.

III. STATE-SPECIFIC MULTIREFERENCE FORMULATION

A. Bra and ket model spaces

As for all multireference methods, we need a specification of a model space H0 and an

external space Hext, together forming the computational N -electron space H = H0⊕Hext.

We take a standard complete-active space (CAS) approach to generating the model space28:

Given a collection of linearly independent spin-orbitals {ϕx}, a basis for the computational

(FCI) space H is generated by all possible N -electron Slater determinants formed by these.

The model space is spanned by a subset of these determinants defined as follows: we partition

{ϕx} into inactive spin-orbitals {ϕι}, active spin-orbitals {ϕp}, and secondary spin-orbitals

{ϕα}. In the model-space determinants, elements of {ϕι} are always occupied, those of

{ϕp} can be occupied and unoccupied, while elements of {ϕα} are always unoccupied, see

Fig. 1. Since the external space Hext is the orthogonal complement of the model space, a

determinantal basis if given by the model-space determinants determinants with at least one

spin-orbital replaced by an element in {ϕι} ∪ {ϕα}. These spin-orbitals are therefore called

external in this work.

As we are going to employ single-reference formalism, we partition the active spin-orbitals

as {ϕp} = {ϕi}∪{ϕa}, such that the formal reference |Φ0〉 is given by populating the elements

of {ϕι}∪{ϕi}, of which there are N in total. A single-reference cluster operator then excites

electrons from this set into the set {ϕa} ∪ {ϕα}. An internal cluster operator excites only

from {ϕi} to {ϕa}, while an external cluster operator excites at least one electron from {ϕι}

or into {ϕα}, i.e., at least one label is external.

The computational space is now generated by the set of spin-orbitals {ϕx} = {ϕι} ∪

{ϕi}∪{ϕa}∪{ϕα}. We do not assume that this set is orthonormal. Instead, we will assume

biorthogonality with the dual spin-orbitals that define the dual computational Hilbert space

H̃ = H̃0 ⊕ H̃ext. That is, we introduce dual spin-orbitals {ϕ̃x} = {ϕ̃ι} ∪ {ϕ̃i} ∪ {ϕ̃a} ∪

{ϕ̃α} that generate H̃0 and H̃ext, in the same manner as above. The number of functions

in each subset must match the number of elements in the corresponding primal subsets.
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ϕp

ϕx

ϕα

ϕi

ϕa

ϕιϕι

ϕ̃p

ϕ̃x

ϕ̃α

ϕ̃i

ϕ̃a

|Φ0〉〈Φ̃0|

FIG. 1. Illustration of the composition of the bra and ket single-particle spaces in terms of biorthog-

onal spin-orbitals, including the index conventions used in this work. The dashed lines indicate

the extent of the CAS. The bra and ket formal references are shown.

Biorthogonality means 〈ϕ̃x|ϕy〉 = δxy. The dual formal reference 〈Φ̃0| is defined by occupying

all the elements of {ϕ̃ι}∪{ϕ̃i}, from which we obtain 〈Φ̃0|Φ0〉 = 1. Indeed, we have in general

〈Φ̃µ|Φν〉 = δµν , where µ is a generic numbering scheme of the Slater determinant basis.

A remark on the relation between the dual and primal spin-orbital sets is natural at

this point. The space H̃ is the complex-conjugate space of H , and therefore {ϕ̃x} must

span the same single-particle space as {ϕx}. One set therefore uniquely determines the

other, and an orthonormal or partially orthonormal basis set is certainly one possibility.

However, as the (active) spin-orbitals are to be bivariationally optimized, which may result

in non-orthonormal spin-orbitals, it is convenient to keep the fully biorthogonal notation.

A general model space ket can be written

|Ψ0〉 =
∑
µ∈CAS

|Φµ〉 cµ, (9)

where µ ∈ CAS indicates that the sum is over the CAS determinant basis. Similarly, a

general model space bra can be written

〈Ψ̃0| =
∑
ν∈CAS

dν 〈Φ̃ν | . (10)

We note that 〈Ψ̃0|Ψ0〉 =
∑

µ∈CAS dµcµ = dT c, where we introduce matrix notation for the

amplitudes.
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B. Bra and ket parameterizations in Hilbert space

In the internally contracted MRCC (ic-MRCC) scheme,9–11 a general wavefunction |Ψ〉 ∈

H is written

|Ψ〉 = eTic-MRCC |Ψ0〉 , (11)

where Tic-MRCC =
∑

µ∈CAS T
(µ) is a general cluster operator whose components T (µ) are

single-reference cluster operators relative to the model-space determinant |Φµ〉. We note

that T (µ) is in general not unique, and that [T (µ), T (ν)] 6= 0. These are among the basic

problems of MRCC which we would like to avoid.

Suppose now that |Ψ〉 ∈ H has a nonzero component along the formal reference |Φ0〉.

We can then use single-reference CC theory to uniquely write |Ψ〉 = 〈Φ̃0|Ψ〉 exp(TSR) |Φ0〉,

where TSR = T0 + T is a single-reference cluster operator. The term T0 contains precisely

those excitations that stay within the model space, leaving T as the external excitations,

i.e., those which have at least one external label. Exploiting this, we obtain

|Ψ〉 = eT |Ψ0〉 , (12)

where 〈Φ̃0|Ψ〉 exp(T0) has been converted to a CAS expansion.

Similar to the above considerations, a general bra 〈Ω| with nonzero component along

〈Φ̃0| can be written 〈Ω| = 〈Ψ̃0| eS, where S is an external de-excitation operator (excitation

operator for bras). In the spirit of Arponen’s ECC method, we can postmultiply with the

invertible operator e−T to obtain the bra parameterization

〈Ψ̃| = 〈Ψ̃0| eSe−T . (13)

This is valid so long as 〈Ψ̃| eT |Φ0〉 6= 0, which puts a a very mild restriction on the exact

ground-state bra. We note that 〈Ψ̃|Ψ〉 = 〈Ψ̃0|Ψ0〉 = dT c.

This completes the specification of an exact parameterization map (Ψ̃,Ψ) = χ(s, t, d, c),

where s and t are the amplitudes of S and T , respectively. Here, the dependence on {ϕx} and

{ϕ̃x} is implicit in the determinantal basis. Plugging into the bivariate Rayleigh quotient,

we obtain the energy functional of bivar-MRECC,

Ebivar-MRECC(s, t, d, c)

= 〈Φ̃0|DC|Φ0〉
−1 〈Φ̃0|DeSe−THeTC|Φ0〉 ,

(14)
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where we introduced the CAS cluster operators C and (de-excitation) operator D. We

remark, that in Arponen’s ECC, a further coordinate change (t, s) = (t(s, s′), s) is made,

where s′ are the amplitudes of a cluster operator S ′ defined by 〈Φµ|S ′|Φ0〉 = 〈Φµ|eST |Φ0〉.

This is done in order to ensure a certain linkedness structure of the diagram series, and

also has the implication that the time-dependent Schrödinger equation takes the form of

a canonical Hamiltonian system.2,29,34 We will not further explore the ECC flavor of the

multireference ansatz here, but instead reparameterize Λ = eS − 1 to obtain the energy

functional of the bivar-MRCC method,

Ebivar-MRCC(λ, t, d, c)

= 〈Φ̃0|DC|Φ0〉
−1 〈Φ̃0|D(1 + Λ)e−THeTC|Φ0〉

= (dT c)−1dTK(t, λ)c,

(15)

where K(t, λ) = [K(t, λ)µν ] = [〈Φ̃µ|(1 + Λ)e−THeT |Φν〉] can be considered an effective CAS

Hamiltonian.

C. Truncation schemes

We briefly consider Galerkin schemes for the bivar-MR(E)CC method, i.e., cluster op-

erator truncations. The model space expansion coefficients c and d are in this work never

truncated. The untruncated cluster operators read

T =
∑
µ∈ext

tµXµ, Λ =
∑
µ∈ext

λµYµ, (16)

where µ ∈ ext denotes a general external excitation index. We first introduce the usual

truncation scheme in terms of external singles (S), doubles (D), etc., relative to the formal

reference. The result is the SD. . .K(n,m) truncation scheme, built from a CAS with n

electrons in m (spatial) orbitals, and external single and double excitations, etc., up to K-

fold excitations. This simple scheme is not sufficient for most multireference cases, and in

Sec. VI we show some illustrative numerical results.

In order to obtain a more balanced description for all model space states, in particular

when degeneracies are present, it is necessary that the cluster operators include excitations

out of all model space determinants.35 The simplest choice is the first-order interaction space

(FOIS)10,35,36 defined by all single and double excitations relative to the model space into
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the external space. Inclusion of the FOIS in the cluster operators ensures that computed

energies will be correct through second order in perturbation theory. This is so, because

the excitations in the FOIS are precisely those that are coupled to the model space H0

by two-body Hamiltonians. Thus, the FOIS consists of selected external doubles, triples,

quadruples, and so on. The resulting truncation will be denoted SD. . .K(n,m)FOIS. We

remark that the same approach is employed in the CASCC method and also simulates the

excitation manifold used in non-contracted MR methods.

D. Working equations

We proceed to discuss the stationary conditions of the bivar-MRCC energy. The equations

for the extended version are similarly obtained, and omitted here. Differentiation of Eq. (15)

with respect to the CAS amplitudes dµ and cµ yields, respectively, right and left eigenvalue

equations for the effective Hamiltonian matrix K = K(t, λ),

Kc = Ec, and KTd = Ed, (17a)

as well as the condition dT c 6= 0. Here, E = E(t, λ) = Ebivar-MRCC(λ, t, d, c) can, in the

regime of weak dynamical correlation, be taken to be the smallest eigenvalue. However, in

practice the ground-state solution may correspond to a higher eigenvalue; see Sections V

and VI. Without loss, we can assume that dT c = 1 at the solution.

Differentiation with respect to λµ gives a (λ-independent) equation for t,

Ωµ(t, d, c) := 〈Φ̃µ|De−THeTC|Φ0〉 = 0. (17b)

Finally, differentiation with respect to tµ gives a linear equation for λ,

Ω̃µ(λ, t, d, c) := 〈Φ̃0|D[e−THeT , Xµ]C|Φ0〉

+
∑
ν∈ext

〈Φ̃ν |D[e−THeT , Xµ]C|Φ0〉λν = 0.
(17c)

The t-equations (17b) and the λ-equations (17c) are similar in structure as the corresponding

equations in standard singlereference CC theory8.

E. Bivariational optimization of reference

We now describe the orbital-adaptive element of the bivar-MRCC method, i.e., the bivar-

OAMRCC formulation. In order to alleviate the arbitrariness of the formal bra and ket
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reference determinants, we introduce optional orbital rotations in the model space as bi-

variational parameters, i.e., we let the active occupied orbitals {ϕi} and {ϕ̃i} be variational

parameters in Ebivar-MRCC. The spin-orbitals are free to vary within the active space. Since

the singlereference CC ansatz is invariant under separate rotations of occupied and virtual

orbitals, it is sufficient to consider orbital variations of the form

ϕp −→
∑
q

ϕq(e
κ)qp, and ϕ̃q −→

∑
p

(e−κ)qpϕ̃p, (18)

where κ = [κpq] is a non-singular matrix with κij = κab = 0. The transformation preserves

biorthogonality of the single-particle functions.

The determinants transform as

|Φµ〉 −→ eκ̂ |Φµ〉 , and 〈Φ̃µ| −→ 〈Φ̃µ| e−κ̂, (19)

with

κ̂ =
∑
ia

κaic
†
ac̃i − κiac

†
i c̃a ≡ κ̂+ − κ̂−. (20)

Here, c̃q is the destruction operator associated with the dual spin-orbital ϕ̃q, and c†p is the

creation operator associated with ϕp. The non-zero matrix elements of κ are all independent,

and we can express the energy functional in terms of κ, given an arbitrary fixed “guess” of

orbitals, viz.,

Ebivar-OAMRCC(λ, t, d, c, κ−, κ+)

= 〈Φ̃0|DC|Φ0〉
−1 〈Φ̃0|D(1 + Λ)e−T e−κ̂Heκ̂eTC|Φ0〉 .

(21)

Assuming that the current basis is actually the solution, i.e., κ = 0 is the critical point,

we obtain stationary conditions from the first-order term of the Baker–Campbell–Hausdorff

(BCH) series of e−κ̂Heκ̂,

0 = 〈Φ̃0|D[(1 + Λ)e−THeT , c†ac̃i]C|Φ0〉 , (22a)

and

0 = 〈Φ̃0|D[(1 + Λ)e−THeT , c†i c̃a]C|Φ0〉 , (22b)

for every pair of (a, i).
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It should be noted that, in the full, untruncated bivar-MRCC model, all the matrix

elements of κ are redundant, since we are at the FCI limit by construction of the parame-

terization. (Note that single excitations are not removed in the spin-orbital optimization.)

Thus, reference optimization only makes sense in a truncated bivar-MRCC model. Moreover,

in the case where the truncation leads to an accurate dynamical correlation representation,

it can be expected that the orbital dependence is weak.

IV. SIZE-CONSISTENCY

We now discuss the size-consistency properties of bivar-MR(E)CC in terms of the concept

of additive and multiplicative separability. While not exactly equivalent to size-consistency,

the notion of separability is natural in the context of both variational and bivariational

approximations.

A. Additive and multiplicative separability

We begin with some general considerations of separability for the bivariational principle,

as briefly indicated by Arponen and coworkers in the context of ECC and conventional single-

reference CC.37 The notion of separability goes back to Primas, see Ref. 38 and references

therein. Consider the subdivision of the N -electron system, with Hilbert space H , into two

noninteracting subsystems of NA and NB electrons. We assume that H and its dual H̃

are generated by biorthogonal spin-orbital sets {ϕx} and {ϕ̃x}, respectively, which we for

simplicity take to be finite. We assume that the subsystem Hilbert spaces HA and HB and

their duals are generated by partitioning {ϕx} = {ϕAx } ∪ {ϕBx } and {ϕ̃x} = {ϕ̃Ax } ∪ {ϕ̃Bx },

respectively. We write HA and HB for the subsystem Hamiltonians, and let H = HA +HB

be the full supersystem Hamiltonian.

The exact problem is separable in the following sense: Consider bra and ket solutions of

the Schrödinger equation for HA and HB, i.e.,

HA |ΨA〉 = EA |ΨA〉 , HB |ΨB〉 = EB |ΨB〉 , (23)

and

〈Ψ̃A|HA = EA 〈Ψ̃A| , 〈Ψ̃B|HB = EB 〈Ψ̃B| . (24)
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These bras and kets are critical points of the energy functionals EA(Ψ̃,Ψ) = 〈Ψ̃|HA|Ψ〉 / 〈Ψ̃|Ψ〉

and EB(Ψ̃,Ψ) = 〈Ψ̃|HA|Ψ〉 / 〈Ψ̃|Ψ〉, and it is immediate that for the supersystem, |Ψ〉 =

|ΨA〉 ∧ |ΨB〉 and 〈Ψ̃| = 〈Ψ̃A| ∧ 〈Ψ̃B| (where ∧ denotes the antisymmetrized tensor product)

are exact solutions of

H |Ψ〉 = E |Ψ〉 , 〈Ψ̃|H = E 〈Ψ̃| , (25)

with E = EA + EB. In other words, we have a stationary point of the supersystem energy

functional E (Ψ̃,Ψ) = 〈Ψ̃|(HA +HB)|Ψ〉 / 〈Ψ̃|Ψ〉. We therefore obtain multiplicatively sepa-

rable bra and ket eigenvectors with additively separable energies, and we say that the exact

theory is separable with respect to the given subsystem partitioning. It is to be noted, that

symmetries such as total spin can be broken by the product state. Additionally, we have

not ruled out supersystem stationary states that are not separable in the above sense.

We define a given bivariational approximation to be separable with respect to a subsystem

partitioning if the critical points (Ψ̃A,ΨA) and (Ψ̃B,ΨB) obtained with the approximation

implies that (Ψ̃,Ψ) = (Ψ̃A ∧ Ψ̃B,ΨA ∧ ΨB) is a critical point for the same approximation

applied to the supersystem, with critical value E = EA + EB. In particular, the products

must lie in the supersystem approximation manifold. For a given method, there are details to

be filled in, such as the choice of model spaces for both the subsystems and the supersystem.39

The presently discussed concept of separability contains no notion of a process of frag-

mentation, i.e., the subsystems are chosen arbitrarily, and there is no residual interaction

between A and B to be nullified by distance. Separability is therefore different from size-

consistency, where the consideration along a reaction path determines the subsystems. If

only energies were considered, size-consistency is the more stringent criterion. On the other

hand, separability also requires the states to be multiplicatively separable, and is therefore

more stringent than mere additive separability of the energy. Finally, the present separabil-

ity concept does not take into account that in a practical setting, the spin-orbital subsets

are obtained from some mean-field procedure such as Hartree–Fock or CASSCF, and that

the resulting model spaces may not separate accordingly.

B. Size-intensivity of excited state-energies

For a separable method, expectation values of observables on the form O = OA + OB

are automatically additively separable due to the Hellmann–Feynman theorem. Moreover,
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excitation energies in the sense of linear-response theory are automatically size-intensive

for a large class of bra and ket parameterizations. A detailed study will be presented in

a future publication, and we here only sketch the outline of the argument valid for the

exact case, which highlights the role of separability. The starting point is the action-like

functional (4): Expansion of the state history (Ψ̃(t),Ψ(t)) around the ground state state

to second order gives an effective action-like functional for the first-order perturbations of

the bra and ket. The resulting equations of motion gives a linear-response type eigenvalue

problem for excitation energies and states.23,40 Applying the multiplicative separability of the

stationary state will yield an eigenvalue problem block diagonal with respect to excitations

within A and B, the blocks being the corresponding subsystem eigenvalue problems. Thus,

excitation energies on A and B separately will be exactly reproduced. Additionally, there

is a block corresponding to joint excitations on A and B, and its solution will be products

of individual excitations on A and B. Thus, excitation energies are exactly size-intensive.

An example method where this argument holds true is Arponen’s ECC.23 This should be

contrasted with equation-of-motion CC (EOM-CC), which is known to be equivalent to

linear-response excitation energies for conventional single-reference CC theory. Here, the

joint excitation energies for A and B are not additively separable,28 even if the separate

excitation energies on A and B are exactly reproduced in the supersystem.40

C. Separability of bivar-MRECC

We here demonstrate separability of the bivar-MRECC method. For simplicity, we

treat only the non-orbital adaptive case, but the results readily generalize. Consider non-

interacting subsystems A and B defined as previously. Additionally, the subsystem spin-

orbitals are subdivided according to {ϕSx} = {ϕSι }∪{ϕSi }∪{ϕSa}∪{ϕSα}, where S ∈ {A,B},

and we require {ϕι} = {ϕAι } ∪ {ϕBι }, {ϕi} = {ϕAi } ∪ {ϕBi }, {ϕa} = {ϕAa } ∪ {ϕBa }, and

{ϕα} = {ϕAα} ∪ {ϕBα }. The bra spin-orbitals are similarly partitioned.

A straightforward calculation shows that the product of subsystem bivar-MRECC bras

and kets become

|Ψ〉 = |ΨA〉 ∧ |ΨB〉 = eTA+TBCACB |Φ0〉 , (26a)

and

〈Ψ̃| = 〈Ψ̃A| ∧ 〈Ψ̃B| = 〈Φ̃0|DADBe
SA+SBe−TA−TB . (26b)
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It holds that CACB and DADB are CAS-only cluster operators with non-vanishing reference

components, and that TA+TB and SA+SB are external cluster operators for the supersystem.

Moreover, the tensor product of the FOIS for subsystems A and B form a subspace of the

supersystem FOIS, and a K-fold external excitation on each subsystem is a K-fold external

excitation in the supersystem. Thus, the product bra and ket lie in the supersystem bivar-

MRECC approximation manifold.

Since any excitation/de-excitation on B commutes with HA and vice versa, we obtain

〈Ψ̃A ∧ Ψ̃B|H|ΨA ∧ΨB〉
〈Ψ̃A ∧ Ψ̃B|ΨA ∧ΨB〉

=
〈Ψ̃A|HA|ΨA〉
〈Ψ̃A|ΨA〉

+
〈Ψ̃B|HB|ΨB〉
〈Ψ̃B|ΨB〉

. (27)

It then follows that (Ψ̃A∧Ψ̃B,ΨA∧ΨB) is a critical point for the supersystem bivar-MRECC

energy functional, and we conclude that bivar-MRECC is separable for noninteracting sub-

systems A and B.

D. Partial separability of bivar-MRCC

Regarding the non-extended bivar-MRCC method, the product of the subsystem bra

functions are not in the approximation manifold for the supersystem due to the linear

occurrence of ΛA and ΛB. Indeed, the product bra function is

〈Ψ̃A| ∧ 〈Ψ̃B| = 〈Φ̃0|DADB(1 + ΛA + ΛB + ΛAΛB)e−TA−TB , (28)

and the operator ΛAΛB contains higher excitations than do ΛA and ΛB.

However, the linearity in ΛA and ΛB in the subsystem bras implies that the kets are

in fact multiplicatively separable (just as conventional single-reference CC theory), and

that the energy is additively separable. Thus, |Ψ〉 = |ΨA〉 ∧ |ΨB〉 solves the amplitude

equations (17b) for H = HA + HB with energy EA + EB. Regarding the supersystem bra

solution, it can be shown that the solution to Eq. (17c) for the supersystem is on the form

Λ = ΛA + ΛB + ΛAB, where the mixed operator differ from ΛAΛB in general. However,

we obtain that for observables that separate as O = OA + OB, the operator ΛAB does not

contribute to the expectation value, which therefore becomes separable.

Turning to the supersystem CAS cluster operators C and D, we note that the operator

ΛAB in the previous paragraph does not contribute to the effective Hamiltonian, and we

obtain the separation

K(tA + tB, λA + λB + λAB) = KA(tA, λA)⊗ IB + IA ⊗KB(tB, λB), (29)
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where IA and IB are the identity operators on HA and HB, respectively. It follows that the

supersystem CAS cluster operators that solve Eq. (17a) become C = CACB and D = DADB.

We conclude that bivar-MRCC is almost separable: The energy and all separable observ-

ables are additively separable, and the ket is multiplicatively separable. The bra is almost

separable, in the sense that Λ = ΛA + ΛB + ΛAB, with ΛAB 6= ΛAΛB.

E. Formal comparison with CASCC

It is instructive to compare the bivar-MR(E)CC method to the CASCC method of

Adamowicz and coworkers, which can be defined in terms of the Lagrangian-like functional

ECASCC(λ, t, d, c)

= 〈Φ0|DC|Φ0〉−1 〈Φ0|(Λ +D)e−THeTC|Φ0〉 ,
(30)

and we have |Ψ〉 = eTC |Φ0〉 as in bivar-MR(E)CC, and 〈Ψ̃| = 〈Φ0| (Λ + D)e−T . This

functional, where orthonormal spin-orbitals are assumed, is derived from the projection of

the similarity transformed Schrödinger equation e−THeTC |Φ0〉 = EC |Φ0〉. While the ket

parameterization is identical to bivar-MRCC, the bra is quite different, and the approximate

separability as outlined for the bivar-MRCC method is lost. Furthermore, in CASCC the

d-amplitudes cannot be interpreted as the left-eigenvector of the effective Hamiltonian, even

if c is a right-eigenvector. Thus, while the CASCC method is cheaper and more straightfor-

ward to implement, we conjecture that the multiplicative structure of the bivar-MR(E)CC

methods for both the bra and ket will have a strong impact on computed properties, response

theory, and in particular excitation energies.

V. IMPLEMENTATION

An implementation of the working equations (17) for the bivar-MRCC and bivar-MRECC

methods requires solving a non-symmetric CI, a CC-type and, in the case where orbital-

adaptivity is included via Eq. (22), a mean-field problem. All these are coupled. The

simplest approach is an iterative approach, where these subproblems are solved in turn.

In our pilot implementation, determinant based FCI technology is used, i.e., wave func-

tions are expanded in a FCI basis, and matrix elements over general excitation operators

are decomposed into contributions of type 〈Φ̃µ|c†xc̃y|Φν〉 by inserting the FCI identity.41 All
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operations on FCI vectors are shared-memory parallelized, and expectation values are com-

puted by evaluating inner products. For simplicity, spin symmetry is exploited only in the

computation of matrix-vector products involving the Hamiltonian (also known as σ-vectors).

Up to four vectors of full length are kept in memory, and no efficient CC or CI partitioning

techniques are implemented,28,41,42 thus limiting the scope of applicability to performing

benchmark studies on small model systems. A more efficient implementation is currently

under development, and uses the fact that single-reference technology can be used to com-

pute the contributions that feature the same model space determinant (generated by D and

C operators) on the left and right hand side of Eq. (17) and Eq. (22), respectively. This

approach has been discussed for Mukherjee’s state-specific Mk-MRCC method with singles

and doubles (Mk-MRCCSD)43 and leads to an effective scaling of O(nMSn
2
occn

4
virt) for these

terms, with nMS being the number of model space determinants, and O(n2
occn

4
virt) the scaling

of the conventional CCSD method. The remaining contributions are very sparse and auto-

mated code generation together with tensor contraction technology can be used to compute

these efficiently.44–46 Regarding the orbital adaptive variants, efficient techniques as recently

discussed by Olsen and co-workers16,47,48 will be considered.

The external cluster operators used in the present implementation are defined by the

SD. . .K(n,m) and SD. . .K(n,m)FOIS schemes, see Section III C. A collective K-fold exci-

tation index µ ∈ ext is represented by the 2K-tuple

µ→ (ι
(µ)
1 , . . . , ι

(µ)
M ,i

(µ)
M+1, . . . , i

(µ)
K ,

a
(µ)
1 , . . . a

(µ)
K−M ′ , α

(µ)
K−M ′+1, . . . , α

(µ)
K ),

(31)

with ι
(µ)
1 > · · · > ι

(µ)
M , i

(µ)
M+1 > · · · > i

(µ)
K , a

(µ)
1 > · · · > a

(µ)
K−M ′ , and α

(µ)
K−M ′+1 > · · · > α

(µ)
K .

In Eq. (31), internal amplitudes (defined by M = M ′ = 0) are excluded. For computations

with nonzero inactive orbitals (i.e., M > 0), linear dependencies (e.g., induced by double

excitations containing active-active “spectator excitations”49,50) can occur in the amplitude

equation iterations, and are removed efficiently by orthogonalization (vide infra). In each

step of the mean-field optimization Eq. (22), the integrals with active indices are transformed

according to Eq. (18), ensuring that Xµ is (Hermitian) adjoint to Yµ at any step in the

computation.

In our current implementation, the maximum excitation rank is not limited, in principle

allowing for arbitrary order cluster operators. Excitations from the model space to the
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FOIS are implemented by redefinition in terms of excitations with respect to the reference

determinant. Thus, a bivar-MR(E)CCSD(n,m)FOIS cluster operator contains maximally

(n+ 2)-fold excitations with respect to the reference determinant.10 When the CAS is large,

the FOIS will add a considerable number of amplitudes. To reduce computational cost,

these excitations may be restricted according to the weight of the model space determinant

in Eq. (10) and Eq. (9), i.e., excitations out of a determinant with negligible weight in the

model space bra and ket may be neglected (cf. Section IV, SI for a numerical example).

The computation of the bivar-MR(E)CC wave functions and energies is performed iter-

atively (see Fig. 2): First, based on a (fixed) model space definition, the Hamiltonian is

diagonalized in this subspace to give the model-space wave functions (9) and (10). Based

on these CASCI vectors, the (initial) reference state and reference determinant are defined.

Using this definition, the doubles part of the t-amplitude vector is populated with second-

order Møller–Plesset (MP2) values. Then, the t- and λ-equations are solved iteratively. In

the case of bivar-MRECC, t and λ are optimized simultaneously. If orbital adaptivity is

considered, the orbitals are optimized either before or after solving the CC problem by solv-

ing Eq. (22), and the integrals are transformed into a basis where all κpq = 0.51 Finally, the

matrix K(t, λ) (Eq. (15)) is constructed within the model space and diagonalized to give the

updated model space vectors c and d. The amplitude vectors t and λ and the CI coefficients

are re-optimized until convergence, which is typically achieved in 3 to 10 (outer) iterations.

During iterations, the character of the reference wave functions Eq. (9) and Eq. (10) is

preserved by choosing those eigenvectors of Eq. (17a) that have the largest overlap with the

c and d vectors from the previous iteration. This avoids problems created by root flipping.

Thus, the initial choice immediately after the CASCI step defines the nature of the state that

is optimized. Similarly to the CASCC(sw) method52, the reference determinant is allowed to

change dynamically during iterations. Whenever this happens, the definition of the cluster

operators is reset and the amplitudes are reinitialized to MP2 values.

Convergence of the t- and λ-equations is accelerated by using a quasi-Newton-Raphson

update together with the direct inversion in the iterative subspace technique.53 If the set

of inactive orbitals is nonempty, the amplitude vectors are orthogonalized using Cholesky

decomposition of the metric (which is observed to be close to symmetric in most cases)

Sµν = 〈Ψ̃0|YµXν |Ψ0〉 ≈
∑

ρ LµρLνρ.
54–57 The amplitude update is then given by ∆tµ =

−
∑

ν L
−1
µνΩν(t, d, c)/∆ν , where ∆ν is the MPn energy denominator. The λ-amplitudes are
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diagonalize H in model space

• set model bra and ket states
• set reference bra and ket
• set external cluster operators
• initialize t2-amplitudes

• solve t-equations
• solve λ-equations
• solve κ-equations

solve K-eigenvalue problem

Φ0 or Φ̃0
changed?

energy
and residuals
converged ?

compute properties

re
se

t
iterate

FIG. 2. Iteration scheme for a bivar-MR(E)CC computation. After the initial diagonalization of H

in the CAS model space and the consequent initialization of bivar-MR(E)CC variables, the main

loop solves the various working equations in turn. If the reference changes after the K-matrix

diagonalization, the bivar-MR(E)CC variables need to be reset. The iteration truncates after the

energy changes less than a given tolerance and the residual norms are sufficiently small. See text

for further details.

updated similarly. The CI-expansion vectors are updated with aid of a minimum polyno-

mial extrapolation technique.58 In the bivar-MRECC case, a flexible microiteration scheme

is employed.

VI. NUMERICAL RESULTS

Accuracy is one of the most important requirements for a novel MRCC method. Other

(weaker) conditions, like size-consistency, favorable computational scaling, orbital invari-

ance, symmetry preservation, natural reduction to SRCC for single-reference cases, and
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tractable access to molecular properties have also been formulated.10 Moreover, being par-

tially motivated from mathematical arguments and based on an unconventional formulation

of quantum mechanics, the bivar-MRCC method should be tested with respect to physical

predictions, i.e., expectation values as defined in Eq. (3). For this reason, we did not only

investigate the accuracy of absolute energies, but also the quality of the actual density op-

erators ρ = |Ψ〉 〈Ψ̃| / 〈Ψ̃|Ψ〉 compared to FCI results. Furthermore we emphasize, that our

scope is not to present the performance of the method under ideal conditions, but rather

study the behaviour using set-ups typically found in everyday and sub-optimal applications,

e.g., by using different reference orbitals. To this end, absolute energies, spin-expectation

values, dipole moments and density operators have been computed using different orbital

sets and compared to FCI results. Whenever possible, computed quantities are compared

to the results of other MRCC methods found in the literature.

A. Error measures relative to full CI

Absolute energies are compared to the respective FCI values by evaluating the dif-

ference ∆EFCI = Tr(ρH)− EFCI. In order to quantify the accuracy of the density op-

erator, the Frobenius norm ||δρFCI||2F = Tr
(
(ρ− ρFCI)†(ρ− ρFCI)

)
has been calculated, a

standard coherence and entanglement measurement in quantum information theory.59,60

Small values of ||δρFCI||F indicate that ρ is a good approximation to the FCI state.

Since spin-symmetry can be directly related to the quality of the approximate bra and

ket,61 the total-spin contamination ∆S2
FCI =

(
Tr(ρS2)− S(S + 1)

)
/~2 is used as an ad-

ditional accuracy measure. Finally, the accuracy of dipole moments is expressed by

||∆mFCI||22 =
∑3

i=1(Tr(ρmi)−mi,FCI)2/(ea0)2, where mi denotes the i-th component of the

electronic dipole operator.

Statistical errors are computed using the following definitions: deviation ∆xi = xi − xFCI
i ,

mean deviation, ∆xi =
∑n

i=1 ∆xi/n, mean absolute deviation MAD(∆xi) =
∑n

i=1 |∆xi|/n,

maximum absolute deviation MAX(∆xi) = maxi=1,...,n |∆xi|, standard deviation STD2(∆xi) =
∑n

i=1(∆xi −∆xi)2/(n− 1)

and non-parallelity error NPE(∆xi) = maxi=1,...,n ∆xi −mini=1,...,n ∆xi.
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B. Model systems

A multireference method should be be reasonably accurate for both single-reference and

multireference problems. We therefore opted for studying the novel bivar-MR(E)CC meth-

ods using a model system providing both. The computational investigation of the potential

curve of the symmetrical insertion of Be into H2 has been described comprehensively18 and

serves as a standard example for testing novel MRCC methods, since it is computation-

ally feasible even for complicated methods.10,19 Moreover, it features a lot of problems for

quantum chemical methods like severe multireference character, level crossings and change

of leading determinant along the potential curve.9 Therefore the performance of the bivar-

MR(E)CC methods has mainly been tested using this system. Additionally, the chemical

bond-breaking of the hydrogen fluoride molecule in the ground state and the widely-used H8

model system35,62 have been studied using the bivar-MRCC(2,2)FOIS method yielding highly

accurate results. For example, H–F bond breaking with 12 points in 1.0 ≤ RH–F ≤ 5.0 a0

yielded MAD(∆EFCI) = 1.12 mEH, MAX(∆EFCI) = 1.27 mEH, STD(∆EFCI) = 0.06 mEH,

and NPE(∆EFCI) = 0.22 mEH (cf. Section II, SI). However, since the electronic structures

of HF and H8 are less complicated then the one of the BeH2 system, the results are not

discussed in detail here, but can be found in the Supplementary Information. Furthermore,

we computed the potential curve for the N2 dissociation using the bivar-MRCCSD(6,6)FOIS

model (MAD(∆EFCI) = 0.13 mEH, MAX(∆EFCI) = 0.19 mEH, STD(∆EFCI) = 0.03 mEH,

and NPE(∆EFCI) = 0.11 mEH, cf. Section IV, SI), yielding similarly accurate results as de-

scribed in Ref. 63 in the context of the MRexpT and SRMRCC methods, even for restricted

FOIS excitations. However, due to the small basis, combined with the large (400 determi-

nants) model space employed, these computations are a priori expected to be highly accurate

and therefore not discussed in detail. Finally, we conducted a numerical size-consistency test

consisting of two H2 molecules at quasi-infinite distance49 yielding size-consistent energies

(cf. Section IV D and SI Section V) within the thresholds employed in the calculations.

C. Technical details

In order to be able to compare to other MRCC methods and owing to computational

restrictions, the same parameters regarding geometry and basis set described in Refs. 19,
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52, 62, and 63 have been used for the BeH2 (10s3p/3s2p and 4s/2s basis), HF (DZV basis),

H8 (minimal basis) and N2 (6-31G basis) models, respectively. The (C1 as well as C2v)

CASSCF orbitals have been computed using the Bochum-suite of ab initio wave function

programs.57,64,65 The FCI computations are performed with a local program based on a quasi-

relativistic CI code66 and verified against the results presented in Ref. 19. If not otherwise

mentioned, energies and residuals were converged to thresholds 10−6 a.u. and 10−4 a.u.,

respectively. Amplitudes with absolute value smaller than 10−10 a.u. were neglected. If not

mentioned otherwise, FOIS excitations are not restricted. In all computations discussed

here, all electrons were correlated.

D. BeH2 full CI results

The symmetric insertion geometry of the system is parameterized using the distance x

from the Be atom to the H2 moiety, with x = 0 referring to the linear arrangement.19 (Note

that the molecule has been rotated in space, thereby interchanging b1 and b2 irreducible

representations.) For 0 < x ≤ 4 a0, the system comprises the symmetry of the C2v point-

group. The FCI energies for the first 10 states with MS = 0 are shown in Fig. 3. (The

mapping of the C1 FCI states Γ1,Γ2, etc., onto the corresponding states in C2v is given in

the SI.) Apparently, the nature of the C1 ground state changes along the insertion pathway.

The respective C1 ground state Γ1 (1A1 or 3B1 in C2v) is dominated by the appropriate

linear combinations of the following four determinants:

|Φ1〉 = |(1a1)2(2a1)2(1b1)2〉,

|Φ2〉 = |(1a1)2(2a1)2(3a1)2〉,

|Φ3,4〉 = |(1a1)2(2a1)2(3a1)1(1b1)1〉,

(32)

where the exponent denotes the (spatial) orbital occupancy. Concerning the cusp by x =

2.75 a0, the FCI wave function of the 1A1 state (CAS(2,2)SCF orbitals) constitutes ∼52%

of |Φ1〉 and ∼39% of |Φ2〉, making it more suitable for a single-reference based MRCC

description than a 50:50 mixture. Furthermore, there are small contributions from other

determinants, namely the 1A1-symmetric combinations of |(1a1)2(2a1)1(3a1)1(1b1)1(2b1)1〉

(∼2%) and |(1a1)2(2a1)2(1b2)2〉 (∼2%) which should be included in an accurate correlation

treatment (cf. Section III, SI).
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FIG. 3. FCI potential curves for the C2v-symmetric insertion of Be into H2. Note the region where

the 1A1 state becomes an excited state.

E. Absolute energies

The potential energy curve of the 1A1 state has been investigated using the bivar-

MRCCSD method with 2-in-2 (CAS(2,2)) and 4-in-6 active spaces (CAS(4,6)), based on

the respective CASSCF orbitals. The CAS(2,2) is spanned by the four determinants given

in Eq. (32), i.e., the 1b1 and 3a1 orbitals are chosen active. For CAS(4,6), the doubly occu-

pied 2a1 orbital and three virtual orbitals are added based on orbital energy36. The reference

wave functions for the bivar-MR(E)CCSD computations using the CAS(2,2) model space

have been constructed in the following way (The same procedure has also been applied for

the computations based on the CAS(4,6) model space): Diagonalizing both the Hamiltonian

and the K-matrix in this space yields four states, that in C2v transform as two 1A1, one 1B1,

and one 3B1 state. The initial values for the expansion vectors c and d were chosen such

that they correspond to the one of the two the 1A1 (CASCI) states being lowest in energy.

The reference wave functions were then updated during the iterative procedure, preserving

the 1A1 nature of the expansion vectors throughout by an overlap criterion (cf. Section V).

Note, that for 2.25 ≤ x ≤ 3.0 a0, this means that the optimization has been performed for

an excited state.

The results can be found in Fig. 4. The bivar-MRCCSD(2,2) results are close to the values

obtained with single-reference CCSD using |Φ1〉,19 indicating that these calculations lack

important dynamical correlation contributions from other determinants, in particular doubly

excited determinants relative to |Φ2〉.35 Including single- and double excitations for all four
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FIG. 4. bivar-MR(E)CCSD energy differences with respect to FCI values for the 1A1 state of BeH2

based on the respective CASSCF orbitals. The light gray background indicates the region where

1A1 is an excited state.

model space determinants (bivar-MRCCSD(2,2)FOIS) improves the treatment significantly

and decreases the maximum error to just under the “chemical accuracy limit” of 1 kcal/mol

(∼1.594 mEH). The results of the extended variant bivar-MRECCSD(2,2)FOIS are very

similar (cf. Table I), slightly superior in the multireference, but slightly inferior in the single-

reference region. The same findings have been described for the single-reference coupled

cluster and extended coupled cluster methods using the same model system.19 Increasing

the model space to include 225 determinants (CAS(4,6)), but neglecting the FOIS (bivar-

MRCCSD(4,6)) yields results similar to the four determinant model space variant with

additional FOIS (bivar-MRCCSD(2,2)FOIS).

All curves show a discontinuity at x = 2.75 a0 which can be traced back to the complicated

nature of the FCI wave function at this geometry, constituting an almost 50:50 mixture of the

determinants |Φ1〉 and |Φ2〉 as described in Section VI D. The effect of bivariational reference

optimization by orbital optimization at this point will be discussed in Section VI G.

A comparison to other MRCC methods using identical basis/geometry setup is shown

in Fig. 5. The ic-MRCCSD method uses a sophisticated internally contracted ansatz

where the cluster operator includes terms from all model space states, see Eq. (11).49,55 It

can therefore be assumed to be similar or more accurate than the single-reference ansatz

used in bivar-MRCCSD. The latest CASCCSD(sw) method is closest to our current bivar-

MRCCSD(2,2)FOIS method but much more accurate in the region where 1A1 is an excited
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state in C1.
52 This discrepancy might primarily be traced back to the different model

space reference wave function used. In test computations on a H8 model system, the

CASCCSD(sw) and MRCCSD(2,2)FOIS results where very similar, with a slight superi-

ority of MRCCSD(2,2)FOIS in the multireference region (cf. Section I, SI). Additionally,

the results using the established Mk-MRCCSD method67 are shown. However, being an

Jeziorski–Monkhorst type method50, a direct comparison is complicated, and we merely

note that the overall accuracy is good despite the instability in the region where 1A1 is

not the ground state. Finally, we also like to mention that the MRCCSD method from

Kállay, Szalay, and Surján68 (∆EFCI = 1.890 mEH at x = 2.75 a0) and the MRexpT

method from Hanrath et al.69 (MAD(∆EFCI) = 0.591 mEH, MAX(∆EFCI) = 1.693 mEH,

NPE(∆EFCI) = 1.663 mEH) are very accurate. However, the reported values are based on

SCF orbitals and/or use a different basis set and are therefore not shown here. Altogether,

most MRCC methods discussed, including the novel bivar-MRCCSD model, demonstrate

chemical accuracy, i.e., |∆EFCI| ≤ 1 kcal/mol for this model system.

F. Density operators

Absolute energies are not good indicators of accuracy in general, particularly when the

desired state is not the ground state. In Fig. 6, the energy differences of several bivar-
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MRCCSD(2,2)FOIS computations with respect to FCI values are shown. These compu-

tations differ only in the orbitals used for constructing the computational Hilbert space,

including the external space. Apparently, by using the “right” set of orbitals one can get

very close to and even below the FCI energy, in particular inside the region where the de-

sired state is not the ground state. Thus, in order to asses whether the right value has been

obtained for the right reason, a more reliable characteristic has to be used.
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FIG. 6. bivar-MRCCSD(2,2)FOIS energy differences with respect to FCI values for the 1A1 state

of BeH2 based on CAS(2,2)SCF orbitals optimized for different electronic states.

To this end, the Frobenius norm ||δρFCI||F of the difference density operator (cf. Sec-

tion VI A) of the 1A1 state has been computed for the bivar-MRCCSD(2,2)FOIS method

along the BeH2 potential curve using CAS(2,2)SCF orbitals optimized for different elec-

tronic states. This data is summarized in Tab. I. Additionally, values for the bivar-

MRECCSD(2,2)FOIS and bivar-MRCCSD(4,6) variants are shown for comparison.

The mean absolute deviations of both the bivar-MRCCSD(2,2)FOIS energy and density

errors computed over the entire potential curve using different orbitals are similar, but

the maximal absolute deviations differ significantly. Consider for example the errors at

x = 2.75 a0. While the energy error of the computation based on orbitals for 1B1 is very

small (0.358 mEH), the error in the density operator is rather large (0.206) when compared

to the errors obtained with 1A1 orbitals (1.547 mEH and 0.052). This can be resolved

by analysing the CAS(2,2)SCF wave functions: The 1B1 state is composed of the open-

shell determinants |Φ3〉 and |Φ4〉 (cf. Eq. (32)), while in 1A1, the weights of the closed-shell

determinants |Φ1〉 and |Φ2〉 are large. Thus, optimizing orbitals for the 1B1 (or 3B1) state has
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a significant impact on the 1A1 wave function without contaminating the overall symmetry

of the wave function.

Based on the density error analysis, it can thus be concluded that the energy errors of the

computations with orbitals optimized for 1B1 and 3B1 are unreliable. In contrast, the values

obtained with state-specific (1A1) and state-average (50:50 mixture of 1A1 and 3B1 states)

orbitals are considerably smaller, i.e., they represent the FCI state better. Considering

actual applications, we note that typically one of the latter two orbital sets will be used36 –

both of which have been demonstrated to be accurate for the right reason.

TABLE I. Comparison of energy and density operator error characteristics of the BeH2 poten-

tial curve computed with bivar-MRCCSD(2,2)FOIS based on CAS(2,2)SCF orbitals optimized for

different states. For comparison, bivar-MRECCSD(2,2)FOIS and bivar-MRCCSD(4,6) values are

presented in the last two rows.

Orbitals ∆EFCI (mEH) ||δρFCI||F

MAD MAX 2.75 a0 MAD MAX 2.75 a0

1A1 0.356 1.547 1.547 0.020 0.052 0.052

1A1 + 3B1
a 0.356 1.511 1.511 0.021 0.040 0.033

3B1 0.411 3.172 1.272 0.033 0.199 0.108

1B1 0.192 0.659 0.358 0.037 0.206 0.206

1A1
b 0.364 1.458 1.458 0.021 0.050 0.050

1A1
c 0.406 2.020 2.020 0.023 0.078 0.078

a 50:50 mixture
b bivar-MRECCSD(2,2)FOIS
c bivar-MRCCSD(4,6)

As a second measure for density operator accuracy, the spin-contamination ∆S2
FCI has

been computed. In the present implementation, only the symmetry [H,Sz] = 0 is exploited,

total-spin conservation is not enforced. However, using a qualitatively correct model-space

bra and ket is generally thought to be able to reduce the spin-contamination in the cor-

related wave function substantially.10 For all singlet states studied, the computed spin-

contamination was negligible with ∆S2
FCI � 10−3. Concerning the triplet 3B1 state, the er-

rors are relatively small for bivar-MRCCSD(2,2)FOIS computations (MAD(∆S2
FCI) < 0.02,
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MAX(∆S2
FCI) < 0.07, cf. Section III, SI) compared to the values discussed in the context

of single-reference CC methods.61,70,71 These errors decrease further with increasing active

space size (MAD(∆S2
FCI) < 0.01, MAX(∆S2

FCI) < 0.04 for bivar-MRCCSD(4,6)). Thus,

the errors in the expectation value of the total-spin operator induced by the coupled cluster

expansion used in the bivar-MRCC methods are, at least for this case, insignificant.

G. Orbital optimization

In the orbital-adaptive variant bivar-OAMRCC, active-active non-orthogonal orbital ro-

tations are introduced via Eq. (18). To investigate the effect of this mean-field orbital opti-

mization, test computations have been performed on the BeH2 system in the multireference

region (x = 2.75 a0) using the bivar-OAMRCCSD(2,2)FOIS and bivar-OAMRCCSD(4,6)

models. In all calculations the results have been found to be very close to the results

obtained without orbital optimization, i.e., below the convergence threshold. For the com-

putations using the small CAS(2,2) model space, this is due to almost vanishing gradient

norms at every iteration. Concerning the CAS(4,6) based computations, we have tested two

different iteration schemes, employing a different ordering of solving the mean-field and the

CC problem, respectively. The gradient norms are not small in this case and the results are

discussed in Section III in the supplementary information.

However, the insensitivity of the energy towards bivariational optimization of the refer-

ence may be due to the limited size of this system. The SD-FOIS truncation of the external

amplitudes is already very large for a six-electron system. Recall, that at the FCI limit all

orbital rotations are redundant. Moreover, the choice of the reference should play a major

role in general, since the conventional argument against MRCC methods based on single-

reference theory is its bias towards the formal reference. Thus, we conjecture that for larger

systems, in particular extended systems, orbital optimization will play a much larger role.

H. Molecular properties

To gain some insight into the accuracy of first-order properties computed with the bivar-

MRCC method, the dipole moments of the 1A1 state of BeH2 along the PES have been

computed using Eq. (3). The electronic dipole moment integrals were taken from a local
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version of the TURBOMOLE program package.72 The computed values are compared to the

corresponding FCI results by evaluating the error measure ||∆mFCI||2 (cf. Section VI A).

For comparison, (orbitally unrelaxed) single-reference CC dipole moments have been com-

puted using the CFOUR program package.73 The mean absolute and maximum absolute

deviations are depicted in Fig. 7, the individual values can be found in the SI. The coupled-

cluster with singles and doubles (CCSD) and coupled-cluster with singles, doubles, and

triples (CCSDT) dipole moments based on restricted Hartree-Fock orbitals are very accu-

rate for single-reference systems, but less accurate in the multireference region.74 The bivar-

MRCCSD computations improve upon the CAS(2,2)SCF reference values significantly, and

even outperform the RHF-CCSDT method in this example.
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FIG. 7. Error characteristics of the electronic dipole moment vector compared to FCI values for

the potential curve of the 1A1 state of BeH2.

VII. CONCLUSION

In this article, we have introduced a state-specific multireference coupled-cluster method

based on Arponen’s bivariational principle, the bivar-MRCC method. An extended version,

bivar-MRECC, was also discussed, similar to Arponen’s extended CC method. The bivar-

MRCC method is wholly based on singlereference theory, has modest complexity, and avoids

some of the problems associated with established multireference methods. For example, all
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cluster operators commute, and there is no need for sufficiency conditions as is needed in,

e.g., Mukherjee’s state-specific method. The method requires a formal reference much like

the CASCC method of Oliphant, Adamowicz, and Piecuch, but the bias can to an extent

be eliminated using bivariational optimization of the reference.

The bivar-MR(E)CC methods are demonstrated to be size-consistent in the sense of

additive separability of the energy under a partitioning of the N -electron system into non-

interacting subsystems. Moreover, bivar-MRECC is separable also in the sense that the

state is multiplicatively separable. For bivar-MRCC the separability is only approximate for

the bra. We expect this approximate separability for bivar-MRCC to give high accuracy of

excited states and response properties.

A pilot implementation has been described, and extensive benchmark calculations on

the insertion of a Be atom into H2 has been performed. Therein, the method has been

demonstrated to be very accurate, i.e., within the desired range of chemical accuracy, and

an analysis of the density- and total-spin operator shows that the state description is indeed

very accurate despite that the ansatz requires “two wave functions”. All in all, the bivar-

MRCC method seems to perform equally well as established state-specific MRCC methods

do. While the pilot implementation is based on full-configuration interaction methodology

to facilitate rapid development of a flexible program, a more efficient and optimally scaling

implementation has been outlined. Such an implementation will open up the possibility for

applications closer to the state-of-the-art, including transition metal chemistry and lumines-

cence phenomena.

The systems studied exhibited only weak dependence on the orbital rotations in the

working equations. We conjecture that for such small systems as were studied, the first-

order interaction space is sufficient to describe the majority of dynamical correlation, which

means that the bivar-MRCC state is near the FCI state, and in this limit the orbital rotations

are redundant. We furthermore conjecture that orbital rotations will play a larger role for

larger systems.

From the point of view of theory, the natural continuation of this work is the derivation

of response theory and theory for excited states, which the bivariational approach allows in

a relatively straightforward manner. Moreover, the time-dependent bivariational principle

combined with biorthogonal orbital-optimization allows an ab initio dynamics method suit-

able to, say, study molecules under the influence of intense laser pulses, charge migration,
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charge transfer, and other situations where the system evolves far away from the ground-

state. Multireference character of the resulting state can be expected to be significant, and

is a major challenge of state-of-the-art methods today.

The bivariational formulation of bivar-MRCC has an important advantage in that a

mathematical a priori error analysis is possible. The major challenge is finding the right

assumptions on the system Hamiltonian and model space to facilitate a monotonicity analy-

sis. If these assumptions are also reasonable in a wide range of situations, the bivar-MRCC

method gains a distinct advantage over other MRCC theories, for which few mathematical

results exist.

The modest complexity of the bivar-MRCC method allows extending the field of ap-

plication far beyond the simple benchmark calculations presented here, once an efficient

implementation is in place. We conclude that the bivar-MRCC method has potential to

become a useful and practical tool in many areas of quantum molecular sciences, also for

non-experts.
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20P.-O. Löwdin, J. Math. Phys. 24, 70 (1983).

21P. Chernoff and J. Marsden, Properties of Infinite Dimensional Hamiltonian Systems

(Springer, 1974).

22H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).

23J. Arponen, R. Bishop, and E. Pajanne, Phys. Rev. A 36, 2539 (1987).

24S. Kvaal, J. Chem. Phys. 136, 194109 (2012).

25T. Sato, H. Pathak, Y. Orimo, and K. Ishikawa, J. Chem. Phys. 148, 051101 (2018).

26T. Pedersen and S. Kvaal, J. Chem. Phys. 150, 144106 (2019).

27H. E. Kristiansen, Ø. S. Schøyen, S. Kvaal, and T. B. Pedersen, J. Chem. Phys. 152,

071102 (2020).

28T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley,

2002).

34



29S. Kvaal, A. Laestadius, and T. Bodenstein, “Guaranteed convergence for a class of

coupled-cluster methods based on arponen’s extended theory,” (2020), to appear in Mol.

Phys., arXiv:2003.06796 [physics.chem-ph].

30T. Rohwedder, ESAIM: Math. Mod. Num. Anal. 47, 421 (2013).

31T. Rohwedder and R. Schneider, ESAIM: Math. Mod. Num. Anal. 47, 1553 (2013).

32A. Laestadius and F. M. Faulstich, Mol. Phys. 117, 2362 (2019).
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van Wüllen. For the current version, see http://www.cfour.de.

74T. Lee and G. Scuseria, in Quantum Mechanical Electronic Structure Calulations With

Chemical Accuracy, edited by S. Langhoff (Kluver Academic Publishers, Dordrecht, 1995)

pp. 47–108.

37


	A state-specific multireference coupled-cluster method based on the bivariational principle
	Abstract
	Introduction
	The bivariational principle
	Bivariate Rayleigh quotient
	Parameterization maps and discretization
	Local strong monotonicity analysis

	State-specific multireference formulation
	Bra and ket model spaces
	Bra and ket parameterizations in Hilbert space
	Truncation schemes
	Working equations
	Bivariational optimization of reference

	Size-consistency
	Additive and multiplicative separability
	Size-intensivity of excited state-energies
	Separability of bivar-MRECC
	Partial separability of bivar-MRCC
	Formal comparison with CASCC

	Implementation
	Numerical Results
	Error measures relative to full CI
	Model systems
	Technical details
	BeH2 full CI results
	Absolute energies
	Density operators
	Orbital optimization
	Molecular properties

	Conclusion
	Acknowledgments
	Data Availability
	References


