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Chapter 1

Introduction

1.1 Organisation of the mammalian genome in space and
time

The 3-dimensional (3D) organization of the genome is paramount to the proper
regulation of gene expression during development and for tissue homeostasis.
Much of our knowledge of the genome however still depends on a one-dimensional,
linear, representation of a reference genome. It is now clear though that 3D
analyses of the genome enabled by development of wet-lab and computational
methods enhance the information content of genomic studies and give new
insights into gene regulation and disease mechanisms [1]. For example, genomic
characteristics identified and mapped onto a linear genome may be deferentially
organized in the 3D nucleus space; this may result in interpretations of these
features that are not visible in one dimension (Fig. 1.1). Since the first release of
the human genome sequence [2], endeavors have focused on interpreting genome
sequence by mapping elements regulating gene expression, histone and DNA
modifications, chromatin-modifying enzymes and transcription factor binding [3].
These efforts have been accompanied by studies aiming to identify the principles of
3D chromatin folding [1] using wet-lab and computational approaches developed
over the past two decades. Moreover, temporal analyses of the 3D genome aim
to provide a 4th dimension to the changes in genome architecture, where the
4th dimension is time [4, 5]. This thesis addresses computational approaches
to model the human genome in 3D (Paper I) and new fundamental aspects of
higher-order chromatin conformation during stem cell differentiation (Papers
II and III).

1.1.1 Chromosome territories

Increasing evidence over the past two decades indicates that the 3D organization
of mammalian genome in the interphase nucleus is not random. In interphase,
the highest level of genome architecture is in the form of chromosome territories,
a view already proposed by Rabl in 1885 [6]. According to this model, each
chromosome preferentially occupies a distinct space and volume in the nucleus [6,
7] (Fig. 1.2). The concept of chromosome territories relies on the view that prox-
imity, or contact frequency, of chromosomal regions is higher within chromosomes
(these are cis or intra-chromosomal interactions) than between chromosomes
(trans or inter-chromosomal interactions). Individual chromosome territories
can be microscopically detected using fluorescent oligonucleotide probes (some-
times called chromosome paints) coupled with fluorescent in situ hybridization
(FISH; section 1.2.1) [7, 8]. Chromosome territories can also be observed using
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1. Introduction

Figure 1.1: 3D analysis of the genome enhances the information content of
genomic analysis. Hypothetical genome characteristics (e.g. histone modifica-
tions, or transcription factor binding sites) mapped on a one-dimensional (linear)
genome only reveal distinct localizations. However, mapping the features on a
3D representation of the genome, e.g. generated by computational modeling,
provides information on their radial (center-to-periphery) positioning.

chromosome conformation capture methods and by computational modeling of
the 3D genome (sections 1.2.2 and 1.4) [9, 10]. The positioning of mammalian
chromosomes relative to other chromosomes and to the nuclear lamina, at the
nuclear periphery, is well conserved between cells and cell types, although some
variation exists [11, 12]. For example, chromosome 18 is consistently more pe-
ripherally located than chromosome 19 both in mouse and human cells [13]. As
addressed later, the association of specific chromosome regions with the nuclear
lamina plays a role in the radial positioning of the genome [14, 15], and is likely
a key factor in the overall sub-nuclear spatial placement of chromosomes.

1.1.2 Compartments

The next hierarchical level of genome organization is compartmentalization.
Within chromosome territories, chromatin can be partitioned into two multi-
megabase (Mb) sized ‘A’ and ‘B’ compartments [16]. This form of segmentation
of the genome is detectable from the analysis of genome-wide 3C (a technique
called Hi-C) and is described in section 1.3 (see also Fig. 1.3 below). Inasmuch
as chromosome territories, the concept of compartments relies on the observation
that genomic loci within a compartment contact each other more frequently than
between compartments (Fig. 1.2).

2



Organisation of the mammalian genome in space and time

Figure 1.2: 3D chromatin organization in the nucleus. (A) Hierarchical organi-
zation of chromatin, into chromosome territories, A and B compartments and
within compartments, topological domains such as TADs containing chromatin
loops, bringing e.g. enhancers and promoters in proximity. Loop formation
involves CTCF and cohesin proteins (see main text). (B) Topological domains
such as TADs can display distinct spatial associations with other domains be-
tween cells in a population, or between time-points in a time-series experiment.
(C) Interactions of chromatin with the nuclear lamina via a LAD, and with the
nucleolus via NADs. Both LADs and NADs are heterochromatic, suggesting
that the nuclear lamina and the nucleolus serve as a preferred anchor sites for
heterochromatin domains.

A compartments contain mainly open, gene-rich and transcriptionally active
parts of the genome marked by post-translational histone modifications typical for
active genes, such as histone H3 lysine 4 trimethylation (H3K4me3), H3K36me3,
H3K9 acetylation (H3K9ac) and H3K27ac [16]. A compartments are therefore
largely euchromatic. B compartment chromatin is in contrast more compact
or closed, gene-poor, transcriptionally silent and marked by repressive histone
modifications such as H3K9me3 and H3K27me3 [16]; B compartments are
therefore overall heterochromatic.

Based on high-resolution chromosomal contact maps derived from Hi-C data
(section 1.2.3), combinations of histone modifications (chromatin states) and
DNA replication profiles, A and B compartments have been further classified
into six subcompartments (A1, A2, and B1, B2, B3, B4) [16]. A1 and A2
are transcriptionally active subcompartments with general characteristics of A
compartments. Nonetheless, A1 and A2 differ by their DNA replication timing,
where A1 finishes replicating at the beginning of S phase whereas A2 continues
replicating until the middle of S phase. A2 exhibits more heterochromatin fea-
tures compared to A1, such as H3K9me3 and adenine-thymine (AT)-rich DNA
sequences, and accommodates longer genes. B compartments can be subcatego-
rized to 4 subcompartments [16]. Subcompartment B1 consists of facultative
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1. Introduction

Figure 1.3: Hi-C contact matrices shown at different scales reveal the main fea-
tures of hierarchical 3D genome conformation, including chromosome territories,
compartments, domains or TADs, and chromatin loops within TADs. Modified
with permission from [17].

heterochromatin marked by the Polycomb histone modification H3K27me3 and
replicates in mid S phase. B2 contains pericentric heterochromatin associated
with both the nuclear lamina and the nucleolus, whereas B3 is enriched at
the nuclear lamina but not around nucleoli. This shows that chromatin in B2
compartments interact pericentric lamins and chromatin in B3 compartments
interact with lamins at the periphery. Both B2 and B3 subcompartments start
replication in late S-phase. B4 is a special type of subcompartment with a
specific chromatin pattern observed only in chromosome 19, containing ∼47%
of KRAB-ZNF superfamily genes [16].

1.1.3 Toplogically Associating Domains

Within A and B compartments, smaller domains of sub-megabase size on average
harbor a high density of chromosomal contacts, more so than between such
domains (Fig. 1.2A). These domains have been reported as topologically associ-
ating domains, or TADs [18–21]. Like A/B compartments, TADs are defined
computationally as genomic domains along the Hi-C matrix diagonal which
exhibit high interaction frequencies within them compared to the interaction
frequency between them (Fig. 1.3ii and iii) [18]. Average TAD size ranges
from tens of kilobases (kb) to 1-2 Mb with a median size of ∼880 kb [18] (Fig.
1.3iii). TADs have well defined borders (or boundaries) along the linear genome
(Fig. 1.3), which are enriched in binding sites for cohesin and the chromatin
insulator protein CCCTC-binding factor (CTCF) [18]. TAD structure is also
well conserved between cell types [18, 20], as is their linear position along the
genome, not only between cell types [22]. These observations suggest that TADs
may represent fundamental units of 3D genome organization.

A process of chromatin ‘loop extrusion’ has been proposed as a likely mecha-
nism of TAD formation [23] (Fig. 1.2A). There, a loop is formed by chromatin
extrusion through a cohesin ring until the extrusion process is stopped by a
‘barrier’ on chromatin, namely CTCF proteins bound to CTCF motifs that
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lie in a convergent orientation (facing each other inward), which stops loop
extrusion [24]. I address the loop extrusion model of chromatin folding later in
this Introduction. A loop extrusion mechanism of TAD formation agrees with
experimental data where some TADs show boundaries enriched in cohesin and
CTCF motifs in a convergent orientation [24]. Interestingly, inversion or deletion
of CTCF sites in TAD boundaries weakens (i.e. tends to erase) these boundaries
[25, 26]. Removal of the cohesin loading factor NIPBL [27], or depletion of the
cohesin subunit RAD21 [28], also results in weak TAD boundaries, emphasiz-
ing the importance of cohesin in the formation and maintenance of at least a
proportion of TADs. Of note, the concept of loop extrusion as a mechanism of
TAD formation is related to, but should not be confounded by the process of
chromatin loop formation inside TADs, bringing, for example, enhancers and
promoters together to regulate gene expression within TADs (Fig. 1.2A).

TADs have long been perceived as key features of genome organization [29].
Today however, advancements in 3D genome analyses, and the emergence of
high-resolution Hi-C data enabled by very deep sequencing, tend to challenge
the TAD definition [29]. TADs now tend to be more conservatively defined as
computationally defined blocks of chromosomal interactions that can be observed
along the diagonal of a Hi-C matrix (Fig. 1.3ii and iii). Therefore, in this thesis,
I use for sake of simplicity the term ‘TADs’ for genomic segments defined as
TADs by TAD-calling algorithms [30].

TADs marked by convergent CTCF motifs at their boundaries and formed by
loop extrusion are also called ‘loop domains’ [28]. Loop domains display a high
density of interactions inside the loop, are relatively conserved between cell types
and can be detected in high-resolution Hi-C contact maps by an interaction
point at the summit of the domains in Hi-C maps [16] (Fig. 1.3iv; green circles).
Other domains, which are typically not marked by CTCF at boundaries, and
which interact with other domains, are referred to as ‘compartmental domains’
[29]; both domain types have been proposed to explain the basis of mammalian
3D chromatin organization [29].

1.1.4 Lamina Associated Domains

The mammalian nucleus is delineated by the nuclear envelope, which consists of
an outer and inner nuclear membrane, nuclear pore complexes, and subjacent
to the inner membrane, facing chromatin, the nuclear lamina [31] (Fig. 1.2C).
The nuclear lamina is a meshwork of polymers of intermediate filaments called
lamins. A-type lamins are composed of lamins A and C (also called lamin
A/C), splice variants of the LMNA gene, and B-type lamins (lamins B1 and
B2), encoded by the LMNB1 and LMNB2 genes respectively [31]. The nuclear
lamina provides mechanical support to the nucleus and anchors chromatin at
the nuclear periphery, where it has been shown to be involved in the regulation
of DNA replication and transcription in space and time [32]. Specific chromatin
domains are tethered to the nuclear lamina through A- and B-type lamins at
the nuclear periphery via lamina-associated domains (LADs) [33] (Fig. 1.2B).
LADs have been identified by chromatin immunoprecipitation (ChIP) of lamins
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1. Introduction

[34] and by DNA adenine methyltransferase identification (DamID), a proximity
DNA labeling approach [35], each followed by massive parallel sequencing.

Both methods concur in that ~1000-1500 LADs can be identified in mouse
and human cells, with sizes of 10 kb to 10 Mb [32]. LADs are mainly gene-
poor domains, with 2-3 genes/Mb compared to 8 genes/Mb on average in
the human genome. LADs consist of molecular signatures typical of silent
heterochromatin: they harbor repressive histone modifications such as H3K9me2
and H3K9me3, and H3K27me3 at their border [36, 37]. LADs overlap with
late-replicating regions [38], a timing similar to the replication timing of B2
and B3 compartments [39]. Thus, LADs and associated proteins (which include
transcriptional repressors) constitute a repressive compartment at the nuclear
periphery [40] and are considered to be a general feature of genome organization
[32, 41].

Two types of LADs have been identified across studies and irrespective of
method. Constitutive LADs (cLADs) are consistently associated with the nuclear
lamina across cell types; they are strongly heterochromatic, gene-poor and harbor
long interspersed DNA elements (LINEs, long terminal repeats widespread along
the genome) [32]. cLADs are overall conserved between mouse and human cells
in their relative genomic position [41] and have been proposed to be a genomic
backbone anchoring chromosomes at the nuclear periphery [32]. In contrast,
facultative fLADs (also called variable vLADs) are by definition more variable
between cell types and species; they also harbor a higher gene density and are less
heterochromatic than cLADs [41]. Indeed, fLADs are more dynamic during cell
differentiation, where entire LADs or LAD sub-domains detach from the nuclear
lamina to become non-LAD (or inter-LAD) domains [38, 42–44]. Detachment
from the nuclear lamina may correlate (though not always) with transcriptional
activation of genes within these LADs [45]. For example, LADs containing genes
important for T-cell activation are found in TADs that detach from the nuclear
lamina and become expressed upon T-cell activation in vitro [46]. Similarly, work
from our laboratory shows that genes bound by lamin A/C in undifferentiated
human adipose stem cells (ASCs) are released from lamin interactions prior to
or concomitantly with (at the time-resolution examined) their transcriptional
activation during adipogenic differentiation [44].

Therefore, by anchoring chromatin at the nuclear periphery, LADs emerge
as key regulators of the radial distribution of the genome [47, 48]. Based on this
contention, we report in Paper I a computational pipeline that incorporates
LAD data as a spatial constraint for chromatin in 3D structural models of the
genome.

1.1.5 Other ’associated domains’

Chromatin also interacts with nuclear bodies such as nucleoli and nuclear speckles.
Nucleoli are membrane-less organelle where ribosome biogenesis takes place.
They form around ribosomal DNA genes and repeat elements [49]. Similar
to LADs, heterochromatic interacts with the periphery of nucleoli, forming
nucleolar-associated domains (NADs) [49, 50] (Fig. 1.2C). NADs are enriched in
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Organisation of the mammalian genome in space and time

B compartments, are gene-poor and heterochromatic, and account for up 40%
of the genome [51]. Strikingly, LADs and NADs show significant overlap [52]
and LAD imaging in living dividing cells reveals that LADs often redistribute to
the nucleolar periphery (as NADs) in daughter cells after mitosis [53]. So, it is
difficult to spatially attribute genomic regions as LADs or NADs because both
the nuclear lamina and nucleoli appear to be preferred sites of heterochromatin
anchoring; as such, LADs and NADs may constitute interchangeable scaffolds
for heterochromatin [49].

NADs have been subdivided into type I and II NADs based on their chromatin
composition and the type of LAD they correspond to [52, 54]. Type-I NADs
often associate with the nucleolar periphery and the lamina and contain marks
of constitutive heterochromatin. Type-II NADs are not found at the lamina,
display more pronounced H3K27me3 and tend to harbor higher gene expression
levels than type-I NADs. The functional significance, if any, or tethering type I
or type II NADs at nucleoli and/or the nuclear lamina remains intriguing and
worthy of exploration.

Nuclear speckles are membrane-less intranuclear bodies in the nuclear interior
of mammalian nuclei, enriched in RNA splicing factors and associated with active
genes [39, 55]. These megabase-size regions contain high RNA polymerase II, are
active and have been designated speckle-associated domains (SPADs). SPADs
make up 5% of the genome and provide a new feature of nuclear organization
[39].

1.1.6 Temporal dynamics of chromatin domains

Associations between TADs, and between TADs and the nuclear lamina or
nuclear bodies are dynamic and can vary between cell types (Fig. 1.2B) [56, 57].
As such, time plays an important role in genome conformation, and provides
a 4th dimension to genome topologies. This is well illustrated during stem
cell differentiation and somatic cell reprogramming to pluripotency, which both
provide insights on the dynamics properties of the genome. (i) One study
shows the dynamics of chromatin contacts during differentiation of human
endothelial cells, through chromatin ‘switches’ between A and B compartments
and long-range TAD-TAD interactions [58]. (ii) Another example results from
single-cell Hi-C data and 3D genome modeling, and reveals the dynamics of
TADs and compartments at different stages of the cell cycle [59]. Interestingly,
the authors show that the average intensity of TAD borders changes during the
cell cycle, where average intensity is least at mitosis, increases during G1 and
plateaus during S phase [59]. (iii) High resolution in situ Hi-C analysis of neural
differentiation of mouse embryonic stem cells (ESCs) shows that contacts between
A compartment domains decreases while contacts between B compartment
domains increase [60]. (iv) Reprogramming of B-cells to pluripotent cells has
been shown to lead to a switching of domains between A and B compartments
[61]. Functionally, A-to-B switching domains are enriched in immune-related
genes (and correlate with gene repression) whereas B-to-A switching domains
are enriched in genes related to early development that become activated [61].
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1. Introduction

These studies illustrate the importance of the temporal perspective in 3D genome
architecture. The time perspective in 3D genome topologies is further explored
in Paper II.

1.2 Molecular methods to study the 3D genome

Microscopy-based techniques, chromosome conformation capture methods com-
bined with high-throughput sequencing techniques and genome-editing based
techniques are the predominant approaches to study 3D genome architecture
and dynamics. Some of the techniques relevant to my work are addressed here.

1.2.1 Microscopy imaging techniques

Visualization of specific genomic sequences in the nucleus plays an important
role in the study of 3D genome organization. Several microscopy-based methods
enable examinations of the co-localization or physical proximity of genomic loci
and the position of loci relative to nuclear structures such as the nuclear lamina
or nucleoli. Nuclear DNA is commonly visualized with a fluorescent stain such
as DAPI (Fig. 1.4). Additionally, physical proximity between two (or more)
genomic sites can be examined by DNA fluorescence in situ hybridization (FISH)
in fixed cells [48, 62] (discussed below), or using chromatin labeling techniques
(e.g. ANCHOR) in live cells [63]. Modified genome-editing tools based on the
CRISPR technology are being used to monitor chromatin dynamics, but not
genomic interactions, to date [64, 65]. Live-cell chromatin imaging techniques
are not addressed in this thesis. We refer to a non-exhaustive list of publications
on live (and fixed) cell imaging approaches applied to characterize 3D genome
conformation [53, 63, 66–73].

FISH relies on the detection of specific DNA sequences in cells using flu-
orescently labeled complementary oligonucleotides as probes [74]. FISH has
been used for chromosome and gene copy number determination, including in
disease diagnosis and prognosis [75, 76]. In 3D genomics, DNA-FISH is used
to study the relative position between two or multiple loci [77], or chromosome
territories [7, 8] in the nuclear space (Paper II), and the distance between loci
and nuclear components such as the nuclear lamina, nuclear speckles and nucleoli
(by immuno-FISH).

FISH entails cell fixation, permeabilization and DNA denaturation and
hybridization of the labeled probes to their target loci. FISH signals are detected
by fluorescence microscopy (Fig. 1.4). In addition to microscope resolution, two
factors are critical in the study of 3D architecture by FISH. (i) Maintenance of
nuclear architecture as close as possible to the native structure. This is nearly
impossible however, due to the cell fixation and DNA denaturation treatments.
Yet, maintaining cells on slides or coverslips throughout the procedure (‘3D
FISH’) arguably maintains nuclear architecture better than isolating nuclei
after cell fixation and dropping the nuclei on a slide for further processing
(‘2D FISH’). However, a 2D versus 3D FISH comparison in our laboratory has
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Molecular methods to study the 3D genome

Figure 1.4: Detection of genomic sites by fluorescence in situ hybridization
(FISH). Probes were designed to detect a gene enhancer (green) and promoter
(red) under two experimental conditions (A, a wild-type condition and B, a
nuclear lamin mutant condition) in human adipose stem cells. Note the separation
of the two signals under condition A and their proximity under condition B.
This is interpreted as long versus short distance of the two sites in 3D space.
Promoter-enhancer proximity in B correlates here with gene activity (arrow).
Nuclear DNA is stained with DAPI.

not shown significant differences in the degree of spatial association between
multiple FISH probes, arguing that evidence for a more proper preservation
of nuclear architecture in 3D FISH than 2D FISH is not always strong (A.L.
Sørensen, T. Germier and P. Collas, unpublished data). This is presumably
because formaldehyde fixation of cells or nuclei turn the latter into rigid objects
that are not easily deformed through physical handling (P. Collas, unpublished
observations). (ii) Length of the probes. Large probes (often bacterial artificial
chromosomes covering ∼100 kb) incorporate more fluorophores than short probes
and produce strong signals; they are often used to monitor chromatin compaction
or the position of loci relative to nuclear landmarks. Yet long probes are
suboptimal to study short distance (< 100 kb) chromatin associations, or when
accurate distances between FISH signals are required; there, shorter probes
(fosmids; ∼40 kb) are often used [77]. A chromatin ‘contact’, or proximity, is
defined by a distance threshold, which mainly depends on Euclidean distance
between the loci examined and microscope resolution [64].
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1. Introduction

1.2.2 Chromosome Conformation Capture methods

Recent progress in our appreciation of spatial chromatin architecture comes
from high-throughput sequencing-based methods which enable the detection of
genome-wide chromosomal contacts, and interactions between chromatin and
intranuclear structures such as the nuclear lamina, nucleoli or nuclear speckles.
Methods that can be referred to as ‘3D’ methods, such as Hi-C, GAM and
SPRITE, aim to identify chromatin contact points and lead to the view of
the hierarchical organization of the genome described above [9, 56, 57]. ‘2D’
methods such as Dam-identification (DamID)-sequencing (seq) and chromatin
immunoprecipitation (ChIP)-seq are used to elucidate interactions between
chromatin and nuclear structures and have been key in the identification of
LADs [33] and NADs [50].

Chromosome Conformation Capture (3C)

Chromosome conformation capture, or 3C, aims to investigate pairwise chro-
matin interactions [78] (Fig. 1.5). Underlying 3C methods are five steps: (1)
formaldehyde fixation which crosslinks interacting DNA fragments, (2) digestion
of DNA with a restriction enzyme, the choice of which depends on the required
frequency of base-pair digestion and the final resolution required (4- and 6-base
pair cutting enzymes are frequently used [78–82]); (3) ligation of the interacting
DNA fragments (the ensemble of ligation fragments is called a 3C library), (4)
detection of ligation junctions (see below), and (5) analysis of these ligation
products to determine contact frequencies of the regions investigated [1]. In a
3C experiment (see Fig. 1.5, primers are designed near the ends of the selected
restriction fragments. The ligation frequency between non-neighboring region
can then be quantified by counting the number of ligation events between the
selected primer combinations. So, 3C allows quantification of contact frequencies
at selected regions in ‘one-versus-one’ manner.

A key issue in 3C assays in general is that any two sequences that are close
in linear genomic distance crosslink and ligate more frequently than sequences
separated by hundreds of kb, independently of the 3D conformation of chromatin.
There are many caveats in applying quantitative 3C polymerase chain reaction
(PCR), and the approach requires strict controls, and careful design and data
interpretation [83, 84]. Moreover, 3C experiments yield relative contact frequen-
cies between two sites, reflecting close proximity, or ‘interaction’, between these
sites; however additional experiments are needed to understand the functional
relevance of such interactions in 3D space.

Chromosome conformation capture-on-chip (4C)

Chromosome conformation capture-on-chip (4C) is a ‘one-versus-all’ method
(Fig. 1.5). One genomic viewpoint, or bait, is selected and proximal regions
(interactors) are identified [85]. The initial steps of 4C are same as for 3C
but the difference is the use of two restriction enzyme digestion steps. Once
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Figure 1.5: Chromosome conformation capture (3C) methods. (A) Common
biochemical steps of all ‘C’ methods. (B) DNA sequence detection principle in
3C, 4C, 5C and Hi-C.

after the ligation step as in 3C, in 4C the ligated junctions are cut using a
frequently cutting secondary restriction enzyme and self-ligated to generate
DNA circles. Inverse PCR with primers specific to the first restriction junctions
(viewpoint) amplifies the ligation products, which are determined and quantified
using DNA microarrays or, more frequently today, high-throughput sequencing
[86]. Variations of 4C, designated open-ended 3C [87], circular 3C [88] and
olfactory receptor 3C [89], differ from classical 4C only in some specific steps
but follow the same principle and not described here.

Chromosome conformation capture carbon copy (5C)

Chromosome conformation capture carbon copy (5C) extends 3C with the use
of multiplexed ligation-mediated amplification [90]. 5C enables the capture of
all interactions between several viewpoints across a selected region, and thus is
a ‘many-versus-many’ approach (Fig. 1.5). There, a mix of 5C-specific primers
is annealed onto the 3C library and ligated. These primers are designed so that
the forward and reverse primers anneal across the ligated junction of the 3C
products. These annealed 5C primers are ligated and the generated 5C library
is amplified with universal PCR primers annealed to the 5C primers. The 5C
products are quantified using microarray or sequencing. This method is limited
to identifying interactions within the selected region.

1.2.3 Hi-C

The extension of 3C technologies to the determination of chromosomal interac-
tions genome-wide (‘all-versus-all’) through a technique called Hi-C (Fig. 1.5)
has been a breakthrough in the field of 3D genome organization [9]. Hi-C essen-
tially follows the same initial steps as the 3C methods outlined above, including
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chromatin crosslinking, fragmentation and ligation. The ligated products are
purified and processed for massive parallel sequencing.

More specifically, cells are crosslinked with formaldehyde and DNA digested
with a restriction enzyme. The ultimate resolution limit of Hi-C data is the
restriction fragment length after DNA digestion. The original Hi-C protocol used
HindIII and NcoI restriction enzymes, both recognizing and cutting a 6-base pair
sequence (AAGCTT and CCATGG, respectively) [9]. Subsequently, 4-base pair
cutters such as DpnII have been used [16], which have more abundant target
restriction sites (GATC), yielding smaller fragments and improved resolution.
Other Hi-C variations rely on even shorter restriction fragments [91]. The restric-
tion enzyme-mediated DNA overhangs are filled with biotinylated dinucleotide
triphosphates. The blunt ends of biotinylated DNA segments are ligated under
diluted condition to avoid self-ligation (the procedure in this case is called di-
lution Hi-C). Then, DNA is sheared and the ligated DNA hybrids are purified
using streptavidin. The pulled-down DNA hybrids contain fragments from each
of the two ligated regions and are subjected to paired-end sequencing. Hi-C
demands deep sequencing to construct high-resolution genome-wide interaction
maps. Details on the nature of the data generated in a Hi-C experiment and on
the analysis of such data are provided in section 1.3.2.

Hi-C has been improved by introducing in situ Hi-C [10, 16]: there, the
crosslinking and ligation steps are performed in (supposedly) structurally intact
and permeabilized nuclei rather than in bulk suspensions. In addition to a
simpler handling, the major advantage of in situ ligation is a reduction of the
frequency of random ligations which are observed in dilution Hi-C. Using this
method, Rao et al. [16] have achieved a resolution of up to 1 kb. In Paper I,
we used already processed high-resolution IMR90 Hi-C data from Rao et al. [16].
In Paper II, we used dilution Hi-C with 25 million cells per sample, as this was
the technique used in our collaborating laboratory. In Paper III, we used Hi-C
data from four ENCODE cell lines.

Hi-C typically requires millions of cells (though more recent protocols are
now adapted for much fewer cells), which makes it impossible to appreciate
the variability in chromosomal interactions between cells. As addressed later in
this Introduction, and in our work (Paper II), computational methods enable
inferences on cell-to-cell variations in genome structures, but do not generate
biological data. However, single-cell Hi-C now enables mapping chromosomal
interactions in many individual cells. Single-cell Hi-C involves in situ crosslinking
and ligation, preserving interactions in each cell. Individual nuclei are isolated
to produce sequencing libraries [10, 59, 92].

Single-cell Hi-C contact matrices reveal variability in the nature of contacts
between cells [10] or during the cell cycle [59], which can be recapitulated by FISH
analysis [69]. This cell-to-cell variation is reflected in single-cell Hi-C contact
matrices that are all different from each other [10], but the union of these matrices
recapitulates those generated in ensemble Hi-C. A limitation of single-cell Hi-C
is the sparsity of contacts seen in each single cell [10, 59]. Typically, tens to
hundreds of thousands of interactions are captured, but technical improvements
claim identification of ∼ 106 interactions per cell [93].
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1.2.4 Hi-C and Hi-C-derived methods

Capture Hi-C

Although Hi-C captures genome-wide interactions in a presumably unbi-
ased and unsupervised fashion in cis and trans, it requires deep sequencing
to attain high-resolution contact maps necessary to query interactions
between regulatory elements such as enhancers and promoters; this can
be prohibitively expensive for many laboratories. To evade this issue,
capture Hi-C (CHi-C) [94–96] is based on the generation of a conventional
Hi-C library, and enrichment of chromosomal contacts with specific sets
of genomic sites (baits; e.g. promoters, in ’promoter capture Hi-C’) using
an oligonucleotide-based hybridization This enriches the Hi-C library for
interactions with the selected baits. CHi-C results in high resolution con-
tact maps between the targeted regions. There are of course limitations
to capture Hi-C with respect to sensitivity (identification of weak cis or
trans interactions), and CHi-C was recently re-designed as ’NG (’new
generation’) Capture-C’ with improved sensitivity [97].

HiChIP and HiChIRP

HiChIP is a combination of in situ Hi-C and ChIP. The steps include
crosslinking of DNA interactions in situ and chromatin immunoprecipita-
tion to capture DNA interactions associated with the protein of interest.
Paired-end sequencing and bioinformatics analysis identifies sites of ge-
nomic enrichment in the protein of interest and interacting genomic
regions at these sites. HiChIP is similar to ChIA-PET (see below) but
requires much smaller cell numbers and yields over 10-fold long-range
interactions-informative reads [98].

HiChIRP has been developed to target long-range interactions between
chromatin and a specific RNA. The method follows the same principle as
HiChIP but instead of immunoprecipitating a protein, interactions are
captured by affinity-isolation of an RNA of interest followed by paired-end
sequencing of the associated DNA [99].
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ChIA-PET

Chromatin interaction analysis with paired-end tag sequencing (ChIA-
PET) aims to identify all interactions between genomic regions bound by a
protein of interest [100]. This protein is immunoprecipitated, interacting
DNA segments are ligated and the ligation products are detected by
paired-end sequencing. Limitations of ChIA-PET, namely the use of
two different DNA linkers, has been overcome by the use of a single
biotinylated DNA linker and is better suited for higher-order 3D mapping
[101]. The latter ChIA-PET assay produces several types of results,
such as self-ligation data (similarly to ChIP-seq), clustered inter-ligation
interactions mediated by the immunoprecipitated protein, and long range
interactions [101].

1.2.5 Non C based Methods

Recently, two non-ligation based methods, genome architecture map-
ping (GAM) and split-pool recognition of interactions by tag extension
(SPRITE) have been introduced in recent years to determine chromosomal
interactions.

GAM

GAM is a ligation-free method to study 3D genome architecture [56]. The
principle is to measure the distance between loci by cryo-sectioning nuclei
using laser microdissection, followed by massive parallel sequencing [56]
(Fig. 1.6A). GAM entails slicing purified nuclei in random orientations;
the DNA content of each nuclear profile is extracted, PCR-amplified and
sequenced. It is expected that loci that are in close proximity in the
3D nuclear space are detected in nuclear slices more frequently than loci
far apart. From slice and sequence information, a matrix is created by
counting the events of co-localization of all possible pairs of loci in a
large collection of nuclear slices. The matrix allows the calculation of
genome-wide contact probabilities, similarly as in a Hi-C matrix. GAM
notably enables inference of chromatin contacts, compartments and radial
positions [56].

Unlike Hi-C, GAM claims to capture multivalent interactions involving
three or more genomic regions, and to require fewer cells than Hi-C [56].
However, GAM demands time and unparalleled skills to dissect nuclei at
random fashion. Moreover, the heterogeneity of 3D genome topologies
between cells in a population likely requires the dissection of hundreds
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Figure 1.6: GAM and SPRITE. (A) Outline of genome architecture mapping
(GAM). Loci in close proximity on a chromosome (red and green beads) are
more frequently found together in thin nuclear slices than distant loci. DNA
sequencing of nuclear slices and advanced computing are able to reconstitute 3D
chromosomal interaction maps. In contrast to Hi-C which only detects pairwise
interactions, GAM allows the detection of 3-way interactions. Reproduced
with modifications and permission from [56] (Springer Nature). (B) Split-pool
recognition of interactions by tag extension (SPRITE) enables detection of
multi-way (here, 3-way) interactions. Redrawn and modified from [57].

or thousands of nuclei to appreciate this variation, and will influence the
results [102].

SPRITE

Instead of proximity ligation, SPRITE relies on a split-pool strategy to
identify genome-wide interactions between multiple regions [57]. Chro-
matin is crosslinked, nuclei isolated and chromatin fragmented. The
chromatin fragments are split into many wells, ligated with a tag (a
genetic barcode) specific to a well and re-pooled (Fig. 1.6B). The pooled
fragments are again split, coupled to a new genetic barcode and re-pooled.
This process is repeated multiple times, with DNA molecules accumulat-
ing unique barcodes as they are split into different wells each time. Since
DNA fragments that are crosslinked (because they interact) are always
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together in the same well in each split-pool round, they have identical
barcodes; in contrast, distinct molecules split in different wells accumulate
distinct barcodes. The DNA fragments are sequenced and accumulation
of sequencing reads with identical barcodes mapped to specific genomic
locations identifies sites that are assumed to interact [57].

SPRITE confirms genomic structures observed by Hi-C and GAM such
as compartments and TADs. SRITE can also provide representations of
chromatin regions in contact with nuclear bodies. SPRITE data notably
show that active genes cluster around nuclear speckles, whereas inactive
regions tend to organize around nucleoli [57].

1.2.6 Techniques to study DNA-protein interactions

DNA binding proteins play an important role in many cellular processes
such as replication, splicing, transcription, DNA repair and genome orga-
nization. Nuclear lamins, transcription factors and post-translationally
modified histones (e.g. by methylation or acetylation) are viewed as
DNA-binding proteins. DNA-protein interactions can be studied by ChIP
[103] and DamID [104].

Chromatin immunoprecipitation-sequencing (ChIP-seq)

ChIP-seq consists in the immunoprecipitation of a target chromatin-
bound protein and identification of the associated DNA by sequencing
[105]. DNA and proteins are crosslinked with formaldehyde, chromatin
is fragmented by digestion with micrococcal nuclease or by sonication.
Antibodies against the protein of interest are used to immunoprecipitate
protein-DNA complexes. The crosslinks are reversed, DNA is purified and
sequencing libraries are made and sequenced. ChIP has been a preferred
method to profile histone modifications or transcription factor binding.
ChIP-seq has been useful in mapping LADs interacting with A- or B-type
lamins in various cell types or during differentiation [44, 106–110]. In
Paper II, we used ChIP-seq to identify lamin B1 LADs and domains
enriched in H3K27me3 and H3K9me3. In Paper III, we used publicly
available CTCF ChIP-seq data to categorize TADs.

DamID-seq

DamID (Dam identification) was introduced as an alternative to ChIP
to study DNA-protein interactions [104]. It is a proximity DNA labeling
method where the bacterial DNA adenine methyltransferase (Dam) is
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fused to a protein of interest (e.g. lamin B1, to identify LADs). Dam is
targeted to DNA regions associated to the protein of interest where it
methylates adenines at GATC sites to generate 6-methyl-adenine (m6A),
which does not normally occur in eukaryotes. Genomic regions containing
m6A introduced by Dam are selectively amplified and hybridized to DNA
microarray or sequenced [104, 111]. DamID has been used in several
applications, for instance to probe genomic regions associated with nuclear
lamins at the nuclear periphery [41]. In Paper II, we used mouse
constitutive cLAD data generated by DamID-microarray from Peric-
Hupkes et al. [38] to study association between cLADs and TAD cliques
in mouse embryonic stem and differentiated cells. Of note, variations of
DamID [112] allow the visualization of LADs in living cells, providing
new insights on the dynamics of LADs between cells and over time [53,
113, 114].

1.3 Computational techniques to study 3D genome

1.3.1 Analysis of ChIP-seq data

The aim of ChIP-seq is to identify genomic regions enriched in the
chromatin-bound factor of interest or in a specific histone modification.
Significantly enriched regions are commonly called peaks or domains
depending on their width. Several ChIP-seq peak calling software are
available – e.g. MACS [115].

In a typical ChIP-seq data analysis, sequencing reads are mapped to
a reference genome using a mapping tool such as BWA [116] or Bowtie
[117]. Then, reads that are mapped to multiple location are filtered
out to get uniquely mapped reads (this decreases the number of false
positives). After filtering, peak callers are used to identify peaks. MACS
is a widely used tool to identify peaks of transcription factors or and
histone modifications and uses a dynamic local Poisson distribution to
ascribe significance [115]. We have used MACS in Paper II to identify
H3K9me3- and H3K27me3-enriched regions in human adipose stem cells.

LADs can also be mapped by ChIP-seq. In contrast to most histone
modifications however, lamin ChIP-seq typically reveals broad domains of
low-level enrichment. Thus analysis requires a different strategy to identify
LADs, which has led to the release of Enriched domain detector (EDD)
by our laboratory [108]. EDD bins the genome equally and calculates the
smallest bin size that contains signal maxima by using the Agresti-Coull
method. Then, each bin is scored and a gap penalty is assigned for
non-informative bins. EDD detects domains using a linear algorithm by
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identifying maximal scoring subsequence bins. Finally, for each domain,
a P-value is assigned by Monte Carlo trial [108]. We have used EDD in
Paper II to identify lamin B1 LADs.

1.3.2 Analysis of Hi-C data

Preprocessing and filtering

The first step, detailed in this section, is to map the paired-end sequences
to a reference genome, and filter the noisy reads. Mapping can be
performed using standard tools such as BWA [116] or Bowtie [117]. Ideally,
the two ends of paired-end Hi-C reads correspond to two interacting loci
linearly far apart along the genome; thus paired-end reads are expected to
map to different locations. Some of the reads span the ligation junction,
so parts of reads are from distant interacting loci; these reads are called
chimeric reads. Chimeric reads require a specific strategy to be mapped,
or are otherwise discarded with a full-read mapping approach. This
peculiarity of Hi-C reads leads to chimeric read mapping which are
implemented in many pipelines such as ICE [118], HiCUP [119], HiC-Pro
[120] and TADbit [121]. Mapped reads are filtered to remove artefactual
noise; to do so, reads are first removed based on filters common to all
sequencing-based methods such as number of mismatches in a read, reads
mapped multiple times, quality score of reads and PCR duplicates. After
initial filtering, reads are assigned to the nearest restriction sites in the
reference genome, so that the mapped reads are expected to be close
to the restriction site; thus, reads that are mapped far from the closest
restriction site are filtered out. Read-pairs from random ligation, self-
ligation and dangling ends are removed. As a result, only informative
read pairs, also called valid pairs, are filtered in and used for downstream
analysis [118–121].

Binning

Valid read pairs are used to generate raw contact maps. Hi-C reads
are not analyzed at the fragment level because of sparsity and difficulty
of the analysis. Instead, reads are aggregated to genomic bins of fixed
size. The result is a symmetrical matrix which contains the frequency
of interactions between two genomic bins (Xij) (Fig. 1.7A,C). The
genome-wide interaction map contains both intra-chromosomal and inter-
chromosomal data. The resolution, or bin size, is selected based on the
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depth of sequencing but there is no way of a priori knowing an optimal
bin size. Rao et al. proposed to select a minimum bin size such that
80% of all bins are covered by at least 1000 reads [16]; another approach
is to use a fragment level resolution (expectedly very high) despite the
computational demand. I would like to mention that there are methods
developed to analyse Hi-C data without binning, for example, a method
by Spill et al. [122].

Normalization

Raw data from Hi-C include biases inherent to the experiment which
directly affect the Hi-C contact map. To eliminate these, a normalization
is done mainly based on two principles: explicit factor and implicit factor
correction.

In the explicit factor correction, as the name suggests, all explicit
factors such as read mappability, fragment length between two restriction
sites and GC content are taken into a single factor vector. This factor
vector is used to normalize the contact probabilities using non-parametric
step functions [123]. The major limitation of this approach is computa-
tional cost. HiCNorm is another explicit factor normalization method
where a single parametric Poisson regression model is used to model reads
at the bin level and much faster than non-parametric step functions [124].

The implicit correction method was implemented in the ICE pipeline
[118]. ICE performs iterative correction to remove biases without any
explicit assumption of sources of biases, and assumes that all regions of
the genome have the same coverage, that is, equal visibility. This method
is also known as a matrix-balancing algorithm; the resulting normalized
matrices have equal-sum rows. An improved version of iterative correction
which exploits the sparsity of high-resolution data is implemented in HiC-
Pro [120]. Recently, visibility normalization by combining the advantages
of the explicit and implicit methods has been implemented in HiCorr [125].
A new method called Binless normalization [122] handles normalization
at the read pair level without any assumption of explicit biases or equal
visibility of loci.

Hi-C matrices of cancer genomes may contain biases such as aneuploidy,
copy number variation and translocations, in addition to the sequence-
level biases mentioned above. These biases are addressed in CaICB, a
regression-based chromosome iterative correction tool [126]. Additional
software packages useful in the analysis of Hi-C data from aneuploidy
cancer cells: OneD explicitly corrects regional copy number variation in
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the Hi-C matrix [127]; LOIC and COIC are extensions of matrix balance
algorithms and are appropriate for cancer genomic studies [128].

Identification of compartments

As discussed earlier, A/B compartments can be identified from Hi-C
data (Fig. 1.3; 1.7D). Once biases are eliminated from Hi-C matrices,
expected data matrices (dependent on the linear chromosomal distance)
are generated from the normalized matrices for each chromosome. Then,
observed/expected (O/E) matrices are generated (Fig. 1.7B), followed
by the calculation of Pearson correlation values between all pairs of rows
and columns in these O/E matrices. A principal component analysis
(PCA) is applied on the generated Pearson correlation matrices. The
resulting first principal component, PC1, defines A/B compartments.
Genomic regions with positive eigenvalues are A compartments, and
negative eigenvalues are B compartments [9] (Fig. 1.7D). Though, the
computational definition of genomic regions as A or B compartment has
to be verified by calculating the GC content of the genomic regions and
swapped to ascertain that A and B reflect GC-rich and -poor regions,
respectively. A similar but improved method has been implemented in
the Cworld (https://github.com/dekkerlab/cworld-dekker) and in the
HiTC R package [129] where instead of using O/E matrices, loess Z-score
matrices are generated before calculating Pearson correlations and PCA.
A new faster and efficient statistical method to identify compartments is
implemented in CscoreTool; there, the score Ci = 2Pi − 1 is calculated to
reflect that a given genomic bin Pi is in an A compartment [130].

Identification of TADs

Several algorithms have been developed to identify TADs across genomes.
The first approach to identify TADs genome-wide, with a tool called Do-
mainCaller [18], calculates one dimensional score called the directionality
index (DI) to quantify the degree of upstream and downstream interaction
bias of a given bin, defined as:

DI =
(

B − A

|B − A|
) (

(A − E)2

E
+

(B − E)2

E

)
(1.1)

where in equation 1.1, A is the number of mapped reads from a given
bin to the upstream 2 Mb, E is the number of mapped reads from a
given bin to the downstream 2 Mb, and E is the expected number of
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Figure 1.7: Hi-C matrices of the entire chromosome 19 in human mammary
epithelial cells (HMEC) at different resolutions. (A) Observed matrix at 50
kb resolution. (B) Observed/Expected (O/E) matrix at 50 kb resolution. (C)
Observed matrix at 500 kb resolution. (D) Bar graph shows the eigenvector of
PC1 (from PCA) and the typical plaid pattern of a Pearson correlation matrix at
500 kb resolution. A and B compartments are shown in blue and red, respectively,
in the track above the O/E matrix. T.M. Liyakat Ali, unpublished.

reads from a null distribution. The DI is based on the χ2 distribution
and is segmented with a hidden Markov Model (HMM) where a sharp
transition from an upstream interaction bias to a downstream interaction
bias identifies TADs.

The Armatus algorithm uses the Dynamic Programming approach to
find domains in a Hi-C contact matrix with a tunable, single domain-
length scaling parameter γ [131]. This algorithm returns non-overlapping
consensus domain sets (TADs) that are consistent across multiple resolu-
tions of the Hi-C data [131]. Rao et al. proposed the Arrowhead algorithm
where the matrix is transformed in a way to enhance domain boundary
signals; then, a heuristic algorithm identify ‘corners’ to determine domains
[16]. A Hi-C contact map can also be considered as a 2D image used to
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identify TADs as a 2D image segmentation problem [132]. Using this 2D
image segmentation algorithm, blocks are detected along the diagonal
of a contact matrix [132]. Another simple method called TopDom has
also been proposed, where a binSignal(i) curve is calculated for each bin
along the chromosome [133]. A binSignal(i) curve of ith bin represents
the contact frequency between the bin and the neighboring bins. Theo-
retically, bins around the center of TADs have high binSignal(i) values
and low values at TAD boundaries. Domain boundaries are detected as
local minima in the binSignal(i) series, and TADs are defined [133].

The main limitation of these methods is the assumption that TADs
are not nested. However, recent substantial evidence shows that groups
of sub-TADs cluster or combine to form large TADs (Fig. 1.8) [134, 135].
This limitation has been addressed in additional methods such as TADtree
[136], IC-Finder [137] and PSYCHIC [138].

Several algorithms define TADs using a clustering approach, such
as the Clustering-based Hi-C Domain Finder CHDF tool [139] and an
unsupervised machine learning problem in ClusterTAD [140]. Graph
theory approaches have also been developed to define TADs. The principle
is assuming that a Hi-C matrix is the adjacency matrix of a graph where
bins are represented as nodes and TADs are hubs of interacting bins in
a graph. Some graph theory approaches used to define TADs include
a network optimization problem in MrTADFinder [141], a Laplacian-
based graph segmentation in 4D NAT [142] and an optimizing network
modularity in 3DNetMod [143].

Of note, identifying TADs is still an open problem in spite of all
methods released to this end, and no gold standard method that has been
established at the time of this writing. In PaperII, we used Armatus
[131] to call TADs for all Hi-C samples and replicates and identified
consensus TADs conserved across replicates and samples. Our rationale
for this is that TADs are well conserved across cell types, and we required
an identical set of TADs across differentiation time-points to enable
comparisons of TAD-TAD interactions.

Identification of interactions

The subsequent step in Hi-C data analysis is to identify 3D interactions
between domains (Fig. 1.9). To this end, the genome should be segmented
for example as bins or as TADs defined using one of the methods outlined
explained above. Several tools are available to find 3D interactions from Hi-
C contact maps. Identification of both short- and long-range interactions
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Figure 1.8: Illustration of a nested TAD structure. Left panel, Hi-C matrix for
chromosome 14 in mouse embryonic stem cells (mESCs) from Dixon et al. [18].
Groups of 2 TADs (left in the enlarged matrix diagonal) and 3 TADs (right) are
embedded, or nested, within large domains. A simple graphic interpretation of
the nested domains is drawn. Reprinted with permission from [136].

requires a background distribution to compare interaction frequencies of
the observed and expected. To date, two background models are proposed:
(i) a genome-wide or chromosome-wide model where each segment pair
is compared against expected interaction frequencies globally, and (ii) a
local model, which compares interaction frequency of each segment pair
against its surrounding segment pairs.

HICCUPS is a part of the Juicer suite developed by Durand et al.
[144]. It employs the local model strategy to find 3D interactions by
identifying contact-enriched bins relative to the neighborhood of the bins.
A drawback of HICCUPS however is that it is recommended for very high
resolution Hi-C maps as it finds few interactions even in high resolution
data compared to another local model tool such as PSYCHIC [145].
PSYCHIC uses the local enrichment technique. The first step involves
genome segmentation into domains using a unified probabilistic model and
a Dynamic Programming algorithm. Then TADs are iteratively merged to
a nested structure and for each TAD, interactions are modeled according
to a local background model (with a power law regression) to identify
significant interactions [138].

As mentioned briefly, genome-wide methods find significant chromatin
interactions by comparing an interaction frequency against the expected
interaction frequency derived using statistical models from the Hi-C data.
Fit-Hi-C uses a genome-wide background model defined by two non-
parametric splines from the input data to find the significant domain
interactions [146]. It uses the iterative correction (ICE) proposed by
Imakaev and colleagues [118] to remove experimental biases from the input
data. GOTHiC is another example of a genome-wide background model,
which uses a binomial cumulative distribution to find the significance of

23



1. Introduction

Figure 1.9: Significant TAD-TAD interactions identified in Hi-C data. (A) Hi-C
matrix showing long range interactions (black boxes off the matrix diagonal,
shown here as a half-diagonal flipped 90 degrees) along a segment of chromosome
1 in human adipose stem cells (used in Paper II). (B) Matrix plot showing
significant TAD-TAD interactions within chromosome 1 in human adipose stem
cells, identified using NCHG. The red pixels indicate significant TAD-TAD
interactions. The blue bars on the top and right of the matrix indicate TADs
interacting with the nuclear lamina (LADs).

observed interaction [147].
Throughout my PhD work, I have used the non-central hypergeometric

distribution (NCHG) [148] to identify domain interactions. The algorithm
was originally developed as ChiaSig to identify interactions from ChiA-
PET data [148], and has been updated to identify both intra- and inter-
chromosomal interactions in Hi-C data. NCHG incorporates genomic
distance-dependent relationships to calculate the conditional probability
of the number of interactions [148]:
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where n is the total number of interactions in a given matrix, ni and
nj are the number of interactions involved in TADs i and j, and nij is the
number of interactions between TADs i and j. ωij is the parameter that
includes genomic distance and λij is the expected interaction frequency.

ωij =
λij (2λ − λi − λj + λij)

(λi − λij)(λj − λij)
(1.3)

NCHG is used to call TAD-TAD interactions in all the papers and
an example significant TAD-TAD interaction matrix is shown in the Fig.
1.9B.

24



Computational techniques to study 3D genome

Visualization of Hi-C

Visualization of Hi-C data is important for interpretation, hypothesis gen-
eration, annotation, validation and presentation of results. Independently
of any statistical analyses, chromosomal interaction patterns can some-
times be easily visually detected (Fig. 1.10), such as a genetic variation
disrupting long-range interactions observed in contact maps comparing
two types of data, correlation of epigenetics states and Hi-C features,
changes in 3D genome topology during cell cycle or during differentiation
(e.g. [62, 149]; PaperII). Several tools are available to visually explore
and compare processed Hi-C data and integrate multi-omics datasets.
Most tools help visualizing Hi-C contact maps as arc maps representing
loops, circos plots, rectangular heatmaps and triangular heatmaps with
basic features to pan and zoom along two dimensions; these also com-
monly allow integration of multi-omics data. They are either web-based
or stand-alone graphical user-interfaces. Some of the widely used tools
are mentioned below.

Juicebox has been developed by the lab of Leiberman-Aiden to visu-
alize Hi-C contact maps as rectangular heatmaps [144]. It is a stand-
alone tool written in Java and recently released as a web-based tool
(https://github.com/aidenlab/Juicebox). On top of basic visualization
features, it is possible to calculate and visualize Eigen values, normal-
ized heatmaps, Pearson-correlation plaid pattern heatmaps, and oth-
ers. Users can directly download published Hi-C datasets or open their
own dataset in .hic format [144]. Juicebox.js has also been released
(https://github.com/igvteam/juicebox.js/tree/master) for web/cloud-based
visualization of Hi-C data [150]. Some of the figures in this thesis are
generated using Juicebox (e.g. Fig. 1.7).

Higlass.io is another web-based interface to visualize Hi-C data as
heatmaps [151]. It has many of the Juicebox features such as panning
and zooming; however, a special feature of this tool is the synchronized
exploration of multiple Hi-C datasets that can be arranged in a single
window for better comparison [151] (Fig. 1.10). Lastly, in addition to
the dynamic user-interface tools, publication-ready static plots can be
generated to highlight genomic regions of interest, using Python packages
such as HiCPlotter [152] and HiCExplorer [153], and R packages such as
Sushi [154] and HiTC (Fig. 1.9A) [129].
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Figure 1.10: A screenshot from the Higlass.io web-based tool. This example
illustrates the synchronized exploration of, here, two Hi-C datasets (left and
right panes). The left pane shows chromosome 8 region of the GM1278 cell line;
the right pane shows the same chromosome region in the K562 cell line. Note
the distinct chromosomal interaction patterns in the two cell lines: TADs are
clearly defined in K562 (right) compared to GM1278 (left).

1.4 Computational 3-dimensional genome structural
modeling

The wet-lab and analysis approaches described above do not necessarily
and directly provide quantitative descriptions of how chromatin interacts
with other nuclear components in a 3D space (even Hi-C matrices are 2D
representations of 3D interactions), how chromatin domains are reposi-
tioned in the nuclear space (e.g. during cell differentiation), variability
between cells, and how chromosomes fold [1]. To fill these gaps, over the
past three decades, physicists and computer scientists have developed
DNA, chromatin and whole-genome modeling techniques to investigate
spatial chromatin organization. Computational modeling approaches can
be broadly classified into two types: (i) polymer physics-based model-
ing (also known as theoretical or direct modeling) and (ii) data-driven
modeling (also known as restraint-based or inverse modeling) [155].

1.4.1 Polymer physics-based modeling

Polymer physics models can have the potential of bringing predictive
mechanistic information of chromatin organization to a quantitative
level such as chromatin compaction, interaction frequencies, position of
chromosomes, end-to-end distances and other features. Polymer physics
models rely on assumptions and parameters deduced from the laws of
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polymer physics [156]. In polymer physics modeling, chromatin is viewed
as a long semi-flexible polymer chain of N successive monomers (usually
beads, cylinders or rods), with an apparent contour length s (the genomic
distance). The semi-flexible polymers can adopt an infinite number of
configurations but are limited by the persistence length, i.e. the length of
the polymer below which it behaves as a rigid rod [156].

In the simplest model, monomers adopt a random walk without con-
straints, such that resulting chromatin chain configurations accommodate
a confined nuclear space. Several models assume various thicknesses and
compositions of the chromatin chain [157], which arguably provide a more
realistic view of chromatin. For example, in the ‘micelles model’, mam-
malian chromosomes can be represented as co-polymers (polymer chains
composed of two or more monomers type reflecting different biological
properties) of GC-rich and GC-poor blocks modeling heterochromatin
and euchromatin domains [158]. According to this model, monomers of
same (chromatin) type are allowed to interact with each other (homotypic
interactions) while monomers of different types repel each other [158].
This simple model predicts the observation of clusters of experimentally
validated replication foci (active GC-poor regions) in mammalian nuclei
[159].

Four main kinds of polymer physics-based modeling methods have
been developed, with various assumptions and parameters defining how
monomers in the chromatin (or DNA) polymer chain interact with each
another. These are Strings and Binders Switch (SBS) models, block co-
polymer models, loop extrusion models and the related Slip-link models
[160] (Fig. 1.11).

Strings and Binder Switch (SBS) models

Some of the older polymer models such as the Random walk/giant-loop
model [161] and the Micelles model [158] ignore the existence of chromatin-
binding proteins diffused in the nucleoplasm, and which significantly affect
chromatin bending and topology. In the SBS model [162], the chromatin
filament is described as a self-avoiding polymer chain made of different
types of monomers, or ‘strings’. Monomers of different types have different
binding affinities for proteins (binders) which mediate interactions of
homotypic monomers at distant sites along the chain (Fig. 1.11A).

The thermodynamic state of an SBS polymer depends on two param-
eters: the interaction energy Eint and the concentration of binders Cm

[163]. Based on these parameters, an SBS model can take three main
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states: (i) at low Eint and Cm, due to its self-avoiding nature, the polymer
swells and remains in a non-condensed state; (ii) at higher Eint and Cm

values, the polymer undergoes coil-phase transitions to become folded
and collapse; (iii) at even greater Eint and Cm, the polymer attains a
thermodynamically stable and ordered globular state [163]. Changes in
Eint and Cm values dictate the transition of folding phases, or ‘switches’.
These changes can be explained by relatively simple biological processes
such as an increase or decrease in transcription factors concentration
(binding factors) or changes in the chromatin properties (e.g. an epige-
netic chromatin state) of part of the polymer (binding site) which alters
the interaction energy [164].

SBS modeling can recapitulate the average contact probability P (s) of
interacting chromatin beads for a given chromatin chain of contour length
s. Thus, SBS models can recapitulate chromatin features such as TADs
and compartments found in Hi-C contact maps [162]. In more realistic
SBS models, information on ‘binders’ and chromatin domains can be
added from ChIP-seq analyses of, respectively, transcription factors and
histone modifications. This information contributes to more accurately
explain contact patterns along genomic regions in different organisms
[165–167].

Block co-polymer models

Block copolymer modeling is a generic and minimal chromatin modeling
technique also based on preferential interactions of chromatin domains
with similar signatures [160, 165] (Fig. 1.11B). Genome bins of 10 kb
are treated as blocks that are constrained to drive homotypic interactions.
Beads in a polymer chain are connected via a harmonic potential and
steric self-avoidance is provided (as in SBS models). A Gaussian-like
potential energy models homotypic monomer interactions. Despite its
simplicity and the exclusion of biological aspects of genome folding, block
co-polymer models can recapitulate large scale Hi-C contact maps and
TADs when built from epigenomic features [165].

Loop-Extrusion and slip-sling models

The loop extrusion model and related slip-sling model [167] assume that a
loop extruding factor (LEF) anchors two specific points on the chromatin
chain (Fig. 1.11C, D, ring) and drives progressive expansion of a loop (Fig.
1.11C,D). Loop extrusion is energy-dependent (loop extrusion model) or
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Figure 1.11: Main polymer physics-based 3D genome structural modeling meth-
ods. (A) Strings and Binders Switch model. Binders (e.g. transcription factors)
mediate homotypic chromatin interactions with similar (epi)genomic properties.
(B) Bock copolymer modeling also models homotypic interactions albeit without
binders of SBS modeling. (C) Loop extrusion model. Chromatin loop formation
is modeled by an active force acting on chromatin, extruding it through a loop
extrusion factor (e.g. a cohesin complex) until it encounters a barrier, or hinder
(such as a CTCF site). (D) A slip-sling model is similar to the loop extrusion
model but loop formation occurs here by diffusion of a loop extrusion factor
relative to chromatin.

occurs by random diffusion (slip-sling model), and stops when the LEF
is hindered by a barrier, such as a protein bound to chromatin. The
extrusion process therefore brings two distant regions of the chromatin
polymer chain closer together at the base of the loop (Fig. 1.11C,D)
[24]. The loop extrusion model can explain loops, stripes and TADs
found in Hi-C data [16] (see Fig. 1.3). It is supported by studies of loop
extrusion mechanisms [168] and is consistent with a view where cohesin
may act as a LEF and the extrusion process is halted by CTCF bound
to convergent sites [24, 169]. The loop extrusion model however cannot
explain A/B compartments, implying that other mechanisms, such as
those put forward in SBS and block copolymer modeling, also intervene
in chromatin folding.
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1.4.2 Restraint-based chromatin modeling using consensus
methods

The availability of experimental data from imaging techniques and bio-
chemical techniques, particularly high-throughput chromosome conforma-
tion capture techniques, prompted an alternative approach of 3D genome
modeling called restrain-based, or data-driven, modeling [1]. These ap-
proaches use restraint-based methods to deduce spatial information on
genomic domains directly from the data and reconstruct 3D models with-
out assumptions on folding mechanisms. These methods are similar to
methods previously used to reconstruct atomic structures of molecules
from nuclear magnetic resonance data [156]. In restraint-based models,
interaction frequencies derived from Hi-C or other 3C-based experiments
are used to find interacting domains. 3D genome models are generated
using contact probabilities or Euclidean distance between two domains
obtained from contact maps as restraints. The modeling methods vary
based on the resolution of representation of chromatin. Regardless, three
main categories of restraint-based modeling techniques have been re-
ported: (i) consensus methods represent the data by a single averaged
3D structure which is considered as a ‘best fit’ structure [170–177]; (ii)
resampling methods simulate the conformation variability of structures,
recapitulating structural variability between cells in a population [48,
178, 179]; (iii) deconvolution methods, also known as population-based
methods deconvolute interaction maps from ensemble data [134, 180–182].

Consensus models produce a single structure from the underlying
ensemble data (i.e. Hi-C data generated from a population of cells)
[173, 176]. An ensemble Hi-C contact frequency matrix is converted into
Euclidean distances based on the assumption that contact frequencies
between two regions are inversely proportional to their genomic distance.
A single 3D structure of the genome is generated, which minimizes the
residual error between modeled and expected distances by a scoring
function [173, 176]. The three types of scoring functions used in consensus
modeling are (i) a likelihood optimization function relying on Bayesian
inference [171], (ii) multi-dimensional scaling [172], and (iii) solving a
generalized linear model [177]. Consensus models have been reported
for the whole genome [170], a single chromosome [171, 174] or part of
a chromosome [172]. In consensus modeling, physical constraints such
as avoiding steric hindrance between beads in a same chromosome and
preventing breakage of the bead chains can be incorporated to enhance
accuracy of the resulting 3D structure [170]. One key advantage of
consensus modeling is that it can rapidly generate and summarize a
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structural feature from ensemble data.
However, by definition, consensus structures cannot capture the vari-

ability in genome conformations observed between cells in a population [10,
59, 69]. Additional modeling techniques have therefore been developed to
produce a large number genome structures whose properties can reflect
the 3D genome dynamics. Two fundamentally different approaches are
used to generate ensemble 3D genome structures: resampling techniques
and population-based deconvolution methods.

1.4.2.1 Restraint-based modeling using resampling methods

Resampling methods perform large number of independent optimizations,
each starting from a random chromosome configuration and using the
same scoring function. Depending on the statistical power required for
analysis, hundreds or thousands of 3D models are generated, which are
similar but not identical, and with variations that capture some of the
variability in genome structures between cells in the population under
study [48, 183–185]. In simulations, constraints are derived from 3C based
techniques (preferably Hi-C because it contains whole-genome information
for whole genome modeling), and optionally, from positional information
of chromatin in the nucleus (e.g. its anchoring to the nuclear lamina,
the nucleolus or speckles). Several available computational platforms
and software employ resampling methods with different sources of inputs
and optimization functions [48, 183–185]. Some of these derive pairwise
Euclidean distance between domains from interaction frequency maps
(e.g. [180]), while others use contact frequencies [178, 186] or the statis-
tical significance of pairwise contacts [48, 182]. Examples of resampling
methods to model 3D genome structures are addressed below.

Some of the earliest resampling-based models have been generated to
model 3D genome structure in budding yeast [179]. In this study, modeling
incorporates a bead chain restraint (bead-bead contacts), a bead chain
volume restraint (accounting for chromatin thickness) and interestingly,
chromatin positional constraints. Indeed, using prior knowledge on the
organization of the yeast nucleus, positional constraints are added: (i)
chromosomes are constrained to a confined nuclear space, (ii) telomeres
are constrained to locate at the nuclear periphery (this is motivated the
Rabl-like configuration in yeast where telomeres are juxtaposed near the
nuclear envelope [187], (iii) centromeres are clustered and constrained to
the spindle pole body at one pole of the nucleus, and (iv) rDNA repeat
regions from all chromosomes are constrained to a nucleolus at the pole
opposite to the spindle pole body [179]. The scoring function is defined
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as a sum of all constraints, which are derived from experimental data and
aims to reach a final score of zero at the end of the optimization, in order
to obtain a stable genome structure [179]. Chromosomes are modeled as
chains of beads. The optimization procedure using Integrative Modeling
Platform (IMP) [188] and starts with a random bead configuration. This
is followed by the initial optimization of the structure and simulated
annealing to equilibrate the genome structure. Then, a conjugate gradient
method ensures that no constraints are violated, leading to structures
with a final score of zero. The optimization process is run thousands
of times to generate thousands of 3D models which reflect the expected
variability of genomic configuration of yeast cells in a population [179].

TADBit is a 3D genome modeling package which also includes a
resampling method [121]. This framework generates ensemble of 3D
genome structures also using IMP [188]. Here, chromosomes are modeled
as chains of beads where each bead represents a segment of the genome
(e.g. TAD). The volume of a bead is modeled based on the linear genomic
size of the segment; for example, if genome segmentation is based on TADs,
bead volume is proportional to the genomic size of the TAD it represents.
Information for each chromosome is duplicated as an approximation to
be able to model the diploid state of the genome. Contact frequencies
from a 3C-based method (again, usually Hi-C) are converted into pairwise
contact restraints between beads. In other words, the distance between
beads are restrained if the contact frequency exceeds the cut-off value
or kept apart from each other if the contact frequency is lower than the
cut-off. After an initial random conformation is set, the simulation is run
to minimize the IMP objective function. At the end of the simulation,
a 3D genome model is generated, optimized to satisfy all restraints; yet
the resulting structure is not perfect. Thus, hundreds of simulations
are run parallel because each structure represents a local minimum of
the IMP objective function [121, 180]. Analysis of the structures shows
that properties of genome organization (e.g. chromosome territories) are
preserved in the models [184].

1.4.2.2 Chrom3D – a genome modeling resampling method that
incorporates positional constraints

Our laboratory has in 2017 developed and released a computational 3D
genome structural modeling framework, Chrom3D, to integrate Hi-C
constraints and a positional constraint based on the association of TADs
with nuclear lamina (LADs) identified from lamin ChIP-seq data [48]. Of
note, the initial version of Chrom3D was developed by the time I started
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my thesis work, and was the starting point of my work. In Chrom3D, each
chromosome is modeled as a chain of beads, where each bead represents
a segment of the genome (e.g. a TAD). Size of beads are proportional
to the genomic size of the segments. Input data to the Chrom3D are
(i) significant pairwise interactions between segments derived from a Hi-
C contact matrix and (ii) LAD information (provided e.g. by lamin
A or B ChIP-seq data) as radial positional constraints of beads in the
models (Fig. 1.12A). Note that adding LAD information is optional; if
not available, Chrom3D can nevertheless be run. We have however in our
publications systematically included LAD information in our Chrom3D
modeling exercises except for local modeling (Papers I, II and III and
papers not included in this thesis [43, 189]) (an example of local modeling
in the Fig. 1.12D). Additionally, other constraints can be specified to e.g.
position all beads within a sphere of a given radius (e.g. (5 μm) to reflect
the nuclear boundary (Fig. 1.12C,E).

Modeling input information is entered into the Model Setup File (Fig.
1.13) in GTrack format [190] that can be passed as an input file. Chrom3D
starts the simulation with an initial random bead chain configuration. A
model is then generated using Monte Carlo optimization of a loss-score
function (Fig. 1.12B). For each iteration, a random bead is selected and a
random movement is imposed on the bead, from a set of pre-determined
moves (e.g. bead chain translocation, rotation, wiggling or crankshaft)
[48]. The loss-score for a particular iteration is calculated and the event
is accepted based on the Metropolis criterion. During optimizations, the
loss-score L (equation 1.4) is minimized using simulated annealing.

L =
∑
i,j

kij(‖ bi − bj ‖ −dij)2 (1.4)

In the equation 1.4, k is the weight for a given interaction (to e.g.
emphasize a bead interaction with the nuclear lamina or with another
bead), bi and bj are interacting beads and dij is the distance between
interacting beads.

In Chrom3D, it is possible to specify weights on each constraint based
on empirical data through the parameter k of the loss-score function (equa-
tion 1.4). For example, beads containing LADs in human chromosome
18 can be given more weight to impose a stronger peripheral constraint
because we know from FISH data that chromosome 18 is positioned at
the nuclear periphery [191]. Finally, hundreds of simulations are run in
parallel to produce an ensemble of 3D models which together recapitulate
structural variability (Fig. 1.12). The radial positions of beads, which
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Figure 1.12: 3D genome structural modeling using Chrom3D, an ensemble
modeling method. (A) Hi-C and LAD data are used as chromatin interaction
constraints. Chromosomes are modeled as beads-on-a-string from domains in
Hi-C data (one bead corresponds to a TAD). (B) Monte Carlo optimization
starting from a randomly initialized structure. (C) Example of a Chrom3D model
of a human fibroblast genome (colors represent individual chromosomes). (D) A
Chrom3D model of Encode region ENm008 (500 kb) containing the α-globin gene.
Hundreds of models can be made to enable statistical predictions of chromatin
topologies at multiple scales. (E) Visualization of LADs, Hi-C constrained beads
and both (merge) in a tomographic view of one Chrom3D structure of a HeLa
cell nucleus. (F) Validation of radial positioning of loci by FISH. Panels are
reproduced from [48] under CommonCreative licence.

can be determined across models, can be validated in FISH experiments
[48] (Fig. 1.12F) and analysis of structures allows inference on the radial
position of chromosomes, LADs [43, 48], specific loci [192] or UV-induced
DNA lesions [193]. In Paper II, we used Chrom3D for quantitative
analysis of co-localization and radial position of TADs involved in TAD
cliques [62]. I have also used Chrom3D to predict the radial displacement
of loci as they experimentally gain or lose LADs under external cues [43].

The algorithm behind Chrom3D is well explained with a practical
application in the initial publication [48]. However, the report lacks
detailed explanations of Chrom3D parameters, a step-by-step procedure to
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Figure 1.13: An example text and the graphical illustration of the model setup
file (GTrack format). a) An example GTrack format; each field is annotated
and the values for each categories of constraints are explained in the boxes. b)
Graphic illustration of the example GTrack file where the black arc represents
nuclear periphery, the red beads represent Hi-C constrained beads, the blue
beads represent periphery constrained beads and the purple beads represent
both Hi-C and periphery constrained beads.

create a model setup file (GTrack) and ways to weigh the constraints in the
input file for users to fully exploit Chrom3D in their work. This led to the
development of a pipeline and subsequent publication of a protocol paper
[194] (Paper I). This paper details the process starting from processed Hi-
C data and optional LAD data to create the model setup file, run Chrom3D
simulations and produce publication-ready images. The protocol helps
users running Chrom3D using their own data. This is maintained and
supported on the github page (https://github.com/Chrom3D/pipeline).

1.4.2.3 Restraint-based modeling using deconvolution methods

The assumption behind the deconvolution methods is that ensemble Hi-C
data arises from multiple chromatin structures and do not correspond to
a single 3D structure shared by all cells of the cell population examined.

35



1. Introduction

Multiple chromatin structures are therefore highly likely to be observed
in a given population of cells [178, 181]. Deconvolution methods typically
use an iterative probabilistic framework in order to demultiplex the data
and construct a set of plausible structures. The generated structures
recreate ensemble Hi-C data without generating physically unrealistic
structures caused by violating constraints [178, 181, 195].

In deconvolution methods, rather than trying to impose ensemble Hi-C
data on individual structures, structures are optimized as a group, with
optimization formulated as a maximum likelihood estimation problem
[182]. Moreover, the method does not need to assume any relationship
between contact frequency or spatial distances, so long-range interactions
can be recreated in individual structures [47, 182, 196].

Similarly to resampling methods such as Chrom3D [48], population-
based modeling using deconvolution also allows for introduction of posi-
tional constraints on chromatin, for example from lamin DamID-seq (LAD)
data [47]. Interestingly, the structures recapitulate the nuclear envelope
and peri-nucleolar anchoring of heterochromatin domains consistent with
LADs and NADs, even though no nucleolus constraint is provided [47].
Similarly to Chrom3D [48], this approach considers the structural vari-
ability between genomes and allows predictions of 3D genome properties
that are not obvious in the underlying experimental data [47].

1.4.2.4 3D genome modeling and higher-order chromatin architecture
in this thesis

The past two decades have witnessed an explosion of molecular- and
sequencing-based approaches to study 3D genome conformation. Some of
these methods also combine microscopy imaging. This development has
been paralleled by the release of a plethora of computational frameworks
and tools to analyze data and model chromatin in 3D. The field also
witnesses the integration of physics-based modeling and restraint-based
modeling to better understand genome architecture and function.

Within this context, Chrom3D was published in 2017 [48]; yet it
required optimization and a computational workflow (pipeline) was needed.
This is the subject of Paper I. In addition, there has been, up to the
publication of Paper II in May 2019 [62], very little if no understanding of
(i) how higher-order chromatin topology changes during cell differentiation,
(ii) how such higher-order changes (in the form of long-range TAD-TAD
interactions) would be perceived or occur in single cells. These are the
topics developed in Paper II, whose results provide new insight into the
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4D nucleome. This work was followed by a genomic characterization of
TADs forming long-range associations as ‘TAD cliques’ in Paper III.
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Chapter 2

Aims of the study

The 3D topology of the chromatin establishes blueprints of developmen-
tal gene expression. This is reflected at the level of the whole nucleus,
on a large scale, by the radial (i.e. center-to-periphery) distribution of
chromatin. Despite advancements in our understanding of 3D genome
conformation, the long-lasting lack of suitable 3D genome computational
modeling platform able to faithfully recapitulate and predict the position-
ing of genomic loci relative to each other and to the nuclear periphery
has hampered our understanding of spatial genome conformation and of
genome dynamics during stem cell differentiation and between cells in a
population. It has also limited the ability to make testable predictions
on the relationship between changes in the radial position of loci and
associated gene expression changes. Lastly, it has hampered the ability
to predict spatial relationships between genetic variants such as single
nucleotide polymorphisms, which may provide additional clues on disease
etiology.

In this context, the aims of this study were to:

• Optimize our structural 3D genome modeling platform, Chrom3D,
and provide a detailed step-by-step protocol to the scientific com-
munity (Paper I)

• Identify and characterize higher-order changes in 3D chromatin
topology during differentiation (Paper II)

• Develop and implement a computational approach to identify multi-
TAD assemblies (TAD cliques) in single-cell Hi-C datasets (Paper
II)

• Investigate patterns of long-range interactions between TADs across
cell types (Paper III)

• Determine whether given genomic features define TADs in cliques
versus TADs outside cliques (Paper III)
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Own contribution:

My contributions in this thesis work have been at the conceptual and
bioinformatics levels, ranging from problem identification and analysis,
program conception, coding, data generation, analysis and interpretation,
to the generation of figures and writing of manuscripts.

The wet-lab experiments reported in the publications have been car-
ried by other members of the laboratory or by collaborators (Paper II).
Specifically, adipose stem cell culture and cell differentiation, sample
preparation for RNA-seq, ChIP-seq and Hi-C, ChIP-seq experiments
(lamins and histones), FISH experiments and FISH data analysis were
done by members of the Collas lab mentioned as authors and in the
acknowledgement. Hi-C for Paper II was done by Dr. Maxim Nekrasov
in Prof. David Tremethick’s laboratory (Australian National University,
Canberra, ACT, Australia).

My contributions were specifically as follows:

Paper I: coding to establish a seamless pipeline for Chom3D, including
linking steps, coding help, and diagnostics tools, testing and optimizing
the workflow; coding and testing mapping of epigenetic features onto
3D models; generation of figures; writing of the manuscript. After the
publication of Paper I: I have added all the scripts to the GitHub portal
(https://github.com/Chrom3D/pipeline) to make the pipeline to reach
many users (open access); together with Jonas Paulsen, I am actively
maintaining both Chrom3D and the pipeline providing ad hoc help to
users (https://github.com/Chrom3D/Chrom3D/issues).

Paper II: concept and realization of analysis of TAD cliques during
reprogramming of B cells into pluripotent cells, conceptualization and
analysis of TAD cliques in single cells, including single-cell Hi-C data
analyses, generation of figures, writing of the corresponding text, figure
legends and methods; generation of 3D genome models and corresponding
data analyses to explore the radial position of TAD cliques in adipose
stem cells.

Paper III: Hi-C and TAD clique data exploration and analysis for all
four cell types examined in the paper, identification and conceptualization
of the questions, testing of hypotheses, data generation and analysis,
generation of figures, writing of the manuscript.
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In addition, I have significantly contributed to another published paper
not included in this thesis (Forsberg F, Brunet A, Liyakat Ali TM, Collas
P. 2019. Interplay of lamin A and lamin B LADs on the radial positioning
of chromatin. Nucleus 10, 7-20 ). I have analyzed publicly available Hi-C
data for the HepG2 cell line. The 3D genome models were generated using
the Hi-C and lamin A/C and lamin B ChIP-seq data from the laboratory
(Forsberg and Brunet) and, wrote scripts to extract 3D coordinates of
beads. I have generated 3D genome modeling parts of figures, written
figure legends and methods and, approved the final manuscript.
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Chapter 3

Summary of the papers

3.1 Paper I

Computational 3D genome modeling using Chrom3D
Paulsen J, Liyakat Ali TM, Collas P$. 2018. Nature Protocols 13, 1137-
1152
$Corresponding author.

We report here Chrom3D, a computational platform for 3D structural
genome modeling that simulates the spatial positioning of chromosome
domains relative to each other and relative to the nuclear periphery. In
Chrom3D, chromosomes are modeled as chains of contiguous beads, in
which each bead represents a genomic domain. In this protocol, a bead
represents a topologically associated domain (TAD) mapped from en-
semble Hi-C data. Chrom3D takes as input data significant pairwise
TAD–TAD interactions determined from a Hi-C contact matrix, and TAD
interactions with the nuclear periphery, determined by ChIP-sequencing
of nuclear lamins to define lamina-associated domains (LADs). Chrom3D
is based on Monte Carlo simulations initiated from a starting random
bead configuration. During the optimization process, TAD–TAD inter-
actions constrain bead positions relative to each other, whereas LAD
information constrains the corresponding bead toward the nuclear periph-
ery. Optimization can be repeated many times to generate an ensemble
of 3D genome models. Analyses of the models enable estimations of the
radial positioning of genomic sites in the nucleus across cells in a popu-
lation. Chrom3D provides opportunities to reveal spatial relationships
between TADs and LADs. More generally, predictions from Chrom3D
models can be experimentally tested in the laboratory. We describe the
entire Chrom3D protocol for modeling a 3D diploid human genome, from
the creation of input files to the final rendering of 3D genome struc-
tures. The procedure takes ∼18 h. Chrom3D is available on GitHub at
https://github.com/Chrom3D/Chrom3D/releases/v1.0.1.
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3. Summary of the papers

3.2 Paper II

Long-range interactions between topologically-associating
domains shape the 4-dimensional genome during differenti-
ation
Paulsen J, Liyakat Ali TM∗, Nekrasov M∗, Delbarre E, Baudement M-
O, Kurscheid S, Tremethick D$, Collas P$. 2019. Nature Genetics 51,
835-843
∗shared authorship. $Shared senior authorship.

Genomic information is selectively used to direct spatial and temporal
gene expression during stem cell differentiation. Interactions between
topologically associating domains (TADs) and between chromatin and
the nuclear lamina organize and position chromosomes in the nucleus.
However, how these genomic organizers together shape genome archi-
tecture is unclear. Here, using a dual-lineage differentiation system, we
report long-range TAD-TAD interactions that form constitutive and vari-
able TAD cliques. A differentiation-coupled relationship between TAD
cliques and lamina-associated domains suggests that TAD cliques stabi-
lize heterochromatin at the nuclear periphery. We also provide evidence
of dynamic TAD cliques during mouse embryonic stem cell differentia-
tion and somatic cell reprogramming and of inter-TAD associations in
single-cell high-resolution chromosome conformation capture (Hi-C) data.
Altogether, our findings indicate that TAD cliques represent a level of
four-dimensional genome conformation that reinforces the silencing of
repressed developmental genes.

3.3 Paper III

TAD cliques predict key features of chromatin organization
Liyakat Ali TM, Brunet A, Collas P$, Paulsen J$, 2020. Manuscript.
$Shared senior authorship.

Processes underlying genome 3D organization and domain formation in
the mammalian nucleus are not completely understood. Multiple processes
such as transcriptional compartmentalization, chromatin extrusion events
and nuclear lamina interactions likely simultaneously and dynamically act
on chromatin at multiple levels. We have explored long-range interaction
patterns between topologically associated domains (TADs) across several
cell types. We find that these patterns are connected to many key features
of chromatin organization, including open and closed compartments,
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chromatin compaction and loop extrusion processes. We find that domains
that form large TAD cliques tend to be repressive across cell types when
comparing gene expression, LINE/SINE repeat content and chromatin
subcompartments. Further, TADs in large cliques are found to be larger
in genomic size, less dense and depleted of convergent CTCF motifs, in
contrast to smaller and denser ‘typical’ TADs explained by loop extrusion.
Our results shed further light on the organizational principles that govern
repressive and active domains in the human genome.
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Chapter 4

Discussion

This thesis reports computational developments and analyses leading
to seamless workflow of analysis of the genome in 3 dimensions (Paper
I), new biological insights into the 3D organization of the adipose stem
cell genome during differentiation (notably, TAD cliques; Paper II),
and a genomic characterization of TAD cliques across several cell types
(Paper III). I emphasize that my scientific contributions have been
strictly computational and of bioinformatics nature, and have specifically
led to the following outcomes:

• A seamless computational pipeline consisting of TAD identifica-
tion and calling from Hi-C data, determination of consensus TADs
between Hi-C datasets, identification of significant long-range TAD-
TAD interactions, and other features. Altogether, this has led to
significant improvements and, importantly, user-friendliness, of the
Chrom3D framework just established in the laboratory [48] when I
started my work.

• Use of Chrom3D by several laboratories around the world, as dis-
cussed below.

• The demonstration of a new level of higher-order chromatin topology
in the form of TAD cliques.

• A method to identify and characterize TAD cliques in single cells.

• Application of Chrom3D genome modeling to characterize chromatin
dynamics under defined experimental conditions [43] (work not
reported in this thesis).

4.1 My contributions to Chrom3D

Chrom3D has been published in 2017 [48], before I started my PhD work,
and I have been involved in the continuous development and support of
Chrom3D. My contribution mainly includes increasing the usability and
user-friendliness of this framework. For instance, prior to my involvement
in the work, error messages reported by Chrom3D during data processing
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Figure 4.1: Example of a user-friendly error message produced by Chrom3D.
The message reports that in the 4th line, a self-interaction is defined; that is,
the bead ID for a particular bead is found in the edge column (where bead-bead
interactions are defined in the model setup file) of the same bead.

were highly technical; in other words, they could only be understood
by skilled C++ programmers, limiting their usefulness to other users.
More specifically, most error reports did not point out the source of
errors. Therefore, I modified the code in order to catch errors reported
by the framework and make it easier for many bioinformaticians, even
with limited programming background, to understand them. For example,
if a user encounters an error in the interaction information of a bead
in the model setup GTrack file, the error report now points out the
relevant code line (e.g. Fig. 4.1), making it a lot easier to identify for
any Chrom3D user. All my contribution to Chrom3D can be found on
GitHub (https://github.com/Chrom3D/Chrom3D/graphs/contributors).

4.2 Applications of Chrom3D modeling to our
understanding of 3D genome architecture and
dynamics

We have shown that Chrom3D can be applied to place post-translational
histone modifications in the 3D models (e.g. H3K27me3, H3K27ac; Paper
I), which, if quantified through e.g. spatial clustering analysis (unlike
what we illustrate in Paper I), can provide predictive information on
spatial domains of such modifications. Similarly, chromatin states [197],
DNA methylation, TF binding or other chromatin-associated features can
be mapped onto Chrom3D models with the aim of spatially characterizing
their distribution.

Our laboratory has used Chrom3D to predict the radial positioning
of UV-induced DNA lesions in human fibroblasts [193]. Modeling data
show that UV susceptibility is enriched at the nuclear periphery relative
to the nuclear center (Fig. 4.2A). The data suggest that heterochromatin
at the nuclear periphery acts as a ‘sink’ for UV lesions, protecting the
more centrally located gene-rich euchromatin, or alternatively, that DNA
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lesions are more readily detected at the nuclear periphery because they
are less efficiently repaired due to restricted access of the DNA repair
machinery in this heterochromatic compartment [198]. Additionally, genes
mutated in 5.1 to 10% of melanomas are significantly more frequently
positioned at the nuclear periphery compared to genes not mutated in
melanomas (Fig. 4.2B) [193]. These predictions could not be made only
from mapping these DNA lesions onto a linear genome, arguing for the
gain of information provided by 3D genome modeling.

I have applied Chrom3D in a recently published study (not included in
this thesis) of the dynamics of interactions of chromatin with A- and/or
B-type nuclear lamins, at the nuclear lamina, in HepG2 hepatocarcinoma
cells used as an in vitro model of steatosis (induced by cyclosporine)
[43]. ChIP-seq analysis of lamin A and lamin B reveals that a chromatin
domain can interact with lamin A only (forming an ‘A-LAD’), lamin B
only (B-LAD) and both lamins A and B (A/B-LADs). I have produced
800 Chrom3D models of the HepG2 genome using Hi-C data for HepG2
(ENCODE, NCBI GEO accession GSE105382, sample GSM2825569) and
our own LAD data for HepG2 cells before and after cyclosporine treatment.
A-LADs, B-LADs and A/B-LADs (identified by ChIP-seq also in the
study) were then mapped onto the Chrom3D models. Measurements of
the radial positioning of these LADs highlight key features of genome
organization (Fig. 4.2C): (i) A-LADs, B-LADs and A/B-LADs are more
peripheral than inter-LAD regions; (ii) B-LADs and A/B LADs are closer
to the nuclear periphery than A-LADs (Fig. 4.2D); (iii) a loss of lamin
B (but not A) interaction correlates with displacement of loci from the
nuclear periphery towards the center and, (iv) loss of lamin B from an
A/B LAD or a switch from B-LAD to A-LAD also coincides with a more
central position of the domain; (v) on the contrary, a gain of lamin B
correlates with repositioning of the domain towards the periphery. These
Chrom3D predictions were importantly validated by FISH [43]. Chrom3D
models therefore enable predictions on the spatial repositioning of loci as
a function of their lamin interactions.

4.3 Applications of Chrom3D modeling by other
laboratories

Chrom3D is used by several groups worldwide. Our Nature Protocols
publication on using Chrom3D (Paper I) [194] notably describes the step-
by-step procedure to create the input file; this has significantly increased
the number of Chrom3D users. In addition to the ‘conventional’ way
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Figure 4.2: 3D positioning of genome features in Chrom3D models. (A)
UV-induced DNA lesions are more readily detected at the nuclear periphery.
Chrom3D model of the whole IMR90 fibroblast genome (left) and placement
of the top 10% (red) and bottom 10% (blue) UV susceptibility sites in one
Chrom3D model. In the models, one bead is a TAD called from Hi-C data for
IMR90 fibroblasts. (B) Tomographic representation of the spatial localization of
genes not mutated in melanomas (n = 1226) and genes mutated in 5-1-10% of
melanomas (n = 714) (IMR90 Chrom3D models). (A, B), modified from [193]
with permission. (C) Chrom3D models of the whole genome (tomographic views,
left) and of A/B-LADs, A-LADs and B-LADs in control HepG2 cells and HepG2
cells treated with cyclosporine (CsA). (D) Normalized LAD distances from the
nuclear center (0, center; 1, periphery) in 800 Chrom3D models of control and
CsA-treated HepG2 cells. Distances for all other LADs (inter-LAD, or iLADs)
are also shown. §P < 2.2x10-16 relative to each LAD class; unpaired t-tests; P
< 2.2x10-16; unpaired t-tests; distances computed as absolute distances divided
by the radius of the modeled nucleus (5 μm). (C, D), from [43] with permission
under CreativeCommon license.
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of using Chrom3D with both Hi-C and LAD constraints, other ways of
running Chrom3D depend on the research question and data availability.
As I have explained in the Introduction of this thesis, it is possible
to run the Chrom3D with only Hi-C data (as bead-bead interaction
constraints), and adding periphery interaction information is optional.
Also, as demonstrated in the original Chrom3D publication [48], local
modeling is possible; that is, 3D modeling of a specific locus or a genomic
segment of interest. Examples of applications of Chrom3D by various
research groups are discussed below.

A study by Espeso-Gil et al. shows the spatial colocalization of
genome-wide association study (GWAS) risk sequences associated with
schizophrenia and metabolic disorders using Chrom3D genome models
(Fig. 4.3A). They termed the risk sequences found in confined closed
proximity as ‘Euclidean hot spots’. These hot spots mainly consist of risk
genes with functional enrichment in lipid regulation functions, reward and
addiction pathways, starvation response and regulation of food intake [199].
In addition to provide new information on spatial associations between
genes enriched in specific functions, this study provides an example of
application of Chrom3D using only Hi-C data without any need for lamin
constraints because only chromosomal interactions are relevant here.

Other work explores the role of DNA replication timing in a 3D genome
architecture context [200]. Using CRISPR-based genome editing, the
authors show that early replication control elements (ERCE) play an
important role in chromatin domain architecture. They also predict
ERCEs along the mouse genome and show robust long-range CTCF-
independent interactions between predicted ERCEs [200]. ERCEs may
also be required for A/B compartmentalization [200]. In this study, they
used Chrom3D to model the Dppa2/4 locus (∼5 Mb) and show spatial
proximity between ERCEs and predicted ERCE elements within the
domain [200] (Fig. 4.3B).

A recent study by Tian et al. [201] exploits 3D genome modeling using
Chrom3D to corroborate chromatin interaction networks. The authors
developed an algorithm called MOCHI to discover cell type-specific hetero-
geneous interactome modules (HIMs). These HIMs represent clusters of
loci which interact more frequently than expected and are regulated by the
same group of TFs; in that sense, a HIM overall reflects a ‘transcriptional
niche’ [201]. Of note however, even though the coined term of ‘HIM’ may
be recent, the concept of spatially proximal co-regulated genes in the
form of ‘transcription factories’ has been proposed (notably from FISH
studies) as early as 1993 [202] and has been corroborated many times
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since. 3D genome structural modeling, however, supplementing Hi-C data,
nicely supports this concept. One of the HIMs in K562 cells is showed in
Fig. 4.3C. In the 3D model, the authors show that a super-enhancer is
spatially proximal to genes involved in the HIM.

4.4 Limitation of Chrom3D

Memory and time complexities

The main technical limitations of Chrom3D are memory and time com-
plexities. The required memory and linearly increase with resolution of
the data (the number of beads) and the number of iterations. So far, the
maximum number of beads acceptable for each chromosome is hardcoded
to 5000 but if a user wants an ultra-high-resolution models then this
number can be increased in “chromosome.h” of the source code before
compilation in order to increase the resolution of the model. This will,
however, increase memory consumption.

Multithreading of the simulation may appear as an option to decrease
runtime. However, multithreading is not supported in Chrom3D because
every iteration depends on the loss-score of the prior iteration, and the
move is accepted or rejected based on the Metropolis criterion. Therefore,
if the iteration is multithreaded, tracking of the prior move has to be
implemented, which adds more complexity. Next, the Chrom3D is imple-
mented in C++, so it is already faster and well optimized for memory
usage. Regardless, a user ideally needs to produce hundreds or thousands
of models to perform statistical analysis on 3D positions; these can easily
be executed in parallel to decrease runtime.

Minimizing the loss-score (i.e. finding a [local] minimum) faster might
be one way to decrease runtime. In Chrom3D, simulated annealing is
implemented to minimize the loss-score but is not optimally exploited.
To use simulated annealing for minimizing the loss-score, the cooling rate
parameter must be set between 0 and 1. The idea is that the temperature
parameter gradually decreases during the simulation and is determined
by the cooling rate for accepted moves. In other words, lowering the
temperature during optimization speeds up loss-score minimization. De-
termining the optimal cooling rate is critical for faster minimization.
An option to determine the cooling rate is explained in the GitHub
page (https://github.com/Chrom3D/Chrom3D#temperature-parameter-
and-cooling-rate).
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Figure 4.3: Examples of application of Chrom3D by different research groups.
(A) Hi-C contact map of Chr.5 and a whole-genome Chrom3D model generated
using human midbrain cell Hi-C data. The highlighted beads in red show the
domains (TADs) harboring both schizophrenia and metabolic disorders risk
variants. (B) Capture contact map of a ∼5 Mb region highlighting the DppA2
locus in the mouse genome and the corresponding locus in Chrom3D models,
viewed from different angles. The models demonstrate the spatial proximity of
early replication control elements (ERCE) and predicted ERCEs. (C) A local
Chrom3D model and annotated Hi-C contact map showing contact frequencies
in Chr.11 in the K562 cell line. This local Chrom3D model highlights the spatial
proximity between a super-enhancer (SE) and a K562-specific heterogeneous
interactome module (HIM). Panels are reproduced from multiple publications
with permission [199–201]
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Limitations of Chrom3D pipeline

Limitations to automate the pipeline. It would be optimal to fully auto-
mate the Chrom3D pipeline presented in Paper I using a simple Bash
script or workflow management systems, for example, snakemake [203].
Some of the steps in the pipeline, for example make_NCHG_input.sh
(the step that makes TAD-TAD interaction matrices for all chromosomes
to identify significant interactions using NCHG), can be easily parallelized
using a workflow management system. An advantage of a workflow man-
agement system is that it assesses the validity of the output from one
step before passing the output from the step as an input to the next step;
it also ensures that jobs are run in the correct order and all the input
data are available.

Currently, identification of significant intra-chromosomal and inter-
chromosomal TAD-TAD interactions from Hi-C data requires manual
intervention. This step requires the P-value and effect size threshold to be
decided by the user, either by visualization or through some basic tests.
Here, the basic tests are comparing the NCHG output to the replicates
or other datasets generated in the laboratory by calculating the Jaccard
index. These threshold values could change based on the source, cell type
and resolution of the Hi-C experiments. An option to avoid this manual
step is using image-based algorithms such as the lasso algorithm [204].
Briefly, in this algorithm, TAD-TAD interaction matrices are treated as 2D
images where each pixel represents the interaction intensity between two
TADs. Then, lasso smoothens the 2D interaction matrix (an image); this
step highlights or picks the TAD-TAD interactions (pixels) with the high
frequency of interaction compared to the surrounding interactions (pixels).
Thus, the aforementioned manual intervention step can be avoided.

There is potentially another relatively simple way to automate the
pipeline. If the thresholds are known before running the pipeline based
on prior knowledge, then the pipeline can be fully automated. This
method requires a config file where the paths to the scripts, the ini-
tial input files, the parameters to functions and the thresholds are pre-
defined. Nevertheless, this type of automation has not been tested and
implemented, nor explained in Paper I. It is worth to note that a
research group has automated this pipeline based on Paper I, but
this automated method has to be tested in our laboratory. The au-
tomated scripts can be found in the research group’s GitHub page [199]
(https://github.com/sespesogil/automat_chrom3D).
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Figure 4.4: Example of a Chrom3D output file in CMM format. The first line
contains the model name. The second and the third lines represent two beads
and contain bead IDs, 3D coordinates, radii, RGB values (colors arbitrarily given
to beads to highlight specific features) and chromosome IDs of beads 1 and 2.
The fourth line represents a linker that connects beads 1 and 2.

Visualization and data analysis. Chrom3D generates 3D genome model
outputs in the chimera marker (CMM) format which is a text file based
on an XML file format to store information. The CMM format file can
only be opened using the Chimera visualization software [205] and not
other macromolecule visualization software such as PyMol [206], for visu-
alization. Uses of Chimera have been explained in Paper I and are for
visualizing structures and generating publication-ready images. Unfortu-
nately, Chimera lacks features to add any extra information such as gene
content, histone modification or gene expression data. Therefore, there is
a demand to create a stand-alone or web-based graphical user interface
with features to load extra information for each bead (TAD). These fea-
tures would help users to frame hypotheses, enable visual comparisons of
position of genes in 3D models, and communication between researchers
and with broader audiences (such as students).

A Chrom3D-generated CMM file mainly contains beadID, 3D coordi-
nates and radius of each beads (Fig. 4.4). Extracting the aforementioned
information from the output CMM file requires programming skills. For
instance, a user should write scripts to extract the 3D coordinates of the
beads and calculate distances between beads and distances between beads
and the centre of the modeled nucleus (sphere). These scripts are not
included in Paper I.

Modeling diploid genomes. Paper I explains the step-by-step procedure
to process haploid genome Hi-C data to create a model setup file. The
pipeline contains a step to create a pseudo-diploid model setup file. This
is done by duplicating the information for each chromosome from haploid
Hi-C data. The resulting pseudo-diploid model setup file is used as
input to Chrom3D to generate diploid 3D genome models. Nevertheless,
the generated models reflect realistic difference in 3D positions between
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homologs [43, 48, 62]. With advancement in biochemical techniques, there
are methods to generate diploid genome Hi-C data and these data are
available publicly [16, 93] for exploitation. Chrom3D is already capable
of modeling real diploid genome information. Nonetheless, this requires
major modification to the pipeline by adding several pre-processing steps;
this would include treating two homologous chromosomes as two separate
(different) chromosomes and combining interaction information in the
final step to generate a single diploid model setup file. Similarly, the
pipeline is not suitable to create realistic models of aneuploid cancer
genome; presently, I would suggest ad hoc ways to pre-process aneuploid
Hi-C data for modeling, depending on the nature of the actual data. This
would also yield for cancer genomes containing gross genetic abnormalities
such as translocations, which can be detected in Hi-C data.

4.5 TAD cliques as a novel feature of higher-order
chromatin organization

TAD cliques constitute higher-order chromatin assemblies iden-
tifiable in Hi-C matrices

An important finding in this thesis work is the identification of a new
higher-order level of chromatin architecture in the form of TAD cliques
(Paper II, published in 2019 [62]). Hi-C matrices reveal interactions
within TADs, between linearly consecutive TADs (along the matrix diag-
onal), and between linearly non-adjacent TADs (away from the matrix
diagonal). Contacts between multiple TADs in Hi-C data may implicate
that all TADs interact with each another or that only some of the TADs
interact. To distinguish between such interaction patterns, we have opted
for the use of graph theory. In graph theory, a clique is a subset of k
nodes which are all connected by an edge. We have defined a TAD clique
as a subset of k TADs (k ≥ 3) that are fully connected, i.e. which all
interact pairwise in the Hi-C data.

A critical step in mapping TAD cliques is the identification of statisti-
cally significant pair-wise TAD-TAD interactions, which we have done
using the NCHG model [148] to calculate the probability of observing
a given number of Hi-C contacts conditional on the number of interac-
tions for the two TADs examined, the total number of interactions, and
the genomic distance between the TADs (Paper I). We then calculate
a P-value to identify statistically significant contacts, and cliques are
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identified by representing all significant TAD-TAD contacts as a graph
and identifying maximal cliques (Paper II; see also Paper III). Using
this approach, we report, from ∼15,000 significant pairwise TAD-TAD
contacts, more than 3,000 maximal cliques of 3 to 11 TADs which make
up ∼50% of the genome. Thus, TAD cliques are main features of the
large-scale topology of the human genome.

TAD cliques are enriched in B compartments and show all main
features of heterochromatin (Paper II). Cliques are enriched in H3K9me3
and to a lesser extent H3K27me3; however, the linear distribution of
these marks seems different, with H3K9me3 enriched over a TAD in
clique, and H3K27me3 tending to be more elevated at the border of, or
outside, a TAD in clique (Paper II; Fig. 4.5A). It remains uncertain
whether H3K9me3/H3K27me3 co-enriched cliques exist or whether this
is a misinterpretation of analysis of ensemble ChIP-seq data. In the
case of H3K9me3/H3K27me3 co-enrichment however, TAD cliques could
represent a new subtype of B compartment [16]. Our aggregation plots
also cannot distinguish between distinct classes of enrichment of these
marks.

I have explored this further and characterized the patterns of TAD-
TAD interactions in TAD cliques identified from Hi-C data in four cell
lines, and reanalyzed in Paper III. We notably examined the overlap
of TADs in cliques with known A and B compartment sub-types, as a
function of TAD clique size (Paper III, Fig. 5A). Overlap is strikingly
low regardless of compartment sub-type. We note however that overall, A1
subcompartment overlap is reduced as clique size increases and overlap
with B2 and B3 subcompartments tends to increase for larger clique
sizes. These data suggest that TAD cliques are probably distinct from
previously annotated subcompartments, supporting our view of these
structures organizing the genome at yet another level.

Another feature of TAD cliques which has not been exploited in work
shown here is that about one third are found in A compartments (Paper
II). Intriguingly, TAD cliques in A compartments include expressed genes
interspersed with H3K27me3-marked genes, but contain no LADs. In
ASCs, A compartment cliques may represent associations containing genes
that can be activated during differentiation; in that sense, 3-way genome
architecture mapping (GAM) TAD interactions reported in mouse ES cells
[56] may constitute a subset of small A compartment TAD cliques. The
relationship between TAD cliques and other (non-compartment) domains
is discussed below.

Interestingly, we also find that TADs in large cliques are more con-
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Figure 4.5: Heterochromatin state and outer-clique connectivity of TADs in
cliques. (A) Schematized profiles of H3K9me3 and H3K27me3 in TADs (in
clique) and inter-TADs (B) TADs in large cliques (left) show higher connectivity
with TADs outside cliques than TADs in small cliques (right). Colored nodes
represent TADs in the largest clique; white nodes represent TADs outside the
largest clique.

nected to TADs outside the (largest) clique than TADs belonging to
smaller cliques (Paper III). A model is depicted in Fig. 4.5B. Specula-
tively, that may result from heterochromatin being more compact than
euchromatin and associating more readily with other heterochromatin
domains, as would be predicted by homotypic interactions [13, 29, 207].
Conversely, a lower intensity of inter-TAD interactions would reflect a
loser chromatin conformation which is less ‘interactive’ (Fig. 4.5B).

Lastly, data from Paper III reveal that TADs in large cliques are
larger, show fewer within-TAD contacts, and are depleted of convergent
CTCF motifs at their borders compared to TADs in small cliques or
outside cliques. This contrasts with the smaller and more interaction-
dense TADs which have been suggested to be formed by chromatin loop
extrusion [208].

How do TAD cliques compare to other reported interactions
between chromatin domains?

TAD cliques and SPRITE clusters. The SPRITE method described in the
Introduction of this thesis detects multi-way chromosomal interactions,
or “SPRITE clusters” of 3 to 14 k-mers [57]. These are interpreted as
chromosomal ‘hubs’ arising from long-range interactions including either
gene-dense, active and RNA-polymerase II-marked regions at nuclear
speckles, or inactive centromere-proximal regions around the nucleolus
[57]. Unlike Hi-C, SPRITE does not depend on proximity ligation and
allows for detection of interactions over longer distances (Quinodoz et al.,
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2018). The heterochromatic nature of TAD cliques (Paper II) and of
NADs [50, 52] raises the possibility that a fraction of repressed SPRITE
clusters could reside in TAD cliques or include several cliques at the
periphery of nucleoli.
TAD cliques and ‘TAD hubs’. TAD cliques show analogy to the H3K9me3-
enriched so-called ‘TAD hubs’ reported in B compartments from long-
range inter-TAD interaction in endothelial cells; like cliques, these hubs
are enriched in LADs [58]. Analysis of these hubs and cliques agree in
that the majority of domains fall within a pre-established conformation
(such as TAD cliques or absence thereof) that is overall maintained during
differentiation [58, 62] (Paper II). This is notwithstanding the fact
that a proportion of TAD hubs and TAD cliques may grow or shrink
during differentiation, by gaining or losing TADs (Paper II) (TAD clique
dynamics is discussed below).
Nanocompartments, meta-TADs and C-walk interactions. Associations be-
tween TADs have also been reported in Drosophila cells from Hi-C and
FISH data [72]. There, dynamic interactions between TADs seem to occur,
arranging repressed TADs as a succession of ‘nanocompartments’ interca-
lated by active domains [72]. FISH data and inferences from 3D models
of these configurations suggest that some of these nanocompartments
involve linearly non-adjacent TADs – notably supporting a TAD clique
idea. The nanocompartments also resemble TAD cliques identified in A
compartments with H3K27me3. Our work (Paper II) and the Szabo
study also agree that changes in inter-TAD interactions reflect discrete
chromosomal contacts and not a merger or splitting of TADs.

Additional studies report TAD-TAD interactions which, however, are
probably different from TAD cliques. First, the notion of ‘meta-TADs’
has been proposed as interactions between several neighboring TADs, but
not between linearly distant TADs, which define cliques [74]. Meta-TADs
are enriched in H3K27me3 and in RNA polymerase II [74] but are devoid
of H3K9me3, which again segregates them from TAD cliques. Second, a
variation of Hi-C using chromosome walks (C-walks) captures associations
between two to four TADs, whose occurrence is enhanced by Polycomb
proteins [209]. Yet, C-walks favor a view of pair-wise TAD-TAD contacts
over a hub-like pattern, and random associations between active loci
rather than a regulated process (this does not mean that all TAD cliques
we have identified are regulated, but cliques do not involve active genes).
Third, GAM reveals three-way TAD interactions that regroup active genes
and enhancers [56]. These associations may constitute supra-TAD gene
regulatory ‘units’ but are likely to be distinct from the TAD cliques we

59



4. Discussion

have reported, even those found in A compartments (Papers II and
III).

TAD cliques are dynamic topological assemblies

TAD cliques are not all static assemblies, and can expand or shrink during
differentiation by gaining or losing TADs (Paper II). Changes in clique
size do not correspond to changes in the size of B compartments or to A-B
compartment switching. This again suggest that TAD cliques constitute
another level of higher-order chromatin conformation different from A/B
compartmentalization.

Temporal changes in inter-TAD contacts characterize not only mes-
enchymal and embryonic stem cell differentiation [60, 62], but also dedif-
ferentiation, as shown during reprogramming of B cells [61]. We show a
reduction in clique number during cell reprogramming, which probably
reflects a loosening of chromatin structure as cells acquire pluripotency.
TAD-TAD contacts also appear to be sensitive to environmental condi-
tions. In Drosophila, heat shock response is accompanied by a decrease
in intra-TAD contacts and an increase in long-range interactions [210],
suggesting a 3D rearrangement of TADs that may be important for gene
silencing after temperature stress. These interactions could involve a
decrease in TAD border strength [210].

Relationship between TAD cliques and LADs as genome orga-
nizers for the radial positioning of chromatin

TADs and TAD cliques however are not the only features shaping genome
topologies. A characteristic of TAD cliques in human and mouse cells
is their enrichment in lamin interactions (LADs); yet this relationship
seems to depend on TAD clique size and differentiation status (Paper
II). The proportion of linear clique coverage by LADs increases with
clique size, and differentiation correlates with an increase in the LAD
content of cliques regardless of clique size. So large cliques tend to
associate with the nuclear lamina and this association is exacerbated in
terminally differentiated cells. Nonetheless, lamin association appears
to be dispensable for the formation of cliques because many cliques are
detected exist in the absence of LADs, and we found several examples
of LADs appearing in pre-established cliques during differentiation. A
tethering of TADs in cliques at the nuclear lamina could further compact
chromatin in these TADs [211], reinforcing their repressed state.
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TAD cliques as a novel feature of higher-order chromatin organization

Our Chrom3D models corroborate these features and predict a pe-
ripheral localization of TAD cliques in relation to clique size, with larger
cliques more frequently found at the nuclear periphery, and differentiation
(Paper II). One can speculate that TAD cliques strengthen a repressive
state of gene expression by stabilizing peripheral heterochromatin at the
nuclear lamina. Interestingly, only a subset of TADs might be sufficient
to tether a clique at the nuclear lamina because in a clique containing
LADs, not all TADs do harbor LADs. Extending this idea, the nuclear
peripheral localization of TADs in a clique does not necessarily directly
require LADs if this localization involves LADs in neighboring TADs. Our
TAD clique concept further argues that these neighboring TADs need
not be linearly contiguous as long as they remain spatially close in a 3D
environment.

Are there TAD cliques in single cells?

We have identified TAD cliques using ensemble Hi-C data from ∼ 25
million cells, which makes it a priori impossible to infer whether cliques
exist in single cells or whether they are only detectable in ensemble Hi-C
data but do not exist as such. Single-cell Hi-C [10, 12, 59, 212] captures
snapshots of chromosome interactions in single cells, and although contacts
are sparser than in ensemble Hi-C matrices, significant pair-wise TAD-
TAD contacts can be detected (Paper II); still, the sparsity of contacts
makes identification of TAD cliques virtually impossible. To circumvent
this problem, we propose an approach allowing an estimation of inter-TAD
contacts in projected TAD cliques pre-identified from ensemble Hi-C data
in the same cell type (here, mouse ES cells). We decompose this approach
into five steps:

1. Identify significant pair-wise TAD-TAD contacts in single-cell Hi-C
contact matrices

2. Identify TAD cliques in ensemble Hi-C data for the same cell type

3. Project these cliques onto individual single-cell Hi-C matrices

4. Compute TAD contact frequencies in the projected cliques and
outside the cliques (using an appropriate randomization process, as
described in Paper II

5. Compute TAD contact densities in the projected cliques
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4. Discussion

Using this strategy we have reported, from nine single-cell Hi-C
datasets, an enrichment of TAD-TAD contacts in projected cliques. Fur-
thermore, most single cells analyzed display clique-like TAD assemblies
with at least 50% TAD connectivity in them (i.e. with more than 50% of
TADs connected pair-wise in the projected cliques in the single-cell Hi-C
data). Although this does not demonstrate the existence of TAD cliques
in single cells, the subsets of TADs may display statistically significant
long-range associations also in single-cell Hi-C data.

A two-color FISH analysis using probes against TADs in cliques and
outside cliques supports our predictions from Chrom3D modeling, on
TAD proximity in cliques versus non-cliques. The now published Paper
II data [62] and additional experiments from our laboratory (T. Germier,
A.L. Sørensen and P.Collas, unpublished data) show that TADs in cliques
can form closer associations that TADs not in cliques. However, the
variations in how physically close to one another TADs in a clique are,
demonstrate the heterogeneity in chromatin configurations between cells
and challenges the interpretation of ensemble Hi-C data on apparent
‘multi-way interactions’ (see Fig. 1.4).

4.6 Perspective

The parallel rapid developments of wet-lab techniques and computational
methods to analyze genomes in three dimensions, and the combination of
such approaches, is expected to lead to further leaps in our understanding
of genome dynamics in multiple dimensions. Temporal structural changes
in genome conformations, and parallel explorations of multiple cell types
or cell differentiation lineages, will increasingly be enabled. Analysis of
aneuploidy genomes, such as cancer genomes, and of heterogeneity of
genome topologies between cells (e.g. in a tumor) will also expectedly be
increasingly possible. Additionally, analyses of single-cell 3D genomes will
also increasingly be enabled and refined to lead to unparalleled descriptions
and understanding of principles of 3D genome organization, and of the
variability thereof. The field of computational genome biology is exploding
and is expected to continue expanding - not only for computational
experts, but also for non-computational biologists through development
of user-friendly pipelines – in the years to come.
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