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Abstract: It is fundamentally challenging to quantify the uncertainty of data-driven flood forecasting.
This study introduces a general framework for probabilistic flood forecasting conditional on point
forecasts. We adopt an unscented Kalman filter (UKF) post-processing technique to model the
point forecasts made by a recurrent neural network and their corresponding observations. The
methodology is tested by using a long-term 6-h timescale inflow series of the Three Gorges Reservoir
in China. The main merits of the proposed approach lie in: first, overcoming the under-prediction
phenomena in data-driven flood forecasting; second, alleviating the uncertainty encountered in
data-driven flood forecasting. Two commonly used artificial neural networks, a recurrent and a static
neural network, were used to make the point forecasts. Then the UKF approach driven by the point
forecasts demonstrated its competency in increasing the reliability of probabilistic flood forecasts
significantly, where predictive distributions encountered in multi-step-ahead flood forecasts were
effectively reduced to small ranges. The results demonstrated that the UKF plus recurrent neural
network approach could suitably extract the complex non-linear dependence structure between the
model’s outputs and observed inflows and overcome the systematic error so that model reliability as
well as forecast accuracy for future horizons could be significantly improved.

Keywords: probabilistic forecast; Unscented Kalman Filter; artificial neural networks; Three
Gorges Reservoir

1. Introduction

Reliable and accurate flood forecasting is one of the most important tasks of operational hydrology,
while it is also very challenge due to the inordinately non-linear hydro-geological features and dynamic
nature of climate conditions. High uncertainty encountered in the occurrence and magnitudes of
future flood event stimulates the demands for probabilistic flood forecasting. The goal of probabilistic
forecasting is to provide information about the uncertainty of the forecast [1]. Most hydrological
forecast models produce deterministic forecasts, which provide the best point-value estimates rather
than quantify the predictive uncertainty [2]. Nevertheless, when a deterministic forecast turns out to
be far from what has taken place, the consequences will probably be worse than a situation where
no forecast is available [3]. Probabilistic hydro-meteorological forecasts have been used frequently
to communicate forecast uncertainty over the last few decades [4–6]. The transformation from a
deterministic approach to a probabilistic approach is a development trend of flood forecasting around
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the world [6,7]. The optimal mega-reservoir operation for live-saving and resources utilization creates
outreach demands for probabilistic flood forecasting; consequently, scientific research should focus
on quantifying and mitigating the uncertainty of probabilistic flood forecasts [8,9]. The reliability of
hydrologic forecasts can be affected by input uncertainty, meteorological uncertainty, and hydrologic
uncertainty of model structure and parameters. One of the primary techniques to reflect different
uncertainties in hydrologic forecasts is to create a probabilistic forecast [10,11]. Probabilistic forecasts
can be made using three approaches: a probabilistic pre-processing approach plus a deterministic
forecast model; a probabilistic forecast model; and a deterministic forecast model plus a probabilistic
post-processing approach [12–14]. The first two approaches quantify uncertainties in inputs and
model structure while the third quantifies the overall uncertainty in model structure and parameters.
Our study would concentrate on improving hydrologic forecasts using deterministic models plus
probabilistic post-processing technique.

Probabilistic post-processing techniques are commonly introduced to complement point-value
estimations offered by the deterministic forecast model [15,16]. The Kalman filter (KF) proposed by
Kalman [5] provides a theoretical post-processing framework based on model point estimation for
reducing forecast uncertainty through recursively calculating a statistically optimal estimate of the
prediction. The KF post-processing is a component of the probabilistic post-processing techniques, and
is a recursive state estimator for a process that is assumed to be affected by stochastic interference and
by stochastic noise [5]. The KF family consists of the linear KF (LKF) and non-linear KF (NKF) [17]. The
LKF approach can only identify the linear error estimation whereas the NKF approach can quantify
the non-linear error estimation. As is known, the NKF is widely used for extracting non-linear
dependence of forecast errors and conquering the white noise with systematic over/under-predicting
characteristics [17]. Furthermore, the extended KF (EKF) and the unscented KF (UKF) [17] are two
common usages of NKF. Most importantly, the UKF approach has not yet been employed to lessen
the uncertainty of multi-step-ahead flood forecasting driven by a recurrent neural network (RNN)
according to a review of literature [18–21]. Despite there are several researches associated with
the combination of UKF/EKF and hydrological models [22–24] on hydrological domain, all of them
concentrate on quantifying the uncertainty of hydrological forecast driven by static (i.e., non-recurrent)
artificial neural networks (ANNs), e.g., feed-forward neural network and local linear models as well as
the hydraulic model. Bearing this in mind as motivation, for the first time, the UKF is introduced to
quantify the uncertainty of multi-step-ahead flood forecasts driven by the RNN (i.e., RNN is more
complicated than the static ANNs). Therefore, it is interesting to explore UKF for modeling and
lowering the uncertainty appeared in RNN-driven flood forecasts.

Machine-learning techniques have developed fast during the last few decades, and they have
been adopted as data-driven methods to model hydrological systems [11,25,26]. For instance, the
back-propagation neural network (BPNN), the radial basis function (RBF), the support vector machine,
the quantile regression neural network (QRNN), the recurrent neural network (RNN), the long-short
term memory (LSTM) and the non-linear auto-regressive with exogenous inputs neural network
(NARX) have been widely applied to modeling hydrologic and meteorological time series [27–38]. A
number of recent studies indicate that ensemble artificial neural network can improve the probabilistic
forecast skill for hydrological events [39–41]. The main advantage of ANN is owing to its ability to
discern linear or non-linear relationships even with very limited data inputs and being able to recognize
even complex patterns in a data set without a priori understating of the underlying mechanism. The
major drawbacks, on the other hand, are that they are prone to under-predict flood series for extreme
flood events. Therefore, it is essential to conduct in-depth research on machine-learning models
for enhancing model accuracy and reliability through converting deterministic flood forecasts into
probabilistic ones using a stochastic post-processing technique.

This study proposes a probabilistic forecasting approach to reduce the prediction intervals of
multi-step-ahead flood forecasts, which consists of two parts: the deterministic forecast model and the
probabilistic post-processing technique. First, the recurrent neural network (NARX) is introduced to
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make multi-step-ahead point forecasts. Then, the UKF technique driven by point forecasts is employed
to create the prediction intervals of flood forecasts. We concentrate on hydrological uncertainty only
(i.e., the uncertainty resulting from imperfect rainfall-runoff modeling), considering “perfect” rainfall
as inputs. A static BPNN and a recurrent NARX are used to construct flood forecast models, and
the model that produces more accurate point estimations will be employed to carry out probabilistic
forecasting. The UKF approach is implemented separately to transform point flood forecasts into
probabilistic flood forecasts. The rainfall and inflow datasets of the Three Gorges Reservoir (TGR) in
China are used to demonstrate the reliability and applicability of the approach.

2. Methods

Figure 1 illustrates the probabilistic forecast architecture that separately integrates the NARX
(Figure 1a) with the UKF approach (Figure 1b). The related methods are briefly described below.
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(NARX) neural network model. (b) The unscented Kalman filter (UKF) post-processing approach.

2.1. Deterministic Flood Forecast Models Based on Artificial Neural Network (ANN)

The NARX is a recurrent neural network suitable for time-series prediction [42,43]. This study
uses it to carry out deterministic flood forecasting because its recurrent mechanism can effectively
integrate rainfall and discharge data with the latest outputs of the model to alleviate the time shift
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phenomenon and improve model reliability. The NARX network produces recurrent connections from
the outputs, which could delay several unit times to produce new inputs (Figure 1a). This nonlinear
system for M-step-ahead forecasting (M ≥ 1) can be described mathematically below:

ŷ(t + M) = f(ŷ(t + M− 1), . . . , ŷ(t + M− q), y(t), r(t), . . . , r(t− p)) (1)

where R(t) = [y(t), r(t), . . . , r(t− p)] and ŷ(t + M) denote the input vector and the output value at the
time step t and t + M, respectively. f (·) is the nonlinear function. p and q are the input-memory and
output memory orders. Two inputs: ŷ(t + M− i) (i = 1, 2, . . . , q) serves as an autoregressive variable
(e.g., forecasted runoff), R(t), serves as an implicit exogenous variable (e.g., observed rainfall and
runoff) in a time series.

The BPNN, a static neural network, is implemented for comparison purposes. Both BPNN and
NARX have the same model architecture of one input layer, one hidden layer and one output layer.
The NARX model is a dynamic ANN model with the recurrent mechanism whereas the BPNN is a
non-recurrent ANN model. The mathematical equation of the BPNN model is described as follows:

ŷ(t + M) = f(y(t), r(t), . . . , r(t− p)) (2)

In this study, the Levenberg–Marquardt back-propagation algorithm is used to train both ANN
models [44]. The transfer functions of hidden and output layers are of a sigmoid type and a linear type,
respectively, owing to their practicability and good performance in flood forecasting [45].

The parameters of both models consist of: the maximal epoch = 1000, the initial learning rate (mu)
= 0.001, the increasing factor of mu = 10, the decreasing factor of mu = 0.1 and the maximal value of
mu = 1000 respectively. Besides, the two ANN models are configured to have one hidden layer with
8–10 nodes in the perspective of different forecast horizons. The value of output memory q is set as one
whereas the value of input memory p should be determined by using correlation analysis methods
(presented in the section of study area and materials).

2.2. Probabilistic Forecasting Based on the Unscented Kalman Filter (UKF)

The UKF is an optimal recursive data processing algorithm and can be introduced to find the
optimal estimation error for each state in multi-step-ahead flood forecasts [17]. The unscented Kalman
filter is applied to model a nonlinear flood forecasting system and described as below:

x(t + 1) = g(x(t), u(t), v(t), t) (3)

z(t) = h(x(t), u(t), t) + w(t) (4)

where x(t) is the n-dimensional state of the flood forecasting system at time-step t, u(t) is the input
vector at time-step t, v(t) is the k-dimensional state noise process vector owing to disturbances and
model errors, z(t) and w(t) are the observation vector and noise, g(·) and h(·) are the distributions of
forecasted and observed datasets, both are assumed following Gaussian distribution.

The implementation procedures for the UKF (Figure 1b) contain the following four steps [17].
Step 1: Computation of set of sigma points and assignment of weights to all sigma points. The

n-dimensional random variable x with mean x and covariance Pxx is transformed to 2n + 1 weighted
points described below:

χ0 = x, W0 = λ/(n + λ) (5a)

χi = x +
√
(n + 1)Pxx, Wi = 1/2(n + λ) (5b)

χi+n = x−
√
(n + 1)Pxx, Wi+n = 1/2(n + λ) (5c)
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where χ0, χi and χi+n are the 2n + 1 sigma points, W0, Wi and Wi+n are the 2n + 1 weight coefficients,
λ is the spreading parameter.

Step 2: Transformation of the points through non-linear function. The transformed set is produced
by using a nonlinear function and the predicted mean and covariance are described below:

χi(t + 1|t) = g
(
χn+k

i (t|t), u(t), t
)

(6)

x̂(t + 1|t) =
2(n+k)∑

i=0

Wi·χ
n+k
i (t + 1|t) (7a)

P(t + 1|t) =
2(n+k)∑

i=0

Wi·[χi(t + 1|t) − x̂(t + 1|t)]·[χi(t + 1|t) − x̂(t + 1|t)]T (7b)

where χi(t + 1|t) is the transformed set. x̂(t + 1|t) and P(t + 1|t) are the predicted mean and covariance
of the transformed set.

Step 3: Computation of Gaussian function from weighted and transformed points.

Zi(t + 1|t) = h(χi(t + 1|t), u(t), t) (8)

where Zi(t + 1|t) is the observed dataset computed by using the transformed point.
Step 4: Probabilistic forecasts. A Monte Carlo simulation is conducted to create probabilistic

forecasts. A realization of observation hm at the horizon m can be simulated according to the Gaussian
function (Equation (7)) and the Monte Carlo simulation would be repeated for K times. K is the
number of Monte Carlo samples and set as 1000 in this study; 90% confidence intervals are employed
to reveal the uncertainty of probabilistic flood forecasts. Then, both observed and forecasted datasets
are transformed into the real space for evaluating the performance of UKF probabilistic forecasts.

2.3. Evaluation Indicators

To evaluate the deterministic forecast accuracy and predictability of flood peak and flood volume,
the mean absolute error (MAE), the peak percent threshold statistics (PPTS) [46] and the Nash–Sutcliffe
efficiency (NSE) coefficient [47] were introduced accordingly. Their mathematical expressions are
described below:

MAE =
1
N

N∑
t=1

∣∣∣Ẑ(t) −Z(t)
∣∣∣, MAE ≥ 0 (9)

PPTS(l, u) =
1

(kl − ku + 1)

N∑
t=1

(∣∣∣∣∣∣ Ẑ(t) −Z(t)
Z(t)

∣∣∣∣∣∣
)
, PPTS ≥ 0 (10)

NSE = 1−

∑N
t=1

(
Ẑ(t) −Z(t)

)2

∑N
t=1

(
Z(t) −Z(t)

)2 , NSE ≤ 1 (11)

where kl =
l×N
100 and ku = u×N

100 . N is the number of observed data while l and u are the lower and higher
limits in percentage, respectively. For instance, PPTS(l, 10%) denotes the flood percentage threshold
statistic of larger than 10% data whereas PPTS(90%, u) denotes the flood percentage threshold statistic
of smaller than 90% data. Ẑ(t), Z(t) and Z(t) are the forecasted data (i.e., model output), observed
data and the average of observed data at the t time, respectively.
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The containing ratio (CR), the average relative bandwidth (RB) and the continuous ranked
probability score (CRPS) were used for assessing the performance of probabilistic forecasts [48,49].
Their mathematical formulas are described below.

N(t) =

 1, if
(
ql(t) ≤ Ẑ(t) ≤ qu(t)

)
0, else

(12a)

CR =

∑N
t=1 N(t)

N
× 100% (12b)

RB =
1
N

N∑
t=1

(
qu(t) − ql(t)

Z(t)

)
(13)

CRPS =

∫ +∞

−∞

[
Ff(x) − Fo(x)

]2
dx (14)

where ql(t) and qu(t) are the lower and upper limitation of the forecasted value at the t time, F f (x) and
Fo(x) are the cumulative distribution functions (CDF) of the forecast and observation distributions,
respectively, x is the variable of the CDF.

From the standpoint of model performance, the indicators of MAE, PPTS and NSE are employed
to evaluate the accuracy of deterministic flood forecasts while the indicators of CR, RB and CRPS
are employed to evaluate the correctness and sharpness of probabilistic flood forecasts. The general
implementation programming of the NARX and UKF can be downloaded from the Statistics and
Machine Learning Toolbox of the Matlab software (website: https://ww2.mathworks.cn/products/
statistics.html#machine-learning).

3. Study Area and Materials

Figure 2a illustrates the study area. The Yangtze River is famous for the longest river of China,
and its length and drainage area are 6300 km and 1.80 million km2 accordingly. The Three Gorges
Reservoir (TGR) is a pivotal hydraulic facility that serves many purposes consisting of flood control,
hydropower production and navigation etc. We notice that the upper Yangtze River’ tributaries have
notoriously complex hydro-geological characteristics. Plenty of studies were devoted to developing
reliable and accurate short-term (less than 24-h ahead) flood forecast models for the Yangtze River
due to the extremely non-linear relationship between rainfall and runoff over this basin during storm
events [50,51]. Besides, a small improvement in the reliability and accuracy of short-term flood forecasts
could be critical and beneficial to flood prevention as well as the dynamic management of the TGR.
Heavy rainfalls usually cause floods and further induce downstream flooding within one day. In
consequence, rational reservoir operation as well as river basin management require reliable and
accurate flood forecasting so that they can adequately handle the high uncertainty of river discharge
ranging from 8000 up to 70,000 m3/s, according to the observed reservoir inflows (Figure 2b).

The inflow of the TGR contains three parts: the upstream inflow from the discharge of the XJB
reservoir, the inflows from 8 tributaries (flow stations F1–F8), and rainfall (aggregated into two variables:
Rainfall-I and Rainfall-II) monitored by 67 rain gauge stations spreading over the TGR intervening
basin. Inflow and rainfall data for use in this study were gathered from 2003 to 2018 at a temporal scale
of 6 h. When model training completes (2003–2010, 8 years), two ANN models (BPNN and NARX) are
constructed. Then the trained ANN that creates the best forecast accuracy in the validation period
(2011–2014, 4 years) is identified as the final model to be evaluated upon model reliability using test
datasets (2015–2018, 4 years). The Kendall tau coefficient analysis [38,52] is employed to extract the
highest correlation of lag-times between model input and output values. According to the highest
correlation coefficients, lag-times between the inflow of the TGR and flow/rainfall at various gauge
stations are set as 6 h (TGR), 48 h (XJB reservoir), 48 h (F1), 48 h (F2), 42 h (F3), 42 h (F4), 24 h (F5), 18 h

https://ww2.mathworks.cn/products/statistics.html#machine-learning
https://ww2.mathworks.cn/products/statistics.html#machine-learning
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(F6), 18 h (F7), 12 h (F8), 42 h (Rainfall-I) and12 h (Rainfal-II) [36]. To reduce the adverse effect of the
distinct scales of input data on model performance, all 12 input variables (one autoregressive variable
plus 11 exogenous variables) were transformed into the same scale during data preprocessing.Water 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 2. Study area and the statistical characteristics of reservoir inflows. (a) Locations of the
Xiang-Jia-Ba (XJB) Reservoir and the Three Gorges Reservoir (TGR), river flow as well as rain gauging
stations; (b) The boxplot of TGR inflows collected in flood seasons (from 1 June to 30 September) during
2003 and 2018 at a temporal scale of 6 h.

4. Results and Discussion

This study intends to promote the predictability of the deterministic flood forecast model that is
integrated with a UKF for probabilistic forecasting at different time horizons.

4.1. Performance of Deterministic Flood Forecasts

The short-term (one-day-ahead) forecast not only provides a crucial guideline in reservoir
operation but also offers a warning to residents at inundation prone areas. Consequently, a 24 h lead
time at a temporal scale of 6 h is suggested to evaluate the performance of two deterministic flood
forecast models (NARX and BPNN). Four horizons (t + 1 to t + 4) are specified that 6 h (t + 1) is the
first prediction, 12 h (t + 2) is the second prediction, 18 h (t + 3) is the third prediction and 24 h (t + 4) is
the fourth prediction.
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Table 1 summarizes the results of the NARX and BPNN models. It indicates that the BPNN model
creates much lower NSE values but much higher PPTS and MAE values than the NARX model at all
three stages. The PPTS indicator is able to show model forecast accuracy in different flood magnitudes.
For instance, PPTS (l, 10%) denotes the flood percentage threshold statistic of larger than 10% data. The
results in Table 1 demonstrate that the PPTS indicator raises gradually if the lead time increases from t +

1 to t + 4. The NARX model makes the smallest increments in PPTS and MAE values along the lead time
while the BPNN model makes the largest ones. In addition, the NARX model displays its superiority
compared with the BPNN model in predicting high-magnitude floods regarding frequencies of 2%
and 5%. Given a lead time of one day (24 h), the NARX model can increase the NSE by 14.5% while
decreasing the PPTS (l, 2%) by 35.8% and the MAE by 20.1% at the testing stage, in comparison to the
BPNN model. The results demonstrate that the NARX model performs much better than the BPNN
model as the forecast horizon increases. Therefore, it is obvious that the NARX model incorporated
with a recurrent mechanism can improve forecast accuracy at longer horizons by feeding itself with
the forecasted inflows attained from previous horizons.

Table 1. Performances (peak percent threshold statistics (PPTS), mean absolute error (MAE) and
Nash–Sutcliffe efficiency (NSE)) of NARX and back-propagation neural network (BPNN) models in
three stages.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

NARX

PPTS (l, 2%) 0.0293 0.0310 0.0332 0.0349
PPTS (l, 5%) 0.0314 0.0330 0.0355 0.0383
PPTS (l, 10%) 0.0334 0.0356 0.0393 0.0450
PPTS (l, 20%) 0.0366 0.0388 0.0429 0.0488
MAE (m3/s) 689 750 849 1037

NSE 0.980 0.969 0.963 0.942

BPNN

PPTS (l, 2%) 0.0293 0.0346 0.0364 0.0398
PPTS (l, 5%) 0.0314 0.0447 0.0483 0.0512
PPTS (l, 10%) 0.0334 0.0546 0.0606 0.0616
PPTS (l, 20%) 0.0366 0.0601 0.0661 0.0672
MAE (m3/s) 689 951 1024 1295

NSE 0.980 0.935 0.907 0.858

Validation

NARX

PPTS (l, 2%) 0.0295 0.0314 0.0340 0.0361
PPTS (l, 5%) 0.0315 0.0334 0.0364 0.0397
PPTS (l, 10%) 0.0335 0.0354 0.0395 0.0438
PPTS (l, 20%) 0.0372 0.0399 0.0445 0.0491
MAE (m3/s) 716 782 919 1079

NSE 0.978 0.965 0.957 0.936

BPNN

PPTS (l, 2%) 0.0295 0.0432 0.0472 0.0493
PPTS (l, 5%) 0.0315 0.0472 0.0515 0.0547
PPTS (l, 10%) 0.0335 0.0551 0.0606 0.0643
PPTS (l, 20%) 0.0372 0.0621 0.0690 0.0732
MAE (m3/s) 716 964 1088 1317

NSE 0.980 0.931 0.904 0.853

Testing

NARX

PPTS (l, 2%) 0.0305 0.0312 0.0332 0.0349
PPTS (l, 5%) 0.0320 0.0339 0.0365 0.0418
PPTS (l, 10%) 0.0343 0.0368 0.0411 0.0456
PPTS (l, 20%) 0.0374 0.0401 0.0448 0.0497
MAE (m3/s) 793 931 893 1006

NSE 0.978 0.967 0.961 0.940

BPNN

PPTS (l, 2%) 0.0305 0.0488 0.0536 0.0544
PPTS (l, 5%) 0.0320 0.0511 0.0562 0.0571
PPTS (l, 10%) 0.0343 0.0582 0.0647 0.0686
PPTS (l, 20%) 0.0374 0.0635 0.0705 0.0749
MAE (m3/s) 793 992 1079 1259

NSE 0.978 0.929 0.872 0.821

To distinguish between the BPNN and NARX models on deterministic forecasting capabilities in
the testing stage, three flood events with maximal peak-flows reaching 35,000 m3/s (small), 50,000 m3/s
(medium) and 60,000 m3/s (large) are specified to test both models by evaluating the goodness-of-fit
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between observed and forecasted values at time-step t + 3 and t + 4 (Figure 3). The results appear to
show that the NARX model is able to significantly mitigate the time gap between the observed and
forecasted flood peaks. Furthermore, the NARX model can produce good forecast results at time-step
t + 3 and t + 4, whereas the BPNN model creates a noticeable time-lag problem and fairly big gaps
between observed and forecasted values at time-step t + 3 and t + 4. This demonstrates that the
NARX model is able to effectively reduce time-lag phenomena and provide accurate deterministic
flood forecasting results.Water 2020, 12, x FOR PEER REVIEW 10 of 16 

 

 
Figure 3. TGR inflow forecasts using the NARX and the BPNN models. Three flood events with 
maximal peak-flow exceeding (a) 35,000 m3/s (small-scaled), (b) 50,000 m3/s (medium-scaled) and (c) 
60,000 m3/s (large-scaled). 

Although the NARX model provides substantial evidence of a good performance in flood 
forecasting, it is easy to produce systematic under-prediction results for extreme flood events (Figure 3). 
In addition, hydrologic uncertainties raised in model inputs (e.g., precipitation), as well as the structure 
and parameters, can be the drivers and causes of time-lag problems occurring in flood forecasting. 
Therefore, we next adopt a processing approach (i.e., UKF) to decrease the hydrological uncertainty 
based on the presumption that no uncertainty encounters in model input data. 

4.2. Probabilistic Flood Forecasting Performance 

Table 2 illustrates the results of the CR, RB and CRPS corresponding to the UKF plus NARX and 
the UKF plus BPNN approaches in all three stages at forecast horizons (t + 1 to t + 4). It supports the 
superiority of the UKF plus NARX approach in all three stages, whereas the UKF plus BPNN 
approach performs almost as well as the UKF plus NARX one only in the training stages at forecast 
horizons up to t + 2 (RB is lower than 0.15, CRPS is lower than 1200 m3/s and CR is higher than 90%). 
The results demonstrate that the UKF plus NARX approach achieves higher reliability in probabilistic 
flood forecasting than the UKF plus BPNN one. For horizon t + 4 (one day ahead) in the testing stage, 
the UKF plus NARX approach is able to increase the CR value by 8.48% while reducing the RB and 
the CRPS values by 22.73% and 20.31%, respectively, in comparison to the UKF plus BPNN one. In 
other words, the UKF plus NARX approach is able to significantly improve probabilistic forecast 
accuracy by producing the narrower prediction bound. 

Figure 3. TGR inflow forecasts using the NARX and the BPNN models. Three flood events with
maximal peak-flow exceeding (a) 35,000 m3/s (small-scaled), (b) 50,000 m3/s (medium-scaled) and (c)
60,000 m3/s (large-scaled).

Although the NARX model provides substantial evidence of a good performance in flood
forecasting, it is easy to produce systematic under-prediction results for extreme flood events (Figure 3).
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In addition, hydrologic uncertainties raised in model inputs (e.g., precipitation), as well as the structure
and parameters, can be the drivers and causes of time-lag problems occurring in flood forecasting.
Therefore, we next adopt a processing approach (i.e., UKF) to decrease the hydrological uncertainty
based on the presumption that no uncertainty encounters in model input data.

4.2. Probabilistic Flood Forecasting Performance

Table 2 illustrates the results of the CR, RB and CRPS corresponding to the UKF plus NARX and
the UKF plus BPNN approaches in all three stages at forecast horizons (t + 1 to t + 4). It supports the
superiority of the UKF plus NARX approach in all three stages, whereas the UKF plus BPNN approach
performs almost as well as the UKF plus NARX one only in the training stages at forecast horizons
up to t + 2 (RB is lower than 0.15, CRPS is lower than 1200 m3/s and CR is higher than 90%). The
results demonstrate that the UKF plus NARX approach achieves higher reliability in probabilistic flood
forecasting than the UKF plus BPNN one. For horizon t + 4 (one day ahead) in the testing stage, the
UKF plus NARX approach is able to increase the CR value by 8.48% while reducing the RB and the
CRPS values by 22.73% and 20.31%, respectively, in comparison to the UKF plus BPNN one. In other
words, the UKF plus NARX approach is able to significantly improve probabilistic forecast accuracy by
producing the narrower prediction bound.

Table 2. Probabilistic forecasting performance (containing ratio (CR), average relative bandwidth (RB)
and continuous ranked probability score (CRPS)) regarding TGR reservoir inflow.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

UKF plus
NARX

CR (%) 98.23 96.37 95.06 94.53
RB 0.08 0.10 0.13 0.17

CRPS (m3/s) 754 911 1092 1253

UKF plus
BPNN

CR (%) 98.23 94.11 92.25 89.03
RB 0.08 0.12 0.18 0.21

CRPS (m3/s) 754 1092 1361 1517

Validation

UKF plus
NARX

CR (%) 98.21 96.32 95.00 94.37
RB 0.08 0.11 0.14 0.18

CRPS (m3/s) 789 934 1112 1274

UKF plus
BPNN

CR (%) 98.21 93.07 91.21 88.06
RB 0.08 0.13 0.19 0.23

CRPS (m3/s) 789 1118 1395 1576

Testing

UKF plus
NARX

CR (%) 98.18 96.29 95.02 94.41
RB 0.09 0.10 0.13 0.17

CRPS (m3/s) 776 922 1104 1267

UKF plus
BPNN

CR (%) 98.18 92.04 89.25 87.03
RB 0.09 0.12 0.18 0.22

CRPS (m3/s) 776 1127 1412 1590

For obviously differentiating the capabilities of the UKF plus NARX and the UKF plus BPNN
approaches in the testing stage, the three aforementioned flood events are still specified to test both
approaches by evaluating whether the observations fall in the 90% confidence interval at lead time t +

4 (Figure 4). It appears that most of the observations lie within the 90% confidence intervals created
by both probabilistic forecasting approaches while the UKF plus NARX approach offers a narrower
prediction range. Gneiting et al. [1] advocated that the maximization of the sharpness of the predictive
distribution is the goal of probabilistic flood forecasts. Therefore, the UKF plus NARX approach is
considered superior to the UKF plus BPNN one.
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Figure 4. Probabilistic flood forecasts for TGR of the testing stage at lead time t + 4. Three flood events
with maximal peak-flow exceeding (a) 35,000 m3/s (small-scaled); (b) 50,000 m3/s (medium-scaled);
and (c) 60,000 m3/s (large-scaled). The 90% confidence bound is corresponding to the lower (5%) and
upper (95%) limitation of the forecasted value at time t.

For median forecasts at horizons from t + 1 up to t + 4 in three stages, the indicators of MAE
and CRPS closely associated with the deterministic forecast model (NARX) and the UKF plus NARX
approach are listed in Table 3. It is revealed that the median forecasts of the UKF plus NARX approach
would output lower values of MAE and CRPS indicators than those of the deterministic forecast
model NARX after the horizon t + 2. That is to say, from the perspective of the median forecast, the
probabilistic forecast approach also can mitigate the drawback of under-prediction.
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Table 3. Results of median forecasts regarding inflows of Three Gorges Reservoir.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

NARX
MAE (m3/s) 453 750 849 1037
CRPS (m3/s) 781 1025 1189 1306

UKF plus
NARX

MAE (m3/s) 412 702 811 954
CRPS (m3/s) 724 894 1064 1202

Validation

NARX
MAE (m3/s) 474 782 919 1079
CRPS (m3/s) 813 1106 1216 1390

UKF plus
NARX

MAE (m3/s) 439 736 851 975
CRPS (m3/s) 767 910 1097 1243

Testing

NARX
MAE (m3/s) 465 931 893 1006
CRPS (m3/s) 798 1035 1194 1354

UKF plus
NARX

MAE (m3/s) 428 719 838 960
CRPS (m3/s) 749 901 1082 1224

In summary, the UKF plus NARX approach not only can create more accurate and robust
probabilistic forecasting results but can also mitigate the problems of systematic under-prediction of
extreme flood events. Despite UKF indeed correcting for bias, it also produces a probabilistic forecast
which we believe is more important. Furthermore, the reasons that we do not conduct a comparative
analysis between LKF (including the autoregressive model, AR(1)) and NKF consist of: first, the
AR(1) is a simple formation of LKF. The LKF approach can only identify the linear error estimation
whereas the NKF approach can quantify the non-linear error estimation. Second, the rainfall-runoff

process is intrinsically complex and non-linear and demands non-linear techniques for quantifying
predictive uncertainty.

We want to mention that the probabilistic forecasting approach only spent around 60-s calculation
temporal cost to provide the deterministic (within 50 s) and the probabilistic (within 10 s) flood
forecasting with respect to the inflows of the TGR. A DELL computer conducted the computation
(Intel® CoreTM i5, 7th Generation CPU @ 2.50 GHz, RAM 8 GB and 1 TB Hard Disk).

5. Conclusions

We adopt a probabilistic forecasting methodology that hybridises UKF and ANN to generate
posterior distributions from observed and forecasted inflows for effectively reducing the predictive
distributions occurring in data-driven flood forecasting to small ranges. The contribution of the
UKF approach depends on modeling the non-linear correlation among hydrologic variables and on
reducing the uncertainty arosing in flood forecasting. The results demonstrated that the recurrent
neural network (NARX model) produced more accurate and stable deterministic flood forecasting on
the inflows as longer lead time and effectively mitigated time-lag effects as compared with the static
neural network (BPNN model). The reason could be due to a key strategy: the recurrent mechanism
drives the integration of the antecedent observations and forecasts of input variables into the next
forecasting step for alleviating the accumulation and propagation of multi-step-ahead forecast errors.

Nevertheless, the NARX model also suffered the technical barrier of systematic under-prediction of
extreme flood events. Therefore, the UKF was applied to the post-processing of deterministic forecasts
obtained from the NARX model. The results demonstrated that the UKF plus NARX approach not
only can provide a narrower predictive distribution on the inflow series at longer forecast horizons but
also can significantly alleviate under-prediction phenomena. The reason can be due to the key strategy:
the effective quantification of the non-linear correlation among variables for lessening hydrologic
uncertainty. Finally, it is worth noting that the computational time of the UKF plus NARX approach is
extremely short (less than 60 s); therefore, it can be applied with success to real-time flood forecasting.



Water 2020, 12, 578 13 of 15

Author Contributions: Y.Z. carried out the analysis and wrote the article; S.G., C.-Y.X. and F.-J.C. developed the
methodology; C.-Y.X., F.-J.C. and J.Y. provided technical assistance and contributed in writing the article. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 51539009 and
No. U1865201), the National Key Research and Development Program of China (2018YFC0407904) and the
Research Council of Norway (FRINATEK Project 274310).

Acknowledgments: We thank the Changjiang Water Resources Commission of China for providing the monitoring
data, and the data can be downloaded from this website (http://www.cjh.com.cn, Chinese). The authors would
like to thank the editors and anonymous reviewers for their constructive comments that greatly contributed to
improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gneiting, T.; Balabdaoui, F.; Raftery, A.E. Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser.
B (Stat. Methodol.) 2007, 69, 243–268. [CrossRef]

2. Han, S.; Coulibaly, P. Bayesian flood forecasting methods: A review. J. Hydrol. 2017, 551, 340–351. [CrossRef]
3. Wetterhall, F.; Pappenberger, F.; Alfieri, L.; Cloke, H.L.; Thielen-del Pozo, J.; Balabanova, S.; Danhelka, J.;

Vogelbacher, A.; Salamon, P.; Carrasco, I.; et al. HESS Opinions: Forecaster priorities for improving
probabilistic flood forecasts. Hydrol. Earth Syst. Sci. 2013, 17, 4389–4399. [CrossRef]

4. Arnal, L.; Ramos, M.H.; Perez, E.C.D.; Cloke, H.L.; Stephens, E.; Wetterhall, F.; van Andel, S.J.; Pappenberger, F.
Willingness-to-pay for a probabilistic flood forecast: A risk-based decision-making game. Hydrol. Earth Syst.
Sci. 2016, 20, 3109–3128. [CrossRef]

5. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

6. Laio, F.; Tamea, S. Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol.
Earth Syst. Sci. 2007, 11, 1267–1277. [CrossRef]

7. Herr, H.D.; Krzysztofowicz, R. Ensemble Bayesian forecasting system Part I: Theory and algorithms. J.
Hydrol. 2015, 524, 789–802. [CrossRef]

8. Zhou, Y.; Guo, S. Risk analysis for flood control operation of seasonal flood-limited water level incorporating
inflow forecasting error. Hydrol. Sci. J. 2014, 59, 1006–1019. [CrossRef]

9. Zhou, Y.; Guo, S.; Chang, F.J.; Liu, P.; Chen, A.B. Methodology that improves water utilization and hydropower
generation without increasing flood risk in mega cascade reservoirs. Energy 2018, 143, 785–796. [CrossRef]

10. Madadgar, S.; Moradkhani, H. Improved Bayesian multimodeling: Integration of copulas and Bayesian
model averaging. Water Resour. Res. 2014, 50, 9586–9603. [CrossRef]

11. Papacharalampous, G.A.; Tyralis, H.; Koutsoyiannis, D. Comparison of stochastic and machine learning
methods for multi-step ahead forecasting of hydrological processes. Stoch. Environ. Res. Risk Assess. 2019,
33, 481–514. [CrossRef]

12. Engeland, K.; Steinsland, I. Probabilistic postprocessing models for flow forecasts for a system of catchments
and several lead times. Water Resour. Res. 2014, 50, 182–197. [CrossRef]

13. Krapu, C.; Borsuk, M. Probabilistic programming: A review for environmental modellers. Environ. Model.
Softw. 2019, 114, 40–48. [CrossRef]

14. Todini, E. From HUP to MCP: Analogies and extended performances. J. Hydrol. 2013, 477, 33–42. [CrossRef]
15. Siccardi, F.; Boni, G.; Ferraris, L.; Rudari, R.O.B.E.R.T.O. A hydrometeorological approach for probabilistic

flood forecast. J. Geophys. Res.: Atmos. 2005, 110. [CrossRef]
16. Liu, Z.; Guo, S.; Xiong, L.; Xu, C.Y. Hydrological uncertainty processor based on a copula function. Hydrol.

Sci. J. 2018, 63, 74–86. [CrossRef]
17. Julier, S.J.; UHlmann, J.K. A new extension of the Kalman filter to nonlinear systems. Aerosense 1997, 97,

182–193.
18. Bosov, A.V.; Miller, G.B. Conditionally minimax nonlinear filter and Unscented Kalman filter: Empirical

analysis and comparison. Autom. Remote. Control. 2019, 80, 1230–1251. [CrossRef]
19. Jiang, P.; Sun, Y.; Bao, W. State estimation of conceptual hydrological models using unscented Kalman filter.

Hydrol. Res. 2019, 50, 479–497. [CrossRef]

http://www.cjh.com.cn
http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x
http://dx.doi.org/10.1016/j.jhydrol.2017.06.004
http://dx.doi.org/10.5194/hess-17-4389-2013
http://dx.doi.org/10.5194/hess-20-3109-2016
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.5194/hess-11-1267-2007
http://dx.doi.org/10.1016/j.jhydrol.2014.11.072
http://dx.doi.org/10.1080/02626667.2014.901515
http://dx.doi.org/10.1016/j.energy.2017.11.035
http://dx.doi.org/10.1002/2014WR015965
http://dx.doi.org/10.1007/s00477-018-1638-6
http://dx.doi.org/10.1002/2012WR012757
http://dx.doi.org/10.1016/j.envsoft.2019.01.014
http://dx.doi.org/10.1016/j.jhydrol.2012.10.037
http://dx.doi.org/10.1029/2004JD005314
http://dx.doi.org/10.1080/02626667.2017.1410278
http://dx.doi.org/10.1134/S0005117919070026
http://dx.doi.org/10.2166/nh.2018.038


Water 2020, 12, 578 14 of 15

20. Kanakaraj, S.; Nair, M.S.; Kalady, S. Adaptive Importance Sampling Unscented Kalman Filter based SAR
image super resolution. Comput. Geosci. 2019, 133, 104310. [CrossRef]

21. Fu, X.; Yu, Z.; Ding, Y.; Qin, Y.; Luo, L.; Zhao, C.; Yang, C. Unscented weighted ensemble Kalman filter for
soil moisture assimilation. J. Hydrol. 2019, 580, 124352. [CrossRef]

22. Wu, X.; Wang, Y. Extended and Unscented Kalman filtering based feedforward neural networks for time
series prediction. Appl. Math. Model. 2012, 36, 1123–1131. [CrossRef]

23. Wang, X.; Babovic, V. Application of hybrid Kalman filter for improving water level forecast. J. Hydroinf.
2016, 18, 773–790. [CrossRef]

24. Wu, X.-L.; Xiang, X.-H.; Wang, C.-H.; Chen, X.; Xu, C.-Y.; Yu, Z. Coupled hydraulic and Kalman Filter model
for real-time correction of flood forecast in the Three Gorges interzone of Yangtze River, China. J. Hydro. Eng.
2013, 18, 1416–1425. [CrossRef]

25. Zhang, X.; Liang, F.; Yu, B.; Zong, Z. Explicitly integrating parameter, input, and structure uncertainties into
Bayesian Neural Networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409, 696–709. [CrossRef]

26. Zhu, F.; Zhong, P.A.; Sun, Y.; Yeh, W.W.G. Real-time optimal flood control decision making and risk
propagation under multiple uncertainties. Water Resour. Res. 2017, 53, 10635–10654. [CrossRef]

27. Abrahart, R.J.; Anctil, F.; Coulibaly, P.; Dawson, C.W.; Mount, N.J.; See, L.M.; Wilby, R.L. Two decades of
anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys.
Geogr. 2012, 36, 480–513. [CrossRef]

28. Shen, C.; Laloy, E.; Elshorbagy, A.; Albert, A.; Bales, J.; Chang, F.J.; Ganguly, S.; Hsu, K.L.; Kifer, D.; Fang, Z.;
et al. HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community.
Hydrol. Earth Syst. Sci. 2018, 22, 5639–5656. [CrossRef]

29. Asanjan, A.A.; Yang, T.; Hsu, K.; Sorooshian, S.; Lin, J.; Peng, Q. Short-term precipitation forecast based on
the PERSIANN system and the long short-term memory (LSTM) deep learning algorithm. J. Geophys. Res.:
Atmos. 2018, 123, 12543–12563.

30. Bui, D.T.; Panahi, M.; Shahabi, H.; Singh, V.P.; Shirzadi, A.; Chapi, K.; Ahmad, B.B. Novel hybrid evolutionary
algorithms for spatial prediction of floods. Sci. Rep. 2018, 8, 15364. [CrossRef]

31. Cannon, A.J. Quantile regression neural networks: Implementation in R and application to precipitation
downscaling. Comput. Geosci. 2011, 37, 1277–1284. [CrossRef]

32. Chang, F.J.; Chen, P.A.; Lu, Y.R.; Huang, E.; Chang, K.Y. Real-time multi-step-ahead water level forecasting
by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517, 836–846. [CrossRef]

33. Chang, F.J.; Tsai, M.J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead
inflow forecasts by data-driven techniques. J. Hydrol. 2016, 535, 256–269. [CrossRef]

34. Chen, P.A.; Chang, L.C.; Chang, F.J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts.
J. Hydrol. 2013, 497, 71–79. [CrossRef]

35. Chen, L.; Sun, N.; Zhou, C.; Zhou, J.; Zhou, Y.; Zhang, J.; Zhou, Q. Flood forecasting based on an improved
extreme learning machine model combined with the backtracking search optimization algorithm. Water
2018, 10, 1362. [CrossRef]

36. Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep learning with a long short-term memory networks
approach for rainfall-runoff simulation. Water 2018, 10, 1543. [CrossRef]

37. Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S. Explore a deep learning multi-output neural network
for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [CrossRef]

38. Zhou, Y.; Guo, S.; Chang, F.J. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood
forecasts. J. Hydrol. 2019, 570, 343–355. [CrossRef]

39. Kasiviswanathan, K.S.; Sudheer, K.P.; He, J. Probabilistic and ensemble simulation approaches for input
uncertainty quantification of artificial neural network hydrological models. Hydrol. Sci. J. 2018, 63, 101–113.
[CrossRef]

40. Kumar, S.; Tiwari, M.K.; Chatterjee, C.; Mishra, A. Reservoir inflow forecasting using ensemble models based
on neural networks, wavelet analysis and bootstrap method. Water Resour. Manag. 2015, 29, 4863–4883.
[CrossRef]

41. Zhong, Y.; Guo, S.; Ba, H.; Xiong, F.; Chang, F.J.; Lin, K. Evaluation of the BMA probabilistic inflow forecasts
using TIGGE numeric precipitation predictions based on artificial neural network. Hydrol. Res. 2018, 49,
1417–1433. [CrossRef]

http://dx.doi.org/10.1016/j.cageo.2019.104310
http://dx.doi.org/10.1016/j.jhydrol.2019.124352
http://dx.doi.org/10.1016/j.apm.2011.07.052
http://dx.doi.org/10.2166/hydro.2016.085
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000473
http://dx.doi.org/10.1016/j.jhydrol.2011.09.002
http://dx.doi.org/10.1002/2017WR021480
http://dx.doi.org/10.1177/0309133312444943
http://dx.doi.org/10.5194/hess-22-5639-2018
http://dx.doi.org/10.1038/s41598-018-33755-7
http://dx.doi.org/10.1016/j.cageo.2010.07.005
http://dx.doi.org/10.1016/j.jhydrol.2014.06.013
http://dx.doi.org/10.1016/j.jhydrol.2016.01.056
http://dx.doi.org/10.1016/j.jhydrol.2013.05.038
http://dx.doi.org/10.3390/w10101362
http://dx.doi.org/10.3390/w10111543
http://dx.doi.org/10.1016/j.jclepro.2018.10.243
http://dx.doi.org/10.1016/j.jhydrol.2018.12.040
http://dx.doi.org/10.1080/02626667.2017.1393686
http://dx.doi.org/10.1007/s11269-015-1095-7
http://dx.doi.org/10.2166/nh.2018.177


Water 2020, 12, 578 15 of 15

42. Shen, H.Y.; Chang, L.C. Online multistep-ahead inundation depth forecasts by recurrent NARX networks.
Hydrol. Earth Syst. Sci. 2013, 17, 935–945. [CrossRef]

43. Wunsch, A.; Liesch, T.; Broda, S. Forecasting groundwater levels using nonlinear autoregressive networks
with exogenous input (NARX). J. Hydrol. 2018, 567, 743–758. [CrossRef]

44. Lourakis, M.I. A brief description of the Levenberg-Marquardt algorithm implemented by Levmar. Found.
Res. Technol. 2005, 4, 1–6.

45. Nanda, T.; Sahoo, B.; Beria, H.; Chatterjee, C. A wavelet-based non-linear autoregressive with exogenous
inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall
products. J. Hydrol. 2016, 539, 57–73. [CrossRef]

46. Lohani, A.K.; Goel, N.K.; Bhatia, K.K.S. Improving real time flood forecasting using fuzzy inference system.
J. Hydrol. 2014, 509, 25–41. [CrossRef]

47. Nash, J.E. River flow forecasting through conceptual models, I: A discussion of principles. J. Hydrol. 1970, 10,
398–409. [CrossRef]

48. Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007,
102, 359–378. [CrossRef]

49. Xiong, L.; O’Connor, K.M. An empirical method to improve the prediction limits of the GLUE methodology
in rainfall-runoff modeling. J. Hydrol. 2008, 349, 115–124. [CrossRef]

50. Bai, Y.; Chen, Z.; Xie, J.; Li, C. Daily reservoir inflow forecasting using multiscale deep feature learning with
hybrid models. J. Hydrol. 2016, 532, 193–206. [CrossRef]

51. Chen, L.; Zhang, Y.; Zhou, J.; Singh, V.P.; Guo, S.; Zhang, J. Real-time error correction method combined with
combination flood forecasting technique for improving the accuracy of flood forecasting. J. Hydrol. 2015, 521,
157–169. [CrossRef]

52. Maidment, D.R. Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/hess-17-935-2013
http://dx.doi.org/10.1016/j.jhydrol.2018.01.045
http://dx.doi.org/10.1016/j.jhydrol.2016.05.014
http://dx.doi.org/10.1016/j.jhydrol.2013.11.021
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1016/j.jhydrol.2007.10.029
http://dx.doi.org/10.1016/j.jhydrol.2015.11.011
http://dx.doi.org/10.1016/j.jhydrol.2014.11.053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Deterministic Flood Forecast Models Based on Artificial Neural Network (ANN) 
	Probabilistic Forecasting Based on the Unscented Kalman Filter (UKF) 
	Evaluation Indicators 

	Study Area and Materials 
	Results and Discussion 
	Performance of Deterministic Flood Forecasts 
	Probabilistic Flood Forecasting Performance 

	Conclusions 
	References

