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Abstract

We study the derived category of a complete intersection X of bilinear divisors in the
orbifold Sym2 P(V ). Our results are in the spirit of Kuznetsov’s theory of homological
projective duality, and we describe a homological projective duality relation between
Sym2 P(V ) and a category of modules over a sheaf of Clifford algebras on P(Sym2 V ∨).

The proof follows a recently developed strategy combining variation of GIT stability
and categories of global matrix factorisations. We begin by translating Db(X) into a
derived category of factorisations on an LG model, and then apply VGIT to obtain
a birational LG model. Finally, we interpret the derived factorisation category of the
new LG model as a Clifford module category.

In some cases we can compute this Clifford module category as the derived category
of a variety. As a corollary we get a new proof of a result of Hosono and Takagi, which
says that a certain pair of nonbirational Calabi–Yau 3-folds have equivalent derived
categories.

1. Introduction

Let V be a vector space, let Sym2 P(V ) be the quotient stack P(V )2/Z2, and let f : Sym2 P(V )→
P(Sym2 V ) be the morphism given by

{[v1], [v2]} 7→ [v1 ⊗ v2 + v2 ⊗ v1], v1, v2 ∈ V.

Choose a vector subspace L ⊂ Sym2(V ∨). We then get an orthogonal subspace L⊥ = {v ∈
Sym2 V | (v, L) = 0} ⊂ Sym2 V . The main goal of this paper is to understand the derived
category of the stack X = f−1(P(L⊥)).

Our first result relates this category to a category of modules over a sheaf of Clifford algebras.
We write O(2) for the orthogonal group O(2,C). We will define a certain O(2)-gerbe, Y →
P(Sym2 V ∨), equipped with a locally free sheaf E, whose rank is 2 dimV , and a section q of
Sym2E. From this data we define a sheaf of Clifford algebras C = T (E)/I, where T (E) is the
tensor algebra and I is the 2-sided ideal generated by e⊗ e− q(e).

Let YL be the restriction of Y to P(L) ⊆ P(Sym2 V ∨), and keep the notation C for the
restriction C|YL

. There is a derived category Db(YL, C), whose objects are bounded complexes
of coherent C-modules. For such a complex E and a point p ∈ P(L), the restriction E|p is an
O(2)-equivariant complex of sheaves on p, hence splits as a shifted sum of O(2)-representations.
We will define a subcategory Db(YL, C)res ⊂ Db(YL, C) of grade restricted objects, where E is
grade restricted if for all p ∈ P(L), only certain specified representations occur in the splitting of
E|p.
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Let n = dimV . We say X has the expected dimension if its codimension in Sym2 P(V ) equals
the codimension of L⊥ in Sym2 V . Our first result is:

Theorem 1.1. If X has the expected dimension and n is odd, then:
– If codimX > n, there is a fully faithful functor Db(X) ↪→ Db(YL, C)res.
– If codimX = n, there is an equivalence Db(X) ∼= Db(YL, C)res.
– If codimX < n, there is a fully faithful functor Db(YL, C)res ↪→ Db(X).

If X has the expected dimension and n is even, then:
– If codimX > n, there is a fully faithful functor Db(X) ↪→ Db(YL, C)res.
– If n/2 < codimX 6 n, there is a non-trivial triangulated category C which is a fully faithful

subcategory of both Db(X) and Db(YL, C)res.
– If codimX 6 n/2, there is a fully faithful functor Db(YL, C)res ↪→ Db(X).

Explicit descriptions of the fully faithful functors and the subcategory C will be given in the
course of the proof. In the cases where Db(YL, C)res includes into Db(X) or when there is a sub-
category C common to both of them, Proposition 5.17 gives a description of the semiorthogonal
complement to Db(YL, C)res or C inside Db(X).

Our result is an instance of Kuznetsov’s theory of homological projective duality [Kuz07]. In
Section 2 we give an introduction to HP duality and explain how our results fit in.

Our second result is that for certain choices of L, we can give a more geometric description
of the category Db(YL, C)res. The description will depend on the parity of n.

Assume first that n is odd. Interpreting the points of P(Sym2 V ∨) as symmetric matrices up
to scale, we may stratify the space by the ranks of these matrices. We assume that P(L) does not
intersect the locus of matrices of corank > 3, and that the intersection of P(L) with the locus of
corank i matrices is nonsingular of the expected dimension for i = 0, 1, 2. This assumption holds
for a general L of dimension 6 6.

We define a nonsingular variety Y → P(L) as a double cover of the corank 1 locus in P(L),
ramified in the corank 2 locus. At a corank 1 point q ∈ P(L) ⊂ P(Sym2 V ∨), the 2 points
of the fibre Y |q correspond to the 2 connected components of the variety of maximal isotropic
subspaces of the quadratic space (V, q); letting this description hold in families of q in the natural
way determines Y up to isomorphism (using e.g. Lemma 8.28).

Proposition 1.2. Under the assumptions above, Db(YL, C)res ∼= Db(Y ).

If we take dimV = dimL = 5 with L generic, then X and Y are nonsingular Calabi–Yau
3-folds. Combining Theorem 1.1 and Proposition 1.2 gives Db(X) ∼= Db(Y ). This result has
been shown previously by Hosono and Takagi [HT13], using completely different methods. One
interesting feature of this example is that X and Y have fundamental groups Z/2 and {e},
respectively, hence are not birational.

Assume now that n is even, that P(L) does not intersect the locus of matrices of corank
> 2, and that the intersection of P(L) with the locus of corank i matrices is nonsingular of the
expected dimension for i = 0, 1. This assumption holds for a general L of dimension 6 3. Define
the variety Y → P(L) as the double cover of the corank 0 locus in P(L), ramified in the corank
1 locus.

Proposition 1.3. Under the assumptions above, Db(YL, C)res ∼= Db(Y ).
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The proofs of Propositions 1.2 and 1.3 are obtained by combining Proposition 7.1 with Propo-
sitions 8.1 and 9.1, respectively.

1.1 Proof of Theorem 1.1
The strategy of the proof will be to combine categories of matrix factorisations with variation
of GIT stability. This approach was first described in [Seg11], inspired by the physics paper
[HHP08]. See also [BDF+13, ADS14, FK14] for other applications of this strategy.

Categories of matrix factorisations will be properly introduced in Section 3. For now it is
enough to know that given a stack X equipped with a function W and some extra data, one
can define the category of factorisations Db(X ,W ), which is a generalisation of the usual derived
category Db(X ).

The diagram below summarises the strategy.

Db(Z+,W ) Db(Z,W ) Db(Z−,W )res

Db(X) Db(YL, C)res

GIT GIT

∼=∼= Knörrer per.

The first step is to replace the category Db(X) by an equivalent category of matrix factorisations.
Let OSym2 P(V )(1, 1)+ ∈ Coh(Sym2 P(V )) be the Z2-equivariant sheaf O(1, 1) on P(V )2, equipped
with the Z2-action which leaves the restriction of O(1, 1) to the diagonal of P(V )2 fixed. Then
X is cut out by a section s of O(1, 1)l+, where l = dimL.

Let Z+ be the total space of the stacky vector bundle O(−1,−1)⊕l+ → Sym2 P(V ). Dualising
s gives a function W on Z+. A result known as Knörrer periodicity ([Isi13, Thm. 4.6], [Shi12,
Thm. 3.4]) then says that Db(X) ∼= Db(Z+,W ). This is Proposition 4.1.

The space Z+ is a GIT quotient for a quotient stack Z = V ×V ×L/G, where G = (C∗)2oZ2.
We show that there is a full “window” subcategory W+ ⊂ Db(Z,W ) such that composing with
the restriction functor Db(Z,W )→ Db(Z+,W ) we get an equivalence W+ ∼= Db(Z+,W ).

Having translated Db(X) into a window category, we next cross the GIT wall.1 The stack
Z has a second GIT quotient Z−, which geometrically is a vector bundle on an O(2)-gerbe
YL → P(L). Again we find a full subcategory W− ⊂ Db(Z,W ) equivalent to Db(Z−,W ). As
Z− is not a Deligne–Mumford stack, the category W− is too big to be directly compared to W+
in the way we want. We therefore define a subcategory W−,res ⊂ W− and get a corresponding
subcategory Db(Z−,W )res ⊂ Db(Z−,W ). These results on window categories are Proposition
5.2 and Corollary 5.3.

Let π : Z− → YL be the projection. We can find aK ∈ Db(Z−,W ) such that π∗(RHom(K,K)) ∼=
C. The functor π∗(RHom(K,−)) : Db(Z−,W ) → Db(YL, C) is then an equivalence, which re-
stricts to give Db(Z−,W )res ∼= Db(YL, C)res. This is Proposition 7.1.

We thus have
W+ ∼= Db(X) and W−,res ∼= Db(YL, C)res.

Theorem 1.1 now follows from these equivalences, because in each case it is obvious from the
definitions thatW−,res andW+ are either contained one in the other as subcategories ofDb(Z,W )
or have C :=W−,res ∩W+ non-trivial.

1As Lil Jon & the East Side Boyz put it: “To the window! (To the window) / To the wall! (To the wall)”
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1.2 Related works
This project began as an attempt to understand and generalise Hosono and Takagi’s work in
[HT13], which treats the special case where dimV = dimL = 5. They find an equivalence
between two Calabi–Yau 3-folds X and Y , and also conjecture that this equivalence generalises
to a statement in homological projective duality. Ingalls and Kuznetsov have studied the case
where dimV = dimL = 4 in [IK15].

Our main theorem is inspired by Kuznetsov’s description of the derived categories of intersec-
tions of quadrics in terms of even Clifford algebras [Kuz08], which we informally recall in Section
2.4. Our category of Clifford modules Db(YL, C)res is different from the one in that paper in
two important ways. Firstly, our sheaf of Clifford algebras does not live on P(L), but rather on
the O(2)-gerbe YL. In particular, a module over C is locally an O(2)-equivariant sheaf on P(L).
Secondly, the need to consider the subcategory of grade restricted modules is new to our case.
Both of these features mean that the description in terms of Clifford modules is less useful than
in the quadric case, and in proving Propositions 1.2 and 1.3 we work mostly with the equivalent
category Db(Z−,W )res instead of with Db(YL, C)res.

As the title indicates, our results are motivated by Kuznetsov’s theory of homological pro-
jective duality [Kuz07]. Our Theorem 1.1 is close to saying that the category Db(Y, L)res is the
homological projective dual of Sym2 P(L). We will explain this statement further in Section 2,
which also contains background on homological projective duality.

As explained above, a crucial step in the proof of Theorem 1.1 is to relate the categories of
factorisations on different GIT quotients. The techniques for doing this were introduced in this
context by Segal in [Seg11], and have since been worked out in great generality by Ballard, Favero
and Katzarkov [BFK12], and by Halpern-Leistner [HL15]. The main result of these two papers
is that if X�G ⊂ X/G is a GIT quotient, then there exists a full subcategory W ⊂ Db(X/G)
such that the restriction functor Db(X/G) → Db(X�G) gives an equivalence W ∼= Db(X�G).
When X/G is equipped with a superpotential W , it is shown in [BFK12] that same results hold
for factorisation categories, i.e. there is a W ⊂ Db(X/G,W ) such that W ∼= Db(X�G,W ).

To define W, one first writes down a sequence of 1-parameter subgroups λi ⊂ G and a
sequence of open subvarieties Xi of the fix point loci Xλi . For any E ∈ Db

G(X) (or Db
G(X,W )),

the restriction E|Xi is then graded by λi-weights, and we define W by saying E ∈ W if the
λi-weights of E are contained in a certain interval Ji ⊂ Z for all i. Unfortunately, the precise
results of [BFK12, HL15] are not applicable in our case, as for our GIT quotients Z+,Z− ⊂ Z,
the subcategories of Db(Z,W ) constructed by these papers are not comparable in the way we
want. See Section 5.4 for a further discussion of this point.

We remedy this by giving an ad hoc definition of the subcategoryW+. Since we only consider
a quotient of an affine space, the technical details are considerably simpler than in the general
case, and modifying the arguments of [BFK12, HL15] allows us to give a direct proof of the
equivalence W+ ∼= Db(Z+,W ). A novel feature of our case is that it is necessary to consider
weights with respect to a 2-dimensional subtorus of our group G, instead of just to 1-parameter
subgroups. The definition of the category W− follows [BFK12, HL15].

As mentioned above, the overall strategy of our proof has been applied successfully to several
examples, beginning with [Seg11, Shi12]. Producing homological projective duals by this method
was carried out in certain cases by Ballard et al. in [BDF+13]. They apply this further to the
example of degree d hypersurfaces in [BDF+14], in particular recovering Kuznetsov’s quadric
example [Kuz08]. Our proof of the equivalence between the factorisation category Db(Z−,W )res
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and the Clifford module category Db(Y, C)res goes along the same lines as parts of their proof
in the case d = 2. See also [Dyc11], where a similar equivalence is shown for a single Clifford
algebra.

The overall VGIT/LG model approach is also used in Addington, Donovan and Segal’s pa-
per [ADS14], which reproves the Pfaffian–Grassmannian equivalence of Calabi–Yau 3-folds from
[BC09, Kuz06]. The fact that we need to take a good subcategory Db(Z−,W )res ⊂ Db(Z−,W )
has a parallel in their paper, as one of their gauged LG models is also an Artin stack. They
speculate that this category corresponds to what physicists call the category of branes in an
associated B-model [ADS14, Sec. 4.1]. At present the choice of this subcategory is rather ad hoc,
and it will be interesting to see to what extent it can be made in a general way.

The example we consider has been studied from a physical perspective by Hori in [Hor13].
See also [HK13], which fits both the Pfaffian–Grassmannian example and the one we study into
a long list of similar examples; these await a mathematical treatment.

1.3 Conventions
We work over C.

For objects E ,F in a triangulated category C, we use the convention that Hom(E ,F) is the
space of maps in C and RHom(E ,F) is the graded space ⊕i∈Z Hom(E ,F [i]).

We write O(2) for the orthogonal group O(2,C), and we will identify this group with C∗oZ2,
which will give us convenient notation for analysing the representations of O(2). Picking the
standard quadratic form xy on C2, the group O(2) is described as the group of (2× 2)-matrices
given by

O(2) =
{(

t 0
0 t−1

)
,

(
0 t
t−1 0

)}
t∈C

,

We then define the identification C∗ o Z2 → O(2) by sending

(t, 0) 7→
(
t 0
0 t−1

)

(0, 1) 7→
(

0 1
1 0

)

If G is an algebraic group acting on X and ρ is a representation of G, we write OX(ρ) for the
G-equivariant sheaf ρ⊗OX . If G is a k-dimensional torus, we denote by OX(i1, . . . , ik) the line
bundle associated with the character ti11 · · · t

ik
k . Finally, if G = (C∗)2 o Z2, we write OX(k, k)±

for OX(ρ), where ρ is the character of G which is tk1tk2 on T and which sends the generator of Z2
to ±1.
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2. Homological projective duality

Theorem 1.1 is motivated by Kuznetsov’s theory of homological projective duality, which we
explain in this section. We first present the general definitions and results of the theory, taken
from [Kuz07]. Next we discuss the example of HP duality for quadric hypersurfaces in Pn. Finally
we explain how our results are a form of HP duality for bilinear divisors in Sym2 Pn.

Note that the proofs of our propositions do not depend on the general results of HP duality,
and so logically speaking this section is independent from the rest of the paper.

2.1 The base locus and the incidence variety
As a warm-up, we first treat a simple version of HP duality where the derived category results are
clear from the geometry. Let X be a smooth, projective variety with a morphism f : X → P(V )
for some vector space V , with f not factoring through any linear subspace of P(V ), and let
L = f∗(O(1)). Choose a linear subspace L ⊂ V ∨, which gives a linear system P(L) of divisors of
class L.

There are two natural schemes we can construct from this linear system. Firstly, we can
intersect the divisors in the linear system to get the base locus XL⊥ ⊂ X. Secondly, we can
construct the incidence variety HL ⊂ X × P(L), which consists of pairs (x,H) such that x ∈ H.

Let us assume that XL⊥ has the expected dimension. The first step towards HP duality is
the observation that Db(XL⊥) then includes as a full subcategory of Db(HL).

Consider first the case where P(L) = P1. Then HL is the blowup of X in XL⊥ , and by [BO95,
Prop. 3.4] we get a semiorthogonal decomposition2

Db(HL) = 〈Db(XL⊥), Db(X)〉.

More generally, if P(L) = Pl, l > 1, then the projection HL → X has fibres Pl−1 over X \XL⊥ ,
which jump to Pl over XL⊥ . This gives a semiorthogonal decomposition of Db(HL) with 1 piece
isomorphic to Db(XL⊥) and l pieces isomorphic to Db(X). In general, the inclusion functor
Db(XL⊥)→ Db(HL) is given by i∗p∗ with p and i as in the diagram

XL⊥ × P(L) HL

XL⊥

i

p

2.2 Lefschetz decompositions
Kuznetsov’s remarkable discovery is that this relation between the base locus XL⊥ and the uni-
versal hyperplane HL can be turned into something more interesting if we can put a certain extra
structure on Db(X). Namely, assume that the derived category Db(X) admits a semiorthogonal
decomposition

Db(X) = 〈A0,A1(1), . . . ,Ak(k)〉,
where the Ai are full subcategories of Db(X) satisfying Ai ⊆ Ai−1 for all i > 1, and where Ai(i)
denotes the full subcategory whose objects are E ⊗ L⊗i, E ∈ Ai. Such a decomposition is called

2The reference assumes XL⊥ to be nonsingular, but by [Kuz07] this is not necessary.
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a Lefschetz decomposition.
For any hyperplane H ⊂ P(V ) inducing a divisor XH := f−1(H), the functor

Ai(i)→ Db(X)
−|XH→ Db(XH).

is full and faithful for 1 6 i 6 k. Furthermore, the image subcategories Ai(i) ⊂ Db(XH) are
semiorthogonal. Both of these facts are easy to show using our assumptions on Ai and the exact
triangle

E ⊗ L−1 → E → E|XH
E ∈ Db(X).

We therefore have a full subcategory 〈A1(1), . . . ,Ak(k)〉 ⊂ Db(XH), and letting CH =
〈A1(1), . . . ,Ak(k)〉⊥, we get a semiorthogonal decomposition

Db(XH) = 〈CH ,A1(1), . . . ,Ak(k)〉.

We see thatDb(XH) decomposes into the parts Ai(i) inherited fromDb(X), and the one new part
CH . This motivates the term “Lefschetz decomposition”, cf. the Lefschetz hyperplane theorem.

More generally, let L ⊂ V ∨ be a linear subspace, let L⊥ = {v ∈ V | (v, L) = 0} ⊂ V ,
and let XL⊥ := f−1(P(L⊥)), which is the base locus of the linear system P(L). We then get a
semiorthogonal decomposition

Db(XL⊥) = 〈CL⊥ ,Al(l), . . . ,Ak(k)〉.

One way of summarising HP duality is that if we know the category CH for all hyperplanes H
in the system P(L), then we get a description of the category CL⊥ , in terms of the “homological
projective dual” variety, which we now describe.

2.3 The homological projective dual
Let Y be a variety equipped with a map g : Y → P(V ∨), and assume that for every point
H ∈ P(V ∨) the fibre YH satisfies Db(YH) ∼= CH ⊂ Db(XH). If Y satisfies a certain strengthening
of this condition,3 then we say that Y is a homological projective dual for X. Note that the
existence of such a Y is not automatic.

Here Y is analogous to the incidence variety HV ∨ ⊂ X × P(V ∨), with the difference that the
“categorical fibre” Db(YH) at each H ∈ P(V ∨) is now the interesting part CH ⊂ Db(XH) rather
than the whole of Db(XH).

For any L ⊂ V ∨, let YL = g−1(P(L)). Just as we saw above that Db(XL⊥) includes into
Db(HL), we can now include CL⊥ into Db(YL).

To state the precise result, we will need some notation. Let OY (1) = g∗OP(V ∨)(1). Kuznetsov
shows that Db(Y ) admits a “dual” Lefschetz decomposition

Db(Y ) = 〈Bm(−m),Bm−1(−m− 1), . . . ,B0(0)〉,

where Bi ⊆ Bi+1 for i > 1. Let l and c be the dimension and codimension of L, respectively.

Theorem 2.1 [Kuz07], Thm. 1.1. If XL⊥ and YL have the expected dimensions, then we have
semiorthogonal decompositions

Db(XL⊥) = 〈CL⊥ ,Al(l), · · · ,Ak(k)〉,

3Let H ⊂ X × P(V ∨) be the incidence variety. The Lefschetz decomposition on Db(X) induces a certain decom-
position Db(H) = 〈C,A1(1) � Db(P(V ∨)), . . . ,Ak(k) � Db(P(V ∨))〉, and we require that there is an equivalence
Db(Y ) ∼= C, satisfying some further formal properties, see [Kuz07, Def. 6.1], [BDF+13, Def. 2.4.9].

7



Jørgen Vold Rennemo

Db(YL) = 〈B−m(−m),B−m−1(−m− 1), . . . ,B−c(−c), CL〉,
and CL ∼= CL⊥ .

The most striking consequence of this theorem is thatDb(XL⊥) andDb(YL) have the semiorthog-
onal piece CL ∼= CL⊥ in common. The functor CL⊥

∼=→ CL ↪→ Db(YL) is obtained by composing
the functor Db(XL⊥) ↪→ Db(HL) with a certain projection Db(HL)→ Db(YL).

If the dimension of L is sufficiently low (resp. high) we get a fully faithful inclusion Db(YL) ↪→
Db(XL⊥) (resp. Db(XL⊥) ↪→ Db(YL)).

As an aside, we note that the notion of HP dual makes sense more generally than in the setting
described here. In particular, one can drop the restriction of considering derived categories of
varieties, and instead consider more general triangulated categories, linear over Db(P(V )) and
Db(P(V ∨)). For some nice such categories the same results can be shown. The main results of
this paper deal with HP duality in this extended sense; see also [BDF+13] and the next section.

2.4 HP duality for quadrics
We will now explain the results of HP duality for the case of quadric hypersurfaces, worked
out by Kuznetsov in [Kuz08]. This is both an instructive example of HP duality in general and
formally quite similar to the case we treat in this paper.

In the terminology used above, we take X = P(V ), and let the map f be the Veronese
embedding P(V ) ↪→ P(Sym2 V ) with associated line bundle L = OP(V )(2). Let n = dimP(V ).
The semiorthogonal decomposition

Db(P(V )) = 〈O,O(1), . . . ,O(n)〉

gives rise to a Lefschetz decomposition with A0 = · · · = A(n−1)/2 = 〈O,O(1)〉 when n is odd,
and a Lefschetz decomposition A0 = · · · = An/2−1 = 〈O,O(1)〉, An/2 = 〈O〉 when n is even.

Let us focus on the case where n is odd; similar results hold for even n. Consider a hyperplane
H ⊂ P(Sym2 V ), such that the associated quadric Q = f−1(H) ⊂ P(V ) is nonsingular. One can
then show that there is a semiorthogonal decomposition

Db(Q) = 〈S+, S−,O(2),O(3), . . . ,O(n)〉, (2.2)

where S+, S− denotes (some twist of) the so-called spinor bundles.
The spinor bundles are natural bundles defined on all nonsingular quadrics; there are 2 spinor

bundles on even-dimensional quadrics and 1 on odd-dimensional quadrics (see e.g. [Add09]). In
low dimensions the spinor bundles are easily described: For a 2-dimensional quadric P1 × P1,
they are O(1, 0) and O(0, 1), and for the 4-dimensional quadric Gr(2, 4), they are the universal
quotient bundle and the dual of the universal sub-bundle.

Let us write CQ for the component of Db(Q) denoted by CH in the previous section. The
decomposition (2.2) implies that CQ = 〈S+, S−〉. The spinor bundles satisfy RHom(S±, S±) = C,
and RHom(S±, S∓) = 0, so we have CQ = 〈S+, S−〉 = Db(ptt pt). If we now deform the nonsin-
gular quadric to a singular quadric Q of corank 1, the bundles S+ and S− become isomorphic,
and we can furthermore show that in this case CQ = Db(Spec k[ε]).

Ignoring a technical issue which we will discuss shortly, this tells us exactly what the HP
dual variety Y is over the locus in P(V ∨) corresponding to nonsingular and corank 1 quadrics.
Namely, we see that Y is a double cover of the locus of nonsingular quadrics, ramified in the
locus of corank 1 quadrics.
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The simplest application of Theorem 2.1 is now to the case of a general pencil P1 = P(L) ⊂
P(Sym2 V ∨) generated by two quadrics Q1, Q2. In this case the base locus XL⊥ = Q1 ∩Q2, and
YL is a double cover of P(L) = P1, ramified in the n+1 points corresponding to singular quadrics
in the pencil. Theorem 2.1 then gives an old result of Bondal and Orlov [BO95]:

Db(Q1 ∩Q2) = 〈Db(YL),O(4), . . . ,O(n)〉,

The technical issue ignored above is the fact that our description of the HP dual category
was only true point-wise and may fail in a global setting. To explain this complication, let us
first give Kuznetsov’s general description of the HP dual in terms of Clifford algebras.

Let V be a vector space with a quadratic form q. The Clifford algebra Cq is defined to be
T (V )/I, where T (V ) is the tensor algebra, and I is the 2-sided ideal generated by v ⊗ v −
q(v). Taking q = 0 gives the exterior algebra ∧∗V , and the Clifford algebras are in this sense
deformations of ∧∗V . The natural grading on T (V ) descends to a Z2-grading on Cq, and taking
the degree 0 part we obtain the “even Clifford algebra” C0

q ⊂ Cq.
Now letting q ∈ P(Sym2 V ∨) vary, one can fit these even Clifford algebras into a global

family, i.e. there is a sheaf of algebras C on P(Sym2 V ∨) such that the restriction to each q ∈
P(Sym2 V ∨) is isomorphic to C0

q . Kuznetsov shows that the HP dual of P(V ) is the category
Db(P(Sym2(V ∨)), C), i.e. the derived category of coherent C-modules on P(Sym2(V ∨)). This
means in particular that Theorem 2.1 holds when we interpret Db(YL) as Db(P(L), C|P(L)).

Let us consider what this means for a single quadric. For any q ∈ P(Sym2 V ∨), if Q ⊂ P(V )
is the associated quadric, we find CQ ∼= Db(q, C|q) = Db(C0

q ). If we assume that q and hence Q
is nonsingular, then it is a classical fact that C0

q
∼= End(CN )⊕End(CN ) for some N . By Morita

equivalence we then get Db(C0
q ) = Db(End(CN )) ⊕Db(End(CN )) ∼= Db(pt) ⊕Db(pt). Thus we

recover the statement that the fibre of the HP dual at q is 2 points.
We can now explain the complication in the global description of the HP dual. Keeping to

the locus of nonsingular q, the above discussion shows that the centre of the algebra C is a
commutative algebra on P(Sym2 V ∨), whose spectrum is a double cover Z. The algebra C is
then equivalent to an Azumaya algebra A on Z, i.e. an algebra which is étale locally isomorphic
to End(ONZ ). The above results can be rephrased as saying that the HP dual is given by Db(Z,A).

If there exists a locally free sheaf E on Z such that A ∼= End(E), we can define an equivalence
Db(Z) ∼= Db(Z,A) by the inverse functors −⊗OZ

E and RHomA(E ,−). This can always be done
locally, but there is a global obstruction to the existence of such an E , known as the Brauer class
of A, which lives in H2

an(Z,O∗Z). In this example, the Brauer class does not always vanish, and
in fact Db(Z,A) is not in general equivalent to Db(Z).

2.5 HP duality for Sym2 P(V )
The motivating problem for this paper is to construct the HP dual of Sym2 P(V ), with re-
spect to the natural map f : P(Sym2 P(V )) → P(Sym2 V ) and a Lefschetz decomposition of
Db(Sym2 P(V )) which we describe as follows.

We think of sheaves on Sym2 P(V ) as Z2-equivariant sheaves on P(V )2. For any distinct
i, j ∈ Z, there is a unique Z2-equivariant sheaf whose underlying sheaf on P(V )2 isO(i, j)⊕O(j, i).
For any i, there are two Z2-equivariant structures on O(i, i). We let O(i, i)+ be the Z2-structure
such that the Z2-action is trivial along the diagonal in P(V )2, and let O(i, i)− be the other one.
Note that then L = f∗(OP(Sym2 V )(1)) = OSym2 P(V )(1, 1)+.

9
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We take the initial piece in our Lefschetz decomposition of Db(Sym2 P(V )) to be

A0 = 〈O(0, 0)+,O(0, 0)−, {O(i, j)⊕O(j, i)}(i,j)∈S〉,

where S = {(i, j) | i + j ∈ [0, 1], i > j, i − j 6 bn2 c}.
4 If n is odd, we take Ai = A0 for all

i ∈ [0, n− 1].
If n is even, we let A0 = A1 = · · · = An/2−1. We remove 1 element from S to get S′ =

{(i, j) | i+ j ∈ [0, 1], i > j, i− j 6 n
2 − 1}. We let

A′ = 〈O(0, 0)+,O(0, 0)−, {O(i, j)⊕O(j, i)}(i,j)∈S′〉,

and then let An/2 = · · · = An−1 = A′.
By Proposition 5.17, this gives a Lefschetz decomposition

Db(Sym2 P(V )) = 〈A0,A1(1), . . . ,An−1(n− 1)〉

in both the even and the odd case. Let XL⊥ = f−1(P(L⊥)), which is denoted by X in Theorem
1.1. Theorem 1.1 and the computation of the orthogonal complements in Proposition 5.17 then
shows that we have

Db(XL⊥) = 〈CL⊥ ,Al(l), · · · ,An−1(n− 1)〉,
with CL⊥ = W+ ∩ W−,res, which is a fully faithful subcategory of Db(YL, C)res. If Db(Y, C)res
were the HP dual of Sym2 P(V ), this is in accordance with what Theorem 2.1 would give. In
view of this and the similar results obtained in [BDF+13], our results are strong evidence that
Db(Y, C)res is indeed the HP dual of Sym2 P(V ).

The obstacles to actually proving this are of a technical nature. In a forthcoming paper
[Ren17], combining the techniques of [Kuz07] and [BDF+13], we give a slightly more general
definition of HP duality which is more adapted to our VGIT techniques and show that the main
theorem of [Kuz07] still holds with this definition. We then use the results of this paper to show
that Theorem 2.1 indeed holds for the pair of Sym2 P(V ) and Db(Y, C)res.

2.5.1 Geometric interpretation of the HP dual Our Proposition 1.2 can be rephrased as
saying that when n = dimV is odd, then away from the corank > 3 locus the HP dual is a
double cover of the corank 1 locus in P(Sym2 V ∨), ramified in the corank 2 locus. Similarly,
Proposition 1.3 says that when n is even, the HP dual is a double cover ramified in the corank
1 locus.

Let us show concretely what this means in the case where n is odd. First of all, if H ⊂
Sym2 P(V ) is such that XH is a nonsingular bilinear divisor, then we have

Db(XH) = 〈A1(1), . . . ,An(n)〉,

i.e. the interesting part CH is trivial.
Correspondingly, if XH is of corank 1, we would like to say that CH corresponds to the derived

category of 2 points. This is almost correct, but must be modified slightly because the fibre YH of
the double cover Y → P(Sym2 V ∨) has higher dimension than expected. The correct statement
is that CH is the derived category of the derived fibre product of 0 ↪→ A1 and (0 t 0)→ A1.

4The choice of S is somewhat arbitrary. We could equally well have chosen S to be any set (i1, j1), . . . , (ibn/2c, jbn/2c)
satisfying (i1, j1) = (−1, 0) or (0, 1), and for each k either (ik, jk) = (ik−1 − 1, jk−1) or (ik, jk) = (ik−1, jk−1 + 1).
The same results would hold, and we choose this particular S because it simplifies the combinatorics of some of
the arguments in Section 5.
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A somewhat surprising aspect of our description is that our HP dual is globally a variety,
and that there is no need for an Azumaya algebra or Brauer class as in the case of quadrics. One
way of thinking about this is that in the quadric case the spinor bundles, which are point-wise
generators for the category of the HP dual, do not extend to globally defined bundles, and this
can be explained by the presence of a Brauer twist. In our case, it turns out that we can write
down an explicit global object which locally generates the HP dual category; this is the object
called K in Section 8.

3. Factorisation categories

We review some background material on derived categories of factorisations – further details
can be found in [ADS14, BFK12, Shi12]. We first fix a definition of a gauged Landau–Ginzburg
B-model (LG model for short).

Definition 3.1. A gauged LG model is the data of a smooth quasi-projective varietyX, equipped
with:
– An action of a reductive group G.
– An action of a 1-dimensional torus C∗R, commuting with the G-action.
– An element g ∈ G such that g2 = e and (g,−1) ∈ G× C∗R fixes X.5

– A function W , which is G-invariant and has weight 2 with respect to the C∗R-action, i.e.
W (tRx) = t2RW (x) for x ∈ X and tR ∈ C∗R.

Let X = X/(G × C∗R). The canonical character tR of C∗R induces a line bundle on X , which
we denote OX [1]. For a sheaf E on X we write E [l] for E ⊗ OX [1]⊗l. Note that W is a section of
OX [2].

By work of Positselski and Orlov [Pos11, EP15, Orl12], we can define a derived category of
factorisations, D(X ,W ), from the above data. An object of this category is a quasi-coherent
sheaf E on X , equipped with a differential map d : E → E [1], satisfying d2 = W . We call such an
object a factorisation. If we wish to emphasise the choice of differential, we denote this object by
(E , d), otherwise we will simply write E .

Example 3.2. Consider the case where X = SpecA and G is trivial. Then the action of C∗R
on X induces a grading on A and makes it a dg algebra with vanishing differential. Since we
require that −1 ∈ C∗R acts trivially on X, this grading will be even. Thus, A is commutative as
a dg algebra. A factorisation on X is in this case the same thing as a graded A-module M with
a differential d : M → M [1] squaring to W . In particular, if W = 0, then a factorisation is the
same thing as a dg module over A.

If E is a factorisation, we let E [l] be the factorisation whose underlying sheaf is E [l] and whose
differential is (−1)ld[l]. Given two factorisations E ,F we have a graded vector space

Hom(E ,F) = ⊕i HomX (E ,F [i]).

The differentials dE and dF give a differential on Hom(E ,F) by the usual Leibniz rule. This
differential squares to 0, and so Hom(E ,F) is a dg vector space. We denote the homotopy
category of the resulting dg category by K(X ,W ).
5Assuming the action of G is faithful, which is the case in our examples, the choice of such a g is unique, and we
will not mention it further.
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The category K(X ,W ) is triangulated, with the shift functor [1] as described above. The cone
over E → F is F [1]⊕ E with an induced differential, in the same way as for the usual homotopy
category of complexes.

In analogy with the definition of the ordinary derived category, we should now take the
Verdier quotient of K(X ,W ) with respect to the subcategory of acyclic complexes. Since the
differentials of factorisations do not square to 0, they do not have a notion of cohomology, and
so the usual definition of acyclic does not make sense.

The correct definition of acyclic in this setting is the following: Consider a finite exact complex
of factorisations

E1 → E2 · · · → En.
Exactness is here defined by considering the underlying sheaves, and we require the maps to be
closed with respect to the differentials on Hom(Ei, Ei+1). One can form the so-called totalisation
Tot(E•) of the above complex, which is a factorisation (see e.g. [Shi12, Lem. 2.12]). We declare
Tot(E•) to be acyclic, and let the category of acyclic objects be the thick triangulated subcategory
ofK(X ,W ) generated by such totalisations. Taking the Verdier quotient ofK(X ,W ) with respect
to the subcategory of acyclic objects gives the derived category D(X ,W ).

3.1 Coherent and locally free factorisations
We say a factorisation is coherent if the underlying sheaf is. We define the category Db(X ,W ) ⊂
D(X ,W ) to be the full subcategory of objects isomorphic to coherent factorisations. The category
Db(X ,W ) is a generalisation of the usual bounded derived category, which is the special case
where W = 0:

Proposition 3.3 [BDF+13], Prop. 2.1.6. If C∗R acts trivially on X, then

Db(X , 0) ∼= Db(X/G).

We say a factorisation is locally free if the underlying sheaf is.

Proposition 3.4 [BFK14], 3.14. Every factorisation on X is isomorphic in D(X ,W ) to a locally
free factorisation. Every coherent factorisation on X is isomorphic in Db(X ,W ) to a finite rank
locally free factorisation.

We record the following lemma, which gives a useful criterion for checking that a complex is
acyclic:

Lemma 3.5 [Shi12], 2.12. If F ∈ D(X ,W ) and Hom(E ,F) = 0 for all E ∈ Db(X ,W ), then F = 0.

3.2 Functors
Suppose we are given a map of LG models f : (X ,WX ) → (Y,WY), i.e. a morphism of stacks
f : X → Y such that f∗OY [1] ∼= OX [1], and such that f∗WY = WX .

For any factorisation E , the pushforward f∗E of its underlying sheaf inherits a differential map
which squares to WY , and so becomes a factorisation on (Y,WY). This defines a pushforward
functor f∗ : K(X ,WX )→ K(Y,WY), which admits a right derived functor

Rf∗ : D(X ,WX )→ D(Y,WY),

see [BFK14, Def. 3.36]. We can compute the pushforward functor by replacing a factorisation E
with a quasi-isomorphic injective factorisation I.

12
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If f is a closed immersion, then since the push-forward functor of sheaves f∗ is exact, we
do not have to choose injective representatives, i.e. we always have Rf∗(E) = f∗(E). Moreover,
since the pushforward functor of sheaves then preserves coherent sheaves, it follows from this
that Rf∗(E) is coherent if E is, in other words Rf∗ sends Db(X ,WX ) to Db(Y,WY).

We similarly get a functor f∗, which we may left derive by taking locally free replacements
to get a functor

Lf∗ : D(Y,WY)→ D(X ,WX ).

This functor clearly sends Db(Y,WY) to Db(X ,WX ).

We also have a tensor product. If E is a factorisation on (X ,W1) and F a factorisation on
(X ,W2), we may equip the sheaf E ⊗ F with a differential which squares to W1 + W2, and so
becomes a factorisation on (X ,W1 +W2).

To be precise, the differential is the following: We have assumed that there exists a 2-torsion
element g ∈ G such that (g,−1) ∈ G×C∗R acts trivially onX. As a consequence, any sheaf E on X
splits canonically into eigensheaves E+⊕E−, where E± is the subsheaf on which (g,−1) ∈ G×C∗R
acts by ±1. We can then equip E ⊗ F with the differential which is dE ⊗ 1 + 1⊗ dF on E+ ⊗ F
and which is dE ⊗ 1− 1⊗ dF on E− ⊗F . This is essentially the standard sign rule for the tensor
product of dg objects.

Replacing either E or F by a locally free factorisation, we obtain a derived tensor product

−⊗LX − : D(X ,W1)×D(X ,W2)→ D(X ,W1 +W2).

Given factorisations E ,F on (X ,W ) with E coherent, we have a sheaf hom Hom(E ,F). This
is the usual sheaf hom with the induced differential, where we use the standard sign rule together
with the splitting of E and F into even and odd graded parts. The differential on Hom(E ,F)
satisfies d2 = 0. We may derive this to get RHom(E ,F) ∈ D(X , 0). The derived sheaf hom can
be computed either by taking an injective replacement of F or a locally free replacement of E .
We have an isomorphism RHom(E ,F) ∼= F ⊗L E∨, where E = RHom(E ,OX ).

3.2.1 Twisted inverse image functor The following basic version of Grothendieck duality
will be useful. Let (X ,WX ) and (Y,WY) be gauged LG models, and let i : X → Y be a closed
immersion of X in Y of codimension c. Since both X and Y are smooth over C, this is a regular
embedding, and so the normal sheaf NX/Y on X is free of rank c. We define ωX/Y = ∧cNX/Y ,
and let i! : Db(Y,WY)→ Db(X ,WX ) be defined by i!(E) = i∗(E)⊗ ωX/Y [−c].

Lemma 3.6. The functor i! is right adjoint to i∗.

Proof. The object HomY(i∗OX ,OY) ∈ Db(Y, 0) has an OX -module structure and so is canoni-
cally the push-forward along i of an object we denote HomY(OX ,OY) ∈ Db(X , 0). A standard
computation (cf. [Sta19, Lemma 0BQZ]) gives the equivalence

HomY(OX ,OY) ∼= ωX/Y [−c].

Moreover, for any E ∈ Db(X , 0), we have RHom(i∗E ,OY) ∼= RHom(E ,HomY(OX ,OY)), cf. [Sta19,
Lemma 0E2I].
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Now if E ∈ Db(X ,WX ) and F ∈ Db(Y,WY), we have

RHom(i∗E ,F) ∼= RHom(i∗(E ⊗ i∗F∨),OY)
∼= RHom(E ⊗ i∗(F∨),HomY(i∗OX ,OY))
∼= RHom(E ⊗ i∗(F∨), ωX/Y [−c])
∼= RHom(E⊗, i∗F ⊗ ωX/Y [−c]) ∼= RHom(E , i!F).

3.3 Resolutions
A sheaf F on X supported on {W = 0}, equipped with the trivial differential, is a factorisation on
X . This provides a useful supply of objects in Db(X ,W ). Lemma 3.8 gives a way of constructing
a locally free representative of such an F .

As a matter of notation, we write

En
dr

�
dl

· · ·
dr

�
dl

E1
dr

�
dl

E0 (3.7)

to mean the factorisation (E , d), where E = ⊕Ei and d = dr + dl. Note that the arrows dl, dr in
(3.7) are then maps of degree 1 with respect to the C∗R-action.

Lemma 3.8. Let

E = En
dr

�
dl

· · ·
dr

�
dl

E0

be a factorisation, and suppose that there is a map of sheaves E0
f→ F , such that the sequence

0→ En
dr→ · · · dr→ E0

f→ F → 0

is exact. Then F is scheme-theoretically supported on {W = 0}.
Thinking of F as a factorisation on (X ,W ) with trivial differential, the induced map of

factorisations E → E0
f→ F is a quasi-isomorphism.

Proof. For the first claim, note that as drdl = W id : E0 → E0, we have WE0 ⊆ im dr. For the
second claim, apply [BDF+12, Lem. 3.4] to the complex En

dr→ · · · dr→ E0
f→ F .

3.4 Change of R-grading
For the purpose of constructing D(X ,W ) and Db(X ,W ), the definition of gauged LG model
that we use contains some superfluous information, because the splitting of G = G × C∗R can
be replaced with the choice of a surjection G → C∗R. Indeed, the only information used in the
definition of D(X ,W ) is the structure X = X/G as a stack and the line bundle OX [1].

We draw the following consequence. Suppose that there is an automorphism σ : G → G
commuting with the projection G×C∗R → C∗R. Then we may replace the action ρ : G→ Aut(X)
by ρσ, without modifying the category Db(X ,W ). In particular, fixing the action of G on X,
different choices of C∗R-action may give the same derived category Db(X ,W ).

Consider, for instance, the LG model where X = Cn \0, G = C∗, W = 0, and both G and C∗R
act by the usual multiplication. Then by the above remarks we may instead take the same model
with trivial C∗R-action, without changing the category of factorisations. Hence by Proposition 3.3
we have Db(X , 0) ∼= Db(Pn−1).
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We will use this flexibility to choose different C∗R-actions at various points throughout the
proof. The choice of σ ∈ Aut(G) will in our case be unique, so that the categories corresponding
to different choices are canonically equivalent.

3.5 Notational abuse

From the next section onwards we will drop the C∗R-action from the notation and denote the
LG model simply by (X/G,W ), and the category of factorisations by either Db(X/G,W ) or
Db
G(X,W ). As justification for this abuse, we offer Proposition 3.3, whose conclusion then has

the natural form Db(X/G, 0) = Db(X/G).

4. The GIT quotients

We now turn to the geometry of our examples. Fix a vector space V of dimension n and a vector
subspace L ⊂ Sym2(V ∨) of dimension l. We let Z = V × V × L.

Let T be the group (C∗)2 with coordinates t±1
1 , t±1

2 , and let G = ToZ2, where the semi-direct
product is given by the involution of T which permutes the ti. We let G act on Z in such a way
that T acts via characters t1, t2, t−1

1 t−1
2 on V , V , and L, respectively, and such that the Z2-factor

of G permutes the V factors and fixes the L factor.

Let C∗R act on Z by scaling the L factor by t2R. There is a natural superpotential W : Z → C,
which at a point (v1, v2, l) is the evaluation of l ∈ Sym2(V ∨) on (v1, v2). We let Z = Z/G. The
above data defines for us a gauged LG model (Z,W ).

Consider the GIT problem posed by Z/G. Let χ be the character of G which restricts to t1t2
on T , and which is trivial on the Z2-factor. By choosing either a positive or negative multiple of
χ for our GIT linearisation we obtain two GIT quotients Z+ and Z−.

Note that for us a GIT quotient is the quotient stack Zss/G, as distinguished from the GIT
quotient in the classical sense, which is the coarse moduli scheme of this stack.

4.1 The positive GIT quotient

Choosing χ as our linearisation, the unstable locus is

Zus
+ = (0× V × L) ∪ (V × 0× L).

Recall that by OSym2 P(V )(−1,−1)+ we mean the Z2-equivariant line bundle OP(V )2(−1,−1)
on P(V )2, equipped with the unique lifting of the Z2-action which leaves the restriction of
OP(V )2(−1,−1) to the diagonal of P(V )2 fixed. The GIT quotient Z+ = (Z \ Zus

+ )/G is then
the stacky vector bundle

p : OSym2 P(V )(−1,−1)⊕l+ → Sym2 P(V ).

We get a superpotential W on Z+ by restriction from Z. In each fibre of p, the function W
is linear, and so dually gives a section

s ∈ Γ(Sym2 P(V ),O(1, 1)⊕l+ ).

We let X ⊂ Sym2 P(V ) be defined by the vanishing of this s. Equivalently, X is defined by the
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Cartesian diagram

X P(L)

Sym2 P(V ) P(Sym2 V ),

and therefore corresponds to the X in Theorem 1.1.
Let i denote the inclusion p−1(X) ↪→ Z+.

Proposition 4.1. If X has the expected dimension, then the functor

i∗ ◦ p∗ : Db(X)→ Db(Z+,W )

is an equivalence.

Proof. This result is known as Knörrer periodicity, and has been proved independently by Isik
[Isi13, Thm. 4.6] and Shipman [Shi12, Thm. 3.4], see also [BFK12, Thm. 2.3.11].

4.1.1 An alternative Knörrer functor Let K denote the functor i∗ ◦ p∗ from Proposition 4.1.
If E ∈ Db(X) is restricted from Sym2 P(V ), then we may describe K(E) differently, a result which
will be needed in Section 5.3.

Let j1 : X → Sym2 P(V ) be the inclusion, and let j2 : Sym2 P(V ) → Z+ be the inclusion
along the 0-section of p. Let the functors Φ1,Φ2 : Db(Sym2 P(V ))→ Db(Z+,W ) be given by

Φ1 = K ◦ j∗1

and
Φ2 = (j2)∗(−⊗O(−1,−1)⊗l+ [l]).

Lemma 4.2. Assume that X has the expected codimension. Then Φ1 and Φ2 are equivalent.

Proof. We ignore the cohomological shifts for notational ease. We have

Φ1(E) = i∗p
∗j∗1(E) = i∗i

∗p∗(E) = p∗(E)⊗ i∗Op−1(X),

where p∗(E) ∈ Db(Z, 0) and Op−1(X) ∈ Db(Z+,W ). Next we have

Φ2(E) = (j2)∗(E ⊗ O(−1,−1)⊗l+ )) = p∗(E)⊗ (j2)∗(OSym2 P(V ) ⊗O(−1,−1)⊕l+ ),

with p∗(E) ∈ Db(Z+, 0) and (j2)∗(OSym2 P(V ) ⊗O(−1,−1)⊗l+ ) ∈ Db(Z+,W ).

So the functors Φi for i = 1, 2 are equivalent to (− ⊗ Ki) ◦ p∗, where p∗ : Db(Sym2 P(V )) →
Db(Z+, 0) and Ki ∈ Db(Z+,W ) are given by

K1 = i∗Op−1(X)

K2 = (j2)∗(OSym2 P(V ) ⊗O(−1,−1)⊕l+ ).

The claim thus follows once we show that i∗Op−1(X)
∼= (j2)∗(OSym2 P(V ) ⊗O(−1,−1)⊗l+ ). Let

us first work on Z. Choose coordinates p1, . . . , pl on L. Then the potential W decomposes as∑
pifi, where the fi are symmetric bilinear forms on V × V . Define an object K3 ∈ Db(Z,W )
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by the explicit factorisation

K3 = p∗(O(−1,−1)+)⊗l
dr

�
dl

∧l−1
(
p∗(O(−1,−1)+)⊕l

) dr

�
dl

· · ·

dr

�
dl

∧2
(
p∗(O(−1,−1)+)⊕l

) dr

�
dl

p∗(O(−1,−1)+)⊕l
dr

�
dl

OZ ,

where the dr are contractions with (pi) ∈ Γ(p∗(O(−1,−1)+)⊕l) and the dl are exterior multipli-
cations with (fi) ∈ Γ(p∗(O(−1,−1)+)⊕l) (see [Dyc11, Sec. 2.3]). Restricting K3 to Z+, we see
that since Sym2 P(V ) is cut out by the pi, since p−1(X) is cut out by the fi, and since both of
these have codimension l, it follows from Lemma 3.8 that

i∗Op−1(X)
∼= K3|Z+

∼= (j2)∗(OSym2 P(V ) ⊗O(−1,−1)⊗l+ )

4.2 The negative GIT quotient
If we take the character χ−1 as our linearisation, then the unstable locus is

Zus
− = V × V × 0.

We let Zss
− = Z \ Zus

− and let Z− = (Zss
− )/G.

When dealing with Z− and its substacks, we will assume the C∗R-action on Z is the one which
scales the V -factors by tR and leaves L fixed. The remarks in Section 3.4 show that the category
Db(Z−,W ) is the same for this C∗R-action as for the one described before.

The projection Zss
− → L \ 0 and the character χ : G → C∗ together give a map of quotient

stacks
f : Z− = Zss

−/G→ (L \ 0)/C∗ = P(L).
The kernel of χ is isomorphic to O(2), and each fibre of f is isomorphic to V ×V/O(2). The action
of O(2) on V × V is the one given by identifying V × V with V ⊗ C2, where C2 is the standard
representation of O(2). In particular each fibre of f contains a point with positive-dimensional
stabiliser group, so that Z− is not a Deligne–Mumford stack.

4.2.1 Grade restricted objects Because Z− contains points with positive-dimensional isotropy
groups, the category Db(Z−,W ) is too big to be directly compared with Db(Z+,W ) in the way
we would like. For example, for each stacky point p and each representation ρ of O(2), we
have an object Op(ρ) ∈ Db(Z−,W ). It will therefore be useful to consider a full subcategory of
Db(Z−,W ), defined as follows.

Choose a point p ∈ P(L), and let C∗ be the connected component of its isotropy group O(2) in
Z−. The category Db

C∗(p) splits as ⊕k〈Op(k)〉. If E ∈ Db
C∗(p), then we let Ek denote the projection

of E to 〈O(k)〉.
The inclusion ip : p/C∗ → Z− induces a restriction functor

i∗p : Db(Z−,W )→ Db
C∗(p).

For E ∈ Db(Z−,W ), we let the “weights of E at p” be the set {k | (i∗pE)k 6= 0}. We say E
is grade restricted if at every p the weights of E are contained in the interval [−bn/2c, bn/2c],
where n = dimV . We denote the full subcategory of grade restricted objects in Db(Z−,W ) by
Db(Z−,W )res.
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5. Window categories

Consider the origin 0 ∈ Z, which has isotropy group G, and recall that T = (C∗)2 is the identity
component of G. The category Db

T (0) splits as

Db
T (0) = ⊕(i,j)∈Z2〈O(i, j)〉.

For any E ∈ Db
T (0), we let E(i,j) be the projection of E to 〈O(i, j)〉.

Definition 5.1. Let E ∈ Db
T (Z,W ). The weights of E are defined as

wt(E) = {(i, j) | (E|0)i,j 6∼= 0}.

If E ∈ Db
G(Z,W ), we let wt(E) be the weights of E considered as a T -equivariant object.

Recall that n = dimV and l = dimL. We define subsets S+, S− and S−,res of Z2 = χ(T ) as
follows:
– If n is odd, then S+ is the set of pairs (i, j) such that 0 6 i+j 6 2n−1 and |i−j| 6 (n−1)/2.
– If n is even, then S+ is the set of pairs (i, j) such that either 0 6 i+ j < n and |i− j| 6 n/2,

or n 6 i+ j 6 2n− 1 and |i− j| 6 n/2− 1.
– S− is the set of pairs (i, j) such that 0 6 i+ j 6 2l − 1.
– S−,res is the set of pairs (i, j) such that 0 6 i+ j 6 2l − 1 and |i− j| 6 bn/2c.

(a) S+ (b) S−,res ⊂ S−

Figure 1: S+, S− and S−,res for n = 3, l = 2

We define “window categories” inside Db(Z,W ) as follows: LetW+ (resp.W−,W−,res) be the
full subcategory of Db(Z,W ) consisting of all objects such that wt(E) ⊆ S+ (resp. S−, S−,res).

We let j± : Z± → Z be the inclusions. The restriction functors j∗± : Db(Z,W )→ Db(Z±,W )
give functors

Φ± :W± ↪→ Db(Z,W )
j∗±→ Db(Z±,W ).

The main result of this section is:

Proposition 5.2. The functors Φ± :W± → Db(Z±,W ) are equivalences.

Proof. The case of Φ− is an application of [BFK12, Prop. 3.3.2] and [HL15, Thm. 3.29]. The
proof of the claim for Φ+ occupies the rest of this section, and is split into lemmas as follows.
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Let E ∈ Db(Z+,W ). By Lemma 5.4 there is an Ê ∈ Db(Z,W ) such that j∗+(Ê) = E . By
Proposition 5.5, we may, after modifying Ê by taking cones over maps to or from objects in
ker j∗+, assume that Ê ∈ W+, which means that Φ+ is essentially surjective. If E1, E2 ∈ W+, then
they satisfy the assumptions of Lemma 5.15, and hence

RHomZ(E1, E2) = RHomZ+(E1|Z+ , E2|Z+).

It follows that Φ+ is fully faithful.

Corollary 5.3. The functor Φ− restricts to give an equivalence

W−,res ∼= Db(Z−,W )res.

Proof. Let E ∈ Db(Z−,W ). By Proposition 5.2, there is a unique Ê ∈ W− such that j∗−(Ê) = E .
Assume first that Ê ∈ W−,res, and choose a locally free representative of Ê . Remembering only

the T -equivariant structure, it follows from [MMJP96, Main Thm.] that the underlying sheaf of
Ê will have the form ⊕i,jOZ(i, j)mij (ignoring cohomological shifts).

On L/T , there is a vanishing of Hom spaces

Hom(OL(i, j),OL(i′, j′)) = 0 if i− j 6= i′ − j′,

so we get a splitting Ê |L = ⊕k(Ê |L)k, where

(Ê |L)k =
⊕
i−j=k

OL(i, j)mij

with the induced differential.
Since Γ(L,OL)T = C, the point 0 is contained in the closure of every T -orbit in L. Now if

|k| > bn/2c, then (Ê |L)k|0 vanishes, since Ê ∈ W−,res. The support of the complex (Ê |L)k is a
closed, T -invariant subset of L, and since it does not contain 0, it is empty, hence (Ê |L)k ∼= 0.

The stack (L \ 0)/T is equivalent to P(L)/C∗ with the trivial C∗-action. Let p ∈ P(L), and
recall that for F ∈ Db

C∗(p), we write Fk for the projection of F to 〈Op(k)〉. For p ∈ P(L) we have
in Db

C∗(p)
(E|p)k ∼= ((Ê |L)k)|p ∼= 0,

and therefore E ∈ D(Z−,W )res.
Assume now that Ê 6∈ W−,res. Then there is a k with |k| > bn/2c such that (Ê |L)k|0 6∼= 0. Let

Td be the diagonal subtorus of T . Then Td acts with weight 2 on L. As a Td-equivariant complex,
the object (E|L)k is such that after restriction to 0 ∈ L, it has weights in [0, 2l − 1].

Applying [HL15, Thm. 3.29], we see that such a complex is acyclic on L \ 0 if and only if
it is acyclic on L, and hence (Ê |k)L\0 6∼= 0. This means that there is a p ∈ P(L) and a k with
|k| > bn/2c such that (E|p)k ∼= (Ê |L)k|p 6∼= 0, and so E 6∈ Db(Z−,W )res.

5.1 Essential surjectivity
The goal of this section is to prove that Φ+ : W+ → Db(X+,W ) is essentially surjective, which
follows from Lemma 5.4 and Proposition 5.5.

Lemma 5.4. Let (X/G,W ) be a gauged LG model, and let U ⊂ X be a G× C∗R-invariant open
subvariety. The restriction map Db(X/G,W )→ Db(U/G,W ) is essentially surjective.

Proof. Let G = G×C∗R, let j be the inclusion U/G ↪→ X/G, and let E be a coherent factorisation
on U/G. The (underived) pushforward j∗(E) is a quasi-coherent factorisation on X/G; in particu-
lar its underlying sheaf is a quasi-coherent sheaf on X/G. By [LMB00, Prop. 15.4], the underlying
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sheaf of j∗(E) is the union of its coherent subsheaves – that is, thought of as a G-equivariant
sheaf on X, it is the union of its G-equivariant coherent subsheaves. Since j∗j∗(E) = E , we may
find a coherent subsheaf φ : F ↪→ j∗(E) such that the composition j∗(F) j∗(φ)→ j∗j∗E → E is an
isomorphism.

Let ψ be the composition F [−1] φ[−1]→ j∗E [−1] d→ j∗E , and let F = φ(F)+ψ(F [−1]) ⊂ j∗E . We
now claim the differential d : E → E [1] restricts to induce a differential on F , i.e. that d(F) ⊂ F [1].
Indeed, we have

d(φ(F)) = f(F [−1])[1] ⊂ F [1]
and

d(ψ(F [−1])) = d◦d◦(φ[−1])(F [−1]) = W◦(φ[−1])(F [−1]) ⊂ (φ[−1])(F [−1])[2] = φ(F)[1] ⊂ F [1]

Thus the differential on j∗E restricts to a differential on F . We also have that j∗F → j∗F is an
isomorphism, and so the map j∗F → j∗j∗E → E is a morphism of factorisations which induces
an isomorphism on the underlying sheaves. Hence j∗F ∼= E as objects of Db(X/G,W ), and so E
is in the image of the restriction functor j∗.

Recall that j+ denotes the inclusion Z+ ↪→ Z. We write ker j∗+ for the full subcategory of
Db(Z,W ) consisting of objects E such that j∗+(E) ∼= 0.

Proposition 5.5. The subcategories W+ and ker j∗+ generate Db(Z,W ) as a triangulated cate-
gory.

The proof of this proposition occupies the rest of Section 5.1; the main idea is the following. If
E ∈ Db(Z,W ) and the weights of E are not contained in S+, then we can construct a factorisation
G supported on Z \ Z+ (so that G ∈ ker j∗+), which admits a map to or from E with cone F .
Setting up this correctly, we can ensure that the weights of F are closer to being contained in
S+ than those of E , and by repeatedly replacing E with F we eventually arrive at an E whose
weights are in S+.

5.1.1 Affine spaces with torus actions LetX = SpecC[x1, . . . , xn], and let T be a k-dimensional
torus acting linearly on X. We assume that the action is such that Γ(X,OX)T = C. We will need
some simple lemmas about Db

T (X).

Remark 5.6. The condition that Γ(X,OX)T = C can be reformulated as follows. Let ρ1, . . . , ρn ∈
χ(T ) ∼= Zk be the weights of the T -action on X. Then Γ(X,OX)T = C if and only if 0 ∈ χ(T ) is
not in the convex hull of {ρ1, . . . , ρn}.

In the setting of this paper, we have T = (C∗)2 acting on V ×V ×L with weights (1, 0), (0, 1),
(−1,−1). We see that the condition on X fails for X = V ×V ×L, but holds for X = V × 0×L,
X = 0× V × L and X = V × V × 0.

Let ρi ∈ χ(T ) be the character such that xi is a T -invariant section of OX(ρi). Define a partial
ordering on Zk = χ(T ) by saying ρ 6 ρ′ if there exist i1, . . . , ik > 0 such that ρ′ = ρ +

∑
ijρk.

This is equivalent to saying that ρ 6 ρ′ if and only if HomX(O(ρ),O(ρ′))T 6= 0.
We say a triangulated category C is generated by a set S ⊂ Ob(C) if C is the smallest full

triangulated subcategory containing all objects in S.

Lemma 5.7. The category Db
T (X) is generated by {OX(ρ)}ρ∈χ(T ), and for any n ∈ Z we have

Hom(OX(ρ),OX(ρ′)[n]) = 0 unless ρ 6 ρ′.
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Proof. By [BFK12, Prop. 2.2.10], any T -equivariant complex of sheaves on X is isomorphic to
a complex of locally free T -equivariant sheaves. By [MMJP96, Main Thm.], any T -equivariant
locally free sheaf on X decomposes as a direct sum of copies of OX(ρ). This proves generation.

For the second statement, note that as T is reductive, we have

HomX/T (O(ρ),O(ρ′)[n]) = ExtnX(O(ρ),O(ρ′))T

As X is affine and O(ρ) locally free, this vanishes if n 6= 0, and the claim follows.

Let E ∈ Db
T (X). We let the weights of E , denoted wt(E), be the set of ρ ∈ χ(T ) such that

(E|0)ρ 6= 0, where the subscriptg ρ denotes the projection to the subcategory 〈O(ρ)〉 ⊂ Db
T (0).

We say S ⊂ wt(E) is a maximal set if no element of S is smaller than an element of wt(E)\S,
and we say S ⊂ wt(E) is a minimal set if no element of S is bigger than an element of wt(E) \S.

For any S ⊂ χ(T ), we let Db
T (X)S ⊂ Db

T (X) be the full subcategory of objects E with weights
in S.

Lemma 5.8. If E ∈ Db
T (X) is such that E|0 = 0 ∈ Db

T (0), then E = 0.

Proof. We re-use the argument from the proof of Cor. 5.3. The support of E is a closed T -invariant
subset of Y . Assume that E|0 = 0. Then the support of E does not intersect 0. The assumption
Γ(X,OX)T = C implies that the closure of every T -orbit intersects 0, hence the support of E is
empty and so E = 0.

For any S ⊂ χ(T ), we let S be the set of all ρ such that ρ > s for some s ∈ S, and let S be
the set of ρ such that ρ 6 s for some s ∈ S.

Lemma 5.9. For any S ⊂ χ(T ), there are semiorthogonal decompositions

Db
T (X) = 〈Db

T (X)χ(T )\S , D
b
T (X)S〉.

and
Db
T (X) = 〈Db

T (X)S , Db
T (X)χ(T )\S〉.

Proof. We prove the first claim; the second is proved in the same way. We work in the homo-
topy category C of bounded locally free complexes on X/T , which is equivalent to Db

T (X). By
[MMJP96, Main Thm.], any locally free sheaf is a direct sum of sheaves of the form O(ρ).

For E ∈ C, let ES be the subcomplex consisting of those O(ρ) with ρ ∈ S. The fact that this
is indeed a subcomplex, i.e. that d(ES) ⊂ ES , follows from the fact that any map

OX(ρ)→ OX(ρ′)

with ρ ∈ S and ρ′ 6∈ S must be trivial. The operation E 7→ ES is functorial.
Now for any E ∈ C we have a functorial short exact sequence

0→ ES → E → Eχ(T )\S → 0,

where ES ∈ D
b
T (X)S and Eχ(T )\S ∈ D

b
T (X)χ(T )\S .

If E ∈ Db
T (X)S , then Eχ(T )\S |0 ∼= 0, and therefore Eχ(T )\S

∼= 0 by Lemma 5.8. It follows that
E ∼= ES . Similarly, if F ∈ Db

T (X)χ(T )\S , then F ∼= Fχ(T )\S . It now follows from Lemma 5.7 that
Hom(E ,F) = Hom(ES ,Fχ(T )\S) = 0, which is what we needed.

Lemma 5.10. Let E ∈ Db
T (X). If ρ ∈ wt(E) is maximal, then

RHom(OX(ρ), E) 6= 0.
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Proof. By the semiorthogonal decomposition of Lemma 5.9, we have a map Eρ → E , where Eρ is
locally free and the underlying sheaf is a direct sum of OX(ρ′) with ρ′ > ρ. Next we claim that
the map

Eρ → (Eρ)ρ
is an isomorphism. This holds because, by construction, the map is surjective and its kernel has
weights in (ρ \ ρ) ∩ wt(E) = ∅.

Now by construction the underlying sheaf of (Eρ)ρ is a direct sum of copies of O(ρ) (with
cohomological shifts). Since we assume that Γ(X,OX)T = C, every differential in the complex
(Eρ)ρ must be constant on X. As the restriction of the complex to 0 does not vanish, it follows
that there is a non-trivial map O(ρ)→ (Eρ)ρ ∼= Eρ. By Lemma 5.9, we have the exact triangle

Eρ → E → Eχ(T )\ρ.

Since O(ρ) ∈ Db
T (X)ρ, we have RHom(O(ρ), Eχ(T )\ρ) = 0 and so

RHom(OX(ρ), E) = RHom(OX(ρ), Eρ) 6= 0.

5.1.2 Constructing objects supported on Zus
+ We now return to our example and apply the

above results to X = V ×0×L, equipped with the previously described action of T = (C∗)2 ⊂ G.
We have χ(T ) = Z2, and the partial ordering is given by letting (i, j) 6 (i′, j′) if there exist
l,m > 0 such that (i′, j′) = (i+ l −m, j −m).

We let i : X ↪→ Z be the inclusion, let F ∈ Db
T (X, 0), and let S = wt(F).

Lemma 5.11. The weights of i∗F are contained in
n⋃
i=0

S − (0, i).

The weights of the cone over i∗i∗F → F are contained in
n⋃
i=1

S − (0, i).

Proof. Let p be the projection Z → X. Then p ◦ i = idX , and so F = i∗p∗(F). It follows
that the weights of p∗(F) are equal to those of F , hence are also contained in S. We have
i∗(F) = i∗i

∗p∗(F) = p∗(F) ⊗ i∗(OX), where p∗(F) ∈ Db
T (Z, 0) and i∗(OX) ∈ Db

T (Z,W ). The
weights of i∗(OX) are easy to compute using a Koszul resolution like the one in the proof of
Lemma 4.2; they are (0,−i), 0 6 i 6 n. The first claim follows.

For the second claim, let G = p∗F ∈ Db
T (Z, 0), so that we have i∗G = F . The cone is taken over

the map g : i∗i∗(i∗(G))→ i∗(G) induced by the counit, so our claim regards the weights of C(g).
We also have the map f : i∗(G) → i∗(i∗i∗G)) induced by the unit, which satisfies g ◦ f = idi∗(G ,
by [ML98, p. 85]. Thus by the octahedral axiom, we have the exact triangle

C(f)→ C(g ◦ f)→ C(g),

and, since C(g ◦ f) = 0, that C(g) ∼= C(f)[1]. The map f : i∗(G) → i∗i∗i
∗(G) = i∗(G ⊗ OX) has

cone C(f) ∼= i∗(G ⊗ IX)[1]. The weights of IX are easily computed; they are (0,−i), 1 6 i 6 n.
The claim about the weights of C(g) follows.

Let now E ∈ Db
T (Z,W ), and let S be a minimal subset of wt(E).
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Lemma 5.12. The weights of the cone over the natural map E → i∗((E|X)S) are contained in

(wt(E) \ S) ∪
(

n⋃
i=1

S − (0, i)
)

Proof. Let F be the cone. Pulling back the triangle defining F along i, we get a triangle

i∗(E) g→ i∗i∗i
∗(ES)→ C(g) = i∗F

The weights of F equal those of C(g), so it is enough to prove the claim for the weights of C(g).
We claim that the map

f : i∗(E)→(i∗(E))S
induced by the semiorthogonal decomposition of Lemma 5.9 is equal to the composition

i∗(E) g→ i∗(i∗(i∗E)S)) h→ (i∗(E))S ,

where h is induced by the counit i∗i∗ → id.
To see this, let P the functor Db

T (X,W ) → Db
T (X,W ) given by E 7→ ES . The map f is

induced by the natural transformation i∗ → Pi∗, which equals the composition of unit and
counit transformations i∗ → i∗i∗i

∗ → i∗ → Pi∗, by the triangle equalities of [ML98, p. 85]. The
composition h ◦ g is induced by the natural transformation i∗ → i∗i∗i

∗ → i∗i∗Pi
∗ → Pi∗. We see

that the two natural transformations are the same, hence f = h ◦ g.
By the octahedral axiom, there is a distinguished triangle whose vertices are C(f), C(g) and

C(h). The weights of C(f) are contained in wt(E) \ S, while the weights of C(h) are contained
in

S − (0, 1), . . . , S − (0, n)
by Lemma 5.11. The claim about the weights of C(g) follows.

Now let E ∈ Db
G(Z,W ), and let E ′ ∈ Db

T (Z,W ) be the underlying T -equivariant object. Let
σ ∈ G be the order 2 element which permutes the factors of V in Z. The G-equivariant object
induced from (E ′|X)S is

i∗((E ′|X)S)⊕ σ∗i∗((E ′|X)S)
and there is a canonical G-equivariant map

φ : E → i∗((E ′|X)S)⊕ σ∗i∗((E ′|X)S).

We also denote by σ the involution of Z2 which permutes the Z-factors. We say S ⊂ Z2 is
good if (

n⋃
i=0

σS − (i, 0)
)
∩ S = ∅.

Lemma 5.13. If S ⊂ wt(E) is minimal and good, then the weights of C(φ) are contained in(
n⋃
i=1

(S − (0, i)) ∪ (σS − (i, 0))
)
∪ (wt(E) \ (S ∪ σS)) .

Proof. Let φ = (φ1, φ2) be the decomposition of φ corresponding to the splitting of its codomain

i∗((E ′|X)S)⊕ σ∗i∗((E ′|X)S),
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and let p1 and p2 be the projections of this object onto each factor. Then the identity φi = piφ
and the octahedral axiom imply that the cones C(φi), C(φ) and C(pi) fit into a distinguished
triangle for i = 1, 2. We thus have

wt(C(φ)) ⊂
⋂
i=1,2

(wt(C(φi)) ∪ wt(C(pi))) .

We have σwt(C(φ1)) = wt(C(φ2)) and σwt(C(p1)) = wt(C(p2)). By Lemmas 5.11 and 5.12, we
get

wt(C(p1)) ⊂
n⋃
i=0

(σS − (i, 0))

and

wt(C(φ1)) ⊂ (wt(E) \ S) ∪
(

n⋃
i=1

S − (0, i)
)
.

The claim now follows using the goodness of S.

Proposition 5.14. Let E ∈ Db(Z,W ). If S ⊂ wt(E) is minimal and good (resp. maximal and
−S is good), then there is a distinguished triangle in Db(Z,W )

F → E → G (resp. G → E → F)

such that G is supported on Z \ Z+ = X ∪ σ(X) and such that

wt(F) ⊂
(

n⋃
i=1

(S − (0, i)) ∪ σ(S − (i, 0))
)
∪ (wt(E) \ (S ∪ σS))

(resp. wt(F) ⊂
(

n⋃
i=1

(S + (0, i)) ∪ σ(S + (i, 0))
)
∪ (wt(E) \ (S ∪ σS))).

Proof. The statements for maximal S follow from those of minimal S by dualising. So assume
that S is minimal, in which case we may take

G = i∗((E ′|X)S)⊕ σ∗i∗((E ′|X)S)

by Lemma 5.13.

We can now give the proof of Proposition 5.5.

Proposition 5.5. The subcategories W+ and ker j∗+ generate Db(Z,W ) as a triangulated cat-
egory.

Proof. Let E ∈ Db(Z,W ), and suppose that E ′ is a cone over a map between E and an object
in ker j∗+. If E ′ ∈ 〈W+, ker j∗+〉, then E ∈ 〈W+, ker j∗+〉. This means that if we can always after
replacing E with such a E ′ a finite number of times get E ∈ W+, then the claim of the proposition
follows.

We first see that we can get wt(E) ⊂ {(i, j) | i + j ∈ [0, 2n − 1]}. This is an application of
[BFK12, Prop. 3.3.2], where we apply the result to the unstable locus 0 × 0 × L ⊂ Z and the
1-parameter diagonal subgroup C∗ ⊂ G.

Define the width of E as the maximal value of |i− j| for (i, j) ∈ wt(E). Let k be the width of
E , assume that k > n/2, and let wt(E)k be the set of (i, j) ∈ wt(E) such that |i − j| = k. Then
either max(i,j)∈wt(E)k

(i+ j) > n or min(i,j)∈wt(E)k
(i+ j) < n.

In the first case let S ⊂ wt(E)k be the set of (i, j) such that i + j > n and i < j. The set S
is minimal and good, and we modify E by taking a cone over G as in Proposition 5.14. In the
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second case we let S be the set of (i, j) ∈ wt(E)k with i + j < n and such that i > j. This S is
maximal and −S is good, and again we modify E by taking a cone over G as in Proposition 5.14.

In either case, we see that the replacing E by this cone will either decrease the width of E
or leave it unchanged. If the width of E is unchanged, the cardinality of wt(E)k will decrease.
Furthermore, we still keep the property that wt(E) ⊂ {(i, j) | i + j ∈ [0, 2n − 1]}. Thus by
repeating this procedure a finite number of times we obtain an E with width 6 n/2. If n is odd,
we then have wt(E) ⊆ S+, hence E ∈ W+, and we are done.

If n is even, let S be the set of (i, j) ∈ wt(E)n/2 with i+ j > n and such that i < j. This S is
minimal and good, and by taking the cone over G as in Proposition 5.14 we get wt(E) ⊆ S+.

5.2 Fully faithfulness

Lemma 5.15 below implies that the functor W+ ↪→ Db(Z,W )
|Z+→ Db(Z+,W ) is fully faithful.

Let B ⊂ Z2 be the union of the sets

B1 ={(j − i,−n− i) | i, j > 0}
B2 ={(−n− i, j − i) | i, j > 0}
B3 ={(−n− i,−n− j) | i, j > 0}.

Lemma 5.15. Let E1, E2 be such that if (i1, j1) ∈ wt(E1) and (i2, j2) ∈ wt(E2), then (i2 − i1, j2 −
j1) 6∈ B. Then the restriction map

RHomZ(E1, E2)→ RHomZ+(j∗+E1, j
∗
+E2)

is an isomorphism.

Proof. Let X = V ×0×L. The complement of Z+ in Z is (X∪σX)/G. We have RHom(E1, E2) =
RΓ(Z, E∨1 ⊗ E2), and a distinguished triangle in Db(Z, 0)

RΓX∪σX(E∨1 ⊗ E2)→ E∨1 ⊗ E2 → (j+)∗j∗+(E∨1 ⊗ E2),

where RΓX∪σX is the derived sheafy sections with support functor (see [BFK12, Prop. 2.3.9]).
Letting E = E∨1 ⊗ E2, it suffices to show RΓ(Z,RΓX∪σX(E)) = 0. It is enough to prove this

after replacing E by its underlying T -equivariant factorisation on Z, so let us from this point on
work in the category Db

T (Z, 0). We have a distinguished triangle

RΓX∩σX(E)→ RΓX(E)⊕ RΓσX(E)→ RΓX∪σX(E),

and thus it suffices to show the vanishing of RΓ(Z/T,F) for F equal to RΓX(E),RΓσX(E) or
RΓX∩σX(E).

Let IX be the ideal sheaf of X ⊂ Z. We first claim that

RHom(Ik−1
X /IkX , E) ∼= 0

for all k. We have IkX/I
k+1
X = Symk(OZ(0,−1)⊕n)⊗OX . To prove the claim it therefore suffices

to show
RHomZ/T (OX(0,−i), E) = 0 for all i > 0.

We have

RHomZ/T (OX(0,−i), E) ∼= RHomX/T (OX(0,−i), i!(E))
∼= RHomX/T (OX(0, n− i), E|X)[n],
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where i! denotes the twisted inverse image functor, see Lemma 3.6. Now since we know the
weights of E are not contained in B1, the same is true for the weights of E|X . In the terminology
of Lemma 5.9 we have wt(E|X) ⊂ Z2 \ {(0,−n− i)} for all i > 0, hence by that lemma we get
RHom(OX(0,−i), E) = 0.

Now RHom(Ik−1
X /IkX , E) ∼= 0 for all k implies RHom(OZ/IkX , E) ∼= 0. For any sheaf F we

have lim−→k
Hom(OZ/IkX ,F) ∼= Γ(Z/T,ΓX(F)) [Gro05]. Taking an injective replacement I of E

and using the exactness of filtered colimits we get

RΓ(Z/T,RΓX(E)) ∼= Γ(Z/T,ΓX(I)) ∼= lim−→
k

Hom(OZ/IkX , I) ∼= 0,

which is what we wanted. The proof that RΓ(Z/T,RΓσX(E)) = 0 is exactly the same.
Arguing in the same way for X ∩ σX, we reduce to showing that

RHomX∩σX(OX∩σX(−n− i,−n− j), E|X∩σX) = 0

for all i, j > 0. This claim follows by Lemma 5.9 and the fact that wt(E|X∩σX) ∩B3 = ∅.

Let C = {(i, j) | i+ j > 2l}, and recall that j− : Z− → Z is the inclusion map. The following
lemma can be proved as above, but is also a consequence of [HL15, Thm. 3.29].

Lemma 5.16. Let E1, E2 be such that if (i1, j1) ∈ wt(E1) and (i2, j2) ∈ wt(E2), then (i2 − i1, j2 −
j1) 6∈ C. Then the restriction map

HomZ(E1, E2)→ HomZ−(j∗−E1, j
∗
−E2)

is an isomorphism.

5.3 The orthogonal complement in W+

Assume that dimL = l < n = dimV , which is equivalent to assuming that S+ 6⊂ S−,res. Let C
be the category C =W+ ∩W−,res ⊂ W+.

We define a partial ordering on Z2 = χ(T ) by (i, j) 6 (i′, j′) if i 6 i′ and j 6 j′. Given
representations ρ, ρ′ of G, we say ρ 6 ρ′ if there are T -weights (i, j) of ρ and (i′, j′) of ρ′ such
that i 6 i′ and j 6 j′.

Let K = i∗ ◦ p∗ : Db(X)→ Db(Z+,W ) be the equivalence from Proposition 4.1. Recall that
an object E in a triangulated category is exceptional if Hom(E , E) = C and Hom(E , E [n]) = 0 for
n 6= 0.

Proposition 5.17. The subcategory C⊥ ⊆ W+ is generated by a set of exceptional objects Eρ in-
dexed by irreducible G-representations ρ such that wt(ρ) ∈ S+\S−,res. We have RHom(Eρ, Eρ′) =
0 unless ρ 6 ρ′. Furthermore, under the equivalence W+

Φ+→ Db(Z+,W ) K
−1
→ Db(X), the objects

Eρ are sent to OX(ρ).

Note the special case where l = 0, in which case C = 0. Proposition 5.17 then describes a full
exceptional collection on Db(Sym2 P(V )) – see Section 2.5.

Proof. Let ρ be such that wt(ρ) ∈ S+ \ S−,res. Using Lemma 4.2, we find that K(OX(ρ)) equals
OSym2 P(V )(ρ)⊗O(−l,−l)+[l] ∈ Db(Z+,W ).

We now claim that

Φ−1
+ (OSym2 P(V )(ρ)⊗O(−l,−l)+[l]) ∼= OV×V×0(ρ)⊗O(−l,−l)[l]+. (5.18)
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Let Eρ be the object on the right hand side of (5.18). Using a Koszul resolution of V × V × 0 as
in the proof of Lemma 4.2 we find that wt(Eρ) is

{ρ, ρ− (1, 1), . . . , ρ− (l, l)} ⊂ S+,

so that Eρ lies in W+. We can then show (5.18) by applying Φ+ to both sides, and the last claim
of the proposition follows.

We next show that Eρ lies in ⊥C. Applying Lemma 5.16, we find that for any E ∈ C,

HomZ(Eρ, E) = HomZ−(Eρ|Z− , E|Z−).

But as Eρ is supported on V × V × 0, we have Eρ|Z− = 0, and thus Eρ ∈ ⊥C.
An easy computation shows that OSym2 P(V )(ρ) ∈ Db(Sym2 P(V )) is exceptional. It now fol-

lows by the arguments of [Kuz07] that OX(ρ) is exceptional.

RHom(OX(ρ),OX(ρ)) = RHom(OSym2 P(V )(ρ), i∗i∗OSym2 P(V )(ρ)),

where i is X ↪→ Sym2 P(V ). Using a Koszul resolution of OX we see that i∗i∗OSym2 P(V )(ρ) is
contained in 〈O(ρ− (l, l)), · · · ,O(ρ)〉, and the vanishing of the right hand side now follows using
our assumption l < n. Therefore Eρ = Φ+(OX(ρ)) is exceptional.

The fact that RHom(Eρ, Eρ′) = 0 unless ρ 6 ρ′ is proved in the same way, using the assumption
that the weights of ρ and ρ′ are in S+ \ S−,res.

Finally, we must show that the objects Eρ generate ⊥C. By [Bon89, Lem. 3.1, Thm. 3.2], it
suffices to show that if E ∈ W+ and RHom(Eρ, E) = 0 for all ρ, then E ∈ C.

Let E ∈ W+ and assume E 6∈ C. Now let ρ be such that wt(ρ) is a maximal subset of wt(E)
with respect to the partial ordering on Z2 defined above. Since E 6∈ C, we have wt(ρ) 6∈ S−,res∩S+.
We have

RHomZ/T (Eρ, E) = RHomZ/T (i∗(OV×V×0(ρ))(−l,−l)), E)
= RHom(V×V )/T (O(ρ), E|V×V ),

and the latter space is non-vanishing by Lemma 5.10.
The space RHomZ/T (Eρ, E) splits into 2 eigenspaces where σ ∈ G acts by ±1, and the elements

in the +1 eigenspace are the G-invariant maps. If there are no G-invariant maps, we replace ρ
with ρ⊗ τ , where τ is the natural character G→ Z2 ↪→ C∗. This switches the 2 eigenspaces, and
so after doing this we will have RHomZ/G(Eρ, E) 6= 0.

5.4 Why the strange windows?
The papers [BFK12, HL15] provide window categories inside Db(Z,W ) equivalent to the cate-
gories Db(Z±,W ). The reader familiar with these results may want to know why we do not use
the general construction from these papers. For the case of Z−, things work as expected, and the
categoryW− corresponds to the one given in [BFK12, HL15]. The need to considerW−,res ⊂ W−
is then explained by the fact that Z− is an Artin stack, cf. [ADS14].

For the other window category W+, our definition is dictated by the proof of Theorem 1.1,
which requires W+ to either contain or be contained in W−,res, depending on the values of l and
n.

Let us recall the definition of the corresponding category from [BFK12, HL15], to see that it
does not behave as well in this respect: For i = 1, 2, let Ti be the i-th factor of T = (C∗)2. Choose
two integers m1,m2. The window category is then the full subcategory W+,m1,m2 ⊂ Db(Z,W )
such that for any object E ∈ Db(Z,W ) we have E ∈ W+,m1,m2 if and only if
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– For all T -weights (i, j) of E|0, we have m1 6 i+ j 6 m1 + 2n.
– After restricting to (V \ 0) × 0 × 0 ⊂ Z (resp. 0 × (V \ 0) × 0 ⊂ Z), the weights of E with

respect to T2 (resp. T1) lie in [m2,m2 + n].

Taking for instance m1 = m2 = 0, we obtain the subcategory of factorisations whose underlying
T -equivariant sheaf decomposes as a sum ofO(i, j) with (i, j) contained in the square [0, n]×[0, n].
It is easy to check that W+,0,0 in general neither contains nor is contained in W−,res, and with
a bit more work one can show that this remains true when replacing W+,0,0 with the general
W+,m1,m2 .

6. Sheaves of dg algebras

In this section, we fix some notation and recall some results about sheaves of dg algebras which
will be used in the remaining sections. See for instance [Isi13, MR10, Ric10] for further details.

Let X be an algebraic stack. A sheaf of dg algebras on X is a graded quasi-coherent algebra
R = ⊕i∈ZRi on X , equipped with a differential map d : R → R[1] satisfying the Leibniz rule
and such that d2 = 0. A dg module over R is a quasi-coherent sheaf M on X , equipped with an
action of R and a differential map M →M [1] which squares to 0, where these structures satisfy
the usual compatibility relations. We denote by C(X , R) the dg category of right dg modules
over R. We let K(X,R) be the homotopy category of C(X , R); this is a triangulated category.

Given a dg module M , we get a graded cohomology module H(M) = ker d/ im d. There is a
triangulated subcategory of dg modules such that H(M) = 0, and we take the Verdier quotient
by this subcategory to obtain the derived category D(X , R). We let Db(X , R) ⊂ D(X , R) be
the full subcategory consisting of those dg modules whose cohomology module is a coherent
OX -module.

Assume from this point on that X = X/G, where X is a quasi-projective variety and G is an
algebraic group. Then by the results of [Tho87], the stack X has the resolution property, which
means that any coherent sheaf admits a surjection from a finite rank locally free sheaf. By the
construction in [Tho87], a generating set {Ls} of locally free sheaves can be found such that
there is a single atlas of X on which they are all trivialised. It follows that arbitrary direct sums
of the Ls are locally free, hence any quasi-coherent sheaf on X admits a surjection from a locally
free sheaf.

We say a dg moduleM is K-flat if for any acyclic Rop-module N , the OX dg-moduleM⊗RN
is acyclic. We say the category K(X , R) has enough K-flat objects if for every dg module M
there exists a quasi-isomorphism P →M where P is K-flat.

Lemma 6.1. The category K(X ,OX ) has enough K-flat objects.

Proof. For any bounded above complex of OX -modules E• there is a locally free bounded above
complex P• and a surjective quasi-isomorphism P• → E•. The complex P• is K-flat, and arguing
as in the proof of [Spa88, Prop. 5.6] the claim follows.

Lemma 6.2. The category K(X , R) has enough K-flat objects.

Proof. The proof in [Ric10, Thm. 1.3.3] goes through in our setting.

Lemma 6.3 [Spa88], Prop. 5.7. If M ∈ K(X , R) is K-flat and acyclic, and N ∈ K(X , Rop), then
M ⊗R N is acyclic.
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Let φ : R → S be a homomorphism of dg algebras on X . We then get an induced functor
φ∗ = − ⊗R S : K(X , R) → K(X , S), which can be derived on the left, since we have K-flat
resolutions, and a functor φ∗ = (−)R : K(X , S)→ K(X , R), which is exact.

We say φ is a quasi-isomorphism if the induced map of cohomology algebras H(φ) : H(R)→
H(S) is an isomorphism. The derived category of a sheaf of dg algebras is invariant under quasi-
isomorphisms of dg algebras:

Lemma 6.4. If φ : R → S is a quasi-isomorphism of sheaves of dg algebras, then the functors
Lφ∗ and Rφ∗ are inverse equivalences giving D(X , R) ∼= D(X , S), and they restrict to give
Db(X , R) ∼= Db(X , S).

Proof. For the first claim, the analogous statement for dg algebras instead of sheaves of dg
algebras is shown in [BL94, Thm. 10.12.5.1], and the argument goes through here (replacing
the reference’s “bar resolution” by “a K-flat resolution”). The functor Rφ∗ plainly preserves
the underlying complex of OX -modules, hence so does Lφ∗, up to quasi-isomorphism. It follows
that both functors preserve the property of having coherent cohomology sheaves, which gives the
second claim.

Let X and Y be gauged LG models with vanishing superpotential, i.e. X = X/(G1×C∗R) and
Y = Y/(G2 × C∗R). Let π : X → Y be a morphism such that π∗OY [1] = OX [1].

Let R be a dg algebra on Y, i.e. an algebra R with a differential R→ R⊗OY [1] which squares
to 0, satisfying the usual compatibility axioms. We then get a dg algebra π∗R on X .

We will need a projection formula. We say π is equivariantly affine if fppf locally on Y the
morphism π is of the form SpecA/G→ SpecB, where G is an algebraic group. The functors in
the following lemma are underived.

Lemma 6.5. Assume π is equivariantly affine. For any right dg R-module M on Y and left dg
π∗R-module N on X , the natural map

M ⊗R π∗(N)→ π∗(π∗(M)⊗π∗(R) N)

is an isomorphism.

Proof. Restrict to an affine chart SpecB → Y such that X|SpecB → SpecB has the form
SpecA/G→ SpecB. The claim is then that

M ⊗R NG → (M ⊗R (R⊗B A)⊗R⊗BA N)G

is an isomorphism. If we omit taking G-invariants, the map is an isomorphism of dg R-modules,
and since the map is G-equivariant the same is true for the associated G-invariant submodules.

7. Equivalence with the category of Clifford modules

Let Y = (L \ 0)/G, which we recall is an O(2)-gerbe over P(L). This is the space denoted by YL
in Theorem 1.1; as L is fixed, we omit it from the notation. Recall that Z− = Zss

−/G is the GIT
quotient from Section 4.2, and let π : Z− → Y be the projection.

The morphism π is a rank 2n vector bundle over Y, and we let E be the dual of its sheaf of
sections. The functionW then induces a section of Sym2E. We define a sheaf of Clifford algebras
on Y by

C = Sym•(E)/I,
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where I is the two-sided ideal generated by s⊗ s−W (s) · 1 for sections s of E. Considering C
as a coherent sheaf and ignoring the algebra structure, we have C ∼= ∧•(E).

For every point p ∈ P(L), there is a functor Db(Y, C) → Db
C∗(p) given by forgetting the C-

module structure and pulling back along p/C∗ → Y. The category Db
C∗(p) splits as ⊕i∈Z〈O(i)〉.

We define the grade restricted subcategory Db(Y, C)res ⊂ Db(Y, C) to be the full subcategory of
those objects which, after restriction to Db

C∗(p), lie in
〈O(−bn/2c), . . . ,O(bn/2c)〉.

for all p ∈ P(L).
The purpose of this section is to prove the following proposition.

Proposition 7.1. There is an equivalenceDb(Z−,W ) ∼= Db(Y, C), which induces an equivalence
Db(Z−,W )res ∼= Db(Y, C)res.
Proof. We define below a locally free object K ∼= OY ∈ Db(Z−,W ), and let R = π∗(Hom(K,K)).
In Lemma 7.7, we show that H(R) = C, and so Db(Y, R) ∼= Db(Y, C) by Lemma 6.4. We let
F : Db(Z−,W ) → Db(Y, R) be given by F = π∗(Hom(K,−)), and in Lemma 7.9 show that it
has a left adjoint G given by the left derived functor of π∗(−)⊗π∗R K. We show that G is fully
faithful in Lemma 7.10.

Applying [Kuz07, Thm. 3.3], there is then a semiorthogonal decomposition
Db(Z−,W ) = 〈imG, kerF 〉.

By Lemma 7.5, kerF = 0, and so we see that imG = Db(Z−,W ). So G is essentially surjective,
hence gives an equivalence Db(Y, C) ∼= Db(Y, R) ∼= Db(Z−,W ). The fact that G restricts to an
equivalence of the grade-restricted subcategories is Lemma 7.13.

Consider Y as a substack of Z− via the inclusion i : L \ 0 ↪→ V × V × (L \ 0). Let K =
i∗(OY) ∈ Db(Z−,W ).
Lemma 7.2. We have an isomorphism

K∨ ∼= i∗(∧2n(E∨))
of objects in Db(Z−,−W ).
Proof. The stack Y is cut out of Z− by the canonical section of π∗(E∨), which has degree 1
with respect to the C∗R-action. This induces the following Koszul resolution of i∗OY as a (C∗R-
equivariant) sheaf on Z−:

i∗OY = π∗(∧2nE)[−2n]→ · · · → π∗E[−1]→ OZ− .
We may add leftwards arrows to this resolution to obtain an object E in Db(Z−,W ):

K = π∗(∧2nE)� · · ·� π∗(E)� OZ− . (7.3)

See [BDF+14, p. 14] for explicit formulas for the leftwards arrows. The disappearance of the
cohomological shifts is because of our conventions for writing factorisations, see Section 3.3.
Dualising, we get the factorisation

K∨ = π∗(∧2nE∨)� · · ·� π∗(E∨)� OZ− .

By Lemma 3.8, K ∼= K, and so K∨ ∼= K∨. Considering only the leftwards arrows in the
resolution K∨, these form a Koszul resolution of i∗(∧2n(E∨)), so by Lemma 3.8 again we get
K∨ ∼= i∗(∧2n(E∨)).
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Lemma 7.4. For any E ∈ Db(Z−,W ), we have

π∗RHomZ−(K, E) ∼= ∧2n(E∨)⊗ E|Y .

Proof. This follows from

RHomZ−(K, E) ∼= RHomZ−(E∨,K∨) ∼= RHomZ−(E∨, i∗(∧2n(E∨)))
∼= i∗RHomY(∧2n(E), E|Y) ∼= i∗(∧2n(E∨)⊗ E|Y).

Given an object E ∈ Db(Z−,W ), we define the support of E to be the support of the coho-
mology of E ⊗E∨, considered as a subset of Zss

− . The support of E is closed and G×C∗R-invariant.
Furthermore, if E ⊗ E∨ ∼= 0, then we must have 1 = 0 ∈ Hom(E , E), so that E ∼= 0. Therefore the
support of E is empty if and only if E ∼= 0.

Lemma 7.5. If E ∈ Db(Z−,W ) is such that π∗RHom(K, E) = 0, then E = 0.

Proof. By Lemma 7.4 we have E|Y ∼= 0, hence E ⊗ E∨|Y ∼= 0. It follows that the support of E
does not intersect L \ 0. Since it is a closed C∗R-invariant subset of Zss

− , it must then be empty,
which implies E ∼= 0.

Let K be the locally free representative of K given in (7.3) and define the dg algebra R on Y
by

R = π∗(End(K)).
We define the functor F : D(Z−,W )→ D(Y, R) by

E 7→ π∗(HomZ−(K, E)).

Here HomZ−(K,−) and π∗ are both exact, and so F is exact.

Lemma 7.6. The functor F takes Db(Z−,W ) to Db(Y, R).

Proof. Follows from Lemma 7.4.

Lemma 7.7. The cohomology algebra of R is isomorphic to C, and there is a quasi-isomorphism
C ∼= ker dR ∩R0 ⊂ R.

Proof. For the first claim, see [BDF+14, Lem. 5.7]; the computation there goes through in our
case. The second claim is true because R is concentrated in positive cohomological degrees.

One can explain why the computation of Lemma 7.7 works in the following way. Suppose
we turned off the superpotential, and computed the algebra H(π∗RHom(OY ,OY)) with OY in
the category Db(Z−, 0) instead of in Db(Z−,W ). In general, if X ↪→ Y is a closed immersion
of nonsingular varieties, then we have Exti(OX ,OX) = ∧iNX/Y with the natural algebra struc-
ture on Ext•(OX ,OX). In our case, the same computation, coupled with the observation that
the C∗R-action changes the cohomological degrees, gives an isomorphism of sheaves of algebras
(concentrated in cohomological degree 0):

H(π∗RHom(OY ,OY)) = ∧•E.

Turning on the superpotential, we can deform a locally free resolution of OY ∈ Db(Z−, 0) to a
locally free factorisation for OY ∈ Db(Z−,W ). This gives a deformation ofH(π∗RHom(OY ,OY))
from an exterior algebra to a Clifford algebra.
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We now claim that F has a left adjoint functor G : Db(Y, R) → Db(Z−,W ). We begin by
defining a functor UG : K(Y, R)→ K(Z−,W ) by

UG(M) = π∗(M)⊗π∗(R) K,

for anyR-moduleM . HereK is a π∗(R)-module through the canonical map π∗(R) = π∗π∗(End(K))→
End(K).

We claim that UG has a left derived functor G : D(Y, R) → D(Z−,W ). Since K(Y, R) has
enough K-flat objects by Lemma 6.2, the following lemma proves that G is defined on D(Y, R).

Lemma 7.8. If P1 → P2 is a quasi-isomorphism of K-flat objects of K(Y, R), then the map
UG(P1)→ UG(P2) is an isomorphism in D(Z−,W ).

Proof. We must check that for any acyclic K-flat P , we have UG(P ) ∼= 0 in D(Z−,W ). Let
E ∈ Db(Z−,W ), and compute

RHom(E , UG(P )) ∼= RΓ(Z−, π∗(P )⊗π∗R K ⊗ E∨)
∼= RΓ(Y, π∗(π∗(P )⊗π∗R K ⊗ E∨)).

Now by the projection formula of Lemma 6.5 we have

π∗(π∗(P )⊗π∗R K ⊗ E∨) ∼= P ⊗R π∗(K ⊗ E∨).

Since P is acyclic andK-flat, the right hand side is acyclic by Lemma 6.3. Hence RHom(E , UG(P )) =
0 for all E ∈ Db(Z−,W ). By Lemma 3.5 it follows that UG(P ) ∼= 0.

Lemma 7.9. The functor G is left adjoint to F .

Proof. The underived versions of these functors, i.e. F : K(Z−,W ) → K(B,R) and UG :
K(B,R)→ K(Z−,W ) are clearly adjoint. Then by [SGA73, Exp. 17, Thm. 2.3.7] their derived
functors are adjoint as well.

Lemma 7.10. The functor G is fully faithful.

Proof. We must show that the transformation of functors id→ FG is an equivalence. That is to
say, we must show that for a K-flat M ∈ K(Y, R), the natural map

M → π∗Hom(K, π∗(M)⊗π∗(R) K)

is a quasi-isomorphism. Applying the projection formula of Lemma 6.5, the right hand side may
be rewritten as

π∗(π∗(M)⊗π∗(R) K ⊗Z− K∨) ∼= M ⊗R π∗(K ⊗Z− K∨) = M ⊗R R = M.

The factorisation K admits a left action of π∗C through the inclusion π∗C ↪→ π∗R.

Lemma 7.11. As a left π∗C-module, we have K ⊗ π∗(∧2nE∨) ∼= π∗C.

Proof. Forgetting the differential on K for the moment, let ψ : π∗(∧2nE) → K be the inclusion
into the left-most factor in (7.3). The composition

φ : π∗C → Hom(K∨,K∨) ψ
∨◦→ Hom(K∨, π∗(∧2nE∨)) = K ⊗ π∗(∧2nE∨)

is a map of left π∗C-modules, which we claim is an isomorphism.
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The map φ is a map of C∗R-equivariant locally free sheaves. Since C∗R scales the fibres of π
positively, it suffices to check that the map is an isomorphism after restriction to the 0-section
Y.

After restriction to Y, the map factors as

φ|Y : C → π∗Hom(K∨,K∨)→ π∗Hom(K∨, i∗(∧2nE)) = K|Y ⊗ ∧2nE∨.

Putting the natural differentials on the objects in this sequence of maps, we see that every map
is a quasi-isomorphism by Lemma 7.2. As the differentials vanish on both source and target, φ|Y
must be an isomorphism.

Lemma 7.12. The functor G sends Db(Y, R) to Db(Z−,W ).

Proof. We have an equivalence Φ : Db(Y, C) → Db(Y, R), by Lemmas 7.7 and 6.4, where Φ is
given by M 7→M ⊗LC R.

Let UΦ be the underived functor − ⊗C R : K(Y, C) → K(Y, R), and let UH = UG ◦ UΦ.
Then for any M ∈ K(Y, C), we have

UH(M) = π∗(M ⊗C R)⊗π∗R K
= π∗(M)⊗π∗(C) π

∗(R)⊗π∗R K = π∗(M)⊗π∗C K.

The underlying sheaf of K (forgetting the differential) is locally isomorphic to π∗(C) as a left
π∗(C)-module, by Lemma 7.11.

It now follows that if
M1 →M2 → · · · →Mn

is an exact sequence of dg C-modules, then the induced sequence of factorisations π∗(M•)⊗π∗CK
is exact as well.

On Kb(Y, C), every complex M has a left replacement by a bounded, coherent complex N . If
N ′ is a different such complex, then UH(N) ∼= UH(N ′) in D(Z−,W ) by the above calculations.
Therefore we may compute the left derived functor H of UH on Kb(Y, C) by such replacements.
Now if M is a coherent C-module, then H(M) is coherent by

H(M) = π∗(M)⊗π∗C K = π∗(M)⊗π∗C π∗C ⊗Z− ∧2nE∨ = π∗M ⊗Z− ∧2nE∨,

and it follows that H(M) is coherent for all M ∈ Db(Y, C).
Since H = G ◦ Φ and Φ : Db(Y, C)→ Db(Y, R) is an equivalence, the claim follows.

Lemma 7.13. For E ∈ Db(Z−,W ), we have F (E) ∈ Db(Y, C)res if and only if E ∈ D(Z−,W )res.

Proof. By Lemma 7.4 we have F (E) ∼= ∧2nE∨ ⊗ E|Y . Since ∧2nE∨ has weight 0 at every point
p ∈ P(L), it follows that for any point p ∈ P(L), the restriction of E to pt/C∗ satisfies the grade
restriction condition if and only if F (E) does. In other words, F (E) ∈ Db(Y, C)res if and only if
E ∈ Db(Z−,W )res.

8. Geometric interpretation of Db(Z−,W )res, odd case

In this section we assume that n = dimV is odd, that the corank of the quadratic form at
each point of P(L) ⊂ P(Sym2(V ∨)) is at most 2, and that the loci of points of corank 1 and 2
within P(L) are nonsingular and of codimension 1 and 3, respectively. This assumption holds for
a generic L of dimension 6 6.
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We begin by describing the variety f : Y → P(L). On the open locus in P(L) where the
quadratic form has corank 0 or 1, the variety Y is an étale double cover of the corank 1 locus.
The 2 points in the fibre f−1(q) at a corank 1 point q ∈ P(L) ⊂ P(Sym2 V ∨) correspond to the
connected components of the moduli space of maximal isotropic subspaces in (V, q). The variety
Y is nonsingular, and ramified in the locus of corank 2 points.

We aim to prove the following proposition:

Proposition 8.1. There is an equivalence of categories

Db(Y ) ∼= Db(Z−,W )res.

Proof. The strategy is the same as in the proof of Proposition 7.1. We define a certain factorisa-
tion K on (Z−,W ) and a sheaf of dg algebras R = π∗(Hom(K,K)) on P(L), and then consider
the functor F : Db(Z−,W )res → Db(P(L), R) given by π∗(Hom(K,−)).

A somewhat involved computation gives Proposition 8.2, which says that H(R) ∼= f∗OY . By
Lemma 6.4 we thus get Db(P(L), R) ∼= Db(Y ).

By Lemma 8.21, F admits a left adjoint G which is fully faithful. As kerF = 0 by Lemma
8.25, we find that G is an equivalence by the same argument as in the proof of Proposition
7.1.

8.1 The generating object
We let π : Z− → P(L) and π : Zss

− → L\0 be the projections. We define some natural T -invariant
subvarieties of Zss

− as follows.
For any point q ∈ L \ 0, the fibre π−1([q]) is isomorphic to V ⊕ V/O(2). The superpotential

induces a bilinear form on V , which we abusively denote by q as well. We let Y1, Y2 ⊂ Zss
− be the

reduced subvarieties such that Y1|π−1(q) = ker q ⊕ V and Y2|π−1(q) = V ⊕ ker q if q is singular,
and Yi|π−1(q) = ∅ if q is nonsingular. We get objects OY1 and OY2 in Db

T (Zss
− ,W ), and let

K = OY1((n− 1)/2, 0)⊕OY2(0, (n− 1)/2),

which is an object of Db
G(Zss

− ,W ), the G-structure being induced by the identification of σ(Y1)
with Y2.

Choose a locally free resolution K of K ∈ Db(Z−,W ), and define a sheaf of dg algebras on
P(L) by

R = π∗(RHom(K,K)).

Proposition 8.2. There is an isomorphism of OP(L)-algebras H(R) ∼= f∗OY .

The proposition is proved by combining the local description of H(R) in Corollary 8.13 with
the global description of H(R) over the corank 1 locus in Lemma 8.26.

8.2 Standard local form
Our strategy of computation is to apply the fact that, étale locally on P(L), we can put Z− →
P(L) in a standard form, which we now describe.

Let B be a nonsingular variety. A quadratic vector bundle (F, q) is a bundle F on B together
with a section q of Sym2 F∨. From this data we can define a gauged LG model as follows.

Construction 8.3. Let X be the total space of F ⊕ F → B, let O(2) = C∗ o Z2 act on X by
scaling the first F -factor by t, the second F -factor by t−1, and let the Z2 act by permuting the
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F . We let C∗R act via scaling by tR. Thinking of q as a symmetric bilinear form on F , we define
the superpotential by W (f1, f2) = q(f1, f2) for points f1, f2 ∈ Fp. We thus get an LG model
(X/O(2),W ), as well as an SO(2)-equivariant version (X/SO(2),W ).

Conversely, if X → B is an LG model which locally on B is of the form F ⊕ F/O(2) → B
with fibre-wise quadratic superpotential, then it is locally obtained by the above procedure for
some (F, q).

Definition 8.4. We define some standard LG models, which will be local models for other LG
models of the above form near a point where the quadratic form has corank 6 2:

– Corank 0: Let B = pt, and let (F, q) be given by F = OnB and q =
∑n
k=1 z

2
k.

– Corank 1: Let B = A1
s, and let (F, q) be given by F = OnB and q = sz2

1 +
∑n
k=2 z

2
k.

– Corank 2: Let B = A3
s,t,u, and let (F, q) be given by F = OnB and q = sz2

1 + 2tz1z2 + uz2
2 +∑n

k=3 z
2
k.

We refer to the O(2)-equivariant LG model πn : (Xn,Wn)→ B obtained by Construction 8.3
from the above quadratic bundles as the standard models of corank 0, 1 and 2, respectively.

We let Yn,1, Yn,2 ⊂ Xn be the reduced subvarieties such that for every p ∈ B, we have
Yn,1|π−1

n (p) = ker qp ⊕ F and Yn,2|π−1
n (p) = F ⊕ ker qp if qp is singular, and Yn,i|π−1

n (p) = ∅ if qp is
nonsingular. We get objects OYn,1 ,OYn,2 ∈ Db

SO(2)(Xn,Wn), and define

Kn = OYn,1((n− 1)/2)⊕OYn,2(−(n− 1)/2) ∈ Db
O(2)(Xn,Wn).

We define the subcategory Db
O(2)(Xn,Wn)res ⊂ Db

O(2)(Xn,Wn) as in Section 4.2.1.

Lemma 8.5. Let (F, q)→ B be a quadratic vector bundle of rank n, such that q point-wise has
corank > k. Étale locally on B we may choose a trivialisation of F such that q = qk⊕qtriv, where
qk has dimension k and qtriv = z2

1 + · · ·+ z2
n−k.

Proof. Choose a local section s of F such that q(s) = a 6= 0. Étale locally, we can replace s with
a−1/2s and so assume q(s) = 1. We then have F = 〈s〉⊥ ⊕ 〈s〉 as a quadratic bundle. The claim
follows by repeating this procedure n− k times with F each time replaced by 〈s〉⊥.

Let now Xn(i)→ Bi be the standard local LG model of corank i.

Lemma 8.6. Let p ∈ P(L) be a corank i point. Then there exists an étale neighbourhood U of p
and a smooth morphism f : U → B, such that we have a 2-Cartesian diagram

Z−|U Xn(i)/O(2)

U B

g

πn

f

where g is compatible with the C∗R-actions and superpotentials on Xn/O(2) and Z−.

Proof. By restricting to some étale neighbourhood U of p and using Lemma 8.5, we may assume
that Z− → P(L) is constructed from (F, q) where F = On and q = qi ⊕ qtriv. The factor qi gives
a map to f : U → Sym2(Ci) = Bi, which gives rise to the correct Cartesian diagram. By our
genericity assumption on L, f−1(0) is nonsingular, so since p ∈ f−1(0) we find that f is smooth
in a neighbourhood of p.
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Lemma 8.7. Around every point p ∈ P(L), there exists an étale neighbourhood U → P(L) and
a morphism f : U → B2, such that we have a 2-Cartesian diagram

Z−|U Xn(2)/O(2)

U B2

g

πn

f

where g is compatible with the C∗R-actions and superpotentials on Xn/O(2) and Z−. Furthermore
we have g∗OYn,i = OYi for i = 1, 2 and g∗Kn = K.

Proof. Assume first that p ∈ P(L) is a corank 2 point. Then the previous lemma gives the correct
f . The morphism g is smooth, and so since g−1(Yn,i) = Yi the claims about g∗ hold.

If p is a corank 1 point, let h : U → A1
s be the smooth map produced by Lemma 8.6. Let

i : A1
s ↪→ A3

s,t,u be the inclusion given by s 7→ (s, 0, 1), and let f = i ◦ h, which gives rise to the
correct Cartesian diagram.

Let h be the map Z−|U → π−1
n (i(A1

s)). Since the intersection Vi = π−1
n (i(A1

s))∩Yn,i is regular
for i = 1, 2, we have OYn,i |π−1

n (i(A1
s)) = OVi . Then since h−1(Vi) = Yi and h is smooth, the claims

about g∗ again hold.
If p is a corank 0 point, let f be the map to (1, 0, 1) ∈ A3

s,t,u = B.

8.2.1 Standard local form with maximal isotropics We will need a version of this standard
local form which includes a standardisation of maximal isotropic subbundles of the quadratic
bundle.

Let (H, qH) → A1
s be given by H = On and qH = sz2

1 + z2z3 + · · · zn−1zn. Over 0 ∈ A1
s we

define two maximal isotropic subspaces L1, L2 of (H|0, qH), where L1 is defined by the vanishing
of z2k and L2 by the vanishing of z2k+1 for all 1 6 k 6 (n− 1)/2.

Let (F, q) → B be a quadratic vector bundle of rank n such that q pointwise has corank
6 1. Let B1 ⊂ B be the locus where q has corank 1, and assume B1 is a nonsingular divisor.
Let M1,M2 ⊂ F |B1 be subbundles giving families of maximal isotropics over the corank 1 locus.
Assume that M1 ∩M2 = ker q.

Lemma 8.8. Étale locally on B, there is a smooth morphism f : B → A1
s and an isomorphism

φ : f∗(H, qH)→ (F, q) such that φ(f∗(Li)) = Mi.

Proof. We work locally on B. On B1, let Ki ⊂ Mi be subbundles with rkKi = rkMi − 1, not
intersecting ker q. Extend these to bundles Ki ⊂ F on B. Let N = (K1 ⊕K2)⊥; we then get a
splitting

F = K1 ⊕K2 ⊕N.
The fact that M1 ∩M2 = ker q implies that q induces an isomorphism K1 → K∨2 . Choosing
trivialisations of the Ki which respect this equivalence and trivialising N , we find that the
splitting becomes

F = O(n−1)/2
xi

⊕O(n−1)/2
yi

⊕Oz,
with q =

∑
xiyi + fz2 for some function f , and with M1 = {f = xi = 0} and M2 = {f =

yi = 0}. The morphism defined by the function f together with our chosen trivialisation give the
conclusions of the lemma.
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Let π : (X ,W )→ B be theO(2)-equivariant LG model created from (F, q) by the construction
8.3. Let Zi = Mi ⊕Mi ⊂ F ⊕ F = X, so we get OZi ∈ Db(X ,W ).

Lemma 8.9. Étale locally on B, we have

π∗RHom(OZ1 ,OZ1) ∼= π∗RHom(OZ2 ,OZ2) ∼= OB1

and
RHom(OZ1 ,OZ2) ∼= RHom(OZ2 ,OZ1) ∼= 0.

Proof. Suppose first that B = A1
s and (F, q) = (H, qH). In this case, the claim is straightforward

to check using a standard Koszul resolution of OZi , see also [ST14, Sec. 4.1], [ASS14, Sec. A.4].
For the general case, we use Lemma 8.8, by which we get a Cartesian diagram

X (H ⊕H)/O(2)

B A1
s,

π

g

πH

f

such that f and hence g is smooth, and such that g−1(Li ⊕ Li) = Mi ⊕Mi. We therefore have
g∗(OLi⊕Li) = OMi⊕Mi = OZi , and the claim now follows by

π∗(RHom(OZi ,OZj )) = π∗g
∗RHom(OLi⊕Li ,OLj⊕Lj )

= f∗(πH)∗(RHom(OLi⊕Li ,OLj⊕Lj ))

= f∗(Oδij

0 ) = Oδij

B1
,

using the smoothness of f .

8.3 Knörrer periodicity
Let (Xn,Wn) → B denote the corank 2 standard LG model described in Definition 8.4. We
choose coordinates such that B = A3

s,t,u, Xn = Anxi
× Anyi

×B, and let the superpotential be

Wn = sx1y1 + t(x1y2 + x2y1) + ux2x2 +
n∑
k=3

xkyk.

We will show that the category Db
SO(2)(Xn,Wn) (resp. Db

O(2)(Xn,Wn)) is invariant under n 7→
n+ 1 (resp. n 7→ n+ 2).

8.3.1 The SO(2) case Let p : Xn+1 → Xn be the projection which collapses the xn+1 and
yn+1 directions. Let W ′ = xn+1yn+1, and let F ∈ Db

SO(2)(Xn+2,W
′) be the factorisation

O(−1)
xn+1
�
yn+1

O.

Let Φ : Db
SO(2)(Xn,Wn)→ Db

SO(2)(Xn+1,Wn+1) be the functor p∗(−)⊗F .

Lemma 8.10. The functor Φ is an equivalence. The weights of Φ(E) satisfy wt(Φ(E)) = wt(E) +
{−1, 0}. We have Φ(OYn,1) = OYn+1,1 and Φ(OYn,2) = OYn+1,2(−1).

Proof. Ignoring the SO(2)- and C∗R-actions, the claim that Φ is an equivalence is Knörrer peri-
odicity, see e.g. [Shi12, Thm. 3.4]. The inverse of Φ is given by Ψ = p∗RHom(F ,−). It follows
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from this that the corresponding SO(2) × C∗R-equivariant functors are equivalences, since the
isomorphisms

E → ΨΦ(E) ΦΨ(E)→ E
are SO(2)× C∗R-equivariant.

The claim about the weights holds because the weights of F are {−1, 0}.
Let A = {xn+1 = 0} and B = {yn+1 = 0}. Working in the category Db

SO(2)(Xn+1,W
′), we

have
OB(−1) ∼= F ∼= OA,

and the final claim follows from this.

8.3.2 The O(2) case Let now p : Xn+2 → Xn be the projection which collapses the xn+1,
xn+2, yn+1 and yn+2 directions. Let W ′ = xn+1yn+1 + xn+2yn+2, and let F ∈ Db

O(2)(Xn+2,W
′)

be given by the O(2)-equivariant resolution

O(−1)⊕O(1)
dr

�
dl

O+ ⊕O−,

with

dr =
(
xn+1 yn+1
xn+2 −yn+2

)
and

dl =
(
yn+1 yn+2
xn+1 −xn+2

)
.

Let Φ : Db
O(2)(Xn,W )→ Db

O(2)(Xn+2,W ) be the functor p∗(−)⊗F .

Lemma 8.11. The functor Φ is an equivalence, and it restricts to give an equivalenceDb
O(2)(Xn,Wn)res ∼=

Db
O(2)(Xn+2,Wn+2)res. Furthermore, we have Φ(Kn) = Kn+2.

Proof. The proof that Φ is an equivalence is the same as in Lemma 8.10.
The weights of F at any point p of the base are {−1, 0, 1}. Therefore E ∈ Db

O(2)(Xn,W ) has
weights in [−bn2 c, b

n
2 c] if and only if Φ(E) has weights in [−bn2 c − 1, bn2 c+ 1], which proves that

Φ restricts to give Db
O(2)(Xn,W )res ∼= Db

O(2)(Xn+2,W )res.
Working SO(2)-equivariantly, we have

OB(−1) ∼= F ∼= OA(1),

where A = {xn+1 = xn+2 = 0} and B = {yn+1 = yn+2 = 0}, and the isomorphism is by
projection to the O(1) and O(−1) factors in the resolution of F . It follows that we have Φ(Kn) ∼=
OYn+2,1(n+1

2 )⊕OYn+2,2(−n+1
2 ) = Kn+2, and this isomorphism is O(2)-equivariant.

8.4 Computing H(R) locally
We now compute H(R) on the standard corank 2 model from Definition 8.4.

Let πn : (Xn,Wn) → B = A3
s,t,u be the standard corank 2 model. Let S = C[s, t, u] be the

coordinate ring of B, and let P = (πn)∗RHom(Kn,Kn). This is the local analogue of H(R),
in the sense that if f : P(L) → B is the locally defined map from Lemma 8.7, then we have
f∗(P ) ∼= H(R).
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Our goal is now to compute P as an S-algebra. We show that P is commutative, concentrated
in cohomological degree 0, and that SpecP is a double cover of the corank 1 locus su = t2,
ramified in the corank 2 point s = t = u = 0:

Lemma 8.12. We have

P ∼= C[s, t, u, θ1, θ2]/(θ2
1 − s, θ1θ2 − t, θ2

2 − u, su− t2).

Recall that f : Y → P(L) is the ramified double cover of the corank 1 locus in P(L). Combining
Lemmas 8.7 and 8.12 gives:

Corollary 8.13. Étale locally on P(L), we have H(R) ∼= f∗OY .

Proof of Lemma 8.12. By Lemma 8.11, we reduce to proving the claim when n = 3, and now
show that we may reduce further to a computation where n = 2. Let OYi = OY2,i , let K ′2 =
OY1⊕OY2(−1) ∈ Db

SO(2)(X2,W2), and let P̃ be the S-algebra RHom(K ′2,K ′2)SO(2). It decomposes
as

P̃ = Hom(OY1 ,OY1)SO(2) ⊕Hom(OY1 ,OY2(−1))SO(2)

⊕Hom(OY2(−1),OY1)SO(2) ⊕Hom(OY2(−1),OY2(−1))SO(2).

Using the involution σ of X2, which permutes Y1 and Y2, we find natural isomorphisms

Hom(OY1 ,OY1) ∼= Hom(σ∗(OY2), σ∗(OY2))
∼= Hom(OY2 ,OY2) ∼= Hom(OY2(−1),OY2(−1)).

In a similar way we can define an isomorphism Hom(OY1 ,OY2(−1)) ∼= Hom(OY2(−1),OY1), and
this defines an action of Z2 on P̃ . Lemmas 8.14 and 8.15 now complete the proof.

Lemma 8.14. We have an isomorphism of S-algebras P̃Z2 ∼= P .

Proof. The Knörrer functor of Lemma 8.10 sends K ′2 = OY2,1 ⊕ OY2,2(−1) to K3 = OY3,1(1) ⊕
OY3,2(−1), so we have an isomorphism of S-algebras REnd(K3)SO(2) ∼= REnd(K ′2)SO(2).

Endowing K3 with the involution coming from its O(2)-structure, we obtain an involution on
REnd(K3), and this corresponds to the involution on H(R̃) = REnd(K ′2) defined above. Hence
P = REnd(K3)Z2 ∼= REnd(K ′2)Z2 = P̃Z2 , which is what we wanted.

Lemma 8.15. We have

P̃Z2 ∼= C[s, t, u, θ1, θ2]/(θ2
1 − s, θ1θ2 − t, θ2

2 − u, su− t2).

Proof. Let Yi = Y2,i ⊂ X2. We introduce explicit resolutions of the objects OYi and compute.
Let

U = Γ(X2,OX2) = C[s, t, u, x1, x2, y1, y2].
The SO(2)-action gives the xi degree 1, the yi degree −1, and gives s, t, u degree 0. The xi and
yi have cohomological (i.e. C∗R-) degree 1, while s, t, u have cohomological degree 0.

First note that OY1 has a locally free representative

M1 = U(−1)2[1]
d1r

�
d1l

U [1]⊕ U(−1)2 d0r

�
d0l

U, (8.16)
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where

d0r =
(
su− t2 sx1 + tx2 tx1 + ux2

)
d1r =

 x1 x2
−u t
t −s


d0l =

 0
y1
y2


d1l =

(
sy1 + ty2 −x2y2 x2y1
ty1 + uy2 x1y2 −x1y1

)
.

This follows by Lemma 3.8, since the complex formed by the rightwards arrows forms a resolution
of the sheaf OY1 .

We label the generators of the U -factors in (8.16) as follows. Let e ∈ U be the generator of
the rightmost factor, and let g1, g2 be generators of the U(−1)-factors in the middle, ordered in
the way in which they appear in the matrix. Denote the generator of the middle U [1] factor by
f1, and the generators of the two U(−1)[1] factors by f2, f3.

Exchanging the xi and yi and shifting by (−1), we obtain a locally free representative of
OY2(−1):

M2 = U2[1]� U(−1)[1]⊕ U2 � U(−1), (8.17)

Let σe, σgi, σfi be the generators of the U -factors in this resolution, defined as the corresponding
generators for the resolution (8.16) above.

Ignoring the algebra structure, we have

P̃Z2 ∼= RHom(OY1 ,OY1)⊕ RHom(OY2(−1),OY1).

We first compute the components of this splitting as S-modules.
Let Q be the coordinate ring of Y1, that is

Q = U/(sx1 + tx2, tx1 + ux2, su− t2).

For any factorisation E we have an isomorphism

RHom(E,OY1) = RHom(E,OY1)
∼= RHomY1(E|Y1 ,OY1) = RΓ(Y1, (E|Y1)∨).

Applying this observation first to E = OY1 , we want to compute

RHom(OY1 ,OY1) = RΓ(Y1, (O∨Y1)|Y1) = H(M∨1 |Y1)

where M1 is defined in (8.16). The object (M∨1 )|Y1 can be written as

(M∨1 )|Y1
∼= Q[−1]⊕Q(1)2 dr

�
dl

Q⊕Q(1)2[−1],

where the differentials are

dr =

 0 y1 y2
x1 −u t
x2 t −s



40



The homological projective dual of Sym2 P(V )

and

dl =

0 sy1 + ty2 ty1 + uy2
0 −x2y2 x1y2
0 x2y1 −x1y1.


Using e.g. Macaulay2 [GS], we find that ker dr/ im dl = 0 and that, as a Q-module, ker dl/ im dr
is generated by e∨, subject to the relations

(x1y1, x1y2, x2y1, x2y2, y1t+ y2u, y1s+ y2t).

With respect to the SO(2)-grading, the degree 0 part of ker dl/ im dr is therefore

Q0/(x1y1, x1y2, x2y1, x2y2)

where Q0 is the degree 0 part of Q. As an S-module this is S/(su− t2). We have thus shown

RHom(OY1 ,OY1) = H(Hom(M1,OY1)) = S/(su− t2).

This module is generated by e∨ ∈ Hom(M1,OY1), which corresponds to the identity map on OY1 .
We can compute RHom(OY2(−1),OY1) similarly. Here

M∨2 |Y1 = Q(1)[−1]⊕Q2 dl

�
dr

Q(1)⊕Q2[−1]

with

dr =

 0 x1 x2
y1 −u t
y2 t −s


and

dl =

 0 0 0
sy1 + ty2 −x2y2 x2y1
ty1 + uy2 x1y2 −x1y1.


Again we verify that ker dl/ im dr = 0. We further find that ker dr is generated as a Q-module by
3 elements, h1 = sσg∨1 + tσg∨2 , h2 = tσg∨1 + uσg∨2 and h3 = x2σg

∨
1 − x1σg

∨
2 .

We have y1h3, y2h3 ∈ im dl, so the degree 0 part of ker dr/ im dl is generated by h1, h2. For
all i, j ∈ {1, 2}, we can find relations xihj = rijh3 with rij ∈ Q, and therefore xiyjhk ∈ im dl.

It follows that the degree 0 part of ker dr/ im dl is generated by h1 and h2 as an S-module.
Since all elements of im dl have higher cohomological degree than h1, h2, in fact (ker dr/ im dl)0
equals the S-submodule of Q2 = Q(σg1)∨ ⊕Q(σg2)∨ generated by h1, h2. The only relations are
then sh1 − th2 and th1 − uh2. In conclusion, as an S-module we have

RHom(OY2(−1),OY1) = H(Hom(M2,OY1)) = S2/((s,−t), (t,−u)).

We have computed the S-module structure of P̃Z2 ; it remains to compute the algebra struc-
ture. We choose a lifting of the elements hi to maps φi : M2 →M1. Let I ⊂ U be the ideal such
that Q = U/I. Working modulo I, the φi satisfy

e∨φ1(σg1) = s, e∨φ1(σg2) = t, e∨φ1(σe) = e∨φ1(σfi) = 0,
e∨φ2(σg2) = t, e∨φ2(σg2) = u, e∨φ2(σe) = e∨φ2(σfi) = 0.

(8.18)

Lemma 8.19. We have(
e∨φ1(σφ1)(e) e∨φ1(σφ2)(e)
e∨φ1(σφ2)(e) e∨φ2(σφ2)(e)

)
=
(
s t
t u

)
mod I.
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Proof. We prove e∨φ1(σφ1)(e) = s; the other cases are similar. Note first that since σφ1 preserves
cohomological and SO(2)-degrees, we have

(σφ1)(e) = v1σg1 + v2σg2 + (v3y1 + v4y2)σf1, vi ∈ S.

Using (8.18) we get

(σe)∨d(σφ1)(e) = v1(sy1 + ty2) + v2(ty1 + uy2) mod (y1, y2)I.

and
(σe)∨d(σφ1)(e) = (σe)∨(σφ1)(de) = sy1 + ty2 mod (y1, y2)I.

Combining these two equations we find that v1 = 1 and v2 = 0 mod I. By (8.18) we then get

e∨φ1(σφ1)(e) = v1s+ v2t = s mod I.

Now since φi(σφi) ∈ RHom(OY1 ,OY1) ∼= S/(su− t2), Lemma 8.19 shows

φ1σφ1 ∼= s id
φ1σφ2 ∼= φ2σφ1 ∼= t id

φ2σφ2 ∼= u id .

Let θi = φi + σφi. We know that the algebra P̃Z2 is generated over S/(su− t2) by the θi. By the
above computation these satisfy

θ1θ1 = s

θ1θ2 = θ2θ1 = t

θ2θ2 = u.

This concludes the proof of Lemma 8.15.

8.5 The equivalence Db(Z−,W )res ∼= Db(P(L), R)
Let F : D(Z−,W )res → D(P(L), R) be given by F (E) = π∗HomZ−(K, E). The goal of this
section is to show that F gives an equivalence Db(Z−,W )res ∼= Db(P(L), R), as explained in the
proof of Proposition 8.1.

Lemma 8.20. The functor F sends Db(Z−,W )res to Db(P(L), R).

Proof. Let E ∈ Db(Z−,W )res. The cohomology of HomZ−(K, E)) is supported on the stack
C := Crit(W ) [ADS14, 2.3.iii], [Shi12, Sec. 2]. Let f : C → B be the projection. The functor f∗
is exact, and it suffices to show that f∗ preserves coherent sheaves.

Let C be the coarse space for C, i.e. the universal scheme admitting a map from C. Locally on
B, we may assume that Z− → B has the form (Anxi

×Anyi
)/O(2)×B → B with a superpotential

and O(2)-action as in Construction 8.3. Let S = k[B][x1, . . . xn, y1, . . . yn], and let I ⊂ S be the
Jacobi ideal of W . We then get C = Spec(S/I)O(2).

The morphism f factors as C g→ C
h→ B. We first claim that h is finite. Applying Lemma

8.7, the fact that finiteness is an fppf local property, and the fact that computing the critical
locus commutes with smooth base change, we reduce to showing this for the standard models of
coranks 6 2. Then this claim follows from a straightforward computation. Thus h is finite and
hence h∗ preserves coherent sheaves.
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We next claim that g∗ preserves coherent sheaves. This claim is Zariski local on B, so assume
that we are in the affine setting described above. Using this description the functor g∗ consists
of taking O(2)-invariants. The claim now follows from the fact that any coherent module on C
admits a surjection from a sheaf of the form ⊕ρO(ρ), where ρ ∈ Irr(O(2)) and that g∗(O(ρ)) is
coherent for all such ρ. It follows that f∗ = h∗g∗ preserves coherent sheaves.

We construct an adjoint to F just as in the previous section. Let the functor UG : K(P(L), R)→
D(Z−,W ) be given by UG(M) = π∗(M) ⊗π∗(R) K. The following lemma is shown in the same
way as Lemmas 7.8, 7.9 and 7.10.

Lemma 8.21. The functor UG has a left derived functor G : D(P(L), R) → D(Z−,W ) which is
left adjoint to F and is fully faithful.

Lemma 8.22. The functor G sends Db(P(L), R) to Db(Z−,W ).

Proof. By Lemma 8.13, the OP(L)-algebra H(R) is commutative and X = SpecP(L)H(R) is non-
singular. By Lemma 6.4, there is then an equivalence Db(X) ∼= Db(P(L), R). We first prove that
if E is a locally free sheaf on X of finite rank, then under this isomorphism G(E) ∈ Db(Z−,W ).
Choose an open U ⊂ P(L) such that E|U is free. Then the isomorphism D(X|U ) → D(U,R|U )
sends the object E|U to a finite sum of copies of R. Therefore G(E|U ) is a finite sum of copies of
K|U – in particular it lies in Db(Z−|U ,W ).

Let now FC and GC be the functors called F and G in Section 7. Using Lemma 7.6 we have
FCG(E|U ) ∈ Db(Y|U , C). It follows that the cohomology of FCG(E) is coherent over U , and as
this holds for all U , the cohomology of FCG(E) is in fact coherent, so that FCG(E) ∈ Db(Y, C).
By Lemma 7.12 and Proposition 7.1, it follows that GCFCG(E) = G(E) lies in Db(Z−,W )

Since this holds for all locally free E and since such E generate Db(X), the claim follows.

Lemma 8.23. The object K ∈ Db(Z−,W ) is contained in Db(Z−,W )res.

Proof. We may check this étale locally, and therefore by Lemma 8.7 further reduce to checking
the statement on a standard corank 2 LG model from Definition 8.4. By applying Lemma 8.10,
we reduce to showing that the weights of OY2,1 are {−1, 0}, which holds because of the resolution
(8.16).

Lemma 8.24. For any M ∈ Db(P(L), R), we have G(M) ∈ Db(Z−,W )res.

Proof. An object E ∈ Db(Z−,W ) is grade restricted if and only if for every point p ∈ P(L) the ob-
ject E|p admits no shifted maps to Op(k) with |k| > bn2 c. This means that RHom(E , i∗(Op(k))) ∼=
0, where i is the inclusion p/C∗ ↪→ Z−. Now for any M ∈ Db(P(L), R) we have

RHom(G(M), i∗(Op(k))) = RHom(M,π∗RHomZ−(K, i∗(Op(k)))).

Since K ∈ Db(Z−,W )res, the complex π∗RHomZ−(K, i∗(Op(k))) is acyclic, and the claim follows.

Lemma 8.25. If E ∈ Db(Z−,W )res is such that π∗Hom(K, E) ∼= 0, then E = 0.

Proof. We first apply a trick taken from [ADS14]. Assume that dimV = dimL = 5 and that
L is generic, so that we have Db(Z−,W )res ∼= Db(X). Since X is a smooth Calabi–Yau va-
riety, it admits no nontrivial semiorthogonal decompositions. Therefore in the decomposition
Db(Z−,W )res = 〈imG, kerF 〉, we must have kerF = 0.
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Let Xn → A3 be the standard O(2)-equivariant corank 2 model. Using Lemma 8.7, the
above special case implies that kerF = 0 for the standard model X5, since a counterexample
E ∈ Db(X5,W )res would pull back to give a counterexample in Db(Z−,W )res. Applying Lemma
8.11, it follows that kerF = 0 for Xn → B for any odd n.

Now, let V and L be arbitrary, and assume for a contradiction that we have a counterexample
E , that is 0 6= E ∈ Db(Z−,W )res, but F (E) = 0. There must be a point p ∈ P(L) such that
E|π−1(p) 6∼= 0, and by replacing E with E|π−1(p) we get a counterexample which is supported on
π−1(p). By Lemma 8.6, étale locally around p there is a smooth morphism f : P(L)→ B, inducing
a smooth morphism f : Z− → Xn. Then the projection f∗(E) is contained in Db(Xn,W )res, it
is non-vanishing, and we have F (f∗(E)) = 0. Thus f∗(E) is a counterexample on Xn, which is a
contradiction.

8.6 The global structure of H(R)
By Corollary 8.13, we know that H(R) ∼= f∗(OY ) étale locally on P(L). Lemma 8.26 shows that
this is also true globally away from the corank 2 locus. Applying Lemma 8.28 with B = P(L),
Y1 = Y and Y2 = SpecP(L)H(R) completes the proof of Proposition 8.2.

Lemma 8.26. Away from the corank 2 locus in P(L), there is an isomorphism of OP(L)-algebras
H(R) ∼= f∗(OY ).

Proof. Let P(L)1 ⊂ P(L) be the locus of corank 1 points and let p ∈ P(L)1. We know from
Proposition 8.12 that choosing an étale neighbourhood U → P(L) of p, we have

SpecP(L)H(R)|U = P(L)1|U t P(L)1|U . (8.27)

This induces a local isomorphism SpecP(L)H(R) ∼= Y , and we must show that we can define
this isomorphism globally. It suffices to show that there is a canonical way of assigning the
2 components of the splitting (8.27) to the 2 components of the space of maximal isotropic
subspaces over P(L)1|U .

We may assume that Z−|U → U is given by Construction 8.3 applied to a quadratic vector
bundle (F, q)→ U . Locally we can choose maximal isotropic subbundles L1, L2 ⊂ F over P(L)1|U ,
satisfying L1 ∩ L2 = ker q. We define objects J1, J2 ∈ Db(Z−|U ,W )res by Ji = OLi⊕Li .

Let p : SpecH(R) → U be the projection, and recall that we have an equivalence F :
Db(Z−|U ,W )res

∼=→ Db(H(R)|U ).6 Using Lemma 8.9, we find that

p∗(RHom(F (Ji), F (Jj))) ∼= O
δij

P(L)1|U ∈ D
b(H(R)|U ).

This means firstly that each F (Ji) is supported on a single component of the splitting (8.27),
since otherwise p∗(RHom(Ji, Ji)) would be decomposable, and secondly that the Ji must be
supported on different components, since otherwise we would have

0 ∼= p∗(RHom(J1, J2)⊗ RHom(J2, J1))
∼= p∗(RHom(J1, J1)⊗ RHom(J2, J2)) ∼= OP(L)1 .

We now define the isomorphism SpecH(R)|U → Y |U by sending the component of the splitting
of H(R) on which F (Ji) is supported to the component of the isotropic Grassmannian which
contains Li.

6The functor F and its inverse are local over P(L), so the equivalence holds after base change to U .
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We must check that this assignment is independent of our choice of Li. Suppose L′i is a
different choice, with each Li in the same connected component as L′i. Choose a smooth curve
C ⊂ U which intersects P(L)1 transversely in p.

Let qp be the quadratic form on V at p. Base changing to C, the 2 pairs of maximal isotropics
{Li|p} and {L′i|p} induce as above 2 bijections between the components of SpecH(R)∩C ∼= pttpt
and the components of the space of maximal isotropic subspaces of (V, qp). We may deform the
pair {Li|p} to {L′i|p}, and since the choice of bijection is discrete, the 2 bijections are the same.

Lemma 8.28. For i = 1, 2, let fi : Yi → B be a finite, dominant map of varieties, with Yi
normal. If there is an open subset U ⊆ B such that Y1|U ∼= Y2|U as U -schemes, then Y1 ∼= Y2 as
B-schemes.

Proof. Let K(Y1) be the function field of Y1, considered as a constant sheaf on B. Let us also
consider OY1 as a sheaf on B via the map f1. We claim that OY1 equals the integral closure OB
of OB in K(Y1). Since f1 is finite, we have OY1 ⊆ OB. On the other hand, since Y1 is normal,
OY1 is integrally closed, hence OB ⊆ OY1 = OY1 .

By the same argument, OY2 is the integral closure of OB in K(Y2). But as Y1|U ∼= Y2|U , we
have K(Y1) ∼= K(Y2), and the claim follows.

9. Geometric interpretation of Db(Z−,W )res, even case

Assume now that n = dimV is even, that the corank of the quadratic form at each point of
P(L) ⊂ P(Sym2 V ∨) is at most 1, and that the locus of corank 1 points is a nonsingular divisor.
This assumption holds for a generic L of dimension 6 3.

We define the variety f : Y → P(L) as the nonsingular double cover of the corank 0 locus,
ramified in the corank 1 locus. At a corank 0 point q ∈ P(L), the 2 points of the fibre f−1(q)
correspond to the 2 components of the space of maximal isotropic subspaces of (V, q). We then
have:

Proposition 9.1. Under the assumptions above, Db(Z−,W )res ∼= Db(Y ).

The method of proof is the same as for the case of odd n in Proposition 8.1, and we only
indicate the necessary changes.

We let Y1 = 0× V × (L \ 0) ⊂ Zss
− and Y2 = V × 0× (L \ 0) ⊂ Zss

− . We then get OY1 ,OY2 ∈
Db
T (Zss

− ,W ), and let
K = OY1(n/2, 0)⊕OY2(0, n/2) ∈ Db

G(Zss
− ,W ).

Choosing a locally free resolution K of K, we get a dg algebra R = π∗(Hom(K,K)) and a functor
F = π∗(RHom(K,−)) : Db(Z−,W )res → Db(P(L), R).

Proposition 9.2. There is an isomorphism of OP(L)-algebras H(R) ∼= f∗(OP(L)).

The proof of this proposition is carried out in the same way as that for Proposition 8.2, and
the computations are simpler in the even case.

The proof of Proposition 9.1 now goes the same way as that of Proposition 8.1, except for
one difficulty: In proving that 0 = kerF ⊂ Db(Z−,W )res (Lemma 8.25), we no longer have an
equivalence Db(X) ∼= Db(Z−,W )res for a variety X, and so the initial step in the proof of Lemma
8.25 does not work. Instead we prove directly that in a standard corank 1 model, the appropriate
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object is a local generator for the grade restricted category. The rest of the proof of Lemma 8.25
then goes through.

Let Xn = An × An × A1 π→ A1 be the standard corank 1 model, let Y1 = 0 × An × A1,
Y2 = An × 0× A1, and let K ∈ Db

O(2)(Xn,W ) be given by

K = OY1(n/2)⊕OY2(−n/2).

Lemma 9.3. If E ∈ Db
O(2)(Xn,W )res is such that π∗(RHom(K, E)) = 0, then E = 0.

Proof. Since Xn is affine, we have π∗(RHom(K, E)) = RHomXn/O(2)(K, E). We then have
RHomXn/SO(2)(OY1(n/2), E) = RHomXn/O(2)(K, E) = 0.

Taking a standard resolution of OY1 shows that OY1(n/2) ∼= OY1(n/2)∨, and so we get

RHomXn/SO(2)(OY1(n/2), E) = RHomXn/SO(2)(E∨,OY1(n/2))
= RΓ(Y1, E(n/2)|Y1)SO(2) = 0.

Now the weights of E(n/2)|Y1 are contained in [0, n], and if 0 were a weight of E(n/2)|Y1 , then
by Lemma 5.10 we would have RHomYn/SO(2)(O, E(n/2)|Y1) 6= 0. Therefore 0 is not a weight of
E(n/2), which means that −n/2 is not a weight of E . Since E is O(2)-equivariant, it follows that
n/2 is not a weight of E either, and so wt(E) ⊆ [−n/2 + 1, n/2− 1].

By Lemma 8.10 we get an equivalenceDb
SO(2)(X1,W )→ Db

SO(2)(Xn,W ). Let E ′ ∈ Db
SO(2)(X1,W )

be the object sent to E under this equivalence.
Assume now for a contradiction that E 6= 0. Then E ′ 6= 0 and so wt(E ′) 6= ∅. Now by the

statement about weights in Lemma 8.10, it follows that max{k ∈ wt(E)} −min{k ∈ wt(E)} >
n − 1. This contradicts the fact that wt(E) ⊆ [−n/2 + 1, n/2 − 1], and we obtain the desired
conclusion E = 0.

10. The case of P(V )2

Our results and proofs extend with minor changes to the case of intersections of (1, 1)-divisors in
P(V )2. Let f : P(V )2 → P(V ⊗2) be the Segre embedding, let L ⊂ (V ⊗2)∨ be a linear subspace,
and let X = f−1(P(L⊥)).

Recall that T = (C∗)2 ⊂ G, and let Z = (V × V ×L)/T , where the T -action is induced from
the G-action. Let YL be the substack 0× 0× (L \ 0)/T . The natural map YL → P(L) makes YL
an SO(2)-gerbe.

Thinking of a point p ∈ L ⊂ (V ⊗2)∨ as a bilinear function on V gives a natural superpotential
W on Z. The map Z → YL is a vector bundle, and W induces a quadratic form on this bundle.
Proceeding now in the same way as in Section 7, we get a sheaf of Clifford algebras C on YL and
a subcategory Db(YL, C)res ⊂ Db(YL, C).

With this recycling of notation, Theorem 1.1 holds verbatim, and the proof we have given in
the Sym2 P(V )-case goes through with minor changes; taking the same GIT stabilities and using
similar definitions for the window categories.

We can interpret this as saying that Db(YV ⊗2 , C)res is an HP dual for P(V )2 with respect to
the line bundle O(1, 1) and a Lefschetz decomposition of Db(P(V )2) described as follows. Let

A = 〈O(i, j)〉(i,j)∈S ,

where S = {(i, j) | i+ j ∈ [0, 1], |i− j| 6 bn2 c}. If n is odd, we take A0 = · · · = An−1 = A.
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If n is even, we let A0 = · · · = An/2−1 = A. We let S′ = S = {(i, j) | i + j ∈ [0, 1], |i − j| 6
n
2 − 1}, let

A′ = 〈O(i, j)〉(i,j)∈S′ ,
and then let An/2 = · · · An−1 = A′.

We can also describe Db(YL, C)res more geometrically in this case. Thinking of P(V ⊗2) as a
space of (n×n)-matrices, it is stratified by the rank of the matrices. Assume n is odd, that P(L)
does not intersect the locus of matrices of corank > 2, and that the locus of corank 1 points in
P(L) is a nonsingular divisor. Let Y ⊂ P(L) be the corank 1 locus.

Proposition 10.1. Under the above assumptions, we have

Db(YL, C)res ∼= Db(Y ).

This proposition is proved along the lines of Proposition 8.1. We replace the local generator
K = OY1((n−1)/2, 0)⊕OY2(0, (n−1)/2) ∈ Db

G(Zss
− ,W ) used in Section 8 by the object OY1((n−

1)/2, 0) ∈ Db
T (Zss

− ,W ).
Computations like those in the proof of Lemma 8.15 show that

π∗RHom(OY1((n− 1)/2, 0),OY1((n− 1)/2, 0)) ∼= OY
as an OP(L)-algebra, and the rest of the argument in Section 8 goes through to show

Db(YL, C)res ∼= Db(P(L),OY ) ∼= Db(Y ).
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