
Energy Efficient Determinism in WSN
through Reverse Packet Elimination

Fredrik Kvist

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

60 credits

Department of Technology Systems
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Energy Efficient Determinism in
WSN through Reverse Packet

Elimination

Fredrik Kvist

c© 2019 Fredrik Kvist

Energy Efficient Determinism in WSN through Reverse Packet Elimination

http://www.duo.uio.no/

Abstract

In recent years, wired industrial networks has shifted towards Wireless Sensor
Networks (WSN). Utilizing WSNs attract interest by various industries as it can
provide real time measurements in a cost effective way. Next, with the emerging
Industrial Internet of Things (IIoT) WSNs can connect to the Internet. With the
creation of Deterministic Networking Group (DetNet), research have been aimed
at giving WSNs deterministic capabilities.
In this thesis, a novel Reverse Packet Elimination (RPE) algorithm was imple-
mented at IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) stack with
intent to increase reliability without increasing energy consumption significantly.
RPE was partially investigated analytically, but mainly through the 6TiSCH Sim-
ulator.
Results of introducing RPE revealed that reliability increased with 10.5%, average
latency decreased with 27% and lowest node life was increased with 1.5% over
links with 70% quality. However, average energy consumption in the network in-
creased with 19.8% compared to not utilizing packet replication (e.g single point
of failure).

1

Contents

1 Introduction 13
1.1 Background . 13
1.2 Motivation . 13
1.3 Objective . 15
1.4 Limitations of scope . 16
1.5 Related work . 16

1.5.1 Leapfrog Collaboration . 17
1.6 Thesis structure . 18

2 Theory 20
2.1 Radio frequency propagation . 20

2.1.1 Free space . 20
2.1.2 Power received . 21

2.2 IEEE 802.15.4 . 21
2.2.1 Radio frequency parameters 21
2.2.2 Time-slotted channel hopping 22

2.3 Deterministic-Networking . 23
2.3.1 Primary goals . 23
2.3.2 Secondary goals . 26
2.3.3 Stack model . 26
2.3.4 End systems . 27

2.4 DetNet and 6TiSCH . 28
2.5 IPv6 over the TSCH mode of IEEE 802.15.4e 28

2.5.1 Technical overview . 28
2.5.2 Tracks . 31

2.6 Packet error rate . 32
2.7 Latency . 34
2.8 Analytic approach . 35

2.8.1 Expected number of transmissions 36
2.9 Radio transceivers . 40

2.9.1 Energy consumption . 40

2

2.9.2 Total time spent transmitting and receiving 41
2.9.3 Radio up time . 42
2.9.4 Expected radio up time . 43
2.9.5 Energy consumption in TSCH networks 43

2.10 Funneling effect . 45

3 Proposal 46
3.1 Reverse Packet Elimination . 46

3.1.1 Advantages of Reverse Packet Elimination 46
3.1.2 Reverse Packet Elimination frame format 50
3.1.3 Selection of delay τ . 51
3.1.4 Within a slotframe . 53

4 Method 55
4.1 Simulator selection . 55
4.2 6TiSCH Simulator . 56

4.2.1 SimEngine . 57
4.2.2 Topology . 57
4.2.3 Propagation model . 58
4.2.4 Energy consumption model 59
4.2.5 Mote . 61
4.2.6 Metrics . 61

5 Simulator implementation 63
5.1 Topology . 63
5.2 Path computation element . 64
5.3 TSCH . 65
5.4 Scheduling function . 66
5.5 RPL . 67
5.6 Application layer . 67

5.6.1 Increasing delay beyond slotframe 68
5.7 6LoWPAN . 69
5.8 Mote . 71
5.9 General simulator setup . 71

5.9.1 Slot charge . 72
5.9.2 Validation of results . 72
5.9.3 Hardware . 73
5.9.4 Limitations . 73

5.10 Scenarios . 73
5.10.1 Topology . 73
5.10.2 Single Path . 74

3

5.10.3 Dual Path . 75
5.10.4 RPE . 75
5.10.5 RPE Overprovisioning . 75
5.10.6 Parameters . 75
5.10.7 6TiSCH tracks . 76

6 Results 77
6.1 Theoretical results . 77

6.1.1 Maximum and minimum latencies 77
6.1.2 Radio up time . 78
6.1.3 Radio up time with retransmissions 78
6.1.4 Expected number of transmissions 79
6.1.5 Expected mote lifetime . 81
6.1.6 Summarizing theoretical results 83

6.2 Reliability . 83
6.2.1 Packet delivery ratio . 83

6.3 Distribution of RPE packets . 85
6.4 Latency . 86

6.4.1 Average latency . 87
6.4.2 Minimum latency . 87
6.4.3 Maximum latency . 87
6.4.4 99th percentile . 88
6.4.5 All scenarios . 88

6.5 Mote lifetime . 90
6.5.1 Average mote life . 91
6.5.2 Lowest mote life . 91
6.5.3 Average current consumption 92
6.5.4 Comparing RPE with Single Path 93

6.6 Funneling effect . 94

7 Discussion 96
7.1 Plot description . 96
7.2 Discussion of Results . 97

7.2.1 Summarizing discussions . 104

8 Conclusion 105
8.1 Future work . 106

A Acronyms 113

B Time-Sensitive Networking 116

4

C 6TiSCH Simulator Code 119
C.1 Path Computation Element . 119
C.2 Applayer . 122
C.3 AppLayer - Long delay . 128
C.4 RPL . 134
C.5 Scheduling function . 135
C.6 TSCH . 136
C.7 Connectivity matrix . 137
C.8 6LoWPAN . 138
C.9 Mote . 141

D Data retrival to CSV 143

5

List of Tables

2.1 IEEE 802.15.4 frequency bands, parameters and channelization re-
trieved from [1] . 22

2.2 PDR values for PDRs and PDRl 33
2.3 The six different timeslots in a IEEE 802.15.4 network retrived from

[2] . 43
2.4 Denotation change for timeslots . 44

3.1 Information Element header format from IEEE 802.15.4 standard . 50
3.2 RPE frame format . 51
3.3 Acknowledgement frame format . 51
3.4 List of selected τ . 51

4.1 General overview of options in regards to 6TiSCH derived from [3] . 56
4.2 RSSI to PDR values derived from [3] 59
4.3 Different states affecting energy consumption retrieved from [2] . . . 60
4.4 Example of available metrics in the simulator derived from [3] . . . 62

5.1 General parameters of simulator . 72
5.2 Energy charges in terms of consumption 72
5.3 Hardware utilized to simulate results 73
5.4 Link qualities utilized in simulations 76
5.5 Different parameters in term of sending delay 76

6.1 Maximum and minimum theoretical latencies for τ in seconds . . . 77
6.2 Expected number of transmissions for a RPE packet the given PDRs 80
6.3 Expected number of transmissions for max packet size with the

given PDRs . 80
6.4 Expected TSCH mote lifetime when using RPE packet 82
6.5 Expected TSCH mote lifetime when using max size packet 82
6.6 Theoretically increased lifetime for each mote in % 83
6.7 Packet delivery ratios in percent with different link qualities 84
6.8 Number of packet lost when utilizing different link qualities 85

6

6.9 Average latencies with different link qualities in seconds 87
6.10 Max latencies with different link values in seconds 87
6.11 99th percentile latencies with different link values in seconds 88
6.12 Average, 99th percentile and maximum latencies for all scenarios

with 80 % link quality . 89
6.13 Difference ∆ between maximum and minimum latency in seconds

with 80% link quality . 90

B.1 List of TSN standards . 117

7

List of Figures

1.1 Illustration of a control system with a feedback loop retrieved from
[4] . 14

1.2 Illustration of a periodically updated control variable 14
1.3 Illustration of redundancy to destination from source with two paths 15
1.4 Illustration of a periodically updated control variable with a bounded

maximum latency . 16
1.5 Example of disjoint paths retrieved from [5] 17
1.6 Leapfrog Collaboration scheme retrieved from [6] 18

2.1 TSCH schedule example . 22
2.2 Example of disjoint paths from source to sink 25
2.3 Simplified DetNet stack model . 26
2.4 Categorization of end systems . 27
2.5 6TiSCH stack model . 29
2.6 TSCH schedule example . 30
2.7 Example topology for Figure 2.6 30
2.8 Example of a RPL network build from root retrieved from [7] 31
2.9 Illustration of a 6TiSCH track from 3 to 0 32
2.10 Relationship between PDRs (23 bytes) and PDRl (127 bytes) in

loglog. 34
2.11 Line topology from A to Sink . 35
2.12 Illustration funneling effect on nodes closer to sink retrieved from [8] 45

3.1 Illustration of how the replicated is withheld by τ 46
3.2 Illustration of PCE scheduling tracks from source to sink 47
3.3 Source creates two copies and send one each disjoint path 48
3.4 Packets are received at sink before RPE packet is sent 48
3.5 Sink send a RPE packet down Path B 49
3.6 RPE packet locates a upstream packet and drops it 49
3.7 A RPE packet sent from sink down Path B makes it back to source

eliminating the copy before it is sent 50
3.8 MAC frame format from IEEE 802.15.4 standard retrieved from [9] 50

8

3.9 Scheduling a delay of τ = 1 . 52
3.10 Scheduling a delay of τ = 8 . 52
3.11 Unnecessary waiting delay within a slotframe 54

4.1 Internal architecture of the 6TiSCH simulator retrieved from [3] . . 56
4.2 FES management example retrived from [3] 57
4.3 The Pister-Hack model generated RSSI values 58
4.4 The sequence of actions and time-slot timing retrived from [2] . . . 60

5.1 Topology PCE schedules tracks for. Red arrow indicates Path B
and blue indicates Path A . 64

5.2 Changing the naming convention 74
5.3 Illustration of Single Path scenario 75

6.1 Time to transmit a max packet and a RPE packet assuming no loss 78
6.2 Expected radio up time considering BER for a max packet 127 bytes

and RPE 23 bytes . 79
6.3 Expected number of transmissions with given PDRs 80
6.4 Theoretical expected mote lifetimes in days when transmitting max

packet size and RPE packets . 82
6.5 Number of packets lost and packet delivery ratios with link quality

from 70-90% . 84
6.6 Packet elimination distribution for τ = 8 with 70-90% link quality . 85
6.7 Packet elimination distribution with 80% link quality 86
6.8 Latencies for Single Path, τ = 8 and τ = 1. Top line shows maxi-

mum, box indicates average and bottom line is minimum latency . 86
6.9 Latencies for all versions in seconds with 80% link quality. Top line

shows maximum, box indicates average and bottom line is minimum
latency . 89

6.10 Scenarios and their average mote lifetimes in years 91
6.11 Scenarios and their lowest mote life registered in days 92
6.12 Average current consumption in the network in mA 93
6.13 Lifetimes for Single Path and RPE τ = 8 with 70% link quality . . 94
6.14 Different scenarios and their funneling effect at A1 and B1. Repre-

sented with mote lifetime in years 95

7.1 Representation of Dual Path (red) and Single Path (blue) traits
with 80 link quality . 97

7.2 Representation of τ = 1 traits (blue) compared to Dual Path (red)
with 80% link quality . 98

7.3 Representation of τ = 8 traits (blue) compared to Dual Path (red)
with 80% link quality . 99

9

7.4 Representation of τ = 816 traits (blue) compared to Dual Path
(red) with 80% link quality . 100

7.5 Representation of τ = 1624 traits (blue) compared to Dual Path
(red) with 80% link quality . 101

7.6 Representation of overprovisioning traits (blue) compared to Dual
Path (red) with 80% link quality 102

7.7 Single Path (blue) compared to τ = 8 (red) traits with 70% link
quality . 103

10

Listings

5.1 Deploying motes in a (X, Y) grid. 63
5.2 Specifying PDR of selected links and setting a default value for all

others . 63
5.3 Adjusting the packet replication delay 64
5.4 Scheduling TX and RX cells for Path A 65
5.5 Ensuring no randomness in 6TiSCH tracks 65
5.6 Getting available cells from slotframe handles 66
5.7 Retrieving available cells . 66
5.8 Scheduling cells without interfering with tracks 66
5.9 Influencing parent selection of motes. In this example Mote 1 and

Mote 2 sets sink as their preferred parent 67
5.10 Configurable parameters at Source 67
5.11 Scheduling data packets and switching parents before doing so . . . 67
5.12 Triggering the RPE packet downstream from sink 68
5.13 Scheduling an event into the future 68
5.14 De-scheduling an future event . 69
5.15 Correcting delay before logging latency 69
5.16 Setting the downstream paths in 6LoWPAN. In this listing Sink

sets Mote 1 and Mote 2 as receivers of RPE A and RPE B 70
5.17 Dropping packets going upstream 70
5.18 Dropping packets before they enter the APP layer 71
5.19 Syncing TSCH clock and setting join proxy at Mote. 71

11

Preface

This thesis concludes my Master’s degree at the Department of Technology Sys-
tems at the University of Oslo. This thesis was done as part of the collaboration
between University of Oslo and Western Norway University of Applied Sciences.
Special thanks to PhD Candidate Andreas Urke and my supervisor Professor Knut
Øvsthus for excellent counseling. Lastly, thanks to fellow students Eirik Kjevik
and Mathias Utg̊ard for their contribution to discussions.

12

Chapter 1

Introduction

1.1 Background

Currently, Internet of Things (IoT) is emerging with an expectation of billions of
connected devices to the Internet [5]. What is more, these devices are utilizing
low-power wireless communication technologies enabling long battery life and reli-
able end-to-end transmissions [10]. With this development, industries are shifting
towards Industrial Internet of Things (IIoT) through Wireless Sensor Networks
(WSN). Utilizing WSN decreases installation cost as compared to infrastructures
for wired sensor networks [11]. For instance, cost of drawing cables across an in-
dustrial plant can run from $100s/ft to $1000s/ft [12]. The last decade, prominent
solutions such as WirelessHART [13] and ISA100.11a [14] has emerged for Indus-
trial WSN. However, these technologies do not support Internet Protocol (IP)
traffic by design and in 2015 an amendment to the Institute of Electrical and
Electronics Engineers (IEEE) 802.15.4 standard was released with Time-Slotted
Channel Hopping (TSCH). TSCH has proven to increase reliability with deploy-
ments demonstrating 99.999% delivery ratio according to [15]. 6TiSCH working
group was started by Internet Engineering Task Force (IETF) [16] with intent to
enable IP traffic for IIoT utilizing TSCH. In addition, 6TiSCH shall follow IETF
Deterministic Network Working Group (DetNet) architecture [17], aiming to stan-
dardize layer 3 traffic in terms of networks requiring deterministic capabilities.

1.2 Motivation

In certain industrial networks, a feedback loop is utilized to control a system. The
feedback loop is compensated with a control variable as seen in Figure 1.1.

13

Figure 1.1: Illustration of a control system with a feedback loop retrieved from [4]

This feedback loop is updated periodically and the frequency is determined by
the system. In some control systems, the control variable is event triggered, and
in others a time based sampling period is implemented [18]. In this thesis, a time
based sampling period is assumed, illustrated in Figure 1.2. Hence, a node must
transmit a data to ensure control variable is delivered within a maximum latency
satisfying the feedback loop.

Figure 1.2: Illustration of a periodically updated control variable

A technique to ensure the control variable delivery is packet replication. With
packet replication, packets are duplicated and sent along two disjoint paths. When
arriving at their destination they are discarded if a replicated packet was received
earlier. In essence, packet replication creates redundancy for data traffic, as they
do not have a single point of failure. This is seen in Figure 1.3 where source has
two disjoint paths to destination. In short, this increases reliability[17][16] with
the drawback of an increase in resource utilization as more packets traverse the
network. For example, the control variable illustrated in Figure 1.1 can be repli-
cated along two paths to increase the probability of reception. Packet replication

14

technique exists in wired networks and in Ethernet; Parallel Redundancy Pro-
tocol (PRP) and High-Availability Seamless Redundancy (HSR) can be utilized
[19].

Figure 1.3: Illustration of redundancy to destination from source with two paths

On the other hand, with wireless networks the probability of packet loss in-
creases compared to wired due to interference and channel disturbance. Hence,
6TiSCH recommend packet replication in its architecture to increase reliability
[16]. In a wireless network, this means a higher energy consumption [5] and a
reduced network lifetime. Although, reliability is increased significantly, justify-
ing the extra energy consumption [5][6][20]. However, any reduction in energy
consumption is greatly desired as nodes are battery driven.

1.3 Objective

Objective of this thesis is to investigate whether a Reverse Packet Elimination
(RPE) algorithm can increase reliability, and decrease energy consumption in
WSNs operating over IEEE 802.15.4 standard, specifically the 6TiSCH stack. As
opposed to discarding replicated copies at destination, RPE triggers a sink to send
a packet down the opposite path to eliminate the other copy going upstream. In

15

addition, this thesis examine effects of introducing an adjustable replication delay
τ in the packet replication mechanism as seen in Figure 1.4. Figure 1.4 illustrates
one period within Figure 1.2.

Figure 1.4: Illustration of a periodically updated control variable with a bounded
maximum latency

T1 indicates the time it takes to transmit data from source to sink. Next, data
copy is withheld by a replication delay, and T2 is ensured to be within maximum
latency of the control variable presented in Figure 1.1. When the data is received
at sink, it sends a RPE packet to stop the data copy from being transmitted. If
the data is lost during transmission, the data copy provides redundancy needed to
ensure the upper bound latency.

1.4 Limitations of scope

Researching a full stack architecture across multiple layers encompasses a vast field
of technologies. Hence, this thesis is limited to the lower layers of the 6TiSCH
stack. Assumptions and design is influenced by Leapfrog Collaboration (LFC)
[6][20] presented in Subsection 1.5.1. Moreover, simulations and results are limited
to a single topology.

1.5 Related work

To the best of my knowledge, no related work exists in terms of a reverse mech-
anism or replication delay presented in Section 1.3 and derived in Chapter 3.

16

Although, in [21] the authors visit the idea of a reverse packet mechanism in
Ethernet, with the reversing of packet elimination to free bandwidth upstream.
However, no actual discussion or work are provided. Moreover, with the packet
replication and elimination techniques utilized in 6TiSCH, energy consumption
increases significantly. A rise in energy consumption is expected as the number of
packets traversing the network at minimum doubles. This is shown in [5] where
the authors implement disjoint paths and send a copy of the packet at each path.
In short, source duplicates a packet and sink drop the packet arriving last. They
show packet replication decreased packets lost with almost 90%, but energy con-
sumption increases with 86.3%. Figure 1.5 illustrates disjoint paths utilized in
[5].

Figure 1.5: Example of disjoint paths retrieved from [5]

1.5.1 Leapfrog Collaboration

Leapfrog Collaboration is designed by some members of the 6TiSCH working group
and hence important related work. During this thesis, I have been in contact with
the authors of LFC. I reached out with intent of retrieving their implementation
for comparison, but they were not willing to share at this point due to further
development. LFC utilizes the same principal as [5] by dropping the packet that
arrive last. However, LFC does that at each hop as they enable promiscuous over-
hearing between all motes within sensing range. In short, promiscuous overhearing
means all motes are listening. This method requires a Leapfrog Beacon enabling
all motes to free the same cell for RX. Opening the same cell allows all motes
except the mote transmitting to listen for data. As a result, delay decreases sig-
nificantly as the packet propagate the best links. Simply put, packets are partially
meshed from source towards sink. If no motes are within sensing range, normal
retransmission schemes are used. However, as this require all motes in sensing

17

range to listen for all packets and process them, energy consumption naturally in-
creases compared to sending over a single path. Moreover, Leapfrog Collaboration
technique is illustrated in Figure 1.6.

Figure 1.6: Leapfrog Collaboration scheme retrieved from [6]

LFC achieves a minimum end-to-end reliability of 99.1% for all simulations,
with lowest Packet Delivery Ratio (PDR) link quality at 70%. However, as men-
tioned energy consumption increases significantly with worst case drawing 177%
more than normal operation. As well as a high end-to-end reliability, LFC reduces
average delay 41% compared to standard retransmission schemes [6]. To sum-
marize, results achieved by LFC are impressive, but do require several upstream
motes to be within sensing range.

1.6 Thesis structure

Thesis is structured as follows:

• Chapter 1 (this chapter) introduces background information, motivation,
objective of this thesis and limitations of the scope. At last, related work
and the structure are presented.

• Chapter 2 supplies reader with necessary theory to interpret purposed solu-
tion.

18

• Chapter 3 describes proposed solution in details.

• Chapter 4 present methods utilized to investigate purposed solution. Namely,
simulator selection is advocated and a general description provided.

• Chapter 5 implement proposal into the simulator and shows a drawback with
the simulator. Then a description of scenarios simulated are provided.

• Chapter 6 starts with theoretical results. Then, simulation results are pre-
sented.

• Chapter 7 takes results into discussion and describes traits of each scenario

• Chapter 8 concludes work done. Moreover, a conclusion is drawn based on
results and discussions. In addition, ideas for future work are discussed.

19

Chapter 2

Theory

This chapter presents the theory needed to understand work presented in this
thesis.

2.1 Radio frequency propagation

In this section the basics of Radio Frequency (RF) propagation are presented. It
is not an in-depth presentation as RF propagation is not subject of analysis in this
thesis.

2.1.1 Free space

When modelling aspects of a wireless channel it is common to assume radio waves
are propagating through ideal free space without loss. This entails space between
receiver and sender is completely free of objects scattering, absorbing or influencing
the signal in its path. This means no reflections and the medium itself do not
absorb any signal. Transmitting power radiating from an ideal isotropic antenna
is attenuated in free space by a factor Ls(d), known as free space loss [22].

Ls(d) =

(
4πd

λ

)2

(2.1)

d Distance from source
λ Radio wavelength of transmitted signal

An isotropic antenna radiates spherically and uniformly from a point source.
It is can also be referred to as an isotropic radiator [22].

20

2.1.2 Power received

Power received by destination node is calculated by

PR = PTGTGRLs(d) (2.2)

Pt Output power of transmitter
Gt Transmitter gain
Gr Receiver gain
Ls(d) Free space loss

Moreover, receiving node can be influenced by several factors such as multi-path
fading, interference from other sources or objects blocking line of sight. Another
key point, as IoT nodes are usually located with at a distance greater than two
wavelengths, effect of near field communication are not taken into consideration
(d > 2λ).

2.2 IEEE 802.15.4

IEEE 802.15.4 standard was developed to ensure short range communication and
is designed to have low-data-rates, long battery life (e.g months or years), low
complexity and low hardware cost [10]. Moreover, IEEE 802.15.4 empower simple
devices with reliability and robust wireless technology and can be utilized without
extensive knowledge of radio technology and communication protocols [1]. Inten-
tion is low-duty-cycle communication combined with relatively high data rates.
This allows transfers of small blocks of data between devices completed in mil-
liseconds. What is more, IEEE 802.15.4 is limited to the lower layers. Specifically,
Medium Access Control (MAC) and physical layer.

2.2.1 Radio frequency parameters

IEEE 802.15.4 utilizes different radio frequency link parameters. These param-
eters include modulation type, coding, spreading, symbol/bit rate and channel
utilization as described in Table 2.1.

21

Frequency band 868.3 MHz 902-928 MHz 2400-2483.5 MHz
Of channels 1 10 16

Bandwidth 600 kHz 2000 kHz 5000 kHz
Data rate 20 kbps 40 kbps 250 kbps

Symbol rate 20 ksps 40 ksps 62.5 ksps
Unlicensed geographic usage Europe Americas Worldwide

Table 2.1: IEEE 802.15.4 frequency bands, parameters and channelization re-
trieved from [1]

2.2.2 Time-slotted channel hopping

IEEE 802.15.4e was introduced in 2012 as an amendment to the MAC protocol
utilized in IEEE 802.15.4 standard. The amendment introduced Time-Slotted
Channel Hopping (TSCH), which is use of channel hopping to enable high reli-
ability and time synchronization to attain low-power operations. Overall, TSCH
decreases link failure due to external interference and multi-path fading. In fact,
utilization of channel hopping is key to achieving high reliability with end-to-end
packet delivery ratio claimed to be as high as 99.999% [23]. Moreover, as the
amendment is located at MAC layer TSCH do not affect the physical layer and
can thereby be used with hardware supporting original IEEE 802.15.4. In 2016,
this amendment was adopted in IEEE 802.15.4 and is part of the official standard
[9]. Furthermore, time synchronization can vary from microseconds to milliseconds
and accuracy of the timing impacts power consumption. In fact, the node clock
drifts and need to be periodically synchronized. For this reason, data and Ac-
knowledgement (ACK) packets contain information utilized to re-synchronize. It
is important for nodes to have synchronized clocks to ensure they are transmitting
and listening when they should.

Figure 2.1: TSCH schedule example

In TSCH, time is divided into timeslots as shown in Figure 2.1. Length of a

22

timeslot is not specified, but a common value is 10 milliseconds[23]. In addition,
timeslots are grouped into slotframes commonly consisting of 101 timeslots[23].

2.3 Deterministic-Networking

This section present IETF established Deterministic Network (DetNet) Working
Group [24], started with intent to provide guaranteed bandwidth, extremely low
loss, and an upper bound on maximum end-to-end latency at layer 3 paths across
multiple layer 2 networks. In short, DetNet aims to converge Informational Tech-
nology (IT) with Operational Technology (OT) networks [21]. Information pro-
vided in this section is retrieved from DetNet Architecture version 10 [17].

Time-Sensitive Networking DetNet working group collaborates with IEEE
802.1 Time-Sensitive Networking (TSN) [25] which is improving on layer 2 opera-
tions to ensure deterministic capabilities. A short survey of TSN is presented in
Appendix B. In essence, DetNet and TSN define a common architecture for both
Layer 2 and Layer 3 to ensure applications requiring determinism can work across
both layers. Such applications include engine control systems, general industrial
applications, and professional and home audio/video systems.

2.3.1 Primary goals

DetNet Quality of Service (QoS) primary goals are achieving minimum and maxi-
mum end-to-end latency, timely delivery, and bound jitter. DetNet should provide
a packet loss ratio based on operational states of nodes and links. Ultra high
reliability with 99.999% end-to-end packet delivery ratio is desired.

Mechanisms to achieve Quality of Service

DetNet list following mechanisms to achieve QoS:

• Congestion protection

• Service protection

• Explicit routes

Congestion protection

Eliminate congestion loss Primarily DetNet can achieve QoS assurance by
eliminating packet loss due to congestion. Next, ensuring each node throughout
the network has sufficient buffers, packet loss due to packet drop can be eliminated.

23

In essence, all DetNet nodes from source to destination need to carefully regulate
their output to not exceed the data limit. Moreover, output regulation would in
return require time-synchronization of nodes, as a single packet sent ahead of its
time could potentially cause a node to reach the resource limit.

Jitter reduction DetNet do not enforce methods to ensure jitter reduction,
but simply encourage use of sub-microsecond time synchronization from source to
destination.

Service protection

Service protection aims to eliminate or mitigate packet loss due to failure of equip-
ment, random media and/or memory failure. A simple technique to reduce these
issues is to send data over multiple disjoint forwarding paths. Multiple paths would
be network architecture dependent.

In-order delivery A side effect due to service protection is out-of-order packet
delivery. Receiving packets out-of-order may impact the DetNet path. DetNet
proposes a maximum allowed out-of-order constraint. If the constraint is set to
zero, a path do not tolerate any misordering of packets. In addition, sequencing
packets can be done by adding a sequence number or a DetNet time stamp. This
association can be inherent in the packet itself or associated with physical proper-
ties such as precise time and/or radio channel reception of the packet. Sequencing
method should happen once, and close or at to source.

Packet replication and elimination Utilizing a Packet Replication Function
(PRF) and replicate packets into multiple paths to the sink increases reliability
and is as presented in Section 1.2 desired. Next, when nodes receive a replicated
packet, Packet Elimination Function (PEF) drop duplicates based on sequencing
information. Output of PEF is always a single packet. Different tactics to remove
duplicates can be utilized depending on resources available. For instance, each
node from source to destination can perform PEF, but the most common case is
to perform PEF close to the edge of the DetNet network. Lastly, when receiving
the single packet from PEF nodes should utilize Packet Ordering Function (POF)
to re-order packerts received out of order. Order of PRF, PEF and POF are
implementation specific. Moreover, packet elimination and replication are passive
methods and do not react to, or correct failures.

24

Figure 2.2: Example of disjoint paths from source to sink

Explicit routes

A network topology event in certain parts of the network can briefly interfere with
delivery of data. Out-of-order packet delivery can occur due to route changes.
Thus, DetNet deploy explicit routes to get advantage of low hop count and assure
against very brief losses of connectivity. By utilizing explicit routes, DetNet paths
do not change in response to a network topology event. At least not immediately,
or in most cases not at all. DetNet states that techniques to establish required
explicit routes exist in RSVP-TE [26], Segment Routing [27], Software Defined
Networking [28] and IS-IS [29]. Moreover, MPLS TE typically uses explicit routes
[30]. Paths set up in Figure 2.2 can be looked upon as explicit routes.

25

2.3.2 Secondary goals

DetNet has a secondary goal to enable coexistence with normal traffic. Secondary
goals are with regards to bandwidth, worst-case latency and transmission opportu-
nities for non-DetNet traffic. Firstly, bandwidth not utilized by a DetNet path can
be presented to non-DetNet packets. Secondly, DetNet paths can be scheduled,
or shaped, to make sure non-DetNet packets are ensured a upper-bound latency.
Lastly, to satisfy the need of non Machine-to-Machine users of the network, Det-
Net paths should be scheduled in detail. What is more, sufficient transmission
opportunities for non-DetNet packets should be taken into considerations.

2.3.3 Stack model

DetNet stack model is designed in two adjacent sub-layers; service sub-layer and
transport sub-layer. The DetNet stack model is illustrated in Figure 2.3 [17].
Service sub-layer provides service protection to higher layers through PRF, PRE
and POF. Transport sub-layer support the underlying network through congestion
protection and explicit routes.

Figure 2.3: Simplified DetNet stack model

Furthermore, sub-layers are application and network specified, meaning all
functionality is not required unless asked for. However, networks with critical
needs do requires more functionality.

26

2.3.4 End systems

Data flow between source and destination end systems is known as Application-
flow (App-flow). Traffic in an App-flow can have different characteristics such as
constant or variable bit rate as well as layer 1-3 encapsulation. These character-
istics are used as input when considering resource reservation. However, an end
system may not be aware of the DetNet App-flow and it may not contain DetNet
specific functionality. End systems are divided it to four categories.

• DetNet unaware: Normal service requiring service proxies.

• DetNet f-aware: Forwarding sub-layer aware system. Do not know about
resource allocation but is aware of some TSN functions such as reservation.

• DetNet s-aware: Service sub-layer aware system. Do not know about re-
source allocation but applies sequence numbers.

• DetNet sf-aware: Full functioning end system. It has DetNet functionality
and can be treated as an integral part of the DetNet domain.

Categorization of end systems are illustrated in Figure 2.4.

Figure 2.4: Categorization of end systems

27

2.4 DetNet and 6TiSCH

There are wireless networks supporting real-time QoS such as ISA100.11a and
WirelessHART, but they have a drawback that they are incompatible with each
other, and do not support IP traffic by design. Furthermore, DetNet firstly has
wired networks in mind, but DetNet is to apply 6TiSCH as a wireless network
standard for industrial networks [31][16]. Currently 6TiSCH depend on DetNet to
define:

• Operation and configuration state for deterministic paths

• End-to-end protocols for deterministic forwarding (IP, tagging)

• Protocol for packet replication and elimination

Achieving these definitions in cooperation with DetNet allow for compatibility
with a TSN backbone [31][16].

2.5 IPv6 over the TSCH mode of IEEE 802.15.4e

This section gives a brief introduction to each of the layers in IPv6 over the TSCH
mode of IEEE 802.15.4e (6TiSCH) stack [16]. It has standards developed from
both IETF and IEEE, which together achieves end-to-end connectivity with deter-
ministic capabilities, low power operation and robustness [12]. Moreover, 6TiSCH
stack was created to enable industrial process monitoring and control, and unleash
Industrial Internet of Things [32]. 6TiSCH standardization is still in process and
as of 2019 not finished [16].

2.5.1 Technical overview

Figure 2.5 illustrates the 6TiSCH protocol stack [16]. Moreover, the 6TiSCH
stack encompasses IEEE 802.15.4e known as TSCH, 6LoWPAN, RPL and CoAP
to integrate OT with IT. The following subsections describe the stack from the
bottom up.

28

Figure 2.5: 6TiSCH stack model

802.15.4 PHY and MAC

This layer has previously been described in Section 2.2, and in 6TiSCH parameters
utilized at link layer are data rate at 250 kb/s, 2.4 GHz frequency and a transmit
power in range 0 - 10 dBm. It is worth noting maximum payload size is 127 bytes.

6top

IETF 6top protocol is standardized by the 6TiSCH Working Group [33]. In prin-
ciple, 6top layer define a distributed scheduling protocol where neighbor nodes
negotiate to add or remove one or more cells in the TSCH schedule. Furthermore,
each slot in the schedule is a opportunity for neighbours to exchange link layer
frames. Slot opportunities repeat in slotframes.

29

Figure 2.6: TSCH schedule example

Figure 2.7: Example topology for Figure 2.6

As illustrated in Figure 2.6 motes communicates at different times, slots and
channel frequency. In terms of terminology, a cell indicates a timeslot at a given
channel offset. A schedule is illustrated for mote B in Figure 2.7, where red is
mote A and blue indicates mote B speaking. Note that this is a simple illustration
and do not show full complexity of 6top layer. Red and blue indicates a cell at a
timeslot. In addition, nodes are referred to as motes in 6TiSCH. Hence, from this
point forward all nodes are referred to as motes.

6LoWPAN

6LoWPAN [34] defines a method of fitting Internet Protocol version 6 (IPv6) pack-
ets into shorter IEEE 802.15.4 frames. This method works by two main mecha-
nisms. Firstly, adding rules for shortening the IPv6 header:

1. Removing fields that are not needed

2. Removing fields that always has the same content

3. Compressing IPv6 addresses by deriving them from link layer addresses

Secondly, defining fragmentation rules so several IEEE 802.15.4 packets can make
up one IPv6 packet. By doing these steps, IPv6 packets as long as 1280 bytes
fit into IEEE 802.15.4 packets with a maximum payload of 127 bytes. Moreover,
6LoWPAN requires a low-power border router at the edge to translate incoming
and outgoing packets to either IPv6 or 6LoWPAN network.

30

RPL

RPL is an intra-domain routing protocol for low-power wireless mesh networks [35].
RPL works by constructing the network into a Directed Acyclic Graph (DAG),
rooted at the gateway. Root, or sink, builds the Destination Oriented Directed
Acyclic Graph (DODAG) shown in Figure 2.8. RPL is a distance vector protocol
where nodes regularly advertise their distance to the DODAG. This allows neigh-
bors to compute their own distance. Motes broadcast Destination Advertisement
Object (DAO) messages to allow neighbours to find their Default Parent (DP). DP
is their route towards the DODAG. DODAG builds a network, where all motes
have a rank. A high rank indicates a large distance and low rank imply shorter
distance to DODAG.

Figure 2.8: Example of a RPL network build from root retrieved from [7]

Contrained application protocol

Constrained Application Protocol (CoAP) turns low-power wireless devices into
a web server and a browser allowing web-like interactions [36]. Hence, a mote
utilizing CoAP can publish its sensor readings onto servers on the Internet. Fur-
thermore, CoAP has a large open-source library allowing it to support different
applications. CoAP layer is not utilized in this thesis.

2.5.2 Tracks

What is referred to as a DetNet flow is introduced in 6TiSCH architecture as Com-
plex Tracks [16]. Which in principle, are reserved resources from source to sink.

31

In essence, cells are reserved for specific traffic, and no other form of traffic can
access these cells. Multiple cells bundled together increase probability of success-
ful transmission within a slotframe. Complex Tracks are shaped as a DAG, and
support multi-path forwarding and route around failures [16]. An illustration of a
track is provided in Figure 2.9.

Figure 2.9: Illustration of a 6TiSCH track from 3 to 0

Complex Tracks are utilized to ensure application data have resources available
from source to sink. In Complex Tracks, only allowed traffic are scheduled. This
is necessary to ensure no randomness in data traffic, enabling determinism.

2.6 Packet error rate

As mentioned in previous Section 2.3 and Section 2.5, high reliability is desired
by DetNet and 6TiSCH. What is more, high reliability depend on Packet Error
Rate (PER). This section present relationship between Bit Error Rate (BER) and
PER. BER is often expressed in percent, and can be considered an approximate of
the bit error probability. PER depend on BER and number of bits (e.g the packet
length). PER can be calculated by:

PER = 1− (1− Pb)nbits (2.3)

Where

Pb Probability of bit error
nbits Packet size in bits

Packet delivery ratio

Flipping PER and describing it as a Packet Delivery Ratio is done in Equation
2.4.

PDR = 1− PER (2.4)

32

Moreover, in a wireless setting it is common make an abstraction of the physical
layer when working with higher layers and give a static PDR. But, working with
different packet sizes, static PDR do not represent the same BER. Thus, it gives
an unrealistic representation of a smaller packet compared to a larger packet. A
workaround is shown in Equations 2.5 - 2.9. PERl denotes a large packet and
PERs a small packet. Correspondingly, packet lengths are denoted as Ll and Ls.

PERl = 1− (1− Pb)Ll (2.5)

This can be written as:
1− Pb = (1− PERl)

1
Ll (2.6)

Similarly to PERl, packet error rate for a smaller packet is:

PERs = 1− (1− Pb)Ls (2.7)

Substituting Equation 2.6 into Equation 2.7 yields:

PERs = 1− (1− PERl)
Ls
Ll (2.8)

Next, utilizing relationship seen in Equation 2.4:

PDRs = 1− PDR
Ls
Ll
l (2.9)

Putting specific packet sizes show a 127 bytes packet with a PDR of 70% equals
to a PDR of 93.7% for a 23 bytes packet. This method is applied to PER values
of 30%, 20% and 10%, with the results listed in Table 2.2. As PER is static in
this example, BER can be derived from Equation 2.3.

PER BER PDRs PDRl

90% 0.0003483 93.7% 70%
20% 0.0002178 96.1% 80%
10% 0.0001028 98.1% 90%

Table 2.2: PDR values for PDRs and PDRl

Figure 2.10 shows relationship between PDRs 23 bytes and PDRl 127 bytes.
The reason these specific packet lengths are used is discussed further on.

33

10−2 10−1 100

10−1.5

10−1

10−0.5

PDRl

P
D
R
s

Figure 2.10: Relationship between PDRs (23 bytes) and PDRl (127 bytes) in
loglog.

2.7 Latency

As presented in Subsection 2.3.1, a DetNet primary goal is achieving minimum
and maximum end-to-end latency. In a TSCH network maximum and minimum
latencies can be calculated. This is due to the fact that the value of a slot and a
slotframe never changes while a network is operational. Thus, maximum latency
Lmax and minimum latency Lmin can be calculated with:

Lmax = Sf · Ts ·m ·H (2.10)

And,
Lmin = Ts ·H (2.11)

Where,

Ts Length of timeslot in seconds
Sf Slotframe length (number of slots)
m Number of allowed retransmissions
H Number of hops

In Lmax and Lmin assume next hop node has a cell in the following timeslot.
Thereby, in Lmin the Sf and m are not needed as the packet is successful and do not
need a retransmission in the next slotframe. As mentioned in Section 1.3, one of
the objectives of this thesis is introducing a delay τ in the replication mechanism.

34

This will be discussed in details in Chapter 3, but for now maximum delay, Lmax
with replication delay τ is calculated with:

Lmax = (Sf · Ts ·m ·H) + τ (2.12)

Where,

τ Sending delay of replicated copy in slots

2.8 Analytic approach

This section is based on work done in [37]. In [37] the author derive a method to
calculate expected number of transmissions over multiple hops. Furthermore, when
sending packets, error occurs, and to analyze packet loss analytically a network
of infinite nodes and node density must be considered. Routing in a network this
size is virtually impossible, but for an analytic approach assume all nodes have
a mechanism to relay a packet to the furthest node in a direction limited by its
range. Thus, hops required to send a packet to a sink located at distance D from
the sender is:

H =
⌈D
d

⌉
(2.13)

Where, ⌈
x
⌉

Denotes the ceiling function
d Range of node
D Total distance from sender to sink

Given this example, denote sender as A. A has a line topology depicted in
Figure 2.11 to sink. Next, each hop i, where i ∈ {1...(H − 1)} has same length d.
Moreover, assume path loss only depend on distance and that nodes have equal
transmitting power. H th hop depend on distance from A to sink, and node range.
For the sake of this example assume H hops having identical length d. Finally,
assume only one node transmits at a time causing zero interference between nodes,
and that there are no external sources of interference.

Figure 2.11: Line topology from A to Sink

35

2.8.1 Expected number of transmissions

Assume premise introduced in the previous section. Xi is number of transmissions
on the ith hop for each packet sent from node A towards sink. Realistically, BER is
not static and varies due to a range of factors, but follow the same ’ideal’ concept
and assume BER for each hop is Pb:

Pbi = Pb∀i ∈ {1...H} (2.14)

Assume probability of individual bit errors are independent from each other. Next,
as TSCH utilizes ACKs a transmission is successful upon reception of an ACK.
Transmission is deemed unsuccessful if the node do not receive an ACK, which
triggers a retransmission. Number of retransmission attempts are denoted as m
and if the number of retransmissions passes m, the packet is discarded. Two
scenarios can cause a retransmission when utilizing ACK:

• Packet was lost during transmission

• Packet was successful, but ACK transmission failed

Thereby, for a packet transmission to be confirmed as successful, all bits in the
ACK and the data packet has to be transferred without errors as shown in Sec-
tion 2.6. Taking two-way transmissions into account let q be packet failure rate,
probability that a transmission fails.

q = 1− (1− Pb)LPacket+LAck (2.15)

Where,

LPacket Length of packet in bits
LAck Length of ACK in bits

Expected number of transmissions at first hop

Thus, Xfirst, expected number of transmissions at first hop is determined by prob-
ability of a successfully transmission for each attempt m. This can be expressed
as:

E{Xfirst} = 1·q0(1−q)+2·q1(1−q)+3·q2(1−q)+...+m·qm−1·(1−q)+m·qm (2.16)

Where,

m Maximum number of transmissions
q Probability of an unsuccessful transmission
(1− q) Probability of a successful transmission

36

or, it can be expressed as:

E{Xfirst} =
m∑
i=1

(
i · qi−1 · (1− q)

)
+m · qm (2.17)

Where, as earlier, m is maximum number of transmission attempts. Thus, (m−1)
is maximum number of retransmissions. Seeing as in Equation 2.17, (1 − q) is a
constant it can be factored out. By denoting S =

∑m
i=1 i · qi−1 Equation 2.17 can

be written as:
E{Xfirst} = S · (1− q) +m · qm (2.18)

The sum, S, can thereby be expressed as:

S = 1 · q0 + 2 · q1 + ...+m · qm−1 (2.19)

And by subtracting S · q from S:

S(1− q) = 1 · q0 + 2 · q1 + ...+m · qm−1 (2.20)

−(1 · q1 + 2 · q2 + ...+m · qm (2.21)

= (q0 + q1 + q2 + ...+ qm−1)−m · qm (2.22)

Equation 2.22 is a geometric series, and can be written as:

1− q(m−1)+1

1− q
=

1− qm

1− q
(2.23)

S can be simplified to:

S =
1− qm

(1− q)2
− m · qm

(1− q)
(2.24)

Returning S into Equation 2.17:

E{Xfirst} =

(
1− qm

(1− q)2
− m · qm

(1− q)

)
(1− q) +m · qm =

1− qm

1− q
(2.25)

Equation 2.25 represent expected number of transmissions:

E{Xfirst} =
1− qm

1− q
(2.26)

Limits of Equation 2.26 can be tested for the extremes when q = 0 and q = 1
which means either all packets or no packets are successful.

lim
q→ 0

1− qm

1− q
= 1 (2.27)

37

and by utilizing L’Hopital’s rule for limit q → 1,

lim
q→ 1

1− qm

1− q
= lim

q→ 1

m · qm−1

1
= m (2.28)

This show when q is 0 no packets are expected to fail and first transmission attempt
is successful. On the other hand, when q is 1 all m transmissions are expected to
fail. Equation 2.27 and Equation 2.28 show Equation 2.26 hold at its limits.

Multiple hops

In contrast to Equation 2.26, most transmission scenarios for a packet involves
several hops. End-to-end probability at the ith hop depends on the probability
that the packet has traversed (i− 1) previous hops, P (Si−1) = (1− qm)i−1, where
P (Si) is probability of a successful transmission at hop i. At the ith hop number
of expected transmissions are:

E{Xi} = E{Xfirst} · P (Si−1) = E{Xfirst} · (1− qm)i−1 (2.29)

Given by Equation 2.29, expected number transmissions over H hops are:

H∑
i=1

E{Xi} = E{Xfirst} ·
H∑
i=1

(1− qm)i−1 (2.30)

Seeing as
∑H

i=1(1− qm)i−1 is a geometric series, and by denoting (1− qm) as k:

k0 + k1 + k2 + ...+ ki−1 (2.31)

Equation 2.31 can be written as:

H∑
i=1

ki−1 =
H−1∑
i=0

ki =
1− kH

1− k
(2.32)

Returning (1− qm) into Equation 2.32

1− (1− qm)H

1− 1 + qm
=

1− (1− qm)H

qm
(2.33)

Thus, Equation 2.30 is simplified to:

E{Xi} = E{Xfirst} ·
1− (1− qm)H

qm
(2.34)

At limit of Equation 2.30, q → 1 total number of transmissions are expected to
be m as it never get past first hop. Conversely, when q → 0 only one transmission

38

is needed per hop and expected transmissions are equal to H to reach sink. Limits
of Equation 2.30 are found by multiplication law of limits (if limits exist):

lim
q→ c

(
E {Xi} ·

1− (1− qm)H

qm

)
= lim

q→ c
E {Xi} · lim

q→ c

1− (1− qm)H

qm
(2.35)

Where,

c is a constant

As limq→ c is know for c = 0 and c = 1, only Equation 2.33 need to be analyzed.
Thus, by power law of limits (if it exists):

lim
q→ 1

1− (1− qm)H

qm
= 1 (2.36)

and by utilizing L’Hopital’s rule for limit q → 0,

lim
q→ 0

1− (1− qm)H

qm
= lim

q→ 0

Hmqm−1(1− qm)H−1

mqm−1
(2.37)

Next, this can be shortened:

Hmqm−1(1− qm)H−1

mqm−1
= H(1− qm)H−1 (2.38)

And now, by inserting q = 0:

H(1− qm)H−1 = H (2.39)

Summarizing, limits at Equation 2.30 are:

lim
q→ 1

H∑
i=1

E{Xi} = m · 1 = m (2.40)

And:

lim
q→ 1

H∑
i=1

E{Xi} = 1 ·H = H (2.41)

This shows if q = 1, no error occur and number of transmissions are equal to
number of hops. Next, if q = 0 number of transmissions are equal to number of
allowed transmission attempts. This indicates that transmission has failed. To
summarize, expected number of transmissions from a source to a sink depend on
number of transmissions attempts, hops and PER.

39

2.9 Radio transceivers

IEEE 802.15.4 devices require a transmitter and a receiver to communicate. A
transmitter takes digital information and translates it into radio waves propagating
the wireless medium, while the receiver interpreters waves and reproduce emitted
information. Task of sending and receiving are often grouped into a single device
called transceiver. These transceivers operate similarly to micro-controllers as
they have different operating modes, such as transmit, receive, and idle mode. To
reduce energy consumption of each node, transceivers should be turned off most of
the time. Moreover, transceivers should be activated only when needed to achieve
a low duty cycle.

2.9.1 Energy consumption

Power consumption in a given output configuration can be expressed as

Pi = U · Ii (2.42)

Where,

Pi Watts
U Supply voltage in volts
Ii Current consumption of node

Thus, energy consumption can be expressed as

Etx = Pi · Ttx (2.43)

Where,

Etx Joules
Ttx Output power of transmitter/receiver

However, these equations do not take all factors into consideration and does a
generalization. In principle, energy consumed by a transceiver is from two sources.
Firstly due to RF signal generation, which in return depend mostly on chosen mod-
ulation, target distance and transmission power, PT , radiating from the antenna.
Secondly, due to electronic components used for frequency synthesis, frequency
conversion, filters and so on [38]. However, factors composing the second source
are basically constants. Thus, most crucial parameter is choice of PT . When PT
has been set power consumption is affected by time spent transmitting. Energy
to send a packet that is n-bits long (including headers) depend on time it takes to

40

transmit, set by bit rate, coding rate and total power consumed during transmis-
sion. In addition, transceivers has to be turned on before transmission if they are
in sleep mode, adding some start-up cost. Energy costs can be calculated by [38]:

Etx(n,Rcode, Pamp) = TstartPstart +
n

RRcode

(PtxElec + Pamp) (2.44)

Where,

Etx Total energy spent transmitting
Rcode Coding rate
Pamp Power of transmitting amplifier
Tstart Start-up time
Pstart Start-up power
R Bit rate
PtxElec Power usage of other circuitry
n Packet length

Moreover, receiver can, as transmitter, be turned on or off. When a receiver is
turned on it can be idle, or be actively receiving a packet. When idle it observe the
channel and are ready to receive incoming packets. Power usage between receiving
and idle mode is negligible and can be assumed to be zero. Energy consumption
when receiving a packet can be calculated by [38]:

Erx(n,Rcode, Pamp) = TstartPstart +
n

RRcode

PrxElec + nEdecBit (2.45)

Where,

Erx Total energy spent receiving
Rcode Coding rate
Pamp Power of transmitting amplifier
Tstart Start-up time
Pstart Start-up power
R Bit rate
PrxElec Power usage of other circuitry
n Packet length
nEdecbit Energy spent decoding bits

2.9.2 Total time spent transmitting and receiving

Energy consumption calculation method presented in Subsection 2.9.1 is affected
by standards and hardware designs, and for the purpose of this thesis not under

41

analysis. However, a parameter that can be affected is the time the radio is in
transmitting and receiving mode. Total time spent transmitting Ttx depend on
number packets sent and time it takes to send each packet. What is more, time to
send each packet depend on packet size. Thereby, it is possible to derive a method
to calculate Ttx and Trx only considering ACK and data packets.

Transmitting

Ttx = NtxPacket ·
LPacket
R

+NrxACK ·
LACK
R

(2.46)

Where,

NtxPacket Number of transmitted packets
NrxACK Number of ACKs received
LPacket Length of packet in bits
LACK Length of ACK in bits
R Data rate in bits/s

Receiving

Total time spent receiving Trx depend on number of incoming packets and time it
takes to receive each packet. Thereby, it is possible to calculate Trx only considering
ACKs and data packets with

Trx = NrxPacket ·
LPacket
R

+NtxACK ·
LACK
R

(2.47)

Where,

NrxPacket Number of received packets
NtxACK Number of ACKs transmitted
LPackets Length of packet in bits
LACK Length of ACK in bits
R Data rate in bits/s

2.9.3 Radio up time

Ttx and Trx is equal in terms of time, an abstraction can be made calling total
radio up time for RTux.

RTux = 2 ·
(
NPackets ·

LPacket
R

+NAck ·
LAck
R

)
(2.48)

RTux returns total time transceiver is active.

42

2.9.4 Expected radio up time

In Subsection 2.9.2 PER is not taken into consideration and it assume a sin-
gle transmission when calculating time spent transmitting. However, this is not
realistic and expected radio up time ERux depend on expected number of trans-
missions.

Single Hop

ERux for a single hop is given by:

ERux = 2 ·
(
NPacket ·

LPacket
R

+NACK ·
LACK
R

)
·
(

1− qm

1− q

)
(2.49)

or simply put:
ERux = RTux · E{Xfirst} (2.50)

Where,

RTux Radio up time in seconds
E{Xfirst} Expected number of transmissions at first hop derived in Subsection 2.8.1

2.9.5 Energy consumption in TSCH networks

A method of calculating lifetime of a TSCH node is derived in [2]. A TSCH node
has six different type of timeslots as presented in Table 2.3.

State Description

Idle
Node idle listens. This is a RX state where nothing is received.
Hence it only listens for duration of guard time.

Sleep
Node Deep Sleeps. Slot is off, no CPU nor radio activity due
to communication.

TxDataRxAck Node transmits a packet and receives an ACK for it.
TxData Node sends a broadcast packet not requiring ACK.
RxDataTxAck Node receives a packet and responds with an ACK.
RxData Node receive a frame not requiring ACK.

Table 2.3: The six different timeslots in a IEEE 802.15.4 network retrived from [2]

By utilizing the energy model of each slot, it is possible to determine energy
consumption and compute expected lifetime of the node battery. Next, to calculate
their energy consumptions each slots contribution needs to be considered. For
simplicity and minimizing text, all slots have new denotation as shown Table 2.4.

43

What is more, in Equations subscripts a point to available slots, and subscript u
expresses utilized slots. N indicates Number of. In addition, all charges Q are
given in µCoulombs (C).

State Denotation
Sleep Nsleep

TxDataRxAck NTxRx

TxData NTx

RxDataTxAck NRxTx

RxData NRx

Table 2.4: Denotation change for timeslots

QFIdle =

(
(NaRxTx −NuRxTx) + (NaRx −NuRx)

)
·Qidle

PDR
(2.51)

QFIdle gives contribution of idle slots to total charge drawn at a slotframe. Idle
slots is when RxData or RxDataTxAck are active but nothing is received.

QFSleep =
(
Nsleep + (NaTxRx −NuTxRx) + (NaTx −NuTx)

)
·QSleep (2.52)

Then, QFSleep defines contribution of sleep slots.

QFTxRx =
NuTxRx ·

(
NBSent
MaxPktSz

·QTx + (QTxRx −QTx)
)

PDR
(2.53)

Where,

NBSent Number of bytes sent
MaxPktSz Maximum packet size

QFTxRx defines contribution of sending a packet and receiving an ACK. Specif-
ically, effect packet size has on energy consumption.

QFTx = NuTx ·
(

NBSent

MaxPktSz
·QTx

)
· PDR (2.54)

Moreover, QFTx describes energy consumption of slots that transmits, but do not
require an ACK.

QFRxTx = NuRxTx ·
(

NBSent

MaxPktSz
·QRx + (QRxTx −QRx)

)
(2.55)

44

QFRxTx computes contribution of receiving a packet and transmitting an ACK.
PDR and number of bytes are taken into consideration.

QFRx = NuRx ·
NBSent

MaxPktSz
·QRx (2.56)

QFRx describes contribution of slots that do not need to transmit an ACK.

Qslotframe = QFIdle+QFsleep+QFTxRx +QFTx +QFRxTx +QFRx (2.57)

Then, Qslotframe sums total charge drawn during a slotframe.

lf =
Bcapacity · 3.6
Qslotframe

· Lengthslot · Lengthslotframe
3600 · 24

(2.58)

At last, lf computes battery lifetime of a node in days, assuming a 3.6V power
supply. Bcapacity is battery capacity given in µAh.

2.10 Funneling effect

When working with WSNs, there is a higher load on motes closer to sink as com-
pared to motes further away [8]. This effect is visualized in Figure 2.12. Data
packets are traversing towards sink and hence increasing load on motes closer to
it. Thus, motes further away have less traffic, and less funneling effect.

Figure 2.12: Illustration funneling effect on nodes closer to sink retrieved from [8]

45

Chapter 3

Proposal

This thesis proposes a novel Reverse Packet Elimination (RPE) algorithm. RPE
was developed with DetNet architecture presented in Section 2.3 in mind and
utilizes the proposed elements explicit routes, service protection, in-order delivery,
packet replication and packet elimination.

3.1 Reverse Packet Elimination

In short, with RPE source replicates a packet and send copies towards sink, along
two different paths. But, when a copy arrives at the sink it triggers a RPE packet
down the opposite path from which it came. Purpose of RPE is to search for the
other copy on its way upstream and eliminate it. Subsequently, the second copy
can be withheld with an adjustable delay τ shown in Figure 3.1.

Figure 3.1: Illustration of how the replicated is withheld by τ

3.1.1 Advantages of Reverse Packet Elimination

As shown in Section 2.6 packet size matter in terms of PDR. Thus, utilizing a
packet significantly smaller downstream from sink to source have a higher delivery

46

ratio than a larger upstream packet. Next, as derived in Subsection 2.9.2 smaller
packets require less radio up time. Finally, as PDR is higher and radio up time is
lower, energy consumption can be decreased as shown in Subsection 2.9.5. This
proposal is described in six steps:

Step 1: A Path Computation Element (PCE) schedules 6TiSCH tracks in daisy
chains with two paths, Path A and Path B. Path A is by design scheduled to send
first. As shown in Figure 3.2, blue cells make up a track from source (7) to sink
(0).

Figure 3.2: Illustration of PCE scheduling tracks from source to sink

Step 2: Source replicates a packet and sends copies up two disjoint paths, Path
A and Path B, which both has explicit routes towards sink as shown in Figure
3.3. The copy along Path B however, is withheld by a delay τ dependent on upper
bound latency of an application. For instance, the control variable utilized in the
feedback loop in Section 1.2. In short, it can be minimum 1 timeslot with no limit
on maximum replication delay.

47

Figure 3.3: Source creates two copies and send one each disjoint path

Step 3: Copies propagates disjoint paths towards the sink. If both Path A and
Path B arrives at sink before sink has chance to send a RPE packet, the packet
arriving last is discarded. This step is illustrated in Figure 3.4.

Figure 3.4: Packets are received at sink before RPE packet is sent

Step 4: If they do not arrive at the same time, sink sends a RPE packet down
the path the copy did not arrive from as shown in Figure 3.5. If Path A arrives
first the RPE packet is sent down Path B and vice versa.

48

Figure 3.5: Sink send a RPE packet down Path B

Step 5: A RPE packet then traverse the network downwards toward the source
searching TX queues for a packet going upstream. When it locates a packet with
identical sequence number it tells the mote to drop it as has been delivered to the
sink. This is depicted in Figure 3.6.

Figure 3.6: RPE packet locates a upstream packet and drops it

Step 6: If a RPE packet manages to arrive at source (looping back) before the
other copy is sent, source do not send the second copy as shown in Figure 3.7.

49

Figure 3.7: A RPE packet sent from sink down Path B makes it back to source
eliminating the copy before it is sent

3.1.2 Reverse Packet Elimination frame format

RPE frame format follow guidelines of IEEE 802.15.4 standard [9]. A RPE amend-
ment would require use of Information Element (IE) header. An IE header is a
optional field in IEEE 802.15.4 general frame format.

Figure 3.8: MAC frame format from IEEE 802.15.4 standard retrieved from [9]

Moreover, a RPE frame would follow general MAC frame format as presented
in Figure 3.8. The only requirement is usage of IE header shown in Table 3.1.

Bits: 0-6 7-14 15 Octets: 0-127
Length Element ID Type = 0 Content

Table 3.1: Information Element header format from IEEE 802.15.4 standard

In the header, Element ID can be utilized to indicate it is a RPE packet. Then,
content contains sequence number RPE is looking for. Frame format of a RPE

50

packet would require fields and sizes as represented in Table 3.2. This sums up
to a total of 23 bytes. A RPE frame do not require use of an IE payload has all
needs are satisfied by an IE header.

Octets: 1 1 8 8 3 2
Frame control Sequence number Destination address Source address IE FCS

Table 3.2: RPE frame format

Effectively this means a RPE frame is similar to a standard frame, but the
payload of a RPE packet is an IE header. For this reason, RPE is payload 23
bytes, while a standard frame has a variable payload with a maximum of 127
bytes. Moreover, RPE ACKs have same format as a IEEE 802.15.4 ACK depicted
in Figure 3.3

Octets: 2 1 2/4
Frame Control Sequence Number FCS

Table 3.3: Acknowledgement frame format

3.1.3 Selection of delay τ

This section present selected delays τ . Moreover, an explanation as to why these
specific τ were preselected are provided. Firstly, selected delays are presented in
Table 3.4. Furthermore, as mentioned earlier τ is always given in slots, and it
indicates the delay from when the first copy was sent. As mentioned in Section
2.2.2 a slotframe is commonly 101 slots. Hence, if τ > 101 it indicates the copy is
scheduled at least one slotframe or more later.

τ
1
8

816
1624

Table 3.4: List of selected τ

51

Figure 3.9: Scheduling a delay of τ = 1

Next, evaluating selection of delays. Starting with τ = 1, which trigger source
to always send two copies, and presumably have lowest latency due to lowest
replication delay. Moreover, with such a low delay, a packet always traverse Path
A and Path B simultaneously. With τ = 1, sink can not send a RPE packet down
when Path A arrive as it needs wait one slot to ensure no collision with Path B.
This is shown in Figure 3.9 where blue track wait for red to arrive at sink (0).

Figure 3.10: Scheduling a delay of τ = 8

Next, τ = 8 has the trait that if no retransmissions occur at Path A, or in the
reverse path back to the source, Path B packet will not be sent. This is illustrated

52

in Figure 3.10 which show schedule for the network in Figure 3.6. With this in
mind, in an ideal world with τ = 8, Path A packet has enough time to loop back
and stop Path B packet. Then, looking at τ = 1624 which is the theoretical
maximum latency of the packet looping back to the source. This is a wait time
of 16 slotframes. In essence, Path A packet is given the chance to utilize all
transmission attempts before Path B packet is transmitted. As seen in Subsection
2.8.1, a transmission fail if a packet was lost during transmission or if the ACK
fails. Hence, motes have several attempt to try ensure it is successfully transmitted.
However, if a transmission fails in the current configuration, a mote has to wait
until the next slotframe iteration before trying again. Transmission attempts are
set to 4 as recommended in [39]. There is an upper limit to retransmission attempts
to ensure packets are dropped if they never succeed. Finally, τ = 824 was selected
to see if there is a difference from the long delay τ = 1624. With τ = 824 delay is
cut from 16 slotframes to 8 slotframes.

Topology specific

With delays from Table 3.4, all except τ = 1 are topology specific. Meaning, τ = 8
depend on number of hops. In short, τ = 8 represent 4 hops to sink and 4 hops
in return to source. Adding one hop would increase delay to τ = 10. What is
more, theoretical maximum latency depend on number of hops meaning τ = 1624
is topology specific as well.

3.1.4 Within a slotframe

At first, the idea of having a delay 1 < τ < 101 was presumed the ideal solution in
terms of delay within a slotframe. But after a closer look at how TSCH slotframes
behave, ideal delay is 1 < τ < 8. As everything after 8 slots is extra unnecessary
delay due to the number of hops. This is due to the fact, as mentioned earlier, if a
transmission fails, the retransmission has to wait 1 slotframe iteration. Meaning,
if a transmission fail at slot 10 and then having a copy wait until slot 17, is 7 slots
of unnecessary delay as presented in Figure 3.11.

53

Figure 3.11: Unnecessary waiting delay within a slotframe

54

Chapter 4

Method

This chapter present methods of how to investigate the Reverse Packet Elimina-
tion algorithm. In fact, several approaches can be utilize to analyze RPE. Most
common methods to study networks involve analytic approaches, simulations or
testbeds. However, as 6TiSCH stack is still under development and not a finished
standard, there are limited options for testbeds. For that reason, an analytic and
simulation approach are selected.

4.1 Simulator selection

When simulating networks, there are a few well-known options which tends to be
utilized. Commonly, OMNet++ [40] and ns-3 [41] are used for simulating network
behavior, but as of late 2018 none of them have implemented 6TiSCH. Although,
ns-3 mention TSCH is to be implemented. Next, Contiki-NG with the Cooja
emulator has 6TiSCH implemented and is a viable option [42]. In addition, Cooja
emulator is written in C, a low level programming language making it easier to
port to real motes. However, chosen simulator is the 6TiSCH simulator [43] due to
more personal experience with Python, as opposed to C, and the fact that another
student uses the same tool allowing for discussions. Moreover, the simulator was
created by some of the members of the 6TiSCH working group, and is designed to
minimize typical simulation drawbacks by careful abstractions specific to 6TiSCH.
My findings are supported by [3], and are presented in Table 4.1.

55

Simulator Learning curve Scalability 6TiSCH implementation Standard-compliant
ns-3 High Medium None N/A

OMNet++ High Medium None N/A
TOSSIM Medium High None N/A

Cooja (Emulator) High Low Yes (partial) Partially
OpenSim (Emulator) High Low Yes Yes (Byte-accurate)

6TiSCH Simulator Low High Yes Yes (Behavioral)

Table 4.1: General overview of options in regards to 6TiSCH derived from [3]

4.2 6TiSCH Simulator

The following information is derived from [3]. The 6TiSCH Simulator is a discrete-
event simulator written in Python encompassing 6 core files. Main component is
Mote where the 6TiSCH stack is implemented. Mote is configured by SimSettings
which holds input parameters a user can tweak. Next, Mote generates metrics for
SimStats and program events scheduled and processed by SimEngine. Example
of such events are TXs and RXs influenced by Propagation, which depend on
Topology. Moreover, internal architecture is illustrated in Figure 4.1. The following
subsections describe the core files.

Figure 4.1: Internal architecture of the 6TiSCH simulator retrieved from [3]

56

4.2.1 SimEngine

SimEngine contains implementation of the event driven core. Mote generate events
every time a task need to be scheduled. Example of such events are increasing
Absolute Slot Number (ASN) or propagating a packet. ASN starts at the first
slot, and describes number of slots since the network started. Events are identified
by a unique tag consisting of mote ID and Universal Unique Identifier (UUID) of
the event. Events are registered with priority as more than one event can happen
at the same time instant. Next, the set of events scheduled in the future, Future
Event Set (FES), are implemented using a Python list. Events are removed with
”pop intermediate” method and added with ”insert” method.

Figure 4.2: FES management example retrived from [3]

Instances in the 6TiSCH simulator has no concurrency risks as they run se-
quentially in a single thread. Events with lower ASN are always executed first
independent of their priority. SimEngine prevents events to be inserted into the
current ASN in order to remove inconsistencies when popping the next event.
Figure 4.2 illustrates how FES manages in the 6TiSCH simulator.

4.2.2 Topology

The simulator generates by default a random topology for each run to make sure
network performance are not impacted by specific topology. Deployment area and
size can be specified by the user. However, topology can be specified by the user if
some modifications are made. When generating the network, motes are by default
placed at random until they match the pre-configured mote density. This can be
altered as seen in Section 5.1. Motes are not deployed unless each mote has a
stable link to a specified minimum number of neighbours. Furthermore, links are
assigned a PDR each. Moreover, in Topology there are additional configurable
topology such as for instance a linear topology.

57

4.2.3 Propagation model

6TiSCH simulator utilizes a propagation model based on the Pister-Hack model
[44]. Pister-Hack model is used to retrieve initial Received Signal Strength Indi-
cation (RSSI) value between each pair of motes.

Figure 4.3: The Pister-Hack model generated RSSI values

Next, RSSI values are converted to PDR values through a conversion table.
The table reflects relationship between RSSI and PDR accurately in large indoors
industrial deployments at the 2.4 GHz band [3]. Pister-Hack model is illustrated
in Figure 4.3.

58

RSSI PDR
-97 dBm 0.0000
-96 dBm 0.1494
-95 dBm 0.2340
-94 dBm 0.4071
-93 dBm 0.6359
-92 dBm 0.6866
-91 dBm 0.7476
-90 dBm 0.8603
-89 dBm 0.8702
-88 dBm 0.9324
-87 dBm 0.9427
-86 dBm 0.9562
-85 dBm 0.9611
-84 dBm 0.9739
-83 dBm 0.9745
-82 dBm 0.9844
-81 dBm 0.9854
-80 dBm 0.9903
-79 dBm 1.0000

Table 4.2: RSSI to PDR values derived from [3]

A transmission is deemed successful or not by PDR values. Furthermore, in
real life wireless scenarios there is interference, and the RSSI from an interfering
neighbour transmission is added to the noise to calculate Signal-to-Interference-
Plus-Noise Ratio (SINR). Relationship between RSSI and PDR are shown in Table
4.2

4.2.4 Energy consumption model

The simulator implements an energy consumption model based on [2]. This model
is briefly presented in Subsection 2.9.5. Different types of slots are defined and
combined according to the schedule configuration to find the energy consumption.

59

Figure 4.4: The sequence of actions and time-slot timing retrived from [2]

In Figure 4.4 events of a TSCH timeslot are presented. These events are utilized
to calculate energy consumption of a mote. An active slot sending a packet and
receiving an acknowledgement activates the radio twice: once for transmitting data
and once for receiving acknowledgement. Thus, the Central Processing Unit (CPU)
is turned on through these phases, while the mote is in a deep sleep mode during
other phases. The model defines consumption of sub-periods within the slot and
the current draw of the radio when it is active. Other factors are number of
bytes transmitted, data rate, and consumption of the CPU in different states and
transitions.

State Description

Idle
Mote idle listens. This is a RX state where nothing is received.
Hence it only listens for duration of guard time.

Sleep
Mote Deep Sleeps. Slot is off, no CPU nor radio activity due
to communication.

TxDataRxAck Mote transmits a packet and receives an ACK for it.
TxData Mote sends a broadcast packet not requiring ACK.
RxDataTxAck Mote receives a packet and responds with an ACK.
RxData Mote receives a frame that do not require to be acknowledged.

Table 4.3: Different states affecting energy consumption retrieved from [2]

The different states are described in Table 4.3 and after an execution of a

60

slot the simulator aggregates consumed energy. Lastly, current draw matches the
OpenMote platform [45], but can be adapted to other platforms.

4.2.5 Mote

Mote implements the different layers of the 6TiSCH stack. SimEngine initiates
at boot time a number of Mote objects and assigns one of them as root. Next,
root adds periodically Enhanced Beacon (EB) and DIOs to its queue to trigger
network formation. At the same time, other motes select a random channel and
start listening. Propagation evaluates at each slot which motes listen and which
motes have scheduled transmissions. For every packet the outcome of the trans-
mission in regards to interference and signal strength is determined. Interference
level depend on mote density. Each mote sets up TX and RX events according
to their schedule. What is more, motes not joined the network yet schedule RX
events for waking up at each ASN.

In time, a mote eventually get an EB and synchronize its TSCH MAC layer and
start the joining process. Motes joins the network through their Join Proxy which
allows it to decipher DIO messages to obtain a rank and set a preferred parent.
When preferred parent is selected it triggers dedicated cell allocation. For a mote
to be able to send any data traffic, it needs dedicated cells.

Several Housekeeping callback functions are periodically scheduled to perform spe-
cific actions at each layer (TSCH, RPL, etc.) to help triggering the booting se-
quence. In addition, when a timeout is required different events are scheduled (6P
timeout, Join timeout, etc.). All events are noted in SimEngine and set off the
callback functions when the timers expire.

Moreover, all layers in Mote can be configured through SimSettings. For instance,
TSCH layer frame size, timeslot duration and beacon period are examples of con-
figurable parameters. Next, 6top and Minimum Scheduling Function (MSF)[46]
can be changed and is currently holding parameters from the original draft. More-
over, RPL is in non-storing mode and support different configurations such as
DIO period and DAO period. Lastly, data traffic can be sent at anytime during
simulations and can be variable or constant. Traffic bursts can be scheduled and
variable traffic is modeled after different probability distributions.

4.2.6 Metrics

As mentioned earlier, the event handler trigger updates for different metrics during
the simulation. Currently, over 50 metrics are added and it is possible to add more

61

if needed. They can be set as per cycle to get a values from each slotframe iteration
or as an absolute to get the total value when the simulation is done. A slotframe
cycle is the number of slots in a slotframe, which is by default 101. In Figure 4.4
a list of metrics are shown.

State Type Description
Average latency Per cycle Average latency of packets arriving at root (in ASNs)

Charge consumed Absolute Charge consumed by all motes during simulations
Charge consumed at every mote Absolute Total charge consumed by a mote during simulations
App packets generated/received Per cycle Number of data packets generated and received at every cycle

Number of TX/RX Per cycle Number of MAC frames sent and received at every cycle
Number of drops Per cycle Drops are classified by its cause: QueueFull, MaxRetries and NoRoute

Table 4.4: Example of available metrics in the simulator derived from [3]

By default, the simulator logs metrics of each simulation in a log file. Moreover,
runs utilize different files and folders with regards to CPU ID and network size.
Metrics can be plotted from a set of helper scripts designed to process data.

62

Chapter 5

Simulator implementation

This Chapter describe implementation of Reverse Packet Elimination algorithm
in the 6TiSCH simulator. It needed substantial change and new functionality to
support RPE. Major code changes made in the 6TiSCH simulator can be located
in Appendix C.

5.1 Topology

6TiSCH simulator did not contain capability to specify positions, and thereby a
new class named ConnectivitySpecified(ConnectivityBase) was introduced. This class deploys
motes in (X, Y) coordinates as show in Listing 5.1. Topology is depicted in Figure
3.3. In other words, 8 motes are deployed with Mote 7 being source and Mote 0
being sink (root).

i f target mote . id == 0 :
s e l f . c oo rd ina t e s [target mote . id] = (0 , 0)
mote i s dep loyed = True

Listing 5.1: Deploying motes in a (X, Y) grid.

Moreover, to be able to adjust specific PDR of all links a second class ConnectivityMaster

↪→ (ConnectivityBase) was created. This class can manipulate the PDR of any link. For
the former class, PDR is determined by the RSSI, which in return depend on dis-
tance. However, the new class has no concept of positions as PDR is determined
by user input as shown in Listing 5.2.

c o n n e c t i v i t y = s e l f .CONNECTIVITY MATRIX 50 LINK

i f source . id == 0 and d e s t i n a t i o n . id == 1 or source . id == 1 and d e s t i n a t i o n . id
↪→ == 0 :
c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)

Listing 5.2: Specifying PDR of selected links and setting a default value for all
others

63

5.2 Path computation element

Firstly, to achieve deterministic behavior for data packets, a fairly simple PCE
is implemented in Mote. This PCE work on top of MSF [46] with purpose of
introducing 6TiSCH tracks for Path A and Path B from source to sink. Tracks are
implemented from source towards sink, and in reverse from sink to source shown
in Figure 5.1 and listed underneath:

Figure 5.1: Topology PCE schedules tracks for. Red arrow indicates Path B and
blue indicates Path A

• Path A: Source → Mote 5 → Mote 3 → Mote 1 → Sink

• Reverse Path A: Source ← Mote 5 ← Mote 3 ← Mote 1 ← Sink

• Path B: Source → Mote 6 → Mote 4 → Mote 2 → Sink

• Reverse Path B: Source ← Mote 6 ← Mote 4 ← Mote 2 ← Sink

PCE schedules TSCH cells in daisy chains for all paths. Path A is scheduled to
send first. Path B however, is as mentioned in Chapter 3, scheduled with a delay
τ . Daisy chain delay is configurable as shown in Listing 5.3.

#INDEX IS FROM 0−100 (101)
s e l f . s lotA = 1
s e l f . s l o tB = 2 #ADJUST THE DAISY CHAIN DELAY
s e l f . s lotReverseA = 6
s e l f . s lotReverseB = 5 #DAISY CHAIN DELAY + 5

Listing 5.3: Adjusting the packet replication delay

TSCH forward data packets in these cells, and no other traffic are permitted to
utilize these tracks. PCE set tracks upwards to sink and downwards from sink.
Next, it schedule TX and RX cells at a random channel as shown in Listing 5.4

64

f o r idx , moteid in enumerate (path) :
s e l f . s lotA += 1
channel = randint (0 , 3)
i f idx >= len (path) − 1 :
break

sender = s e l f . eng ine . motes [moteid]
r e c e i v e r = s e l f . eng ine . motes [path [idx + 1]]

sender . t s ch . addCel l (
s l o t O f f s e t = s e l f . s lotA ,
channe lOf f s e t = channel ,
ne ighbor = r e c e i v e r . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION TX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0 ,

)
r e c e i v e r . t sch . addCel l (

s l o t O f f s e t = s e l f . s lotA ,
channe lOf f s e t = channel ,
ne ighbor = sender . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0

)

Listing 5.4: Scheduling TX and RX cells for Path A

6TiSCH tracks are deployed at ASN 1 and do not allow any other traffic than data
generated at App layer. Reverse paths are a continuation of the daisy chains from
Path A and Path B, but traffic is only sent at these tracks if triggered by sink. In
fact, it is at the reverse tracks RPE packets operate.

5.3 TSCH

At the TSCH layer a track ID is introduced to ensure only traffic for a specific
track is scheduled at that particular track. If a packet needs to be retransmitted
it has to wait a slotframe iteration for a new opportunity as it is not allowed to
use any other TX cells. This is true for other traffic, a packet will not be put in
the TX queue for a cell that is owned by a track even if the track has nothing
scheduled. This ensures no random behaviour and enables deterministic tracks.
This is illustrated in Listing 5.5
types = [d .PKT TYPE PATH A, d .PKT TYPE PATH B, d .PKT TYPE RPE A, d .PKT TYPE RPE B]
f o r packet in s e l f . txQueue :

i f packet [’mac ’] [’ dstMac ’] == dst mac addr :
i f trackID i s not None :

i f packet [’ type ’] in types :
packe t to s end = packet
break

e l s e :
i f packet [’ type ’] not in types :

packe t to s end = packet
break

Listing 5.5: Ensuring no randomness in 6TiSCH tracks

65

5.4 Scheduling function

The 6TiSCH simulator deploys MSF by default. However, to ensure normal oper-
ation of MSF do not interfere with 6TiSCH tracks a few modifications need to be
applied. As mentioned tracks are introduced at ASN 1, so to ensure MSF do not
schedule traffic in these cells some checks need to be done. Firstly, getting cells
available in the intersection of slotframe handles as shown in Listing 5.6

a v a i l a b l e s l o t s = l i s t (
s l o t s i n c e l l l i s t . i n t e r s e c t i o n (

s e t (s e l f . mote . t sch . g e t a v a i l a b l e s l o t s (s e l f .SLOTFRAME HANDLE)) −
s e l f . l o c k e d s l o t s

)
)

Listing 5.6: Getting available cells from slotframe handles

Next, track cells are statically configured in Listing 5.7. Cells are removed from
the pool of cells MSF has available to ensure no cells are double booked.

de f g e t a v a i l a b l e s l o t s g l o b a l (s e l f) :
b u s y s l o t s = []
f o r mote in s e l f . eng ine . motes :

f o r key in mote . t sch . s l o t f r a m e s :
s l o t s = mote . t sch . s l o t f r a m e s [key] . g e t b u s y s l o t s ()
f o r s l o t in s l o t s :

b u s y s l o t s . append (s l o t)
re turn l i s t ((s e t (range (s e l f . eng ine . s e t t i n g s . t s ch s l o t f rameLength))) − s e t (
↪→ b u s y s l o t s))

Listing 5.7: Retrieving available cells

Finally, MSF operate without utilizing cells configured for tracks. This is shown
for RX cells in Listing 5.8, TX cells corresponds with scheduled RX cells.

de f g e t au tonomous c e l l (s e l f , mac addr) :
r e turn s e l f . eng ine . get mote by mac addr (mac addr) . s f . autonomous ce l l

de f a l l o c a t e a u t o n o m o u s r x c e l l (s e l f) :
a l l s l o t s = s e l f . g e t a v a i l a b l e s l o t s g l o b a l ()
s e l e c t e d s l o t = random . cho i c e (a l l s l o t s)
c h a n n e l o f f s e t = random . rand int (0 , 15)
s e l f . mote . t sch . addCel l (

s l o t O f f s e t = s e l e c t e d s l o t ,
channe lOf f s e t = c h a n n e l o f f s e t ,
ne ighbor = None ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
s l o t f r ame hand l e = s e l f .SLOTFRAME HANDLE

)
s e l f . autonomous ce l l = (s e l e c t e d s l o t , c h a n n e l o f f s e t)

Listing 5.8: Scheduling cells without interfering with tracks

66

5.5 RPL

RPL layer is modified to set static routes upstream. Motes should normally find
their parent, but to ensure explicit routes parent selection is predefined. Next,
as the implementation requires source to have two parents to ensure the copies
are sent along disjoint paths, Mote 7 will before sending a packet switch parent.
Switch is done at App. Parents selection is shown in Listing 5.9

i f s e l f . p r e f e r r e d p a r e n t i s None and s e l f . r p l . mote . id != 0 :
parent mote = None

i f s e l f . r p l . mote . id == 1 :
parent mote = s e l f . r p l . eng ine . motes [0]

e l i f s e l f . r p l . mote . id == 2 :
parent mote = s e l f . r p l . eng ine . motes [0]

Listing 5.9: Influencing parent selection of motes. In this example Mote 1 and
Mote 2 sets sink as their preferred parent

5.6 Application layer

Application Layer (APP) resides at each mote. All motes operate the same logic,
except the sink. To ensure simulations are not affected by any other traffic, only
sink and source are allowed to generate data traffic. At source, traffic is only gen-
erated after a user specified number of slotframe iterations to ensure the network
is converged. Next, users can set how often data is sent. For instance, every 10
slotframes source generates a packet for each path. Number of packets sent for
each run is configurable. These settings can be changed as shown in Listing 5.10.

wai tS lo t f rames = 10
s l o t f r ame = 101
converged = 10000
sendpackets = 4000

Listing 5.10: Configurable parameters at Source

Next, as mentioned in Section 5.5, source needs to alternate between parents.
This is done by setting preferred parent before sending each packet as illustrated
in Listing 5.11.

i f s e l f . mote . id == 7 and s e l f . eng ine . asn > converged :
isNewSlotFrame = (s e l f . eng ine . asn % (s l o t f r ame ∗wai tS lo t f rames)) == 0
i f isNewSlotFrame :

s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine . motes [5] .
↪→ get mac addr ())

s e l f . s end path a (
dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength
)

67

s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine . motes [6] .
↪→ get mac addr ())

s e l f . s end path b (
dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength
)

Listing 5.11: Scheduling data packets and switching parents before doing so

Packets then propagate their paths towards the sink. When a packet arrive at sink,
it does a similar check as Listing 5.17 to check if it has a packet with the sequence
number in its TSCH queue. If the sink has a copy in its queue the packet is
dropped, if not a RPE packet is triggered down the opposite path through Listing
5.12.

i f not foundAck :
i f packet [’ type ’] == d .PKT TYPE PATH A and packet [’mac ’] [’ srcMac ’] == s e l f .
↪→ eng ine . motes [1] . get mac addr () :

s e l f . s end rpe b (packet [’ app ’] [’ sequencenumber ’])

e l i f packet [’ type ’] == d .PKT TYPE PATH B and packet [’mac ’] [’ srcMac ’] == s e l f .
↪→ eng ine . motes [2] . get mac addr () :

s e l f . s e n d r p e a (packet [’ app ’] [’ sequencenumber ’])

Listing 5.12: Triggering the RPE packet downstream from sink

5.6.1 Increasing delay beyond slotframe

Major changes to the logic had to be made to enable the simulator to schedule a
packet into the future. In essence, in terms of sending packets there are no reasons
to schedule a packet and withhold it for a number of slotframes before sending
it. However, this was solved by utilizing SimEngine function self .engine.scheduleAtAsn

enabling the simulator to schedule an event into the future. This is presented in
Listing 5.13, as illustrated Path A packet is scheduled now and Path B packet
simultaneously is scheduled into the future.

i f s e l f . eng ine . asn % 1010 == 0 :
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine . motes [5] .

↪→ get mac addr ())
s e l f . s end path a (

dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength

)
s e l f . txpacket += 1
s e l f . eng ine . scheduleAtAsn (

asn = s e l f . eng ine . getAsn () + (101∗16) , # number o f
↪→ s l o t s f r a m e s to wait

cb = s e l f . sendB ,
uniqueTag = ” c r i t i c a l p a c k e t b ” + s t r (s e l f . sequencenumber) ,
i n t raS l o tOrde r = d .INTRASLOTORDER ADMINTASKS

)

Listing 5.13: Scheduling an event into the future

68

Next, in this example Path B is scheduled 16 slotframes into the future, and need
to be de-scheduled in the event of an RPE packet looping back. In addition,
sequence numbers need to match, presenting an issue as sequence numbers are
incremented every 10 slotframes. An easy fix is done by decrementing sequence
number of Path B packet in the future before putting it in the TSCH queue.
Moreover, de-scheduling method is presented in Listing 5.14
de f recvPacket (s e l f , packet) :

i f s e l f . mote . id == 7 and packet [’ type ’] == d .PKT TYPE RPE B:
p r i n t ’PATH A Returned ’
sequencenumber = packet [’ app ’] [’ sequencenumber ’]
s e l f . eng ine . removeFutureEvent (” c r i t i c a l p a c k e t b ” + s t r (sequencenumber))
s e l f . mote . drop packet (

packet = packet ,
reason = SimEngine . SimLog .REVERSE DROP,

)
e l s e :

pass

Listing 5.14: De-scheduling an future event

What is more, an issue with this approach, or in fact a drawback with the simulator
is logging of latency. When a packet is received and latency is calculated, it looks
at the first slot of the slotframe as beginning of time. Meaning, if a packet is
scheduled at slot 4 and received at slot 8, the latency is 80 milliseconds and not 40
milliseconds. This is not an issue in itself, but when utilizing self .engine.scheduleAtAsn it
presents a problem. The problem is the event is scheduled into the future, meaning
a packet has no concept of time before that particular ASN. Consider the same
scenario with a packet arriving at slot 8 after 16 slotframes, in terms of latency
this would still show up as 80 milliseconds, as the packet do not know 16 seconds
has passed. Meaning, effect of an increased sending delay would not appear in the
results. However, as results are calculated after the simulation is done by iterating
through a log file, a correction can be made. As shown in Listing 5.15 latency is
altered by adding 16 slotframes to the calculation every time a Path B packet is
received at sink. This method works, but is not exactly ”by the books”.

i f l o g l i n e [’ packet ’] [’ type ’] == d .PKT TYPE PATH B:
a l l s t a t s [run id] [mote id] [’ upstream pkts ’] [appcounter] [’ rx asn ’] =

↪→ asn + (101∗16)#Adjust de lay to l o g f i l e
e l s e :

a l l s t a t s [run id] [mote id] [’ upstream pkts ’] [appcounter] [’ rx asn ’] =
↪→ asn

Listing 5.15: Correcting delay before logging latency

5.7 6LoWPAN

Next, to assure packets are sent where they are supposed to, static forwarding
routes downstream for RPE packets are implemented at 6LoWPAN. Ideally, this

69

should be done by a routing protocol, but routing protocols are not subject of
analysis. Downstream routes only allow specific traffic types as shown in Listing
5.16

i f packet [’ type ’] == ’RPE A ’ and s e l f . mote . id == 0 :
re turn s e l f . eng ine . motes [1] . get mac addr ()

i f packet [’ type ’] == ’RPE B ’ and s e l f . mote . id == 0 :
re turn s e l f . eng ine . motes [2] . get mac addr ()

Listing 5.16: Setting the downstream paths in 6LoWPAN. In this listing Sink sets
Mote 1 and Mote 2 as receivers of RPE A and RPE B

Moreover, 6LoWPAN is modified to allow new packet types, and it is at this
layer the drop mechanism RPE utilizes is implemented. In essence, RPE triggers
a mote to check its TSCH queue. This check is done 3 times:

• When receiving a packet

• When sending a packet

• When forwarding a packet

A check is done this often to assure upstream packets are dropped. For instance,
when a packet is received it checks it queue for the packet, and if its not there the
packet is pushed to the forwarding layer. But, when the packet is at the forwarding
layer an upstream packet may be received, and if the check is not done again it
may pass by undetected. Dropping a upstream packet method is presented in
Listing 5.17:

i f packet [’ type ’] == d .PKT TYPE RPE A or packet [’ type ’] == d .PKT TYPE RPE B:
f o r Qpacket in s e l f . mote . t sch . txQueue :

i f Qpacket [’ type ’] == d .PKT TYPE PATH A or Qpacket [’ type ’] == d .
↪→ PKT TYPE PATH B:

i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’ sequencenumber ’
↪→] :

s e l f . mote . t sch . dequeue (Qpacket)
p r i n t ’ dropped at ’ , s e l f . mote . id , ’ Packet ’ , Qpacket [’ type ’]
s e l f . mote . drop packet (

packet = Qpacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)

goOn = False

Listing 5.17: Dropping packets going upstream

The same method need to be modified and applied to sink. Ensuring if a packet
arrives at sink and a packet from the other path arrives before a RPE packet is
sent, it is dropped before reaching APP layer. If Listing 5.18 check is not done,
sink registers two packets as arrived and note both latencies.

70

i f s e l f . mote . id == 0 :
i f packet [’ type ’] == d .PKT TYPE PATH A or packet [’ type ’] == d .PKT TYPE PATH B:

f o r Qpacket in s e l f . mote . t sch . txQueue :
i f Qpacket [’ type ’] == d .PKT TYPE RPE A or Qpacket [’ type ’] == d .

↪→ PKT TYPE RPE B:
i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’

↪→ sequencenumber ’] :
s e l f . mote . t sch . dequeue (Qpacket)
s e l f . mote . t sch . dequeue (packet)
p r i n t ’ Dropped at 6 lowpan at Sink : ’ , packet [’ type ’]
goOn = False

Listing 5.18: Dropping packets before they enter the APP layer

5.8 Mote

At Mote a change was added allowing the network to be synchronized at TSCH
level at the start of each run. In essence, motes need synchronize their clocks to
ensure they are listening and sending when they are supposed to. Furthermore, to
ensure this all motes need predefined join proxies and knowledge of what clock to
sync against. Setting these are illustrated in Listing 5.19. To summarize, This is
done to decrease simulation time, and to ensure results have identical conditions.

s e l f . s e c j o i n . s e t I s J o i n e d (True)
tsch
i f s e l f . id == 1 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [0] . get mac addr
↪→ ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [0] . get mac addr ())

Listing 5.19: Syncing TSCH clock and setting join proxy at Mote.

5.9 General simulator setup

This section present general parameters utilized. All parameters are derived from
[39]. These are current best practice of 6TiSCH, but not standardized. However,
some of the parameters such as packet interval, number of packets and packet
size are not listed as they are application specific. Moreover, all parameters are
identical for all runs, with exception of link quality and delay τ . However, these are
specified with corresponding results to insure all results are interpreted properly.

71

Description Value
Slotframes per run # 21000

Packet size 127 bytes
DAO period 60 seconds

Scheduling function Minimal scheduling function
Slot duration 0.01 seconds

Slotframe length 101 slots
Enhanced beacon probability 0.16

Clock max drift part per million 30 ppm
Keep alive interval 10 seconds

Number of physical channels # 16
Number of packets # 2000

Packet interval 1 Packet every 10 slotframe
Link quality Specified for each run

Delay τ Specified for each run
Maximum retransmissions # 4

Number of runs # 30

Table 5.1: General parameters of simulator

5.9.1 Slot charge

Simulations has utilized predefined values set in the 6TiSCH simulator in terms of
slot charges. These values are listed in Table 5.2.

State Coloumbs
Idle 6.4µC
TxDataRxAck 54.5µC
TxData 49.5µC
RxDataTxAck 32.6µC
RxData 22.6µC

Table 5.2: Energy charges in terms of consumption

5.9.2 Validation of results

As shown in Table 5.1 number of runs are 30. Moreover, standard deviation
was used to calculate Coefficient of variation (CV), known as relative standard
deviation. Highest CVs recorded are listed underneath:

• Battery life: 8%

72

• Packet delivery ratio: 0.04%

• Average latency: 4%

• 99th percentile: 6%

• Packet elimination location: 12%

5.9.3 Hardware

Time spent simulating different setups depend on CPU speed and number of cores.
Each run lasts approximately 8 minutes when utilizing hardware shown in Table
5.3.

Description Value
Intel core i5-8600K Cores: 6 / Threads: 6
Processor frequency (max) 3.6GHz (4.3 GHz)
RAM 2x8GB DDR4 SDRAM

Table 5.3: Hardware utilized to simulate results

5.9.4 Limitations

As shown in Section 5.5, preferred parent selection is influenced and changes every
time source alternates between Path A and Path B. Selection of different parents,
namely DP and Alternative Parent (AP), is in itself a field to be studied. Issues
such as how motes should distribute their DAO messages. This problem is assessed
in IETF draft [47] published in January 2019. Moreover, a small amount of the
simulations, 1 or 2 motes do not join the DODAG properly. These results have
been eliminated.

5.10 Scenarios

This section present simulated scenarios. Main simulation setups are presented
before parameters utilized are discussed.

5.10.1 Topology

All simulations follow the topology depicted numerous times. But, to ensure no
misunderstandings a brief recap is presented with changes in naming convention.

73

(a) (b)

Figure 5.2: Changing the naming convention

Changes are illustrated in Figure 5.2, where Figure (a) represents previous
naming convention, and Figure (b) depicts the change. In essence, names are
changed from mote number, to path location and number. For example, Mote 1
is now A1. This is to get a better understanding of upcoming results.

5.10.2 Single Path

When referring to Single Path, it describes a scenario where traffic is only sent from
source to sink through Path A. No data traffic except normal 6TiSCH operations
happens at Path B. This is assessed as normal 6TiSCH operation. There are no
packet replication or elimination involved. In some figures Single Path is referred
to as SP. Single Path can be visualized in Figure 5.3.

74

Figure 5.3: Illustration of Single Path scenario

5.10.3 Dual Path

Dual Path refers to a scenario where there is packet replication at source and packet
elimination at sink. This version contains the packet elimination and replication
technique presented in DetNet [17] and analyzed in [5]. In some figures Dual Path
is referred to as DP.

5.10.4 RPE

RPE refers to implementation of the novel Reverse Packet Elimination proposal.
This scenario is listed with corresponding sending delay τ in figures.

5.10.5 RPE Overprovisioning

In this scenario PCE schedules an extra TX and RX slot for each upstream hop.
Otherwise, this refers to RPE operation with τ = 8. In graphs RPE Overprovi-
sioning is referred to as OP.

5.10.6 Parameters

Table 5.4 list PDR utilized at the links. Next, Table 5.5 shows the sending delay
τ

75

PDR 70% 80% 90%

Table 5.4: Link qualities utilized in simulations

τ 1 8 816 1624

Table 5.5: Different parameters in term of sending delay

5.10.7 6TiSCH tracks

In all simulations, tracks are implemented from source to sink and in return. This
is done as DetNet request a track for each mote. In Single Path version, this is
only done at Path A.

76

Chapter 6

Results

This chapter present all results, starting with theoretical results. Next, simulation
results are presented with regards to latencies, reliability and mote lifetimes.

6.1 Theoretical results

This section shows analytical results. Firstly, taking a look at theoretical latencies
in terms of maximum and minimum. Next, show packet size influences radio up
time. Then, how packet size effect expected number of transmissions over multiple
hops. Finally, expected mote lifetime with regards to packet size.

6.1.1 Maximum and minimum latencies

Given topology in Figure 5.2 with 4 hops from source to sink, theoretical maximum
and minimum latencies with given τ are listed in Table 6.1.

τ Latency minimum [sec] Latency maximum [sec]
0 0.04 16.16
1 0.04 16.17
8 0.04 16.24

816 0.04 24.32
1624 0.04 32.40
OP 0.07 16.28

Table 6.1: Maximum and minimum theoretical latencies for τ in seconds

What Table 6.1 show is increasing delay τ increases theoretical maximum la-
tency. With τ = 0 it indicates Single Path with no packet replication. Moreover,

77

increasing τ from 8 to 1624 nearly doubles theoretical maximum from 16.24 sec-
onds to 32.40 seconds. What is more, all scenarios have minimum latency at 40
milliseconds, except Overprovisioning due to extra cells in tracks. Hence, Over-
provisioning have 70 milliseconds as lowest possible latency.

6.1.2 Radio up time

Time required for the radio to be active sending 25 packets with max packet size
127 bytes and 25 RPE packets with a size of 23 bytes are shown in Figure 6.1.
Furthermore, ACK is taken into account. This scenario assumes perfect conditions
(e.g no loss).

0 5 10 15 20 25

0

1

2

·10−2

Number of packets #

S
ec

on
d
s

Max packet: 127 bytes RPE: 23 bytes

Figure 6.1: Time to transmit a max packet and a RPE packet assuming no loss

Figure 6.1 show after 25 packets are transmitted radio up time is reduced from
0.0266 seconds to 0.0054 seconds, a 21.2 milliseconds reduction. To summarize,
RPE packets require less radio up time than larger packets.

6.1.3 Radio up time with retransmissions

As Figure 6.1 do not take effects of BER into consideration, it does not give a
realistic representation. Thus, Figure 6.2 present expected radio up time for a
single packet as a function of BER. Packet sizes are max packet size 127 bytes and
RPE at 23 bytes. When the plots flatten packets are assumed to fail as the limit

78

has reached m, maximum transmission attempts as derived in Subsection 2.8.1.
Figure 6.2 shows a 127 bytes packet flattens at approximately 4.25 milliseconds
with a BER at 0.005. RPE packet with 23 bytes flattens at roughly 0.7 milliseconds
when BER is 0.03.

0 0.5 1 1.5 2 2.5 3

·10−2

0

1

2

3

4

·10−3

Bit error rate

S
ec

on
d
s

Max packet: 127 bytes RPE: 23 bytes

Figure 6.2: Expected radio up time considering BER for a max packet 127 bytes
and RPE 23 bytes

Figure 6.1 shows packet size has an impact on radio up time. An increased
amount of bits in a packet effect likelihood of a unsuccessful transmission. A max
packet size caps at BER 0.5% while a RPE packet go as high as a BER of 3%.
What this shows, is that theoretically a RPE packet has a higher chance of being
successfully transmitted and utilizes less radio up time compared to a 127 bytes
packet.

6.1.4 Expected number of transmissions

Given the topology consisting of 4 hops, expected number of transmissions for
PDRs utilized are illustrated in Figure 6.3.

79

0 1 2 3 4 5 6

0

1

2

3

4

Number of transmissions #

N
u
m

b
er

of
h
op

s
PDR = 70%

PDR = 80%
PDR = 90%

PDR = 93.7%
PDR = 96.1%
PDR = 98.1%

Figure 6.3: Expected number of transmissions with given PDRs

Selected PDRs are based on work in Section 2.6, where Table 2.2 derives rela-
tionship between PDR and packet size. What is more, BERs are retrieved from
the same section. Assume scenario τ = 8 described in Subsection 3.1.3 and that
the first copy, Path A packet, has made it to the sink. Thus, expected number of
transmissions a RPE packet requires to make it back to source are shown in Table
6.2.

BER PDR Expected number of transmissions
3.483 · 10−4 93.7% 4.27
2.178 · 10−4 96.1% 4.16
1.028 · 10−4 98.1% 4.08

Table 6.2: Expected number of transmissions for a RPE packet the given PDRs

Next, assume a packet along Path A has failed and packet is transmitted to
sink along Path B. Expected number of transmissions for packet along Path B to
reach sink are shown in Table 6.3. As Path A == Path B, expected number of
transmissions for a packet along Path A are equal to Table 6.3.

BER PDR Expected number of transmissions
3.483 · 10−4 70% 5.60
2.178 · 10−4 80% 4.98
1.028 · 10−4 90% 4.44

Table 6.3: Expected number of transmissions for max packet size with the given
PDRs

80

Table 6.2 and Table 6.3 show expected number of transmissions increases with
identical BER due to increased packet size. Emphasizing, PDR changes when
increasing packet size for same BER. Max packet size uses 5.60 transmissions
and RPE uses 4.27 transmissions with a BER at 3.483 · 10−4. In essence, this
shows a max packet size has a higher chance of utilizing retransmission attempts.
Theoretically, RPE packets on their way downstream can stop larger packets stuck
retransmitting upstream. For instance, if a link between two motes deteriorate,
larger packets utilize more transmission attempts than a smaller packet. Hence,
RPE packets has higher chance of successful transmission over the same link, and
can stop larger packet from utilizing all their retransmission attempts. In short,
this would theoretically decrease energy consumption as larger packets stuck in
retransmission upstream can be dropped.

6.1.5 Expected mote lifetime

Next question is how packet size affect expected TSCH mote lifetime. In this
analysis everything except 1 TX slot and 1 RX slot are removed, remaining 99
slots are in sleep mode. Emphasizing, all other slots are removed, meaning no
minimal slot or shared slots. This is to get a clear view of effects RPE packet size
has compared to max packet size without any RPL, TSCH or 6top traffic clouding
the results. Packet rate is 1 per slotframe iteration.

81

3.483 · 10−4 2.178 · 10−4 1.028 · 10−4

1,400

1,500

1,600

1,700

1,800 1,770 1,776 1,777

1,582
1,603

1,620

Bit Error Rate

M
ot

e
li
fe

ti
m

e
in

d
ay

s

RPE packet Max packet size

Figure 6.4: Theoretical expected mote lifetimes in days when transmitting max
packet size and RPE packets

Using same case as previous, τ = 8 , where a packet along Path A has made
it to sink. This triggers a RPE packet from sink to source down Path B. Lifetime
for each mote with different PDR are then shown in Table 6.4.

PDR BER Expected lifetime [years] Expected lifetime [days]
93.7% 3.483 · 10−4 4.84 1770
96.1% 2.178 · 10−4 4.86 1776
98.1% 1.028 · 10−4 4.0 1777

Table 6.4: Expected TSCH mote lifetime when using RPE packet

Next, as before, assume a packet along Path A fails which leads to a packet
being transmitted at Path B. Mote lifetime for each mote transmitting a max
packet size are listed in Table 6.5. These results are identical for all motes along
Path A.

PDR BER Expected lifetime [years] Expected lifetime [days]
70% 3.483 · 10−4 4.33 1582
80% 2.178 · 10−4 4.38 1603
90% 1.028 · 10−4 4.43 1620

Table 6.5: Expected TSCH mote lifetime when using max size packet

82

Table 6.6 looks at difference in lifetime for each mote in percent. Moreover,
Figure 6.4 illustrates difference in days.

BER RPE packet [days] Max packet size [days] Increase [%]
3.483 · 10−4 1770 1582 11.9%
2.178 · 10−4 1776 1603 10.8%
1.028 · 10−4 1777 1620 9.7 %

Table 6.6: Theoretically increased lifetime for each mote in %

In essence, what this section show is decreasing packet size, increases mote
lifetime. Increasing mote lifetimes, decreases maintenance as motes do not need
to be recharged or changed as often. In a industrial wireless sensor network this
is crucial as downtime can stop production causing revenue loss.

6.1.6 Summarizing theoretical results

Before presenting simulation results, a summary of theoretical results is presented.
What this section has shown is: firstly, increasing replication delay τ increases
maximum latency. Secondly, in terms of packet size, RPE packet requires less time
to be transmitted. Next, it has a higher chance of successfully being transmitted as
it tolerates a higher BER. Finally, motes transmitting RPE packets have a lower
energy consumption. Moreover, the next sections presents simulated results.

6.2 Reliability

This section present reliability and number of packets lost. As mentioned in Sub-
section 5.10, RPE scenarios are listed with replication delay τ . The comparison
is done between Single Path and τ = 8 as all scenarios utilizing packet replication
has a negligible difference in reliability due to identical behaviour.

6.2.1 Packet delivery ratio

As shown in Figure 6.5(a) and Table 6.7 with a link quality of 70%, Single Path
has a reliability of 88.24%. RPE increases the reliability at the same link with
10.41% to 98.65%. Moreover, increasing quality of links to 80% decreases difference
between RPE and Single Path, but it is still significant with Single Path at 97.7%
compared to RPE with 99.95%. Lastly, at 90% link quality the gap in reliability
closes in with a difference of 0.09% as RPE delivers a 100% delivery ratio. However,
there is packet loss involved, and over time statistically a packet will be dropped.

83

Hence, delivery ratio cannot be 100% and is presumably in the range of 99.999%
as DetNet and TSCH are aiming to achieve [17][16].

PDR Single Path delivery ratio RPE delivery ratio
70% 88.24% 98.65%
80% 97.7% 99.95%
90% 99.91% 100%

Table 6.7: Packet delivery ratios in percent with different link qualities

70 80 90

90

95

100

Link quality in %

P
ac

ke
t

d
el

iv
er

y
ra

ti
o

in
%

Single Path RPE

(a)

70 80 90

0

100

200

Link values in %

N
u
m

b
er

of
p
ac

ke
ts

lo
st

#

Single Path RPE

(b)

Figure 6.5: Number of packets lost and packet delivery ratios with link quality
from 70-90%

Packets lost

In this subsection, the delivery ratios achieved are illustrated with packets dropped.
Number of packets lost out of 2000 sent are listed in Table 6.8 and depicted in
Figure 6.5(b). For instance, if packet replication is not utilized at 70% link quality,
number of packets lost are increased from 27 to 235, a difference of 208 packets.
Next, increasing quality of links to 90% closes the gap from 208 to a difference of
2. In an industrial network getting all the data is important and seen in Table
6.7, with 80 link quality reliability is increased with 2.25%. A 2.25% increase in
reliability in this example is a reduction in packets lost from 46 to 1. To summarize,
a few percent increase in reliability matters as industrial networks require high
reliability.

84

PDR Single Path - Packets lost # RPE - Packets lost #
70% 235 27
80% 46 1
90% 2 0

Table 6.8: Number of packet lost when utilizing different link qualities

6.3 Distribution of RPE packets

This section present distribution of where RPE packets eliminated upstream pack-
ets along Path A or Path B. This shows the effect of introducing shorter and longer
delays τ . Figure 6.6 shows the different PDR values changes elimination location.
Particularly, lowering link quality causes elimination location to spread across all
motes with a higher rate than when link quality increases.

Sink A1 B1 A2 B2 A3 B3 Source
0

20

40

60

80

100

Mote

P
ac

ke
ts

st
op

p
ed

%

70% 80% 90%

Figure 6.6: Packet elimination distribution for τ = 8 with 70-90% link quality

Next, with a link quality of 80% Figure 6.7 show how τ = 816 and τ =
1624 shifts the packet elimination distribution. It shows longer delay enable RPE
packets to return to source and stop packet being transmitted at Path B. τ = 816
and τ = 1624 yielded similar results. However, with τ = 816 a few packets was
dropped along the paths, but over 30 runs the average value recorded was less than
0.1% . Although, at B3 an average of 4 packet was eliminated yielding 0.2% of the

85

drops. Summarizing, τ = 816 and τ = 1624 behaves similarly with 99.76% and
100% of eliminations at sink. Moreover, further effects of the delays are discussed
later on.

Sink A1 B1 A2 B2 A3 B3 Source
0

20

40

60

80

100

Mote

P
ac

ke
ts

el
im

in
at

ed
%

OP τ = 1 τ = 8 τ = 816 τ = 1624

Figure 6.7: Packet elimination distribution with 80% link quality

6.4 Latency

This section present simulated latencies in terms of average, minimum, maximum,
99th percentile and variation in delay.

70% 80% 90%

0

5

10

S
ec

on
d

s

(a) Single Path

70% 80% 90%

0

5

10

S
ec

on
d

s

(b) τ = 8

70% 80% 90%

0

5

10

S
ec

on
d

s

(c) τ = 1

Figure 6.8: Latencies for Single Path, τ = 8 and τ = 1. Top line shows maximum,
box indicates average and bottom line is minimum latency

86

6.4.1 Average latency

In Figure 6.8(a) latencies for Single Path are visualized. There is decline in average
latency with regards to a higher PDR. Average latency is higher compared to
Figure 6.8(b) and Figure 6.8 (c) which show latencies for τ = 8 and τ = 1.
Results are listed in Table 6.9. Next, given 70% link quality latency is lowered 94
milliseconds with τ = 1 and 92 milliseconds with τ = 8 compared to Single Path.
At 90% effects of packet replication are clear with Single Path having a 125.5%
higher latency than τ = 1 and 115.5% higher than τ = 8.

PDR Single Path [sec] τ = 1 [sec] τ = 8 [sec]
70% 3.42 2.48 2.5
80% 2.17 1.29 1.32
90% 0.97 0.43 0.45

Table 6.9: Average latencies with different link qualities in seconds

6.4.2 Minimum latency

All simulated scenarios achieved minimum latencies as calculated in Subsection
6.1.1. Hence, 40 milliseconds is lowest latency for all scenarios. On the other
hand, when overprovisioning a minimum latency of 70 milliseconds was recorded.
This is as mentioned in Subsection 6.1.1 previously due to extra cells in tracks.

6.4.3 Maximum latency

Maximum registered latencies are not averaged over 30 runs, but the highest value
recorded for all runs are presented. What is more, maximum latencies are within
theoretical maximums as shown in Table 6.10. Taking a closer look, Single Path
with 13.16 seconds is closest with 3 seconds from reaching its theoretical maximum
delay.

PDR Single Path [sec] τ = 1 [sec] τ = 8 [sec]
70% 13.16 13.18 13.25
80% 12.16 10.14 11.23
90% 9.13 5.09 5.17

Table 6.10: Max latencies with different link values in seconds

87

6.4.4 99th percentile

How latencies distributes in the 99th percentile are presented in Table 6.11. Single
Path has a higher 99th percentile for all links as compared to τ = 1 and τ = 8. At
90% difference is 1.89 seconds between τ = 1 and Single Path. Increasing τ from
1 to 8 increases 99th percentile latency with 40 milliseconds. This interesting as
the difference in sending delay twice as high with 80 milliseconds.

PDR Single Path [sec] τ = 1 [sec] τ = 8 [sec]
70% 9.21 7.49 7.53
80% 7.08 4.89 4.96
90% 4.08 2.19 2.23

Table 6.11: 99th percentile latencies with different link values in seconds

Decreasing link quality increases 99th percentile latencies for all scenarios.
What is more, difference between Single Path τ = 1 and τ = 8 are fairly identical
with 70%, 80% and 90% link quality. Another key point is delivery ratio. With
packet replication reliability is increased as compared to Single Path as shown in
Section 6.2. but, it is important to note that with packet replication more packet
are received at sink. With Single Path, these packets are lost and hence not shown
in recorded latencies.

6.4.5 All scenarios

Summarizing results for 80% link quality and adding longer delays τ = 816 and
τ = 1624 are presented in Figure 6.9 and Table 6.12.

88

OP τ = 1 τ = 8 τ = 816 τ = 1624 SP

0

10

20

30
S

ec
o
n

d
s

Figure 6.9: Latencies for all versions in seconds with 80% link quality. Top line
shows maximum, box indicates average and bottom line is minimum latency

Average latency do not increase significantly from Single Path when longer
delays τ = 816 and τ = 1624 are introduced. For example, τ = 816 average is only
11 milliseconds higher than Single Path average. But, max and 99th percentile
latencies increases significantly with increased τ . This is expected due to decrease
in packet loss as shown in Table 6.8. In essence, packets with longer replication
delays are received which increases recorded latencies.

Method/Delay Average latency [sec] 99% [sec] Max latency [sec]
Single Path 2.17 7.09 12.16

τ = 1 1.29 4.90 10.14
OP 0.38 2.46 6.97
τ = 8 1.32 4.96 11.23
τ = 816 2.28 10.34 19.31
τ = 1624 2.56 18.43 27.39

Table 6.12: Average, 99th percentile and maximum latencies for all scenarios with
80 % link quality

89

RPE Overprovisioning

Overprovisioning was introduced with 80% link quality, and as listed in Table 6.12.
Average latency for Single Path is 2.17 seconds compared to 0.38 seconds when
overprovisioning 1 extra TX and RX cell. This show Single Path has a 417% higher
average latency than a overprovisioned path.

Variation in delay

Taking a closer look at variation between maximum and minimum latencies with
a link quality of 80% reveals overprovisioning has smallest difference, ∆, with 6.9
seconds between highest and lowest latency. On the other hand, τ = 1624 records
highest difference with 27.35 seconds. All differences, ∆, are presented in Table
6.13.

Method/Delay Minimum latency [sec] Max latency [sec] ∆ [sec]
Single Path 0.04 12.16 12.12

τ = 1 0.04 10.14 10.10
τ = 8 0.04 11.23 11.19
τ = 816 0.04 19.31 19.27
τ = 1624 0.04 27.39 27.35

OP: τ = 8 0.07 6.97 6.90

Table 6.13: Difference ∆ between maximum and minimum latency in seconds with
80% link quality

These results are expected as theoretical maximum latencies increase with
longer replication delay τ as shown in Subsection 6.1.1. In short, decreasing repli-
cation delay τ reduces variation in delay.

6.5 Mote lifetime

This section present simulated lifetimes in terms of average mote life, average net-
work life and lowest mote life. Mote lifetime is important, as it shows effects of
increasing reliability and decreasing latencies, two important factors in industrial
WSNs. Moreover, as mentioned earlier in Subsection 5.9.4 parent selection influ-
ences DAO messages, and in return battery life. This is due to the fact that in 9
of 10 slotframe iterations source has Path B as is route to sink. It can be seen in
Dual Path where A3 and B3 behaves similarly, but lifetime is approximately 0.5
years lower at Path B.

90

6.5.1 Average mote life

In Figure 6.10 average mode lifetimes for all packet replication versions are pre-
sented with averaged values. Due to extra TX/RX cell when Overprovisioning,
Path A has a significantly lower battery life as compared to Path B and all other
versions. Next, at all motes, expect when Overprovisioning, Dual Path has the
lowest battery life. Looking at lifetimes for all versions, there is a clear similarity
with where the upstream copy was eliminated. τ = 816, τ = 1624 and Overprovi-
sioning has highest number of packets eliminated at source as seen in Section 6.3.
Hence, highest battery life at source as it do not send two copies as often as other
scenarios. This is supported by the theoretical lifetime, where motes sending RPE
packets have a higher excepted mote lifetime. Interestingly, τ = 1 decrease load
on A1 due to highest drop rate at sink, A1 and B1. This effect is discussed in
Section 6.6. On the other hand, it causes the source to have lowest battery life of
all RPE scenarios.

A1 B1 A2 B2 A3 B3 Source
4

4.5

5

5.5

6

6.5

Mote

L
if

et
im

e
in

ye
ar

s

OP τ = 1 τ = 8 τ = 816 τ = 1624 DP

Figure 6.10: Scenarios and their average mote lifetimes in years

6.5.2 Lowest mote life

Lowest mote life represents lowest average mote lifetime in all simulations. For all
simulations, first mote to run out of power is A1, except in τ = 1 and τ = 8 where
in approximately 1

30
runs B1 ran out first. Lowest mote lifetimes are depicted

in Figure 6.11. Looking at Path A, no elimination was registered when using
τ = 816 or τ = 1624 causing traffic to behave as DP and SP. This is reflected in

91

lowest mote lifetime as all of them run out of power within 10 days of each other.
Moreover, with τ = 1 and τ = 8 lowest lifetime is increased with minimum 33 days
compared to Single Path, with τ = 8 prevailing with 34 days extra life. Effects
of Overprovisioning are clear with A1 running out of battery 338 days before any
other version.

OP τ = 1 τ = 8 τ = 816 τ = 1624 DP SP

1,600

1,700

1,800

1,900

2,000

1,607

1,985 1,986

1,945 1,955 1,953 1,952

L
if

et
im

e
in

d
ay

s

Figure 6.11: Scenarios and their lowest mote life registered in days

6.5.3 Average current consumption

Another way of looking into effects of the different scenarios are average current
consumption. In fact, effects of packet replication are clear in terms of lifetime
as Single Path utilizes 159 mA less than second place τ = 1624. Average current
consumption is shown in Figure 6.12

92

OP τ = 1 τ = 8 τ = 816 τ = 1624 DP SP
900

950

1,000

1,050

1,100

1,150

1,200

1,250 1,225

1,127 1,124 1,114 1,111

1,146

952

Scenario

A
ve

ra
ge

cu
rr

en
t

co
n
su

m
p
ti

on
(m

A
)

Figure 6.12: Average current consumption in the network in mA

Effects of overprovisioning are seen with the highest current consumption at
1225 mA. This increase is due to the extra cells, which causes more idle listening
than other scenarios. Another key point, looking at RPE versions compared to
Dual Path there is a decline in average current consumption. A decrease in average
current consumption is important as this topology no not represent a network as a
whole. In fact, with a real network data traverse from other paths as well. Hence,
a decreased current consumption is desired to decrease load on certain motes due
to funneling effects. This will be discussed in Section 6.6.

6.5.4 Comparing RPE with Single Path

Taking a closer look at RPE with τ = 8 and Single Path with link quality of 70%
reveal at Path A, RPE outperform Single Path with higher lifetimes as illustrated
in Figure 6.13. This is due to RPE packets dropping upstream packet stuck in
retransmission. On the other hand, at Path B, Single Path has significantly higher
lifetime as no traffic is flowing through it. At source, Single Path has a higher
life as it send one packet compared to RPE with two packets. However, in terms
of reliability the network may be considered down when the first mote is out of
power, and at 70% link quality RPE has 29 days longer life, a 1.53% increase.

93

A1 B1 A2 B2 A3 B3 Source

5

6

7

8

5.31 5.41 5.38
5.6

6.18

5.53 5.53
5.23

7.89

5.38

8.16

6.16

8.39

6.78

Mote

L
if

et
im

e
in

ye
ar

s

τ = 8 Single Path

Figure 6.13: Lifetimes for Single Path and RPE τ = 8 with 70% link quality

6.6 Funneling effect

As presented in Subsection 2.10, motes closer to sink have a higher load than
motes further away. When utilizing RPE with shorter replication delays τ , it was
observed that the funneling effect was decreased compared to the other scenarios.
This is shown in Figure 6.14, where average lifetime at A1 and B1 for all versions
using packet replication are listed. Having a short delay τ = 1 return the most
even distribution between A1 and B1 due to the amount of packet elimination
happening at these motes. In addition, τ = 8 decreases funneling effect as well,
but as much as τ = 1. On the other hand, increasing replication delay τ decreases
load on Path B. Moreover, Overprovisioning has lowest latency, resulting in highest
load on Path A, and lowest load on Path B. Funneling effect can be seen for all
motes in Figure 6.10 where lifetime increases with distance from sink.

94

OP τ = 1 τ = 8 τ = 816 τ = 1624 DP

4.5

5

5.5

4.44

5.57
5.47

5.35
5.44 5.4

5.73
5.63 5.67 5.61

5.68 5.62

Scenario

L
if

et
im

e
in

ye
ar

s

A1 B1

Figure 6.14: Different scenarios and their funneling effect at A1 and B1. Repre-
sented with mote lifetime in years

95

Chapter 7

Discussion

This chapter discuss the results and present advantages and disadvantages of intro-
ducing different delay τ in packet replication. Ideally, results should be compared
with related work Leapfrog Collaboration, but they have utilized Contiki (briefly
presented in Section 4.1) and as mentioned in Subsection 1.5.1 their implementa-
tion was not available. LFC compares results to their own implementation without
LFC. Hence, results of RPE are compared to Single Path and Dual Path. As illus-
trated in Chapter 6, there are a lot factors to take into consideration, and getting
an overview of all is a challenge. Such as latency, reliability and average current
consumption. Therefor, in this section all traits are plotted in radar charts to
visualize the attributes. But, to understand the visualization a short description
of the chart is provided.

7.1 Plot description

All charts are presented with values in percent. The radar charts have lattice with
10 lines, each representing increments of 10%. Outer line is 100% and represent
the worst recorded value for that trait. For instance, for 80% link the highest
maximum latency recorded is Single Path with 12.16 seconds. For τ = 8 the same
trait is 11.23 seconds, a 7.6% decrease. In the chart these would show up as 100%
and 92.3%. To summarize, a plot closer to centre indicates a better result.

96

7.2 Discussion of Results

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.1: Representation of Dual Path (red) and Single Path (blue) traits with
80 link quality

Firstly, lets start by discussing results with a link quality of 80%. Figure 7.1
shows effects of utilizing packet replication by comparing Single Path and Dual
Path. In fact, Single Path has lower average current consumption, but in terms of
latency and PDR it worsens. Moreover, with packet replication, latencies decreases
significantly as shown with Dual Path. What is more, PDR is increased with 2.25%
compared to Single Path.

97

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.2: Representation of τ = 1 traits (blue) compared to Dual Path (red)
with 80% link quality

Next, effects of τ = 1 do not change anything in terms of latency with regards to
Dual Path, as they behave similarly upstream. But, due to downstream elimination
average energy consumption is decreased, and lowest battery life is increased as
depicted in Figure 7.2.

98

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.3: Representation of τ = 8 traits (blue) compared to Dual Path (red)
with 80% link quality

When introducing τ = 8, latencies are increased slightly compared to Dual
Path. Max latency with 4% increase, average latency with 1% and 99th percentile
with 1%. On the other hand, this extra delay increases lowest mote life and
decreases average current consumption as shown in Figure 7.3.

99

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.4: Representation of τ = 816 traits (blue) compared to Dual Path (red)
with 80% link quality

Extending delay further with τ = 816 increases effects shown with τ = 8.
Figure 7.4 show this with τ = 816 where 99th percentile, average and maxi-
mum latency are increased significantly. However, average current consumption
decreases.

100

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.5: Representation of τ = 1624 traits (blue) compared to Dual Path (red)
with 80% link quality

Doubling delay to τ = 1624 decreases average current consumption of the
network, but with this long replication delay, latencies are the highest recorded.
In terms of lowest mote life, τ = 1624 has similar results as Dual Path depicted in
Figure 7.5.

101

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.6: Representation of overprovisioning traits (blue) compared to Dual Path
(red) with 80% link quality

When overprovisioning, results become clear as shown in Figure 7.6. It results
in highest average current consumption and lowest mote life. But, latencies are
reduced drastically with the exception that minimum latency is increased due to
the extra TX and RX cells.

102

Min
latency

Max
latency

Average
latency

99th
percentile
latency

PDR

Lowest
mote life

Average
current

con-
sumption

Figure 7.7: Single Path (blue) compared to τ = 8 (red) traits with 70% link quality

Effects of changing link quality are presented in Figure 7.7. In this Figure,
links are set to 70% and Single Path is plotted against τ = 8. In this example,
advantages of utilizing RPE become apparent. Firstly, PDR is increased with
10.5% from 88.2% to 98.7%. In addition, a 27% reduction in average latency
and 19% decrease in terms of 99th percentile latency. Maximum and minimum
latencies are somewhat identical. Interestingly, by utilizing RPE network life is
increased with 1.5%. But, average current consumption is in return increased with
19.8%.

103

7.2.1 Summarizing discussions

Results shows τ = 8 is optimal delay. Since in a perfect environment the tracks
allows a packet to loop back and stop source from sending the replicated packet.
Based on the results with 80% link quality, τ = 8 achieves best traits of all repli-
cation delays. In fact, as compared to Dual Path and Single Path lowest mote
lifetime is increased with 1.74%. Next, average latency is reduced with 39.1%
and reliability increases from 97.7% to 99.95% from Single Path. A natural dis-
advantage with the RPE proposal is the increase in average current consumption.
This is due to extra tracks and packets traversing disjoint paths. However, packet
replication is recommended by DetNet architecture and RPE do in fact decreases
average current consumption with regards to Dual Path. But, it increases with
18% compared to Single Path.

Finally, if a low average latency is critical, it is recommended to utilize Over-
provisioning. Overprovisioning has a 71.2% lower average latency than τ = 8.
However, this comes with a 18.34% reduction in lowest mote lifetime.

104

Chapter 8

Conclusion

This thesis studied effects of a Reverse Packet Elimination (RPE) algorithm in
6TiSCH. Specifically, effects of delaying packets when utilizing packet replication.
In short, advantages are higher reliability, lower average latency and increased
mote lifetime. However, average energy consumption in the network increases.

Related work Leapfrog Collaboration (LFC) delivers a 99.1% worst case relia-
bility, with a disadvantage of increasing energy consumption. On the other hand,
RPE decreases energy consumption compared to not utilizing a reverse elimina-
tion technique, and delivers a worst case reliability of 97.7%. Another key point,
lowest mote life increases as RPE decreases funneling effect of motes closer to sink.
Moreover, compared to a single point of failure, latency with RPE decreases. A
drawback of RPE versus LFC is a slight increase in average latency due to the
delay in the replication mechanism. LFC delivers a 41% reduction in average la-
tency compared to standard retransmission schemes, while RPE delivers a 39%
reduction. Moreover, LFC is by design dependent on high node density, but RPE
only require two disjoint paths towards sink. This makes RPE less dependable on
topology and presumably suitable for other WSNs.

All in all, as recommended by DetNet architecture and to be adopted in 6TiSCH,
packet elimination and replication is vital to achieve high end-to-end reliability.
As revealed by this thesis, RPE achieves promising results, but should be further
investigated and studied if to be deployed in a real network.

105

8.1 Future work

This section discuss ideas not implemented but thought of during creation of RPE.
These are suggestions, and have not been tested nor verified.

Number of paths Currently, RPE is limited to two disjoint paths, but extra
paths could be implemented. This would increase reliability further with a draw-
back of increased energy consumption. However, it would require more motes
within sensing range.

Preferred path Next, in all simulations Path A has been scheduled first. Fur-
thermore, link quality have been static, but in the real world link qualities are
dynamic. Implementing a counter at sink allows it to keep track of which path
arrives first can utilized to switch path priorities. For instance, if Path A packet
is sent before Path B packet, but Path B packet arrives at sink first indicate there
is a bad link at Path A. A maximum constraint could be set, and if the counter
surpasses it, sink sends a packet down Path B to source and tell it to switch prior-
ity. Theoretically, this would lower average latency. Another option, is that after
a predefined number of slotframe iterations, sink sends a packet down both paths
simultaneously. Then, the path arriving first at source would be set as preferred
path.

Decreasing idle slots In the current PCE design, it schedules 1 TX cell each
slotframe. However, the TX cell is only utilized every 10th slotframe. A centralized
controller could ramp up and ramp down slots not utilized. For instance, all track
slots after the 4th is by design never receiving or transmitting as the number of
attempts are maxed out. In short, 50% of slots in a tracks are currently never
utilized. In essence, idle slots could be put in sleep mode with careful design.

Load balancing As mentioned previously, Path A packet is scheduled first, and
in the paragraph about Preferred path the idea of switching paths in the event of
a link quality deteriorating is discussed. However, another aspect is to alternate
between paths by default. This can presumable distribute the load at both paths
as an RPE packet utilizes less resources.

Decreasing retransmission attempts Assuming link qualities do not deteri-
orate, decreasing retransmission attempts from 4 to 2 when utilizing packet repli-
cation with disjoint paths would theoretically have as many attempts as Single
Path. Hence, RPE could in theory achieve similar end-to-end reliability as Single
Path with a decrease in average current consumption.

106

Security considerations With packet replication there are multiple paths for a
man-in-the-middle attack. These attacks are assessed by DetNet in their security
consideration [48]. But, with the introduction of RPE another aspect needs to be
considered. Theoretically, an attacker could spoof downstream RPE packets and
send them towards the source. This would cause source or other motes to never
forward packets upstream as they are told to drop them. In essence, a Denial of
Service attack were data packets never reach the sink.

107

Bibliography

[1] J. T. Adams, “An introduction to ieee std 802.15.4,” in 2006 IEEE Aerospace
Conference, pp. 8 pp.–, March 2006.

[2] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J. Pis-
ter, “A realistic energy consumption model for tsch networks,” IEEE Sensors
Journal, vol. 14, pp. 482–489, Feb 2014.

[3] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka, K. Brun,
K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulating 6tisch networks,”
Transactions on Emerging Telecommunications Technologies, vol. 30, no. 3,
p. e3494, 2019. e3494 ett.3494.

[4] “Feedback control system or closed loop control system, howpub-
lished = http://instrumentationandcontrollers.blogspot.com/2011/

05/feedback-control-system-or-closed-loop.html, note = Accessed:
2019-04-19.”

[5] J. d. Armas, P. Tuset, T. Chang, F. Adelantado, T. Watteyne, and X. Vila-
josana, “Determinism through path diversity: Why packet replication makes
sense,” in 2016 International Conference on Intelligent Networking and Col-
laborative Systems (INCoS), pp. 150–154, Sep. 2016.

[6] R. Koutsiamanis, G. Z. Papadopoulos, X. Fafoutis, J. M. D. Fiore, P. Thu-
bert, and N. Montavont, “From best effort to deterministic packet delivery
for wireless industrial iot networks,” IEEE Transactions on Industrial Infor-
matics, vol. 14, pp. 4468–4480, Oct 2018.

[7] G. G. Lorente, B. Lemmens, M. Carlier, A. Braeken, and K. Steenhaut,
“Bmrf: Bidirectional multicast rpl forwarding,” Ad Hoc Networks, vol. 54,
pp. 69 – 84, 2017.

[8] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo,
“Funneling-mac: A localized, sink-oriented mac for boosting fidelity in sensor

108

networks,” in SenSys’06: Proceedings of the Fourth International Conference
on Embedded Networked Sensor Systems, pp. 293–306, 10 2006.

[9] IEEE, “Ieee standard for low-rate wireless networks,” IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[10] K. Wehrle, M. Günes, and J. Gross, Modeling and Tools for Network Simula-
tion. Springer, 01 2010.

[11] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks: Chal-
lenges, design principles, and technical approaches,” IEEE Transactions on
Industrial Electronics, vol. 56, pp. 4258–4265, Oct 2009.

[12] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6tisch: deter-
ministic ip-enabled industrial internet (of things),” IEEE Communications
Magazine, vol. 52, pp. 36–41, December 2014.

[13] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle, “When hart goes wireless:
Understanding and implementing the wirelesshart standard,” in 2008 IEEE
International Conference on Emerging Technologies and Factory Automation,
pp. 899–907, Sep. 2008.

[14] F. P. Rezha and S. Y. Shin, “Performance evaluation of isa100.11a indus-
trial wireless network,” in IET International Conference on Information and
Communications Technologies (IETICT 2013), pp. 587–592, April 2013.

[15] L. Doherty, W. Lindsay, and J. Simon, “Channel-specific wireless sensor net-
work path data,” in 2007 16th International Conference on Computer Com-
munications and Networks, pp. 89–94, Aug 2007.

[16] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4,” Internet-Draft draft-ietf-6tisch-architecture-20, Internet Engineer-
ing Task Force, Mar. 2019. Work in Progress.

[17] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic Networking
Architecture,” Internet-Draft draft-ietf-detnet-architecture-10, Internet Engi-
neering Task Force, Dec. 2018. Work in Progress.

[18] P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wire-
less network design for control systems: A survey,” IEEE Communications
Surveys Tutorials, vol. 20, pp. 978–1013, Secondquarter 2018.

[19] J. Araujo, J. Lázaro, A. Astarloa, A. Zuloaga, and A. Garcia, “Prp and hsr
version 1 (iec 62439-3 ed.2), improvements and a prototype implementation,”
pp. 4410–4415, 11 2013.

109

[20] G. Z. Papadopoulos, T. Matsui, P. Thubert, G. Texier, T. Watteyne, and
N. Montavont, “Leapfrog collaboration: Toward determinism and predictabil-
ity in industrial-iot applications,” in 2017 IEEE International Conference on
Communications (ICC), pp. 1–6, May 2017.

[21] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein,
and H. El Bakoury, “Ultra-low latency (ull) networks: The ieee tsn and ietf
detnet standards and related 5g ull research,” IEEE Communications Surveys
& Tutorials, 2018.

[22] B. Sklar, Digital Communications: Fundamentals and Applications. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[23] T. Watteyne, M. R. Palattella, and L. A. Grieco, “Using IEEE 802.15.4e
Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Prob-
lem Statement.” RFC 7554, May 2015.

[24] “Deterministic Networking (detnet) , howpublished = https:

//datatracker.ietf.org/wg/detnet/about/, note = Accessed: 2018-
12-19.”

[25] “Time-Sensitive Networking (TSN) Task Group, howpublished = https://

1.ieee802.org/tsn/, note = Accessed: 2018-05-19.”

[26] D. O. Awduche, L. Berger, D.-H. Gan, T. Li, D. V. Srinivasan, and G. Swal-
low, “RSVP-TE: Extensions to RSVP for LSP Tunnels.” RFC 3209, Dec.
2001.

[27] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir,
“Segment Routing Architecture.” RFC 8402, July 2018.

[28] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, “Software-Defined Networking (SDN): Layers and Archi-
tecture Terminology.” RFC 7426, Jan. 2015.

[29] J. Farkas, N. Bragg, P. Unbehagen, G. Parsons, P. J. Ashwood-Smith, and
C. Bowers, “IS-IS Path Control and Reservation.” RFC 7813, June 2016.

[30] J. McManus, J. Malcolm, M. D. O’Dell, D. O. Awduche, and J. Agogbua,
“Requirements for Traffic Engineering Over MPLS.” RFC 2702, Sept. 1999.

[31] E. Grossman, “Deterministic Networking Use Cases,” Internet-Draft draft-
ietf-detnet-use-cases-20, Internet Engineering Task Force, Dec. 2018. Work in
Progress.

110

[32] T. Watteyne, P. Tuset-Peiro, X. Vilajosana, S. Pollin, and B. Krishnamachari,
“Teaching communication technologies and standards for the industrial iot?
use 6tisch!,” IEEE Communications Magazine, vol. 55, pp. 132–137, May
2017.

[33] Q. Wang and X. Vilajosana, “6tisch operation sublayer (6top) protocol (6p),”
RFC 6TiSCH Operation Sublayer (6top) Protocol (6P), Internet Engineering
Task Force, Jan. 2019.

[34] G. Montenegro, C. Schumacher, and N. Kushalnagar, “IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals.” RFC 4919, Aug. 2007.

[35] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis,
R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks.” RFC 6550, Mar. 2012.

[36] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Pro-
tocol (CoAP).” RFC 7252, June 2014.

[37] E. Nilsen, “Energy Consumption Investigation in WSN using OMNeT++,”
Master’s thesis, University of Oslo, Norway, 2013.

[38] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Net-
works. USA: John Wiley & Sons, Inc., 2005.

[39] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration.” RFC 8180, May 2017.

[40] “Omnet++.” https://omnetpp.org/. Accessed: 2018-11-25.

[41] “ns-3 network simulator.” https://www.nsnam.org/. Accessed: 2018-11-26.

[42] “Home cooja.” https://github.com/contiki-ng/contiki-ng/wiki. Ac-
cessed: 2018-11-30.

[43] “Overview simulator.” https://bitbucket.org/6tisch/simulator/. Ac-
cessed: 2018-11-30.

[44] K. P. Hanh-Phuc Le, Mervin John, “Energy-aware routing in wireless sensor
networks with adaptive energy-slope control,” EE290Q-2 Spring 2009, 2009.

[45] “Openmote platform, howpublished = https://github.com/contiki-ng/

contiki-ng/wiki/platform-openmote-cc2538, note = Accessed: 2019-03-
10.”

111

[46] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” Internet-Draft draft-ietf-
6tisch-msf-03, Internet Engineering Task Force, Apr. 2019. Work in Progress.

[47] G. Papadopoulos, R.-A. Koutsiamanis, N. Montavont, and P. Thubert,
“Exploiting Packet Replication and Elimination in Complex Tracks in
LLNs,” Internet-Draft draft-papadopoulos-paw-pre-reqs-01, Internet Engi-
neering Task Force, Mar. 2019. Work in Progress.

[48] T. Mizrahi, E. Grossman, A. J. Hacker, S. Das, J. Dowdell, H. Austad,
K. Stanton, and N. Finn, “Deterministic Networking (DetNet) Security Con-
siderations,” Internet-Draft draft-ietf-detnet-security-04, Internet Engineer-
ing Task Force, Mar. 2019. Work in Progress.

[49] Hirschmann, “Tsn - time sensitive networking.”
https://www.iiconsortium.org/about-us.htm, 2018. [Online; Accessed
20.04.18].

[50] S. Nsaibi, L. Leurs, and H. D. Schotten, “Formal and simulation-based timing
analysis of industrial-ethernet sercos iii over tsn,” in Proceedings of the 21st
International Symposium on Distributed Simulation and Real Time Applica-
tions, pp. 83–90, IEEE Press, 2017.

[51] A. Alliance, “Our members.” http://www.hit.bme.hu/ jakab/edu/litr/TimeSensNet/TSN-
Time-Sensitive-Networking-White-Paper.pdf, 2016. [Online; Accessed
20.04.18].

[52] I. I. Consortium, “Time sensitive networking - flexible manufacturing.”
https://www.iiconsortium.org/pdf/TSN-brochure-2017-11-7.pdf, 2017. [On-
line; Accessed 25.04.18].

[53] I. I. Consortium, “About us.” https://www.iiconsortium.org/about-us.htm,
2018. [Online; Accessed 20.04.18].

[54] C. systems, “Time-sensitive networking: A technical introduction.”
https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-
solutions/white-paper-c11-738950.pdf, 2017. [Online; Accessed 08.04.18].

112

Appendix A

Acronyms

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e

ACK Acknowledgement

AP Alternative Parent

APP Application Layer

App-flow Application-flow

ASN Absolute Slot Number

BER Bit Error Rate

C Coulombs

CDT Control-Data Traffic

CNC Central Network Controller

CoAP Constrained Application Protocol

CPU Central Processing Unit

CUC Centralized User Configuration

CV Coefficient of variation

DAG Directed Acyclic Graph

DAO Destination Advertisement Object

DetNet Deterministic Network Working Group

113

DODAG Destination Oriented Directed Acyclic Graph

DP Default Parent

EB Enhanced Beacon

FDMA Frequency Division Multiple Access

FES Future Event Set

HSR High-Availability Seamless Redundancy

IE Information Element

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version 6

IT Informational Technology

LFC Leapfrog Collaboration

MAC Medium Access Control

MSF Minimum Scheduling Function

OT Operational Technology

PCE Path Computation Element

PDR Packet Delivery Ratio

PEF Packet Elimination Function

PER Packet Error Rate

POF Packet Ordering Function

PRF Packet Replication Function

114

PRP Parallel Redundancy Protocol

QoS Quality of Service

RF Radio Frequency

RPE Reverse Packet Elimination

RSSI Received Signal Strength Indication

PTP Precision Time Protocol

RX Receiving

SINR Signal-to-Interference-Plus-Noise Ratio

TDMA Time Division Multiple Access

TSN Time-Sensitive Networking

TSCH Time-Slotted Channel Hopping

TX Transmission

UUID Universal Unique Identifier

WSN Wireless Sensor Networks

115

Appendix B

Time-Sensitive Networking

IETF has in the draft “Deterministic Networking Use Cases” determined demands
needed in an industrial IP network [31]. Moreover, DetNet defining layer 3 opera-
tions, and Time-Sensitive Networking (TSN) [25] is reshaping layer 2. Background
for TSN working group is criteria’s asked by the industry for machine-to-machine
communication. Industry asks for a converged IP based network with deterministic
behavior. Latency and jitter should be bounded. Availability should be high, pre-
sumably through redundancy. Typical numbers adopted state availability should
be as high as 99.999%. Next, low message delivery time, around 100µ-50 ms.
Packet loss is asked to be burst less and as low as 0.1-1%. Ntwork should be
secure, e.g. prevent critical flows from being leaked between physically separated
networks.

B.0.1 Current state

As of the current 2018, TSN is not a single standard document, but a collection of
standards which is under development by IEEE 801.1 TSN Task Group [25] since
2012 [49]. TSN aims to provide deterministic capabilities to Ethernet. It is a layer
2 technology and not an IP standard. Forwarding decisiona are made on a TSN
enabled device using the Ethernet header, not an IP address. All TSN devices are
required to share a common knowledge of time. Prior to TSN, standard Ethernet
did not have pure layer 2 deterministic abilities. Industries such as aerospace,
automotive and manufacturing can benefit from TSN [50]. The industry has as
a collective decided to work together on creating a standard, instead of working
on separate proprietary solutions. The network was considered a noncompetitive
zone, and vendors decided to compete on products and functionality. Vendors and
developers has formed two different organizations: Avnu Alliance and the Indus-
trial Internet Consortium to ensure the industry’s interests in TSN development.

116

B.0.2 Avnu Alliance and Industrial Internet Consortium

These two organizations were established by the industry to ensure quality and
multi-vendor support capabilities. Avnu Alliance was established to verify TSN
and AVB products [51]. Manufacturers may use the Avnu Alliance logo on their
products if they are certified for TSN or AVB interoperability. The Industrial
Internet Consortium was established to ensure development of architectures that
simplify multi-vendor systems and solutions [52]. Founding partners of Avnu Al-
liance and the Industrial Internet Consortium include Cisco, Intel and other large
manufacturers [51, 53].

B.0.3 Time-Sensitive Networking standards

As mentioned earlier TSN is currently not a single standard but made up of a col-
lection of standards. Table B.1 lists current TSN standards [52]. Other standards
are under revision.

Standard Description
IEEE 802.1 AS-REV Timing and synchronization
IEEE 1588 Timing and synchronization
IEEE 802.1 Qbu Frame Preemption
IEEE 802.3 br Frame Preemption
IEEE 802.1 Qbv Enhancements for scheduled traffic
IEEE 802.1 Qca Path control and reservation
IEEE 802.1 Qcc System configuration
IEEE 802.1 Qci Per-stream filtering and policing
IEEE 802.1 CB Seamless redundancy

Table B.1: List of TSN standards

B.0.4 TSN Components

This section describe the whitepaper Cisco has about TSN [54]. In addition there
are different whitepapers but the Cisco whitepaper is presented. This is due to
Cisco being a leading vendor in the networking industry.

Components Cisco describes five main components in their TSN description:
TSN flow, end devices, bridges, Central Network Controller (CNC), and Central-
ized User Configuration (CUC). TSN flow is a term used to describe time-critical
communication between end devices. Network devices uniquely identify each TSN
flow. Network devices honor each flow strict time requirements. Next, end devices

117

are source and destination of TSN flows. These end devices run an application
requiring deterministic communication. Source and destinations can also be re-
ferred to as talkers and listeners. Bridges can be referred to as Ethernet switches.
But for TSN, these switches have special capabilities allowing them to transmit
Ethernet frames on a TSN flow according to a schedule. TSN bridges receives
Ethernet frames of a TSN flow according to a schedule. CNC acts as a proxy for
the TSN enabled network. Specifically, it acts as a proxy for the bridges and their
interconnections. CNC controls applications that require deterministic communi-
cation. TSN frames are transmitted on a schedule defined by CNC. In general,
vendor of the device provides CNC application. In addition, CUC is provided by
the vendor of the TSN. CUC represents the control applications and the end de-
vices. CNC receives requests from CUC for deterministic TSN flows with specific
requirements for given flows. Cisco uses Precision Time Protocol (PTP) to main-
tain common knowledge of time. Furthermore, PTP protocol versions utilized by
TSN are IEEE 802.1AS and IEEE 802.1ASRev. Lastly, IEEE 802.1 introduce a
new traffic class named Control-Data Traffic (CDT). This class is assigned highest
priority to assure required guarantees.

118

Appendix C

6TiSCH Simulator Code

This Appendix contains all the python files that had to be adjusted for RPE. Only
the methods, classes or lines that has been altered is presented. The original code
can be located at: https://bitbucket.org/6tisch/simulator/

C.1 Path Computation Element

import MoteDefines as d
import random
import SimEngine
from random import rand int
c l a s s PCE(ob j e c t) :

TRACK CELL NUM = 1

def i n i t (s e l f , mote) :
s e l f . mote = mote
s e l f . eng ine = SimEngine . SimEngine . SimEngine ()
s e l f . l og = SimEngine . SimLog . SimLog () . l og
s e l f . eng ine . scheduleAtAsn (

asn = 1 ,
cb = s e l f . b u i l d t r a c k ,
uniqueTag = ’ bu i ld tracks ’ ,
i n t raS l o tOrde r = d .INTRASLOTORDER STARTSLOT

)
#INDEX IS FROM 0−100 (101)
s e l f . s lotA = 0
s e l f . s l o tB = 1 #ADJUST THE DAISY CHAIN
s e l f . slotRepA = 5
s e l f . slotRepB = 6 #DAISY CHAIN DELAY + 5

’ ’ ’ s e l f . s lotA = 0
s e l f . s l o tB = 99 #ADJUST THE DAISY CHAIN
s e l f . slotRepA = 4
s e l f . slotRepB = 5 #DAISY CHAIN DELAY + 5 ’ ’ ’

’ ’ ’ s e l f . s lotA = 0
s e l f . s l o tB = 50 #ADJUST THE DAISY CHAIN
s e l f . slotRepA = 4

119

s e l f . slotRepB = 54 #DAISY CHAIN DELAY + 5 ’ ’ ’

de f r e c e i v e r e q u e s t (s e l f , packet) :
pass

de f b u i l d t r a c k (s e l f) :
bu i ld t rack from source mote to s ink
path a = [7 , 5 , 3 , 1 , 0]
path b = [7 , 6 , 4 , 2 , 0]
r e v e r s e p a t h a = [0 , 2 , 4 , 6 , 7]
r e v e r s e p a t h b = [0 , 1 , 3 , 5 , 7]
s e l f . computetrack a (path a)
s e l f . compute t rack reve r s e a (r e v e r s e p a t h a)
s e l f . computetrack b (path b)
s e l f . computet rack rever se b (r e v e r s e p a t h b)

de f computetrack a (s e l f , path) :
f o r idx , moteid in enumerate (path) :

s e l f . s lotA += 1
channel = randint (0 , 15)
i f idx >= len (path) − 1 :
break

sender = s e l f . eng ine . motes [moteid]
r e c e i v e r = s e l f . eng ine . motes [path [idx + 1]]

sender . t sch . addCel l (
s l o t O f f s e t = s e l f . s lotA ,
channe lOf f s e t = channel ,
ne ighbor = r e c e i v e r . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION TX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0 ,

)
r e c e i v e r . t sch . addCel l (

s l o t O f f s e t = s e l f . s lotA ,
channe lOf f s e t = channel ,
ne ighbor = sender . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0

)

de f computetrack b (s e l f , path) :
f o r idx , moteid in enumerate (path) :

i f s e l f . s lo tB >= 100 :
s e l f . s lo tB = 0

s e l f . s lo tB += 1
channel = randint (0 , 15)

i f idx >= len (path) − 1 :
break

sender = s e l f . eng ine . motes [moteid]
r e c e i v e r = s e l f . eng ine . motes [path [idx + 1]]

sender . t sch . addCel l (
s l o t O f f s e t = s e l f . s lotB ,
channe lOf f s e t = channel ,
ne ighbor = r e c e i v e r . get mac addr () ,

120

c e l l O p t i o n s = [d .CELLOPTION TX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0 ,

)

r e c e i v e r . t sch . addCel l (
s l o t O f f s e t = s e l f . s lotB ,
channe lOf f s e t = channel ,
ne ighbor = sender . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0

)

de f compute t rack reve r s e a (s e l f , path) :
f o r idx , moteid in enumerate (path) :

i f s e l f . slotRepA >= 100 :
s e l f . slotRepA = 1

s e l f . slotRepA += 1
channel = randint (0 , 15)

i f idx >= len (path) − 1 :
break

sender = s e l f . eng ine . motes [moteid]
r e c e i v e r = s e l f . eng ine . motes [path [idx + 1]]

sender . t sch . addCel l (
s l o t O f f s e t = s e l f . slotRepA ,
channe lOf f s e t = channel ,
ne ighbor = r e c e i v e r . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION TX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0 ,

)

r e c e i v e r . t sch . addCel l (
s l o t O f f s e t = s e l f . slotRepA ,
channe lOf f s e t = channel ,
ne ighbor = sender . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0

)
de f computet rack rever se b (s e l f , path) :

f o r idx , moteid in enumerate (path) :
i f s e l f . slotRepB >= 100 :

s e l f . slotRepB = 0
s e l f . slotRepB += 1
channel = randint (0 , 15)

i f idx >= len (path) − 1 :
break

sender = s e l f . eng ine . motes [moteid]
r e c e i v e r = s e l f . eng ine . motes [path [idx + 1]]

sender . t sch . addCel l (
s l o t O f f s e t = s e l f . slotRepB ,
channe lOf f s e t = channel ,
ne ighbor = r e c e i v e r . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION TX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0 ,

121

)

r e c e i v e r . t sch . addCel l (
s l o t O f f s e t = s e l f . slotRepB ,
channe lOf f s e t = channel ,
ne ighbor = sender . get mac addr () ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
trackID = 0 ,
s l o t f r ame hand l e = 0

)

C.2 Applayer

c l a s s AppRoot (AppBase) :
””” Handle a p p l i c a t i o n packets from motes
”””

de f i n i t (s e l f , mote) :
super (AppRoot , s e l f) . i n i t (mote)
s e l f . pce = pce .PCE(s e l f . mote)

#======================== pub l i c ==

def s e n d r e p l i c a t i o n p a t h a (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK A,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
#packet [’ app ’] [’ sequencenumber ’] = sequencenumber

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h b (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,

122

packet type = d .PKT TYPE ACK B,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)
send
s e l f . mote . s ix lowpan . sendPacket (packet)

de f startSendingData (s e l f) :
nothing to schedu le
pass

de f recvPacket (s e l f , packet) :
a s s e r t s e l f . mote . dagRoot
foundAck = False
i f packet [’ type ’] == d .PKT TYPE PATH A and packet [’ mac ’] [’ srcMac ’] == s e l f

↪→ . eng ine . motes [1] . get mac addr () or packet [’ type ’] == d .PKT TYPE PATH B and
↪→ packet [’ mac ’] [’ srcMac ’] == s e l f . eng ine . motes [2] . get mac addr () :

f o r Qpacket in s e l f . mote . t sch . txQueue :
i f Qpacket [’ type ’] == d .PKT TYPE ACK A or Qpacket [’ type ’] == d .

↪→ PKT TYPE ACK B:
i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’

↪→ sequencenumber ’] :
s e l f . mote . t sch . dequeue (Qpacket)
s e l f . s inkdrops += 1
pr in t ’ Dropped at Sink : ’ , Qpacket [’ type ’]
foundAck = True

i f not foundAck :
i f packet [’ type ’] == d .PKT TYPE PATH A and packet [’ mac ’] [’ srcMac ’] ==

↪→ s e l f . eng ine . motes [1] . get mac addr () :

s e l f . s end rpe b (packet [’ app ’] [’ sequencenumber ’])
p r i n t ’ Sequencenumber A at Sink : ’ , packet [’ app ’] [’ sequencenumber

↪→ ’]

e l i f packet [’ type ’] == d .PKT TYPE PATH B and packet [’ mac ’] [’ srcMac ’]
↪→ == s e l f . eng ine . motes [2] . get mac addr () :

s e l f . s e n d r p e a (packet [’ app ’] [’ sequencenumber ’])
p r i n t ’ Sequencenumber B at Sink : ’ , packet [’ app ’] [’ sequencenumber

↪→ ’]

e l s e :
p r i n t ’ This should not happen ’

log and update mote s t a t s

s e l f . l og (
SimEngine . SimLog .LOG APP RX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet

123

}
)

#======================== p r i v a t e ==

def s e n d r p e a (s e l f , sequencenumber , packe t l eng th=None) :

i f packe t l eng th i s None :
packe t l eng th = s e l f .APP PK LENGTH

s e l f . s e n d r e p l i c a t i o n p a t h a (
dst Ip = s e l f . eng ine . motes [7] . g e t i p v 6 g l o b a l a d d r () ,
sequencenumber = sequencenumber ,
packe t l eng th = 3

)

s e l f . l og (
SimEngine . SimLog .LOG REPL TX,
{

’ mote id ’ : s e l f . mote . id
}

)
de f s end rpe b (s e l f , sequencenumber , packe t l eng th=None) :

i f packe t l eng th i s None :
packe t l eng th = s e l f .APP PK LENGTH

s e l f . s e n d r e p l i c a t i o n p a t h b (
dst Ip = s e l f . eng ine . motes [7] . g e t i p v 6 g l o b a l a d d r () ,
sequencenumber = sequencenumber ,
packe t l eng th = 3

)

s e l f . l og (
SimEngine . SimLog .LOG REPL TX,
{

’ mote id ’ : s e l f . mote . id
}

)

c l a s s AppPRE(AppBase) :

”””Send a packet p e r i o d i c a l l y

The f i r s t t iming to send a packet i s randomly chosen between [next
asn , (next asn + pkPeriod)] .
”””

de f i n i t (s e l f , mote , ∗∗kwargs) :
super (AppPRE, s e l f) . i n i t (mote)
s e l f . s e n d i n g f i r s t p a c k e t = True

#======================== pub l i c ==

def startSendingData (s e l f) :
i f s e l f . s e n d i n g f i r s t p a c k e t :

124

s e l f . s c h e d u l e t r a n s m i s s i o n ()

de f recvPacket (s e l f , packet) :
i f s e l f . mote . id == 7 :

i f packet [’ type ’] == d .PKT TYPE ACK A:
s e l f . StopSendingA = False
p r i n t ’A stopped ’

e l i f packet [’ type ’] == d .PKT TYPE ACK B:
s e l f . StopSendingB = False
p r i n t ’B stopped ’

pass

#======================== pub l i c ==

def s c h e d u l e t r a n s m i s s i o n (s e l f) :

a s s e r t s e l f . s e t t i n g s . app pkPeriod >= 0
i f s e l f . s e t t i n g s . app pkPeriod == 0 :

re turn

i f s e l f . s e n d i n g f i r s t p a c k e t :
compute i n i t i a l time with in the range o f [next asn , next asn+

↪→ pkPeriod]
de lay = s e l f . s e t t i n g s . t s c h s l o t D u r a t i o n + (s e l f . s e t t i n g s . app pkPeriod

↪→ ∗ random . random ())
s e l f . s e n d i n g f i r s t p a c k e t = Fal se

e l s e :
compute random delay
a s s e r t s e l f . s e t t i n g s . app pkPeriodVar < 1
#delay = s e l f . s e t t i n g s . app pkPeriod ∗ (1 + random . uniform(− s e l f .

↪→ s e t t i n g s . app pkPeriodVar , s e l f . s e t t i n g s . app pkPeriodVar))
de lay = 10

schedu le
s e l f . eng ine . scheduleAtAsn (

asn = s e l f . eng ine . asn + 1 ,
cb = s e l f . s e n d a s i n g l e p a c k e t ,
uniqueTag = (

’AppPRE’ ,
’ s chedu led by {0} ’ . format (s e l f . mote . id)

) ,
i n t raS l o tOrde r = d .INTRASLOTORDER STARTSLOT,

)

de f s e n d a s i n g l e p a c k e t (s e l f) :
wa i tS lo t f rames = 10
s l o t f r ame = 101
converged = 100000
sendpackets = 4000
i f s e l f . mote . r p l . dodagId == None :

i t seems we l e f t the dodag ; stop the t ransmi s s i on
s e l f . s e n d i n g f i r s t p a c k e t = True
re turn
#wait u n t i l 1000 s l o t f r a m e s have passed tp sync

i f s e l f . mote . id == 7 and s e l f . eng ine . asn > converged :

isNewSlotFrame = (s e l f . eng ine . asn % (s l o t f r ame ∗wai tS lo t f rames)) == 0
i f isNewSlotFrame :

#Change parent at source

125

i f s e l f . StopSendingB == True :
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine .

↪→ motes [5] . get mac addr ())
s e l f . s end path a (
dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength
)
s e l f . txpacket += 1

i f s e l f . StopSendingA == True :
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine .

↪→ motes [6] . get mac addr ())
s e l f . s end path b (
dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength
)
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine .

↪→ motes [5] . get mac addr ())
s e l f . txpacket += 1

schedu le the next t ransmi s s i on
i f s e l f . txpacket < sendpackets :

s e l f . StopSendingB = True
s e l f . StopSendingA = True
s e l f . s c h e d u l e t r a n s m i s s i o n ()

e l s e :
pass

de f s end path a (s e l f , dstIp , packe t l eng th) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn
s e l f . sequencenumber += 1
s e l f . appcounter += 1

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE PATH A,
packe t l eng th = packet l ength ,
sequencenumber = s e l f . sequencenumber

)
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)
packet [’ net ’] [’ downward ’] = True
send
pr in t ’ Sequence number A at i n i t a l i z a t i o n : ’ , packet [’ app ’] [’

↪→ sequencenumber ’]
s e l f . mote . s ix lowpan . sendPacket (packet)

de f send path b (s e l f , dstIp , packe t l eng th) :

126

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn
c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE PATH B,
packe t l eng th = packet l ength ,
sequencenumber = s e l f . sequencenumber

)

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send
pr in t ’ Sequence number B at i n i t a l i z a t i o n : ’ , packet [’ app ’] [’

↪→ sequencenumber ’]
s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h a (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK A,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
packet [’ net ’] [’ downward ’] = True
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h b (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

127

dst Ip = dstIp ,
packet type = d .PKT TYPE ACK B,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
packet [’ net ’] [’ downward ’] = True
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

C.3 AppLayer - Long delay

c l a s s AppRoot (AppBase) :
””” Handle a p p l i c a t i o n packets from motes
”””

de f i n i t (s e l f , mote) :
super (AppRoot , s e l f) . i n i t (mote)
s e l f . pce = pce .PCE(s e l f . mote)

#======================== pub l i c ==

def s e n d r e p l i c a t i o n p a t h a (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK A,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
#packet [’ app ’] [’ sequencenumber ’] = sequencenumber

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h b (s e l f , dstIp , packet l ength , sequencenumber) :

128

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK B,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)
send
s e l f . mote . s ix lowpan . sendPacket (packet)

de f startSendingData (s e l f) :
nothing to schedu le
pass

de f recvPacket (s e l f , packet) :
a s s e r t s e l f . mote . dagRoot
foundAck = False
i f packet [’ type ’] == d .PKT TYPE PATH A and packet [’ mac ’] [’ srcMac ’] == s e l f

↪→ . eng ine . motes [1] . get mac addr () or packet [’ type ’] == d .PKT TYPE PATH B and
↪→ packet [’ mac ’] [’ srcMac ’] == s e l f . eng ine . motes [2] . get mac addr () :

f o r Qpacket in s e l f . mote . t sch . txQueue :
i f Qpacket [’ type ’] == d .PKT TYPE ACK A or Qpacket [’ type ’] == d .

↪→ PKT TYPE ACK B:
i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’

↪→ sequencenumber ’] :
s e l f . mote . t sch . dequeue (Qpacket)
s e l f . s inkdrops += 1
pr in t ’ Dropped at Sink : ’ , Qpacket [’ type ’]
foundAck = True

i f not foundAck :
i f packet [’ type ’] == d .PKT TYPE PATH A and packet [’ mac ’] [’ srcMac ’] ==

↪→ s e l f . eng ine . motes [1] . get mac addr () :
s e l f . s end rpe b (packet [’ app ’] [’ sequencenumber ’])
p r i n t ’ Sequencenumber A at Sink : ’ , packet [’ app ’] [’ sequencenumber

↪→ ’]

e l i f packet [’ type ’] == d .PKT TYPE PATH B and packet [’ mac ’] [’ srcMac ’]
↪→ == s e l f . eng ine . motes [2] . get mac addr () :

p r i n t ’ Sequencenumber B at Sink : ’ , packet [’ app ’] [’ sequencenumber
↪→ ’]

e l s e :
p r i n t ’ This should not happen ’

log and update mote s t a t s

129

s e l f . l og (
SimEngine . SimLog .LOG APP RX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet

}
)

#======================== p r i v a t e ==

def s e n d r p e a (s e l f , sequencenumber , packe t l eng th=None) :

i f packe t l eng th i s None :
packe t l eng th = s e l f .APP PK LENGTH

s e l f . s e n d r e p l i c a t i o n p a t h a (
dst Ip = s e l f . eng ine . motes [7] . g e t i p v 6 g l o b a l a d d r () ,
sequencenumber = sequencenumber ,
packe t l eng th = 23

)

s e l f . l og (
SimEngine . SimLog .LOG REPL TX,
{

’ mote id ’ : s e l f . mote . id
}

)
de f s end rpe b (s e l f , sequencenumber , packe t l eng th=None) :

i f packe t l eng th i s None :
packe t l eng th = s e l f .APP PK LENGTH

s e l f . s e n d r e p l i c a t i o n p a t h b (
dst Ip = s e l f . eng ine . motes [7] . g e t i p v 6 g l o b a l a d d r () ,
sequencenumber = sequencenumber ,
packe t l eng th = 23

)

s e l f . l og (
SimEngine . SimLog .LOG REPL TX,
{

’ mote id ’ : s e l f . mote . id
}

)

c l a s s AppPRE(AppBase) :

”””Send a packet p e r i o d i c a l l y

The f i r s t t iming to send a packet i s randomly chosen between [next
asn , (next asn + pkPeriod)] .
”””

de f i n i t (s e l f , mote , ∗∗kwargs) :
super (AppPRE, s e l f) . i n i t (mote)

130

s e l f . s e n d i n g f i r s t p a c k e t = True
s e l f . StopSendingA = False

#======================== pub l i c ==

def startSendingData (s e l f) :
i f s e l f . s e n d i n g f i r s t p a c k e t :

s e l f . s c h e d u l e t r a n s m i s s i o n ()

de f recvPacket (s e l f , packet) :
i f s e l f . mote . id == 7 and packet [’ type ’] == d .PKT TYPE ACK B:

p r in t ’PATH A Returned ’
sequencenumber = packet [’ app ’] [’ sequencenumber ’]
s e l f . eng ine . removeFutureEvent (” c r i t i c a l p a c k e t b ” + s t r (sequencenumber)

↪→)
e l s e :

pass

#======================== pub l i c ==

def s c h e d u l e t r a n s m i s s i o n (s e l f) :

a s s e r t s e l f . s e t t i n g s . app pkPeriod >= 0
i f s e l f . s e t t i n g s . app pkPeriod == 0 :

re turn

i f s e l f . s e n d i n g f i r s t p a c k e t :
compute i n i t i a l time with in the range o f [next asn , next asn+

↪→ pkPeriod]
de lay = s e l f . s e t t i n g s . t s c h s l o t D u r a t i o n + (s e l f . s e t t i n g s . app pkPeriod

↪→ ∗ random . random ())
s e l f . s e n d i n g f i r s t p a c k e t = Fal se

e l s e :
compute random delay
a s s e r t s e l f . s e t t i n g s . app pkPeriodVar < 1
#delay = s e l f . s e t t i n g s . app pkPeriod ∗ (1 + random . uniform(− s e l f .

↪→ s e t t i n g s . app pkPeriodVar , s e l f . s e t t i n g s . app pkPeriodVar))
de lay = 10

schedu le
s e l f . eng ine . scheduleAtAsn (

asn = s e l f . eng ine . asn + 1 ,
cb = s e l f . s e n d a s i n g l e p a c k e t ,
uniqueTag = (

’AppPRE’ ,
’ s chedu led by {0} ’ . format (s e l f . mote . id)

) ,
i n t raS l o tOrde r = d .INTRASLOTORDER STARTSLOT,

)

de f s e n d a s i n g l e p a c k e t (s e l f) :
converged = 100000
sendpackets = 4000
i f s e l f . mote . r p l . dodagId == None :

i t seems we l e f t the dodag ; stop the t ransmi s s i on
s e l f . s e n d i n g f i r s t p a c k e t = True
re turn
#wait u n t i l 1000 s l o t f r a m e s have passed tp sync

i f s e l f . mote . id == 7 and s e l f . eng ine . asn > converged :

131

i f s e l f . eng ine . asn % 1010 == 0 :
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine .

↪→ motes [5] . get mac addr ())
s e l f . s end path a (

dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength

)
s e l f . txpacket += 1
s e l f . eng ine . scheduleAtAsn (

asn = s e l f . eng ine . getAsn () + (101∗16) , # s e t t
↪→ anta l s l o t f r a m e s vente her

cb = s e l f . sendB ,
uniqueTag = ” c r i t i c a l p a c k e t b ” + s t r (s e l f .

↪→ sequencenumber) ,
i n t raS l o tOrde r = d .INTRASLOTORDER ADMINTASKS

)

schedu le the next t ransmi s s i on
i f s e l f . txpacket < sendpackets :

s e l f . s c h e d u l e t r a n s m i s s i o n ()

e l s e :
pass

de f sendB (s e l f) :
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine . motes [6] .

↪→ get mac addr ())
s e l f . s end path b (

dst Ip = s e l f . mote . r p l . dodagId ,
packe t l eng th = s e l f . s e t t i n g s . app pkLength

)
s e l f . eng ine . motes [7] . r p l . o f . s e t p r e f e r r e d p a r e n t (s e l f . eng ine . motes [5] .

↪→ get mac addr ())
s e l f . txpacket += 1

de f s end path a (s e l f , dstIp , packe t l eng th) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn
s e l f . sequencenumber += 1
s e l f . appcounter += 1

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE PATH A,
packe t l eng th = packet l ength ,
sequencenumber = s e l f . sequencenumber

)
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,

132

{
’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)
packet [’ net ’] [’ downward ’] = True
send
pr in t ’ Sequence number A at i n i t a l i z a t i o n : ’ , packet [’ app ’] [’

↪→ sequencenumber ’]
s e l f . mote . s ix lowpan . sendPacket (packet)

de f send path b (s e l f , dstIp , packe t l eng th) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn
c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE PATH B,
packe t l eng th = packet l ength ,
sequencenumber = s e l f . sequencenumber − 1

)

log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send
pr in t ’ Sequence number B at i n i t a l i z a t i o n : ’ , packet [’ app ’] [’

↪→ sequencenumber ’]
s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h a (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK A,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
packet [’ net ’] [’ downward ’] = True
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}

133

)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

de f s e n d r e p l i c a t i o n p a t h b (s e l f , dstIp , packet l ength , sequencenumber) :

abort i f I ’m not ready to send DATA yet
i f s e l f . mote . clear to send EBs DATA ()==False :

r e turn

c r e a t e
packet = s e l f . g ene ra t e packe t (

ds t Ip = dstIp ,
packet type = d .PKT TYPE ACK B,
packe t l eng th = packet l ength ,
sequencenumber = sequencenumber

)
packet [’ net ’] [’ downward ’] = True
log
s e l f . l og (

SimEngine . SimLog .LOG APP TX,
{

’ mote id ’ : s e l f . mote . id ,
’ packet ’ : packet ,

}
)

send

s e l f . mote . s ix lowpan . sendPacket (packet)

C.4 RPL

c l a s s RplOFStatic (ob j e c t) :

de f i n i t (s e l f , r p l) :
s e l f . r p l = r p l
s e l f . rank = None
s e l f . p r e f e r r e d p a r e n t = None

de f update (s e l f , d io) :
i f s e l f . p r e f e r r e d p a r e n t i s None and s e l f . r p l . mote . id != 0 :

parent mote = None
i f s e l f . r p l . mote . id == 1 :

parent mote = s e l f . r p l . eng ine . motes [0]
s e l f . rank = 512

e l i f s e l f . r p l . mote . id == 2 :
parent mote = s e l f . r p l . eng ine . motes [0]
s e l f . rank = 512

e l i f s e l f . r p l . mote . id == 3 :
parent mote = s e l f . r p l . eng ine . motes [1]
s e l f . rank = 1024

e l i f s e l f . r p l . mote . id == 4 :
parent mote = s e l f . r p l . eng ine . motes [2]
s e l f . rank = 1024

e l i f s e l f . r p l . mote . id == 5 :
parent mote = s e l f . r p l . eng ine . motes [3]

134

s e l f . rank = 1536
e l i f s e l f . r p l . mote . id == 6 :

parent mote = s e l f . r p l . eng ine . motes [4]
s e l f . rank = 1536

e l i f s e l f . r p l . mote . id == 7 :
parent mote = s e l f . r p l . eng ine . motes [6]
s e l f . rank = 2048

#Check i f TSCH i s synced
i f parent mote i s not None and parent mote . t sch . get I sSync () :

s e l f . p r e f e r r e d p a r e n t = parent mote . get mac addr ()
s e l f . r p l . i n d i c a t e p r e f e r r e d p a r e n t c h a n g e (

o l d p r e f e r r e d = None ,
new pre f e r r ed = s e l f . p r e f e r r e d p a r e n t

)

de f s e t r ank (s e l f , new rank) :
s e l f . rank = new rank

de f s e t p r e f e r r e d p a r e n t (s e l f , n ew pre f e r r ed parent) :
s e l f . p r e f e r r e d p a r e n t = new pre f e r r ed parent

de f g e t p r e f e r r e d p a r e n t (s e l f) :
r e turn s e l f . p r e f e r r e d p a r e n t

de f update etx (s e l f , c e l l , mac addr , isACKed) :
do nothing
pass

C.5 Scheduling function

de f g e t a v a i l a b l e s l o t s g l o b a l (s e l f) :
b u s y s l o t s = []
f o r mote in s e l f . eng ine . motes :

f o r key in mote . t sch . s l o t f r a m e s :
s l o t s = mote . t sch . s l o t f r a m e s [key] . g e t b u s y s l o t s ()
f o r s l o t in s l o t s :

b u s y s l o t s . append (s l o t)
re turn l i s t ((s e t (range (s e l f . eng ine . s e t t i n g s . t s ch s l o t f rameLength))) − s e t (

↪→ b u s y s l o t s))

de f g e t au tonomous c e l l (s e l f , mac addr) :
r e turn s e l f . eng ine . get mote by mac addr (mac addr) . s f . autonomous ce l l

de f a l l o c a t e a u t o n o m o u s r x c e l l (s e l f) :
a l l s l o t s = s e l f . g e t a v a i l a b l e s l o t s g l o b a l ()
s e l e c t e d s l o t = random . cho i c e (a l l s l o t s)
c h a n n e l o f f s e t = random . rand int (0 , 15)
s e l f . mote . t sch . addCel l (

s l o t O f f s e t = s e l e c t e d s l o t ,
channe lOf f s e t = c h a n n e l o f f s e t ,
ne ighbor = None ,
c e l l O p t i o n s = [d .CELLOPTION RX] ,
s l o t f r ame hand l e = s e l f .SLOTFRAME HANDLE

)
s e l f . autonomous ce l l = (s e l e c t e d s l o t , c h a n n e l o f f s e t)

de f a l l o c a t e a u t o n o m o u s t x c e l l (s e l f , mac addr) :
s l o t o f f s e t , c h a n n e l o f f s e t = s e l f . g e t au tonomous c e l l (mac addr)
s e l f . mote . t sch . addCel l (

135

s l o t O f f s e t = s l o t o f f s e t ,
channe lOf f s e t = c h a n n e l o f f s e t ,
ne ighbor = mac addr ,
c e l l O p t i o n s = [d .CELLOPTION TX, d .CELLOPTION SHARED] ,
s l o t f r ame hand l e = s e l f .SLOTFRAME HANDLE

)

C.6 TSCH

de f g e t f i r s t p a c k e t t o s e n d (s e l f , dst mac addr=None , trackID=None) :
packe t to s end = None
i f dst mac addr i s None :

i f l en (s e l f . txQueue) == 0 :
txQueue i s empty ; we may return an EB
i f (

s e l f . mote . clear to send EBs DATA ()
and
s e l f . d e c i d e d t o s e n d e b ()

) :
packe t to s end = s e l f . c reate EB ()

e l s e :
packe t to s end = None

e l s e :
return the f i r s t one in the TX queue , whose d e s t i n a t i o n MAC
i s not a s s o c i a t e d with any o f a l l o c a t e d (ded icated) TX c e l l s
f o r packet in s e l f . txQueue :

packe t to s end = packet # t e n t a t i v e l y
f o r , s l o t f r ame in s e l f . s l o t f r a m e s . i tems () :

d e d i c a t e d t x c e l l s = f i l t e r (
lambda c e l l : d .CELLOPTION TX in c e l l . opt ions ,
s l o t f r ame . g e t c e l l s b y m a c a d d r (packet [’ mac ’] [’ dstMac

↪→ ’])
)
i f l en (d e d i c a t e d t x c e l l s) > 0 :

packe t to s end = None
break # try the next packet in TX queue

i f packe t to s end i s not None :
found a good packet to send
break

i f no s u i t a b l e packet i s found , packe t to s end remains None
e l s e :

types = [d .PKT TYPE PATH A, d .PKT TYPE PATH B, d .PKT TYPE ACK A, d .
↪→ PKT TYPE ACK B]

f o r packet in s e l f . txQueue :
i f packet [’ mac ’] [’ dstMac ’] == dst mac addr :

i f trackID i s not None :
i f packet [’ type ’] in types :

packe t to s end = packet
break

e l s e :
i f packet [’ type ’] not in types :

packe t to s end = packet
break

re turn packe t to s end

136

C.7 Connectivity matrix

c l a s s Connect iv i tyMaster (Connect iv i tyBase) :

de f i n i t c o n n e c t i v i t y m a t r i x (s e l f) :
f o r source in s e l f . eng ine . motes :

f o r d e s t i n a t i o n in s e l f . eng ine . motes :
f o r channel in range (s e l f . s e t t i n g s . phy numChans) :

#c o n n e c t i v i t y = s e l f .CONNECTIVITY MATRIX NO LINK
c o n n e c t i v i t y = s e l f .CONNECTIVITY MATRIX NO LINK

#DOWNSTREAM LINKS
i f source . id == 0 and d e s t i n a t i o n . id == 1 :

c o n n e c t i v i t y = copy . copy (s e l f .
↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)

e l i f source . id == 0 and d e s t i n a t i o n . id == 2 :
c o n n e c t i v i t y = copy . copy (s e l f .

↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)
e l i f source . id == 1 and d e s t i n a t i o n . id == 3 :

c o n n e c t i v i t y = copy . copy (s e l f .
↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)

e l i f source . id == 3 and d e s t i n a t i o n . id == 5 :
c o n n e c t i v i t y = copy . copy (s e l f .

↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)
e l i f source . id == 5 and d e s t i n a t i o n . id == 7 :

c o n n e c t i v i t y = copy . copy (s e l f .
↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)

e l i f source . id == 2 and d e s t i n a t i o n . id == 4 :
c o n n e c t i v i t y = copy . copy (s e l f .

↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)
e l i f source . id == 4 and d e s t i n a t i o n . id == 6 :

c o n n e c t i v i t y = copy . copy (s e l f .
↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)

e l i f source . id == 6 and d e s t i n a t i o n . id == 7 :
c o n n e c t i v i t y = copy . copy (s e l f .

↪→ CONNECTIVITY MATRIX 90 DOWNSTREAM LINK)
#UPSTREAM LINKS
e l i f source . id == 7 and d e s t i n a t i o n . id == 5 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 7 and d e s t i n a t i o n . id == 6 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 6 and d e s t i n a t i o n . id == 4 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 4 and d e s t i n a t i o n . id == 2 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 2 and d e s t i n a t i o n . id == 0 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 5 and d e s t i n a t i o n . id == 3 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 3 and d e s t i n a t i o n . id == 1 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)
e l i f source . id == 1 and d e s t i n a t i o n . id == 0 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 90 LINK)

#Leapfrog l i n k s
#Across
e l i f source . id == 1 and d e s t i n a t i o n . id == 2 or source . id == 2

↪→ and d e s t i n a t i o n . id == 1 :
c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 50 LINK)

e l i f source . id == 3 and d e s t i n a t i o n . id == 4 or source . id == 4

137

↪→ and d e s t i n a t i o n . id == 3 :
c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 50 LINK)

e l i f source . id == 5 and d e s t i n a t i o n . id == 6 or source . id == 6
↪→ and d e s t i n a t i o n . id == 5 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 50 LINK)
#Diagonal
e l i f source . id == 1 and d e s t i n a t i o n . id == 4 or source . id == 4

↪→ and d e s t i n a t i o n . id == 1 :
c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 70 LINK)

e l i f source . id == 2 and d e s t i n a t i o n . id == 3 or source . id == 3
↪→ and d e s t i n a t i o n . id == 2 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 70 LINK)
e l i f source . id == 3 and d e s t i n a t i o n . id == 6 or source . id == 6

↪→ and d e s t i n a t i o n . id == 3 :
c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 70 LINK)

e l i f source . id == 4 and d e s t i n a t i o n . id == 5 or source . id == 5
↪→ and d e s t i n a t i o n . id == 4 :

c o n n e c t i v i t y = copy . copy (s e l f .CONNECTIVITY MATRIX 70 LINK)

s e l f . c o n n e c t i v i t y m a t r i x [source . id] [d e s t i n a t i o n . id] [channel] =
↪→ copy . copy (

c o n n e c t i v i t y
)

a s s e r t s e l f . c o n n e c t i v i t y m a t r i x [0] [1] [0] [’ r s s i ’] != −1000

C.8 6LoWPAN

de f f ind nexthop mac addr (s e l f , packet) :
mac addr = None
s r c i p a d d r = netaddr . IPAddress (packet [’ net ’] [’ s r c Ip ’])
d s t i p a d d r = netaddr . IPAddress (packet [’ net ’] [’ dstIp ’])
use lower 64 b i t s and i n v e r t U/L b i t
der ived dst mac = s t r (

netaddr . EUI(
(i n t (d s t i p a d d r) & 0xFFFFFFFFFFFFFFFF) ˆ 0 x0200000000000000

)
)

#SET PATH
i f packet [’ type ’] == ’DATA’ :

mac addr = s e l f . mote . r p l . g e tPre f e r r edParent ()
re turn mac addr

i f packet [’ type ’] == ’ACK A’ and s e l f . mote . id == 0 :
re turn s e l f . eng ine . motes [1] . get mac addr ()

i f packet [’ type ’] == ’ACK B’ and s e l f . mote . id == 0 :
re turn s e l f . eng ine . motes [2] . get mac addr ()

i f packet [’ type ’] == ’ACK A’ and s e l f . mote . id == 1 :
re turn s e l f . eng ine . motes [3] . get mac addr ()

i f packet [’ type ’] == ’ACK B’ and s e l f . mote . id == 2 :
re turn s e l f . eng ine . motes [4] . get mac addr ()

i f packet [’ type ’] == ’ACK A’ and s e l f . mote . id == 3 :

138

r e turn s e l f . eng ine . motes [5] . get mac addr ()

i f packet [’ type ’] == ’ACK B’ and s e l f . mote . id == 4 :
re turn s e l f . eng ine . motes [6] . get mac addr ()

i f packet [’ type ’] == ’ACK A’ and s e l f . mote . id == 5 :
re turn s e l f . eng ine . motes [7] . get mac addr ()

i f packet [’ type ’] == ’ACK B’ and s e l f . mote . id == 6 :
re turn s e l f . eng ine . motes [7] . get mac addr ()

i f (d s t i p a d d r . words [0] & 0xFF00) == 0xFF00 :
t h i s i s an IPv6 mul t i ca s t address
mac addr = d .BROADCAST ADDRESS

e l i f s e l f . mote . dagRoot :
i f der ived dst mac in s e l f . o n l i n k n e i g h b o r l i s t :

on−l i n k
mac addr = der ived dst mac

e l s e :
o f f−l i n k
mac addr = None

e l s e :
i f s e l f . mote . r p l . dodagId i s None :

p r i n t ’ Not j o i n ed yet ’ , s e l f . mote . id
upward during s ecure j o i n p roce s s
mac addr = s t r (s e l f . mote . t sch . j o i n p roxy)

e l i f (
(

((s r c i p a d d r . words [0] & 0xFE80) == 0xFE80)
)
or
(

(’ downward ’ in packet [’ net ’])
and
(packet [’ net ’] [’ downward ’] i s True)

)
) :
i f der ived dst mac in s e l f . o n l i n k n e i g h b o r l i s t :

on−l i n k
mac addr = der ived dst mac

e l s e :
mac addr = None

e l s e :
use the d e f a u l t route r (p r e f e r r e d parent)
mac addr = s e l f . mote . r p l . g e tPre f e r r edParent ()

re turn mac addr

These are snippets from each of the 6lowpan operations forward, recvPacket and
sendPacket.

de f forward
i f rxPacket [’ type ’] == d .PKT TYPE ACK A or rxPacket [’ type ’] == d .

↪→ PKT TYPE ACK B:
f o r Qpacket in s e l f . mote . t sch . txQueue :

i f Qpacket [’ type ’] == d .PKT TYPE PATH A or Qpacket [’ type ’] == d .
↪→ PKT TYPE PATH B:

i f rxPacket [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’
↪→ sequencenumber ’] :

s e l f . mote . t sch . dequeue (Qpacket)

139

pr in t ’ dropped at ’ , s e l f . mote . id , ’ Packet ’ , Qpacket [’
↪→ type ’]

s e l f . mote . drop packet (
packet = Qpacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)

goOn = False
i f rxPacket [’ type ’] == d .PKT TYPE PATH A or rxPacket [’ type ’] == d .

↪→ PKT TYPE PATH B:
f o r Qpacket in s e l f . mote . t sch . txQueue :

i f Qpacket [’ type ’] == d .PKT TYPE ACK A or Qpacket [’ type ’] == d .
↪→ PKT TYPE ACK B:

i f rxPacket [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’
↪→ sequencenumber ’] :

s e l f . mote . t sch . dequeue (Qpacket)
p r i n t ’ dropped at ’ , s e l f . mote . id , ’ Packet ’ , rxPacket [’

↪→ type ’]
s e l f . mote . drop packet (

packet = rxPacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)
goOn = False

de f recvPacket
i f packet [’ type ’] == d .PKT TYPE ACK A or packet [’ type ’] == d .

↪→ PKT TYPE ACK B:
f o r Qpacket in s e l f . mote . t sch . txQueue :

i f Qpacket [’ type ’] == d .PKT TYPE PATH A or Qpacket [’ type ’] == d .
↪→ PKT TYPE PATH B:

i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’
↪→ sequencenumber ’] :

s e l f . mote . t sch . dequeue (Qpacket)
p r i n t ’ dropped at ’ , s e l f . mote . id , ’ Packet ’ , Qpacket [’

↪→ type ’]
s e l f . mote . drop packet (

packet = Qpacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)

goOn = False
i f s e l f . mote . id == 0 :

i f packet [’ type ’] == d .PKT TYPE PATH A or packet [’ type ’] == d .
↪→ PKT TYPE PATH B:

f o r Qpacket in s e l f . mote . t sch . txQueue :
i f Qpacket [’ type ’] == d .PKT TYPE ACK A or Qpacket [’ type ’] == d

↪→ .PKT TYPE ACK B:
i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’

↪→ sequencenumber ’] :
s e l f . mote . t sch . dequeue (Qpacket)
s e l f . mote . t sch . dequeue (packet)
p r i n t ’ Dropped at 6 lowpan at Sink : ’ , packet [’ type ’]
s e l f . mote . drop packet (

packet = Qpacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)

goOn = False
de f sendPacket

i f packet [’ type ’] == d .PKT TYPE ACK A or packet [’ type ’] == d .
↪→ PKT TYPE ACK B:

f o r Qpacket in s e l f . mote . t sch . txQueue :
i f Qpacket [’ type ’] == d .PKT TYPE PATH A or Qpacket [’ type ’] == d .

140

↪→ PKT TYPE PATH B:
i f packet [’ app ’] [’ sequencenumber ’] == Qpacket [’ app ’] [’

↪→ sequencenumber ’] :
s e l f . mote . t sch . dequeue (Qpacket)
p r i n t ’ dropped at ’ , s e l f . mote . id , ’ Packet ’ , Qpacket [’

↪→ type ’]
s e l f . mote . drop packet (

packet = Qpacket ,
reason = SimEngine . SimLog .REVERSE DROP,

)

goOn = False

C.9 Mote

The adjustments to Mote.py to allow for starting with a converged network

de f boot (s e l f) :
s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [0] . get mac addr ())
i f s e l f . dagRoot :

I ’m the DAG root

app
s e l f . app . startSendingData () # dagRoot

s e c j o i n
s e l f . s e c j o i n . s e t I s J o i n e d (True) # dagRoot
s e l f . t s ch . c l o ck . sync ()
s e l f . t s ch . s e t I sSync (True) # dagRoot
s e l f . t s ch . add min ima l c e l l () # dagRpot
s e l f . t s ch . startSendingEBs () # dagRoot

r p l
s e l f . r p l . s t a r t ()

tsch

e l s e :
I ’m NOT the DAG root

schedu le the f i r s t l i s t en ingForE c e l l
#s e l f . t s ch . s c h e d u l e n e x t l i s t e n i n g F o r E B c e l l ()

app
s e c j o i n
s e l f . s e c j o i n . s e t I s J o i n e d (True) # dagRoot

tsch
i f s e l f . id == 1 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [0] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [0] . get mac addr ())
e l i f s e l f . id == 2 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [0] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [0] . get mac addr ())
e l i f s e l f . id == 3 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [1] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [1] . get mac addr ())
e l i f s e l f . id == 4 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [2] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [2] . get mac addr ())
e l i f s e l f . id == 5 :

141

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [3] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [3] . get mac addr ())
e l i f s e l f . id == 6 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [4] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [4] . get mac addr ())
e l i f s e l f . id == 7 :

s e l f . t s ch . j o i n p roxy = netaddr . EUI(s e l f . eng ine . motes [5] .
↪→ get mac addr ())

s e l f . t s ch . c l o ck . sync (s e l f . eng ine . motes [5] . get mac addr ())
s e l f . t s ch . s e t I sSync (True)
s e l f . t s ch . add min ima l c e l l ()
s e l f . t s ch . startSendingEBs ()

r p l
s e l f . r p l . s t a r t ()

142

Appendix D

Data retrival to CSV

This appendix shows how the data was retrieved from a json key performance
indicators file and converted to a CSV file.

import j son
import csv
import os
#os . chd i r (r ’C: /)
path = ”C: / Users / Fredr ik /Dropbox/ sims /90 l i n k l a t e frame/exec numMotes 8 . dat . kpi ”

dropsAtSink = []
dropsAtSink . append (’ Drops Mote 0 ’)

dropsAtOne = []
dropsAtOne . append (’ Drops Mote 1 ’)

dropsAtTwo = []
dropsAtTwo . append (’ Drops Mote 2 ’)

dropsAtThree = []
dropsAtThree . append (’ Drops Mote 3 ’)

dropsAtFour = []
dropsAtFour . append (’ Drops Mote 4 ’)

dropsAtFive = []
dropsAtFive . append (’ Drops Mote 5 ’)

dropsAtSix = []
dropsAtSix . append (’ Drops Mote 6 ’)

dropsAtSeven = []
dropsAtSeven . append (’ Drops Mote 7 ’)

ba t t e ry 1 = []
ba t t e ry 1 . append (’ L i f e t ime Years Mote 1 ’)

ba t t e ry 2 = []
ba t t e ry 2 . append (’ L i f e t ime Years Mote 2 ’)

ba t t e ry 3 = []
ba t t e ry 3 . append (’ L i f e t ime Years Mote 3 ’)

143

bat t e ry 4 = []
ba t t e ry 4 . append (’ L i f e t ime Years Mote 4 ’)

ba t t e ry 5 = []
ba t t e ry 5 . append (’ L i f e t ime Years Mote 5 ’)

ba t t e ry 6 = []
ba t t e ry 6 . append (’ L i f e t ime Years Mote 6 ’)

ba t t e ry 7 = []
ba t t e ry 7 . append (’ L i f e t ime Years Mote 7 ’)

l o w e s t l i f e = []
l o w e s t l i f e . append (’ Lowest Battery Time ’)

appsent = []
appsent . append (’ Packets sent ’)

app lo s t = []
app lo s t . append (’ Packets l o s t ’)

apprece ived = []
apprece ived . append (’ Packets r ece ived ’)

max latency = []
max latency . append (’Max Latency ’)

min latency = []
min latency . append (’ Min Latency ’)

mean la t enc i e s = []
mean la t enc i e s . append (’ Average Latency ’)

r a t i o = []
r a t i o . append (’ Packet d e l i v e r y ra t i o ’)

n in ty n ine = []
n in ty n ine . append (’99% ’)

with open (path , ’ r ’) as j s o n f i l e :
data = j son . load (j s o n f i l e)
f o r run in data :

drop0 = data [run] [’ 0 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtSink . append (drop0)

drop1 = data [run] [’ 1 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtOne . append (drop1)

drop2 = data [run] [’ 2 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtTwo . append (drop2)

drop3 = data [run] [’ 3 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtThree . append (drop3)

drop4 = data [run] [’ 4 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtFour . append (drop4)

drop5 = data [run] [’ 5 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtFive . append (drop5)

drop6 = data [run] [’ 6 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtSix . append (drop6)

144

drop7 = data [run] [’ 7 ’] [’ packet drops ’] [’ E l iminat ion drop ’]
dropsAtSeven . append (drop7)

l i f e 1 = data [run] [’ 1 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 1 . append (l i f e 1)

l i f e 2 = data [run] [’ 2 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 2 . append (l i f e 2)

l i f e 3 = data [run] [’ 3 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 3 . append (l i f e 3)

l i f e 4 = data [run] [’ 4 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 4 . append (l i f e 4)

l i f e 5 = data [run] [’ 5 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 5 . append (l i f e 5)

l i f e 6 = data [run] [’ 6 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 6 . append (l i f e 6)

l i f e 7 = data [run] [’ 7 ’] [’ l i f e t ime AA year s ’]
ba t t e ry 7 . append (l i f e 7)

networkdies = data [run] [’ g loba l−s ta t s ’] [’ n e twork l i f e t ime ’] [0] [’ min ’]
l o w e s t l i f e . append (networkdies)

sent = data [run] [’ g loba l−s ta t s ’] [’ app−packets−sent ’] [0] [’ t o ta l ’]
appsent . append (sent)

l o s t = data [run] [’ g loba l−s ta t s ’] [’ app packe t s l o s t ’] [0] [’ t o ta l ’]
app lo s t . append (l o s t)

r e c e i v e d = data [run] [’ g loba l−s ta t s ’] [’ app packe t s r e ce ived ’] [0] [’ t o ta l ’]
apprece ived . append (r e c e i v e d)

d e l i v e r y r a t i o = data [run] [’ g loba l−s ta t s ’] [’ e2e−upstream−de l i v e ry ’] [0] [’
↪→ value ’]

r a t i o . append (d e l i v e r y r a t i o)

minlatency = data [run] [’ g loba l−s ta t s ’] [’ e2e−upstream−l a tency ’] [0] [’ min ’]
min latency . append (minlatency)

maxlatency = data [run] [’ g loba l−s ta t s ’] [’ e2e−upstream−l a tency ’] [0] [’ max ’]
max latency . append (maxlatency)

n intyn ine = data [run] [’ g loba l−s ta t s ’] [’ e2e−upstream−l a tency ’] [0] [’ 9 9 % ’]
n in ty n ine . append (n intyn ine)

meanlatency = data [run] [’ g loba l−s ta t s ’] [’ e2e−upstream−l a tency ’] [0] [’ mean ’]
mean la t enc i e s . append (meanlatency)

j s o n f i l e . c l o s e ()
dropsAtSink = s t r (dropsAtSink) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtOne = s t r (dropsAtOne) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtTwo = s t r (dropsAtTwo) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtThree = s t r (dropsAtThree) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtFour = s t r (dropsAtFour) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtFive = s t r (dropsAtFive) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtSix = s t r (dropsAtSix) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
dropsAtSeven = s t r (dropsAtSeven) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)

145

bat t e ry 1 = s t r (ba t t e ry 1) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 2 = s t r (ba t t e ry 2) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 3 = s t r (ba t t e ry 3) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 4 = s t r (ba t t e ry 4) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 5 = s t r (ba t t e ry 5) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 6 = s t r (ba t t e ry 6) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
ba t t e ry 7 = s t r (ba t t e ry 7) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
l o w e s t l i f e = s t r (l o w e s t l i f e) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)

appsent = s t r (appsent) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
app lo s t = s t r (app lo s t) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
apprece ived = s t r (apprece ived) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
r a t i o = s t r (r a t i o) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)

min latency = s t r (min latency) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
max latency = s t r (max latency) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
n in ty n ine = s t r (n in ty n ine) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)
mean la t enc i e s = s t r (mean la t enc i e s) . r e p l a c e (’ [’ , ’ ’) . r e p l a c e (’] ’ , ’ ’)

with open (’C: / Users / Fredr ik /Dropbox/ sims / r e s u l t s . csv ’ , ’w’) as c s v f i l e :
f i l e w r i t e r = csv . w r i t e r (c s v f i l e , d e l i m i t e r = ’ , ’ , quot ing=csv .QUOTE MINIMAL)
f i l e w r i t e r . writerow ([ba t t e ry 1])
f i l e w r i t e r . writerow ([ba t t e ry 2])
f i l e w r i t e r . writerow ([ba t t e ry 3])
f i l e w r i t e r . writerow ([ba t t e ry 4])
f i l e w r i t e r . writerow ([ba t t e ry 5])
f i l e w r i t e r . writerow ([ba t t e ry 6])
f i l e w r i t e r . writerow ([ba t t e ry 7])
f i l e w r i t e r . writerow ([l o w e s t l i f e])

f i l e w r i t e r . writerow ([apprece ived])
f i l e w r i t e r . writerow ([appsent])
f i l e w r i t e r . writerow ([app lo s t])
f i l e w r i t e r . writerow ([r a t i o])

f i l e w r i t e r . writerow ([max latency])
f i l e w r i t e r . writerow ([n in ty n ine])
f i l e w r i t e r . writerow ([mean la t enc i e s])
f i l e w r i t e r . writerow ([min latency])

f i l e w r i t e r . writerow ([dropsAtSink])
f i l e w r i t e r . writerow ([dropsAtOne])
f i l e w r i t e r . writerow ([dropsAtTwo])
f i l e w r i t e r . writerow ([dropsAtThree])
f i l e w r i t e r . writerow ([dropsAtFour])
f i l e w r i t e r . writerow ([dropsAtFive])
f i l e w r i t e r . writerow ([dropsAtSix])
f i l e w r i t e r . writerow ([dropsAtSeven])

c s v f i l e . c l o s e

146

