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Part I

Introduction and theory
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Chapter 1

Introduction

When the Schrödinger equation was solved for the hydrogen molecule and the helium
atom in the 1920s, it was made clear that any molecular system could be accurately
described with quantum mechanics [2, 3, 4]. The term quantum chemistry appeared
around the same time. Given such a prominent maturity, one might be tempted to
assume quantum chemistry to be a finished field by now. Nothing could be further
from the truth.

Quantum chemistry relies on manybody quantum mechanics, which has proven
to be a resilient adversary for a century. Some of the obstacles appear intractable
even today. While the rules of the game dictate that all physical properties can be
exactly computed, and although all forces involved are well understood, the same
rules excludes an accurate depiction of all but the simplest model systems. Further-
more, even those solutions are rarely analytical. It became abundantly clear from
the very beginning that manybody quantum mechanics belong to the murky realm
of heavy number crunching.

Modeling of larger systems in particular require certain approximations, both in
how the wave function is described, and in how the Schrödinger equation is solved.
It is not enough to compromise between accuracy and tractability: Choices must be
made, both about what parts of the physics should be maintained, and about what
should be glossed over. These choices must reflect the investigations at hand. Entire
hierarchies of approximations (and corresponding corrections) have arisen over the
years. The scaling of cost of even the crudest usable approximations is rarely linear
in nature; if the system size is doubled, the computational expense is polynomially
increased at best. Safely navigating these waters, knowing when to use what, and
how – that is the trade of a quantum chemist. Nothing is simpler than producing
meaningless data which superficially look nice.
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One area of computational quantum chemistry that has been beyond the reach
of conventional computational methods for a long time is the regime of strong mag-
netic fields. Mathematically, magnetic fields introduce serious complications, the
gauge problem being the main antagonist. For weak fields, certain approximations
can be made, but they are safe to use only when experimental results are available for
comparison. However, magnetic fields experimentally attainable here on Earth are
paltry compared to certain stellar phenomena [5]. Even with terrestrially available
fields, experiments can be hard to conduct and interpret. Magnetic fields in gen-
eral, and strong fields in particular, are causing both theoretical and experimental
concerns. Fritz London proposed an elegant solution to some of these problems in
1938 [6] which allows the magnetic vector potential1 to be included in the orbitals.
This solves the gauge origin problem [7], but the all conventional numerical methods
must be reformulated and reimplemented in the new formalism. As always, when a
solution to one particular problem is introduced, a large number of different issues
tend to tag along.

The London program was written with this in mind [8, 9]. As a scientist, it has
been my most important tool. As a software developer, my main headache.

1.1 Scope

This thesis is my contribution to the continued advancement of high accuracy quan-
tum chemistry methods for magnetic fields, and to fill in some of the white spots on
the map of strong field chemistry. I have developed, implemented and explored com-
putational methods for strong magnetic fields. The behavior of these methods, and
their strengths and weaknesses, have been central points of investigation. I have used
these methods to probe molecular systems hitherto unavailable to scientific scrutiny.

From a development perspective, I have mostly concerned myself with Møller-
Plesset perturbation theory (MPPT). My research, however, has also relied heavily on
methods implemented in the London suite by others. These include more accurate
methods, such as coupled cluster theory (CC) and configuration interaction theory
(CI), and less accurate methods like Hartree-Fock theory (HF). Furthermore, I have
dealt with density functional theory (DFT) which is a different beast altogether,
particularly in the presence of magnetic fields. All these methods will be given due
treatment in Chapter 3.

The research includes three papers which address three different aspects of mag-
netic quantum chemistry. The first paper explores the underlying mechanisms of

1Magnetic vector potentials will be introduced in Section 2.2.
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DFT. Specifically, we investigated a field-dependent DFT formalism by using wave-
function methods (HF, MPPT and CC) to produce a density, and then compare
these with more or less conventional DFT functionals. The gist of this project was
to further the understanding of the theoretical framework of magnetic DFT.

The second paper revolved around helium atoms and clusters in strong magnetic
fields. High accuracy calculations were performed in order to fully understand the
interactions between helium atoms, and also explore the electronic structure of the
molecule for different bond lengths, orientations to the field, and field intensities.
The interest of helium on highly magnetic objects, such as white dwarfs stars, is not
new [10, 11].

In the final paper, a practical issue was scrutinized: Are the physical properties of
water affected by magnetic fields attainable on Earth? The issue has seen significant
attention over the years, but a scientific consensus has not yet emerged [12, 13]. Our
short answer to this riddle is no, the physical properties of water are not affected by
magnetic fields of available intensity, but saying so with confidence is surprisingly
hard.

The work underlying this thesis is therefore threefold, and on three different
abstraction levels. The overarching theme is the development and usage of magnetic
wave-function methods with the London orbital approach. These methods have been
used to increase our comprehension of other levels of theory, explore exotic molecular
properties, and provide practical answers to relevant issues here on Earth.

1.2 Magnetic fields and where to find them

This thesis is a theoretical study dealing extensively with magnetic fields and their
effect on chemistry.

In the vernacular sense, one might be tempted to consider a refrigerator magnet
or a compass needle as “weak” magnets, while a magnetic door lock or an NMR
spectrometer are “strong” – and the effects such powerful magnets can produce are
certainly impressive. There have even been fatal accidents with MRI scanners and
loose steel canisters [14]. Yet, the field strengths of such machines are typically just
a few tesla (T). The famous levitating frog experiment was conducted at 16 T [15]
and continuous magnetic fields for experimental research above 40 T have been avail-
able for decades [16]. However, all of these contraptions produce weak fields in the
chemical sense: None of them perceptibly affect molecular interactions. The tesla is
usually considered a rather large unit, but the atomic units are preferred for quan-
tum chemistry. In this thesis, the SI based Hartree system is used throughout. One
atomic unit (a.u.) for magnetic fields (B0) corresponds to approximately 235 kT
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and is several orders of magnitude stronger than anything available to experimental
research. Somewhat curiously, magnetic fields of moderate to high intensity have
until recently been largely unavailable to the theoretical chemists as well: The nec-
essary adjustments of the physical descriptions – or rather, the inapplicability of
the conventional field free approximations – causes vast computational problems for
interesting chemical systems.

It should be emphasized that the universe contains magnetic fields many orders
of magnitude larger than anything examined in this thesis. The London program
allows for a delightful generality, even still there are mysteries out there currently
beyond its grasp. For example, when the Coulomb interactions are a mere pertur-
bation to the magnetic forces, the pressure so high that electrons and protons merge
into neutrons, and the object rotates so fast that the linear velocity near the surface
approaches a quarter of the speed of light [17], then a completely different theoretical
approach is required.

Table 1.1 contains some examples of magnetic fields of various orders of magnitude
in an attempt to put the matter into perspective. Even experimentally attainable
fields can cause counterintuitive things to happen [34, 35], but for the really exotic
properties, much stronger fields are required. As an example of an exotic property,
Figure 1.1 shows how a magnetic field introduces currents in a H2 molecule to the
point that the triplet state allows for a stable, molecular bond: The induced currents
of the singlet and triplet have different direction, causing an increase and decrease
in energy, respectively. This in turn causes the triplet state to be strongly bonding
in a magnetic field [36], but only if the molecular axis is perpendicular to the field.
This effect is called perpendicular paramagnetic bonding [37, 38].

A sufficiently strong field will cause a paramagnetic molecule to become diamag-
netic [39, 40, 41]. Strong magnetic fields can also significantly alter the geometries
of well known molecules, such as benzene [42].

For the early history of the strong-field chemistry, consult [43, 44, 45, 46, 47].
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Table 1.1: Magnetic fields by order of magnitude

Regime [T] Description

10−18 Lower bound for SQUID magnetometers (about 5 aT) [18]
10−9 The heliosphere (1–35 nT) [19]
10−6 The magnetic field of planet Earth (up to 67 µT) [20]
10−3 Typical refrigerator magnet (about 5 mT)
100 Rare earth magnets, magnetic door locks and

MRI scanners [14]
101 Typical NMR spectrometers (> 10 T),

Levitating frog experiment (16 T) [15],
Strongest continuous field on earth (45 T) [16]

102 Strongest non-destructive pulsed field on earth,
exceeding 100 T [21, 22]

103 Strongest destructive pulsed fields [23, 24]
up to 2.8 kT, by means of explosives [25, 26]

104 White dwarf Grw+70◦8247 ;
surface field strength of about 32 kT [27]

105 1 a.u. = 235 kT = B0

Coulomb and magnetic interactions of equal magnitude
Lower bound for neutron star magnetic field [28]
Atoms deformed into prolate spheroids [29]

108 to 1010 Magnetars [30]

Non-linear fields (Schwinger limit); Smi = c2m2
e

qe~ ≈ 4.41 GT [31, 32, 33]
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Figure 1.1: The molecular current density of a H2 molecule, with the current density of
isolated atoms subtracted; singlet molecule above, triplet below. The unit of the X- and
Y-axis are a0 (bohr). The magnetic field introduces currents which causes the triplet state
to be stable and bonding. Image courtesy of Erik Tellgren.
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Chapter 2

Many-body quantum mechanics

In this chapter, the formalisms of manybody quantum mechanics will be introduced,
along with some useful approximations and tools.

2.1 The Schrödinger equation

There are many different approaches for doing quantum mechanics, some are more
convenient for some problems and less so for others [48]. The notation used in this
thesis will rely heavily on second quantization, bra-kets and commutators. These are
common tools for quantum chemists.

The conventional view is that the wave function, Ψ, contains all physical infor-
mation about a quantum system. Any observable can be represented by an operator,
Ω̂, whose eigenvalues are the possible outcomes of a measurement.

The operator Ω̂ maps a wave function to another (possibly identical) wave func-
tion. The expectation value is given by the integral

〈Ω̂〉 =

∫
Ψ∗Ω̂Ψ dτ. (2.1)

This follows from the Born rule, which states that the probability of measuring a
value ωi, corresponding to an eigenstate Φi, is |〈Φi Ψ〉|2.

The most important operator of manybody quantum mechanics by far is the
Hamiltonian, Ĥ. It describes the energy spectrum and all dynamics. Time evolution
of quantum states as a function of time t can be written like this,

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 , (2.2)

9



which is the time dependent Schrödinger equation. This is a first order differen-
tial equation in time. The solution to the time-independent Schrödinger equation
provides the stationary states,

Ĥ |Ψ〉 = E |Ψ〉 , (2.3)

where E is the total energy of the system. This is the setting in which the work of
this thesis has been conducted. The Hamiltonian operator depends on the relevant
physics of the system to be described. In quantum chemistry, the exact Hamiltonian
contains a term for the kinetic energy of all particles involved, and energy terms for
the twobody interactions between them. Threebody interactions and beyond have
no physical relevancy in chemistry and are not included in the Hamiltonian.

2.1.1 The Born-Oppenheimer approximation

Typically, the Born-Oppenheimer (BO) approximation is employed to reduce the
number of interactions, details are described below. The BO approximation lies at
the heart of most conventional quantum chemistry.

The complete Hamiltonian can be split up in many ways. One is to extract the
kinetic energy of the nuclei and treat the rest as an “electronic Hamiltonian”,

Ĥ = T̂nuc + Ĥel, (2.4)

where

T̂nuc = −
Nnuc∑

µ=1

1

2Mµ

∇2
µ. (2.5)

is the kinetic energy of the nuclei. The electronic Hamiltonian then becomes

Ĥel = T̂el + Ŵ + V̂ext + V̂nuc. (2.6)

The kinetic energy operator for the electrons is similar to the kinetic energy operator
for the nuclei:

T̂el = −1

2

Nel∑

p

∇2
p. (2.7)
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The remaining terms of Ĥel are the potential operators. These are

V̂nuc =
∑

µ<ν

ZµZν
|rµ − rν |

, V̂ext =
∑

p,µ

Zµ
|rµ − rp|

and Ŵ =
∑

p<q

1

|rp − rq|
, (2.8)

where the Greek indices indicate nuclei and Latin indices indicate electrons, so that
1 ≤ p, q ≤ Nel and 1 ≤ µ, ν ≤ Nnuc.

The lightest atom in existence is hydrogen, whose nucleus consists of a single
proton. Even in this case, the nucleus is more than a thousand times heavier than
an electron. It is therefore reasonable to assume that electrons experience the at-
tractions from the nuclei as an external potential and not as a twobody interaction.
Consequently, it is assumed that the electrons immediately adapt to any configura-
tion of the nuclei. This is the “classical” (and somewhat heuristic) justification for
the BO approximation1. In practice, it is well suited for ground state calculations,
but is often too crude for highly excited states: The BO approximation works best
when the states are comfortably far apart.

The definition of many computational methods rely on the assumption that the
movement of the nuclei is separated from the electron. While it is clear that the BO
approximation works well for a large number of chemical systems, there are funda-
mental problems that should be kept in mind. The above argument is formulated in
the paradigm of chemical structure as an “intrinsic property” of a molecule, but this
is inconsistent with requirements of quantum theory [50].

When the BO approximation is invoked, the nuclear-nuclear repulsion is indepen-
dent of electron coordinates and remains constant for a given geometry. Therefore,
the nuclear-electron interactions are onebody operators, just like the electronic ki-
netic energy. Only the electron-electron interactions depend simultaneously on more
than one particle. Splitting the electronic Hamiltonian into one- and twobody oper-
ators provides a compact representation. The one-electron Hamiltonian ĥ is defined
as

ĥi = −∇2
i +

Nnuc∑

µ=1

Zµ
|rµ − ri|

, (2.9)

thus rewriting the electronic Hamiltonian to

Ĥel =
Ne∑

i=1

ĥi + Ŵ . (2.10)

1Albeit, Born and Oppenheimer themselves did not use this argument [49].
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It is common to write the components of Ŵ in similar manner; ĝij = 1
rij

. For

the remainder of this thesis, I will assume that Ĥ and T̂ means Ĥel and T̂el unless
otherwise specified.

The BO approximation requires that the center of mass can be separated from the
internal degrees of freedom. In a magnetic field, this is a hard problem [51, 52, 53].
For this reason, calculating the expectation values of properties that rely directly
on the movement of the nuclei, such as vibrational spectra, is tricky when magnetic
fields are present. However, the properties investigated in this thesis do not depend
on the motion of the nuclei.

2.1.2 The Hellman-Feynman theorem

Any N -electron, antisymmetrized wave function Φ yields an energy which cannot lie
below the true ground state energy as provided by the ground state wave function
Ψ0:

E [Φ] =

〈
Φ Ĥ Φ

〉

〈Φ Φ〉 ≥ E0 = E [Ψ0] . (2.11)

This in turn allows Φ to be systematically varied until some energy minimum is
found. This is the Rayleigh-Ritz variational principle.

The Hellman-Feynman theorem simplifies differentiation of the energy. Assuming
a parametric dependency in the Hamiltonian on some continuous variable λ so that

Ĥλ |ψλ〉 = Eλ |ψλ〉 , (2.12)

and inserting this expression into Equation (2.11), and then differentiating with
respect to λ,

∂Eλ
∂λ

=
∂

∂λ

〈
ψλ Ĥλ ψλ

〉
= Eλ

[〈
∂ψλ
∂λ

ψλ

〉
+

〈
ψλ

∂ψλ
∂λ

〉]

︸ ︷︷ ︸
∂
∂λ
〈ψλ ψλ〉

+

〈
ψλ

∂Ĥλ

∂λ
ψλ

〉
.

(2.13)

Because 〈ψλ ψλ〉 = 1, it follows that ∂
∂λ
〈ψλ ψλ〉 = 0, and only

∂Eλ
∂λ

=

〈
ψλ

∂Ĥλ

∂λ
ψλ

〉
(2.14)
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is left. This assumes ψλ to be an eigenstate of the Hamiltonian. The Hellman-
Feynman theorem can be shown to work on a more general level if needed [54]. This
is a nifty result, but it only applies to variational methods. HF and CI theory are
variational methods, but MPPT and CC theory are not. All these methods will
receive due introduction in Chapter 3.

A further caveat is that the Hellman-Feynman theorem requires the wave func-
tion to not depend parametrically on λ. Often, this is true even if λ represents a
magnetic field. However, when London orbitals are used, the wave function depends
explicitly on the field. Magnetic properties like magnetizabilities and shielding con-
stants can be described by a Taylor expansion of the energy (more in Section 2.1.3),
and can therefore not be derived with the aid of the Hellman-Feynman theorem.
Differentiation with respect to variables that do not affect the model space of the
parametrized wave function are still acceptable, so an electric field, for example, is
not a problem.

2.1.3 Magnetic properties

The response of a system to changes in a magnetic field can be investigated in several
ways. It is usually recommended to employ analytical differentiation when possible,
since usage of numerical differentiation is expensive and messy. Unfortunately, imple-
menting the analytical derivatives tend to be labor intensive and hard. As discussed
in Section 2.1.2, the Hellman-Feynman theorem does not hold for magnetic depen-
dencies and London orbitals. This means the derivatives of not only the Hamiltonian,
but also of the wave function, is required. Polynomial fitting is a less desirable so-
lution in terms of accuracy and reliability, but sometimes pragmatism must prevail
over purity.

The total energy of a molecular system as a function of the magnetic field can be
written as a Taylor expansion

E (B) = E0 +
1

2

∑

α

JαBα −
1

2!

∑

αβ

χαβBαBβ +
1

3!

∑

αβγ

XαβγBαBβBγ + ... (2.15)

where E0 is the field-free energy. The first derivative is the angular momentum, and
the magnetizability is the second-order term. The higher orders are all called hyper-
magnetizabilities, and denominated byXαβγδ... where the number of indices determine
the exact order of the property. In a closed shell system, E (B) = E (−B) and all
odd terms disappear due to symmetry. The first relevant hyper-magnetizability for
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a closed shell system is therefore

Xαβγδ = − ∂4E (B)

∂Bα∂Bβ∂Bγ∂Bδ

∣∣∣∣
B=0

. (2.16)

It is intractable to compute such a fourth-order tensor with polynomial fitting. For
highly symmetric molecules, such as small, homoatomic clusters, most of the tensor
will contain redundant information and high-order magnetic properties have conse-
quently been calculated [55] for this kind of systems.

In paper 1, a sixth order polynomial fitting over not just the total energy as a
function field, but different Kohn-Sham components (see Section 3.5), was employed.

2.1.4 Second quantization and commutators

The second quantization formalism was made for quantum field theory, and is par-
ticularly useful for keeping track of an arbitrary, and possibly changing, number of
particles. In quantum chemistry, the number of particles is usually constant, unless
ionization and similar effects are studied. However, second quantization simplifies
the book keeping and offers compact a representation of the mathematics involved.

Instead of describing the coordinates of particles explicitly, they are represented
by creation and annihilation operators. A creation operator will add a particle with a
particular set of quantum numbers to the wave-function, and an annihilation operator
will remove one.

It is assumed that some set of orthonormal single particle spin orbitals exists and
that they can be assigned single particle energies2. Adding all particles in ascending
order to the true vacuum state gives the simplest approximation to a many-particle
ground state. This defines the Fermi vacuum,

â†1â
†
2...â

†
N |vac〉 = |ψ0〉 (2.17)

which is a many-particle wave function that frequently serves as a starting point
for more elaborate descriptions. Indices of single-particle states (orbitals) below
the Fermi level are denoted with the letters i, j, k..., letters a, b, c... are used above
the Fermi level, and p, q, r... denote arbitrary single-particle states. An unoccupied
orbital is usually called virtual. The Fermi level necessarily lies between the highest
occupied orbital and the lowest virtual orbital.

All the possible single particle orbitals – whatever they may be – are sorted by
energy, and the particles of the system are created from lowest energy and upwards.

2This is a modest assumption. Some examples are orbitals provided by the 1-electron part of
Ĥ, the Fock operator, the Kohn-Sham operator or by some other quasi-particle theory.
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This is not necessarily the ground state, but since all the low energy orbitals are
at play, it is usually a fair starting point. It is much more useful than the true
vacuum since all the particles are “in game”, and different configurations can be
described by applying creation and annihilation operators in equal amount. Due
to the Pauli exclusion principle, no fermions can share the same set of quantum
numbers. Therefore, attempting to create an existing particle, or annihilating a
non-existing one, renders the wave function void:

â†i |ψ0〉 = âa |ψ0〉 = 0. (2.18)

Annihilating an existing particle creates a “hole”. If a particle is then created in a
different orbital, a new state with the same number of particles is created. This is
called a particle-hole excitation, and is typically depicted like this:

â†aâi |ψ0〉 = |ψai 〉 , â†aâ
†
bâiâj |ψ0〉 =

∣∣ψabij
〉

(2.19)

and so on, where the states
∣∣ψabc...ijk...

〉
are n-particle-n-hole excitations for some 1 ≤

n ≤ Nel. As long as the number of particle creations is identical to the number
of annihilations, the total number of particles is preserved. Any wave function can
be described as a linear combination of different particle-hole excitations from some
N -electron state. For creation and annihilation operators, the commutator rules are

[
â†p, â

†
q

]
+

= 0, [âp, âq]+ = 0 and
[
â†p, âq

]
+

= δpq, where δpq =

{
1 p = q

0 p 6= q

(2.20)

is the Kronecker delta. In the second quantization representation, the anticom-
mutation relations in Equation (2.20) are central axioms. For more details, con-
sult [56, 57].

2.2 Vector potentials and gauge transformations

Maxwell’s equations for electromagnetism,

∇ · E =
ρ

ε0
, ∇B = 0, ∇× E =

∂B

∂t
and ∇×B = µ0

(
J + ε0

∂E

∂t

)
, (2.21)

define relations between the magnetic field B and the electric field E. The other
dramatis personae in the equations above are the current density J, the charge
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density ρ, the vacuum permittivity ε0 = 1
4π

a.u. and the vacuum permeability
µ0 = 4π

c2
. In classical physics, this is often the most convenient way to formulate and

use electromagnetic relations. It is, however, also possible to define these relations in
terms of the magnetic vector potential A and the electrostatic potential Φ. Whereas
E and B are actual, physical fields, the potentials are mathematical constructions.
They can be arbitrarily chosen, as long as the following demands are satisfied:

E = −∇Φ +
∂A

∂t
and B = ∇×A. (2.22)

When the fields are static, the requirement for the electric field is simplified to

E = −∇Φ. (2.23)

The existence of electromagnetic potentials is ensured by the Helmholtz theorem,
also called the fundamental theorem of vector calculus. It states that a well behaved3

vector field F may be decomposed into a solenoidal and an irrotational field – that
is, one field whose divergence is zero, and one whose curl is zero, respectively. The
vector field is written as

F = −∇Φ +∇×A, (2.24)

which determines Φ and A up to a gauge term given by the gradient of a function [58].
The canonical momentum operator for an electron is

p̂ = −i∇. (2.25)

However, the presence of a magnetic field requires the inclusion of the magnetic
vector potential. Since −q = 1 in atomic units, the operator becomes

π̂ = −i∇+ A. (2.26)

The operator π̂ represents the physical momentum (also called the kinetic momentum
in the literature). T̂ and Ĥ are then adjusted accordingly. This is called the minimal
substitution [59].

Next, we consider quantum mechanics with external fields. Assume a gauge
transformation function f so that

φ (r) 7→ e−if(r)φ (r) = φ′ (r) (2.27)

3“Well behaved” is a loose term, but formally speaking, the requirement is twofold. First, the
vector field must be fast decaying, and second, it must be smooth. The latter entails that both ∇F
and ∇× F are finite everywhere.
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where

A (r) 7→ A (r) +∇f (r) . (2.28)

As usual, φ (r) is the wave function. The gauge transformations cancels out exactly
for the canonical momentum (Equation (2.26)), because

π̂′φ′ = (−i∇+ A +∇f) e−if(r)φ = e−if(r) (−i∇−∇f + A +∇f)

= e−if(r) (−i∇+ A)φ = e−if(r)π̂φ. (2.29)

When written as an expectation value, this becomes

〈
φ′ π̂′ φ′

〉
=

∫
φ∗eif(r)e−if(r)π̂φ dr =

∫
φ∗π̂φ dr = 〈φ π̂ φ〉 . (2.30)

Clearly, the expectation value is not affected by the gauge transformation. Since the
momentum is gauge invariant, so is the kinetic energy, and therefore the Hamiltonian
itself because electrostatic interactions are field independent.

The London orbital formalism is actually invariant for all gauge transformations
on the form A → A + c, where c is some Cartesian vector [60]. However, for the
purposes of this thesis, gauge origin invariance is enough. My work is restricted to
uniform magnetic fields and the vector potentials are on the form A = 1

2
B×(r−G).

The reference point G is the gauge origin. In this case, f is

f (r) = r ·
(

1

2
B× c

)
which gives ∇f (r) =

1

2
B× c. (2.31)

There are only two actual degrees of freedom, since the component parallel to the
field does not contribute to A. The wave function must be complex when a magnetic
field is present, but it can still be described by real basis functions. However, in an
incomplete basis, the wave function lacks the required flexibility to conform to the
oscillations4. Figure 2.1 illustrates how the wave function for a H2 molecule behaves
in a field for two different gauge origins. The density |ψ (r)|2 is unaffected by the
gauge origin, but the wave function itself changes. The oscillations introduced are
hard to model with Gaussians alone. The London factor introduces these oscillations,
thus providing the wave function with the necessary flexibility to cope with gauge
origin transformations.

This solves the gauge origin problem and retains the basis set formulation of
the manybody methods. Several new issues are unfortunately introduced. Complex

4For atoms, this is not a problem, since the gauge origin can be safely placed in the center.
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Figure 2.1: The real and imaginary parts of the wave function for a hydrogen molecule
in a magnetic field of 0.1B0. The only difference between the left an the right plot is the
placement of the gauge origin. In the left figure, the gauge origin is placed at the electronic
center of mass, in the right, it is placed far away. Image courtesy of Erik Tellgren.
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numbers require more flops and memory, and should therefore be avoided if possible.
Also, certain useful short-cuts and symmetries which can be exploited for real num-
bers are no longer valid. London orbitals also cause the basis functions themselves to
be complex, something most conventional integral routines cannot handle [61, 62, 63].
For example, given a real density matrix D and an overlap matrix S, the number
of electrons is N =

∑
pq SpqDpq. This is no longer true for a complex density ma-

trix. Since the matrices are Hermitian, the correct (but often redundant) definition
is rather

N =
∑

pq

SpqD
∗
pq =

∑

pq

SpqDqp. (2.32)

The density operator- and matrix will be properly introduced in Chapter 3. Another
illustrative example is the twoelectron integrals:

〈rs pq〉 = 〈pq rs〉 = 〈qp sr〉∗ 6= 〈qp sr〉 , (2.33)

which reveals how some of the commonly exploited symmetries are still valid, while
others are not [64]. Here, the conventional notation

〈pq rs〉 ≡
∫∫

φ∗p (r1)φ∗q (r2)
1

|r1 − r2|
φr (r1)φs (r2) dr1dr2, (2.34)

has been employed.
As an aside, London orbitals have also been used in the relativistic regime [65],

showing that this formalism is viable for heavier elements as well. For a mathematical
description of gauge invariance in a more general setting, please consult [31].

2.3 Molecules and magnetism

All physical matter is affected by magnetic fields, but “magnetism” is not one singu-
lar, unique property. Rather, it is a class of physical phenomena, and the material
in question may simultaneously be under the influence of several. The source of
magnetism in all forms are the spin magnetic momenta of the elementary particles
and electric current. In the context of this thesis, the only elementary particles of
relevancy are the electrons.

Consider a field-dependent one-electron Hamiltonian

ĥ =
1

2
π̂2 + V =

1

2
(p̂ + A) (p̂ + A) + V. (2.35)
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In a uniform magnetic in the z direction, the expression can be rewritten as

ĥ = ĥ0 +Bsz +
1

2
BL̂z +

1

8
B2
(
x2 + y2

)
(2.36)

where

ĥ0 =
1

2
p̂2 + V (2.37)

is the field-free single particle Hamiltonian and Lz and sz are the angular and spin
magnetic momenta. The term Bsz is the spin Zeeman contribution. The spin Zeeman
term gives rise to the conventionally known spin states: singlets, doublets, triplets,
and so on. The last terms deserve a bit more scrutiny as they describe orbital
interactions. Defining

ĥpara =
1

2
BL̂z and ĥdia =

1

8
B2
(
x2 + y2

)
(2.38)

we see that hpara is linear in the field and hdia is quadratic. It is the electronic

rotational motion in the field which gives rise to ĥpara. This rotation generates an
orbital magnetic momentum, which interacts with the field in a dipolar fashion; it
will either increase or decrease the energy, all depending on the orientation of the
spin to the field. This term is paramagnetic. The final term is diamagnetic and is
caused by the precessional motion of the electron in the field. This, in turn, induces
a destructive magnetic momentum, thus increasing the energy of the system.

Closed shell molecules are normally diamagnetic, since all electrons are bound up
as pairs with opposing spin. In fact, as seen in Equation (2.38) all molecules must
have a diamagnetic term, but they may also have a paramagnetic term in addition,
which causes attraction to the external field. A radical is obviously paramagnetic,
but also a molecule such as O2: The ground state has two electrons in degenerate
orbitals, and in accordance with Hund’s rules, they consequently align spinwise. The
two aligned spins give rise to a paramagnetic term which is much stronger than the
diamagnetic term from the remaining seven doubly occupied orbitals. However, since
the diamagnetic term scales with the square of the field, while the paramagnetic term
is linear, all molecules become diamagnetic in a sufficiently strong field. Typically,
closed shell molecules are exclusively associated with diamagnetism, but closed shell
paramagnetic molecules are also possible. This is an exotic effect. In the case of boron
monohydride (BH), the molecule is diamagnetic if the molecular axis is parallel to the
field, and paramagnetic in a perpendicular orientation. The diamagnetic terms causes
the electron distribution around an atom to become less diffuse and symmetric [66].
This “diamagnetic shrinking” is not yet experimentally observable in vitro, as the
fields attainable on Earth are comparatively weak.
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Chapter 3

Computational methods

Quantum chemistry encompasses an astounding amount of different many-body the-
ories, each with numerous variations and flavors. Even a cursory introduction to all
of them is beyond the scope of this thesis, but the methods presented in the following
sections have been used extensively and merit a description.

3.1 Hartree-Fock theory

HF theory is the foundation upon which most ab initio methods are constructed.
The main assumption in HF theory is that the exact manybody wave function can
be adequately approximated with a single Slater determinant. The resulting deter-
minant can then be used as a Fermi vacuum for more exact descriptions. Minimizing
the energy as the expectation value from a full Hamiltonian applied on a single Slater
determinant gives effective single particle equations. This can be interpreted to de-
scribe particles interacting with a “mean-field” from the others, rather than the full
Coulomb interaction [67].

The time-independent non-relativistic Schrödinger equation, Equation (2.3), was
introduced in Section 2.1. The solutions to this equation provides what we define
to be the exact energy of a system. Solving the manybody Schrödinger equation
exactly in the conventional sense is typically intractable for chemically relevant sys-
tems, which is why entire hierarchies of approximations have arisen. The so called
correlation energy Ecorr is, by definition, the difference between the exact energy of
a system and the HF energy:

Ecorr ≡ E − EHF. (3.1)
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One note of importance: In the quantum chemistry vernacular, the “exact energy” is
usually defined as the Full Configuration Interaction (FCI) energy (EFCI) in the basis
set limit1. This is not the only way to solve the Schrödinger equation exactly, but
it is the most common approach. Of course, all exact descriptions must necessarily
provide the same energy, and can therefore be seen as rewritings of each other.

3.1.1 Slater determinants

The fermionic many-particle wave function is constructed from orthogonal single-
particle spin orbitals χp (x). The coordinates x contain both the spatial coordinates
r and the spin σ of the particle. The orbital index is labeled p. A single-particle
orbital χp depending on x is a spinor. The Hartree product was introduced by
Douglas Hartree in 1928 [68], and is a product of spinors,

ΦH = χα (x1)χβ (x2) · · ·χσ (xN) . (3.2)

It is an ansatz for the wave function, but a rather poor one: The wave function needs
to be antisymmetric under the interchange of two particles, so as to satisfy the Pauli
exclusion principle, and a product is obviously not. The antisymmetrizing issue was
solved with the introduction of the Slater determinant, ΦSD. It is defined like this:

ΦSD ≡
1√
N !

∣∣∣∣∣∣∣∣∣

χ1 (x1) χ2 (x1) · · · χN (x1)
χ1 (x2) χ2 (x2) χN (x2)

...
. . .

...
χ1 (xN) χ2 (xN) · · · χN (xN)

∣∣∣∣∣∣∣∣∣
. (3.3)

The interchange of two particles is the same as interchanging two columns, thereby
changing the sign of the determinant. It is inconvenient to write out the determinant
in full, but it can be rewritten in terms of the antisymmetrizing operator Â and the
Hartree product. The antisymmetrizing operator is a summation of permutation
operators, P̂ . The permutation operator simply interchanges the ordering of a given
number of columns, for example like this:

P̂12Φ (χ1χ2χ3...χN) = −Φ (χ2χ1χ3...χN) . (3.4)

It must commute with the Hamiltonian since the Hamiltonian is invariant to the
permutation of particles. The antisymmetrizing operator Â is therefore defined as

Â ≡ 1√
N !

∑

p

εpP̂p (3.5)

1Basis sets will receive due attention in Section 3.1.2, FCI will be introduced in Section 3.2.
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where εp is 1 for even numbers of pairwise interchanges and −1 for odd. This term
is known as the Levi-Civita tensor. In general, εm1m2...mN = (−1)pε12...N , where p is
the number of pairwise permutations required to sort the indices in ascending order.
If any indices are equal, the term is zero2. The antisymmetrized wave function is
necessarily antisymmetric, therefore it follows that

Â2 = Â. (3.6)

This operator allows the Slater determinant to be rewritten in terms of the Hartree
product (Equation (3.2)), so that

ΦSD = Âφ1(1)φ2(2)...φN(N) = ÂΦH, (3.7)

and the energy of a Slater determinant is then written as

ESD =
〈

ΦSD Ĥ ΦSD

〉
=
〈
ÂΦH Ĥ ÂΦH

〉
=
∑

p

εp

〈
ΦH Ĥ P̂ΦH

〉

=
∑

p

εp

〈
ΦH

Ne∑

i=1

ĥi +
Ne∑

i<j

ĝij + V̂nn P̂pΦH

〉
, (3.8)

where ĝij = 1
rij

and the nuclear-nuclear term can immediately be set aside as a

constant, since they are independent of the coordinates of the electrons. For the
one-body part of the Hamiltonian3, only the first term of Â comes into play: The
orbitals making up the Slater determinant are orthonormal, meaning terms like

〈
φ1(1)φ2(2) ĥ1 φ2(1)φ1(2)

〉
=
〈
φ1(1) ĥ1 φ2(1)

〉
〈φ2(2) φ1(2)〉︸ ︷︷ ︸

0

(3.9)

disappear. Therefore, only a simple sum of expectation values are left:

Ne∑

i=1

〈
ΦH ĥi ΦH

〉
=

Ne∑

i=1

〈
φi(i) ĥi φi(i)

〉
=

Ne∑

i=1

hi. (3.10)

For the twobody operator, things are slightly more complex. All permutations in-
volving tree or more electrons will give zero contributions by similar argument, but

2As it should be lest the Pauli exclusion principle is violated.
3ĥ was introduced in Equation (2.9).
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twobody permutations allows for non-zero terms. Two distinctly different terms are
possible:

Jij = 〈ΦH ĝij ΦH〉 and Kij =
〈

ΦH ĝij P̂ijΦH

〉
. (3.11)

The Coulomb term Jij is a quantum mechanical counterpart to electrostatic re-
pulsion, but the exchange Kij has no classical analogue. The energy of a Slater
determinant is then

ESD =
Ne∑

i=1

hi +
1

2

Ne∑

ij

(Jij −Kij) + Vnn. (3.12)

The gist of HF theory is to find the one Slater determinant that offers the lowest
possible energy. The method is consequently variational, and

EHF = min
ΦSD

ESD. (3.13)

Differentiation of the energy expression with respect to the orbitals, subject to or-
thonormality constraints, yields the condition for a stationary point. The stationary
point found may or may not be a minimum – it could also be a saddle point. Saddle
points can be avoided, but there is no guarantee that the minimum found is the
global minimum [69]. The mountain valley problem is beyond the scope of this the-
sis, but on a practical note, a reasonable initial guess for the orbitals tends to work
well most of the time. HF theory is a robust and reliable method, and is extensively
used as a starting point for more elaborate schemes.

Everything described so far has been completely general, but in practice, as-
sumptions about spin constraints of the system are usually made. For a thorough
description, consult [70]. If all spatial orbitals are required to be doubly occupied, the
method is called Restricted Hartree-Fock (RHF). With singly occupied spin orbitals,
the method is rather called Unrestricted Hartree-Fock (UHF). A hybrid between the
two schemes, which employs doubly occupied orbitals whenever possible and singly
occupied orbitals for unpaired electrons, is known as Restricted Open-Shell Hartree-
Fock (ROHF).

3.1.2 Basis sets

The idea of the HF method is to approximate the wave function with one single
Slater determinant, and so the method is necessarily variational as elaborated in
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Section 3.1.1. In principle, any scheme which optimizes the wave function by mini-
mizing the energy to reach a minimum is valid. However, mathematical validity does
not imply practicality. The conventional solution is to expand the Slater determi-
nant in a basis and vary the coefficients until a self consistent solution is found, as
described below.

The Slater determinant consists of orbitals. These orbitals χi will now be de-
scribed as a linear combination of basis functions

|χi〉 =
∑

α

Cαi |α〉 (3.14)

where the matrix C contains the coefficients multiplying each basis function. This
description of an orbital introduces an additional approximation; unless the orbital
can be perfectly described by a finite number of basis functions, an exact description
is off the table.

Due to the basis set expansion, only C is changed during optimization. Conse-
quently, the entire problem can be rephrased as a system of equations to be solved.
These are the famous Roothaan-Hall equations:

FC = SCε. (3.15)

The overlap matrix is represented by S, whose elements are

Sij =

∫
χ∗i (r)χj (r) dr. (3.16)

The undetermined Lagrange multipliers are encapsulated by ε. The algorithm re-
quires a set of initial coefficients from which a Fock matrix F is computed. Using
the same notation for twoelectron integrals as in Equation (2.34), the elements of F
become

fµν = hµν +
∑

ρσ

F∑

i=1

C∗ρiCiσ


〈µρ νσ〉︸ ︷︷ ︸

Edirect

−〈µρ σν〉︸ ︷︷ ︸
Eexchange


 . (3.17)

After construction, this matrix is (block) diagonalized. This provides a new ansatz
for C, and the cycle can be repeated until convergence. At convergence, ε are the
HF orbital energies. The HF state is invariant to unitary transformations, but the
canonical solution entails complete diagonalization [71].

Basis sets come in many shapes and forms. They are some kind of mathematical
functions; Gaussians, exponentials, sine functions, polynomials or the like. While a
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complete basis in all cases should produce the same wave function, this choice is not
arbitrary and depends on the investigations to be undertaken. The Kato theorem
states that the electron density at a nucleus acquires the form of a cusp [72, 73].
Accordingly, the basis functions should ideally produce a good cusp as well. Expo-
nentials may seem a like natural choice for basis functions, but they require costly
numerical integrals. Gaussians allow for analytical integrals, which is a huge cost
saver. More Gaussians are needed to produce a good cusp than exponentials, and
their long range decay may be a bit rapid, but the total evaluations are still signif-
icantly cheaper. The London code is written for Gaussian type orbitals (GTOs)
with a complex plane wave – the London factor.

Even when the choice of Gaussians has been made, the size and properties of
the basis sets vary. Gaussian type basis sets have been tailored for more or less any
property chemists have been wanting to study with varying degrees of success. Some
basis sets are optimized for getting the correlation energy right, some are optimized
for specific molecular properties, etc.

A strong magnetic field is a notoriously tricky customer. The gauge problem is
one issue, but there is also the anisotropic deformation: The field change the shape
of the orbitals in a non-trivial way, both as a function of intensity and orientation.
Conventional basis sets assume a spherical symmetry of the s-orbitals, thus the same
exponents are used in all Cartesian directions. This cannot handle anisotropic de-
formation unless d-orbitals or higher are present:

e−a(x
2+y2+z2)−bz2 = e−ar

2

e−bz
2

= e−ar
2

(
1︸︷︷︸
s

− bz2
︸︷︷︸

d

+ ...

)
. (3.18)

One way to do it is to simply go to the basis set limit. Obviously, this is not feasible,
and specific anisotropic basis sets have been constructed [74, 75, 75, 76]. Anisotropic
deformation is a significant cause of error in the strong-field regime, so having basis
sets that can account for it is a useful improvement. This approach is unfortunately
not without hurdles. The basis sets must then be optimized for the magnetic field
at hand, and this is a significant challenge which adds to the overall complexity and
cost. Furthermore, such optimizations may be non-trivial, and the uncertainties are
difficult to measure. For atomic calculations, regular Gaussians can work quite well,
however [77].

Anisotropic deformation is beyond the scope of this thesis. Therefore, rather
than working with exotic basis sets that accounts for it, I have focused on the gauge
problem alone: The gauge dependency also detracts from basis set convergence [60].
I have relied on conventional basis sets and let the London factor deal with the gauge
problem. Thus, one of the obstacles to fast basis set convergence has been removed
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and all conventional basis sets, whose behavior is well established, can be used out
of the box. This is important, since experimental basis sets are often optimized only
for atoms.

The deformation issue is still highly relevant for extreme fields. For moderate
fields, up to a few atomic units, the deformation can be adequately handled by
conventional sets of decent size. It is certainly possible to use anisotropic basis sets
with a London factor as well, of course. This would be an interesting endeavor to
undertake in the future.

The correlation consistent basis sets of Dunning and coworkers are optimized to
get the correlation energy of the valence electrons correctly [78, 79, 80, 56]. This
is a useful property in general, but it is especially important for dispersion effects.
Unfortunately, that purpose requires augmentations (diffuse functions) since long-
range effects are poorly described otherwise. Most of my work has relied on this
family of basis sets, with the uncontracted augmented triple ζ acting as the work
horse. Normally, uncontracted basis sets are avoided, as they provide extra cost and
scant little benefit, but they have a certain flexibility that is otherwise unavailable:
The problems introduced by anisotropic deformations from intense magnetic fields
are offset a little.

Basis set notations can unfortunately be rather impenetrable when different mod-
ifications and distinctions are added to well established formalisms. Thus cc-pVTZ

becomes aug-cc-pCVTZ when augmentations and core functions are added. Specify-
ing the uncontracted set is marked by adding the prefix u, typically preceded by an
L to denominate the London factor. This convention has been used throughout this
thesis.

3.1.3 Basis set superposition errors

When two atoms are in close proximity, their respective basis functions will overlap.
This provides a local and artificial effective increase in the size of the basis for each
atom. The quality of description of the wave function therefore depends on the
position of the atoms, and any variational method will predict a slightly lower energy
than should be the case. In other words, the accuracy of the calculations depends
on the distance between the atoms. This is known as basis set superposition error
(BSSE). The conventional remedy is the counterpoise correction.

Typically, the effects of BSSE are small, and can often be ignored if the property
to be investigated involve energy differences orders of magnitude larger than the
BSSE. However, for subtle effects like dispersion, the quantitative influence can be
proportionally quite large. In some cases, even qualitatively wrong. For example, HF
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theory predicts an energy minimum for the He2 dimer at about 8.5 bohrs distance
in zero field when using the Lu-aug-cc-pVTZ basis set, as seen in Figure 3.1a. This
gives the impression of there being a dispersion effect at work (which is true), and
that HF theory correctly predicts it (which is false): Since dispersion is an effect
of purely dynamical correlation, this minimum is completely spurious. For stronger
fields, however, there is a paramagnetic bonding. This effect is purely caused by the
kinetic energy of the system, which HF theory models very well. A bit more subtle
is the fact that the energy of the paramagnetic bonding is grossly overestimated.

The counterpoise correction offers an amelioration most of the time. The atoms
in a quantum chemistry calculation is actually two different things. The first is the
atomic charge. The second is the basis functions, typically optimized for the atom
involved. For practical calculations, these two entities share coordinates, and the
descriptive labels are (somewhat imprecisely) used interchangeably. A ghost atom is
the basis functions corresponding to an atom, but with no nuclear charge. Replacing
all atoms but one with ghosts will create a local overlap between the basis functions,
just as if the atom was surrounded by actual atoms. The wave function is then
described with a similar artificial increased quality. Subtracting the energy of a free
atom should then provide insight into the nature and magnitude of the BSSE.

However, there is no such thing as a free lunch, particularly when magnetic fields
are involved. The counterpoise correction ameliorates the issue, but it is not an exact
description. It also adds an additional computational burden. Furthermore, a molec-
ular system is not necessarily well described by the possible fragments. Matching
states is tricky and error prone, but this puzzle must also be solved in order to get the
correct counterpoise correction. For excited states, this can become unmanageable.
Under the influence of a magnetic field, state crossings may occur [81].

The overlap does not depend solely on the distance between the two centers, but
also on their orientation to the field. Figures 3.2a and 3.2b show the BSSE for He2

in the lowest singlet and triplet states when |B| = B0.4 BSSE converges quickly
to zero when the inter atomic distance increases, but the close range behavior is
certainly not easily predictable. For the singlet, there is a saddle point when the
molecular axis is oriented at an angle π

4
rad to the field. The reason for this is the

anisotropic deformation of the orbitals. For example, a spherical orbital may be
transformed into an oblate or prolate spheroid. In the first case, the overlap will
increase perpendicularly to the field, in the latter, parallel to it. No orbitals may
be deformed in a non-anisotropic manner, which is also true for the non-spherical
orbitals. This could explain a slightly lower effect of BSSE at such an angle. For the

4These calculations are not performed at the HF level. However, the point about BSSE stands
for any approach that relies on basis sets.
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Figure 3.1: This is the HF energy for a He2 singlet dimer in various perpendicular fields,
with and without the counterpoise correction. The energy at R = ∞ has been subtracted.
The basis set is Lu-aug-cc-pVTZ. 29
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Figure 3.2: This is the BSSE contribution to a helium dimer in a field of 1 a.u. magnitude,
as a function of distance between the atoms and orientation to the field for the lowest singlet
and triplet. The calculations are performed at the FCI/Lu-aug-cc-pVTZ theory level.
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triplet, the picture is more complex, and the magnitude of the BSSE is larger. This
is a challenge, as the investigated properties can be rather subtle.
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3.2 Configuration interaction theory

The full description of many-particle system requires more than one Slater determi-
nant. CI theory is in many ways the most obvious way to improve HF theory. If a
single Slater determinant is insufficient, then the wave function can be represented
as a linear combination of many Slater determinants instead. The typical approach
is to first define the Fermi vacuum (see Section 2.1.4), and then add all necessary
new determinants, each for a particular particle-hole configuration. As mentioned in
Section 3.1, when all possible configurations are included, the method is called FCI
and provides the “exact solution”.

While it is possible to describe all possible holes for a particular system, the
number of excitations is infinite. In a finite basis, however, this is not a problem.
The FCI wave function is the numerically exact wave function in a given basis.

Two terms that invariably pop up are dynamic and static correlation. From a
practical perspective, they are two completely different beasts and require different
solutions. A bond breaking typically entails the latter, while van der Waals inter-
actions is a phenomenon exclusively described by the former. From a mathematical
perspective, the distinction between dynamic and static correlation is a little more
fuzzy. If more than one determinant is important for describing the system, so that
the HF level of theory is a poor model, then the system is said to have static correla-
tion. Informally said, if all the determinants are sorted by weight, then the first few
determinants with a high weight are the cause of static correlation, and the “tail”
of the expansion corresponds to dynamic correlation. There is no formal distinction
and edge cases can certainly occur.

Obviously, bond breaking tend to involve degenerate determinants of great im-
portance. If, on the other hand, the system is utterly dominated by one determinant,
and all the correlation effects are caused by a (often large) number of less impor-
tant determinants, the system has dynamic correlation. In this case, HF theory
may be an excellent starting point, and all the dynamic effects can, perhaps, be
treated perturbatively or by similar standard approaches. When determining the
properties of noble gas clusters, dynamical correlation is absolutely essential. MPPT
(Section 3.4.1) is an excellent tool for describing dynamic correlation, but poor for
static correlation.

Since the CI expansion is a linear combination of known Slater determinants, the
whole CI method takes the form of an eigenvalue problem where the unknown factors
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are the amplitudes for each configuration,

|ΨCI〉 ≡
(

1 + Ĉ
)
|Φ0〉 where Ĉ =

∑

ia

cai â
†
aâi+

︸ ︷︷ ︸
1P1H

1

4

∑

ijab

cabij â
†
aâ
†
bâj âi

︸ ︷︷ ︸
2P2H

+... (3.19)

The coefficients for each determinant can be found by applying the Hamiltonian to
all relevant combinations of determinants systematically. Then, all these expecta-
tion values can be presented as a matrix. Diagonalization of this matrix equates to
solving the Schrödinger equation. That is a monumental task, but because of the
anticommutator relations (Equation (2.20)), many matrix elements are zero: The
expectation value of an N -body operator applied on two determinants whose excita-
tion level differ by more than N is necessarily zero [67]. The Hamiltonian matrix is
block-banded, and the width of the band is determined by the physics. In quantum
chemistry, where only one- and twobody operators are relevant, the entire matrix
will look like this:

|Φ0〉
∣∣Φ1H

1P

〉 ∣∣Φ2H
2P

〉 ∣∣Φ3H
3P

〉 ∣∣Φ4H
4P

〉
. . .

∣∣ΦNH
NP

〉

〈Φ0| X X X〈
Φ1H

1P

∣∣ X X X X〈
Φ2H

2P

∣∣ X X X X X〈
Φ3H

3P

∣∣ X X X X〈
Φ4H

4P

∣∣ X X X
...

. . .〈
ΦNH
NP

∣∣ X

. (3.20)

Each X represents all non-zero combinations between the determinants of different
excitation level. There is only one |Φ0〉, but many

∣∣Φ2H
2P

〉
etc. Such matrices are

huge, and despite the sparsity, brute force diagonalization is intractable. There are
iterative procedures available, and in the London program, the FCI solver uses
Davidson’s method. See [82] for details.

Despite this, the CPU-demand of a FCI solution still scales factorially with
the number of electrons in a system, making it impractical for all but minuscule
molecules. When applicable, it offers easy computation of both the ground state and
excited states, and an accurate description of molecular properties. The method is
by necessity both size extensive, size consistent and variational. A method which
behaves correctly for non-interacting systems described by a single wave function is
size consistent. A method which scales correctly with the number of electrons in a
system is size extensive [83]. The variational principle was given due attention in
Section 2.1.2.
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It is possible to truncate the problem, and thus get a polynomial scaling with
number of electrons. Single excitations are called singles (S), double excitations
doubles (D) and so on. If only single and double excitations are included, the method
is called CISD and the formal scaling is N6 with the number of electrons. Adding
triples increase this to N8, then N10 with quadruples. However, the truncated CI
theory is not size consistent, and therefore largely avoided: Lack of size consistency
can cause considerable errors [84, 85]. In this project, FCI has been widely used,
particularly in paper II.

3.3 Coupled cluster theory

CC theory has many similarities to CI theory, but the ansatz for the wave function
is different. Rather than using a simple linear combination of excitation and anni-
hilation operators, it relies on an exponential thereof. The wave function is defined
as

|ΨCC〉 ≡ eT̂ |Φ0〉 (3.21)

where the cluster operator T̂ is a sum of operators of different order

T̂ = T̂1 + T̂2 + ....+ T̂N (3.22)

whose components are

T̂1 =
∑

ia

tai â
†
aâi,

1

2
T̂2 =

∑

ijab

tabij â
†
aâ
†
bâj âi, (3.23)

and so on. The |Φ0〉 is usually the Hartree-Fock wave function. The exponential
formulation of the wave function allows for a Taylor expansion;

eT̂ =
∞∑

k=0

1

k!
T̂ k. (3.24)

Inserting into Equation (3.23), we get

eT̂ = 1̂ + T̂1︸︷︷︸
singles

+ T̂2 +
1

2
T̂ 2

1
︸ ︷︷ ︸

doubles

+ T̂3 + T̂2T̂1 +
1

6
T̂ 3

1
︸ ︷︷ ︸

triples

+... (3.25)
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This wave function has great similarities to the CI wave function, but is multiplica-
tively separable even when truncated. Therefore, it is always size extensive.

Solving the problem involves finding the cluster amplitudes t, much as CI is about
finding the coefficients c. In the the limit of all possible particle-hole excitations, FCI
and CC are equivalent.

The obvious solution is to exploit the variation principle. However, if this is at-
tempted, the method will always be exponentially scaling with system size, regardless
of truncation in T̂ . The standard approach is instead similarity transformations of
the Hamiltonian. The Schrödinger equation for the CC wave function becomes

ĤeT̂Φ0 = EeT̂Φ0, (3.26)

and multiplying the Hamiltonian from left with the de-excitation operator e−T̂ gives

ECC =
〈

Φ0 e−T̂ ĤeT̂ Φ0

〉
. (3.27)

This projection gives a similarity transformed Hamiltonian which is no longer Her-
mitian. Therefore, projection-CC methods are not variational. Since a de-excitation
of the Fermi vacuum by necessity is zero, only the first term of the Taylor expansion
in Equation (3.27) is non-zero. The cluster amplitudes are found when the criteria

〈
Φa
i e−T̂ ĤeT̂ Φ0

〉
=
〈

Φab
ij e−T̂ ĤeT̂ Φ0

〉
=
〈

Φabc
ijk e−T̂ ĤeT̂ Φ0

〉
= ... = 0 (3.28)

are met for all relevant excitations. The naming conventions and scaling of the
different excitation levels is identical to the CI terminology. For CCSD, only the two
first terms in Equation (3.28) are involved.

The highest order calculated is the most expensive. Sometimes, an approximation
is used instead. When this is done perturbatively, the convention is to denominate
said term inside parenthesis. CCSD with perturbative triples is therefore called
CCSD(T). This is informally called the gold standard of quantum chemistry. For
more information about coupled cluster theory, consult [83, 86, 87].

3.4 Many-body perturbation theory

In the widest possible interpretation, perturbation theory is more of a general strategy
for attacking complicated problems than a specific algorithm. At its core, the idea is
to take a hard problem and split it into two parts. One part should be significantly
easier to handle, while still resembling the original problem as much as possible. The
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other part – in effect the difference between the exact and the simplified problem –
is treated as a perturbation. This perturbation is restated as an infinite power series.
In the case of quantum chemistry, this would then be something like

Eexact = E(0)
︸︷︷︸

unperturbed

+λE(1) +
1

2
λ2E(2) + ...

︸ ︷︷ ︸
perturbations

(3.29)

This summation is infinite and must be truncated at some point. Higher order
perturbations are generally more complex to evaluate, but also less relevant to the
total sum. Perturbation theory offers an arbitrarily improvable solution to complex
problems. There are several possible schemes for actually splitting the problem.
The most common approach in quantum chemistry is Møller-Plesset perturbation
theory (MBPT), which is a specific application of Rayleigh-Schrödinger perturbation
theory (RSPT). However, there are other relevant schemes as well, such as Brillouin-
Wigner perturbation theory (BWPT) [88]. Mathematically, these schemes have many
similarities, but only RSPT will be described in-depth here. The special case of
MBPT to second order will receive extra attention.

The Hamiltonian is split into two parts,

Ĥ = Ĥ0 + ĤI (3.30)

where Ĥ0 and ĤI are the unperturbed and perturbed parts, respectively. If we only
care about the time-independent ground state energy and assume that the wave
function can be expanded in terms of Slater determinants, we get

|Ψ〉 = |Φ0〉+
∞∑

n=1

Cn |Φn〉 (3.31)

where intermediate normalization has been applied. Intermediate normalization
means that 〈Ψ Φ0〉 = 1, rather than the usual normalization where 〈Ψ Ψ〉 = 1.
The unperturbed part of the wave function and Hamiltonian gives

Ĥ0 |Φ0〉 = E0 |Φ0〉 . (3.32)

Because of the intermediate normalization, we get

〈Φk Ψ〉 =
∞∑

n=1

〈Φk Φn〉Cn =
∞∑

n=0

δknCn = Ck. (3.33)
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This allows us to sort out the different energy components from the Schrödinger
equation:

Ĥ |Ψ〉 =
(
Ĥ0 + ĤI

)
|Ψ〉 = E |Ψ〉 (3.34)

E =
〈

Φ0 Ĥ Ψ
〉

(3.35)

E0 =
〈

Φ0 Ĥ0 Ψ
〉

(3.36)

E − E0 =
〈

Φ0 ĤI Ψ
〉

= EI . (3.37)

Next, we consider an expansion of the perturbation energy:

EI =
∞∑

n=1

E(n). (3.38)

Introducing the resolution of identities, we obtain

P̂ ≡ |Φ0〉〈Φ0| and Q̂ ≡
∞∑

n=1

|Φn〉〈Φn| , (3.39)

where

|Ψ〉 =
(
P̂ + Q̂

)
|Ψ〉 . (3.40)

Introducing a free parameter γ in equation (3.34), we get

(
Ĥ0 + ĤI − γ

)
|Ψ〉 = (E − γ) |Ψ〉 . (3.41)

After rearranging the terms, the expression becomes

(
γ − Ĥ0

)
|Ψ〉 =

(
γ − E + ĤI

)
|Ψ〉 . (3.42)

Next, projection by Q̂ yields

Q̂ |Ψ〉 =
Q̂

γ − Ĥ0

(
γ − E + ĤI

)
|Ψ〉 (3.43)
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so that5

|Ψ〉 = |Φ0〉+
Q̂

γ − Ĥ0

(
γ − E + ĤI

)
|Ψ〉 . (3.44)

Iterating the above equation, the perturbative expansion for the wave function be-
comes

|Ψ〉 =
∞∑

n=0

(
Q̂

γ − Ĥ0

(
γ − E + ĤI

))n

|Φ0〉 . (3.45)

So far, this is an exact result. This summation can now be used to define the
expansion of EI . Replacing γ with the exact total energy E, we get

EI =
∞∑

n=0

〈
Φ0 ĤI

(
Q̂

E − Ĥ0

ĤI

)n

Φ0

〉
=

〈
Φ0 ĤI + ĤI

Q̂

E − Ĥ0

ĤI + ... Φ0

〉
.

(3.46)

The summation above can be truncated at any level. If a reasonable estimate for E
is available, then the system can be solved self-consistently. This is the essence of
BWPT. Unfortunately, this solution is not size extensive. In RSPT, γ is set to be
E0 instead (Equation (3.36)). Equation (3.46) now becomes

EI =
∞∑

n=0

〈
Φ0 ĤI

(
Q̂

E0 − Ĥ0

(
ĤI − EI

))n

Φ0

〉
. (3.47)

Exploiting once more the fact that Q̂ and Ĥ0 commute, the energy contribution in
orders of perturbations becomes

E(0) = E0 (3.48)

E(1) =
〈

Φ0 ĤI Φ0

〉
(3.49)

E(2) =

〈
Φ0 ĤI

Q̂

E0 − Ĥ0

ĤI Φ0

〉
(3.50)

Beyond this point, the expressions become rapidly less tractable, but the mechanism
for deriving them is the same. For this project, only second order corrections has
been relevant.

5The juggling of operators performed in Equation (3.43) is permitted, since Q̂ and Ĥ0 commute.
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3.4.1 Second order Møller-Plesset Theory

So far, the choice of Ĥ0 has been omitted. By defining Ĥ0 to be the Fock operator F̂
so that Ĥ = F̂ + ĤI , we get Møller Plesset Perturbation Theory (MPPT), which is a
variant of RSPT. The order at which the perturbation series is truncated is usually
denoted with a number, so second order MPPT is usually just called MP2 [86].

In a basis of UHF orbitals, the Fock operator can now be rewritten as

F σ
pq = hσpq +

1

2

∑

j,τ

〈pσjτ qσjτ 〉 , (3.51)

where

〈pσjτ qσjτ 〉 = 〈pσjτ qσjτ 〉 − 〈pσjτ jτqσ〉 (3.52)

is a common shorthand for antisymmetrized twoelectron integrals.
The Hamiltonian and the Fock operator can be reformulated in terms of creation

and annihilation operators;

Ĥ =
∑

pqσ

hσpqâ
†
pσâqτ +

1

2

∑

pqσ,rsτ

gστpqrsâ
†
pσâ
†
rτ âsτ âqσ (3.53)

and

F̂ =
∑

pqσ

F σ
pqâ
†
pσâqτ =

∑

pqσ

[
hσpq +

1

2

∑

j

gσ↑pqjjnj↑ + gσ↓pqjjnj↓ + gσσpqjjnjσ

]
â†pσâqτ (3.54)

where npσ is the occupation number of orbital p with spin σ. ĤI is the difference
between these two operators. If a HF wave function is already available, then

E(0) =
〈

ΦHF F̂ ΦHF

〉
=
∑

pσ

npσεp (3.55)

and

EHF = E(0) + E(1). (3.56)

Hence, the zeroth order term is just a summation of orbital energies and the first
order correction provides the HF energy. The second order perturbation is therefore
the first interesting term. This is the MP2 contribution:

EMP2 = EHF + E(2). (3.57)
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In the following deductions, the capital indices A,B,C... denote spin-orbital num-
bers. The expression for the general MP2 contribution is then

E(2) = −1

4

∑

IJAB

|〈IJ AB〉|2
εABIJ

, (3.58)

where εABIJ = εA + εB − εI − εJ . Writing out all the components of this expression
is cumbersome, but a few symmetries can be exploited to reduce the unwieldiness
somewhat:

∑

IJAB

|〈IJ AB〉|2 =
∑

IJAB

|〈IJ BA〉|2 (3.59)

and

∑

IJAB

〈IJ AB〉∗ 〈IJ BA〉 =
∑

IJAB

〈IJ AB〉 〈IJ BA〉∗ . (3.60)

So far, all possible combinations of spin and orbital occupation number has been
included, even nonphysical terms like

〈
i↑j↑ a↑b↓

〉
. Mathematically, this is perfectly

legitimate. Assuming UHF restrictions and accounting for spin, it can be deduced
that

E
(2)
UHF =

∑

iσ<jτ ,aσ<bτ

|〈ij ab〉στ − δστ 〈ij ba〉σσ|2
εabij

=
∑

ijab

∣∣∣〈ij ab〉↑↓ − 0
∣∣∣
2

εabij
+
∑

σ

∑

i<j,a<b

|〈ij ab〉σσ − 〈ij ba〉σσ|2
εabij

. (3.61)

In the RHF case, this becomes

E
(2)
RHF =

∑

ijab

〈ij ab〉∗ [2 〈ij ab〉 − 〈ij ba〉]
εabij

. (3.62)

3.4.2 The MP2 density matrix

For any manyparticle wave function, there exists a one-electron reduced density
matrix D:

D (x1,x
′
1) = N

∫
Ψ† (x1x2...xn) Ψ (x′1x2...xn) dx2dx3...dxn. (3.63)
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Once this density matrix is computed, any expectation value described by a sin-
gleparticle operator Ω̂ can easily be evaluated. This is done by tracing it with the
density matrix:

〈Ω〉 = tr (DΩ) . (3.64)

Also, if the density matrix is diagonalized, then natural orbitals and occupation
numbers are readily available.

The approach for computing the relaxed density matrices in London are largely
inspired by Frisch, Head-Gordon and Pople’s approach [89], and restricted to the
RHF reference.

It is most practical to look at the different blocks of the density matrix individu-
ally. The occupied-occupied and virtual-virtual blocks are straight-forward, and may
be computed in parallel with the energy contribution at a slight computational cost.
The occupied-occupied and virtual-virtual blocks are

Pij = −2
∑

abk

〈ik ab〉 [2 〈jk ab〉 − 〈jk ba〉]∗
εabikε

ab
jk

(3.65)

and

Pab = 2
∑

ijc

〈ij ac〉 [2 〈ij bc〉 − 〈ij cb〉]∗
εacij ε

bc
ij

, (3.66)

respectively. For the off-diagonal blocks, we first need the MP2 Lagrangian [90],

Lia = 4
∑

jb

[∑

k

〈kj ib〉 [2 〈jk ba〉 − 〈jk ab〉]∗
εabjk

−
∑

c

〈ja bc〉 [2 〈ij cb〉 − 〈ij bc〉]∗
εbcij

]

−2
∑

ik

Pjk (2 〈kc ji〉 − 〈kc ij〉)− 2
∑

ac

Pbc (2 〈ca bk〉 − 〈ca kb〉)

(3.67)

which allows the occupied-virtual block to be obtained by iterative solution of the
coupled perturbed HF equations

L′ia = 2
∑

bj

[2 〈ib aj〉 − 〈ib ja〉]Ljb − [2 〈ij ab〉 − 〈ij ba〉]L∗jb + 2εaiLia. (3.68)

The density matrix is necessarily Hermitian, so the virtual-occupied block is obtained
for free.
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3.5 Density Functional Theory

Density Functional Theory (DFT) is the quintessential work horse of everyday quan-
tum chemistry [91]. At a theoretical level, it relies on a radically different approach
than wave-function theories. At an implementation and computational level, how-
ever, it is startlingly similar to HF theory: It is an pseudo-eigenvalue problem which
is solved self-consistently. The scaling is similar, and so are the techniques for par-
allelization. From a user perspective, DFT has a somewhat capricious reputation;
it may offer results which compete with high-accuracy wave-function methods at a
tiny fraction of the cost, but it is considerably more difficult to predict when and
where it will fail. Error cancellation is often large [92, 93], and proper usage of
DFT requires solid understanding of both the problem at hand and the available
approximate functionals – of which a plethora exists.

3.5.1 The variational principle

The N -electron Hamiltonian of Equation (2.6) can be restated in terms of an external
potential v as

Ĥ [v] = T̂ + Ŵ + V̂ext [v] , (3.69)

where

V̂ext [v] =
∑

i

v (ri) =
∑

i

∑

J

ZJ
|rJ − ri|

. (3.70)

The wave function Ψ is, as usual, a normalizable N -electron wave-function. In other
words, Ψ ∈ WN where

WN =
{

Ψ 〈Ψ Ψ〉 = 1, N̂Ψ = N, P̂ijΨ = −Ψ ∀ i < j ≤ N
}
. (3.71)

The whole idea of having an external potential at all assumes the validity of the
Born-Oppenheimer approximation.

3.5.2 The constrained search approach

The Hohenberg-Kohn (HK) formalism has had a tremendous importance for the de-
velopment of DFT, but has largely been superseded by the more general constrained
search formalism. More information about the HK formalism can be found in refer-
ence [94].
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In the coming deductions, all wave functions of interest belong to the set WN of
Equation (3.71). From any such valid wave function, a density can be constructed as
an integral over the spin coordinates σi of all particles, and the spatial coordinates
rj of all particles but one:

ρ (r1) =

∫
|Ψ (r1, σ1, r2, σ2, ...rN , σN)|2 dσ1dr2dσ2...drNdσN . (3.72)

The integral of the density over all space is necessarily the number of particles:

∫
ρ (r) dr = N. (3.73)

The density ρ is a function of only three spatial coordinates, whereas the wave
function depends on 3N . This point is the reason why DFT is so important; the
“curse of dimentionality” can be dispelled without sacrificing generality – at least in
theory.

With the above considerations and the Hamiltonian of Equation (3.69), the
Rayleigh-Ritz variational principle now becomes

E [v] = inf
Ψ∈Wn

〈
Ψ Ĥ [v] Ψ

〉
. (3.74)

Putting it all together, we get

E [v] = inf
Ψ∈Wn

〈
Ψ T̂ + Ŵ + V̂ext [v] Ψ

〉
= inf

ρ∈IN
inf

Ψ7→ρ

〈
Ψ T̂ + Ŵ + V̂ext [v] Ψ

〉

(3.75)

where IN = {ρΨ Ψ ∈ WN} is the set of N -representable densities. An equivalent
definition can be shown to be

IN =

{
ρ ρ ≥ 0, N =

∫
ρ (r) dr, TW (ρ) <∞

}
, (3.76)

where

TW [ρ] =
1

8

∫ |∇ρ (r)|2
ρ (r)

dr (3.77)

is the von Weizsäcker kinetic energy. That is, the densities of interest are non-
negative, they integrate to N and their von Weizsäcker kinetic energy is finite.
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For all densities ρ ∈ IN , the Levy-Lieb (LL) constrained search functional is

FLL [ρ] = min
Ψ7→ρ

〈
Ψ T̂ + Ŵ Ψ

〉
, (3.78)

where standard rewriting of the integrals

(v ρ) ≡
∫
v (r) ρ (r) dr. (3.79)

has been used. The minimizing restriction labeled Ψ 7→ ρ simply means we only
investigate wave functions that recreate the density of choice, and that minimizer
always exists. Now, the variational principle becomes

E [v] = inf
ρ∈IN

(FLL [ρ] + (v ρ)) . (3.80)

This rewriting of the variational principle is the constrained search formalism. The
external potential depends on the density alone, while the kinetic energy and the
contribution from the electron-electron interactions are disentangled from the ex-
pression.

The LL constrained search functional of Equation (3.78) is said to be universal.
This means it is independent of the external potential v. The LL functional was
studied by Percus [95], Levy [96], and from a mathematical perspective by Lieb [97].

3.5.3 The Lieb variational principle

In order to conjure up the expression for the Lieb variational principle, we first need
to justify that E [v] is concave. Assuming a real number λ ∈ [0, 1], then

E [λv1 + (1− λ) v2] ≥ λE [λv1] + (1− λ)E [v2] . (3.81)

This can be demonstrated from Equation (3.80);

E [λv1 + (1− λ) v2] = inf
Ψ

〈
Ψ Ĥ [λv1 + (1− λ) v2] Ψ

〉

= inf
Ψ

〈
Ψ λĤ [v1] + (1− λ) Ĥ [v2] Ψ

〉

≥ λ inf
Ψ

〈
Ψ Ĥ [v1] Ψ

〉
+ (1− λ) inf

Ψ

〈
Ψ Ĥ [v2] Ψ

〉
, (3.82)

from which Equation (3.81) trivially follows. This results relies on the linearity of
the Hamiltonian in v.
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Since E [v] can also be shown to be continuous, there exists a convex dual func-
tional F [ρ] so that the two variational principles can be restated in terms of each
other:

E [v] = inf
ρ

(F [ρ] + (v ρ)) , (3.83)

F [ρ] = sup
v

(E [v]− (v ρ)) . (3.84)

Equation (3.83) is the Lieb variational principle [98]6. Hohenberg and Kohn derived
the eponymous Hohenberg-Kohn functional of Equation (3.84), and their original
paper from 1964 provides the proof of universality [94].

These two variational principles are related by Legendre-Fenchel transforms and
therefore said to be conjugate functionals. The nitty-gritty details of convex analysis
can be pursued in reference [99].

3.5.4 The adiabatic connection

The adiabatic connection (AC) allows the physical system with correct electron in-
teractions to be smoothly connected to the non-interacting Kohn-Sham system [100,
101]. This may seem like a detour, but since there are great practical similarities
between the two cases, the consequences are important.

First, we introduce an interaction strength parameter λ ∈ [0, 1] to the constrained
search functional of Equation (3.78):

F [ρ] = min
Ψ 7→ρ

〈
Ψλ T̂ + λŴ Ψλ

〉
=
〈

Ψρ
λ T̂ + λŴ Ψρ

λ

〉
(3.85)

The last equality is necessarily true, since the minimizer is proven to exist [96, 98].
The parameter λ allows the effect of the electron-electron interactions to be smoothly
varied from a non-interacting system to the fully interacting physical system of the
previous sections. We shall also need the λ-derivatives of Equation (3.85), which is

∂F [ρ]

∂λ
=
〈

Ψρ
λ Ŵ Ψρ

λ

〉
(3.86)

due to the Hellman-Feynman theorem.

6Equation (3.83) greatly resembles Equation (3.80), but that variational principle is constructed
on the Levy-Lieb functional, FLL. The two are sometimes identical.
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For the next step, a bit of mathematical prestidigitation is required. By juggling
with the definition of the now λ-dependent universal functional, we get

F [ρ] = F0 [ρ] + F1 [ρ]− F0 [ρ] = F0 [ρ] +

∫ 1

0

∂F [ρ]

∂λ
dλ

=
〈

Ψρ
0 T̂ Ψρ

0

〉
+

∫ 1

0

〈
Ψρ
λ Ŵ Ψρ

λ

〉
dλ

=
〈

Ψρ
0 T̂ Ψρ

0

〉
+
〈

Ψρ
0 Ŵ Ψρ

0

〉
+

∫ 1

0

(〈
Ψρ
λ Ŵ Ψρ

λ

〉
−
〈

Ψρ
0 Ŵ Ψρ

0

〉
dλ
)
,

(3.87)

which allows the expression to be separated into different components. Now, it is
time to label all these separate terms and describe their physical meaning. We have
the non-interacting kinetic energy ;

Ts [ρ] =
〈

Ψρ
0 T̂ Ψρ

0

〉
, (3.88)

the Hartree term;

J [ρ] =

∫
ρ (r1) ρ (r2)

1

r12

dr1dr2, (3.89)

the exchange energy ;

Ex [ρ] =
〈

Ψρ
0 Ŵ Ψρ

0

〉
− J [ρ] , (3.90)

and the correlation energy ;

Ec [ρ] =

∫ 1

0

(〈
Ψρ
λ Ŵ Ψρ

λ

〉
−
〈

Ψρ
0 Ŵ Ψρ

0

〉
dλ
)
. (3.91)

These last two terms are frequently added together and called the exchange-correlation
energy ;

Exc [ρ] = Ex [ρ] + Ec [ρ] . (3.92)

Finally, all of this can be put back together so that

F [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] . (3.93)
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The above are the so called Kohn-Sham (KS) components, and the flexibility
they offer make them crucial for approximations to the universal functional. The
energy can be written in these terms:

E [v] = inf
ρ

(F [ρ] + (v ρ)) = inf
ρ

(Ts [ρ] + (v ρ) + J [ρ] + Exc [ρ]) . (3.94)

The KS components serve different purposes as well: In the first paper, we used such
component wise splitting to study the influence of magnetic fields on the potentials.
Having all these components allows more of the picture to be investigated than the
energy alone. More details about KS DFT will be discussed in Section 3.5.5.

λ ∈ [0, 1]

Wλ

−Tc [ρ]

Ec [ρ]

Figure 3.3: Example of an AC curve.

The density provides the total energy, but the kinetic energy alone is somewhat
less tangible. However, it may be defined by means an adiabatic connection curve,
as seen in Figure 3.3. An AC curve is simply a plot of W as a function of λ. In the
resulting graph, Tc [ρ] is the negative of the area underneath the graph and delimited
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by the rectangle of the extremes. This component is also the difference between the
actual and the non-interacting kinetic energy:

Tc [ρ] = T [ρ]− Ts [ρ] . (3.95)

The corresponding area above the curve in Figure 3.3 is the correlation energy.
Another useful property of the AC curve is the curvature itself, which reveals the

amount of static correlation in a system: A nearly straight line indicates little to
no static correlation, whereas a highly convex curve reveals a strong multi reference
character of the system to be studied.

3.5.5 Kohn-Sham DFT

The Kohn-Sham ansatz states that the wave function may here be described with a
single Slater determinant. Consequently,

F0 [ρ] = inf
Φ7→ρ

〈
Φ T̂ Φ

〉
=
〈

ΦKS T̂ ΦKS

〉
= Ts [ρ] . (3.96)

This is useful, since it is hard to calculate Ts directly from the density. In other words,
only Tc needs to be estimated from the density. Since Ts is a good approximation to
T , Tc is rather modest in magnitude.

The entire and fully interacting energy expression may now be rewritten as

E1 [v] = inf
Φ

[〈
Φ T̂ Φ

〉
+ J [ρΦ] + Exc [ρΦ] + (v ρΦ)

]
(3.97)

which can be differentiated by the route of Lagrangian multipliers and a basis set
expansion. At this point, this greatly resembles the final form of the HF problem in
Equation (3.17) and is similarly solved self consistently.

In Equation (3.97), we are back to optimizing over an ansatz for the wave function.
In a manner of speaking, the Kohn-Sham energy is a result of a reversed application
of the constrained search formalism of the previous sections.

3.5.6 The exact functional from wave-function methods

Knowing that a universal functional exists is one thing, but finding it is quite another.
The idea behind the Lieb scheme is to produce an approximation to the density of a
wave-function like quality, as per Equation (3.78). Unfortunately, enforcing Ψ 7→ ρ is
infeasible. However, by using the Lieb variational principle and an approximation to
the external potential in a basis, the problem can be handled – albeit still at a high
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computational cost. This must be emphasized: In order to get the exact solution
to the many-particle Schrödinger equation, a costly FCI calculation is required. In
order to get the exact DFT functional as described in the previous sections, several
FCI calculations are necessary.

The potential needs to be parametrized for an optimization procedure to work.
The parametrization used is

v (r) = vext (r) + (1− λ) vref (r) +
∑

α

CαΩα (r) (3.98)

where the last term is an expansion in Gaussians and the reference potential vref (r)
is the Fermi-Amaldi potential

vref (r) =

(
1− 1

N

)∫
ρ (r′)

|r′ − r| dr, (3.99)

which provides the correct asymptotic behavior. The energy from a wave-function
method is used en lieu the exact energy E [v], while the parametrization of the
potential v reduces the problem to an optimization over the coefficients Cα. This
approach was formulated by Wu and Yang in 2003 [102].

The wave-function based functional FΨ can be evaluated as

FΨ
λ [ρref] ≈ sup

C

(
EΨ
λ [v (C)]− (v (C) ρ)

)
(3.100)

where EΨ is the energy from some wave-function method. This scheme requires
the wave-function method to produce a relaxed density matrix, so that the Lieb
functionals and gradients may be evaluated. The Lieb gradient is given by

GL
α =

∂E [v]

∂Cα
, (3.101)

and if the basis set expansion from Equation (3.98) is inserted for the potential and
the energy expression from Equation (3.83) for the energy, then

δE [v]

δCα
=
δEΨ

λ [v (C)]

δCα
− ∂

∂Cα

(
v (C) ρref

)

=
δEΨ

λ [v]

δv

∂v (C)

∂Cα
−
(
Ωα ρref

)

=
(
Ωα ρΨ

)
−
(
Ωα ρref

)
=
(
Ωα ρΨ − ρref

)
. (3.102)

The Lieb gradient is zero when the reference potential has been recreated.
Solving Equation (3.100) is obviously expensive, especially when the wave-function

method is FCI, but it allows various approximations, such as FB3LYP
λ or F LDA

λ to be
compared “apples to apples” with the wave-function methods.
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3.5.7 Magnetic formalisms

The magnetic field, however, has so far not been introduced, and classical DFT does
not include it at all. Consequently, DFT is an exact theory only when B = 0. If a
field is to be introduced, then the theory must be expanded to accommodate it. This
can be achieved in several ways, but only two formalisms will be mentioned here.

One is the BDFT formalism, which was suggested by Grayce and Harris [103, 104].
It is a handy generalization of the DFT methodology. The Hamiltonian and the
variational principles in this case becomes

Ĥλ [v; A] = T [A] + λW + Vext, (3.103)

Fλ [ρ; A] = inf
Ψ7→ρ

〈
Ψ Ĥλ [0; v] Ψ

〉

= sup
v

(E [v,A]− (ρ v)) , (3.104)

E [v,A] = inf
ρ

(Fλ [ρ; A] + (ρ v)) , (3.105)

where the kinetic energy operator has been written in terms of π̂,

T̂ [A] =
1

2

N∑

j=1

(−i∇j + A (rj))
2 , (3.106)

as usual. In this case, Fλ depends parametrically on A. It is therefore a semi-
universal functional – loosely speaking, this means there is one DFT for each mag-
netic vector potential [105].

The other is current density functional theory (CDFT), which relies on a potential
u ≡ v + 1

2
A2 and the Hamiltonian then becomes

Ĥ ′λ [u,A] = Ĥ ′λ [u]− i

2

∑

j

(A · ∇j +∇j ·A) . (3.107)

This simplifies to

Ĥ ′λ [u,A] = Ĥ ′λ [u]− i
∑

j

A · ∇j, (3.108)

if A is solenoidal, but CDFT makes no such assumptions. The potential u allows
the variational principles from Equations (3.83) and (3.84) to be generalized into

Eλ [u,A] = inf
ρ,jp

(Fλ [ρ, jp] + (ρ u) + (jp A)) (3.109)
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and

Fλ [ρ, jp] = sup
u,A

(Eλ [u,A]− (u ρ) + (jp A)) , (3.110)

respectively. The term jp is the paramagnetic current density. This is formalism is
not directly related to my work, but it is one of the key actors in the magnetic DFT
approaches [106, 107]. When the field is set to zero, both BDFT and CDFT become
standard, field-free DFT [108, 109].

3.5.8 Approximate functionals

So far, we have seen that even in the presence of a magnetic field, there must be a
semi-universal functional whose existence ensures that BDFT is an exact description
of the manybody ground state. We have also seen that this functional is hard to
obtain and describe.

DFT is a practical theory because of the approximate functionals. There are
many, and they belong to different classes of approximations. The most intuitive
approach is the local density approximation (LDA). Here, the exchange-correlation
energy depends only on the density:

ELDA
XC [ρ] =

∫
fXC (ρ (r)) dr. (3.111)

Then there is the generalized gradient approximation (GGA), which depends on both
the density and the gradient

EGGA
XC [ρ] =

∫
fXC (ρ (r) ,∇ρ (r)) dr, (3.112)

and hybrid functionals, which is a linear combination of the Hartree-Fock exact ex-
change functional from Equation (3.11) and and various additional density function-
als for correlation and exchange 7 usually empirically weighted, or specifically chosen
for some distinct computational purpose. Finally, there are the meta-GGAs, which
depends on either the Laplacian, the kinetic energy density (τ), or both. A general,
field-free meta-GGA may therefore look like this:

EmGGA
XC [ρ] =

∫
fXC

(
ρ (r) ,∇ρ (r) ,∇2ρ (r) , τ (r)

)
dr. (3.113)

7These additions to the hybrid functionals can be both LDAs or GGAs.
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To complicate matters a bit, there are several possible choices of kinetic energy
density. The physical kinetic energy density is

τphys (r) =
1

2

∑

l

|π̂φl (r)|2 , (3.114)

while the Dobson kinetic energy density is

τD (r) =
1

2

∑

l

|p̂φl (r)|2 − jp (r)2

2ρ (r)
. (3.115)

As a practical example, the TPSS -functional (Tao, Perdew, Staroverov and Scuseria)
is a meta-GGA employing both the Laplacian and the kinetic energy density [110].
Of the latter, both variants may be used, and are considered flavors of the same
functional – with the τphys, the functional is sometimes called aTPSS and cTPSS
with τD.

Then, there is the field – the BDFT formalism includes it, but the approximations
for the functionals do not. The standard, heuristic approach, is to simply use the
standard DFT functionals anyway. An important note must be made at this point:
There are “magnetic functionals” as such. For example, the Keal-Tozer functionals
(KT1 and KT2) are GGAs specifically developed for computing magnetic properties
such as NMR shielding constants [111]. They are fitted to experimental data and
will usually provide excellent predictions of magnetic properties, but not necessarily
anything else. However, the KT-family do not explicitly include the magnetic field;
they are not on the form F [ρ,B].

In Paper I, we thoroughly investigated how the common approximations held up
against the exact functional component wise.

There has been dedicated much work into better understanding the nature of the
universal functional, and the quest for better approximations is neverending. This
also goes for the different formalisms of DFT itself.
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Part II

Results, discussion and conclusion
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Chapter 4

The papers

The three papers that constitute the scientific work of the thesis all relate to the
usage of wave-function methods in magnetic fields in order to solve vastly different
problems. London orbitals, as discussed in Chapter 2, are used throughout.

The first paper explores the BDFT formalism. The energy and magnetic com-
ponents were calculated with various approximate functionals, and with functionals
of wave-function quality provided by the Lieb optimization. These were all com-
pared against a reference, which was CCSD for small molecules and MP2 for larger
molecules. Thus, wave-function methods were used to explore and calibrate a for-
malism of DFT where the magnetic field is explicitly included. In the second paper,
molecular properties and the electronic structure of helium dimers in strong magnetic
fields of arbitrary orientation was thoroughly mapped out. The behavior of fermionic
matter in such intense fields has been a point of interest for a long time [112]. The
final paper is of a more practical nature: The magnetic properties of water in strong
magnetic fields – strong in the vernacular sense, not in the astrophysical sense! – has
been disputed for decades [113, 12]. Some researchers have found “odd behavior”
for the molecule, and some studies report nothing unexpected. We investigated the
matter by means of MP2 theory and London orbitals, since this approach has not
yet been attempted by anyone else.

4.1 Paper I

The importance of DFT for the entire field of quantum chemistry can hardly be
exaggerated. Most of the time, results of adequate quality for the investigations
undertaken can be produced for a fraction of the cost demanded by wave-function
methods. However, as discussed at length in Section 3.5, DFT does not have the
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ab initio status of wave-function methods. A universal density functional has been
proven to exist, and while algorithms for producing it are available, these are pro-
hibitively expensive. Also, none of this allows the universal functional to be spelled
out in a comprehensive manner: It is not possible to “find it once” and thereafter
produce a nifty expression that will see general application. Therefore, all practical
approaches of DFT rely on approximate functionals whose physical justifications may
be somewhat heuristic. With magnetic fields, this is more problematic than usual.

As elaborated in Section 3.5.7, the BDFT and CDFT formalisms are generaliza-
tions of DFT which includes the magnetic field – either directly (BDFT) or as a
vorticity (CDFT). A major issue of practical importance is to determine how large
the dependencies of the exchange-correlation energy are to either the field or the
vorticity. This is an ongoing issue in the development of magnetic DFT formalisms.

As with the previous B- and CDFT studies by Reimann et al. [105, 114], the
wave-function methods of the London program were used to generate a density to
be reproduced. By decomposing the energy into Kohn-Sham (KS) components, a
meaningful analysis of the magnetic properties of the functionals can be made. The
motivation for doing it this way, rather than just straight comparison of energy, is
rather subtle: A nonsensical result may falsify a claim about reliability or robustness,
but what a about a seemingly correct result? Good results can be produced by
fortunate error cancellation1 or similarly unpredictable circumstances. This may be
fine if this behavior is well known and understood, so that the usage of the method
can be restricted to “safe systems”. However, when investigating new formalisms
or less known physics, it is important to know if the result is correct because the
method is sound, or if it is a happy fluke. Producing the right answer for the
wrong reasons may therefore be just as bad, or worse, than simply getting random
garbage. The KS decomposition provides several distinct components, each of which
can be compared with different methods. Getting all these terms right is substantially
harder than getting a reasonable value for the energy alone. There are two reasons
for this. The first is that the total energy of a molecular system does not change
much as the magnetic field increases from 0 to 0.03 atomic units. The other reason
is that the errors scale differently with the Lieb optimization error: The error of the
total energy is quadratic, while the KS components are linear. Securing adequate
numerical precision was hard.

Magnetizabilities can be computed accurately with wave-function methods, and
are also experimentally available. As such, the quality and reliability of a calculation
can be determined with high confidence. As introduced in Equation (2.15), the

1Disturbingly often, two wrongs do indeed make a right.
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magnetizabilities are

χαβ = − ∂
2E (B)

∂Bα∂Bβ

∣∣∣∣
B=0

(4.1)

and this property is often hard to accurately compute at the DFT level. Furthermore,
for a closed shell system, the total energy is

E (B) = E (0)− 1

2
B†χB +O

(
B4
)
. (4.2)

As long as the higher order hyper magnetizabilities are small, the magnetizability
contains all the magnetic field-dependence. Magnetizabilities were therefore useful
properties to compare against: Good numbers are available, it is hard to reproduce
them at the DFT level, and they signify that the magnetic interactions are accurately
depicted. For magnetic behavior around zero field, the quality of the magnetizabili-
ties are an excellent measure of the overall correctness of the results.

4.1.1 Background and related work

Given that no conventional GGA or hybrid functionals have an explicit dependence
on either the field or the vorticity2, it is important to clarify whether or not this is
an important source of error for calculations of molecular magnetic properties.

A CDFT study by Reimann et al. [114] investigated the vorticity dependence of
nuclear shielding constants by means of Lieb optimization, and found that vorticity
corrections could be as large as 10ppm for some nuclei. It was also found that while
the KT2 functional outperformed all other functionals at reproducing NMR shielding
constants, it did so for the wrong reason: The error in diamagnetic term was an order
of magnitude larger than for the other functionals. It was also found that TPSS was
the best functional in terms of “being right for the right reasons”, and that classical
MP2 theory at the response level produced better NMR shielding constants than
all functionals except KT2. This study of the vorticity dependence in a CDFT
setting could also be interpreted as a study of magnetic field dependence in a BDFT
setting, even though the BDFT and CDFT settings are different – the BDFT KS
system reproduces only the density, while the CDFT KS system reproduces both the
density and the paramagnetic current density jp. This connection was highlighted
in a BDFT study of a similar vein (also by Reimann and collaborators) where they
investigated some small molecules and atoms [105]. All systems had four electrons

2The VRG family of functionals has an explicit vorticity dependence, but these functionals are
not yet considered useful for molecular calculations [115, 116]
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or less, allowing for comparison with FCI results. The close relationship between
BDFT and CDFT was discussed in more detail in Section 3.5.7. This latter study
concentrated on the Kohn-Sham decomposition of molecules like H2 in zero or weak
fields. It was found that the correlation energy was mostly unaffected by the field,
except for the beryllium atom.

4.1.2 The specifics of this study

In this paper, we continue the exploration of the BDFT formalism by means of
Lieb theory, as discussed in Section 3.5.6. This is a larger and more exhaustive
investigation of KS components than the previous studies. Lieb gradients at the MP2
level are now available, and larger molecules with more electrons can be investigated –
which we were keen to do. Aromatic systems, for example, have interesting electronic
structures, but must necessarily include a fair amount of electrons.

The magnetic field dependence of these components was determined by means of
polynomial interpolation, and compared with different approximate functionals and
wave-function methods. The fields investigated in this paper were up to 0.03 atomic
units, similar to the two aforementioned studies. Reference magnetizabilities were
produced at the CCSD(T) level. We investigated closed shell molecules of three
different classes: diamagnetic, paramagnetic and aromatic. The previous studies
revolved around small, diamagnetic molecules alone.

Remarkably, for small diamagnetic systems, the exchange energy is virtually con-
stant as a function of magnetic field. For larger diamagnetic systems and for para-
magnetic systems, the exchange energy does vary with magnetic field. For atoms,
this is expected, since angular momentum is quantized: The wave function cannot
change continuously, and remains constant with respect to field until a level cross
occurs. For the single orbital systems, the explanation lies in the fact that the den-
sity constraint also fixates the exchange energy. For the remaining two systems –
LiH and H2O – the explanation is perhaps that symmetries prevent orbital mixing,
so that the density constraint is somewhat restrictive.

The common, approximate functionals all behaved qualitatively well, especially
for the diamagnetic molecules. The electronic structure of these molecules does not
change much in the presence of an external field, and consequently all approximate
functionals produced reasonable numbers – even functionals which ignores completely
the field-dependence of the exchange-correlation energy. The TPSS functionals per-
formed well for the KS decomposition, matching the accuracy of CCSD. We used
two variants of this functional; aTPSS (based on the physical kinetic energy den-
sity τphys) and cTPSS (based on Dobsons energy density τD). Both variants were
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comparable to CCSD. For the aromatic molecules, the only available wave-function
methods were HF and MP2, and the latter was selected to be the reference. These
molecules behaved much like the other diamagnetic molecules, and we found no rea-
son to assume that magnetic properties of aromatic molecules are harder to predict
in the BDFT regime than non-aromatic diamagnetic molecules.

In the paramagnetic case, the exchange-correlation energy changes with the field.
Therefore, the conventional hybrid functionals performed less well, but this also
holds true for the wave-function methods. However, no methods misidentified para-
magnetic systems as diamagnetic or vice versa. The cTPSS functional considerably
out-performed all other functionals and wave-function methods, but the exact rea-
son for this remains elusive. From Table 2 and Figure 3 in the article, it is clear
that the best overall performance is that of CCSD theory and the cTPSS functional,
whereas LDA gives the poorest performance. The good performance of the cTPSS
functional is striking: It is the only method that gives similar errors for the dia-
and paramagnetic molecules. All other methods produce errors that are one or two
orders of magnitude larger for the latter category of molecules. CCSD was slightly
better than aTPSS, but both variants TPSS out-performed MP2.

Simply put, paramagnetic molecules are tricky customers, but conventional DFT
functionals and wave-function methods all produced qualitatively correct results for
these molecules as well.

4.1.3 Discussion and future research

The study was performed with zero-field geometries held fixed. That is, we inves-
tigated FXC [ρ0,B] en lieu of FXC [ρB,B]. The maximum field strengths employed
were 0.03 atomic units, which is far too weak to perceptibly alter the molecular ge-
ometries. Furthermore, the density is prescribed as input to the optimization on the
right-hand side of Equation (3.104), and the resulting optimal potential v must can-
cel out the external diamagnetic term if this would otherwise prevent ρ from being
reproduced. Holding the geometry fixed is therefore a valid approach.

All in all, the results were encouraging, and it seems like approximate functionals
are surprisingly reliable even when magnetic fields are present. Meta-GGAs, and
especially the TPSS variants, are particularly promising. Unfortunately, the BDFT
formalism appears to be at an impasse: It works qualitatively well, but the approx-
imate functionals are not tailored for magnetic fields. With or without magnetic
fields, reproducing the density is a notoriously difficult endeavor. An amelioration
of this issue seems critical for further progress with the field-dependencies. How this
should be undertaken is as of yet an open question.
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4.2 Paper II

Molecules in strong magnetic fields have seen considerable attention over the years,
but most work has been limited to extremely small and symmetric systems, such as
atoms [117, 118, 119, 120, 121], single electron ions [122, 123, 124, 125] or linear,
homoatomic molecules in a perfectly parallel field [126, 127, 128, 129, 130, 131, 132].
This is for the reasons explained in Chapter 2.2. The study of matter in strong
magnetic fields is not limited to chemistry; the subject has been of interest within
the domains of both semi-conductor physics and astronomy as well [112, 133].

On an overarching level, there are three regimes where different approaches of
theoretical physics are valid. Low field is anything where the Coulomb forces are
much stronger than magnetic interactions, and entails that B � B0. In this regime,
the effect of the magnetic field is frequently treated with response theory. However,
that approach quickly becomes inadequate as the field strength increases [55, 42,
134, 135].

The strong field regime (B � B0) is also called the Landau regime because a free
article with mass m and charge Z has energies are quantized into Landau levels [29]:

E =

(
nL +

1

2

)
~ωc nL = 0, 1, 2... (4.3)

where the cyclotron frequency ωc is given by

ωc =
|Z|B
mc

. (4.4)

In this regime, electrostatic repulsion and attraction are but minor perturbations
to the magnetic interactions of matter, and the atoms acquire the shape of tiny
needles. Fields of this intensity are found on neutron stars, particularly on magnetars.
Chemistry in such extreme physical environments is alien to us [136, 137, 138].

When |B| ≈ B0, the electrostatic and magnetic interactions are of the same order
of magnitude and interesting varieties of conventional chemistry may occur. Helium
clusters are one such example: Noble gas atoms do not normally bond, but this
becomes possible under the influence of strong magnetic fields. The triplet state
of the He2 dimer is well known to be bonding, but the energy of this triplet state
normally lies far above that of two free singlet atoms. In strong fields, however,
the lowest triplet state (and the quintet, for that matter) will eventually fall below
the singlet. While these fields are only attainable in the vicinity of exceedingly hot
stellar objects, this does not mean that the molecules cannot form: It should be
emphasized that at least the nonmagnetic H2 molecule has been observed on white
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dwarfs [139], and rather complex molecules are readily available on the Sun and other
stellar entities [140]. The temperatures on the surface of various stars may be large,
but so is the pressure!

The purpose of this study was to further explore the chemical bond and the elec-
tronic structure of the He2 dimer in magnetic fields. Specifically, we wanted to clarify
the role of spin and angular momentum. There has been a distinct lack of studies
where the orientation of the magnetic field is not parallel to the molecular axis. The
phenomenon called paramagnetic perpendicular bonding is a recent discovery, and
there is still much to be clarified. Our study is more comprehensive and larger than
previous works.

This paper has both theoretical and computational results. The theoretical result
is a novel way of dealing with orbital angular momentum in the presence of an
arbitrarily oriented magnetic field. The practical results revolves around spin states
and molecular bonds of helium dimers.

4.2.1 Angular momentum: Quantized and otherwise

When tracking the development of electronic states as a function of field intensity
and orientation, it is useful to sort the states by various quantum numbers. Spin and
angular momenta are the two obvious choices. In the presence of a magnetic field,
angular momentum becomes more problematic.

The canonical and physical orbital angular momenta around a gauge origin O
are

LO = (r−O)× p (4.5)

and

KO = (r−O)× π (4.6)

respectively. The commutation relations for canonical angular momentum are simply
[
L̂j, L̂k

]
= i
∑

l

εjklL̂l (4.7)

where εjkl is the Levi-Civita term as introduced in Section 3.1.1. The indices refer
to Cartesian coordinates. These commutation relations allow for the construction of
ladder operators,

L̂± ≡ L̂x ± iL̂y. (4.8)
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Inserting this into Equation (4.7), we get

[
L̂+, L̂−

]
= 2L̂z and

[
L̂z, L̂±

]
= ±L̂±. (4.9)

Applied on an eigenstate ψm, they yield

L̂z |ψm〉 = m |ψm〉 and L̂zL̂± |ψm〉 = (m± 1) |ψm〉 , (4.10)

meaning that the eigenvalues are quantized. With the physical angular momen-
tum, these relations are less straightforward and give rise to convoluted and field-
dependent commutation relations. Furthermore, the same wave function may give a
different value for the physical angular momentum due to changes in the magnetic
vector potential. The physical angular momentum is usually not quantized.

In order to be a good quantum number, quantization alone is insufficient: The
operator in question must also commute with the Hamiltonian and all other operators
used for classification of the quantum states. For atoms, all Cartesian components of
L̂ commute with Ĥ. However, as seen in Equation (4.7), the Cartesian components
of L̂ do not commute with each other – there can only be one. By convention, L̂2

and L̂z are used for classification of atomic states.
The expectation value of L̂z is preserved for cylindrically symmetric systems

oriented in the z direction because local symmetries and conservation laws are inex-
tricably linked by Noether’s theorem [141]. Since the orientation of a Cartesian grid
can be arbitrarily chosen, L̂z is a good quantum number for all linear molecules –
in the absence of a magnetic field, that is. As discussed at length in Section 2.3, a
magnetic field introduces a field-dependent anisotropy, and the molecule will cease
to be cylindrical symmetric unless the molecular axis is parallel to the field. Atoms,
being highly symmetric, always have a quantized L̂z.

Obviously, it is interesting to categorize quantum states for all possible orien-
tations to the field. While exact discretization is beneficial, a reasonable approxi-
mation to a quantum number is still useful for this endeavor, and so one might be
tempted to use the angular momentum as it is. Unfortunately, it exhibits a non-
physical, gauge dependent quadratic divergence with the atomic distance. A novel
tool for circumnavigating this bothersome issue is introduced in this paper: Almost
Quantized Angular Momentum (AQAM). For linear, homonuclear molecules with the
gauge origin G placed at the electronic center of mass C, AQAM is defined as

Λ =
∑

α

(
LC,α −

1

2
Nα (Cα −C)× [B× (C−Cα)]

)
(4.11)
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where Nα is the number of electrons of atom α and Cα is the position of nucleus α.
Note that in the following special cases, the second term disappears and Λ becomes
exactly identical to Lz:

1. when B = 0,

2. when the system has exactly one atom, since that makes Cα and C equal, and

3. when a linear molecule is parallel to the field since the cross product of parallel
vectors disappears.

AQAM becomes a sum of atomic angular momenta when applicable, and is exactly
quantized whenever L̂z is. From a practical perspective, we are simply splitting a
molecule into non-interacting atoms and subtracting their angular momenta from
the overall results.

AQAM is an important theoretical contribution to our understanding of angular
momentum. It also turned out to be a remarkably useful tool for modeling the
evolution of molecular quantum states as a function of changes in geometry and
orientation relative to the field.

For more details about the mathematical foundations upon which AQAM has
been constructed, consult [142]. For more information about angular momentum in
general, see [143].

4.2.2 Computational results

The electronic structure of the He2 molecule was thoroughly described at the FCI
level in magnetic fields. We developed AQAM and showed that molecular states can
be separated, even when classical orbital angular momentum diverges with the field.
The ground state for different spin configurations was investigated as a function of
inter-atomic distance and orientation relative to the field. The electronic configu-
ration for different fields of the molecule in the dissociation and united atom limits
was clarified. Also, the field dependent behavior of basis set superposition errors was
explained in detail.

Figure 4.1 shows the complexity of the field dependent FCI states of several
closely related systems: the helium atom, the beryllium atom and the helium dimer
in the united atom limit3.

3The standard notation for atomic states has been used in Figure 4.1. This is not strictly
applicable to molecules, but for the lack of a better alternative, this simple solution was elected. It
is adequate for my purposes. The states found, their energy and ordering when the field is zero are
in excellent agreement with the literature for the beryllium atom [144].
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Figure 4.1: The FCI states of the beryllium and helium atoms, and the helium dimer in
the united atom limit, calculated as a function of magnetic field intensity. Basis sets vary.
In all subplots are singlet states to the left of gray line and triplets to the right. The sign of
mz determines the color of the lines: red for positive, blue for negative and black for zero.
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Evidently, the electronic structure of the helium dimer in the united atom limit
greatly resembles a beryllium atom, as it should4. The basis sets5 used in the three
calculations are different due to computational convergence issues, but this is not
really an issue: Each atom type has different exponents optimized for their specific
electronic structure, and calculations such as these are therefore never truly “apples
to apples”. In light of this, the difference seems less pertinent. Furthermore, the
computational results are in excellent qualitative agreement. We see for example
that a high lying 3F-state of the two four electron system is rapidly brought down
by the Zeeman effect and becomes one of the lowest lying states when B = B0.
This is interesting for several reasons: Not only is it clear that even moderate basis
sets, such as Lu-aug-cc-pVDZ can correctly predict the behavior of spin states with
high angular momentum, it also reveals near ground state degeneracy, heralding a
complex chemistry with multiple exotic transitions available.

Carpet plots are quite helpful for getting the broader picture. Typically, we kept
the absolute value of the magnetic field fixed at B0. The varied parameters were the
distance between the atoms and the alignment of the molecule to the field – from
parallel to perpendicular orientation. Figure 4.2 shows a FCI values for the lowest
lying singlet (Figure 4.2a), triplet (Figure 4.2b), and quintet (Figure 4.2a) states
of the dimer, respectively. All three tell a different story, however.

The singlet shows a small, but quite measurable, minimum. The bond strength
and bond length varies smoothly with the orientation to the field, implying a stable
molecule that will orient itself perpendicular to the field. Parallel to the field, a
weak minimum exists. This is an artifact of dispersion: Figure 4.3 shows the BSSE
corrected interaction energy of the parallel and perpendicular case at the HF and
MP2 levels. Dispersion cannot be computed at the HF level, and indeed – the
molecule is predicted to be completely dissociated when parallel to the field. On the
other hand, MP2 predicts a subtle minimum slightly shy of 5.8 bohr. This is pure
dispersion. Perpendicular to the field, the predicted molecular geometry is quite
similar at both theory levels, but MP2 indicates a stronger bond than HF. This is
expected.

The triplet, on the other hand, has two distinct, but still strongly binding states,
one preferring a parallel orientation to the field, the other perpendicular. Disen-
tangling these two states like this tend to be a thorny issue, but this task becomes

4In fact, the atoms are somewhat too close; a calculation performed at, say, 0.5 bohr would
probably be more illustrative.

5In this case, the term basis set, refers to a collection of exponents to be used as input in a
calculation and carrying a name, such as as 6-31G or aug-cc-pV5Z etc. Two different helium
atoms would have a different set of basis functions assigned to them, however.
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Figure 4.2: FCI calculations with the Lu-aug-cc-pVTZ basis set of the He2 molecule in
i a field of |B| = B0. The orientation of the molecular axis to the field is varied from
parallel to perpendicular, and the distance between the atoms ranges from the united atom
limit to dissociation. Spin states are singlet, triplet and quintet. All calculations are BSSE-
corrected. The cragginess of the surface as atoms are brought close together is an artifact
of interpolation procedure used when analyzing the data.
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Figure 4.3: BSSE corrected interaction energy of He2 singlet in a parallel and perpendicu-
lar field of one atomic unit. The dashed lines denotes calculations at the Hartree-Fock level,
the continuous lines are the corresponding MP2 values. The minimum energies are marked
with circles for Hartree-Fock and triangles for MP2. The basis set is Lu-aug-cc-pVTZ.
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trivial with AQAM. AQAM is a vector, so for making a carpet plot, similar to what
has been made for interaction energies, either the absolute value or the projection
must be plotted at a time. Figure 4.4 shows the absolute value of AQAM for the
triplet. Clearly, there are two competing states, one which favors a perpendicular
orientation, and one which favors a parallel orientation to the field. This picture
cannot be properly computed at the MP2 level due to spin contamination. As an
aside, this plot also shows how AQAM becomes an integer value for linear molecules
parallel to the field, and in the dissociation limit, as it should.

The quintet is an odd job: The molecule appears to be completely dissociative in
perpendicular configurations, and then oscillate a bit back and forth before it settles
on a quite strongly bonding configuration perpendicular to the field. This effect is
accentuated when the counterpoise correction is applied, and considering that the
equilibrium distance is rather large, this is surprising.

All these open questions contributed to our decision to restrict ourselves to FCI
calculations an fewer atoms. It seems clear, however, that the singlet states are easily
modeled quite well by single-reference methods. The basis set of choice for this study
was Lu-aug-cc-pVTZ6. It is common knowledge that anisotropic deformations of s-
orbitals can be handled by higher lying entities to certain extent, as described in
Section 3.1.2 7. At the double ζ level, which was used for the beryllium calculations,
d-orbital states appeared – apparently from a combination of s and p orbitals. This
was unexpected. A surprise, to be sure, but a welcome one. As the field increases,
energy levels are shifted, and states may cross. It was also made clear that there is
quite a bit more to paramagnetic bonding than what first meets the eye.

4.2.3 Other results

While making this paper, we investigated several avenues of research. We were
initially most interested in the interactions between larger clusters in strong fields,
but as mentioned, it soon became apparent that there were too many different spin-
states involved, and that it might be best to fully understand these first. Therefore,
we focused the paper on the many electronic states of the helium dimer, and how
these are affected by the fields. However, some of the the results found for larger
singlet state clusters were illuminating, but did not make it to the final version of
the paper. They are therefore presented here instead. In the coming paragraphs, all
calculations are for singlets, and the field intensity is one B0 in the z-direction.

6For helium atoms, the sets *-pVnZ and *-pCVnZ are identical. For larger atoms, the latter
contains extra core functions.

7See the discussion around Equation (3.18) for the particulars.
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The first question we wanted to settle, was what kind of clusters were formed.
There were earlier indications that the flakes of equilateral triangles would form
perpendicular to the field. We wanted to investigate this matter more thoroughly.

First off, we found the bond length of the dimer to be 3 bohr when it was oriented
perpendicularly to the field. The bond lengths increased when the molecules were
disaligned from the field. This is clearly seen i Figure 4.2a. Then we found that the
linear trimer (symmetry assumed) also preferred 3 bohr between the atoms, and also
that the same held true for the vertices in an equilateral triangle. The dissociation
curves of the latter two are seen in Figure 4.5. MP2 predictions of geometry compares
well with FCI for these calculations, and BSSE is irrelevant in that regard. Then, a
thorough scan of the trimer was performed at the CCSD(T)/Lu-aug-cc-pVTZ level to
further map out the geometry and determine if an equilateral triangle perpendicular
to the field truly was the correct shape of the cluster. Figure 4.6 depicts the molecule
and highlights the varied parameters. The atoms A and B were kept perpendicular
to the field and at the corresponding equilibrium distance of 3 bohr. I elected to not
hold the distance RAC fixed, but rather RAC′ . Therefore,

RAC =
√
R2
AC′ + z2

c . (4.12)

In other words, the scan was made over varied cylindrical coordinates for the position
of atom C, and the energy is a function of those parameters alone. Another approach
would have been to forget about C’ entirely, keep the distance AC fixed, and rather
vary the two angles. However, the equilibrium distance between two helium atoms
smoothly increases to nearly six bohr when the dimer is rotated with respect to the
field. Therefore, it seems less meaningful to insist on a fixed distance of 3 bohr for all
orientations. Given this non-trivial behavior, fixation of AC seems irrelevant. The
aforementioned cylindrical approach allows for dissociation to be included without
imposing the need for additional variables.

The corresponding BSSE-corrected interaction energy for some specified value of
zc and γ is calculated like

Eint
ABC = EABC︸ ︷︷ ︸

3 atoms, 0 ghosts

−E ′A − E ′B − E ′C︸ ︷︷ ︸
3×(1 atom, 2 ghosts)

, (4.13)

where the apostrophe denotes the ghost fragments. This energy as a function of zc
and γ is plotted in Figure 4.7. There is a deep energy minimum when zc = 0 and γ =
60◦. This is exactly the equilateral triangle configuration oriented perpendicularly
to the field, as expected. As the angle becomes more acute, while zc is kept at zero,
the energy increases due to Coulomb repulsion between B and C. For practical and
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Figure 4.5: The dissociation curves for He3 singlet clusters in a linear and equilateral tri-
angular configuration, oriented perpendicularly to a field of one atomic unit. Both minima
occur when the atoms are three bohr apart. Interaction energy is larger for the triangular
configuration.
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Figure 4.6: A and B are two helium atoms fixed in place along the x-axis. C is the
third atom, which is moved, and C’ is the projection of this atom onto the xy-plane. The
distance between C and C’ is zc, while γ = ∠ BAC’. These two variables are depicted in
blue and determine the position of C. The distance between C’ and A is 3 bohr, irrespective
of zc and γ.

aesthetic reasons, the positive divergent values from this region has been set to 0.
When the angle becomes larger than 60◦ (while still keeping zc at zero), the energy
rises, but only until around γ = 110◦. After that, γ does not affect the energy at all.
This angle corresponds to a distance of 4.9 bohr between B and C, and as seen in
Figure 4.5, this is on the brink of dissociation. Evidently, only two interaction are
relevant in this region of the energy landscape (AC and AB), while there were three
closer to the triangular configuration (AB, AC and BC).

Table 4.1 holds key data underlying Figure 4.7 and some relations between these.
Simply put, there are three distinct region of interest: The global minimum, and the
first and second “plateau”. This corresponds to 3, 2 and one interactions between
the atoms, respectively. The total interaction energy, if divided with the number of
interactions, lies between -1.19 and -1.27, clearly suggesting that all such interactions
are quite equal.

It is also illuminating to break the plot up by fixing γ. When γ ≥ 60◦, classical
dissociation curves as a function of zc are seen. When the angle is more acute,
however, then Coulomb repulsion between C and B causes a divergence for modest
values of zc. One might expect to see a tiny minimum even for γ = 0◦, as this
would correspond somewhat to field-free dispersion. However, the specimen appears
to dissociate completely when C’ approaches B. This is somewhat surprising, but
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Figure 4.7: The interaction energy for He3 in the singlet state at Bz = 1. The theory level
is CCSD(T)/Lu-aug-cc-pVTZ. For the sake of visibility, values diverging towards +∞ due
to Coulomb repulsion between the nuclei B and C has been set to 0. The two small clusters
illustrate the molecular geometry in the region of interest, as described in Figure 4.6.
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Table 4.1: Three selected data points from Figure 4.7 and their relationship. These are the
interaction energies of the global minimum (which has three equal interactions), the first
plateau (which has two) and the second plateau (which has only one non-zero interaction)
between the atoms.The number n identify this number, while Eint

n is the total interaction
energy in this region in millihartree.

zc[a0] γ n E int
n

Eint
n

n
Description

0 60◦ 3 -3.73 -1.24 Global minimum (eq.lat. triangle)
0 110◦ − 180◦ 2 -2.38 -1.19 First plateau
6 0◦ − 180◦ 1 -1.27 -1.27 Second plateau (dissociation of C)

there might exist a subtle minimum which simply cannot be seen on this coarse grid.
This effect is present in Figure 4.2a.

A HF study from 2012 suggests that helium atoms in the singlet state tend to
prefer a planar and triangular tessellated configuration oriented perpendicularly to
the field. In other words, the atoms tend to form sheets of equilateral triangles or
similar [61]. The results for He3 certainly reinforces this impression.

We also made some brief investigations of larger singlet clusters, all the way up
to 20 atoms or so. Corroborating evidence for the hypothesis of equilateral triangle
formation was found, but there were simply to many variables to properly investigate
the matter. Also, because of different spin states, this line of research was put on
ice – the current MP2 implementation only supports ground state calculations, and
spin contamination is a serious issue. Singlet clusters are much easier to deal with
than other spins states at the MP2 level, and when comparable, the results are both
qualitatively and quantitatively close to CCSD(T) and FCI.

The feasibility of reducing complex interactions between clusters to general po-
tentials was also briefly explored: The di- and triatomic singlet clusters behaved in a
smooth and predictable manner, and it appeared that the interaction energy of larger
clusters could be described as a sum of interaction energies for smaller specimens.
Figure 4.8 shows a simplified example. Assuming two stable He2 molecules in a sin-
glet state and oriented perpendicularly to the field, how would these two molecules
interact? Ideally, the question could be reduced to identifying the different twobody
interactions, all of which are different points in Figure 4.2a. Parametrizing these
interactions as a function of distance and angle to the field should then in theory
provide all information needed to model any cluster – or even large conglomerates of
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Figure 4.8: Planar He4 in the xz-plane. The offset between the layers is 1.0 bohr. There
are four kinds of twobody interactions, labeled with different colors. Gray: Paramagnetic
bonds at equilibrium distance 3.0 bohr, 2 in total. The blue line represents an interaction
nearly parallel to the field between two atoms that are approximately 4.1 bohr apart. The
red and the green lines represents interactions nearly diagonal to the field, between atoms
that are about 4.5 bohr and 5.7 bohrs apart respectively. The magnitude of the magnetic
field equals B0, and it is oriented along the z-axis.
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clusters. However, as the ground state for such fields is most emphatically not a sin-
glet, constructing methods tailored for such an artificial situation seemed premature.
It also quickly became apparent that a parametrization from twobody interactions
alone was unsatisfying, but the reason was not understood. Clearly, a better de-
scription of the smaller systems were essential before predictions of larger clusters
could be made with confidence. It seems a worthwhile endeavour, however: Even if
only the singlet state is pursued, if such an approach could work for helium atoms,
it might also lend itself to larger noble gas atoms.

4.2.4 Discussion and future research

It was found that perpendicular paramagnetic bonding is a common phenomenon for
several spin states as the field strength increases. It was also found that the land-
scape of possible energy minima is rich and complex: Depending on spin states and
orientation to the field, multiple different types of bonds exist, some of them rather
stable. These stable dimers are oriented either perfectly parallel or perpendicularly
to the field. This was expected, as all strong-field deformations are anisotropic.

If the trends observed for the dimers – that is, the surprisingly large number of
stable, field-dependent geometrical configurations – extends to larger clusters, then
it would appear that a magnetic field allows multiple allotropes of helium to exist.
This should be explored further.

AQAM has not been tested beyond homoatomic dimers, but the results so far
are promising.

We still do not know exactly what form helium assumes as a function of mag-
netic fields. It is clear that the mono-atomic noble gas behavior is abandoned at
some point, and that chemical bonding occurs. But exactly when does the different
bonding mechanisms dominate, and how are the phase transitions? Will there be a
regime of dimers in the triplet state oriented parallel to the field? And can these
be reoriented perpendicularly to the field, but in a different spin state? And if so,
will the transition between these states be something akin to phosphorescence? It
also seems reasonable to assume that a spin polarized crystal structure will emerge if
the fields are sufficiently strong, but this too remains to be demonstrated. All these
open questions merit an answer.

If strong-field magnetic interactions truly can cause a noble gas to form different
types of field-oriented clusters, then an entirely new branch of chemistry will emerge
once the required hardware is installed. This is a bold statement, but it seems
reasonable: Chemical bonds that can be turned on and off at will in specific directions
as a function of an external factor which is hitherto irrelevant for chemical properties
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(the magnetic field) would be a game changer. The production of sufficient field
intensities appears insurmountable in a short term perspective, but there might be
molecules that exhibit alien behavior in fields of less extreme magnitude.

4.3 Paper III

Given the tremendous importance water has for almost every human endeavor, even
our very existence, it is one of the – if not the most – widely studied chemicals on
Earth. The magnetic properties of water in strong fields has consequently been a
matter of interest for as long as powerful magnets have been available, and spectac-
ular results such diamagnetic levitation is readily demonstrated. One might expect
that all similar oddities down that lane to be well established and described by now.

However, magnetic properties can be subtle and tricky to measure experimentally.
Even when results are available, the exact processes can be difficult to understand.
There has been persistent claims that well studied properties of water, such as Raman
spectra, viscosity, surface-tension and the like significantly change under the influence
of strong magnetic fields [145, 146, 147, 148], but the findings tend to be at odds
with each other, and are still not commonly accepted in the the scientific community.

As has been hinted towards in the previous chapters, quantum chemistry in the
presence of magnetic fields is a non-trivial endeavor, and reasonable doubts may be
allayed towards computational results produced by conventional methods. Accord-
ingly, the available theoretical studies are limited in scope and accuracy, for example
to Monte Carlo simulations [149].

This matter has great practical importance: Any new chemical or physical prop-
erties of such an important compound will be useful for someone, somewhere – if
only as an explanation for an experimental artifact, or as a nice opportunity to inves-
tigate something related, or for a technocratic entrepreneur to make a ton of money.
If there are no strange new discoveries to be made down this alley, then perhaps a
better understanding of methods which predicts otherwise may arise.

Despite any clear reason to believe that a “magnetic water treatment” could be
effective, even in theory, such devices are commercially available, and have been so
for decades. This is a controversial issue [12, 13].

Some of the predictions and claimed observations are refreshingly bold. For
example, it has been claimed that in a field of a mere 34 T, the water dimer dis-
sociates [150]. This is not a subtle effect, and should imply that bulk water more
readily evaporates. Again, despite impressive experimental studies [151] of water
clusters, iron clad experimental results about the magnetic properties of interest are
unfortunately unavailable.
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It seems clear that a better, and more definitive, understanding of whether or not
magnetic fields attainable on Earth affects water at all is relevant and long overdue.

4.3.1 Layout of the study

Given the disputed nature of the claimed observations themselves, any proposed
explanation must be somewhat tentative. Unfortunately, all experimental studies
pertaining to magnetic water treatment are, by necessity, concerned with impure
water. From a chemical perspective, even potable water usually has a large amount
of impurities. For example, Norwegian authorities allows up to 50 milligrams per
litre of nitrates [152], which drastically affect properties like conductivity.

We first restricted ourselves to water clusters utterly free of contaminants, saline
or otherwise, and thus excluded a large number of practical questions. However, a
reductionistic approach dictates such limitations, and it is imperative to understand
the properties of the pure substance before the importance of impurities present can
be determined.

Water is a truly unique chemical, and it has some unusual properties – the best
example is probably the fact that the solid state has lower density than the liquid.
This chemically unusual behavior, much like water’s other quirks, are a result of
strong hydrogen bonds. It is therefore no surprise that a hypothesis offered in re-
sponse to purportedly odd observations of water revolves around hydrogen bonding
to some extent. Such an effect ought to be present in a pure sample, and that is
why our computational setup has great capacity for falsification. If a magnetic wa-
ter treatment really do produce cleaner water, then describing the behaviour of the
product in the presence of a magnetic field seems necessary.

Another candidate for any deviant behaviour would be the presence of oxygen.
Water naturally contains a certain level of dissolved O2. As discussed at length in
Section 2.3, and explored in depth in Paper 1, a diamagnetic molecule has no other
magnetic interactions. These are weak for attainable fields, and can be computed to
high accuracy. The oxygen molecule is paramagnetic, and paramagnetic interactions
in attainable fields tend to be about three orders of magnitude larger than diamag-
netic interactions. As an avenue of research, it is certainly reasonable to explore.
However, considering that that the amount of dissolved oxygen in water is low, any
effects of importance to the clusters would have to be astoundingly overwhelming if
it were to also affect bulk water.

Accurate calculations of water clusters were performed with London, using the
MP2 module and the Lu-aug-cc-pCVTZ basis set. We investigated single molecules
and clusters of increasing size (1, 2, 3 and 4 water molecules). The idea was to safely

80



extrapolate into bulk matter. This is a reasonable approach, since a previous study
by Góra et al. revealed that the interaction energy in water clusters as a function
of cluster size converge quickly, even when four-body interactions are accounted
for [153]. Then, a similar setup was performed for water molecules and oxygen
molecules.

4.3.2 Results and discussion

The field dependence of the interaction energy of all the investigated water clusters
stays below 3 ppm, even for field strengths up to 100 T. This is seen in Figure 4.9.
This field dependency is expressed as

∆Eint

Eint

=
Eint (Bw)− Eint (0)

Eint (0)
, (4.14)

where Bw is a magnetic field in either x, y or z-direction and Eint the interaction
energy. Figure 4.9 also shows that in the relevant regime of B ≤ 40 T , the field
dependency of the interaction energy is less than 0.4 ppm for all clusters. This corre-
sponds to less than half a kcal/mol. For all practical purposes, the field dependency
of the interaction energy is zero.

Furthermore, even the if errors due to the reduced cluster size were as much as
100%, none of the above would change; one kcal/mol is also a rather modes amount.
The conclusion is therefore simple: None of the aforementioned molecular properties
of water are measurably affected by relevant magnetic fields. This holds true for
both the pure water clusters and the combinations of water molecules and oxygen.

4.3.3 Future work

The chemistry was not affected at all by the fields we studied, but at some point
it will be. We do not yet know when exactly this will occur, nor what exactly will
happen. From previous studies, and particularly from the work related to noble gas
clusters, ample evidence for bold conjectures about the intricate spin states of noble
gas clusters are available. Why should water be any different in that regard? There
is no reason to assume that other atoms and molecules will not experience as of yet
uncharacterized transitions into new and exotic states of matter. A detailed study of
different molecules in increasing fields seems to be the obvious continuation of this
research. The tools are available.
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Figure 4.9: Field dependence of interaction energy for clusters of 2, 3 and 4 water
molecules. This image is used in the article (Figure 1).
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Chapter 5

Concluding remarks

The gist of this thesis has been the implementation of quantum chemistry methods
in the gauge origin independent formalism, applied on a varied set of interesting
problems. The underlying ambition has been twofold: First, to better understand
the vast and curious nature of molecules in magnetic field. Second, to create versatile
and useful software for quantum chemistry calculations that can handle magnetic
fields in a consistent, predictable and accurate manner.

5.1 Summary

The three papers each cover different theory levels and different abstraction levels:
The first paper was about the proper inclusion of magnetic fields in DFT. Wave-
function methods were used to create densities, and by means of the Lieb optimiza-
tion, the behavior of the functional itself was studied. This paper did not investigate
new properties of molecules, but rather why certain methods produce the results
they do.

The second paper was conceptually less abstract: The electronic structure of
helium clusters in magnetic fields was investigated at the FCI level. But the molecular
specimens in question, and the stellar objects on which they might be found, were
of a far more arcane nature! For the first time, the molecular properties of such
exotic species, existing only in magnetic fields unattainable on Earth, was properly
clarified at this theory level. In this study, the necessity of methods proven to be
accurate from first principles was essential, since the results cannot be compared
with experiment.

The final paper was in every way more down to Earth: An important contribution
to our understanding of the nature of water was made. This final paper also high-
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lights the necessity of having trustworthy quantum chemistry methods for magnetic
systems, even for practical, everyday chemistry. This points back to the first article;
properly understanding DFT in general, and creating a reliable DFT for magnetic
fields in particular seems a highly relevant task. For tiny water clusters, MP2 was
adequate, but should more complex systems be investigated, more computationally
efficient methods must be employed. BDFT can match, or even surpass MP2, but
bold conclusions rely on certain results. Hopefully, our investigations in the matter
has illuminated some of the unresolved conundrums.

The London orbital formalism is a key component of our approach to doing
quantum chemistry in the presence of finite magnetic fields. This approach has
proven to be versatile and efficient for vastly different scientific inquiries. None of
the results would have been sufficiently reliable without gauge origin-independent
wave functions. On a thematic level, the works runs the gamut from highly abstract
method development and calibration, via obscure astrochemistry, and back to earthly
chemistry – thus forming a full circle.

5.2 The future

It is not uncommon for theoretical endeavors to lie far beyond experimental capabil-
ities for a while. The Higgs boson is a stellar example; prediction preceded discovery
with five decades. On a similar note: London orbitals are octogenarians by now,
but applications in computational quantum chemistry has so far been restricted to
response theory. Employing London atomic orbitals at finite fields is a fairly recent
achievement. In turn, bold claims have been made about strong field chemistry.
Practical production of the the magnetic fields required is pure science fiction as of
now.

This is a common pattern in science. It is, generally speaking, easier to design an
experiment based on a good hypothesis than shooting blindly for data1. However,
all theories are eventually thoroughly tested if they are still deemed relevant when
the experimental capabilities are up the challenge. Now that the realm of exotic
magnetic chemistry becomes rapidly more well established, and new phenomena
predicted, it seems reasonable to assume that experimental work will soon be turned
in this direction. As technology progresses, stronger magnets are bound to be made,
and detection limits and times will be reduced. This latter point means that more
experimental work can be performed with pulsed fields, and pulsed fields have been

1It’s also easier to get funding for expensive equipment if there are good reasons to assume
interesting results will be found.
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available in the kilotesla regime for decades. I certainly hope to see demonstrations
of perpendicular paramagnetic bonding and similar oddball mechanisms – or even
better, experimental falsification! – within my lifetime.

Maybe exotic magnetic properties will even see practical applications in tech-
nology and chemistry, not just as an interesting demonstration of unusual physical
properties, but as a useful and relevant part of the modern chemists tool box? Time
will tell.

5.3 Final note

This thesis has a rather broad scope, reflecting the multi headed nature of magnetic
quantum chemistry. Overall, high quality quantum chemistry calculations in mag-
netic fields are important for numerous theoretical and experimental endeavors. As
experimental designs becomes more sophisticated, and theoretical predictions pro-
vides new hypothesis to be tested, this avenue of scientific work will become more
important. Easy access to accurate and amply tested, well established methods for
computations is a prerequisite in that regard. Hopefully, this work has contributed
to making accurate strong-field quantum chemistry more available to the masses.
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Bonding in the helium dimer in strong magnetic fields: the role of spin and angular
momentum

Jon Austad,1 Alex Borgoo,1 Erik I. Tellgren,1, ∗ and Trygve Helgaker1, †

1Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry,
University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway

We investigate the helium dimer in strong magnetic fields, focusing on the spectrum of low-
lying electronic states and their dissociation curves, at the full configuration-interaction level of
theory. To address the loss of cylindrical symmetry and angular momentum as a good quantum
number for nontrivial angles between the bond axis and magnetic field, we introduce the almost
quantized angular momentum (AQAM) and show that it provides useful information about states in
arbitrary orientations. In general, strong magnetic fields dramatically rearrange the spectrum, with
the orbital Zeeman effect bringing down states of higher angular momentum below the states with
pure σ character as the field strength increases. In addition, the spin Zeeman effect pushes triplet
states below the lowest singlet; in particular, a field of one atomic unit is strong enough to push
a quintet state below the triplets. In general, the angle between the bond axis and the magnetic
field also continuously modulates the degree of σ, π, and δ character of bonds and the previously
identified perpendicular paramagnetic bonding mechanism is found to be common among excited
states. Electronic states with preferred skew field orientations are identified and rationalized in
terms of permanent and induced electronic currents.

I. INTRODUCTION

It has long been known that strong magnetic fields dra-
matically affect the physics and chemistry of molecules [1,
2]. In the atmospheres of neutron stars, intense magnetic
fields, orders of magnitudes stronger than one atomic unit
B0 = 235 kT, dominate the electrostatic forces, resulting
in highly prolate, or even needle-like, charge distributions
around atoms. In such ultrastrong magnetic fields, mat-
ter is expected to consist of long chains of atoms, oriented
parallel to the magnetic field vector. The strong field
regime 0.1B0 < B < B0 is interesting as the direct mag-
netic effects and electrostatic forces in small molecules
are on the same order of magnitude, leading to novel
and complicated bonding mechanisms. This regime cor-
responds to the upper range of magnetic field strengths
encountered in magnetic white dwarf (MWD) stars.

In the strong and ultrastrong field regimes, atomic
spectra and chemical bonding become modified. Calcu-
lated helium spectra have assisted the interpretation of
observed spectra from the atmosphere of MWDs [3, 4],
supplementing the well-established use of hydrogen lines
to analyse MWDs. The magnetic field dependence of
energy levels in hydrogen [5], hydrogen anions [6], he-
lium [7–9], and other small atoms [10–13] have been
subject to several studies. Even one-electron molecu-
lar ions exhibit a rich phenomenology to explore [14].
Many otherwise unstable few-electron ions, such as He−,
HeH+, and He2+2 , become stabilized in external mag-
netic fields [15–17]. Several studies have focused on
potential-energy surfaces and the modification of bond-
ing in H+

2 and H2 subject to strong fields [18–22]. Most

∗ erik.tellgren@kjemi.uio.no
† t.u.helgaker@kjemi.uio.no

studies have been restricted to the parallel orientation
as this is by far the easiest to study. However, a few
studies of varying accuracy have found that the H2

triplet state becomes stabilized in a perpendicular mag-
netic field [23–27], subsequently explained based on high-
quality quantum-chemical calculations as an orientation-
dependent stabilization of the antibonding σ-orbital [28].
This effect, termed perpendicular paramagnetic bonding,
is also seen in singlet helium clusters and other diatomic
molecules [29, 30].

While the highest field strengths available in the labo-
ratory are two to three orders of magnitude below B0 [31–
34], quasiparticles in semiconductors can have effective
masses much below that of a bare electron and exhibit
analogous effects at lower field strengths. Notably, quasi-
particle analogues to perpendicular paramagnetic bond-
ing have already been reported [35, 36]. Rydberg states,
which are sensitive to magnetic fields due to their dif-
fuseness and high angular momenta [37, 38], are another
promising candidate for analogous effects.

In what follows, we report a computational study of
the chemical bonding of the helium dimer. Potential-
energy surfaces are mapped for low-lying states of singlet,
triplet, and quintet total spin, subject to strong magnetic
fields of arbitrary orientation. We use a finite-field ap-
proach, where the magnetic-field effects are incorporated
directly without perturbative approximations. Although
higher-order perturbation theory is sometimes an alter-
native to probe high-field effects [39–44], a nonperturba-
tive approach is needed to study reliably potential-energy
surfaces and level crossings in a strong field. To han-
dle the gauge-origin problem and ensure faster basis-set
convergence, we employ London atomic orbitals [45–48].
Without a solution the gauge-origin problem, potential-
energy surfaces suffer from a spurious parabolic dis-
tance dependence and become qualitatively wrong in
a magnetic field. Unlike perturbative approaches, the
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present non-perturbative approach necessitates an un-
conventional integral evaluation scheme, such as the one
reported for the London program package [49, 50] or the
subsequent approaches in the Bagel [51], Quest [52],
and ChronusQ [53, 54] packages. For the smallest sys-
tems, the extremely accurate free-complement method is
also an option [55, 56].

The outline of this article is as follows. First, in Sec. II,
we specify the electronic Hamiltonian and the quantum-
chemical model. We also introduce a new way to clas-
sify electronic states and discuss perpendicular para-
magnetic bonding involving higher-angular-momentum
states. Moreover, we discuss a simple analytical model
that gives insight into bonding in strong fields. In
Sec. III, we present results for singlet, triplet, and quin-
tet states of the helium dimer in a strong magnetic field.
Finally, we summarize the conclusions in Sec. V.

II. THEORY

In the presence of a uniform magnetic field B, the stan-
dard nonrelativistic Hamiltonian for N electrons is in SI-
based atomic units given by

Ĥ =
1

2

N∑

j=1

π̂2
j +

N∑

j=1

B · Ŝj +

N∑

j=1

v(rj) +
∑

j<l

1

rjl
. (1)

where Ŝj is the spin operator for the jth electron, v(rj) is
the electrostatic potential from the nuclei at the position
of the jth electron, π̂j = −i∇j + A(rj) is the mechan-
ical momentum operator, to be distinguished from the
canonical momentum operator p̂j = −i∇j , and A(rj) is
the magnetic vector potential at rj . Restriction of the
vector potential to the linear form A(r) = 1

2B× (r−G)
reduces the gauge freedom to the position of the gauge
origin G.

An efficient way to handle this gauge-origin freedom is
to use London atomic orbitals [45–48], leading to gauge-
origin invariant results and faster basis-set convergence;
see Ref. [57] for a more general perspective. Given
a Gaussian-type orbital χ(r) centred at C, the corre-
sponding London atomic orbital is ω(r) = e−iA(C)·rχ(r).
Hence, ω is product of a Gaussian and a plane wave
with wave vector q = A(C). The resulting nonstan-
dard integrals, including the two-electron four-centre
Coulomb integrals, are evaluated using the London
program [49, 50]. This program package also contains
a number of electronic structure models [28, 30, 58–
60]. We here use the full configuration-interaction (FCI)
model [28] to be able to handle exact degeneracies and
quasidegeneracies that inevitably arise when parameters
such as bond distances and external magnetic fields are
varied over large intervals.

A. Classification of states using an approximately
quantized angular momentum

In the present section, we shall not be concerned with
the spin contribution to angular momentum. For a given
state Ψ, the gauge-invariant, physical angular momen-
tum relative to a point D may then be defined as JD =
〈Ψ|∑j(rj−D)×π̂j |Ψ〉. In fact, since 〈Ψ|∑j π̂j |Ψ〉 van-
ishes in the complete basis-set limit for any variationally
optimized state, the physical angular momentum is in-
dependent of the reference point. The gauge-dependent,
canonical angular momentum is likewise given by the ex-
pectation value LD = 〈Ψ|∑j(rj−D)×p̂|Ψ〉. Introducing
the density and paramagnetic current density,

ρ(r) =

N∑

j=1

〈Ψ|δ(r− rj)|Ψ〉, (2)

jp(r) =
1

2

N∑

j=1

〈Ψ|δ(r− rj)p̂j + p̂jδ(r− rj)|Ψ〉, (3)

the canonical momentum can also be calculated as LD =∫
(r − D) × jpdr. Under a gauge transformation with

gauge function f , we have A 7→ A + ∇f , jp 7→ jp −
ρ∇f , and LD 7→ LD −

∫
(r −D) × ρ∇fdr. Despite its

gauge dependence, the canonical angular momentum is
sometimes useful for classifying states.

When both the electrostatic potential and the mag-
netic vector potential are cylindrically symmetric, the
component of LG parallel to the symmetry axis is a good
quantum number. In general, for a diatomic molecule
in a non-parallel magnetic field, canonical momentum
ceases to be a good quantum number—also the disso-
ciation limit, since the total system is not cylindrically
symmetric even though cylindrical symmetry is restored
for the individual subsystems (dissociated atoms). Unlike
the physical angular momentum, the canonical momen-
tum depends on a global reference position. To restore
quantization in the dissociation limit, the angular mo-
mentum of a subsystem instead needs to be evaluated
with respect to the symmetry centre of that subsystem,
and the wave function must be gauge transformed to cor-
respond to what is obtained in a calculation with gauge
origin adapted to the subsystem.

We now consider the idealized case where each iso-
lated subsystem α is cylindrically symmetric about its
electronic centre of mass Cα. In a calculation of the iso-
lated system, with the gauge origin placed at Cα, the re-
sulting density ρα and paramagnetic current density j′p;α
are cylindrically symmetric too. Moreover, the canonical
angular momentum relative to Cα is

L′α =

∫
(r−Cα)× j′p;α(r) dr, (4)

and the component parallel to B is quantized. In the
limit of a complete basis, the mechanical linear momen-
tum must vanish for any energy eigenstate. Using the
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fact that Cα is the subsystem centre of mass, we see that
the paramagnetic and diamagnetic contributions must
vanish separately,

πα =

∫ (
j′p;α(r) +

1

2
ρα(r) B× (r−Cα)

)
dr

=

∫
j′p;α(r) dr = 0. (5)

Next, consider the total system. The gauge origin G can-
not coincide with all subsystem centres Cα. Hence, the
subsystem paramagnetic current densities obtained from
a calculation on the total systems are gauge transformed
according to

jp;α(r) = j′p;α(r) +
1

2
ρα(r) B× (G−Cα). (6)

The subsystem contribution to the total angular momen-
tum about a global reference point D thus becomes

LD,α =

∫
(r−D)× jp;α(r) dr, (7)

or, using the relations established above,

LD,α =

∫ (
(r−D)× j′p;α(r)

+
1

2
ρα(r) (r−D)× (B× (G−Cα))

)
dr. (8)

Writing Nα =
∫
ρα(r)dr for the number of electrons in a

subsystem and using Eq. (5), we obtain in the basis-set
limit

LD,α = L′α +
Nα
2

(Cα −D)× (B× (G−Cα)). (9)

Whereas the total canonical angular momentum

LD =
∑

α

LD,α (10)

exhibits a gauge-dependent quadratic growth with the
distances |Cα − Cβ |2 between different subsystems, we
can now subtract the quadratic terms to obtain

Λ =
∑

α

(
LD,α −

Nα
2

(Cα −D)× (B× (G−Cα))
)

=
∑

α

L′α. (11)

We term Λ the approximately quantized angular momen-
tum (AQAM) since, for a diatomic molecule, its projec-
tion ΛB = eB · Λ onto the field direction eB = B/|B|
exhibits exact quantization for all parallel orientations
as well as in the dissociation limit. In other cases, ΛB

is often approximately quantized, despite the presence of
interactions between subsystems. This quantity there-
fore provides a useful generalization of the atomic quan-
tum number ml for classifying the states of a diatomic

TABLE I. Symmetries and bonding properties of molecular
orbitals of homonuclear diatomic molecule in a magnetic field.
The symbol ∠ here indicates an intermediate angle.

D∞h C∞h C2h Ci united-atom preferred chemical
B = 0 B‖ B⊥ B∠ limit orientation bonding
σ+
g σg ag ag s ‖ covalent
σ+
u σu bu au p0 ⊥ magnetic
πu πu au + bu au p±1 ‖ covalent
πg πg ag + bg ag d±1 ∠ magnetic
δg δg ag + bg ag d±2 ‖ covalent
δu δu au + bu au f±2 ∠ magnetic

molecule. A closely related quantity was considered for
a different purpose (and with different notation) in a for-
mal density-functional context in Sec. IV.C of Ref. [61].

Finally, we remark that some care is required when
interpreting 1

2B · Λ as an energy. The physical angular
momentum is a sum of two terms: the canonical angular
momentum and the diamagnetic contribution. However,
the gauge invariant kinetic energy is a sum of three terms:
the canonical kinetic energy, the orbital Zeeman term,
and the diamagnetic term. Only one of these terms (and
the sum of the other two) can be modified to have a well-
defined dissociation limit, not all three simultaneously.

B. Symmetry properties of molecular orbitals

In a magnetic field, the point-group symmetry of He2
is lower than the symmetry D∞h of the molecule in the
absence of a field. In all field orientations, inversion sym-
metry exists and the molecule therefore belongs to the Ci

point group with the irreps Ag and Au. In the parallel
and perpendicular field orientations additional symme-
try operations exist. In the parallel orientation, rotation
about the molecular axis give rise to the C∞h point group
with the one-dimensional irreps Σg and Σu and the two-
dimensional irreps Πg, Πu, ∆g, ∆u,. . . . The C∞h sym-
metry group (which does not occur for molecules in the
absence of a magnetic field) differs from D∞h by the ab-
sence of vertical mirror planes and two-fold perpendicular
axes. Finally, in the perpendicular field orientation, we
have in addition to inversion symmetry a two-fold sym-
metry axis along the field direction, giving rise to the C2h

symmetry group with the Ag, Au, Bg and Bu irreps.
In Table I, we compare the symmetries of the molecular

orbitals in the field orientations and also with the atomic
orbitals in the united atoms limit.

C. Perpendicular paramagnetic bonding

Strong magnetic fields can lead to new exotic bond-
ing mechanisms. Previous work has established that the
normally unbound lowest triplet state of the H2 becomes
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bound in a perpendicular magnetic field of strength on
the order of B ∼ B0. Also the lowest singlet state of the
He2 molecule becomes substantially stabilized and the
equilibrium bond length substantially compressed in a
perpendicular field. The underlying bonding mechanism,
termed perpendicular paramagnetic bonding, is that the
antibonding σ∗u orbital develops an angular momentum,
which leads to an energetic stabilization by the orbital
Zeeman effect [28]. This is true even in a minimal basis
of only s orbitals, provided that they are equipped with
London gauge factors. The magnitude of the angular
momentum of σ∗u vanishes in the parallel orientation and
the net energetic effect is largest in the perpendicular ori-
entation at intermediate bond lengths. By contrast, the
bonding σg orbital does not develop an angular momen-
tum and is not stabilized by this mechanism.

The above considerations generalize and apply in a
somewhat stronger form to higher angular-momentum
states. In the parallel orientation, a linear combination of
atomic orbitals with atomic quantum numbers |ml| ≤M
can never lead to an angular momentum exceeding M .
By contrast, this becomes possible in nonparallel orien-
tations. For example, the cc-pVDZ basis has two s or-
bitals and three p orbitals for each helium atom. In a
dimer with the helium atoms placed on the x axis at
(±1, 0, 0) bohr, one finds by diagonalizing the canonical
angular-momentum operator (relative to the mid-bond
position) that the largest perpendicular components are
L0;z = ±1.83~. If we omit the 1s orbitals, the 2s orbitals,
and both the 1s and 2s orbitals on the two atoms, we ob-
tain L0;z = ±1.35~, L0;z = ±1.06~ and L0;z = ±1.03~,
respectively. With London gauge factors and a perpen-
dicular field B = 0.5~ez, the most negative eigenvalue
becomes L0;z = −2.08~. Hence, some combination of s
and p orbitals acquires a d-orbital character when the ori-
entation is changed from parallel to perpendicular, lead-
ing to a lower orbital Zeeman energy, which competes
with the diamagnetic energy.

In light of the visual similarity of antisymmetric combi-
nations of real-valued p orbitals to real valued d orbitals,
it may be surprising that s functions play such a large role
in the above example—for example, an antisymmetric
linear combination of two py orbitals centred at different
points on the x axis resembles a dxy orbital. We remark,
however, that the canonical angular momentum vanishes
for all real valued orbitals and the s functions are needed
to produce complex-valued orbitals of the right form to
represent an angular momentum of about ±2~.

A simple analytical model provides further insight
into magnetic-field effects on bonding and antibond-
ing orbitals in homonuclear diatomic molecules. Let
G`m(r, α,K,B) denote a solid-harmonic Gaussian orbital
of exponent α centred at K and equipped with a London
phase factor for the magnetic field B:

G`m (r, α,K,B) =c`,m(α) exp
(
−i( 1

2B×K) · r
)

× S`m(rK) exp
(
−α|r|2K

)
. (12)

Here c`,m(α) is a normalization constant and S`m(rK)

with rK = r − K is a solid-harmonic function centred
at K of angular-momentum quantum numbers ` and m
about the z axis.

Consider now the normalized bonding and antibonding
orbitals along the z axis:

g±`m(r, α, δ,B) = C`m(δ, α)×
× (G`m(r, α, (0, 0,+δ),B)±G`m(r, α, (0, 0,−δ),B)) ,

(13)

where C`m(δ, α) is a normalization constant. We are in-
terested in the united-atom limits of these orbitals,

G±`m(r, α,B) = lim
δ→0+

g±`m(r, α, δ,B). (14)

Clearly, for the bonding orbitals, we have the field-free
standard Gaussian orbital positioned at the origin,

G+
`m(r, α,B) = G`m(r, α), (15)

in the notation G`m(r, α) = G`m(r, α,0,0). For the an-
tibonding orbitals, the limit is less trivial. To illustrate,
we consider the special case when the magnetic field is
oriented perpendicular to the bonding and antibonding
orbitals Bx = (B, 0, 0). We furthermore set the Gaussian
exponent equal to the optimal exponent of a free electron
in uniform magnetic field, αB = B/4. For ` ≤ 1, we then
find

G−0,0(r, αB ,Bx) =
√

B
2 (y − iz)G0,0(r, αB), (16)

G−1,±1(r, αB ,Bx) =
√

B
3 (y − iz)G1,±1(r, αB), (17)

G−1,0(r, αB ,Bx) =
√

B
4 (y − iz)G1,0(r, αB)

−G0,0(r, αB). (18)

Noting that [Lx, y − iz] = −~(y − iz) we conclude that a
magnetic field perpendicular to the antibonding orbital
induces a component of the angular momentum about
the field axis and perpendicular to the angular momen-
tum about the bond axis. To first order, this will reduce
the energy of the antibonding orbital in the united-atom
limit relative to the dissociation limit. It is a reasonable
assumption that this stabilization of antibonding orbitals
occurs at all atomic separations but is stronger the closer
the two atoms are to each other—that is, to the united-
atom limit.

The total kinetic energy and angular momentum of
bonding and antibonding atomic orbitals in the united-
atom limit with α = 1 are given by

T`m(B) =

∫
G±`m(r, 1,B)∗ 12π

2
BG

±
`m(r, 1,B) dr, (19)

L`m(B) =

∫
G±`m(r, 1,B)∗ LG±`m(r, 1,B) dr, (20)

where 1
2π

2
B is the kinetic-energy operator in the magnetic

field and L the canonical angular-momentum operator.
For a fixed Gaussian exponent α = 1, we have in Table II
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TABLE II. Kinetic energy and angular momentum of bonding
and antibonding atomic orbitals in the united-atom limitG±`,m
in a zero magnetic field B = 0 and in the minimizing magnetic
field B = B`m. Here ∆T`m(B`m) = T`m(B`m)− T`m(0) and
the components of the angular momentum not listed are zero.
Units are Eh for energy, ~ for angular momentum, and B0 for
magnetic field strength.

T`m(0) Lz
`m(0) ∆T`m(B`m) Lx

`m(B`m) B`m θ`m

G+
0,0 3/2 0 0 0 0 X

G+
1,±1 5/2 ±1 − 1

2
0 2 (90± 90)◦

G+
1,0 5/2 0 0 0 0 X

G+
2,±2 7/2 ±2 − 4

3
0 8

3
(90± 90)◦

G+
2,±1 7/2 ±1 − 1

2
0 2 (90± 90)◦

G+
2,0 7/2 0 0 0 0 X

G−0,0 5/2 0 −0.3 −0.9 2.6 90◦

G−1,±1 7/2 ±1 −1.2 −1.0 2.9 (90± 35)◦

G−1,0 7/2 0 −0.2 −0.8 2.7 90◦

G−2,±2 9/2 ±2 −2.1 −1.1 3.1 (90± 48)◦

G−2,±1 9/2 ±1 −1.2 −1.2 3.4 (90± 32)◦

G−2,0 9/2 0 −0.7 −1.4 3.2 90◦

calculated the kinetic energy and angular momentum of
the bonding and antibonding orbitals in the united-atom
limit for zero field B = 0 and for the magnetic field
B = Bmin that minimizes the kinetic energy for α = 1:

B`m = argmin
B

T`m(B). (21)

In the table, we have also listed B`m = |B`m| and the
angle θ`m of B`m with the z axis (bond axis). We note
that, for a free electron in a magnetic field, the optimal
Gaussian exponent is B/4; for an electron in an atom or
molecule up to field strengths of about B0, the electronic
wave function responds less directly to the magnetic field
strength. In Fig. 1, we have plotted the kinetic energy of
the bonding and antibonding orbitals in the united-atom
limit in the xz plane.

The first two columns in Table II contains information
about the energies and angular momentum in the absence
of a magnetic field. The kinetic energy is (` + 3/2)Eh

and (` + 5/2)Eh for bonding and antibonding orbitals,
respectively, the higher energy of the antibonding arising
from the presence of an additional nodal plane in the
orbital.

Turning our attention to the orbitals in the minimizing
magnetic field B`m, we note that

∆T`m(B`m) = T`m(B`m)− T`m(0) (22)

is zero or negative. Furthermore, the only orbitals whose
global energy minimum occurs at zero field are the bond-
ing orbitals with m = 0. For bonding orbitals with
m < 0, the energy is lowered by applying a field paral-
lel with the quantization axis (bond axis); if m > 0, the
same minimum energy is obtained by applying a mag-
netic field of the same magnitude but in the opposite

direction. As expected, the energy minimum becomes
deeper and the minimizing field stronger with increasing
value of |m|. We note that the energy minimization of
the bonding orbitals is the same in the united-atom and
dissociation limits, being associated with the permanent
angular momentum in the system. We also note that, in
a sufficiently strong field, the energy of the orbitals will
increase diamagnetically, for all field orientations

For antibonding orbitals in the united-atom limit, the
energy is in all cases reduced by the magnetic field and
in all cases significantly more than for the corresponding
bonding orbitals. At the same time, an angular momen-
tum is induced in the direction of the magnetic field, as
predicted from Eqs. (16)–(18). The resulting total an-
gular momentum is then no longer parallel to the bond
axis and the minimizing magnetic field is no longer par-
allel or antiparallel to the z axis. Indeed, for orbitals
with m = 0, the preferred field orientation is perpendic-
ular to the bond axis, while for orbitals with m 6= 0, the
preferred field orientation is skewed relative to the bond
axis. We note that the energy lowering arising from the
induced angular momentum vanishes in the dissociation
limit, unlike the energy lowering arising from the perma-
nent angular momentum.

III. RESULTS

The spectrum of He2 depends on the bond length R,
the strength of the magnetic field B, and the angle θ be-
tween the field and the bond axis. We have employed
the London program [49, 50] to map out the spectrum
as a function of these parameters. Basis sets are denoted
by standard notation amended by prefixes ‘L’ and ‘u’
to indicate London gauge factors and uncontracted func-
tions, respectively. The calculations have been carried
out at the FCI/Lu-aug-cc-pVTZ level unless otherwise
indicated. All bond distances are reported in units of
a0 = 1 bohr.

A. Dissociation limit: helium atom

In the limit of an infinite bond distance, the helium
dimer becomes two isolated helium atoms. The atomic
spectrum, calculated at the FCI/Lu-aug-cc-pVQZ level,
is shown in Fig. 2, with singlet- and triplet-state energies
plotted along the negative and positive axes, respectively.

While the diamagnetic 1Σg(1s2) singlet state is the
lowest singlet in the plotted field interval (and also the
ground state up to about 0.8B0), the remaining singlets
in the plot undergo several level crossings. In particular,
due to the orbital Zeeman interaction, the 1Πu(1s2p−1)
state crosses the 1Σg(1s2s) state to become the first ex-
cited singlet state at about 0.1B0. At a magnetic field
strength of about 1B0, the paramagnetic 1∆g(1s3d−2)
state has been sufficiently stabilized to become the second
excited singlet state, having crossed in turn the four dia-



6

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

FIG. 1. Contour plots of the kinetic energy of bonding and antibonding orbitals in the united-atom limit as a function of
magnetic field strength B in the zx plane; with the z axis marked by a horizontal line. For bonding orbitals, the minimum is
located on the z axis; for the antibonding orbitals, the minima are located away from the z axis, symmetrically on each side.
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magnetic states 1Σg(1s3s), 1Πu(1s2p+1), 1Σg(1s2s), and
1Σu(1s2p0) with increasing field strength.

Most singlet states have analogues in the triplet spec-
trum. However, because of the the spin Zeeman interac-
tion, the triplet states are split, the ms = −1 components
(with two spin-down electrons) being stabilized more
than the corresponding singlet states. Additional sta-
bilization may be provided by the orbital Zeeman inter-
action. Thus, while the lowest triplet state is 3Σg(1s 2s)
in weak magnetic fields, the 3Πu(1s 2p−1) state becomes
the lowest triplet at 0.2B0 and the ground state at about
0.8B0. In even stronger fields, the ground state becomes
3∆g(1s 3d−2), and so on.
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3D: 1s3d 1
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FIG. 2. Spectrum of the helium atom as a function of mag-
netic field strength. Singlet states are shown along the nega-
tive horizontal axis and triplet states along the positive axis.

B. United-atom limit: beryllium atom

It is also instructive to consider the united-atom limit,
in which the helium dimer becomes the beryllium atom.
The corresponding spectrum, obtained at the FCI/Lu-
cc-pVDZ level of theory, is shown in Fig. 3. Again, the
Zeeman interactions result in a reordering of the spec-
trum. As the zero-field singlet ground state 1Σg(1s22s2)
is increasingly destabilized by the magnetic field, the
1∆g(1s22p2

−1) state becomes the lowest singlet in the
strongest fields plotted.

However, because of the spin Zeeman interaction, the
ms = −1 triplet components are stabilized even faster.
Indeed, already at about 0.05B0, the ground state is
3Πu(1s22s 2p−1). For the strongest field strengths shown,
the first excited state is 3Φu(1s22p−13d−2), which ap-
pears to become the ground state at a field strength
slightly stronger than one atomic unit.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
B [a.u.]

15.2

15.0

14.8

14.6

14.4

14.2

14.0

13.8

El
ec

tro
ni

c 
en

er
gy

 [h
ar

tre
e]

1S: 1s22s2

1P: 1s22s2p 1 1P: 1s22s2p0

1D: 1s22p2
1

1D: 1s22p 12p0

3P: 1s22s2p 1

3P: 1s22s2p0

3P: 1s22s2p+1

3D: 1s22p 12p0

3F: 1s22p 13d 2

FIG. 3. Spectrum of the beryllium atom as a function of
magnetic field strength. Singlet and triplet states are shown
along the negative and positive horizontal axes, respectively.
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FIG. 4. Singlet spectrum as a function of magnetic field for
the He2 molecule, with fixed bond distance R = 2a0. Perpen-
dicular (parallel) magnetic fields have been mapped to the
negative (positive) half of the horizontal axis.

C. States of He2 at a fixed bond distance R = 2a0

As several interesting minima in the dissociation curves
appear at a He–He bond distance of about R = 2a0 (see
below), it is instructive to consider the field dependence
of the electronic spectrum at this fixed bond length. In
the following, we consider the singlet and triplet spec-
tra of He2 separately. The energies of singlet and triplet
states are plotted in Fig. 4 and Fig. 5, respectively, with
the energies in the parallel and perpendicular field ori-
entations plotted along the positive and negative axes,
respectively.
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1. Singlet states of He2 at R = 2a0

In a parallel field, the four lowest singlet states at R =
2a0 are 1Σg(σ2

1sσ
∗2
1s ), 1Σu(σ2

1sσ
∗
1sσ2s), and 1Σg(σ2

1sσ
∗
1sσ
∗
2s)

with ΛB = 0 and 1Πg(σ2
1sσ
∗
1sπ−1) with ΛB = −1, whose

energies are plotted against the field strength along the
positive axis in Fig. 4. While the three sigma states are
destabilized diamagnetically in the field, the pi state is
stabilized and becomes the second singlet state at B =
0.18B0. In fields stronger than about 0.6B0, the third
singlet is 1Πu(σ2

1sσ
∗
1sπ
∗
−1), having crossed the two highest

sigma states. At this field strength, however, the ground
state is no longer a singlet but a triplet, as discussed
below.

In the perpendicular field orientation, where the molec-
ular point group is C2h rather than C∞h, the loss of cylin-
drical spatial symmetry manifests itself in more avoided
crossings as seen in Fig. 4, where the energies of the low-
est electronic states are plotted against the field strength
along the negative axis.

In a weak perpendicular magnetic field, the ground
state is 1Ag(1a2g1b2

u), while the lowest excited states are
1Bu(1a2g1bu2ag), 1Ag(1a2g1bu2bu), and 1Bg(1a2g1bu1au).
These states originate from the same field-free states as
do the lowest states in parallel field orientation except
that the third excited state correlates with 1Πg(σ2

1sσ
∗
1sπq),

which contains a singly occupied πq = (π+ + π−)/
√

2 or-
bital of au symmetry rather than a singly occupied π−1
orbital of au + bu symmetry in the C2h point group.
Hence, 1Bg(1a2g1bu1au) is diamagnetic rather than para-
magnetic.

Here and in the following, πq denotes the π component
of symmetry au parallel to the magnetic field, whereas π⊥
denotes the π component of symmetry bu perpendicular
to the field and bond axes. We likewise use the nota-
tion π∗q for the π component of symmetry bg parallel to
the magnetic field, whereas π∗⊥ denotes the component of
symmetry ag perpendicular to the field and bond axes.

In a perpendicular magnetic field of about B = 0.15B0,
1Ag(1a2g1bu2bu) crosses 1Bu(1a2g1bu2ag) to become the
lowest excited state, stabilized by the antibonding 2s or-
bital in the magnetic field by the paramagnetic bonding
mechanism. At a field strength of about B = 0.35B0, the
state 1Bu(1a2g1bu3ag), which originates from the high-
lying zero-field state 1Π(σ2

1sσ
∗
1sπ
∗
⊥) with a singly occu-

pied π∗⊥ orbital of ag symmetry, goes through a nar-
rowly avoided crossing with the second lowest excited
state 1Bu(1a2g1bu2ag). Around this avoided crossing, the
2ag orbital changes character from σ2s to π∗⊥, pushing
the second excited state 1Bu(1a2g1bu2ag) further down to
recross 1Ag(1a2g1bu2bu), becoming again the first excited
state, but with a HOMO of π∗⊥ rather than σ2s character.

To summarize, the HOMO of the first excited state in
the perpendicular field orientation is σ2s from zero field to
0.15B0, then becomes σ∗2s followed by π∗⊥ at 0.35B0. This
progression may be understood in terms of paramagnetic
stabilization of the orbitals, noting that the three orbitals
have zero, one, and two nodal planes, respectively, par-

allel to the magnetic field vector; see Table II.
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FIG. 5. Triplet spectrum as a function of magnetic field for
the He2 molecule, with fixed bond distance R = 2a0. Perpen-
dicular (parallel) magnetic fields have been mapped to the
negative (positive) half of the horizontal axis.

2. Triplet states of He2 at R = 2a0

The behaviour of the triplet states in parallel and per-
pendicular fields are plotted along the positive and neg-
ative axes of Figure 5, respectively. The triplet states
behave in a similar way to the corresponding open-shell
singlets except that the spin Zeeman interaction splits the
triplet states into three ms components, the ms = −1 and
ms = +1 components tilted downwards and upwards, re-
spectively. We here consider the lowest-energy ms = −1
components only.

Because of the spin Zeeman interaction, the ground
state is the singlet 1Σg(σ2

1sσ
∗2
1s ) only up to a field strength

of about 0.55B0 in the parallel field orientation and about
0.65B0 in the perpendicular orientation, where the triplet
states 3Πg(σ2

1sσ
∗
1sπ−1) and 3Au(1a2g1bu1bg), respectively,

become the ground states, the latter originating from
3Πu(σ2

1sσ
∗
1sπ
∗
⊥).

In a weak parallel field, with B . 0.1B0, the two low-
est triplet states are 3Σu(σ2

1sσ
∗
1sσ2s) and 3Σg(σ2

1sσ
∗
1sσ
∗
2s),

with ΛB = 0. The next two states are 3Πg(σ2
1sσ
∗
1sπ−1)

and 3Πg(σ2
1sσ
∗
1sπ+1), which diverge with increasing field

strength due to the orbital Zeeman interaction with op-
posite signs of ΛB = ±1. In fields stronger than about
0.5B0, the lowest states are completely reordered by
the spin and orbital Zeeman interactions. The lowest
triplet is now 3Πg(σ2

1sσ
∗
1sπ−1), which is also the electronic

ground state of the system, while the first excited state
is 3Πu(σ2

1sσ
∗
1sπ
∗
−1, σ

∗2
1s σ1sπ−1). At one-atomic unit field

strength B0, the second excited state is 3∆u(σ2
1sσ
∗
1sδ−2).

In a weak perpendicular field, the three lowest elec-
tronic triplet states are predominantly 3Bu(1a2g1bu2ag),
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TABLE III. The lowest minima on dissociation curves for He2 in a magnetic field B = 0.2B0. The quantity Rgrid is the bond
distance for which the electron configuration, while other quantities are interpolated between grid points on the dissociation
curve. All quantities are in atomic units.

spin θ n Emin Req ΛB E∞ Edis state Rgrid

singlet 0◦ 0 −5.786650 5.733 0.00 −5.786619 0.000031 1Σg(0.98σ2
1sσ
∗2
1s ) 5.800

1 −5.070304 1.972 −1.00 −4.934970 0.135334 1Πg(0.95σ2
1sσ
∗
1sπ−1) 2.000

2 −5.051661 1.917 0.00 −4.960160 0.091501 1Σu(0.92σ2
1sσ
∗
1sσ2s) 1.900

3 −4.996800 2.079 0.00 −4.960157 0.036643 1Σg(0.93σ2
1sσ
∗
1sσ
∗
2s) 2.100

90◦ 0 −5.786667 5.271 −0.00 −5.786618 0.000049 1Ag(0.98 1a2
g1b2

u) 5.200
1 −5.073291 2.021 −0.57 −4.959465 0.113826 1Ag(0.88 1a2

g1bu2bu) 2.000
2 −5.050287 1.896 0.07 −4.959458 0.090829 1Bu(0.92 1a2

g1bu2ag) 1.900
3 −4.980790 1.946 0.07 unknown unknown 1Bg(0.95 1a2

g1bu1au) 1.900
triplet 0◦ 0 −5.290267 1.966 −1.00 −5.182528 0.107739 3Πg(0.95σ2

1sσ
∗
1sπ−1) 2.000

1 −5.270141 1.937 0.00 −5.206973 0.063168 3Σu(0.89σ2
1sσ
∗
1sσ2s) 1.900

2 −5.222877 2.103 0.00 −5.206972 0.015905 3Σg(0.88σ2
1sσ
∗
1sσ
∗
2s) 2.100

90◦ 0 −5.297553 2.006 −0.68 −5.206769 0.090784 3Ag(0.84 1a2
g1bu2bu) 2.000

1 −5.268197 1.918 0.07 −5.206769 0.061428 3Bu(0.89 1a2
g1bu2ag) 1.900

2 −5.200512 1.941 0.07 −5.094688 0.105824 3Bg(0.95 1a2
g1bu1au) 1.900

quintet 0◦ 0 −4.652235 4.141 −1.00 −4.604572 0.047663 5Πg(0.68σ1sσ
∗
1sσ2sπ−1) 4.600

1 −4.627960 6.052 0.00 −4.626512 0.001448 5Σg(0.73σ1sσ
∗
1sσ2sσ

∗
2s) 6.200

90◦ 0 −4.686660 4.560 −0.67 −4.627365 0.059295 5Ag(0.44 1ag1bu2bu3ag, 0.32 1ag1bu2bu2ag) 4.600
1 −4.632662 5.074 −0.59 −4.603487 0.029175 5Bu(0.82 1ag1bu2ag3ag) 5.000
2 −4.609599 5.648 −0.90 −4.602014 0.007585 5Ag(0.43 1ag1bu2bu3ag, 0.26 1ag1bu2bu2ag) 5.800

3Ag(1a2g1bu2bu), and 3Bg(1a2g1bu1au), originating from
the field-free states 3Σ+

u (σ2
1sσ
∗
1sσ2s),

3Σ+
g (σ2

1sσ
∗
1sσ
∗
2s), and

3Πg(σ2
1sσ
∗
1sπ⊥). At 0.2B0, the lowest two triplet states

have crossed and the lowest state is now 3Ag(1a2g1bu2bu);
see Table III. In the strongest field plotted in Fig. 5,
the ground state is 3Bu(1a2g1bu1ag), originating from the
field-free state 3Πu(σ2

1sσ
∗
1sπ
∗
⊥). As the field increases

from zero, this highly-excited state drops below all other
triplet states, including the 3Bg state that originates from
3Πg(σ2

1sσ
∗
1sπq). In the process, the 3Bu state acquires a

substantial negative AQAM value from the occupied an-
tibonding σ∗1s and π∗⊥ orbitals. Decreasing from 0.50 at
field strength 0.01B0 to = −1.42 at 0.05B0, it reaches a
minimum value of ΛB = −1.75 at 0.25B0, after which it
increases again to −1.24 at field strength B0. We note
that the evolution of the lowest triplet state in the per-
pendicular orientation parallels that of the lowest singlet
state, the HOMO changing character first from σ2s to σ∗2s
and then from σ∗2s and to π∗⊥.

D. Potential-energy curves of He2

Next, we explore how the energy spectrum varies with
the bond distance R and the field orientation θ. For
visualization purposes, energy curves for perpendicular
(parallel) orientations will in all cases be plotted with a
negative (positive) bond distance. The lowest minima
on these dissociation curves are summarized in Table III
and IV, for B = 0.2B0 and B = B0, respectively.

At small bond distances, the dissociation curves are
dominated by the nuclear electrostatic repulsion energy,

obscuring the united-atom limit. We therefore select a
cut-off distance Rc, marked with vertical grey dash–dot
lines in each figure. In the region R < Rc, we replace the
actual energy E(R) by a shifted energy

E′(R) = E(R) +
Z2

Rc
− Z2

R

− a(R−Rc)
3 − b(R−Rc)

2 − c(R−Rc), (23)

more suited to the united-atom limit. The second and
third terms remove the singular nuclear repulsion energy,
while the polynomial in R − Rc aligns the energy scale.
The shift is state independent; it vanishes but introduces
nondifferentiable kinks and cusps at the cut-off distance
R = Rc.

In the united-atom limit, as R → 0, the molecular or-
bital basis set becomes linearly dependent, spanning only
an orbital space of half the dimension. To avoid spuri-
ous results from near linear dependence in this region,
we therefore avoid very short bond distances in the dis-
sociation curves.

Finally, we remark that the common notions of bond-
ing and antibonding orbitals, associated with symme-
try and antisymmetry with respect to mirror reflection
σmidbond in the midbond plane, become more compli-
cated and not well defined in the presence of a magnetic
field. While this symmetry remains exact in a parallel
field, a nonparallel magnetic fields breaks it. As a re-
sult, orbitals become superpositions φ = aφ+ + bφ− with
|a|2 + |b|2 = 1 of symmetric and antisymmetric compo-
nents. The expectation value of the mirror reflection op-
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TABLE IV. The lowest minima on dissociation curves for He2 in a magnetic field B = B0. The quantity Rgrid is the bond
distance for which the electron configuration, while other quantities are interpolated between grid points on the dissociation
curve. All quantities are in atomic units.

spin θ n Emin Req ΛB E∞ Edis state Rgrid

singlet 0◦ 0 −5.454327 4.747 0.00 −5.453984 0.000343 1Σg(0.99σ2
1sσ
∗2
1s ) 4.700

1 −4.739260 1.800 −1.00 −4.555238 0.184022 1Πg(0.96σ2
1sσ
∗
1sπ−1) 1.800

2 −4.554578 4.420 −1.00 −4.554309 0.000269 1Πu(0.64σ∗21s σ1sπ−1) 4.600
3 −4.423187 1.893 −2.00 unknown unknown 1∆g(0.96σ∗21s σ1sδ−2) 1.900

90◦ 0 −5.455252 3.012 −0.00 −5.453983 0.001269 1Ag(0.99 1a2
g1b2

u) 3.000
1 −4.638450 2.009 −1.27 −4.555000 0.083450 1Bu(0.95 1a2

g1bu2ag) 2.000
2 −4.570580 3.136 −1.07 −4.554542 0.016038 1Ag(0.76 1b2

u1ag2ag) 3.200
3 −4.503213 1.617 0.24 unknown unknown 1Bg(0.95 1a2

g1au1bu) 1.600
triplet 0◦ 0 −5.782268 1.805 −1.00 −5.644685 0.137583 3Πg(0.95σ2

1sσ
∗
1sπ−1) 1.800

2 −5.428475 1.889 −2.00 unknown unknown 3∆g(0.96σ2
1sσ
∗
1sδ−2) 1.900

2 −5.404984 2.613 −1.00 −5.256417 0.148567 3Πu(0.61σ2
1sσ
∗
1sπ
∗
−1, 0.34σ∗21s σ1sπ−1) 2.600

2 −5.406632 5.518 0.00 −5.393051 0.013581 3Σu(0.75σ2
1sσ
∗
1sσ2s) 5.400

90◦ 0 −5.721430 1.991 −1.25 −5.644682 0.076748 3Bu(0.94 1a2
g1bu2ag) 2.000

1 −5.658760 3.245 −1.10 −5.644682 0.014078 3Ag(0.70 1b2
u1ag2ag, 0.25 1a2

g1bu2bu) 3.200
2 −5.530958 1.611 0.22 −5.393015 0.137943 3Bg(0.95 1a2

g1bu1au) 1.600
2 −5.460260 2.416 −1.77 −5.256414 0.203846 3Ag(0.58 1a2

g1bu2bu, 0.35 1b2
u1ag2ag) 2.400

quintet 0◦ 0 −5.835333 ∞ −2.00 −5.835333 0 5∆g(0.92σ1sσ
∗
1sπ−1π

∗
−1) 10.000

1 −5.645344 2.396 −3.00 −5.448259 0.197085 5Φu(0.93σ1sσ
∗
1sπ−1δ−2) 2.400

1 −5.650264 4.085 −1.00 −5.583994 0.066270 5Πg(0.86σ1sσ
∗
1sπ−1σ2s) 4.200

90◦ 0 −5.855142 3.620 −2.21 −5.835368 0.019774 5Ag(0.91 1ag1bu2ag2bu) 3.800
1 −5.677227 2.660 −0.44 −5.583805 0.093422 5Bg(0.89 1ag1bu2ag1au) 2.600
2 −5.618470 3.092 −0.82 −5.583719 0.034751 5Au(0.83 1ag1bu2ag1bg) 3.000
3 −5.577629 3.523 −2.83 −5.447773 0.129856 5Bu(0.87 1ag1bu2ag3ag) 3.400

TABLE V. Orbital expectation values s of reflection in the mid-bond plane Eq. (24) for the lowest eight RHF orbitals in He2 in
a perpendicular field of strength B⊥. A value of s = +1 implies perfect symmetry and is associated with bonding properties,
while a value of s = −1 implies perfect antisymmetry and is associated with a nodal plane and antibonding properties. Due
to field-induced symmetry breaking, intermediate values are typical, indicating mixing of bonding and antibonding properties.
The last row contains the mean absolute s value of the eight listed RHF orbitals for a given bond distance and field strength.

B⊥ = 0.2B0 B⊥ = 1.0B0

R = 2.0a0 R = 3.8a0 R = 5.0a0 R = 5.8a0 R = 1.8a0 R = 2.0a0 R = 2.5a0 R = 3.0a0 R = 3.2a0 R = 3.8a0
1ag 1.00 1ag 0.98 1ag 0.96 1ag 0.94 1ag 0.96 1ag 0.93 1ag 0.86 1ag 0.77 1ag 0.73 1ag 0.62
1bu −0.97 1bu −0.97 1bu −0.95 1bu −0.94 1bu −0.70 1bu −0.71 1bu −0.71 1bu −0.67 1bu −0.65 1bu −0.59
2bu 0.12 2bu 0.17 2bu 0.23 2bu 0.26 2ag 0.08 2ag 0.12 2ag 0.25 2ag 0.37 2ag 0.40 2ag 0.42
2ag 0.99 2ag 0.89 2ag 0.73 2ag 0.61 2bu 0.00 2bu 0.00 2bu 0.01 2bu 0.03 2bu 0.03 2bu 0.04
1au 0.99 3ag 0.14 3ag 0.28 3ag 0.30 1au 0.90 1au 0.85 1au 0.70 1au 0.54 1au 0.47 1au 0.31
3ag −0.11 1au 0.95 1au 0.88 3bu 0.06 1bg 0.14 1bg 0.13 1bg 0.12 1bg 0.12 1bg 0.12 1bg 0.10
3bu 0.78 3bu 0.62 3bu 0.30 1au 0.82 3ag 0.83 3bu 0.26 3bu 0.32 3ag 0.12 3ag 0.11 3ag 0.18
4bu −0.61 1bg −0.84 1bg −0.81 1bg −0.78 3bu 0.23 3ag 0.78 3ag 0.46 3bu 0.34 3bu 0.33 3bu 0.25

0.70 0.70 0.64 0.59 0.48 0.47 0.43 0.37 0.36 0.31

erator,

s = 〈φ|σmidbond|φ〉 = |a|2 − |b|2, (24)

provides a measure of this mixing. In general, a fraction
|a|2 = 1

2 (1 + s) of φ is symmetric and bonding, whereas

a fraction |b|2 = 1
2 (1− s) is antisymmetric and antibond-

ing. In Table V, this expectation value is given for several
bond distances R and perpendicular field strengths B⊥
for the reference restricted Hartree–Fock (RHF) orbitals
employed in the FCI calculations. Note that the triplet
and quintet states were also calculated using RHF or-
bitals.

The perpendicular paramagnetic bonding mechanism,
which increases the magnitude of the angular momentum
of antibonding orbitals, can also be viewed as a mixing
of bonding and antibonding orbitals. This is seen in Ta-
ble V, where, for example, the orbital 1bu, which corre-
sponds to the antibonding 1s orbital σ∗1s in the parallel
orientation, acquires increasingly strong bonding charac-
ter in stronger fields and at longer bond distances. From
the listed mean absolute s values in Table V, we note that
the s values decrease with increasing field strength and
increasing bond distance. Indeed, strong magnetic fields
compress the orbitals and change the relevant length
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scale, so that the dissociation limit is reached earlier.

1. Singlet potential-energy curves at B = 0.2B0

Singlet dissociation curves at field strength B = 0.2B0

are shown in Fig. 6 with information given in Table III.
In the parallel orientation at R = 2a0, the lowest singlet
is dominated by the electron configuration 1Σg(σ2

1sσ
∗2
1s ).

The first excited state is 1Πg(σ2
1sσ
∗
1sπ−1) with ΛB = −1,

while second and third states are 1Πu(σ2
1sσ
∗
1sσ2s) and

1Σg(σ2
1sσ
∗
1sσ
∗
2s) with ΛB = 0 and the same dissociation

limits. All three excited states are covalently bound with
approximately the same equilibrium distance of about
2a0, whereas the ground state has a shallow minimum at
5.7a0.
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FIG. 6. Dissociation curves for singlet states in perpendicular
(negative half) and parallel (positive half) magnetic field B =
0.2B0. In the region between grey dashed lines, the curve
is shifted by the nuclear repulsion energy and an additional
quadratic fit to align the united atom limit to the same energy
scale. Plot markers are coloured based on the AQAM value
ΛB; scale indicated on the right.

The perpendicular orientation gives rise to dissociation
curves that are visually similar. However, the identifica-
tion of the states requires care since broken symmetries
allow mixing of states that are distinct in the parallel
case. Moreover, viewed as hypersurfaces that depend on
(R, θ,B), states can be continuously deformed into each
other in a way that is sometimes path dependent due to
the presence of conical intersections.

At R = 2a0 in the perpendicular orientation, the
ground state is 1Ag(1a2g1b2

u) and the lowest three sin-

glet excited states are 1Ag(1a2g1bu2bu), 1Bu(1a2g1bu2ag)

and 1Bg(1a2g1bu1au), the latter state being replaced by
1Bu(1a2g1bu3ag) at greater bond distances. The ground
state has the same parallel and perpendicular disso-
ciation limits but different parallel and perpendicular
united-atom limits, tending to the 1s22s2 beryllium con-

figuration with ΛB = 0 in the parallel orientation but to
1s22p2

−1 with ΛB = −2 in the perpendicular orientation.
The first excited state in the perpendicular orientation
has ΛB = −0.6 arising from the antibonding orbital 1bu

and the intermediate orbital 2bu, slightly less than the
ΛB = −1.0 of the first excited state in the parallel orien-
tation (for short bond distances), arising from the singly
occupied π−1 orbital.

However, as seen in Fig. 7, for a fixed R = 2 bohr, the
first excited states in the parallel configuration smoothly
turn into the corresponding perpendicular states as the
angle θ is varied. In particular, the antibonding orbital
σ∗2s transforms smoothly into π−1, both being of au sym-
metry in skew orientations. We note that the first excited
state has a minimum at θ ≈ 40◦, which happens since the
state a skew angles involves from 1Πg(σ2

1sσ
∗
1sπ−1), where

σ∗1s and π−1 prefer perpendicular and parallel orienta-
tions, respectively.
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FIG. 7. Energies of singlet excited states as a function of angle
θ between the bond axis and magnetic field, with magnitudes
fixed at R = 2a0 and B = 0.2B0, respectively.

The second and third excited state have ΛB ≈ 0.1 in
the perpendicular orientation. The second excited state
also retains the same radial dissociation limit as the cor-
responding parallel state, while the third excited state
acquires a different dissociation limit due to symmetry
breaking and orbital mixing. Globally, this indicates con-
ical intersections on the energy surfaces.

In the given basis set, the ground state is bound by
about 50 microhartree in the perpendicular configuration
and 30 microhartree in the parallel orientation. Hence,
at this field strength, perpendicular paramagnetic bond-
ing is negligible in the ground state. In the first excited
state, the energy is lowered by 3 millihartree from parallel
to perpendicular orientation. However, the dissociation
limit is lowered too, leading to a reduction in radial bind-
ing energy from 0.14 hartree to 0.11 hartree. By contrast,
the second excited state is is essentially unchanged and
the third excited state is higher by 16 millihartree in the
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perpendicular orientation.

2. Singlet potential-energy curves at B = B0

Potential-energy curves for singlet states at B = B0 are
shown in Fig. 8. In the parallel orientation, the weakly
bound ground state is dominated by the 1Σg(σ2

1sσ
∗2
1s ) con-

figuration at all bond distances, just as for field strength
B = 0.2B0. Because of the orbital Zeeman effect, the
first and second excited states have substantial π charac-
ter with ΛB = −1, being predominantly 1Πg(σ2

1sσ
∗
1sπ−1)

and 1Πu(σ∗21s σ1sπ−1), respectively. The latter state is ob-
tained from the former by promoting one electron from
the σ1s bonding orbital to σ∗1s antibonding orbital. The
two states therefore dissociate to the same limit but bind
in different ways. The first state is covalently bound with
a deep energy minimum at R = 1.80a0, while the second
is weakly bound with a shallow minimum at R = 4.42a0.
The third excited state has δ character, being predom-
inantly 1∆g(σ∗21s σ1sδ−2) with ΛB = −2 and a minimum
at R = 1.89a0. We note that the 1Σu(σ2

1sσ
∗
1sσ2s) and

1Σg(σ2
1sσ
∗
1sσ
∗
2s) states, which were the second and third

excited states at B = 0.2B0, are not stabilized by the or-
bital Zeeman interaction and have therefore been pushed
high up in the spectrum by its diamagnetic interaction
with the magnetic field.
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FIG. 8. Dissociation curves for singlet states in perpendicular
(negative half) and parallel (positive half) magnetic field B =
B0.

The dissociation curves in the perpendicular field ori-
entation are substantially different from those in the par-
allel orientation. However, since the dissociation limits
are identical in the two orientations, the curves become
increasingly similar with increasing bond distance. The
ground state 1Ag(1a2g1b2

u), originating from the field-free
state 1Σ+

g (σ2
1sσ
∗2
1s ), is stabilized by perpendicular para-

magnetic bonding by about 1 millihartree, with equilib-
rium bond distance R = 3.01 bohr, which is 1.4 bohr

shorter than the bond distance in the parallel field ori-
entation. While the parallel and perpendicular ground
states share the same dissociation limit, they tend to dif-
ferent states in the united atom limit—the parallel state
becomes 1Σg(1s22s2), while the perpendicular state be-
comes 1Σg(1s22p2

−1).

In the perpendicular orientation, the lowest three sin-
glet excited states are 1Bu(1a2g1bu2ag), 1Ag(1a2g1bu2bu),

and 1Bg(1a2g1bu1au) at R = 1.8a0; at R = 3a0, the
lowest states are 1Bu(1a2g1bu2ag), 1Ag(1b2

u1ag2ag), and
1Bg(1a2g1bu2bu). Thus, while the first excited state re-
tains its overall symmetry and orbital occupation at all
distances beyond R = 1.8 bohr, the second state retains
the overall symmetry but changes orbital character and
the third state undergoes a level crossing with a state of
different symmetry.

It is interesting to compare the first exited states in
the two orientations. In the parallel orientation, the first
excited state is predominantly 1Πg(σ2

1sσ
∗
1sπ−1) of bond

order one and a half and a deep minimum at R = 1.80a0.
In the perpendicular orientation, the 1Bu(1a2g1bu2ag) is
best described as having orbital configuration σ2

1sσ
∗
1sπ
∗
⊥,

with an antibonding HOMO orbital π∗⊥ replacing π−1.
Whereas the orbital Zeeman interaction favours π−1 in
the parallel field orientation, it favours π∗⊥ in the perpen-
dicular orientation, by the same mechanism that gen-
erates paramagnetic bonding. The reduced bond order
of one in the perpendicular orientation gives a shallower
minimum at a longer bond length 2.01a0 compared with
the parallel orientation. We note that the first excited
state has ΛB = −1.3 at the energy minimum, indicating
that it has acquired some δ character. In the united-
atom limit, the perpendicular state acquires even more δ
character, as shown by the colour coding in Fig. 8.

The second excited state has a double minimum in the
perpendicular orientation. The global minimum occurs
at R = 3.14a0 with ΛB = −1.1, indicating some δ charac-
ter. The orbital occupation in this region of the dissoci-
ation curve is σ∗21s σ1sπ

∗
⊥, with a negative bond order and

a strong paramagnetic bonding (more than an order of
magnitude stronger than in the ground state) generated
by three electrons occupying antibonding orbitals.

The local minimum in the second excited state occurs
at the shorter distance of R = 1.81a0 and has Λ = −2.5,
indicating a substantial increase in δ character. Com-
pared with the second excited state in the parallel orien-
tation, the energy is much lower (by 0.1Eh at R = 2a0).
Hence, the perpendicular paramagnetic bonding effect is
orders of magnitude stronger than in the ground state.

The global picture of the singlet energy surfaces is
complicated by level crossings at intermediate bond dis-
tances. Rotation of the first and second excited states
at a fixed bond distance of R = 2a0 leads to a cross-
ing at roughly 45◦, even though the resulting perpen-
dicular states share the same dissociation limit. Hence,
at this bond distance, the strongly bound parallel state
σ2
1sσ
∗
1sπ−1 is rotated into a state near the higher min-

imum on the second excited perpendicular dissociation
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curve. The very weakly bound second excited state, with
σ∗21s σ1sπ−1 character, in the parallel orientation is conse-
quently rotated into the more strongly bound first excited
state in the perpendicular orientation.

3. Triplet potential-energy curves at B = 0.2B0

The lowest triplet states at B = 0.2B0 are shown in
Fig. 9. As in the field-free case, the triplet He2 disso-
ciation curves display many features that are analogous
to the singlet curves. Equilibrium bond distances are
roughly 2 bohr. Moreover, there are again conical inter-
sections connecting low-lying states.
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FIG. 9. Dissociation curves for triplet states in perpendicular
(negative half) and parallel (positive half) magnetic field B =
0.2B0. In the region between grey dashed lines, the curve
is shifted by the nuclear repulsion energy and an additional
quadratic fit to align the united atom limit to the same energy
scale. Plot markers are coloured based on the AQAM value
ΛB; scale indicated on the right.

In the parallel orientation at R = 2a0, the lowest
triplet is predominantly 3Πg(σ2

1sσ
∗
1sπ−1) with ΛB = −1.

The second and third triplet states have ΛB = 0 and pure
σ character, with configurations predominantly σ2

1sσ
∗
1sσ2s

and σ2
1sσ
∗
1sσ
∗
2s, respectively. The fourth triplet state at

R = 2a0 is related to the first triplet by reversed sign of
the angular momentum, having ΛB = +1 and an elec-
tron configuration dominated by σ2

1sσ
∗
1sπ+1. However, at

slightly longer bond distances, the fourth triplet state is
instead one with ΛB = −1 and configuration σ2

1sσ
∗
1sπ
∗
−1,

which shares the same dissociation limit as the triplet
ground state at R = 2a0.

Fixing the bond distance at R = 2a0 (close to the equi-
librium bond distances of the lowest triplet states in all
field orientations) and plotting the energies as function of
the angle θ between the bond axis and the field vectors,
we obtain the curves in Fig. 10. In the perpendicular
orientation at this bond distance, the lowest triplet is
predominantly 3Ag(1a2g1bu2bu), where the σ∗2s HOMO of
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FIG. 10. Energies of the lowest triplet states at R = 2a0 and
B = 0.2B0 plotted against the angle θ between the bond axis
and magnetic axis

bu symmetry has evolved smoothly from the π−1 HOMO
in the parallel orientation, both being of au symmetry in
skew orientations. In the process, the AQAM projection
has decreased from −1 in the parallel orientation to −0.7
in the perpendicular orientation. This lowest triplet state
has a preferred field orientation of about 50◦, a compro-
mise between the preferred perpendicular orientation of
the antibonding σ orbitals and preferred parallel orienta-
tion of the π orbital, in the same way as for singlet states
in Fig. 7. The energy of the lowest triplet is about 7 mil-
lihartree lower in the perpendicular orientation than in
the parallel orientation, by paramagnetic stabilization of
the antibonding orbitals. However, since the paramag-
netic stabilization also lowers the dissociation limit, the
bond is actually weaker in the perpendicular orientation.

Even though 3Πg(σ2
1sσ
∗
1sπ−1) and 3Ag(1a2g1bu2bu) are

the lowest parallel and perpendicular triplet states at a
bond distance of 2a0, smoothly connected to each other
by field rotation, they have different radial dissociation
limits, the latter having the same dissociation limit as the
parallel states 3Σu(σ2

1sσ
∗
1sσ2s) and 3Σg(σ2

1sσ
∗
1sσ
∗
2s). The

3Πg state, on the other hand, crosses the 3Σu and 3Σg

states around R = 4a0, dissociating into states of higher
energy. and the minimum at R = 2.1a0 is thus a manifes-
tation of the perpendicular paramagnetic bonding mech-
anism.

The second triplet state in Fig. 10 changes smoothly
from 3Σu(σ2

1sσ
∗
1sσ2s) to 3Bu(1a2g1bu2ag) from the paral-

lel to the perpendicular orientation, increasing its en-
ergy slightly and its AQAM projection form zero to 0.1.
The third triplet state changes more dramatically (but
smoothly) from 3Σg(σ2

1sσ
∗
1sσ
∗
2s) to 3Bg(1a2g1bu1au) as the

HOMO changes from σ∗2s to πq character. Its energy in-
creases by about 20 millihartree, while its AQAM pro-
jection first decreases to −0.2 at θ ≈ 40◦, after which it
increases to 0.1 in the perpendicular orientation.
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To summarize, the three lowest triplet states at R =
2a0 differ in their HOMOs, which, in order of increas-
ing energy, are π−1 < σ2s < σ∗2s in the parallel field
orientation (by paramagnetic stabilization of π−1) and
σ∗2s < σ2s < πq in the perpendicular orientation (by para-
magnetic stabilization of σ∗2s). We note that, even though
the π and σ∗2s orbitals are of different symmetries in the
parallel and perpendicular field orientations, they are of
the same symmetry in skew orientations and may there-
fore transform smoothly into each other.

We consider next the electronic states closer to the
dissociation limit, at R = 5a0. In Fig. 9, there are three
distinct pairs of states both in the parallel field orien-
tation and in the perpendicular orientation—in Fig. 11,
we have plotted the energies of the corresponding states
against the angle θ at the fixed bond distance R = 5a0.
Each pair consists of two close-lying states with the same
dissociation limit but of different symmetries (gerade and
ungerade) arising from different occupations of bonding
and antibonding orbitals. Since we are close to the disso-
ciation limit, the electronic states are typically multicon-
figurational, with large contributions from two configu-
rations. We consider the lowest pair of electronic states
first.
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FIG. 11. Triplet states as a function of angle between the
bond axis and magnetic field, with magnitudes fixed at R =
5a0 and B = 0.2B0, respectively.

At R = 5a0, the lowest parallel state is predominantly
3Σu(σ2

1sσ
∗
1sσ2s) with one occupied antibonding orbital,

while the next state 3Σg(σ2
1sσ
∗
1sσ
∗
2s, σ

∗2
1s σ1sσ2s) has large

contributions from two configurations, both with two oc-
cupied antibonding orbitals. Although these close-lying
states have nearly reached their radial dissociation limits
at this bond distance, both are lowered in energy as the
angle is increased to 90◦, by paramagnetic stabilization
of the antibonding orbitals in the nonparallel field. With
two occupied antibonding orbitals, the energy lowering is
larger for the 3Σg state, which becomes the lowest state
at 22◦. For this state, the AQAM projection changes

from zero in the parallel field orientation to −0.3 in the
perpendicular orientation; for the 3Σu state, the AQAM
projection changes less. In the perpendicular field ori-
entation, the symmetries of the states are 3Ag for the
lower-energy state and 3Bu for the higher state.

The next pair of states are 3Πg(σ2
1sσ
∗
1sπ−1, σ

∗2
1s σ1sπ

∗
−1)

and 3Πu(σ∗21s σ1sπ−1, σ
2
1sσ
∗
1sπ
∗
−1) in the parallel orienta-

tion, both with more weight on the configuration con-
taining the bonding orbital π−1. The 3Πu state is slightly
higher in energy, have a doubly occupied σ∗1s orbital in
the dominant configuration. As a result of paramagnetic
stabilization, the gerade and ungerade states cross at
about θ = 30◦. Furthermore, with increasing θ, the con-
figurations containing the antibonding orbital π∗⊥ (origi-
nating from π∗−1) become more important than the con-
figurations containing π⊥. In the perpendicular orien-
tation, the dominant configurations are 3Bu(1a2g1bu3ag)
and 3Ag(1b2

u1ag3ag) where 3ag is the π∗⊥ orbital. Both
states have minima at roughly R = 5a0, which are man-
ifestations of perpendicular paramagnetic bonding.

Notably, there are indications of perpendicular param-
agnetic bonding also in states of higher angular momen-
tum. Tracing the third triplet state at R = 5a0 in the
perpendicular orientation to shorter bond distances, we
find that it develops an AQAM value of −1.5 at R ≈ 2a0,
implying that it has acquired some δ-orbital character, al-
though the orbital Zeeman effect due to the larger mag-
nitude of the angular momentum is not enough to offset
other effects, in particular the electrostatic repulsion, at
these bond lengths.

4. Triplet potential-energy curves at B = B0

At B = B0, the two lowest parallel electronic states,
both with ΛB = −1, have the same dissociation limit and
are energetically well separated from the other states.
The lower state is dominated by a single electron con-
figuration 3Πg(σ2

1sσ
∗
1sπ−1), while the higher 3Πu state is

more mixed, with weights 66% on σ2
1sσ
∗
1sπ
∗
−1 and 29% on

σ∗21s σ1sπ−1 at R = 2a0.
The spectrum above these states is more complicated,

with states closer together and crossings in the interval
2a0 ≤ R ≤ 4a0. At R = 2a0, the third electronic state is
3∆u(σ2

1sσ
∗
1sδ−2) with ΛB = −2, while the fourth state is

3Σu(σ2
1sσ
∗
1sσ2s) with ΛB = 0. The fifth state is again a

mixed 3Πu state with ΛB = −1; it has the same dominant
configurations as the second state but with weights 65%
on σ∗21s σ1sπ−1 and 29% on σ2

1sσ
∗
1sπ
∗
−1. The sixth state is

3Σg(σ2
1sσ
∗
1sσ
∗
2s) with ΛB = 0.

Tracking the lowest two states from the parallel ori-
entation through a 90◦ rotation is straightforward. As
seen in Fig. 13, at a fixed bond distance of R = 2a0,
the states cross at about 40◦. The bound parallel state
3Πg(σ2

1sσ
∗
1sπ−1) is deformed into a nearly unbound, dis-

sociative state 3Ag(1a2g1bu2bu) on the perpendicular side
as the bonding π−1 orbital transforms into the antibond-
ing σ∗2s orbital. There is, however, a minimum at the
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FIG. 12. Dissociation curves for triplet states in perpendicu-
lar (negative half) and parallel (positive half) magnetic field
B = B0.
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FIG. 13. Triplet states as a function of angle between the
bond axis and magnetic field, with magnitudes fixed at R =
2a0 and B = B0, respectively.

larger bond distance of R = 3.2a0, with ΛB = −1.1 and
a depth of 14 millihartree, for this state, in part gener-
ated by paramagnetic bonding. At the same time, the un-
bound parallel state dominated by 3Πu(σ2

1sσ
∗
1sπ
∗
−1) trans-

forms into the 3Bu(1a2g1bu2ag) with ΛB = −1.25, which
is bound by perpendicular paramagnetic bonding. Com-
pared with the parallel orientation, the energy difference
is almost 0.2 hartree—a manifestation of very strong per-
pendicular paramagnetic bonding. However, this state is
not the global minimum over all triplet states and geome-
tries, which instead occurs in the parallel orientation.

5. Quintet potential-energy curves at B = 0.2B0

Dissociation curves for quintet states subject to a field
B = 0.2B0 are shown in Fig. 14. In the parallel orienta-
tion, the lowest-lying parallel states at R = 4.2a0 alter-
nate between ΛB = −1 and ΛB = 0. The lowest quin-
tet state is predominantly 5Πg(σ1sσ

∗
1sσ2sπ−1) and cova-

lently bound, while the second quintet is multiconfigura-
tional 5Σg(0.53σ1sσ

∗
1sσ2sσ

∗
2s, 0.21σ1sσ

∗
1sσ
∗
2sσ2p) and non-

covalently bound. The third and fourth parallel quintets
at R = 4.2a0 are predominantly 5Πu(σ1sσ

∗
1sσ
∗
2sπ−1) and

5Σu(σ1sσ
∗
1sσ2sσ2p), respectively.
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FIG. 14. Dissociation curves for quintet states in perpendic-
ular (negative half) and parallel (positive half) magnetic field
B = 0.2B0.

When rotated from parallel (θ = 0◦) to perpen-
dicular (θ = 90◦) orientation at the slightly shorter
bond length of R = 3.8a0, the lowest quintet state
does not undergo any level crossing; see Fig. 15.
From the parallel to the perpendicular orientation,
the binding HOMO π−1 transforms into the anti-
bonding σ∗2s orbital of symmetry bu, while the anti-
bonding π∗⊥ of ag symmetry is stabilized paramagnet-
ically. The resulting lowest perpendicular state be-
comes 5Ag(0.44 1ag1bu2bu3ag, 0.27 1ag1bu2bu2ag) where
the dominant configuration has more occupied antibond-
ing than bonding orbitals. Nevertheless, because of para-
magnetic stabilization of antibonding orbitals, the total
energy decreases by more then 20 millihartree, while the
dissociation energy increases from 48 to 59 millihartree as
the covalent bond in the parallel orientation is replaced
by a paramagnetic bond in the perpendicular orientation.
Considering the relatively small magnitude of the mag-
netic field in this case, this provides an example of param-
agnetic bonding that is orders of magnitude stronger than
the initially reported bonding in the lowest H2 triplet and
He2 singlet states [28].

As we go from the parallel to perpendicular field ori-
entation, the AQAM projection of the lowest state de-
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creases in magnitude, from−1 to−0.8, providing another
example where this quantity does not directly capture
the energy stabilization by the orbital Zeeman interac-
tion. However, the radial dissociation limits are differ-
ent in the parallel and perpendicular orientations, with
the latter corresponding to two helium atoms in the 1s2s
triplet state. Hence, from this perspective, the AQAM
value changes from zero in the perpendicular radial dis-
sociation limit to about −0.7 at the minimum, correctly
indicating a stabilizing orbital Zeeman effect compared
to the dissociation limit.

At R = 3.8a0, the second and third quintet states in
the parallel orientation are 5Πu and 5Σg, respectively. As
seen from Fig. 15, these states undergo two level cross-
ings from the parallel to perpendicular orientation, at
about 20 and 70 degrees. The double crossing arises
since 5Σg has an energy minimum at about 45 degrees,
while 5Πu has a maximum at about 35 degrees. We
note that 5Σg develops a substantial AQAM projection
of −0.8 at 90 degrees and is even close to −1.1 at in-
termediate angles of 30–40 degrees (i.e., near the energy
minimum). Both states have a lower energy at 90 degrees
than at 0 degrees, with configurations 5Bu(1ag1bu2ag3ag)
and 5Ag(0.39 1ag1bu2bu2ag, 0.32 1ag1bu2bu3ag), respec-
tively.

The fourth perpendicular quintet state at R = 3.8a0
is 5Bg(0.49 1ag1bu2ag1au, 0.33 1ag1bu3ag1au). However,
after a level crossing at R = 5.8a0, the fourth state is
5Ag(0.55 1ag1bu3ag3bu, 0.30 1ag1bu2ag3bu).
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FIG. 15. Energies of the lowest quintet states as a function
of angle between the bond axis and magnetic field, with mag-
nitudes fixed at R = 3.8a0 and B = 0.2B0, respectively.

6. Quintet potential-energy curves at B = B0

At a field strength of B = B0, the orbital Zeeman in-
teraction has rearranged the states so that all the states
containing only σ orbitals are well above those that con-
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FIG. 16. AQAM value for the lowest quintet states as a func-
tion of angle between the bond axis and magnetic field, with
magnitudes fixed at R = 3.8a0 and B = 0.2B0, respectively.
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FIG. 17. Dissociation curves for quintet states in perpendic-
ular (negative half) and parallel (positive half) magnetic field
B = B0.

tain π orbitals. The lowest parallel state is dominated
by the 5∆g(σ1sσ

∗
1sπ−1π

∗
−1) configuration, which is well

below all other states for all bond lengths greater than
2a0. At a bond distance of R = 4.2a0, the second quin-
tet state is dominated by the 5Πg(σ1sσ

∗
1sπ−1σ2s) con-

figuration, while the third quintet state is multiconfig-
urational 5Πu(0.69σ1sσ

∗
1sπ
∗
−1σ2s, 0.22σ1sσ

∗
1sπ−1σ

∗
2s) The

fourth quintet state is largely 5Φg(σ1sσ
∗
1sπ−1δ−2).

In the perpendicular field orientation at field strength
B = B0, the lowest quintet states at bond distance
R = 3.8a0 are 5Ag(1ag1bu2ag2bu), 5Bg(1ag1bu2ag1au),
and 5Au(0.71 1ag1bu2ag1bg, 0.21 1ag1bu2bu1au). The
fourth quintet state is 5Bu(1ag1bu2ag3ag); however, at
a shorter bond distance of R = 2.5a0, the fourth state
has undergone a level crossing and is of the symmetry
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5Ag(1ag1bu2ag3bu).
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FIG. 18. Quintet states as a function of angle between the
bond axis and magnetic field, with magnitudes fixed at R =
3.8a0 and B = B0, respectively.
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FIG. 19. AQAM value for the lowest quintet states as a func-
tion of angle between the bond axis and magnetic field, with
magnitudes fixed at R = 3.8a0 and B = B0, respectively.

Rotation of the parallel states into perpendicular states
is comparatively straightforward due to the energy sepa-
rations between the dissociation curves—see Fig. 18 for
rotation at the bond distance R = 3.8a0. The lowest
state 5∆g(σ1sσ

∗
1sπ−1π

∗
−1) is further lowered by about 30

millihartree from 0 to 90 degrees. It is paramagnetically
bound, with a dissociation energy of 20 millihartree and a
global minimum located at θ = 90◦ and a slightly shorter
bond distance R = 3.62a0.

Intriguingly, the rotation curve in Fig. 18 has a second
local minimum with respect to θ at about 25◦. The cor-
responding AQAM values in Fig. 19 show that this local
minimum is not associated with any increase in the mag-

nitude |ΛB|. The stabilization at θ ≈ 25◦ is therefore of
a different origin than the stabilization at θ = 90◦.

IV. ENERGY SURFACES

Complete energy surfaces for the lowest singlet, triplet,
and quintet states at B = B0 are shown in Fig. 20, 21,
and 23, respectively. These surfaces have been computed
at the FCI/Lu-aug-cc-pVTZ level with a correction for
basis-set superposition error (BSSE). The correction is
an adapted counterpoise correction, taking into account
the loss of symmetry in a magnetic field and, in partic-
ular, the inequivalence of the parallel and perpendicular
orientations.

The most dramatic feature is seen in the triplet surface
in Fig. 21, which is actually at each (R, θ) the minimum
of two surfaces. One of these crossing states has a mini-
mum in the perpendicular orientation and the other has
a deeper minimum in the parallel orientation. The level
crossing is clearly seen as a discontinuous “rift” that oc-
curs for the shorter bond distances and angles roughly
between 20◦ and 50◦.

On the singlet surface in Fig. 20 the minimum is lo-
cated at R = 3.01a0 and θ = 90◦ and the BSSE cor-
rected dissociation energy is 1.264 millihartree, which dif-
fers only negligibly different from the uncorrected value
in Table IV. On the triplet surface in Fig. 21, the deep-
est minimum occurs at R = 1.80a0 and θ = 0◦, with
a BSSE corrected dissociation energy of 0.1376 hartree.
The shallower minimum occurs at R = 1.99a0 and has
a BSSE corrected dissociation energy of 0.07676 hartree,
again negligibly different from the uncorrected value. Fi-
nally, the quintet surface in Fig. 23 has two minima. The
deeper minimum occurs at R = 3.61a0, θ = 90◦, and
has a BSSE corrected dissociation energy of 19.56 milli-
hartree. The shallower minimum is located at 3.5a0 and
θ = 24◦, with a dissociation energy of 11.7 millihartree.

V. CONCLUSIONS

We have studied the low-lying states of the helium
dimer for different spins and magnetic-field strengths. As
expected, the singlet, triplet, and quintet spectra resem-
ble each other to a great degree, since many states have
analogues with other total spin. For example, open-shell
singlets have direct analogues among triplets. In general,
all states are subject to a diamagnetic destabilization.
However, the spin and orbital Zeeman interactions af-
fect states differently and dramatically reorder the spec-
tra, bringing down states of higher angular momentum.
Hence, states with π and δ bonding orbitals become in-
creasingly important in strong fields. Moreover, at large
field strengths, the spin Zeeman interaction lowers the
ms = −1 triplets below the singlets. For a field strength
of B = B0, the globally lowest state is even a paramag-
netically bonded quintet state with De = 52 kJ/mol, ori-
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FIG. 20. The lowest singlet energy surface in a field of B =
B0. The axis labels are x = R cos(θ) and y = R sin(θ), so
that the left side where y = 0 (and θ = 0◦) corresponds to the
parallel orientation. The colour scale is ln(η+E(R, θ)−Emin),
with η = 10−4 hartree.

FIG. 21. The lowest triplet energy surface in a field of
B = B0. The axis labels are x = R cos(θ) and y =
R sin(θ). The colour scale is ln(η + E(R, θ) − Emin), with
η = 5× 10−3 hartree.

ented perpendicular to the magnetic field. Hence, these
field strengths induce an entirely new chemistry of helium
atoms.

In general, in addition to the effects of increasing field
strength, the orientation with respect to the magnetic
field modulates the proportion of σ, π and δ bonding,
which affects the total angular momentum and the or-
bital Zeeman interaction. For nontrivial orientations
of the bond axis with respect to the magnetic field,
all spatial symmetries except inversion are lost and the
canonical angular momentum ceases to be a good quan-
tum number. To partially address this complication, we
have introduced the almost quantized angular momen-
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FIG. 22. The AQAM projection onto the magnetic field di-
rection for the lowest triplet at each value of (R, θ). The level
crossing between the two low-lying triplets is clearly mani-
fested in the discontinuous “rift” that begins at R ≈ 1 bohr
and θ ≈ 50◦.

FIG. 23. The lowest quintet energy surface in a field of
B = B0. The axis labels are x = R cos(θ) and y =
R sin(θ). The colour scale is ln(η + E(R, θ) − Emin), with
η = 5× 10−3 hartree.

tum (AQAM) and demonstrated that it is a very use-
ful tool to characterize states in arbitrary orientations.
Conical intersections make detailed state classification
beyond the characterization provided by AQAM chal-
lenging and poorly defined. In general, energy hyper-
surfaces become multivalued as functions of the param-
eters (R, θ,B). This occurs as an effect of the symme-
try breaking, which turns true crossings in the parallel
orientation into avoided crossings at nontrivial angles.
Two states may be continuously deformed into each along
some paths in parameter space, but not others. In the
radial dissociation limit, for instance, the parallel and
perpendicular orientations become physically equivalent.
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Nonetheless, at a fixed bond distance, continuously de-
forming between the parallel and perpendicular orienta-
tions can result in a state with a different radial dissoci-
ation limit.

Our results show that perpendicular paramagnetic
bonding is common in excited electronic states, although
the presence of conical intersections makes the identifi-
cation somewhat poorly defined and dependent on the
which path in parameter space is emphasized. Moreover,
the effect is larger for the more diffuse σ∗2s compared to
the compact σ∗1s orbital. As a result, the bonding mech-
anism is also stronger, sometimes by orders of magni-
tudes, in excited states than the originally described cases
(lowest triplet of H2 and lowest singlet of He2). There
are some indications of the perpendicular paramagnetic
bonding mechanism involving higher angular momentum

states (e.g., modulation of π into δ orbitals or δ into φ
orbitals), although it is difficult to determine the relative
contributions from σ∗ and higher angular momentum or-
bitals.
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3 U.S. Army Research Laboratory, RDRL-WMM-G,
Aberdeen Proving Ground, MD 21005-5069, USA

4 Centre for Theoretical and Computational Chemistry, Department of Chemistry,
University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway

∗To whom correspondence should be addressed; E-mail: szalewic@udel.edu.

Whereas numerous experimental studies concerning matter in strong mag-

netic fields have been performed, the effects of such fields are still highly con-

troversial. We present rigorous quantum-mechanical calculations for water

and oxygen-water clusters in such fields. These calculations show that one can-

not expect any measurable effects from fields of the order of 40 T, the largest

available in laboratories, on structure and on most properties of water clusters

and of liquid water. The only exception are properties depending on Earth

gravitational field since gravitational forces can be balanced by magnetic ones.
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Introduction

Magnetic water treatment devices aimed at reducing scale deposition in water pipes started to

appear some time in the middle of the last century and are still available as can be quickly found

by a search of the internet. This is despite the fact that several dozens of papers appeared, the

earliest ones already in the 1950s, e.g., Ref. (1), investigating the performance of such devices

and finding no effects. However, some papers, even quite recent ones, e.g., Ref. (2), claim to

provide experimental evidence that such devices may work. A review of the subject can be

found in Ref. (3). There have also been a large number of experimental papers finding that

properties of liquid water other than the scale deposition change under the influence of strong

magnetic fields. Among such properties are viscosity (4–6), surface-tension (6–9), vaporization

rate (10–13), refraction index (14), and infrared and Raman spectra (7, 15–17). In many cases,

different measurements of the same property contradict each other. On the other hand, there

are also experiments on water in magnetic fields with clear-cut results such as the levitation

of water droplets (18) or visible water surface deformation (19), both observed in magnetic

fields of ∼10 T. A characteristic element of this group of experiments is that the investigated

properties depend on Earth’s gravitational field.

Due to low reproducibility and little consistency of the reported experimental results, one

might expect that computational methods of quantum mechanics would be used for understand-

ing the magnetic field impacts on water. In particular, one of the most common hypothetical

explanations of the discussed effects is that magnetic fields significantly influence the hydrogen-

bond structure of liquid water (17, 20–22). Indeed, water properties are closely related to this

structure (23, 24). However, no attempt has been made to verify this hypothesis despite the fact

that computational quantum methods predict water properties very well (23–25) (one exception

are calculations on water clusters in Ref. (6) which, however, actually used an electric field that
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the authors assumed to be equivalent to a given magnetic field). The reason for this situation

was that until recently there was no software available for quantum mechanical calculation in

strong magnetic fields. The situation has recently changed with the development of the LON-

DON code (26–29), capable of treating atomic or molecular systems accurately for all field

orientations and strengths, i.e., not limited to linear response theory. We have performed such

calculations for small water clusters in several field strengths including 40 T, the strongest fields

available in laboratories.

For selected clusters and field strengths, calculations were performed at several levels of

electronic structure theory and in several basis sets. The results presented here are reason-

ably close to the exact solutions of Schrödinger’s equation in the Born-Oppenheimer (clamped

nuclei) approximation despite using only the second-order of perturbation theory with the

Møller-Plesset partition of the Hamiltonian (MP2) and the augmented core-valence correlation-

consistent, double-zeta quality aug-cc-pCVTZ basis sets (30) (in the uncontracted form which

results in an increased number of functions with large exponents important for describing the

motions of fast core electrons that interact most strongly with magnetic fields). All calcula-

tions were performed in n-mer basis sets thereby removing the basis set superposition error.

The cluster configurations are close to the global minima ones. Further technical details of

our calculation as well as a tabular representation of the results are given in the Supplementary

Information.

The relative effects of magnetic fields on interaction energies, defined as ∆Eint(Bw)/Eint(0),

where ∆Eint(Bw) = Eint(Bw) − Eint(0) are shown for (H2O)2, (H2O)3, and (H2O)4 in Figs. 1

as functions of the strength of the magnetic field Bw oriented along the axis w = x, y, z of the

coordinate system.

The most striking observation in the figures is that the changes of interaction energies for

the fields up to 100 T are so small that we had to present them in ppm. In particular, for the
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Figure 1: Dependence of the water clusters interaction energy on the strength of the magnetic
field.

field of 40 T, all the changes are below 0.4 ppm. The relative changes vary very little with the

size of the cluster: the values averaged over the directions of the field are 0.15, 0.23, and 0.23

ppm at 40 T for (H2O)2, (H2O)3, and (H2O)4, respectively (Fig. 1).

Clearly, sub-ppm effects of magnetic fields of up to 40 T on the interaction energies are

completely negligible from the point of view of cluster properties. Even spectra of water clus-

ters, providing the most precise data on such clusters (23), do not have ppm accuracy. More

importantly, these conclusions extend also to liquid water. The reason is that the convergence

of many-body forces in water clusters is reasonably fast. For example, for the (H2O)24 cluster

the total interaction energy computed using two-body, three-body, and four-body interactions

recovers the total interaction energy with an error of only 3% (31). Since the rate of conver-

gence is approximately the same for all investigated clusters starting from the hexamer, it is
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also similar for liquid water, Thus, the forces determining the structure and properties of liquid

water can change only at the ppm level, which is negligible in comparison to uncertainties of

any measurements on liquid water which are at the best a fraction of one percent.

Our results are in a dramatic disagreement with the calculations on water clusters by Toledo

et al. (6) who found that the field of 34 T makes water dimer unbound and changes energies

of water trimer and tetramer by a fraction of one percent. However, these authors performed

the calculations using electric fields and making an assumption, evidently not justified, about

equivalence of such fields. The only other theoretical investigations were performed using

molecular dynamics or Monte Carlo simulations with empirical potential and accounting for

the Lorentz force acting on the moving partial charges on atoms (20, 22). Since atoms move

with velocities about three orders of magnitude slower than electrons, effects of this type have

to be much smaller than those found by us. Thus, the effects observed in Refs. (20,22) must be

numerical artifacts.

The results of our calculations show that it is not possible to measure effects of magnetic

field of the order of 40 T on such properties of bulk water like for example viscosity, diffusion

coefficient, or infrared spectra. This conclusion, in fact, should extend to any diamagnetic mat-

ter since per atom magnetizabilites of molecules are all of the same order of magnitude. On the

other hand, the behaviour of liquid water that depends on Earth gravitational field can be dra-

matically changed by strong magnetic fields, as in the water droplet levitation experiments (18).

The reason is that the gravitational force is very weak compared to the Coulomb force (for two

interacting electrons it is weaker by 40 orders of magnitude) and therefore it can be balanced

by the magnetic force.

Another hypothesis put forward to explain the changes of water properties in strong mag-

netic fields observed in some experiments was that they originate from the presence of molecular

oxygen in natural water (7, 32, 33). Whereas there are also several other molecular impurities
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present, O2 is special from the point of view of the response to magnetic fields since it is a

paramagnetic molecule and paramagnetic interactions are typically three orders of magnitude

stronger than diamagnetic ones. We performed calculations for the (H2O)–O2 and (H2O)2–O2

clusters using the unrestricted version of MP2 (UMP2) to check if magnetic fields can signifi-

cantly change intermolecular interactions in such clusters. We found that the relative differences

between interaction energies of H2O–O2 computed in zero-field and in the field of 40 T are be-

low 0.5 ppm (Fig. 2).

Figure 2: Dependence of the oxygen and water clusters interaction energy on the strength of the
magnetic field.

However, the absolute value of the shift is not that different from the case of the water

dimer, the reason for the larger ratios is that the interaction energy is only -0.45 kcal/mol in the

former case, about 10 times smaller than for the water dimer. For the (H2O)2–O2 trimer, the

relative differences are smaller than 0.4 ppm, similarly as in water clusters. Thus, the presence

6



of oxygen will not result in any measurable changes of the structure of water (not mentioning

that the concentration is 1 oxygen molecule per about 200,000 water molecules).

With the very small impacts of magnetic fields found in our calculations, one may ask if the

discussed phenomena can be described well enough by linear response theory. To answer this

question, we performed simple back-of-the-envelope linear response calculations. The change

of a system energy due to a magnetic field B, ∆E, is given by ∆E = −(1/2)ξB2, where ξ is

the magnetizability. We used the experimental value of ξ, −218 × 10−30 J/T2 (34), which close

to theoretical values (35,36). This calculation gives the value ∆E = 0.40× 10−7 hartree for 40

T, which agrees very well with the value of 0.45× 10−7 hartree computed using LONDON (the

total energy decreases in magnitude). Thus, linear response theory works very well for total

energies. To estimate interaction energies, we assumed that the leading term in these quantities

results from interactions of the induced magnetic dipoles m = ξB = 0.00047 a.u. in 40 T.

Interaction energy of two such dipoles separated by 5.5 bohr is 0.13 × 10−8 hartree for the par-

allel configuration and −0.27 × 10−8 hartree for the in-line head-to-tail configuration. The first

case models the water dimer with the field approximately perpendicular to the hydrogen-bond

axis, where the interaction energy computed by LONDON is −0.24×10−8 hartree, whereas the

second case the field parallel to the bond, where the interaction energy computed by LONDON

is −0.009 × 10−8 hartree. Thus, this simple estimate gives only the order of magnitude for

the effect. Most likely the density changes induced by magnetic fields lead to changes of the

exchange-repulsion term, the largest component of water-water interaction at the equilibrium.

The total energy change with magnetic field for the paramagnetic oxygen molecule can be

estimated as the energy of the interaction of the 1/2 spin of the electron with the field parallel

to the direction of the spin: Espin(B) = B/2 (in atomic units). Multiplying this by 2 since

there are two electrons, one gets Espin(B) = 0.00017 hartree at 40 T. The change of the total

energy of O2 computed using UMP2 is 1.7 × 10−4 hartree, in a perfect agreement. This shift

7



is more than 3 orders of magnitude larger than the diamagnetic shift for the water molecule, as

expected.

It may be surprising that despite this 3 orders of magnitude difference, the effects of mag-

netic fields on the interaction energies are about the same for the paramagnetic clusters as for

the diamagnetic ones. Apparently, the unpaired spins do not affect interaction energies, i.e., the

paramagnetic shifts in (H2O)n–O2 and in O2 perfectly cancel each other. This is confirmed by

the smallness of the magnitude of the H2O–O2 interaction energy which is similar to interaction

energies involving rare gas atoms.

In conclusion, our work shows that most measurements of properties of water (or any other

diamagnetic substance) in magnetic fields up to 40 T should not be able to detect changes of

the properties due to the field since the structure of water changes negligibly in such fields.

The only experiments where such changes are detectable (and sometimes very pronounced) are

those where magnetic forces can balance the very small gravitational forces. Another type of

experiment that could possibly detect a B-dependent signal is a measurement involving directly

oxygen spins. This is due to the fact that water degasifies in magnetic fields and therefore the

concentration of oxygen changes.
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Errata

• Multiple erroneous hyphens are removed.

• Planet Earth was sometimes written earth.

• In Acknowledgment: The word “office” was misspelled.

• Page 4: The formulation “beyond the limitations” is now “beyond the reach”.

• Vector called q is renamed to c in Section 2.2.

• Section 2.3.1 is removed from the thesis.

• The twoelectron integral notation is cleaned up in Sections 2.2 and 3.4.1.

• An explanation for using uncontracted basis sets has been provided.

• Basis sets has been coherently named throughout.

• All references to nuclear physics are removed.

• The section devoted to the discussion of size consistency is reduced to a para-
graph.

• The bibliography style has been changed to ieeetr.

• Footnote 5 on page 20 is incorporated in the main text.

• Figure 2.2 in the original is removed.

• The redundant definition of the Slater determinant is removed.

• The importance of augmented functions for dispersion effects is made explicit.

• The symmetry discussion mentioning Noether’s theorem is reformulated.

• “Chemical accuracy” is replaced with a less bold choice of words.

• Explicit reference to to Section 3.5.7 is introduced in Section 4.1.

• A missing space between word and reference on page 6 is added.

• Page 26: The word “significant” was misspelled.



• Section 3.1.2: Third sentence is reformulated.

• Page 46, Equation 3.92: Ec on the left hand side is now Exc.

• In the discussion of paper 3: Oxygen molecules dissolved in water, not oxygen
atoms.

• Removed a double “so far” in Section 4.2.4.

• Page 50: Mathematical error. The CDFT Hamiltonian as written out was de-
fined for a strictly solenoidal A (Equation 3.117 in the original version). The
corrected equation and a clarification is added.

• Section 3.1.2: In the last paragraph, it was claimed that I had used core func-
tions “when applicable”. This statement is confusing and has been removed.

• Section 3.5.4: The word “adiabatic” was misspelled.

• Section 3.5: A redundant “obviously” is removed.

• The word “interaction” was consistently misspelled with an extra r.

• Section 4.1: The words “geometries”, “category” and “modeling” were miss-
pelled once.

• Section 4.2: The words “orientation”, “literature”, “artifact”, “clear”, “appears”
and “feasibility” were misspelled once.

• Figure 4.2 is BSSE corrected. At a point in Section 4.2.3, a claim to the contrary
was made. This has been rectified.

• Section 4.2.2. The word “distinctly” is replaced with “distinct”.

• Section 4.2.4: Missing word, “of”, is added (“regime of dimers”).

• Section 4.3: The word “levitation” was misspelled.

• Section 5.1: First sentence is clarified.

• Page 117: “Submitted for publication” is now “Submitted for publication in
PCCP”.
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