
Tool Support for Security
Classification for Internet of
Things (long version)
Manish Shrestha , Christian Johansen , Maunya Doroudi
Moghadam , Johanna Johansen , Josef Noll
Research report 495, September 2020

ISBN 978-82-7368-460-8
ISSN 0806-3036



Tool Support for Security Classification for Internet of
Things (long version)

Manish Shrestha Christian Johansen Maunya Doroudi Moghadam
Johanna Johansen Josef Noll

September 2020

Abstract

DevSecOps is the extension of DevOps with security aspects and tools throughout all
the stages of the software development life cycle. DevOps has become a popular way of
developing modern software, especially in the Internet of Things arena, due to its focus
on rapid development, with short cycles, involving the user/client very closely. Security
classification methods, on the other hand, are heavy and slow processes that require high
expertise in security, the same as in other similar areas like risk analysis or certification.
As such, security classifications are not compatible with the DevSecOps, which primarily
goes away from the traditional white-hat hacker team style of penetration testing that is
done only when the software product is in the final stages or already deployed.

In this work, we first identify five requirements for a security classification to be
DevOps-ready, two of which are the focus for the rest of the report, namely to be tool-based
and easy to use for non-security experts, like ordinary developers or system architects.
We then proceed to exemplify how one can make a security classification methodology
DevOps-ready. We do this through a prototyping process, where we create and evaluate
the usability of a tool supporting (or implementing) the chosen methodology. Such work
seems to be new within the usable security community, let alone in the software develop-
ment (DevOps) community. Therefore, we present our process as a recipe that others can
follow when making DevOps-ready their own security methodologies, which we believe to
be valuable since it would both make the methodology more user friendly for themselves at
the same time as widening the range of population that can take in using their methodol-
ogy. The tool that we built is more of a byproduct contribution of the above, even though
it can be independently used, extended, and/or integrated by developer teams into their
DevSecOps processes, most probably during the testing phase where the security class
would be one of the metrics used to evaluate the quality of their software.

0Address for correspondence:
Department of Technology Systems, University of Oslo, P.O. Box 70, 1027 Kjeller, Norway.
E-mail: cristi@ifi.uio.no

1



Contents
1 Introduction 3

2 Security Classification for DevSecOps 5
2.1 DevSecOps and Usability of Security . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Principles for DevOps-ready Security Classifications . . . . . . . . . . . . . . . . 5

3 Users 7

4 Manual Security Classification 8
4.1 Reviewing the Security Classification Methodology . . . . . . . . . . . . . . . . 8
4.2 SC Methodology Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 SC Methodology as a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Evaluation of the ten-steps process . . . . . . . . . . . . . . . . . . . . . 11
4.3.2 Outcomes and Major Observations . . . . . . . . . . . . . . . . . . . . . 13

5 Interaction Design Tool Development Process 13
5.1 Spreadsheet implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Outcomes and Major Observations . . . . . . . . . . . . . . . . . . . . . 16

5.2 Introducing the web application . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Evaluation and Observations . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Second version of SCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Evaluation through a Hackathon . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Evaluation with Individuals . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.3 Outcomes and Major Observations . . . . . . . . . . . . . . . . . . . . . 24

6 Final evaluation results and major observations 25

7 Conclusions and Related works 26
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1.1 NOR-STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 Certware and other Eclipse plugins . . . . . . . . . . . . . . . . . . . . . 28

2



1 Introduction
According to International Data Corporation, the predicted number of Internet of Things (IoT)
devices for 2025 is 41.6 billion, generating about 7.9 zettabytes of data1. Because of this amount
of produced data and human life penetration (e.g., in smart homes, offices, cities, hospitals), it
is highly essential to develop secure IoT systems. However, securing IoT still proves challenging,
especially in industries focused on functionality and low costs demanded by the high competition
on the market, as argued by, e.g., [24, 14, 17].

IoT software, like most modern software, are developed in an agile style (see e.g., the Scrum2

method), where popular now is the DevOps culture [8]. One important mantra of Agile3 is to
include the user (or the client) of the software at all stages of the development in a continuous
manner. One reason coming from the developers is that in this way, the client/user will be more
acquainted with how the software is being built and will tolerate more the bugs and downsides
of each version. DevSecOps4 adds security tools and awareness at all stages of the software
development life-cycle [12]. However, the security tools [15, Part VI] that can be adopted need
to have a low threshold in terms of learning and usability so to be able to be effectively included
in the DevOps tool-chain [9].

Security is traditionally considered by the industry as an aftermath, a non-functional re-
quirement that needs experts, e.g., white-hat penetration testing teams, to evaluate. Traditional
methods like certification, security classification, or risk analysis cannot keep up with the chang-
ing threat landscape in IoT systems [19]. Standards such as ISO 27001 and certification such
as Common Criteria are long and document-oriented processes. Keeping up with the software
changes in short and frequent release cycles as in agile means updating the required documents
regularly, which is not feasible. Similarly, labelling schemes such as UL Security Rating [16] or
BSI Kitemark5 are mostly based on penetration testing and risk analysis, besides documenta-
tion. Risk assessment methods require significant amounts of time and resources to conduct.
Examples of risk assessment frameworks include CORAS [11], EBIOS6, TVRA 7, FAIR [13],
and OCTAVE[1]. The result of conducting a risk assessment on a system at least provides a
good overview of the critical components and security threats for the system. However, these
approaches follow a waterfall model where the assessments are not frequent as compared to the
releases, and thus may not fit the agile style of system development [10].

As such, the software industry (and especially the IoT one) lacks motivation (i.e., when the
difficulty is high the motivation too needs to be high) and lacks guidelines for building security
by design. We think that DevSecOps is one positive contribution in this respect since it aims
to lower the threshold for security aspects (e.g., tools, procedures, methods, guides) to enter
the development process.

Security classification methods are not easy to integrate into the DevSecOps, and even
more so for IoT [5] where regulations, guidelines, and frameworks are only recently starting to
appear (see e.g., IoT Security Foundation (IoTSF)8, Global System for Mobile communication

1https://www.idc.com/getdoc.jsp?containerId=prUS45213219
2ScrumGuides.org
3http://agilemanifesto.org/principles.html
4https://www.devsecops.org
5https://www.bsigroup.com/en-GB/about-bsi/media-centre/press-releases/2018/may/bsi-launches-

kitemark-for-internet-of-things-devices/
6https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-

management-inventory/rm-ra-methods/m_ebios.html
7https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf
8https://www.iotsecurityfoundation.org/wp-content/uploads/2018/12/IoTSF-IoT-Security-Compliance-

Framework-Release-2.0-December-2018.pdf

3



Association (GSMA)9, IoT Working Group of the Cloud Security Alliance (CSA)10, or the
Industrial Internet Consortium11).

What we do in this work is to first identify, based on our experience with security classi-
fications and on investigating (online) literature about DevOps tool-chains and practices, five
principles (or requirements) for a security classification to be DevOps-ready. In short, these
are: (1) dynamicity, (2) tool-based, (3) easy to use, (4) static impact, and (5) oriented on pro-
tection mechanisms (detailed in Section 2.2). We then choose an existing security classification
methodology from [22] that already satisfies (4) and (5) and focus here on making it satisfy
the two requirements (2) and (3). Since the first requirement is dependent on (2), we do not
consider it here.

We are thus developing a tool, implementing the chosen methodology, and testing its us-
ability on users selected to represent well our target group, i.e., non-security experts such as
software developers, designers, architects, IT managers, or personnel from software operations.
Our users described more thoroughly in Section 3, are: (i) partners from one large European
IoT project and students from one course on IoT security, both of which we involve several times
during several stages of the development; as well as (ii) SMEs from a Polish Cluster (involved
only for evaluating a preliminary web-based version of the tool) and (iii) several developers
recruited from the industry (i.e., from software developing companies) with whom we test the
final version of the tool. Due to the nature of our process, we have mainly used workshops
and interviews as our methods to evaluate our prototypes and to extract information from our
users. We also used online questionnaires and UX logging, though with not so much inputs as
the workshops.

We do our work in four stages, developing three prototypes along the way; this is what
we describe in Section 4 (the manual stages) and Section 5 (the tool prototypes). We present
this part as a “recipe” to make it easy for others to transform other security classification (or
similar) methods into DevOps-ready tools, by following and maybe adapting our stages and
“ingredients”. We have worked on purpose to make these stages intuitive and natural, following
interaction design principles, but applied to this peculiar task, i.e., taking a complex, expert-
oriented, method and transforming it into a tool that can be used by not-so-experts. In short,
one first needs to evaluate (see Section 4.2) the chosen security methodology as it is described
in available documents or by experts; in our case, the methodology also had examples of
applications to SHEMS (Smart Home Energy Management Systems) [20] and AMI (Advanced
Meeting Infrastructure) [22]. Then one needs to transform the methodology into a process (steps
to follow) focused on the non-expert target users (see Section 4.3). The process then should
be implemented into a tool, albeit a very simplistic tool, like in our case using spreadsheets
(see Section 5.1), so to test the automation and procedure flavour of the method. From the
evaluation of this simple first implementation, one can draw more concrete requirements for
the actual tool to be implemented (see Section 5.2). Then one sets to implement and evaluate
version of this tool until a stable variant is reached (see Section 5.3) that can be a candidate
for integration into a DevOps tool-chain.

We are currently working with the software company eSmart Systems AS that provides
cloud-based solutions for smart grid monitoring of AMI to take up into their development
process the tool that we present in this technical report. From this point on we do not see
significant research challenges, but only technical integration and maybe more iterations of UX
adjustments/improvements to fit the actual development process of this software company.

9https://www.gsma.com/iot/iot-security-assessment/
10https://downloads.cloudsecurityalliance.org/assets/research/internet-of-things/future-proofing-the-

connected-world.pdf
11https://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf

4



2 Security Classification for DevSecOps

2.1 DevSecOps and Usability of Security

Traditional software development life-cycle can be presented at a high-level, using the waterfall
model (see e.g., [18]). Here, the software development goes through the stages of (i) require-
ments definition, (ii) software design, (iii) implementation, (iv) testing, and (v) maintenance;
similarly to factory production line processes where one team works in one stage and when
finished with their artefact, hand it over to the next team to start their stage. Even though
such development styles are suitable when methods and techniques are known, and designs and
requirements are of high importance like in large scale projects, it has become obsolete in many
areas, especially for SMEs and small projects as in IoT.

Instead, agile methods [6] have become popular, which take from the spiral model [4] a cyclic
way of developing software, revisiting the same stage multiple times, e.g., requirements might
change, or new requirements introduced because the client or the market dictate it. When
looking at their manifesto12, the agile style of development seems a radical change in software
development culture because agile methods value: (i) individuals and interactions over processes
and tools; (ii) working software over comprehensive documentation; (iii) customer collaboration
over contract negotiation; (iv) responding to change over following a plan. It is clear that agile
methods promote more the inclusion of users, as advocated by the interaction design community.
However, agile is only a style of development, a philosophy or culture change, and thus is not
always clear how to implement and often left to the understanding of the CTO. The Scrum
method is popular probably because the ones that introduced it were very comprehensive in
their recommendations13, making it easier for companies to implement.

DevOps can be seen as an agile method that differentiates itself through the fact that it
is open to and encourages the use of tools at all stages, including the operations stage (thus
the ’Ops’ in the name). Operations have become more important lately, not only because
of the proliferation of the cloud, making the infrastructure cheaper to deploy and run the
software, but also because of automation and tools becoming available for more tasks in all the
development stages. DevSecOps more recently brings into the DevOps the security, following
the same philosophy, i.e., security awareness (or best practices) and security tools/processes
at all stages. In particular, the penetration testing that depends on a high level of security
expertise (usually coming from outside the team) is mostly replaced by security tools such as
code scanners, loggers, or API security testing, and stage relevant security education for all
team members.

We see DevSecOps as an arena that promotes the industrial adoption of usable security tools
more than ever. On the one hand, since DevSecOps is tool intensive and lowers the usability
threshold allowing more (and less usable) tools to be incorporated into the development tool-
chain. On the other hand, DevSecOps is so open to new tools that offer researchers a motivation
to make the security tool easier to use, hoping that is will be adopted by the industry.

2.2 Principles for DevOps-ready Security Classifications

We have identified five general principles/requirements for making a security classification
DevOps-ready, by which we mean that the security classification can be easily integrated into
a DevSecOps tool-chain as one of the security mechanisms/tools for developing quick and se-
cure (IoT) systems. These principles can easily be applicable to similar other expertise-heavy
methods like risk analysis (which are usually manual, slow, and expensive [2, 23]).

12http://agilemanifesto.org/principles.html
13https://scrumguides.org

5



The reader acquainted with security classifications might find the text below easy to follow.
However, someone else might have difficulties with some of the (albeit succinct) arguments
behind the five principles, but we trust that after going through the details of Section 4.1, the
ideas presented below will be easier to appreciate. For now, we are contented to give a brief
definition of what we understand a security classification to be (in very general terms).

A Security Classification Methodology (SCM) has the goal to evaluate the security of
a system with the outcome of classifying it, thus a security class offering a measure
of the strength of the system. SCM (s.a. the ones from the French agency ANSSI
or the US agency NIST) are often used for governmental systems, whereas similar
methods for risk assessment (s.a. the standard ISO/IEC 27005 or the EBIOS from
the European agency ENISA) are more often used by industry, and involve more
calculations of losses and countermeasures in case of breaches. SCM compute a
security class by combining evaluations for Impacts and Likelihoods (in case the
system is breached), where the likelihood is the result of combining the evaluations
of the Exposure, the users’ Accessibility to the system, and the power of Attackers.
Exposure, in turn, is determined by combining the Connectivity and the security
Protection mechanisms supported by the system.

Based on our experiences with security classifications and with DevOps development prac-
tices, we consider the following principles as a minimum for a DevOps team to be able to adopt
a new security classification methodology.

1. Dynamic. In evergreen14 applications, which are nowadays popular like with web browsers15,
the development never ends, and updates (both functional and security/bugs patches)
are constantly pushed to the deployed system, preferably without user interaction (e.g.,
consent). Therefore, any security classification needs to be dynamic so that it can be
reevaluated for each update; similar to how software testing is being done. The dynam-
icity implies that the evaluation needs to be performed quickly to cope with the short
development life-cycles of DevOps.

2. Tool-based. The method has to have a tool support, and necessarily not only with a
GUI but also with a REST/API available so that is can be integrated within the overall
DevSecOps tool-chain (e.g., [9]). Tools nowadays built with UI (like web-based apps) are
also built with an API to which the UI connects, so the API requirement is not difficult
to have as a byproduct of the tool-support requirement.

3. Easy to use for non-security experts. This is an essential requirement, allowing a
security tool to be taken up into a DevSecOps framework because one of the main goals
of DevSecOps is to move away from the traditional style of white-hat penetration teams
who evaluate the security of a ready-built (or deployed) system, and into a new style
where every member of the DevOps team needs to have security competence relevant for
their field of development. Thus, a security classification method for DevSecOps needs
to be usable by non-security experts, who otherwise know much about the system under
development (e.g., developers or system architects).

4. Impact statically and manually evaluated. Security classifications (the same as
risk analysis methods) involve evaluating the impacts of security breaches (or attacks).
However, to use the security classification inside one company for developing one product,

14https://www.danielengberg.com/what-is-evergreen-it-approach/
15https://www.techopedia.com/definition/31094/evergreen-browser

6



the impact evaluation is nearly static because the planned product and its functionalities
and applications do not change (at least not outside the first development phases) almost
throughout the lifetime of the product. As such, the security methodology is enough to
evaluate impacts once, in the beginning (maybe using even security experts), and input
this evaluation manually to the tool. Therefore, we assume that impacts are of no concern
for the rest of these requirements.

5. Fine-grained security functionality oriented. Outside impact, security classifica-
tions are usually attack-centric, focusing on the capabilities of the attackers. For IoT
and for DevOps style of development, we want to focus less on attackers, which are very
dynamic and difficult to evaluate, and more on the security protection functionalities
and exposures of the system under development. Focusing on functionalities makes it
easy to evaluate the system within a DevOps testing cycle automatically, and also allows
the developers to understand how to make their systems secure by design by indicating
which functionalities are a good match for which exposures and with what protection
level (derived from the class specifications).

The methodology that we work with is already developed to meet requirements 4 and 5.
Thus we do not evaluate these here. Moreover, the dynamicity (i.e., requirement 1) can be
achieved and evaluated only after a tool is built. Therefore, in this work, we focus on the two
requirements, 2 and 3.

3 Users
For this work, we had access to the following users for testing our prototypes:

SCOTT project. The most inputs and interactions were done with the participants from one
large project called Secure Connected Trustable Things16 (SCOTT) with 57 partners from
industry and academia from 12 countries working on ca. 15 pilots involving ca. 30 IoT
technological building blocks.

Students. They were the participants in one course on IoT. There were relatively few student
participants, but their inputs were valuable and representative for their target group.

SME cluster. Through a ’hackathon’ we reached out to a cluster of SMEs (Small and Medium-
sized Enterprises) doing technology development from Poland.

Software experts. Besides the above subjects, we also reached out to four individual partici-
pants from the industry who have long software development experience. The background
of the participants are described below:

• Participant 1: CEO of a startup company with more than 25 years of experience in
the software industry, especially software used in the energy sector. His experience
includes management and training, software design, development, and testing.

• Participant 2: CTO of another company with more than 20 years of experience in
the software industry, also having a good background in information security.

• Participant 3: Senior Consultant and Business Developer in another company with
more than 20 years of experience in software development.

• Participant 4: Software engineer with ca. 7 years of experience, having worked as a
software engineer and data scientist in several companies.

16https://scottproject.eu

7



The target groups that we consider are motivated by Principle 3 from Section 2.2, and in
short, these should focus on non-security experts. More precisely, we are interested in people
that have technical expertise, especially for our current study those having IoT technology
knowledge, but also more generally, people like system designers and developers who are not
security engineers but who may have some basic security training (since their routine tasks need
this) but maybe specific for their particular area of expertise. We are also interested in non-
technology experts, like CEOs and managers of various development and operations aspects of
technology development; these people would know about use-cases, features, or economy and
impacts, related to the technology system, but maybe not about the technical details.

Particularly, the SCOTT project participants were usually teams made of both technical
and management people, and on rare occasions, a person with considerable security expertise.
The ’Software experts’ category is, similarly, made of high-expertise people. More to the
contrary, the ’Students’ are still technical people, with little knowledge of security and fresh in
the development field also. The ’SME cluster’ is supposed to have teams that are most diverse
in expertise, from business experts to developers, but not much security.

We explain in the rest of the technical report, how and for which of our studies we inter-
acted with the different users from above, to test the usability of the security classification
methodology and of the tool that we present in this technical report.

4 Manual Security Classification

4.1 Reviewing the Security Classification Methodology

The security classification methodology that we take as the starting point in this work has
been proposed in [22] as an extension of the standard for “Security Classification of Complex
Systems” developed by the French national agency ANSSI. Besides, the methodology of [22]
incorporates (and conforms with) security concepts from several other relevant standards from
among others ISO/IEC, ETSI, OWASP, ENISA. This method has been detailed and extended
towards IoT systems in [21].

Terminology: We will often abbreviate Security Classification as SC, and when we refer to
SC Methodology we will use SCM, whereas for the SC Tool presented in the rest of this report
we use SCT, maybe with versions attached as SCTv1 if we want to emphasis the different
version that the tool prototype went through.

In short, the methodology is based on the analysis of impacts, connectivity, and protection
level of the system. Protection level is determined from the protection mechanisms that are
applied to the system. Protection level combined with connectivity forms the exposure level,
and finally, exposure and impact are used to determine the security class of the system, as
displayed in Figure 1. SCM considers five levels of Connectivity [21, Sec.3.1] adopted from
ANSSI.

The protection mechanisms are evaluated based on a list of security criteria [20, Table
3] that sum up to a protection level (from P1 to P5). The higher the protection level, the
more security mechanisms it includes (when relevant, e.g., for the connectivity of the system).
Finally, the classification methodology considers five impact levels also taken from ANSSI (see
[20, Sec.3.7]), namely Insignificant, Minor, Moderate, Major and Catastrophic. The impact
level is determined usually by security experts.

A lookup table is used to determine the exposure from connectivity and protection levels,
as shown in Table 1. Finally, the security class is determined from the exposure and impact
using a class lookup Table 2.

8



Security Class

Impact

Exposure

Connectivity

Protection Level

Figure 1: Components of the evaluation of a security class.

Table 1: Calculations of Exposure Levels

P1 E4 E4 E5 E5 E5
P2 E3 E4 E4 E5 E5
P3 E2 E3 E3 E4 E4
P4 E1 E1 E2 E2 E3
P5 E1 E1 E1 E1 E2
Protection/
Connectivity

C1 C2 C3 C4 C5

Table 2: Calculations of Security Classes

Catastrophic A C E F F
Major A B D E F
Moderate A B C E E
Minor A A B D D
Insignificant A A A C C
Impact/
Exposure

E1 E2 E3 E4 E5

4.2 SC Methodology Evaluation

The development of a Security Classification Tool (SCT) involved multiple stages of prototyping
and usability testing, as described below.

The very first stage, however, was to take the methodology as described in the research
papers and evaluate the usability claim, i.e., that the method is easy-to-use for non-experts
in security. For this evaluation stage, we interacted only with two of our user groups, namely
with the students and SCOTT partners (which included companies such as Philips Research17

(NL), Vemco18 (PL), AVL19 (AT), ISEP20 (PT), VTT21 (FI) or Tellu IoT22 (NO), as well as
academics, e.g., from Gdansk University of Technology23).

Our research team includes security experts, and thus we first read relevant papers and
understood from [22] the SCM ourselves. We then prepared a presentation for the two groups
of users. To the SCOTT partners, we presented and explained the SCM through several short
workshops (30min to 1h). The participants from the SCOTT partners were a mixture of
technology people, with management and software/system design people; however, there were
no security experts in their teams, except for some of the technology people who had general
security knowledge or specific for their technical field. To the students, we presented the SCM
shortly in one of the lectures from the beginning of the course and gave as a homework, the
methodology papers which they were supposed to apply to their IoT system exercise (recall
that the course was on IoT systems and security).

The first results can be summarised as rather discouraging for the SCM. Although the par-
ticipants did express interest in the concept of security classes, none of them could understand
much from the SCM, let alone how to apply it to their use cases. This was one major observa-

17https://www.philips.com/a-w/research/home
18https://vemco.pl/
19https://www.avl.com
20https://www.isep.ipp.pt
21https://www.vttresearch.com/en
22https://www.tellucloud.com/
23https://eti.pg.edu.pl

9

https://www.philips.com/a-w/research/home
https://vemco.pl/
https://www.avl.com
https://www.isep.ipp.pt
https://www.vttresearch.com/en
https://www.tellucloud.com/
https://eti.pg.edu.pl


tion that we collected from interactions during the workshops. We did not obtain more concrete
suggestions, mainly because the participants could not understand enough about SCM to give
us meaningful comments. (We can also be understanding towards this outcome, since students
are shy in giving critiques, and technical people are usually careful to giving suggestions if they
do not understand the technology presented.)

Our team then took another attempt at simplifying the presentation, and more importantly,
we now presented how the SCM would be applied, focusing on the application to SHEMS
published in [20].

Each SCOTT partner was involved in one or more of the ca. 15 pilots of the project, all
developing IoT systems, e.g., Philips was coordinating a pilot on “Assisted living and community
care systems”, Vemco was coordinating a pilot on “Secure Connected Facilities Management”,
whereas GUT was involved in both of these pilots, and VTT was coordinating a pilot on “Air
Quality Monitoring for Healthy Indoor Environments”. We reasoned that by presenting an
application of SCM to a similar IoT system, they would easily understand how to apply the
SCM to their use case. We also took the energy to read through the various project documents
where their respective IoT systems were being described (preliminary versions, since we were in
the middle of the project). We then tried in our presentation to make some (rather superficial)
correlations between the application of the SCM to the SHEMS and to their respective pilot
systems. For the students, we could not do this second iteration.

This second presentation did not manage to clarify enough as to allow the participants to
apply the SCM. However, we did get more interactions during this second round of workshops.
Several discussions were held in the form of question and answer, directed from the participants
to us, the presenters. The topics included some of the details of the SCM, like the calculation
of impact, or the evaluation of connectivity. One major outcome emerged at the end, where
the participants endorsed, rather unanimously, the observation of one of them, which was

“It is not clear where to start with this methodology”.

This observation becomes quite evident when thinking more about it, e.g., certification
bodies use certification processes to do their work. The most simple definition of a ’process’
implies a sequence of steps to be followed to arrive at a desired outcome. In our case, this meant
we needed to produce a sequence of steps that a non-security expert could follow in order to
evaluate the security class that a system belongs to.

4.3 SC Methodology as a Process

Based on the feedback from the evaluation stage (e.g., involving questions/observations related
to what kind of information about the IoT System were needed), we expressed the security
classification methodology as a ten steps process as follows:

1. Define the IoT system. The user decides which system should be evaluated and
gathers knowledge about the system s.a.: system architecture, functionalities, security
requirements, use cases, and context of use. This step helps the user to understand at a
high level, and prepare, the system under evaluation.

2. Define the components of the system. A system is composed of one or more com-
ponents. In this step, the necessary components of the system are defined. Examples of
components for a smart home are IoT hub, smart devices, sensors, control data, etc.

3. Describe the features of system components. The interactions between the system
components are now described. The user decides on the use case where the security
classification should be applied. At this point, the user already has a reference architecture
of the system.

10



4. Define the impact level. For each component, the worst impact of security breaches is
defined. The levels of impacts are defined by the SCM as Insignificant, Minor, Moderate,
Major, and Catastrophic (the same as ANSSI does). This step is similar to the evaluation
of impact risk assessments. The impact may be on the economy, human life, physical
infrastructure, business, etc.

5. Describe communication mechanisms. The communication capabilities for each
component are described. The user will look into which communication standards are
used.

6. Describe the type of networking. The user has to find out whether the network is
only a Home Area Network or a Wide Area Network.

7. Determine the Connectivity Level. Based on the two previous steps, the user assigns
the connectivity level to the components. The connectivity level varies from C1 to C5
and is described by the SCM.

8. Determine the protection Level. Relevant security criteria are defined for the com-
ponents, and the security functionalities they have are also listed. The list of protection
criteria and security functionalities obtained is compared to the Protection Level table
given by the SCM, to determine to which protection level the existing security mechanisms
belong to.

9. Determine the exposure level. Protection level and connectivity determined in the
previous steps are used to identify the exposure level using a lookup table defined by the
SCM.

10. Determine the security class. The security class is now determined using the exposure
and impact levels based on the class lookup table defined by the SCM.

Working with the SC methodology is manual, as far as the research papers [22, 21] describe
it. Therefore, the above process is also manual, with the advantage being that a clear procedure
is given to the user to follow, besides the research papers. One can easily see in the above steps
that some can be more or less automated. Automation is a highly desired method of making a
difficult technical process more user friendly, since when compelled to use technology, there is
nothing better than not using it. Steps 1 to 3 are manual, and the user can take as much time
and space for writing down the description as required (no page limits). Step 4 is a classical
risk analysis stage which we assume to be more static for DevOps and IoT software systems. It
is also manual and requires security expertise (depending on the company’s internal desires for
strictness with the evaluation, since the impact is something that cannot be changed much by
developers, as opposed to protection measures and connectivity functionalities). Step 5 and 6
are also manual and needed only to help in step 7. Step 8 is probably the most tedious because
of the long list of criteria that need to be evaluated. However, the list helps the user to assess
the security thoroughly. Steps 9 and 10 are done through lookup tables.

As such, it can be seen that steps 9 and 10 can easily be automated, whereas steps 1 to 7
not so easily, at least the SCM does not give us any help in that direction. Step 8 can be partly
automated by summing up all the answers of the user and comparing them automatically with
the respective table from the SCM.

4.3.1 Evaluation of the ten-steps process

Designing and evaluating the ten-step process for the SCM was done over several workshops
(each of 30min to 1h) interacting with the SCOTT users only. One significant activity dur-

11



ing this stage was to apply the SCM ten-steps to the pilots from SCOTT together with the
respective partners. We made two applications, to:

1. the “Elderly UI” component of the “Assisted Living and Community Care System” (AL-
CCS) pilot, and interacting mostly with Philips (who were coordinating this pilot) and
other technical people that were closely involved in the team developing this ’care-at-
home’ system;

Figure 2: Early prototype of the ElderlyUI component.
(Description and image courtesy of Philips Research.)

2. the “Multimodal Positioning System” (MPS) component of the “Secure Connected Facili-
ties Management” pilot, and interacting mostly with Vemco (who were coordinating this
pilot) and other technical people from Gdansk.

Our work was based on reading the respective documents from the project and interacting with
the team building the respective system.

In short, the Elderly UI (see Figure 2) is a small form factor prototype device that can
be worn as a patch on the skin for weeks at a time without the need for recharging and can
continuously observe activity and position from the elderly resident, and periodically transmits
the observations straight to the cloud. The MPS had as main functionality the localisation
of people and assets within critical infrastructures, being applied in this case inside a refinery.
For our work on applying the SCM, we have used the technical project-internal documents for
each system to collect the necessary information for evaluating the connectivity, protection and
exposure levels. Then during the workshops, we adjusted our understanding of the system and
worked with the teams to properly apply the SCM to their system. The ten-steps methodology
went through two major redesigns, where mainly the order and the number of steps were
changed, and the helping descriptions were improved.

During these workshop interactions, we had two goals:

1. Us to understand the IoT system of the SCOTT pilot that we wanted to use as application
and to understand better how the ten-steps process worked and how easy it was to apply;

2. The SCOTT users to understand how the SCM works and how to use it to apply it
themselves.

For both goals, our interactions were geared towards collecting observations about the usabil-
ity of the ten-steps and how to refine it to fit the two examples that we considered as the
representative of the general application area that the SCM was intended for.

12



One playful activity that our users seemed to enjoy was to work on identifying how the
security class can be improved; e.g., for the ElderlyUI system, we had scenarios that changed
the class from E to B by making changes and updates to the system. This is one major benefit of
the security classification methodology that is claimed by the main article [22]. Therefore, our
interactions seem to confirm this claim that IoT developers would enjoy knowing the security
class of their system, which in turn would encourage them to strive to improve their system’s
security so to improve the class.

4.3.2 Outcomes and Major Observations

Besides the constant feedback that we received during the workshops about small improvements
to the ten-steps process, we drew the following major observations.

1. The participants could answer most of the ten steps questions when we were guiding them.
The guiding meant us, e.g., explaining the purpose of a step (often mostly confirming that
their understanding of that step was matching with ours); or giving more details about a
step like what was meant by the Home Area Network (HAN).

2. The most difficult parts of the methodology were identified as being:

(a) the evaluation of the Impact level, which looked to them like a job for security
experts doing risk assessment (which the participants were not); and

(b) finding the Protection level since it involved answering many specific security ques-
tions which needed interactions with other members of their development teams (i.e.,
those that worked on the respective aspect that the question in our table referred
to).

However, the SCM papers [22, 20] especially point out that the evaluation of the impact
level is not a specific concern of the SCM and is supposed to be similar to how risk assessment
or similar methods evaluate impacts of attacks. Moreover, the impact level is only indicative
and does not need to be done to a perfect detail for one to use the SCM as it was intended.
Therefore, we could not do anything about the first observation; and it was not our research
goal to do so anyway, since we were taking the SCM as given, and not as something to improve
as a security instrument per se. Our goal, as one can recall from the Introduction, is to take a
security classification methodology as it is, and make it DevOps-ready by building a tool that
makes it easy for non-security expert users to apply it.

The second observation is directed to a core aspect of the chosen SCM, since the list of
security functionalities that the observation refers to, is a main differentiating aspect claimed
by [22, 20]. Therefore, we decided to improve on how the users work with this list in the next
iteration of the tool, which was now decided to be computer-based.

At this point, we were also ready to test the ten-steps with more users, but it was decided
together with the SCOTT users that an online tool would be best suited for allowing more
users to join our testing sessions.

5 Interaction Design Tool Development Process

5.1 Spreadsheet implementation

Based on the feedback from the users, we then implemented the ten-steps manual process from
Section 4.3 into a tool based on spreadsheets. As much as this first implementation can be
called so, we consider that a ’tool’ is something run by a computer to help the user with a

13



specific task by organising, guiding, and maybe automating some of the aspects of the task. In
our case, the process of security classification was the task at hand, which also had some of the
steps ready for automation; whereas for the other steps the tool should be seen useful only to
organise the work and gather inputs from the users.

The spreadsheet tool was implemented in Google Sheets because it is a cloud-based applica-
tion where a team can collaborate in real-time. Figure 3 shows a snapshot of the spreadsheet-
based SCT. Our goals were derived from the interactions we had in the workshops and generally
aimed to simplify the security classification task of our users. We prepared the template in a
spreadsheet which contained all the information from the previous ten-steps presentation, albeit
in a more structured way.

The spreadsheet template contains the following components:

Step: It shows the step number, which coordinates the attention of the user and helps direct
the workflow.

Task: A column providing the task description. The text here is simply adopted from the
ten-steps described before.

More details: This column simplifies the task with additional descriptions.

Your Response: In this column, the user would store/provide their input responding to the
respective task.

Free Text: For the inputs where users should describe the system or components themselves,
they were able to write in their own words.

Dropdown list: For the inputs which were defined in the methodology and required specific
item from the list (e.g., connectivity, protection level, presence of security functionality),
we provided the dropdown menu for selection. We also applied validation mechanisms so
that users are guided to select the valid input.

Lookup table: The lookup table was also shown to guide the user to provide valid exposure
and security class.

Protection level requirements: There were also columns to show protection level require-
ments where the users were guided to select the appropriate Protection level (see line 47
in Figure 3).

Spreadsheets can be quite powerful if one knows how to program them. For example, the
lookup tables in our last steps could probably be programmed so that users do not need to
make the lookup herself, and probably the answers to the long step 8 (note that in Figure 3,
several spreadsheet rows have been omitted, i.e., from 13 to 39) could be automatically matched
against the protection levels that are listed in the columns to the right. However, we intended
the spreadsheet implementation only as a low fidelity prototype, expecting other future versions
to follow.

The goal with this first implementation was mostly to have a way to present the ten-steps
process to more test users. We planned a project-wide webinar, where the participants that have
been helping us with the two examples mentioned before were the main supporters. Therefore,
for the spreadsheet implementation, we focused on adding user-friendly aspects to the ten-steps,
based on the interactions we had before on the manual paper-based process, mainly focusing
on providing clarifying text and the necessary helper information for each step.

The spreadsheet implementation went through one more round of internal testing during a
workshop with AVL, one of the SCOTT partners. The result is the one presented in Figure 3
and is the one that we have used to do our final webinar, presented below.

14



Figure 3: Snapshot of spreadsheet implementation of the SCM ten-steps process.

15



5.1.1 Evaluation

We organised a webinar for the whole SCOTT project partners. We used classical methods of
advertising to attract many participants, like preparing a text, presenting the webinar (e.g.,
similar to how one would do for an academic event but more flashy) and emailing an invitation
to everyone in the project with reminders, etc. We also worked with the previous partners to
make the invitation text to be interesting for our audience, i.e., many of the SCOTT partners
were companies.

The plan for the webinar was:

1. An introductory presentation from us, the organisers, which included:

(a) motivations of the SC methodology, similar to what the research papers were doing,

(b) a short presentation of the ten-steps process,

(c) a final exemplification of how we applied the ten-steps to one of the previously
mentioned applications (which was from the same project, thus more motivating for
the participants).

2. A hands-on interaction from the participants with the online spreadsheet.

3. A brief questionnaire at the end of the spreadsheet (see bottom of Figure 3).

Part 1 took ca. 30min whereas parts 2 and 3 some extra 30-40min, including final discussions.
We had ca. 15 participants in the online webinar (3 were the organisers). The participants

were divided into five teams and took the hands-on exercise. Each team had to duplicate the
main example sheet (see bottom of Figure 3) and fill it in according to their IoT system of
choice. The exercise took between 7-30min to complete. The participants included security
experts, developers and system managers having a general understanding of the IoT system
and security. We, the organisers, were observing how the teams progress and were answering
questions, usually for clarification or acknowledgement.

We also went to the students, using one hour of their exercise classes to do a very similar
activity as above, i.e., we presented the spreadsheet tool and asked them to do the same exercise
using this tool instead, under our supervision. The ten-steps were now considerably easier to
use than in the previous session when only the research papers were given to the students.

5.1.2 Outcomes and Major Observations

From our observations and interactions during the webinar, we could draw the following con-
clusions.

User help/manual: When users were performing the assessment, even after the spreadsheet
and terminologies were explained in our presentation, all users had questions either for
clarifying individual steps or assigning values for impact and connectivity.

Automation: Several of the steps could be automated, e.g., determining the protection level,
exposure, or class. These were asked for by participants and supported by everyone.

Lack of customisation: The spreadsheet was too static, and it did not allow to change the
lookup tables (which participants observed as a necessity when changing the type of
system).

Scalability: Spreadsheets are not scalable, both in terms of systems evaluated and in terms
of private user space, i.e., allowing users to log in and other classical functionalities that
modern tools have.

16



From the answers to our short questionnaire, we obtained the following:

Moderately difficult: All teams answered that they found the application of the methodology
of moderate difficulty.

The difficult steps were the evaluation of impact and the protection level.

Diversity of expertise: Especially for answering all the questions for the protection level,
the teams needed diversity of expertise, i.e., they had to ask people that knew about the
respective security functionality.

Thus, the major observations were that users needed better help during the assessment,
especially for handling the more difficult steps, i.e., for impact and protection levels. Moreover,
the next tool should do better in automation, customisation, and scalability, which are usual
requirements (and not difficult to obtain) for a web-based application, like the one we present
in the rest of the report.

5.2 Introducing the web application

To improve the user experience, we decided to implement the tool as a web application. We
did not choose the desktop application to avoid the users’ burden of downloading, installing
and updating the application in case of changes. It was also easy for us to push new changes
without needing the end-user to do special actions. It was also clear that we required data
persistence so that the users can perform assessments and save them for future use.

The major technologies used to implement the web-based tool are described below:

ASP .NET Core MVC is a widely used framework for building web applications using MVC
(Model View Controller) pattern.24 To select the technology, our main focus was the speed
at which we could produce the prototype. We chose the MVC application because it was
quick to start developing and publishing application with clear separation of Model View
and the Controller. Moreover, the development platform Visual Studio already provides
ready to use templates to create such a web application. We also have implemented
a separate service layer so that, if we require to make a public API, we could easily
construct a RESTful API to make the tool available to any clients. It would be necessary
for integration in a DevOps tool-chain.

We used ASP.NET Core Identity to manage authentication in the application.25 For
responsive user interfaces, we used the Bootstrap framework.

Microsoft Azure is a cloud computing service from Microsoft.26 It is much easier to man-
age, configure and deploy web applications using such services. There are other similar
solutions from Google and Amazon we well. We selected Microsoft Azure to manage the
resources and deploy this SCTv1.

SQL: We used the Azure SQL database for data persistence. In the beginning, we did not
require a high-performance database and thus, selected the database with the standard
configuration from the Azure portal.

24https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.1
25https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-

3.1&tabs=visual-studio
26https://azure.microsoft.com/

17



The tool is hosted as an Azure App service at https://lightsc.azurewebsites.net/.
During this work, we simplified the assessment process by combining several of the previous

steps into one. Now the core activities that the users must do in the web tool are:

1. Define a System (corresponding to step 1 from Section 4.3)

The user defines the system under evaluation, for which to compute security class. Here
the user describes the details of the system and a unique name (to save this evalua-
tion). The details may include how the system works, which technology it uses and what
components exist in the system.

Figure 4: Snapshot of systems page of SCT web application.

2. Add components (corresponding to steps 2–7 from Section 4.3)

A system is decomposed into its components, and for each component, a class should
be computed. A component is described, including information about the role of the
component, vendor, communication standards used, etc. One may also include communi-
cation capabilities and scenarios where the component is used and how it interacts with
other system components. Components should be categorised, where we had as default
component types: IoT device, Hub, and Backend System. The user can define their own
component types. The component types are relevant for the next step so that the tool
can select some of the security functionalities automatically as ’not applicable’.

The user is also required to define the connectivity level of the component.

Similarly, the impact of security breaches should be specified here.

3. Perform assessment (corresponding to step 8 from Section 4.3)

Here the user selects the security functionalities present in the system, which are required
for determining the protection level.

4. Compute class (corresponding to steps 9–10 from Section 4.3)

After all the inputs are provided for a component, the user can compute the security
class by pressing a button (see Figure 5). The selected parameters for the security func-
tionalities are used to compute the protection level and then using the lookup tables to
calculate exposure level further and ultimately, the security class for the given component.
Figure 5 shows the final view containing the lookup tables and selections made to obtain
the resulting class.

Besides these tasks, the user can also save the assessment for future reference. Using the
tool, the user should be able to browse the assessment and perform CRUD operations on them.

18



Figure 5: Snapshot of class calculation view.

5.2.1 Evaluation and Observations

The application was demonstrated both to the students and the SCOTT partners AVL and
GUT. For the students, we again presented in a lecture and demonstrated how the web ap-
plication could be used, and they took it as an exercise to use the tool on their IoT systems
from the course. The SCOTT partners were two of our main interaction users, whom we used
throughout this work. We had one workshop where we presented (similarly as we did for the
students) the new web application and demonstrated how to apply it to the original SHEMS
example from research paper [20] (which has always been our first example for each of our
implementations and tests). After the presentation, and during the demonstration, we had a
long period of discussions with comments from the users.

The improvements have been appreciated, especially the save functionality and the login
possibility since it allowed for a private space for someone to work with their evaluations. The
automation was as expected.

The negative comments were especially related to the lack of help and guidance. One specific
request was to have tool-tips for various parts of the interface so to tell them what was that
button/text was about.

5.3 Second version of SCT

The final version of the web application had the following extra usability functionalities:

1. Customisable lookup tables. Lookup tables are usually constructed by experts. The
default ones that the application offers are the ones we took from the research papers of
the SCM [22, 20].

However, depending on the domain of application, the lookup table may differ slightly.
Therefore, one should be able to change the lookup table according to the domain. The
tool has a configuration feature where the user could override the default lookup table
and also reset it to default.

19



Figure 6: Snapshot showing the customisation of lookup tables.

2. Main user guide easily available on every page. The preliminary tool had a user
guide only on the landing page. Every time the user needed help, they had to browse to
that page, which was considered hectic.

The final tool has a help sidebar menu which on click, slides over the page the user help
(see Figure 7). This sidebar allows the user to focus on their tasks, without the distraction
of opening a new page each time help is needed.

3. Detailed contextual help. The test users demanded detailed explanations of the ter-
minologies and the steps. We added help icons beside the text that required detailed
descriptions of the terminology or step. Clicking on the help icon a modal opens up to
show these details. Many of these details also appear in the main help. Figure 8 shows
the modal for describing the connectivity types.

To be able to perform the assessment, the user first needed to create an account. At this
point, we also decided to implement the weights aspect of the SC methodology from the research
paper [21]. Before, in the spreadsheet, it was challenging to work with weights; but now we
could more easily calculate using weights. The tool was doing the calculations, implementing
the formulas from [21]; whereas the user had only to specify the individual weights.

20



Figure 7: Snapshot showing user help opened in a sidebar from the right.

5.3.1 Evaluation through a Hackathon

Helped by the SCOTT partner GUT (Gdansk University of Technology) we organised a hackathon
contest with a cluster of Polish SMEs. The cluster, we were told by our Gdansk contact person,
had in the order of 100 technology companies.

The preparations for the hackathon included:

1. preparing a video tutorial (ca. 10min) on how to use the tool;

2. preparing a presentation with slides

(a) motivating the concept of security classification,
(b) describing the benefits for industry,
(c) explaining the ten-steps process, and
(d) how to apply it to the SCOTT pilot (this we mostly reused from previous workshops

with additions and adaptations to fit the target audience);

3. materials for announcing and attracting participants and for managing the contest.

The hackathon day had a ca. one hour program, which was recorded through the online
meeting tool with:

1. a short introduction (2min) from the SCOTT official and the Polish cluster official (our
contact point),

2. followed by our presentation and demonstration of the web tool,

3. ending with the presentation of the contest, rules, tasks, and prizes (described further).

The hackathon format included a contest with three prizes (winning 2000AC in total) and
rules for participation and evaluation. Our purpose with preparing such a complicated setup
was firstly to attract diversity in the participating teams, as well as hoping to increase the
number of participants.

The contest asked the teams to

21



Figure 8: Snapshot showing help text for connectivity levels in a modal component.

1. use the tool on one of their systems or components;

2. describe how the security classes could contribute to innovation and business potential
for their company; and

3. devise an innovative way of using the SCM within their companies’ technical, business,
or management processes.

The winner would be evaluated based on a report where the above should be described, putting
weight on innovation.

Besides the above contest format, the hackathon also included a usability part.

1. We offered special recognition prizes (with cash winnings too) for those that take sub-
stantial effort to help us with the usability studies, i.e., to use the two aspects mentioned
below. These prizes were separate from the contest prizes and were advertised as optional.

2. We prepared a survey and asked the participants to take part in the survey, which was
available through a special menu in the web interface. Figure 9 shows a screenshot of the
survey as appearing to a user. We have omitted some questions to fit it within a single
page. The survey included questions regarding user experience, opinion about the tool,
facts about the users, their expertise and knowledge of DevOps, and further suggestions.

3. We used a tool called Hotjar27 to track and analyse the activities during the evaluation.
Hotjar offers several features to perform the usability evaluation of a website. However,
our focus was only to see how users work with our tool. Thus, we found the following
strategies relevant to evaluate our tool. See details for all of these in Section 5.3.3 on
page 24.

• Screen recordings. Recording the activity of the user while working with the web
tool was captured anonymously, for concerns of privacy and consent. Because of this,

27https://www.hotjar.com/

22



were not able to correlate the recording to the survey. There were more recordings
than people who took the survey.

• Incoming feedback. Using this feature, the users could select the specific part of
the page and provide feedback on it.

• Heatmaps. Heatmaps show which part of the page was clicked, scrolled or moved
the most. Using this feature, we might be able to identify which features the users
are most interested or are most difficult and require most effort/time.

The participation was unexpectedly poor: We had only four companies attending the
hackathon one-hour presentation and only three that submitted a document for evaluation.
Moreover, only one participated in the survey. Because of this, we continued to test with in-
dividual users selected personally, as detailed below in Section 5.3.2. After the hackathon day,
we released the recording of the meeting (containing our presentation and contest description)
as well as the tutorial video. The goal was that the local contact person would replay this, and
send the information out again, during an official cluster meeting that was scheduled to come
soon. Still, no more participants were registered. The explanation that we later received from
the local contact person was described as “Language barrier”, i.e., The writing in English was
discouraging, and the internationalisation that the hackathon offered was not of interest since
many of the cluster companies had already a large client base in Poland.

5.3.2 Evaluation with Individuals

Since we aimed to evaluate how easy it was to use the tool in the system development life
cycle, we also asked feedback from software professionals (the last group of users described
in Section 3). We selected technically sound individuals and experts in product development,
but not necessarily in security. In particular, we wanted individuals with different roles such
as CEO, CTO, consultant, architect, or system developer. We prepared a list of probable
participants and reached out to them through emails. The individuals were mostly employees
from eSmart Systems AS and Smart Cognition AS, both of which are software companies. We
tried to organise the workshop to introduce the tool to them. However, it was not possible
because of their availability. However, for two of the participants, we were able to describe the
tool in person, in two separate meetings. Thus, we sent out emails with the necessary materials
to perform the assessment and asked them to contact us if they need help with understanding
the concept. The following materials were provided:

1. URL to access the tool;

2. Presentation slide to understand the core concept of SCM and SCT (reused from the
hackathon);

3. URL to access the video tutorial presenting how to use the SCT;

4. URL to user help and terminologies;

5. Description of the task that we were asking them to perform to complete an assessment.
We described that the evaluation is complete after the test users, at minimum, create a
system, add sub-systems to this system, perform the SC assessment of each sub-system to
calculate the class, and finally take the survey. We also asked them to provide feedback
(incoming feedback in Hotjar) while using the tool if they had any. They were free to
browse any other part of the application on their own interest.

Five individuals took part in the evaluation. Other uninterested participants responded by
saying that they have no inputs to this tool as it is not their field, some said that they were
busy, and some did not respond to emails at all.

23



5.3.3 Outcomes and Major Observations

Following results were obtained from Hotjar:

Heatmap: The heatmap of the assessment page showed that the main help menu was clicked
only 0.1% of the time. However, the user help available on each component was clicked
frequently. Similarly, another most clicked part of this page was the compute class button
(5.6%). It shows that users were interested in computing the class quite often, most
probably because they were repeating short cycles of changing some parameters and
recompute the class. Figure 10 shows an example of a heatmap for the assessment page.
One of the least components that users interacted with was the belief and weight inputs
in the assessment page. Though the help icon to explain their concept was fairly clicked,
the input box was rarely clicked.

Screen recordings: Screen recordings showed that the majority of users used the tool as
expected. They first create the account and browse through the description and then
check the main help page. After that, they follow the instruction of creating the system
and adding sub-systems. Most of the users follow a similar pattern of browsing the pages
and clicking on the help icons to see the details and understand better what to select. It
also showed that most users did not interact with the belief functionalities (and thus left
these be the default ones). Some looked into the help icon of belief and weights, but most
of them did not change any values of beliefs during the assessment.

Incoming Feedback: We expected many users to take part in providing such local feedback
since these seem familiar from social media sites like Twitter or Instagram, which people
like. In our experience, providing feedback through the Hotjar functionality is relatively
easy: the user just needed to click on the feedback button on the right side of the page,
provide the smiley rating, write a comment, and click the send button. If they wanted,
they could select the HTML page component about which they wanted to provide the
feedback. Surprisingly, only one user provided incoming feedback. Figure 11 shows an
example of incoming feedback.

Survey: The survey showed that the users were entirely new to the classification methodology
and took 30 to 100 minutes to apply it. However, some users did not keep track of the time
that they used to complete the assessment. Similarly, learning this tool, the maximum
amount of time used was 15 to 60 minutes. One of the users who had some security
background only used 3 minutes to learn it. It was probably because of the familiarity
with security terminology, and also he had an individual workshop session with us, where
we gave a presentation and a demonstration of the tool.

Similarly, the tool was considered usable in the planning phase of the product by most
users. Figure 12 shows the survey result of the question “In which of the DevOps phases
do you think this security classification tool (or parts of it) can be used?”.

Most of the participants found the belief evaluations to be the most unintelligible part
of the tool. The same result was confirmed by the heatmap evaluations and the user
recordings as they were the least interacted components on the page. Surprisingly, three
of the five users found the system definition section, where one defines the system and
sub-systems, difficult.

Three of the users considered that with a basic understanding of security, one could apply
this method. Similarly, one of them considered that software developers could apply this
methodology. However, one said that it requires the skill of security experts to apply this
methodology.

24



Out of five users, four found the methodology moderately easy. However, one of the users
found it difficult to apply in his system because the user considered that the individual
security assessments are not easy without deeper knowledge of the concepts that are
being evaluated. However, he considered that the methodology was easy to understand.
Similarly, all the users considered it easy to find the help that they needed while using
the application. One of the constructive feedbacks was to provide more guidance to fill
in the confidence parameters.

6 Final evaluation results and major observations
The last observations from the Hotjar tracking and survey, including both the one response
from the hackathon and the five from the individuals, are generally suggesting that the main
part of the SC tool is easy enough to be used by non-security experts. The more experimental
weights and beliefs part of the tool was considered not so easy and is regarded as a complex
feature also in the research papers for the SCM.

In the hackathon contest, we have received three submissions, each applying our SC tool to
one IoT system and describing the innovations that the SC methodology and tool can bring to
their companies. Also, these could be evaluated to understand more the use of our tool; we have
disregarded the other aspects that the hackathon contest asked for, i.e., innovation and business
aspects. One application was to a Mini Unmanned Surface Vessel, and they used the SCT to
compare between a not secured version, that resulted in class F, and a secured version which
resulted in class B, which helped them understand what security functionalities the system
needed. The other two application done during the hackathon were to analyse the security
of autonomous vehicle management systems in logistics and to RFID. Both of these reports
similar uses of the tool, i.e., for trying out different security features for different configurations
of their systems resulting in different security classes.

In total, throughout all our stages of creating the tool, we saw the SCM applied to many
IoT systems, which we could count as: The last version of the SCT was used by three SCOTT
partners on their respective systems, VEMCO, PHILIPS, and VTT. The hackathon saw the
SCT used on three systems. The individual ’Software experts’ used the SCT on five systems.
The students used (multiple version of) the SCT on two systems. The SCOTT partners during
the webinar using the spreadsheet low-fidelity prototype have applied the SCM to five more
systems. We, the organisers, have applied different versions of the SCT for exemplification pur-
poses in different stages to one system. This totals to ca. 19 applications of the SC methodology,
done mostly by non-security experts or teams, through the use of our different prototype imple-
mentations. These provided valuable feedback regarding the usability of the original method
and of the prototypes that we have been building. The final prototype has been considered
fairly easy to work with.

The principles of a DevOps-ready Security Classification from Section 2.2 have motivated
our work. We have implemented the chosen methodology into a tool, thus respecting the
Principle 2, and we have worked and tested to make this tool easy to use for non-security
experts (i.e., our choice of users was as such), thus respecting Principle 3. We did not strive
in the direction of Principle 1. However, having now a tool, one can at least do manual re-
evaluations of the system by making the necessary changes in the evaluation. We have made
the tool so that it can also provide an API, but did not work in that direction as this is an
engineering task that is best left to a software development company to undertake. However,
we believe that Principle 1 can easily be attained once having a tool as the one that we have
demonstrated and tested. We leave this as further work, to be done by companies willing to

25



take our SC tool, or similar ones, into their DevSecOps tool-chains, since the adjustments and
implementations are routine.

A general recipe has emerged, we believe, for going from a research effort security classi-
fication to a DevOps tool. Any such endeavour, inspired by the present work, would include
three main phases:

1. Make a step-based process out of the published security classification methodology.

2. Test it in a low-fidelity computer-based implementation, where we have seen that the
spreadsheets are very good for this purpose.

3. Implement the high-fidelity tool, like the web-based version that we did, where more of
the process is hidden behind a natural interaction process with the tool that guides the
user to the final class.

This is something very familiar to the interaction design field, but not so familiar to the security
tools developers and researchers. Choosing well the target group representatives, and testing
these three minimal passes is essential.

7 Conclusions and Related works
We this report, we identify five principles for a security classification methodology to be DevOps-
ready, i.e., ready to be used in a DevSecOps tool-chain. Debatable as they might be, these
principles are viewed as initial guidelines. The major part of this work is concerned with
exemplifying the existing security classification methodology to satisfy the five principles. To do
this, we create a tool that implements the chosen methodology, thus conforming to Principle 2.
We also tested its usability showing how it conforms with Principle 3. We have detailed our
process of evaluating such a tool for its usability, which involved participants from industry
applying the various tool prototypes at different stages to ca. 19 IoT systems, during ca. 14
workshops and larger events, involving as test users, both teams and individuals for ca. 9
months.

From the process that we have detailed in both Section 4 (for the manual work with the
methodology) and Section 5 (for the tool prototypes), we could extract a general recipe de-
tailed in Section 6. This simple guide can be applied to other ‘tool-ification’ endeavours done
for similar security methodologies. We particularly encourage such activities since we see an
increased need for usable security tools and methods, demanded by the DevSecOps culture,
which is becoming popular in software development companies.

The tool in itself is a contribution, as it expands the user group from security experts to non-
experts, and it reduces the time used for designing and evaluating the security of IoT systems.
Using such tools, companies can utilise existing internal resources (i.e., their developers or
CTOs) to evaluate the security of their system. It is not only that more people can contribute
to making the IoT products more secure, but also more people can now use a security tool to
understand what it means for a product to be secured and how to achieve that.

7.1 Related Work

7.1.1 NOR-STA

NOR-STA (also called trust cases) is an argumentation tool to support compliance, assurance
and security cases [7]. During the assessment, the assessor can assign the Confidence and

26



Decision parameters to build confidence. Confidence and decision are the qualitative scales
where confidence shows the degree of confidence on the statement, and the decision shows
the degree to which the statement is acceptable. These scales are later aggregated to provide
overall confidence and decision of the whole assessment. The argumentation model they use is
called trust-IT model and is based on Toulmin’s argument model. The aggregation of confi-
dence and decision parameters are based on Dempster-Shafer theory. The tool is sophisticated
and has many features that we wanted for security classification method (e.g., argumentation
model, confidence parameters, aggregation mechanisms etc.). However, we could not use it to
implement security classification methods for the following reasons:

1. Limited to compliance against strict predefined requirements

In order to use the tool, the security requirements, along with detailed security function-
alities, should be clearly defined before the assessment. After that, one can argue whether
the security requirement is fulfilled or not. Thus, it can only be used against compliance
requirements which are strictly defined beforehand. However, the security classification
methodology is more flexible and cannot be restricted to the security functionalities be-
fore the assessment. Of course, we can set the goal class in the beginning. However,
there are multiple ways to reach the given class by controlling impacts, connectivity and
protection mechanism parameters. Thus, to be able to use this tool, one must define each
alternative as templates and then have to assess each of the templates to find where the
system under evaluation fits. Thus, NOR-STA is not practical for security classification
method where one can reach the same level of security class using several alternatives.

2. Scaling function

NOR-STA specifies confidence parameters based on Dempster-Shafer theory. Thus, it
assigns belief and plausibility parameters for each argument and aggregates them to
obtain overall belief and plausibility. However, users cannot assign this scale themselves.
Instead, they use so-called VAA approach where the user assigns the confidence using
linguistic decision and confidence scale, which is then converted into belief and plausibility
for aggregation. The aggregated belief and plausibility is converted back to aggregated
confidence and decision scale. To perform these conversions, they use a scaling function
which they claim was obtained from the experimental evaluation. However, they do not
specify what value to use for parameters for conversion, and thus the tool acts as a black
box, and the results cannot be replicated without using the tool. Since the scaling function
results were not transparent, the values for parameters to calculate scaling function may
depend on the domain of assessment or entirely on experts. Thus, NOR-STA did not fit
our needs.

3. Aggregation of confidence parameters

NOR-STA specifies different aggregation rules for beliefs. In some rules, it considers the
weighted mean approach for Complimentary arguments. However, the weighted mean ap-
proach is not sensitive to extreme lower values. Similarly, in SC and NSC arguments, the
aggregated result is obtained by multiplying individual beliefs. That means the resulting
belief will always diminish even though more pieces of is added to support the claim.
Thus, we propose to use the Multi-Metrics approach for aggregation, which NOR-STA
does not support.

27



7.1.2 Certware and other Eclipse plugins

Certware is an open-source eclipse plugin-based tool from NASA [3]. It supports the develop-
ment of safety, assurance and dependability cases 2829. One of our interests were the creation
of argumentation model using GSN diagrams. However, Certware is also not feasible for imple-
menting security classification because they also fit the strict requirements to perform compli-
ance. For flexible requirements such as in security classification, it requires generating several
templates which is not feasible. However, the generation of diagrams from the assessment is
useful and can be one of the parts of the tool-chain.

Some examples of similar open-source tools for building cases using GSN diagrams are D-
case editor 30 and Acedit 31. No changes have been found in the source code of these tool in
recent years.

References
[1] Christopher Alberts, Audrey Dorofee, James Stevens, and Carol Woody. Introduction to

the OCTAVE Approach. Technical report, Carnegie-Mellon University, Software Engineer-
ing Institute, 2003.

[2] Ross Anderson and Shailendra Fuloria. Certification and evaluation: A security economics
perspective. In 2009 IEEE Conference on Emerging Technologies & Factory Automation,
pages 1–7. IEEE, 2009.

[3] Matthew R Barry. Certware: A workbench for safety case production and analysis. In
2011 Aerospace conference, pages 1–10. IEEE, 2011.

[4] Barry W Boehm. A spiral model of software development and enhancement. Computer,
21(5):61–72, 1988.

[5] Irena Bojanova and Jeffrey Voas. Trusting the internet of things. IT Professional, 19(5):16–
19, 2017.

[6] Alistair Cockburn. Agile software development: the cooperative game. Pearson Education,
2006.

[7] Lukasz Cyra and Janusz Gorski. Support for argument structures review and assessment.
Reliability Eng. & System Safety, 96(1):26–37, 2011.

[8] Jennifer Davis and Ryn Daniels. Effective DevOps: building a culture of collaboration,
affinity, and tooling at scale. O’Reilly, 2016.

[9] Viktor Farcic. The DevOps 2.0 Toolkit. Packt Publishing Ltd, 2016.

[10] Virginia NL Franqueira, Zornitza Bakalova, Thein Than Tun, and Maya Daneva. Towards
agile security risk management in re and beyond. In Workshop on Empirical Requirements
Engineering (EmpiRE 2011), pages 33–36. IEEE, 2011.

28https://nasa.github.io/CertWare/
29https://github.com/nasa/CertWare
30https://github.com/d-case/d-case_editor/
31https://github.com/arapost/acedit/

28



[11] Rune Fredriksen, Monica Kristiansen, Bjørn Axel Gran, Ketil Stølen, Tom Arthur Oppe-
rud, and Theodosis Dimitrakos. The CORAS framework for a model-based risk manage-
ment process. In Stuart Anderson, Massimo Felici, and Sandro Bologna, editors, Interna-
tional Conference on Computer Safety, Reliability, and Security, pages 94–105. Springer,
2002.

[12] Jez Humble and David Farley. Continuous delivery: reliable software releases through build,
test, and deployment automation. Pearson Education, 2010.

[13] Jack Jones. Factor analysis of information risk, August 6 2004. US Patent App. 10/912,863.

[14] Minhaj Ahmad Khan and Khaled Salah. IoT security: Review, blockchain solutions, and
open challenges. Future Generation Computer Systems, 82:395–411, 2018.

[15] Gene Kim, Jez Humble, Patrick Debois, and John Willis. The DevOps Handbook:: How
to Create World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution, 2016.

[16] UL LLC. Methodology for marketing claim verification: Security capabilities verified to
level bronze/silver/gold/platinum/diamond. Technical report, UL LLC, 2019.

[17] Y. Lu and L. D. Xu. Internet of Things (IoT) Cybersecurity Research: A Review of
Current Research Topics. IEEE Internet of Things Journal, 6(2):2103–2115, 2019.

[18] Steve McConnell. Rapid development: taming wild software schedules. Pearson Education,
1996.

[19] Jason RC Nurse, Sadie Creese, and David De Roure. Security risk assessment in internet
of things systems. IT professional, 19(5):20–26, 2017.

[20] Manish Shrestha, Christian Johansen, and Josef Noll. Criteria for Security Classification
of Smart Home Energy Management Systems. In Int. Conf. Smart Information & Comm.
Technologies. Springer, 2019.

[21] Manish Shrestha, Christian Johansen, and Josef Noll. Building Confidence using Beliefs
and Arguments in Security Class Evaluations for IoT. In 5th International Conference on
Fog and Mobile Edge Computing (FMEC), pages 244–249. IEEE, 2020.

[22] Manish Shrestha, Christian Johansen, Josef Noll, and Davide Roverso. A Methodology
for Security Classification applied to Smart Grid Infrastructures. International Journal of
Critical Infrastructure Protection, 28:100342, 2020.

[23] Stefan Taubenberger, Jan Jürjens, Yijun Yu, and Bashar Nuseibeh. Problem analysis of
traditional it-security risk assessment methods–an experience report from the insurance
and auditing domain. In IFIP International Information Security Conference, pages 259–
270. Springer, 2011.

[24] Zhi-Kai Zhang, Michael Cheng Yi Cho, and Shiuhpyng Shieh. Emerging Security Threats
and Countermeasures in IoT. In 10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’15, page 1–6. ACM, 2015.

29



Figure 9: Snapshot of five of the questions from the survey.

30



Figure 10: Snapshot taken on the admin-side of Hotjar, showing a heatmap.

Figure 11: Snapshot taken on the admin-side of Hotjar, showing an incoming feedback.

31



Figure 12: Survey answer on the usability of the tool in different phases.

32


	Introduction
	Security Classification for DevSecOps
	DevSecOps and Usability of Security
	Principles for DevOps-ready Security Classifications

	Users
	Manual Security Classification
	Reviewing the Security Classification Methodology
	SC Methodology Evaluation
	SC Methodology as a Process
	Evaluation of the ten-steps process
	Outcomes and Major Observations


	Interaction Design Tool Development Process
	Spreadsheet implementation
	Evaluation
	Outcomes and Major Observations

	Introducing the web application
	Evaluation and Observations

	Second version of SCT
	Evaluation through a Hackathon
	Evaluation with Individuals
	Outcomes and Major Observations


	Final evaluation results and major observations
	Conclusions and Related works
	Related Work
	NOR-STA
	Certware and other Eclipse plugins



