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‘All perceivable form is made from this quicksilver stuff.
We call it language.’

Thoth, as retold by Alan Moore





Abstract
Words of human languages change their meaning over time. This linguistic
phenomenon is known as ‘diachronic semantic change’. Such shifts are of
interest both for linguists and for NLP practitioners. One possible solution
for automatic large-scale modeling of semantic change is using the distributional
signal. Distributional semantic models based on dense vector representations
(word embeddings) are trained on large text collections and efficiently capture
many aspects of word meaning. As such, they are among the foundational
bricks in the building of natural language processing systems which are aimed at
understanding and generating human language.

If word embeddings capture word meaning at a given point in time, then
these meaning representations at different time points can naturally be compared.
Diachronic word embeddings are trained on text created in different time periods.
The time of creation obviously influences typical usage of words and reflects
significant changes in all aspects of their meaning.

This unsupervised ‘data-driven’ detection of temporal semantic change is
the main topic of the present thesis. Overall, we study what information about
diachronic semantic processes is captured by distributional vector representations.
We train diachronic embeddings in different ways, and devise methods which
use them to solve the task of detecting how words change their meaning and
usage over time.

In particular, we first survey and systematize previous work on the topic,
including ours. Then, we successfully conduct cross-lingual analysis of the speed
of semantic change in evaluative adjectives. We propose novel ways of evaluation
for semantic change detection methods based on word embeddings. In particular,
it is described how the dynamics of real-world events like armed conflicts is
reflected in the changes which temporally-aware distributional representations
undergo. This allows manually annotated armed conflict datasets to function as
a proxy gold standard to evaluate semantic change detection methods and probe
diachronic word embeddings for their temporal awareness. We show that this
holds not only for single words, but also for typed semantic relations between
them as well.

Finally, we evaluate the potential of contextualized word embedding
architectures like BERT and ELMo for modeling diachronic semantic change. We
show that they outperform the methods based on traditional ‘static’ embeddings,
while providing richer possibilities for visualization and qualitative analysis. At
the same time, we identify and categorize possible issues which a historical
linguist might encounter when using contextualized architectures in an attempt
to trace diachronic semantic shifts.
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Chapter 1

Introduction
This thesis explores the use of distributional word embeddings to model various
types of diachronic semantic change.

The natural language processing (NLP) community has in last decade seen
the development of highly efficient and effective representations of natural
language semantics: so-called word embeddings (dense vector representations
of meaning). Conceptually, they are strongly related to the ‘distributional
hypothesis’ (Firth, 1957), assuming that word meaning can be approximated by
patterns of word usage (unlike other approaches to meaning like correspondence
theory or formal semantics). This is also how we understand the notion of ‘lexical
semantics’ or ‘word meaning’ within the frame of this thesis. This approach is
relatively straightforward to formalize, and it can leverage the large troves of
textual data available nowadays.

Word embedding architectures used today constitute the culmination of
decades of work on various other forms of vector-based representations of
distributional information from text, starting at least from Jones (1972) or even
earlier. The differences between dense word embeddings and other distributional
approaches are extensively covered in Chapter 2. It suffices to say here that they
serve as foundational building blocks of many modern NLP systems, by providing
convenient semantically-aware lexical input representations to architectures
based on artificial neural networks. State-of-the-art approaches to construct
embeddings themselves often also employ neural networks of varying depth and
complexity (Bengio et al., 2003; Mikolov, Yih, et al., 2013). Recent advances in
this field include the advent of ‘contextualized’ models which produce context-
sensitive representations, in contrast to traditional ‘static’ embeddings (Melamud
et al., 2016; McCann et al., 2017; Peters, Neumann, Iyyer, et al., 2018). We
discuss and employ contextualized architectures in Chapter 6.

The ability of word embeddings and related methods to capture many
aspects of the semantics of human languages for multiple practical tasks is
now widely acknowledged (Baroni et al., 2014; Goldberg, 2017; Desagulier, 2017;
J. Johnson et al., 2019).1 An important field of research is general intrinsic
evaluation of such models: to reliably evaluate the ability of distributional
systems to capture meaning, one has to move beyond the limits of a purely
distributional understanding of semantics. This is the only way to avoid the
circularity of postulating that word usage does reflect word usage. For this
reason, distributional representations are often evaluated using knowledge about
word meaning coming from other sources (for example, annotation by human

1As a rule, throughout the thesis we use the authors’ last names in citations. In rare
cases when more than one different authors share the same last name in our bibliography, we
differentiate them by adding initials (‘J. Johnson’).
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1. Introduction

informants). We also rely on this approach in several of the chapters below.
In all languages, words’ meanings and usages evolve as time passes by. Other

types of semantic change can also be studied: for example, cross-domain shifts,
when a word is regularly used in a different sense in a particular genre or domain.
But in this thesis, we restrict ourselves to sequential diachronic changes that
words undergo over time. Note also that the processes of grammaticalization (in
which a word loses its lexical meaning and becomes a grammatical form) fall
outside the scope of the present thesis, although in theory they also can be seen
as diachronic semantic change.

Diachronic changes in word meaning have been studied by linguists for a
long time (Bréal, 1899; Stern, 1931; Bloomfield, 1933): they focused on many
different aspects of word meaning, including, but not limited to the notion of
‘word senses’. Multiple classifications of semantic change have been developed;
we discuss them in detail in Chapter 3. Bloomfield (1933) was, arguably, the
first to coin the term ‘semantic shift’, which has been used extensively since
then. In Section 1.1 below we explain our understanding of ‘semantic shifts’.
It is important to note here that we use ‘diachronic semantic change’ as an
umbrella term potentially covering all aspects of meaning; throughout the thesis,
we specify what particular kind of change is meant, when necessary.

If one takes the distributional perspective on meaning (see Chapter 2), word
co-occurrence data should be enough to detect semantic change. As already
mentioned, there exists an extensive ecosystem of benchmark tests to evaluate
the performance of semantic representations. Evaluation results have shown
that word embeddings capture many aspects of synchronic lexical semantics
quite well. Hence, they are natural candidates to employ also for modeling
semantic change in a diachronic setup, which is the topic of this thesis. We
fill in the lack of analysis on temporal abilities of word embeddings and study
what information about diachronic semantic change in natural languages can be
captured by such architectures, and how this information can be extracted from
them most efficiently. Thus, we naturally deal with the analysis of two subjects:

1. Diachronic word embeddings, that is distributional representations inferred
from time-specific collections of texts. We test and evaluate different
methods of creating such representations.

2. Embedding-based computational semantic change detection systems. This
subject comprises creating and evaluating possible approaches and
algorithms which employ word embeddings (diachronic or not) to model
semantic change.

The second subject is the most important, since pre-trained representations
alone do not allow one to actually model, analyze or detect semantic change. One
has to come up with proper algorithms to extract temporal semantic information
captured in word embeddings (see Chapter 3 for more details).

This thesis can be also be looked at as an attempt at probing word
representations for diachronic information. Since word embeddings are technically
just dense matrices of float values, they are not directly interpretable by humans,

2



which relates to what is often dubbed the ‘blackbox problem’ of neural networks
(Linzen et al., 2019). A large volume of research is devoted to probing embeddings
or other neural NLP systems (using a multitude of methods) to find out what
information they encode, or what they ‘know’ about language (Yaghoobzadeh,
Kann, et al., 2019). One can probe embeddings for many different aspects
of linguistic knowledge. This thesis explores their ability to capture language
change: more specifically, temporal changes in various aspects of lexical semantics,
including semantic relations between words.

Notably, there exist several different families of computational approaches
which allow for the extraction of information related to semantic change from
corpus data, starting from frequency analysis and down to more complex methods,
including those based on word embeddings (but not limited to them). It is next
to impossible to cover all possible approaches, although we try to discuss at least
the most important ones in Chapter 3. Here we emphasize again that this thesis
is focused on the methods which employ distributional dense embeddings of
various types (note that word embeddings themselves of course do not constitute
a semantic change detection method).

None of the existing approaches (including ours) are entirely satisfactory in
their performance or coverage. One of the reasons for that is that the notion of
diachronic semantic change modeling itself is open to multiple interpretations,
and different methods can be successful in different aspects of it. Distributional
modeling is not a silver bullet for any diachronic linguistic task. However, the
current state of affairs in NLP makes dense word embeddings inferred from
distributional information the first-order candidates to built semantic change
detection systems on: both because of their performance in various synchronic
semantic tasks, and for technical reasons (they are computationally efficient and
easy to integrate into deep learning architectures). We believe this makes it
worthy to study and probe what kind of diachronic information word embeddings
capture, including information about semantic change. It is also important to
find how embedding-based methods compare to other approaches (distributional
or not).

In 2015, when the work on this thesis started, the field of tracing semantic
change with diachronic word embeddings was still in its early stage. Also, the
word embeddings field itself was much younger: for example, contextualized
architectures did not exist back then, and were not introduced until 2018. In the
next years, concurrently with the development of the thesis, a significant amount
of research was done and published, including by the author (expanded versions
of some of these publications are included here as chapters). In particular,
various types of distributional vector models have extensively been evaluated
with regards to their usefulness for the various aspects of the task. The present
thesis contributes to this growing field by systematically presenting the results of
our experiments and proposing new ways of approaching the problem of semantic
change modeling (see the description of our research questions below).

One of the important results of the growing interest in this topic from the
natural language processing community was a stricter formulation of the task of
diachronic semantic change modeling. In this thesis, we mostly deal with the
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following aspects of it:

1. Binary classification of linguistic entities based on whether they have
undergone a semantic change (for example, ‘has the word ‘X ’ changed
semantically in the time period 1 compared to the time period 0 or not?’).
Again, the notion of ‘undergoing a semantic change’ can be understood in
multiple ways (see Section 1.1).

2. Estimating and quantifying the degree of semantic change (for example,
‘has the word ‘X ’ changed semantically more or less than the word ‘Y ’ in
the time period 1 compared to the time period 0?’). This is often cast as a
ranking task.

Note that an important part of lexical semantics is relational in its nature.
By ‘relational’ we here mean ‘dealing with the links between the meanings
of different words’. This is reflected both in ontology-based computational
semantics (WordNet is a graph of semantic relations between senses), and in the
recent applications of distributional architectures. One of the most interesting
properties of contemporary word embeddings is their ability to capture linguistic
regularities, like the similarity of relations between (‘father ’, ‘son’) and (‘mother ’,
‘daughter ’); this gave birth to the task of analogical reasoning (Mikolov, Yih, et
al., 2013). Up to now, the encoding of such semantic relations in word embedding
models was studied and evaluated only synchronically. However, these relations
can also shift and change over time: for example, the second item from the
list above can be formulated as ‘has the semantic relation between the word
‘X ’ and the word ‘Y ’ changed more or less than the same relation between the
word ‘Z ’ and the word ‘W ’ in time period 1 compared to time period 0?’, thus
introducing a diachronic aspect. We describe various NLP tasks associated with
this in Section 3.4 and apply distributional word embeddings to their modeling
in Section 5.4. It should be emphasized that we consider such phenomena to still
fall within the scope of diachronic semantic change studies. When focusing on
changes in the meaning of individual words (i.e. without such a relational focus),
the term ‘lexical semantic change detection’ (LSCD) is often used (Schlechtweg,
Hätty, et al., 2019).

1.1 Terminological issues

The terms ‘semantic shift’ and ‘semantic language change’ can be vague (both
in synchronic and diachronic contexts). We will now make clear their usage in
this thesis.

Semantics of natural language is a complex phenomenon, as it describes
many levels of language and involves many aspects of the interplay between
signs and their meanings. In the most common understanding of the term
(Bloomfield, 1933), a ‘semantic shift’ occurs when a word changes the set of
its respective senses: by acquiring a new sense, losing an existing one, or both.
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The definition of the term ‘sense’ itself can be discussed and problematized
(Kilgarriff, 1997), but for the time being we will define it in a lexicographic way:
as an entry in a dictionary, where one and the same word form can have several
entries, corresponding to different ‘senses’ of this word and together forming its
‘conventional meaning’.

A semantic shift of this sort occurred to the English word ‘cell’ between
the 1990s and 2000s (see a more detailed description in Chapter 6). The word
acquired a new sense of ‘mobile phone’ in addition to the already existing
senses of ‘prison cell’ and ‘biological cell’. Its meaning has undergone a
shift (a new entry was added to its existing sense inventory). An NLP system
could then be tasked with the problem of detecting or analyzing this shift and
other similar shifts, based on corpora of natural language texts created in the
1990s and in the 2000s. The general idea underlying a distributional approach
to this task (which is the approach adopted in this work) is that semantic shifts
cause notable changes in typical word co-occurrences.2 In the case of ‘cell’, in the
2000s, this word started to frequently co-occur with context words like ‘phone’,
‘call’, ‘ring’, etc., almost non-existent in its surroundings before the advent of
cellular communication.

The whole concept of lexicographic ‘senses’ implies discreteness: a word
either has one, two, three or k senses, each with its own dictionary definition.
A shift occurs when this set changes in any way.3 Let us define this case as
semantic shifts proper.

However, there is more to semantic change than that. A fundamental notion
in semantics concerns the different types of relations between ‘senses’ of one and
the same word form as it occurs in natural texts (semantic proximity). Consider
the well-known distinction between homonymy and polysemy (both being cases
of colexification). Let us also denote n different occurrences of the word X as
X0...n. In the case of homonymic relation between, for example, X0 and X1,
the senses behind these two occurrences are completely unrelated to each other.
In the case of polysemy, the senses behind X0 and X1 are still different, but
now they are related (often it is true for senses which appeared historically after
splitting another old sense into several). In the case of a monosemous word, the
senses behind all X0...n members are, of course, identical. Even in this ternary
schema, the differences between the ‘meanings’ behind real X occurrences are
not discrete but continuous: senses can be more or less similar to each other,
and this may or may not be reflected in lexicographic sources (dictionaries). One
can follow this logic and define another option located between polysemy and
identity: context variance, to use a term borrowed from Schlechtweg, Schulte
im Walde, et al. (2018). In it, X0 and X1 still share the same sense, according
to a dictionary, but are used in two significantly different contexts, making their
perception by language users (and their typical associations) very different. This

2Or vice versa: the causality direction here is conceptually problematic and resembles the
chicken or the egg dilemma.

3Note that we are not interested in cases when the word itself comes out of usage, even
if its old sense is still active in the language (but now served by a different word); see the
discussion of the distinction between semasiological and onomasiological changes in Chapter 3.
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quaternary continuum in full can be described as follows (with the examples of
X0 and X1 for English):

1. Homonymy:

• ‘His bark was worse than his bite’
• ‘He scratched the bark of the oak’

2. Polysemy:

• ‘She submitted her paper to a journal’
• ‘The report was printed on a piece of white paper ’

3. Context variance:

• ‘Careful distancing of blocks allow natural and controlled lighting for
inner spaces’

• ‘Self-quarantine and self-isolation are specific forms of social distancing
in the period of the COVID-19 pandemic’

4. Identity:4

• ‘The crankshaft rotates within the engine block through use of main
bearings’

• ‘Casting is today mostly used for crankshafts in cheaper, lower
performance engines’

It is easy to distinguish between the two opposite extreme points of this
continuum (identity and homonymy), but everything in between is continuous.
Indeed, one can argue that the difference between identity (what is meant is
exactly the same) and context variance (what is meant is the same in term of
senses, but the context makes the word usage very different) is ill-defined, since
it is difficult to come up with a precise test for this distinction. However, the
same is true for the distinction between homonymy and polysemy: it is gradual
as well (Kilgarriff, 1997). Dictionaries often make this decision based on whether
X0 and X1 are related etymologically, but this factor is based more on historical
factors than semantics. Overall, emergence of a new sense is a generative process,
starting with word usages becoming more and more contextually varied, until at
some (often rather arbitrary) point we decide that we observe a case of polysemy
or even homonymy.

Thus, context variance is a span on the semantic proximity continuum and
can be looked at as a semantic phenomenon. This is a long-standing position

4It should be noted that it is notoriously hard to come up with an example of an absolutely
unambiguous word. One of (multiple) reasons for this is that the majority of words can be
easily used in a metonymic or ironic sense, or simply metaphorically. Probably, some chemical
substance term could be a better fit here, but we used a common name example, to avoid
various complications surrounding the semantics of proper names.
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in historical cognitive linguistics (Geeraerts, 1997). Consider, for example, the
following quotation from Warren (1999):p. 219:

‘We must distinguish between the meaning of a word out of context
and its meaning in context... The former type of meaning I refer to as
dictionary meaning. It is the meaning that the lexicographer would
be interested in. The latter type of meaning I refer to as contextual
meaning which is the value we give a word in context. ...contextual
meaning is part of parole’

Even if contextual meaning is indeed a part of parole in terms of
Saussure (1916) or ‘linguistic performance’ in terms of Chomsky (1965) (while a
dictionary meaning is part of langue), this ‘value we give a word in context’ is
still meaning. Following this, we hold that systematic changes in word contexts
(context variance) over time fall under the umbrella of ‘semantic shifts’ even if
they are not accompanied with more or less discrete changes in the lexicographic
senses. Some features of the meaning of a word can change enough to cause
a significant drift in the words’ contexts but not enough to reach the point of
acquiring a new ‘sense’.

In fact, if this were not the case, the second of the main lexical semantic
change sub-tasks mentioned above (‘estimating and quantifying the degree of
semantic change’) would be impossible to solve, since this degree can be inferred
only from contextual cues in a corpus (including frequency of word usage in
different contexts). This is especially true for tasks involving diachronic analogical
reasoning and semantic relations, where the notion of ‘senses’ becomes even
more blurred. However, we acknowledge that ‘sense-related’ understanding of
semantic shifts is more established in the academic community, so we stick to
calling them ‘semantic shifts proper’. They roughly correspond to the term
‘diachronic conceptual change’ from Tahmasebi, Borin, and Jatowt (2018). We
still sometimes use the general terms ‘semantic shift’ or ‘semantic drift’ to denote
the broader phenomena described above. The term ‘diachronic semantic change’
in this thesis covers all the mentioned cases with any lexical entities (and their
relations) able to possess meaning.

1.2 Research questions

The present thesis systematically presents a set of research efforts which share
the common topic of extracting semantic change data from word embeddings.
Together, they demonstrate the diversity of use cases where the extracted data
is employed to approach both theoretical linguistic problems and more practical
natural language understanding tasks. Naturally, the thesis addresses several
specific research questions. We present them below, along with abbreviated
identifiers for easy referencing here and in the Conclusion.

The primary research question (RQ0 ) of this work asks whether it is
possible to reliably model diachronic semantic change using dense
distributional word representations. ‘To model’ here means ‘to capture
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important aspects of a phenomenon under scrutiny’, which naturally includes the
ability to automatically detect and/or predict manifestations of the phenomenon
in the real world.

The primary question mentions a type of computational representation of
meaning (distributional word embeddings), a linguistic phenomenon (diachronic
semantic change in human languages), and algorithms to model the phenomenon
using the computational representations. We first discuss and define the
phenomenon, and then study the ability of the representations to capture
its aspects. We do this by analyzing and evaluating both different ways
of training word representations on time-specific corpora (‘diachronic
word embeddings’), and different algorithms of extracting semantic
change data from word embeddings. The latter do not necessarily rely
on diachronic word embeddings per se: for example, contextualized embedding
based algorithms of semantic change detection described in Chapter 6 can
pre-train word representations on large time-agnostic corpora and then infer
time-specific token representations on time-specific corpora of lesser size. In any
case, the main focus of our research lies in developing and studying algorithms
of such extraction (this is actually what we call ‘modeling of semantic change’),
making it more complex than simply training word embeddings on time-specific
corpora.

Our response to the primary question stated above is a series of case studies
exploring how distributional word embeddings capture diachronic semantic
change in English and other languages. Specific modeling algorithms can be
efficient for different types, aspects and variations of semantic change. Chapters 4
and 6 cover semantic shifts proper, often manifested in words losing or acquiring
lexicographic senses, while in Chapter 5, we mostly deal with semantic change
of a more subtle type manifested in context variance.

As the primary question is being answered, it breaks into several smaller
research questions, which logically group into three main themes:

• Semantic change: defining key notions and surveying the field
(RQ1 )
The scientific field of automatic modeling of semantic change is extremely
diverse and fragmented, even if we limit ourselves to the research employing
distributional methods. The widespread lack of common terminology and
awareness about previous work motivates this theme of the thesis.

1. What are the main axes along which one can structure the current
research on this topic? (RQ1.1 )

2. What were the primary related discoveries in recent years? (RQ1.2 )

• Answering linguistically oriented questions (RQ2 )
This theme investigates the employment of distributional embedding based
techniques to test linguistic hypotheses.
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1. Do evaluative adjectives change over time faster than other types
of adjectives? Does this tendency hold across languages, based on
corpus evidence? (RQ2.1 )

• Embedding-based algorithms of semantic change detection (RQ3 )
This theme addresses questions related to the methodology of applying
word embeddings to analyze temporal semantic change: both in general
and for practical tasks.

1. Can one use external datasets designed for other purposes as a proxy
to evaluate semantic change detection algorithms based on word
embeddings? (RQ3.1 )

2. Do word embeddings capture information about diachronic changes
in semantic relations between words? (RQ3.2 )

3. What new perspectives on diachronic semantic change detection are
brought with the recent contextualized embedding architectures?
(RQ3.3 )

4. Do contextualized embeddings outperform static embeddings in this
task, as they do in many other natural language processing areas?
(RQ3.4 )

We return to the same set of questions in our Conclusion (Chapter 7), where
we summarize our answers to them.

1.2.1 Concurrency

As already mentioned, at the time of submitting this thesis (2019–2020) one can
already find dozens of academic papers which lead to a positive answer to our
primary research question. But the overwhelming majority of them appeared
in the last two or three years, concurrently with the work on the thesis and
well after 2015, when this work began. See Figure 3.6 for an outline of the
development of the field of semantic change detection over time, and Chapter 3
in general for the detailed account of this evolution and its relation to my own
research.

Additionally, the format of a conference (or even a journal) paper in natural
language processing does not allow for answering this question on a large scale:
as a rule, such papers focus on a single task. This is where we see the place
of this thesis: to systematically explore abilities and limits of diachronic word
embedding-based methods, employing results from different tasks, languages and
aspects of semantic change, and comparing them to consistent baselines. We
do not claim to cover all flavors of distributional embeddings, but instead make
an attempt to enumerate (and to evaluate, wherever possible) at least the most
important ones.
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1.3 Thesis outline

The thesis is structured as follows.
We start in Chapter 2 (‘Distributional modeling of meaning’) with the

description of data-driven distributional approaches to semantics, and particularly
word embedding models. It also describes the shortcomings of embedding
architectures and briefly presents other possible approaches to model meaning
computationally. This chapter establishes the terminology and methods used
throughout the thesis.

Next, Chapter 3 (‘Modeling diachronic semantic change: state of the field’)
outlines the notion of semantic change both from a linguistic and from a
computational point of view. It continues with the overview of the current
approaches to tracing diachronic change using distributional models. This
chapter both positions our work in the broad academic context and proposes
foundations for structuring the field itself by determining the axes along which
the research on the topic can be meaningfully compared.

Once the background knowledge is presented, Chapter 4 (‘Measuring
diachronic evolution of evaluative adjectives’) moves to the linguistic problem
of telling whether one lexical class is significantly different from another. In
particular, we use diachronic word embeddings to quantitatively assess whether
evaluative adjectives are more prone to shifting their meaning over time than other
types of adjectives. This research was motivated by multiple examples of (mostly
English) adjectives which significantly changed their meaning diachronically
(‘awful’, ‘terrific’, etc.). Crucially, here we conduct the same set of experiments
across English, Norwegian and Russian language data, with the result being the
same: no evidence is observed for evaluative adjectives to shift faster or more
consistently than other adjective types. In this chapter, we do not propose new
models for semantic change estimation, but test the applicability of the existing
ones to a concrete linguistically motivated problem.

To move further, one needs a gold standard dataset for evaluating detection of
semantic change. Before moving on to the specially designed diachronic semantic
change test sets in Chapter 6, Chapter 5 (‘Semantic change and real-world
events: armed conflict dynamics’) discusses how such a gold standard can be
produced from historical armed conflict datasets. This approach is a form of
distant supervision (Fang and Cohn, 2016), in which alternative data sources (not
exactly describing the data under analysis) are used to train or evaluate a machine
learning system. The chapter first describes the field of peace research in general
and manually annotated armed conflict datasets in particular. It mostly focuses
on the Uppsala Conflict Data Program (UCDP). The chapter continues with
using this inferred gold standard to evaluate approaches to detecting semantic
change by testing how good they are in capturing the start and end points of
armed conflicts in time. These approaches are all based on word vector changes in
distributional models trained on temporally annotated news texts. Successfully
modeling detection of conflict state change allows us to actually mine armed
conflicts dynamics data from raw texts in an unsupervised way. Note that in
this chapter, we deal with semantic change belonging to the context variance
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part of the semantic proximity continuum: the representations of country names
are drifting away from or towards the representations of conflict-related ‘anchor
words’.

Further in this chapter, we show how the same datasets can be used to
evaluate the ability of diachronic word embeddings to capture changes in typed
semantic relations between words. For this, we use the temporally labeled
‘location–armed group’ relations (for example, ‘Afghanistan’–‘Taliban’ in 2017
or ‘Iraq’–‘Islamic state’ in 2015). This task, which we refer to as ‘temporal
analogical reasoning’ and formulate as filling in one-to-X relations, is itself one
of our contributions, along with novel models for its handling. Even more
importantly, we show that distributional representations do preserve information
about semantic relations (and their changes) in the diachronic setup.

The case studies in the aforementioned chapters use ‘static’ word embedding
models, in which each word is mapped to exactly one vector representation. This
is a well-known shortcoming: ambiguous words receive representations which
mix all their senses, often resulting in sub-optimal vectors. This is why we
turn to more recent contextualized embedding algorithms employing deep neural
networks: ELMo (Peters, Neumann, Iyyer, et al., 2018) and BERT (Devlin
et al., 2019). In them, word representation at inference time depends on the
input context, and thus ambiguity is handled naturally.

Chapter 6, shows how one can use contextualized word embedding models to
analyze and estimate diachronic semantic shifts in word senses. This time, we
employ specially designed human-annotated diachronic semantic change test sets
to evaluate the our approaches: namely, those from the SemEval-2020 Shared
Task 1 (Schlechtweg, McGillivray, et al., 2020) and the GEMS (Gulordava and
Baroni, 2011). We propose several novel methods of estimating semantic change
degree, managing to outperform all solutions submitted to the aforementioned
shared task in the evaluation phase.

Additionally, in this chapter we describe some of the issues arising when
one uses contextualized embedding architectures for semantic change detection.
We analyze and categorize typical cases when high semantic change score is
predicted by a system, but it is does not manifest a ‘proper’ semantic shift, as
expected by a historical linguist. Despite these issues, empirical results of the
approaches based on contextualized embeddings do outperform those based on
static embeddings, which is important for future research in the field.

Finally, in Chapter 7, we conclude and summarize the results of the thesis. In
particular, we describe in detail the contributions of each chapter and revisit the
research questions enumerated above. Future work directions are outlined, which
partially overlap with overall challenges facing the field of distributional semantic
change modeling. We also list all publicly available code, trained models and
datasets produced in the course of work on the thesis.
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1.4 Publications

As this thesis was progressing, parts of it were published as peer-reviewed
papers. In most cases, the venues were the ACL-sponsored conferences (ACL,
EMNLP, EACL, CONLL, COLING, *SEM, SemEval, NODALIDA, etc) and
their collocated workshops. For the chapters partially based on published work,
we provide a footnote referring the reader to the corresponding paper(s) at the
beginning of each chapter.
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Chapter 2

Distributional modeling of
meaning
This introductory chapter describes data-driven distributional approaches to
computational semantics, and particularly word embeddings which became widely
used throughout natural language processing in the 2010s. A reader familiar
with the fundamentals of distributional semantics and word embedding models
can skip this part and move directly to Chapter 3. However, this chapter is still
important in that it establishes the terminology that will be used throughout
the whole thesis. We also hope it can be useful as a focused overview of the field.

2.1 The distributional hypothesis

The distributional hypothesis is one of the most important notions in
contemporary computational linguistics and natural language processing (NLP).
It is the central theoretical foundation for distributional semantics: an empirical
branch of linguistics concerned with lexical meaning. It is key in providing
machine-readable word representations (‘distributional models’) for modern
natural language understanding algorithms, mostly based on statistical data
analysis and machine learning.

The distributional hypothesis was first formulated by Firth (1935); Har-
ris (1954); Firth (1957), and by other linguists (sometimes it is claimed that
a similar idea can be found in Ludwig Wittgenstein’s texts from the 1930s).
It is the idea that word meaning is characterized by its contexts. In a widely
(over-)quoted statement, Firth (1957) puts it as ‘You shall know a word by the
company it keeps.’ Thus, words with similar typical contexts tend to have similar
meaning.

The general concept becomes clear by looking at the Figures 2.1 and 2.2.
One can see that the words nearby the words ‘tea’ and ‘coffee’ (their neighbors)
in natural texts tend to be to some extent similar.1 These are the words like
‘some’, ‘cup’, ‘fresh’, etc. This illustrates that semantically similar words share
similar contexts.

To be more exact, the distributional hypothesis postulates that co-occurrence
statistics (word co-occurrence distributions) extracted from a large enough
natural language corpus captures central aspects of the ‘meaning’ of words
as perceived by humans. It is important that the meaning is inferred from
textual data without using any external human knowledge, in a completely
data-driven, unsupervised (or semi-supervised) way. The necessity to analyze

1Contexts were extracted from the Project Gutenberg English subcorpus (https://www.
gutenberg.org/)
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Figure 2.1: Contexts of the word ‘tea’

Figure 2.2: Contexts of the word ‘coffee’
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meaning with statistical methods was understood even 85 years ago: in the
words of Firth (1935):p. 50, ‘in such subjects as semantics, which [. . . ] is rather
like meteorology, statistical and behaviouristic methods are widely held to be
the only ones likely to take us further in our efforts to understand how language
really works’.

Since the distributional meaning representations are inferred directly from
texts, they naturally conflate intensional or ‘denotational’ meaning (manifested
in dictionary definitions of ‘senses’ and traditionally considered to be the only
part of meaning which is ‘really linguistic’) and referential or non-denotational
meaning. The latter conveys information about particular members (referents)
of the class covered by the denotational meaning, or some emotive and stylistic
overtones (connotations). Non-denotational meaning is often also linked to
‘encyclopedic information’ or ‘world knowledge’. From a theoretical point of view,
this conflation can be either beneficial or not, depending on the particular line
of thought. In this thesis, we largely follow the opinion of Geeraerts (1997) that
there is no clear borderline between the linguistic meaning and world knowledge.
Conveniently, these words are written precisely in the context of diachronic
semantic change (Geeraerts, 1997:p. 25):

‘...diachronic semantics has little use for a strict theoretical distinction
between the level of senses and the level of encyclopaedic knowledge
pertaining to the entities that fall within the referential range of
such senses. In semantic change, the ‘encyclopaedic’ information is
potentially just as important as the purely semantic ‘senses’ (to the
extent, that is, that the distinction is to be maintained at all).’

From a practical point of view (solving real-world NLP tasks), the
conflation of denotational meaning and encyclopedic information in distributional
representations is almost always beneficial. The reason is that humans hardly can
perceive or generate natural language utterances in any way which completely
abstracts away from extra-linguistic ‘encyclopedic’ data or connotations and
associations triggered by particular words. Processing limited to the denotational
part of word meaning is possible only in very restrained artificial circumstances.
Since most practical NLP tasks deal with attempts to approximate decisions
made by human speakers, the conflation described above is again helpful. Still,
it should be kept in mind when using distributional meaning representations.
We discuss this issue in some additional details in section 2.5.

Formally speaking, within the distributional approach any linguistic entity
can be represented as a vector of frequencies for this entity occurring together
with other linguistic entities (its contexts) in a given corpus. In other words,
lexical vectors are located in a semantic space with all the possible contexts
or semantic features as dimensions (Osgood et al., 1964). The next section 2.2
discusses the details of such semantic spaces.
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vector meaning hamster corpus weasel animal

vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0

Table 2.1: A simple example of a co-occurrence matrix.

2.2 Working with co-occurrence matrices

Together, the word vectors of a given word set (vocabulary) constitute a co-
occurrence matrix, an example of which is shown in Table 2.1, with six words:
‘vector ’, ‘meaning’, ‘hamster ’, ‘corpus’, ‘weasel’ and ‘animal’ occurring near each
other in an imaginary text. Words are represented with row vectors �x ∈ R

6: for
example, ‘hamster ’ is [0, 1, 0, 0, 20, 14]. Naturally, the word ‘hamster ’ occurs in
the vicinity of the word ‘animal’ (cf. phrases like ‘hamster is an animal’) much
more often than in the vicinity of the word ‘vector ’ (this paragraph is a notable
exception). The same is true for ‘weasel’, giving us empirical grounds to state
that the lexical meanings of ‘hamster ’ and ‘weasel’ are close to each other.

In real-world distributional semantic models, the co-occurrences of each
unique word in a corpus with all the other words within a given window2 are
counted. With the vocabulary V , each word a is represented with a high-
dimensional vector �a ∈ R

|V |. The vector entries correspond to the other words
of the corpus’ vocabulary (b, c, d...|V |). The values of the entries are frequencies
of words co-occurrences (a|b, a|c, etc).

Semantically similar words tend to possess similar vectors (because they are
used in similar contexts), while the non-related words’ vectors are farther away
from each other. Vector ‘similarity’ can be defined in many different ways: as
Euclidean distance, dot product or cosine similarity, among others.

Cosine similarity is usually preferred as a measure of vector similarity.
Conceptually, it is the cosine of the angle between two vectors (with the same
origin) and takes values from -1 to 1. It lowers as the angle grows, and grows
as the angle lessens. Formally it can be expressed as the dot product of unit-
normalized vectors:

cos ( �w1, �w2) =
�w1 · �w2

| �w1|| �w2| (2.1)

When vectors point in the same direction, cos = 1, when they are orthogonal,
cos = 0, and when they point at the opposite directions, cos = −1. It is important

2Ranging from ‘one word to the left and one word to the right’ to ‘the whole document’.
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Figure 2.3: The nearest neighbors of the English noun ‘shift’ in the distributional
model trained on the English Wikipedia.

that cosine similarity inherently smooths the influence of vector magnitudes
(thus avoiding assigning too high similarity scores to frequent words, which is
the case when using the simple dot product). Often, all the vectors in the matrix
are unit-normalized before any operations with them, since in this case cosine
similarity boils down to calculating the dot product. The cosine distance measure
is sometimes used, which is a simple inversion of cosine similarity (1 − cos).

Cosine similarity provides an efficient way of measuring semantic similarity
between words. By ranking all the words in the vocabulary by the cosine distance
of their vectors to the vector of the query word, one can easily find the query
word’s nearest neighbors: n words with the highest similarity to it. Linguistically,
the nearest neighbors are the words paradigmatically related to the query, the
ones by which the query word can be substituted in natural language utterances.

The list of the word’s nearest neighbors can itself tell a lot about what does
the word means, as shown in Figure 2.3, with the query word ‘shift’. This is a
screen shot from our WebVectors web service (Fares et al., 2017)3, featuring a
distributional model trained on the English Wikipedia. It lists 10 words with
the highest values of cosine similarity to the vector of ‘shift’ (the corresponding
cosine similarities are given near each neighbor). The right part of the screen shot
displays the ‘shift’ ego graph, where nodes are its nearest neighbors, connected
with edges if their pairwise similarity exceeds the user-defined threshold (0.5 in

3http://vectors.nlpl.eu/explore/embeddings/
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this case).
Because of the Zipfian (power law) distribution of word frequencies in natural

languages (Zipf, 1949), some words can often be observed in the vicinity of
other words simply because they are frequent, not because these co-occurrences
are really indicative of any meaning. This is true, for example, for English
determiners ‘the’ and ‘a’ which can co-occur with practically any noun.

In order to filter this noise, various weighting schemata are applied to absolute
co-occurrence counts extracted from corpora. As a rule, they draw on variations
of information theoretic association measures quantifying the probability of the
a|b co-occurrence being accidental, given the individual and joint frequencies of
a and b. The most widespread association measure in NLP is arguably positive
point-wise mutual information (PPMI) introduced by Church and Hanks (1989)
and given in Equation 2.2.

PPMI(a, b) = max
(

log2

(
P (a, b)

P (a)P (b)

)
, 0

)
(2.2)

Arguably, the first ‘traditional’ distributional vector space model put to
practical use was the Term Frequency - Inverted Document Frequency (tf/idf)
statistic introduced by Jones (1972). Since then, such models have been
developed and studied for decades, and have become widely utilized in many
natural language processing applications, from simply measuring lexical semantic
similarity to inferring complex topical structures of document collections. It
is impossible to survey all the variations in this thesis, and we refer interested
readers to the extensive review by Turney, Pantel, et al. (2010). To name only a
few relatively recent ones:

• Latent Semantic Analysis (LSA) or Latent Semantic Indexing (LSI)
(Landauer and Dumais, 1997) was particularly successful in information
retrieval, where it powered search for similar documents;

• Later, LSA was extended to Probabilistic LSA (PLSA), based on a version
of the expectation-maximization (EM) algorithm (Hofmann, 1999);

• More distantly related is the Latent Dirichlet Allocation (LDA) model from
Blei, Ng, et al. (2003), which allows one to cluster words and documents
by their topics;

• The Random Indexing algorithm (Kanerva et al., 2000; Sahlgren, 2005;
Velldal, 2011) employs an incremental formulation of random projections
and is directly related to the dimensionality reduction problem described
in Section 2.3.

Some of these approaches are document-centric (LSA and LDA), while others
are word-centric (Random Indexing), which means they use different types of
contexts. Still, all of them are based on the idea of employing distributional
signal from raw texts to capture information about the meaning of linguistic
entities (either documents or words). In this thesis, we deal with representations
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for words and with the possibility to use them for the modeling of semantic
change.

2.3 The curse of dimensionality

The most widespread type of contexts in distributional models is word neighbors,
which means that the set of all possible contexts generally equals the size of
the vocabulary of the corpus, and it can be quite large (sometimes in the order
of millions). Additionally, the vectors tend to be sparse, with most entries
being zeros, because of the Zipfian word frequencies distribution in all natural
languages.

Sparse representations are usually inefficient: for example, even a 50-
words text will have to be represented by a vector �x ∈ R

100000, if there are
100 000 words in the vocabulary. There exist ways of efficiently handling
sparse matrices; however, from the very beginning of vector space meaning
representations, researchers tried various ways of turning them into dense vectors
with dimensionality much lower than the vocabulary size – compensated by the
fact that there are no zero entries (Bullinaria and J. P. Levy, 2007). Such dense
vectors are commonly called ‘embeddings’, reflecting the idea that we attempt
to ‘embed’ or ‘project’ high-dimensional entities into a low-dimensional space.

One common way to achieve this aim is to first build a standard co-
occurrence matrix like the one in Table 2.1, and then find a low-rank matrix
that approximates the original one best. This approach is called ‘dimensionality
reduction’ and there exists a wide variety of well-developed techniques for that:
for example, Principal Components Analysis (PCA) by Pearson (1901), Singular
Value Decomposition (SVD) by Golub and Reinsch (1970), or Locality Sensitive
Hashing (LSH) by Van Durme and Lall (2010). One can approximate a high-
dimensional matrix A ∈ R

x with a low-dimensional matrix B ∈ R
y (where

y � x), while still preserving more or less the same similarity relations between
the vectors. The downside is that the vector entries or components are not
interpretable any more, like they were before the reduction. In other words, after
the reduction, they do not correspond to any particular linguistic entities.

Reducing the dimensionality of semantic vectors is also important from the
point of view of visualization. Most humans can’t easily imagine the relations
between vectors of dimensionalities higher than three. Thus, it is crucial to
embed high-dimensional vectors into two- or three-dimensional projections, which
humans can physically inspect. Figure 2.4 shows a 2-dimensional embedding
which was created using the t-SNE algorithm (Van der Maaten and Hinton, 2008).
The plot axes represent the components of this embedding. The original 300-
dimensional vectors for the 10 words in the plot were extracted from the
distributional model trained on the Google News corpus (Mikolov, Sutskever,
et al., 2013). Even with the dimensionality reduced to two, it is easy to see how
the model captures the semantic similarity between the words ‘town’, ‘city’ and
‘capital’. Additionally, it allows one to get a notion of ‘semantic directions’ within
distributional models: the imaginary lines between the names of the countries
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2. Distributional modeling of meaning

Figure 2.4: Two-dimensional t-SNE projection of 10 word vectors from the
distributional model trained on the Google News corpus. The colors were
added manually to easily distinguish the lexical groups containing 0) capitals, 1)
countries, 2) common nouns.

and the corresponding capitals (‘France’ to ‘Paris’, ‘Britain’ to ‘London’ and
‘Norway’ to ‘Oslo’) would be almost parallel. We will use this important property
of distributional models in Chapter 5 of this thesis.

More recently, another type of distributional models appeared, using machine
learning techniques to approach the dimensionality reduction problem from a
different angle. This is the kind of algorithms we primarily use in this thesis,
and we survey them in the next section.

2.4 Rise of machine-learned distributional models

After 2013, distributional semantics enjoyed substantially growing attention
because of the emergence of a particular class of approaches, which Baroni
et al. (2014) dubbed ‘prediction-based models’ (since the vectors here are often
optimized for predicting neighboring words) and opposed to the ‘traditional’
‘count-based models’ described in Section 2.2.

The ‘predict vs. count’ dichotomy itself is not flawless, since in fact some
algorithms show properties belonging to both approaches, like, for instance,
GloVe from Pennington et al. (2014), in which a full co-occurrence matrix is
first built, but then a prediction-like method is used to create the actual dense
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vectors. Another example is Random Indexing from Kanerva et al. (2000),
which seems to belong to neither type: in this case, at no point a full co-
occurrence matrix is constructed, but at the same time there are no ‘predictions’
of any kind. More meaningful distinctions can be made: for example, the
one between explicit representations, where vectors are high-dimensional and
sparse, but directly interpretable (corresponding to contextual features one-to-
one) and continuous representations (embeddings), where the dimensionality
is reduced and the resulting dense representations are not interpretable any
more. However, the term ‘prediction-based models’ has already become quite
ubiquitous, especially when talking about the word2vec algorithms (see below).
They exhibit a promising set of properties and yield state-of-the-art performance
in many NLP tasks.

The general idea of the prediction-based algorithms is that they approximate
the co-occurrence data instead of calculating them directly. Word vectors are
trained on the textual data using machine learning approaches, with the objective
to maximize the similarity between the paradigmatic neighbors found in the
corpus, while minimizing the similarity for unseen contexts. In a sense, this is
a special case of training a language model which predicts the next word in a
sequence, and word embeddings are created as a by-product of this training, as
first shown by Bengio et al. (2003). Thus, word co-occurrences in the training
corpora are used as a (weak) supervision signal, but the whole co-occurrence
matrix is never actually constructed (although there are exceptions, like the
already mentioned GloVe).

Vectors are first initialized randomly and then gradually converge to the
optimal values at the training time, as we move through the corpus with a
sliding window of a predefined length and try to predict neighbors on the basis
of the current word. As Rong (2014) puts it, ‘the vector of a word w is ‘dragged’
back-and-forth by the vectors of w’s co-occurring words, as if there are physical
strings between w and its neighbors [. . . ] like gravity, or force-directed graph
layout.’ In other words, during the training, each time the model sees a word in
context, it makes a guess and shifts this word’s vector a bit closer to the vectors
of its neighbors, based on the resulting prediction error (loss). After millions and
billions of such small updates, vectors converge to the state which best reflects
the semantic similarities between words in the training corpus.

Prediction models often employ artificial neural networks (Goldberg, 2017).
In particular, Mikolov, Sutskever, et al. (2013) introduced the highly efficient
Continuous Skip-gram and Continuous Bag-of-Words (CBOW) algorithms.
Essentially, they proposed a modification of the already existing feed-forward
neural networks language modeling techniques and found the most efficient
combination of hyperparameters. At training time, CBOW learns to predict the
current word based on its context, while Skip-gram learns to predict context
based on the current word. The differences between two architectures are shown
in Figure 2.5. At each training instance, the input for the prediction is:

• CBOW: average input vector for all context words. We check whether the
current word output vector is the closest to it among all vocabulary words.
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2. Distributional modeling of meaning

Figure 2.5: The now-famous depiction of the two word2vec architectures (CBOW
ans Skip-gram) from Mikolov, K. Chen, et al. (2013).

• Skip-gram: current word input vector. We check whether each of context
words output vectors is the closest to it among all vocabulary words.
Sometimes, the SGNS abbreviation is used to refer to this algorithm,
meaning ‘SkipGram with Negative Sampling’.

This ‘closeness’ is calculated with the help of the dot product (or cosine similarity)
and then turned into probabilities using softmax. During the training, the model
updates two weight matrices: of input vectors (W I , from the input layer to the
hidden layer) and of output vectors (W O, from the hidden layer to the output
layer). As a rule, they share the same vocabulary, and only the input vectors are
then used at test time as a look-up table for word embeddings in practical tasks.

The network architecture in both algorithms is very shallow, with a single
hidden/projection layer between the input and the output layers. The training
objective is to maximize the probability of observing the correct output word(s)
wt given j context word(s) c1...cj , with regard to their current embeddings (sets
of weights in the matrices). The loss function L is cross-entropy. For CBOW
it is formulated as in Equation 2.3, and for Skipgram as in Equation 2.4. The
learning itself is implemented with stochastic gradient descent.

L = − log

(
P

(
wt|

j∑
i=1

ci

))
(2.3)

L = −
j∑

i=1
log (P (ci|wt)) (2.4)

O. Levy and Goldberg (2014) and O. Levy, Goldberg, and Dagan (2015)
showed that Skip-gram implicitly factorizes a word-context matrix of PPMI
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coefficients. Implicitness is important here: since the matrix is never explicitly
constructed, the algorithm is more computationally efficient than the previous
methods, especially with regards to memory requirements. However, the resulting
vectors still approximate the rows of the same word-context matrix, even if it
never materializes in memory as is. This further supports the claim that the
differences between ‘count-based’ and ‘prediction-based’ distributional models are
not as well-founded as it was customary to think when dense word embeddings
first appeared.

Regardless, fast and high-quality training of word embeddings on huge
amounts of texts was made possible after Mikolov, Sutskever, et al. (2013)
released a ready-to-use word2vec4 tool with its source code, which ensured
reproducibility and ease of use. Various improvements and implementations in
several programming languages quickly followed. Nowadays, these algorithms can
be found in libraries like Gensim5 (Řehůřek, 2011), TensorFlow6 (Martin Abadi
et al., 2015), Keras7 (Chollet et al., 2015) and PyTorch8 (Paszke et al., 2019),
among many others. Still, these approaches (and the distributional hypothesis
that they are based on) have several serious shortcomings. We discuss them in
the next Section 2.5.

2.5 Shortcomings of word embeddings

This section presents important limitations which should be kept in mind when
working with word embeddings:

1. Technical issues (data and compute requirements, etc.).

2. Interpretability issues.

3. The need to align different embedding spaces.

4. Conceptual problems with the distributional hypothesis itself.

5. The ability of word embeddings to represent word senses.

Some of the shortcomings of word embedding-based approaches to represent
meaning are purely technical. Among others one can mention that they require
training corpora of a very large size: small text collections do not provide
sufficient variation for the distributional representations to become sufficiently
general. However, this is not something specific to word embeddings: all modern
machine learning algorithms are data-hungry. Also, obtaining relevant raw text
corpora is still as a rule much easier and cheaper than the manual labor implied
by the knowledge-based approaches (dictionaries, ontologies, etc). The same can
be said about computational power requirements. It is true that distributional

4https://code.google.com/archive/p/word2vec/
5https://github.com/RaRe-Technologies/gensim
6https://www.tensorflow.org/
7https://keras.io/
8https://pytorch.org/
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representations are compute-intensive, but the methods of training them are
now well-developed and robust; as a rule, creating or obtaining useful word
embeddings is not much of a problem. Word2vec vector representations can
be trained on a billion-word size corpus in a matter of hours using a standard
laptop. However, with the recently introduced contextualized embeddings (see
Section 2.6), this issue becomes important again: such models can be slow and
expensive to train even when using GPU-accelerated computation.

The technical shortcomings mentioned above are true for all word embeddings:
both explicit and continuous, either created from a real word co-occurrence
matrix or ‘trained’ using a prediction-based approach. But there are issues
manifesting themselves only for specific embedding types. A notorious example
is the problem of interpretability relevant for continuous word vectors. Unlike the
explicit representations (where each vector component corresponds to a known
context word), continuous or dense vectors are black-boxes (Linzen et al., 2019):
it is difficult to match their components to any meaningful linguistic feature.
Essentially, this is a mismatch between the continuous nature of prediction-
based word embeddings (where information is distributed across many vector
components) and the discrete nature of language. In response to this, it can be
argued that discreteness is rather a property of traditional language descriptions
than of the language itself, but it will be difficult to support either point of view
with empirical evidence. Anyway, the lack of interpretability can certainly be a
problem if some explanation for the system predictions is required.

Another issue concerns the ‘trained’ prediction-based word embeddings. It is
related to their stochastic nature, and we discuss it in the next subsection.

2.5.1 Aligning stochastic representations

Training prediction-based word embedding models on text corpora is rather
straightforward. However, it is not that straightforward to compare vectors
for one and the same word across different models, which is required if one is
analyzing the differences between embeddings trained on different corpora. This
includes time-specific corpora, which directly concerns our topic of diachronic
semantic change.

It usually makes no sense to, for example, directly calculate cosine similarities
between embeddings of one and the same word in two different sets of embeddings.
It is true even if the embeddings are estimated by the same underlying algorithm
using the same hyperparameters. But the problem will be even more severe
when it comes to comparing embeddings produced by different algorithms
or with different hyperparameters. The reason is that most modern word
embedding algorithms are inherently stochastic: the resulting vector sets are
heavily dependent not only on the training data itself, but also on the original
randomly initialized vector components (weights). Moreover, random choice of
negative examples (in word2vec and its derivatives) and the order of training
data instances (when shuffling is used) add up to the non-deterministic nature
of prediction-based word embeddings.
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Thus, even when trained on the same data, different runs will produce
slightly different weights in the models (though with roughly the same pairwise
similarities between word vectors, since the models will be invariant under
rotation). This is even more expressed for models trained on different corpora. It
means that even if word meaning is completely identical in two training corpora,
the direct cosine similarity between its vectors trained on these two corpora can
still be quite low, simply because the random initializations of the two models
were different.

This is not so much of an issue for explicit and count-based algorithms,
since they are deterministic and do not use any randomness while creating word
representations. Given that one and the same vocabulary of context words is
used, two count-based models trained on two different corpora will be fully
comparable (even after applying some dimensionality reduction algorithm like
SVD, etc). But if one would like to compare vectors from two prediction-based
embedding models, she will have to first employ some alignment technique.

The need for alignment arises not only in the context of semantic change
modeling. The same task is being handled, for example, in the field of cross-
lingual embeddings (Ruder et al., 2019), where one has to map vectors of words
in the language A to the vectors of their translation equivalents in the language
B. More generally, alignment is inducing a shared semantic space from several
different spaces. This problem can be solved in a variety of supervised and
unsupervised ways, with the researchers in cross-lingual embeddings preferring
supervised approaches, where a small bilingual dictionary is used as a seed to
induce the mapping they need. In the field of monolingual semantic change
detection, the problem is less difficult, since the intersection of the vocabularies
of the vector spaces under analysis is usually quite large, and unsupervised
methods like Orthogonal Procrustes (Gower, Dijksterhuis, et al., 2004) can
be used. We describe various ways to align word embedding models (or to
make them comparable via other means) in the next chapter in Section 3.2.5,
specifically in the context of diachronic semantic change modeling.

2.5.2 Scientific credibility of the distributional hypothesis

Apart from technical ones, there are several conceptual issues with the
distributional hypothesis. In this subsection, we focus on one of them. This issue
is related to a simple (but tricky) question: Is the distributional hypothesis
really a hypothesis? That is, can it be properly falsified? We argue that it is
better to understand it more as a useful assumption.

Indeed, there are many examples of the distributional hypothesis working. By
‘working’ we mean that it was repeatedly and rigorously shown that technologies
based on the distributional hypothesis tackle problems more efficiently than
other approaches. So, there are many confirmations for it to be true, starting
at least from Rubenstein and Goodenough (1965). In many publications it is
silently implied that distributional representations literally manifest meaning.

However, this does not mean that the distributional hypothesis is falsifiable in
Karl Popper’s sense (Popper, 1962). To conform to this definition, a hypothesis
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word1 word2 output gold diff

‘girl’ ‘maid’ 7.72 2.93 -4.79
‘happiness’ ‘luck’ 6.59 2.38 -4.21
‘crazy’ ‘sick’ 7.49 3.57 -3.92
‘arm’ ‘leg’ 6.74 2.88 -3.86
‘breakfast’ ‘supper ’ 8.01 4.40 -3.61

Table 2.2: Example of the SimLex999 semantic similarity test set from Hill
et al. (2015), along with predictions from a distributional model (the ‘output’
column).

should allow some way to prove that it is wrong. ‘To prove wrong’ here means
‘to find that the theory contradicts the known facts’. In our case, it would
mean finding some way to reject the hypothesis that meaning is context. Is this
possible at all? The answer to this question is far from being clear, considering
the fact that the distributional hypothesis is entirely inductive: that is, based
on observations, not on logical conjectures.

The root of the problem lies in the obvious fact that unfortunately we cannot
observe meaning directly and empirically. Even with the help of brain imaging
techniques, we still can’t reliably extract from the human mind, for example, the
‘meaning’ of the word ‘dog’ (Søgaard, 2016; Auguste et al., 2017). Any estimates
of the meaning of words are necessarily only proxies. In fact, when one wants to
intrinsically evaluate two sets of distributional representations (produced from
different corpora or with different hyperparameters) and find out which is better,
one has to rely on such a proxy, for example, on semantic similarity test sets.
This method is often criticized (Faruqui, Tsvetkov, et al., 2016; Chiu et al., 2016),
but still remains the most widely used.

Semantic similarity datasets contain human judgments about the semantic
similarity of words (Hill et al., 2015). They usually come in the form of word
pairs with some score of semantic similarity for each (for example, from 0 to
10, where 0 denotes completely unrelated words, and 10 denotes full synonyms).
Each pair is scored by several informants, and their scores are averaged, to
ensure reliability and robustness of scores.

Given such a dataset and a distributional model (a set of word represen-
tations), we can experimentally evaluate the model against the dataset. The
evaluation is extremely simple and consist of producing the model’s predictions
on the similarity of word pairs in the dataset (for the vector-based models, it boils
down to calculating cosine similarity between word vectors). These estimates
are then compared to those in the dataset (gold scores), and the Spearman rank
correlation coefficient is calculated. The correlation close to 1 suggests that the
model reproduces human judgments almost perfectly, while the correlation close
to 0 would imply that the model’s predictions are close to being random.
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For example, Table 2.2 shows the models’ predictions in the ‘output’ column,
and the human judgments in the ‘gold’ column. As we can see, in this case, this
particular model tends to overestimate semantic similarities between words. It
also predicts that the ‘girl, maid’ pair is more similar than the ‘crazy, sick’ pair,
contrary to human judgments, etc.

One might think that such evaluation methods provide us with a way to
falsify the distributional hypothesis. Unfortunately, they do not. There are
several reasons for that.

The first reason is that any correlation score (not equal to 1 or 0) can be looked
at either positively or negatively, depending on the subjective opinion of the
observer. What level of correlation will command us to reject the distributional
hypothesis altogether and why? Figure 2.6 presents the results of an experiment
on the RuSimLex965 semantic similarity dataset for Russian (Kutuzov and
Kunilovskaya, 2017), with dots representing word pairs. On the horizontal axis
are the models’ predictions about semantic similarities, and on the vertical axis
are the human judgments (absolute values are converted to ranks). There is no
absolutely clear trend, and in fact the Spearman ρ in this case is only about 0.4.

However, the word embeddings in question9 perform well for many practical
NLP tasks. They are of course not absolutely perfect, but this is not necessary
for production usage. And even from the academic point of view, we can say
that distributional models are inherently stochastic, statistical and even if they
make mistakes in some cases, is does not disprove the theory in general.

The second (and even more important) reason is that there is no single
semantic similarity (or any other intrinsic evaluation) test set being good for all.
Such test sets are created by independent research groups, each with its own
guidelines and principles of word selection. It is clear that the performance of
distributional representations would critically depend on a tremendous amount
of various properties of the test set, and the model performing poorly on one set
can be superior on another. It is extremely difficult to find out what test sets are
most representative of this or that language in general (Bakarov et al., 2018).

It is impossible to falsify the distributional hypothesis itself by evaluating
distributional models against human judgments datasets. The distributional
hypothesis does not forbid particular models to be ‘good’ or ‘bad’ on particular
test sets, so it seems invincible from that side.

And of course, another difficult question is whether it is ‘meaning’ at all, that
is conveyed by distributional patterns. Boleda and Erk (2015) say that ‘...a more
general characterization of what distributional inference is and what purposes
it can serve remains to be done’; Bender and Koller (2020) explicitly claim
that real meaning cannot be learned from form alone (and this is exactly what
distributional algorithms are trying to do). As if replying to this, Sahlgren (2008)
proposes that semantics should be looked at as simple interplay of syntagmatic
and paradigmatic relations between words, similar to the structuralist point of
view. In this light, the distributional hypothesis at least receives something

9It was the Russian ruscorpora_upos_skipgram_300_10_2017 model from our RusVectōrēs
project (https://rusvectores.org/en/models/).
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Figure 2.6: Interplay between gold human judgments and distributional model
predictions on lexical semantic similarities.

resembling a solid theoretical foundation. However, even Sahlgren (2008) does
not deal with the issue of falsifiability.

The problem seems to be related to the complex nature of the ‘meaning’
notion itself. The distributional hypothesis is to some extent recursive: when
one says that ‘meaning is distribution’, one in fact says that ‘distribution is
distribution’. Due to this circularity, it is to some extent misleading to call it
a ‘hypothesis’. One indeed can suggest and test local hypotheses of particular
distributional representations being better than others on particular test sets.
But the global ‘distributional hypothesis’ itself is probably better be called a very
useful assumption, which is extremely helpful in solving practical problems (one
simply takes this assumption for granted). This statement might look obvious.
However, as stated above, in many cases researchers tend to overlook the innately
non-direct character of distributional meaning representations. We believe it is
important to keep it in mind when working with such approaches.

28



Shortcomings of word embeddings

2.5.3 Can word embeddings represent senses?

Another important issue with distributional meaning representations is handling
word senses. Recall that a lexicographic ‘sense’ is essentially a word entry in
a dictionary, where one and the same word form can have several entries,
corresponding to different ‘senses’ of this word and together forming its
‘conventional meaning’.10 Can a continuous embedding for the word Z tell
us how many senses does Z have and what are these senses?

The simplest answer to this is negative: it cannot. As already mentioned
in the introduction, the whole notion of lexicographic word senses implies
discreteness, and our Z embedding is continuous. Besides this conceptual barrier,
there is a purely technological obstacle: even ambiguous words receive only one
distributional embedding, which conflates all their senses into one. This results
in distributional models being unable to capture polysemy and colexification in
general (Yaghoobzadeh and Schütze, 2016).

Thus, simple attempts to infer discrete human-defined senses from a
continuous vector trained on raw text will always be ad-hoc and incomplete
(unlike knowledge-based methods which rely on dictionaries and ontologies).
However, the NLP community keeps attempting, and there is some limited
success in the task of modeling senses with word embeddings. One can mention
the methods which involve clustering of averaged vectors for context words,
thus creating sense embeddings, which can further be used to detect what sense
the word is used in in a particular utterance (Schütze, 1998). Another family
of approaches induces a sense inventory from pre-trained word embeddings
via clustering of ego-networks of their nearest neighbors (Pelevina et al., 2016;
Logacheva et al., 2020). Finally, multiple attempts were made to combine topic
modeling and other non-parametric architectures with word embeddings for
sense representation; see (P. Liu et al., 2015; Bartunov et al., 2016), among many
others.

But the most important step in this direction was arguably the introduction
of contextualized embeddings (Melamud et al., 2016); see also Section 2.6. They
are not even really embeddings (in the sense of a simple vector lookup table):
instead, they are full-fledged neural language models taking word sequence as
an input and producing context-dependent word vectors. These ‘contextualized’
vectors are supposed to reflect word senses: ‘mouse’ in the sentence ‘I ordered a
mouse for my laptop from Amazon’ will receive a different vector from ‘mouse’ in
the sentence ‘When the mouse laughs at the cat, there is a hole nearby’. Although
such architectures are fully unsupervised and do not use any external knowledge
about word senses, they achieve very competitive performance in word sense
related tasks like word sense disambiguation and word sense induction (Pilehvar
and Camacho-Collados, 2019; Loureiro and Jorge, 2019). In Chapter 6 we will
show that contextualized embeddings indeed capture information related to
word senses as defined in manually built ontologies, and apply them to lexical
semantic change modeling. We also will present important issues which arise

10Note that other, more data-driven definitions of ‘sense’ are possible, for example, that
word senses are ‘abstractions over clusters of word usages’ (Kilgarriff, 1997).

29



2. Distributional modeling of meaning

when one attempts to trace word sense changes with contextualized embeddings.
We argue that the ‘senses’ they capture are more similar to ‘readings’ in the
prototype theory as described by Geeraerts (1997), but this is not necessarily a
bad thing.

Overall, the shortcomings of word embeddings described in this section do
not prevent us from using the distributional approach throughout this thesis,
but still should be kept in mind.

2.6 Recent trends in distributional semantic modeling

Nowadays, it is difficult to imagine any large-scale application dealing with
human language (either in research or in industry) which does not use word
embeddings in at least some parts (Desagulier, 2017). Google Translate employs
word and sentence embeddings to generalize better when it analyzes the meaning
of the source text (M. Johnson et al., 2017); Facebook employs word embeddings
when it assesses semantic similarity of two posts, in order to decide which one
to show, where and when (Bojanowski et al., 2017; J. Johnson et al., 2019).

Digital texts today are cheap to obtain and process, and distributional models
now are trained on text collections containing billions of words in them (e.g.,
the whole Wikipedia, large news collections or simply millions of pages crawled
from the Web). Although more textual data does not necessarily mean a better
model, it almost always means a more diverse model with a better coverage.

Word vectors are used as input to complex artificial neural networks, greatly
increasing their performance and widely replacing discrete word identifiers as
input features (Goldberg, 2017). Traditional word representations were high-
dimensional, sparse and categorical. Nowadays word embeddings are used
almost exclusively, being comparatively low-dimensional, dense, continuous and
distributed. Sometimes, such dense representations are learned simultaneously
with training a larger neural network for a particular natural language processing
task (sentiment analysis, machine translation, etc), as a dynamic part of such
a network. However, another popular approach is to use pre-trained word
representations provided by a third party (usually trained on a very large
text corpus). This leads to the increasing demand for online repositories of
distributional word embeddings trained on different corpora in different languages
and with different hyperparameters, like the NLPL Repository described by
Fares et al. (2017).

The increasing popularity of machine-learned word embedding models caused
the surge of research pushing the boundaries of existing methods and seeking
to apply the same general idea to other types of input. Among others, one can
mention Le and Mikolov (2014), who proposed Paragraph Vector, an algorithm
to efficiently learn distributed representations not only for words but also for
paragraphs or documents, and Bojanowski et al. (2017), who released fastText11,
a model able to learn embeddings using subword data (character n-grams), and
thus partially solving the out-of-vocabulary (OOV) words problem.

11https://fasttext.cc/
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More recently, in 2018, the field of distributional semantic modeling started
paying attention to the so called ‘contextualized word embeddings’ which
we already mentioned in the previous section. They provide different word
representations in different contexts, unlike traditional ‘static’ embeddings where
a single vector is attached to each single word. This comes at the cost of
much higher computational requirements, but these requirements are not always
perceived as problematic in the era of graphical processing units (GPUs) and
Tensor Processing Units (TPUs) specifically designed for artificial neural network
computations. Two widely acclaimed contextualized algorithms that advanced
the state-of-the-art in many NLP tasks are:

• Embeddings from Language MOdels (ELMo), which use bidirectional Long
Short-Term Memory (LSTMs) (Peters, Neumann, Iyyer, et al., 2018)

• Bidirectional Encoder Representations from Transformer (BERT), which
use multi-layered transformers with attention (Devlin et al., 2019)

Models trained using such architectures can be used ‘as is’: contextualized
representations are fed into the overarching system like the standard static
embeddings, but this time the word vectors depend on the particular input
context. Another mode of usage is that the whole model is fine-tuned on target
task data (for example, sentiment analysis or natural language inference).

Interestingly, ELMo authors go further and claim that their architecture
layers reflect language tiers, reflecting traditional structuring of language in
linguistics (Peters, Neumann, Zettlemoyer, et al., 2018):

1. convolutional embedding layer reflects morphology;

2. the first LSTM layer reflects syntax;

3. the second LSTM layer reflects semantics (including word senses).

We describe contextualized embeddings in much more detail and apply ELMo
and BERT to the task of diachronic semantic change modeling in Chapter 6 of
the present thesis.

2.7 Other approaches to model meaning

The data-driven or distributional approach (including its word embedding
variation) is significantly different from other methods to represent lexical
meaning. It is impossible (and out of scope for this thesis) to cover all of
them here, but we describe some examples below. In particular, computational
semantics has long relied on knowledge-driven methods. They can be roughly
categorized as follows:

• Dictionaries

• Ontologies
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Dictionaries One natural (and arguably the oldest) way to represent word
meaning is to simply use the lexicographical definitions from published
dictionaries. The benefit here is that one can be sure of the representations
quality: they are produced directly from human knowledge and are supposed to
perfectly reflect the state of language semantics at a given moment. The obvious
downside is that the textual definitions themselves are not machine-readable,
and thus are not fit for large-scale NLP tasks (they have to be first converted to
some numerical representations). Another problem is the inherent finite nature
of any dictionary: it contains only as many words as the authors managed to
process, and it is not easy to add new ones. This is especially important in the
context of diachronic research. However, researchers still sometimes use this
type of representations for semantic change detection (often together with other
approaches); see, for example, R. Hu et al. (2019).

Ontologies Ontology-based approaches address some problems of dictionary-
based ones, while still preserving the human-made quality. They consist of
semantic networks (ontologies) or graphs relating human language words (or
concepts) to each other. These networks as a rule are constructed manually by
expert linguists. The most famous examples of such an ontology are, arguably, the
WordNet project (Miller, 1995) and the BabelNet (Ehrmann et al., 2014). With
typed relations between lexical entities presented in a machine -readable format,
such resources are much easier to use in practical tasks. Unlike ‘continuous’
distributional representations, ontologies provide ‘discrete’ knowledge about word
similarity or dissimilarity. They also naturally encode senses (by the possibility
to explicitly link a word form to several different concepts or ‘synsets’). However,
building ontologies is still expensive and time-consuming, because of the manual
work involved.

Dictionaries and ontologies represent knowledge-driven alternatives to word
embeddings. But even within data-driven approaches there are models which
differ significantly. For example, instead of aiming at finding representations
for words, one can aim at representation for documents. We briefly mentioned
topic modeling in Section 2.2; here we describe it as an alternative to techniques
based on word embeddings.

Topic modeling This family of approaches is in fact strongly related to word
embeddings, also being inherently distributional and vectorial. The Latent
Semantic Analysis (Landauer and Dumais, 1997) described in Section 2.2 can
be looked at as a topic modeling approach as well. However, the most popular
algorithm in topic modeling is undoubtedly the Bayesian-based Latent Dirichlet
allocation (LDA) (Blei, Ng, et al., 2003), with many different followers and
variations. The common part here is that given a corpus of documents, these
algorithms try to infer from the data a set of latent topics, of which each document
is a mixture. The documents (essentially just word sequences) can be more or
less similar to each other in terms of their topical structure: each document is
represented with a vector of topic probabilities. Although these approaches are
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mostly focused on representing documents, vectorial representations of single
words are also learned: these vectors reflect the probabilities of a particular
word to occur in each of the inferred topics. Note that unlike dictionaries and
ontologies (and like word embeddings), topic modeling is completely data-driven:
given a corpus, one has to only specify the desired number of topics (algorithms
like Hierarchical LDA allow one to avoid even this step and infer the number
of topics automatically). From a high-level point of view, topic modeling and
word embedding methods differ only in being focused on representing either
documents or words correspondingly.

Note that distributional and knowledge-based approaches do not necessarily
exclude each other. In fact, the latter can often help the former to overcome
the lack of explicit linguistic ‘competence’ inherent to the data-driven paradigm.
For example, one can use WordNet-like ontologies to improve data-driven word
embeddings in the workflow known as ‘retrofitting’ (Faruqui, Dodge, et al., 2015).
Dictionaries published at different time periods can be employed as the source
of the ground truth for semantic change modeling systems which are themselves
based on distributional vectors (Tsakalidis et al., 2019). In Chapter 6 of this thesis,
the evaluation of embedding-based algorithms for semantic change detection is
powered by the WordNet data.

As already mentioned in the Introduction, this thesis generally focuses on
the methods which employ distributional word embeddings. One reason is that
I am interested in this field, and it has been the primary focus of my research
for several years. In addition, this choice is motivated by the success of word
embedding-based approaches in many other semantic tasks and them being
computationally efficient and easy to integrate into deep learning architectures.

2.8 Summary

To summarize, distributional word embeddings trained on large amounts of
linguistic data efficiently capture many aspects of word meaning. As such, they
are among the foundational bricks in the building of natural language processing
systems able to at least partially ‘understand’ and generate human language.
This is true, even when taking into account that the distributional hypothesis is
more of an assumption and that word embeddings have a number of technical
and conceptual shortcomings.

If word embeddings are able to infer word meaning at a given point in time,
they provide a good starting point for research aimed at modeling semantic
change automatically, in a ‘data-driven’ manner. Such representations form a
strong empirical basis for linguistic hypotheses testing and may give answers to
many questions regarding lexical semantic shifts.

The word embedding-based approaches are not the only existing methods for
such modeling, and they were rarely used for it when the work on this thesis
had started (back in 2015). However, since then, this family of approaches has
definitely come to be the most popular in the field, as is clearly evidenced by
the results of the first SemEval shared task in unsupervised lexical semantic
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change detection (Schlechtweg, McGillivray, et al., 2020). The overwhelming
majority of the participants (including the best systems) used some variants of
word embeddings. The quote from Tahmasebi, Borin, and Jatowt (2018) ‘The
state of the art is represented by methods based on word embedding techniques’
seems to still hold in 2020.

In Chapter 3, we next survey the current state of using distributional
representations for lexical semantic change modeling. Since distributional word
embeddings are also the focus of the current thesis in general, it naturally pays
more attention to the details of their usage. At the same time, other approaches
to lexical semantic change modeling are also briefly described.
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Chapter 3

Modeling diachronic semantic
change: state of the field
In this chapter, we describe the current state of academic research relevant to
our thesis. We begin by discussing the notion of ‘semantic shift’ itself, and then
we continue with the history of attempts to model such shifts computationally.

As has already been mentioned before, this task is growing in popularity
presently. There are dozens of papers on the topic, mostly published after 2011
(we survey some of them below). However, this emerging NLP field is still highly
heterogeneous. There are at least three different research communities interested
in it: natural language processing (and computational linguistics), information
retrieval (and computer science in general), and social sciences.

These communities are not entirely isolated from each other, but are not
strongly connected either. This is reflected in the terminology, which is far
from being standardized. Most publications use distributional representations
learned using neural networks in this or that form, but they can be referred to
as ‘temporal embeddings,’ ‘diachronic embeddings,’ ‘dynamic embeddings,’ etc.,
depending on the background of a particular research group. Here is an example
of how this can lead to misleading pointers. K et al. (2020) is a paper from the
information retrieval community, and in it, the terms ‘temporal embeddings’
and ‘dynamic embeddings’ are used interchangeably, citing both Bamler and
Mandt (2017) and Di Carlo et al. (2019). However, in fact, the joint training
model from Bamler and Mandt (2017) and the ‘temporal word embeddings with
a compass’ approach from Di Carlo et al. (2019) are entirely different, and K
et al. (2020) use only the latter and this can confuse the reader. We note again
that in this thesis, the term ‘diachronic embeddings’ is used in the sense of ‘word
embedding representations trained separately on time-specific corpora’, while
we reserve the term ‘dynamic embeddings’ for the models trained using the
specific joint learning approach presented in Bamler and Mandt (2017) and Yao
et al. (2018) (see subsection 3.2.5) or in Rudolph and Blei (2018). The ‘temporal
embeddings’ expression does not seem to acquire wide recognition in the field,
and we do not use it terminologically.

The year of 2018 saw several attempts to describe the diversity of approaches
to semantic change detection, introduce some axes of comparison and outline
main challenges which the practitioners face. Among such surveys, one can
mention Kutuzov, Øvrelid, et al. (2018)1, Tang (2018), Tahmasebi, Borin, and
Jatowt (2018), and the Ph.D thesis by Dubossarsky (2018). In 2019, the first
Workshop on Computational Approaches to Historical Language Change took
place, collocated with the ACL conference (Tahmasebi, Borin, Jatowt, and Y.

1The current chapter is partially based on this paper.
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Xu, 2019), and in 2020 the first SemEval shared task on unsupervised lexical
semantic change detection was organized (Schlechtweg, McGillivray, et al., 2020).
All these efforts are consolidating the field, which hopefully will help it to more
strongly establish its presence in the wider NLP community.

In the following Section 3.1 we will discuss the notion of ‘semantic shift’ in
linguistics.

3.1 Semantic shift as a linguistic concept

Human languages change over time, due to a variety of linguistic and non-
linguistic factors and at all levels of linguistic analysis (Aitchison, 2001). In the
field of theoretical diachronic linguistics, much attention has been devoted to
expressing regularities of linguistic change. For instance, laws of phonological
change have been formulated (e.g., Grimm’s law or the great vowel shift) to
account for changes in the linguistic sound system; in a similar vein, morphological
and syntax changes have been analyzed (Hock and Joseph, 2019). When it
comes to lexical semantics, linguists have long studied the evolution of word
meaning over time, describing so-called lexical semantic shifts or semantic change.
Bloomfield (1933) defines them as ‘innovations which change the lexical meaning
rather than the grammatical function of a form’. The general direction of a
shift is A → B, where A is the source meaning, and B is the target meaning
(Zalizniak, 2018).

The central question here is of semasiological nature: what changes occurred
to the meaning of a given lexeme, without considering changes to its form
(Traugott, 1999). However, studies in diachronic onomasiology are also possible:
a researcher is then interested in cases of lexical replacement, where one and
the same meaning (concept) is expressed by different lexemes, as time passes
by (Grzega and Schoener, 2007). Most of the current thesis is devoted to
semasiological changes, except Section 5.3 in which we deal we the task of
modeling diachronic changes in relations between words. This task can be looked
at as onomasiological in some aspects.

Further we will review some of the main findings in the linguistic study of
semantic shifts and relate these to methods currently employed in the field of
Natural Language Processing (NLP).

Historically, much of the theoretical work on semantic shifts has been devoted
to documenting and categorizing various types of shifts (Bréal, 1899; Stern, 1931;
Bloomfield, 1933). The categorization found in Bloomfield (1933) is arguably
the most used and has inspired a number of more recent studies (Blank, 1999;
Geeraerts, 1997; Traugott and Dasher, 2001). Bloomfield (1933) originally
proposed nine classes of semantic shifts, six of which are complimentary pairs
along a dimension:

1. narrowing – broadening (widening);

2. hyperbole – meiosis;

3. elevation – degeneration;
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4. metaphor;

5. metonymy;

6. synecdoche.

For instance, the pair ‘narrowing – broadening’ describes the observation
that word meaning often changes to become either more specific or more general.
In this way, Old English ‘mete’ ‘food’ becomes English ‘meat’ ‘edible flesh’,
or the more general English word ‘dog’ is derived from Middle English ‘dogge’
which described a dog of a particular breed (Bloomfield, 1933). Bloomfield (1933)
also describes change along the spectrum from positive to negative, describing
the speaker’s attitude as one of either degeneration or elevation, e.g. from Old
English ‘cniht’ ‘boy, servant’ to the more elevated ‘knight’.

The more current work of Geeraerts (1997) and Traugott and Dasher (2001)
largely follows the categorization of Bloomfield, but focuses in particular on
the processes of metaphorization and metonymization as driving forces in
semantic shifts. Whereas metaphors are based on similarity, describing changes
such as ‘mouse’ meaning ‘small rodent’ being augmented with ‘computer
manipulation device’, metonymy is a usage such as ‘drink a bottle’ where
the container (‘bottle’) is being used to refer to its contents (Blank, 1999).
Additionally, Geeraerts (1997) argued for the importance of encyclopedic
information (or ‘non-denotational meaning’) to the study of semantic change; see
the discussion of the distinction between different types of meaning in Chapter 2.

The driving forces of semantic change are varied, but include linguistic,
psychological, social, cultural or encyclopedic causes (Blank and Koch, 1999;
Grzega and Schoener, 2007). Linguistic processes that cause semantic change
generally involve the interaction between words of the vocabulary and their
meanings. This may be illustrated by the process of ellipsis, whereby the
meaning of one word is transferred to a word with which it frequently co-occurs,
or by the need for discrimination of synonyms caused by lexical borrowings from
other languages. Semantic change (especially contextual variance) may also be
caused by changes in the attitudes of speakers or in the general environment of
the speakers.

Semantic shifts are naturally separated into two important classes: linguistic
drift (slow and regular changes in core meaning of words, driven mostly by
linguistic causes) and socio-cultural shifts (culturally determined changes in
the people’s associations of a given word). Socio-cultural semantic shifts are
changes in word meaning which are driven by non-linguistic exogenous social or
cultural factors, for example, technological developments (Hamilton, Leskovec,
et al., 2016a). In the traditional classification by Stern (1931), cultural shifts
correspond to the category of substitution. This may be exemplified by the word
‘car ’ which after the introduction of the automobile, changed its meaning from
non-motorized vehicles to the new phenomenon. Changes in linguistic legislation
(e.g. in the meanings of ‘rape’ or ‘harass’) is another example of an external,
non-linguistic factor that influences lexical semantic shifts (Traugott, 2017). It
should be noted that the boundary between linguistic and cultural shifts is not
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defined precisely, and many cases manifest features from both classes. However,
the existence of this division have been shown empirically by Hamilton, Leskovec,
et al. (2016a). To some extent, this division mirrors the general linguistic
difference between functional and event-based triggers of language change (Bickel
and Hickey, 2017).

Socio-cultural shifts can happen relatively quickly, unlike linguistically
motivated ones, which typically may only be observed over decades or even
centuries (Traugott and Dasher, 2001). Events considered to be important
may immediately trigger substantial change in associations which comprise
non-denotational meaning for a particular word. This is especially true for
named entities which by their nature tend to associate with different concepts
depending on what is happening around real-world phenomena which these
entities denote. A good example is the word ‘Kosovo’ acquiring a new aspect of
meaning related to ‘war’ after the 1998-1999 military campaign. Note that this
is not a ‘semantic shift proper’. It is rather a change of usage, a typical attitude,
or associations bound to this object in public opinion. Actually, this is one of
reasons why sometimes researchers avoid the term ‘meaning change’ and refer to
‘usage change’ instead (Gonen et al., 2020).

However, within the current thesis we take the point of view that ‘meaning’
is actually determined by ‘usage’ (see Chapter 2 about the distributional
hypothesis), and hence that their opposition is misleading. If ‘senses’ are
clusters of word usages (Kilgarriff, 1997), then contextual variance (for example,
‘Kosovo’ being used more in armed conflict contexts) can be thought of as change
in the probability distribution of ‘Kosovo’ senses. This is much related to the
long-standing tradition in linguistics stating that meaning is a flux of relations
in a situational context (Firth, 1935). Thus, we consider such cases to constitute
semantic change as well.

The availability of large digital corpora have enabled the development of
new methodologies for the study of semantic shifts within general linguistics
(Traugott, 2017). A key assumption in much of this work is that changes in a
word’s collocational patterns reflect changes in word meaning (Hilpert, 2008),
thus providing a usage-based account of semantics (Gries, 1999). For instance,
Kerremans et al. (2010) studied the very recent neologism ‘detweet’, showing the
development of two separate usages/meanings for this word (‘to delete from
twitter’, vs ‘to avoid tweeting’) based on large amounts of web-crawled
data.

The usage-based view of lexical semantics is essentially the same as the
assumptions underlying the distributional approach (see Chapter 2) often
employed in NLP. In NLP research, the time spans studied are often considerably
shorter (decades, rather than centuries) and we find that these distributional
methods seem well suited for monitoring the gradual process of meaning change.
Gulordava and Baroni (2011), for instance, showed that distributional models
capture cultural shifts, like the word ‘sleep’ acquiring more negative connotations
related to sleep disorders, when comparing its 1960s contexts to its 1990s contexts.
Here again, as mentioned previously, the core meaning of a word itself is not
changed (there is no new sense of ‘sleep’), but rather there are gradual changes
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in the contextual variance, signaling changes in speaker attitudes.
Hamilton, Leskovec, et al. (2016a) showed how it is possible to distinguish

different driving forces in semantic change using different computational measures
and emphasized the distinction between cultural shifts and linguistic drifts in
natural language corpora (see more on this in Section 3.2.5). The current thesis
often deals with cultural or associative shifts, represented by context variance.

To sum up, semantic change is often reflected in large corpora through
fluctuations in the contexts of the word which is undergoing a shift, as measured
by co-occurring words. Here, we are talking about semasiological shifts: people
use other words more or less frequently together with the given word, because
some aspects of the meaning of the given word have changed. In other cases,
an onomasiological shift can happen, when another word X (or several new
words) takes the position of a word Y which was used to denote some concept Z
before. In fact, if X is not a neologism (and full neologisms are rare), then this
phenomenon can be looked at both as onomasiological and as semasiological: on
the one hand, the meaning Z stays the same, while its form changes from Y to
Z, but on the other hand, in the course of this, the old meaning of X is obviously
changing in some way. Thus, ‘semasiological change’ and ‘onomasiological change’
are rather two ways to look at the same process than two different types of
processes.

Linguists today widely acknowledge that large-scale corpora can help
understand language dynamics and change (Nölle et al., 2020). Thus, it is
natural to try to detect semantic change automatically, in a data-driven way. In
the following sections, we overview the methods currently used for unsupervised
semantic change modeling and the recent academic research related to this
problem.

3.2 Tracing semantic shifts distributionally

Conceptually, the task of discovery of diachronic semantic change from data can
be formulated as follows. Given corpora [C1, C2, ...Cn] containing texts created
in time periods [1, 2, ...n] correspondingly, the task is to find words with meaning
changed between different time periods, or to rank words according to their level
of meaning change. Other related tasks are possible: discovering general trends
in semantic shifts (see Section 3.3) or tracing the dynamics of the relationships
between words (see Section 3.4). In the next subsections, we address several
axes along which one can categorize the research on detecting semantic shifts
with distributional models.

3.2.1 Sources of diachronic data for training

When modeling semantic change in an unsupervised way, the types of
generalizations we will be able to produce are much influenced by properties of
the textual data being used, such as the sources and the temporal granularity of
the corpora. In this subsection we discuss the data choices made by researchers.
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The time unit (the granularity of the temporal dimension) can be chosen
before slicing the text collection into sub-corpora. Earlier works dealt mainly
with long-term semantic shifts (spanning decades or even centuries), since they
are usually easier to trace. The early examples are Hilpert and Gries (2009)
who studied frequency developments of words in the TIME corpus2 and Sagi
et al. (2009) who studied differences between Early Middle, Late Middle and
Early Modern English, using the Helsinki Corpus (Rissanen et al., 1993).

A large role in further development of the field was played by the Google
Books Ngrams corpus3, which caused a surge of the new data-driven discipline of
‘culturomics’, studying human culture through digital media (Michel et al., 2011).
Mihalcea and Nastase (2012) used this corpus to detect differences in word
usage and meaning across 50-years time spans, while a bit earlier Gulordava and
Baroni (2011) compared word meanings in the 1960s and in the 1990s, achieving
good correlation with human judgments. Unfortunately, Google Ngrams is
inherently limited in that it does not contain full texts (it is possible to download
only 5-word fragments). However, for many cases, this corpus was enough and
its usage as the source of diachronic data continued in Mitra et al. (2014), who
detected word sense changes over decades.

In many of the following works, time spans decreased in size and became more
granular. In general, corpora with smaller time spans are useful for analyzing
socio-cultural semantic shifts, while corpora with longer spans are necessary
for the study of linguistically motivated semantic shifts. As researchers are
attempting to trace increasingly subtle cultural semantic shifts (often more
relevant for practical tasks), the granularity of time spans is decreasing and
the issue of short-term semantic change receives much attention. For example,
Kim et al. (2014), Liao and Cheng (2016) and Del Tredici et al. (2019) analyzed
yearly lexical changes.

In addition to the Google Ngrams corpus (with granularity of five years),
Kulkarni et al. (2015) used Amazon Movie Reviews (with granularity of one
year) and Twitter data (with granularity of one month). Their results indicated
that computational methods for the detection of semantic shifts can be robustly
applied to time spans less than a decade. Since then, Twitter data became a
relatively popular choice for short-term semantic change modeling, with many
datasets available, including the recently presented COVID-19 Twitter dataset
containing about 14 billion word tokens (Banda et al., 2020). In a similar vein,
Stewart et al. (2017) used the data from the Vkontakte social network to predict
very short-term (up to several weeks) changes in semantic representations of
words. Another popular and publicly available corpus for short-term diachronic
studies is the Signal Media Dataset (Corney et al., 2016), which we employed in
Kutuzov and Kuzmenko (2016).

Tahmasebi (2013) and Zhang et al. (2015) used the New-York Times
Annotated Corpus (Sandhaus, 2008) with yearly sub-corpora, again managing to

2The TIME corpus contains about 275 000 articles from TIME magazine from 1923 to
2006, https://www.english-corpora.org/time/.

3https://books.google.com/ngrams
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trace subtle semantic shifts. The same corpus was employed by Szymanski (2017),
with 21 separate models, one for each year from 1987 to 2007, and to some extent
by Yao et al. (2018), who crawled the New-York Times web site to get 27 yearly
sub-corpora (from 1990 to 2016). Yao et al. (2018) captured semantic change
with the granularity of years: for example, observing that the nearest neighbors
for the proper noun ‘Obama’ were moving from Barack Obama pre-presidential
life in 1990-2006 (‘university’, ‘professor ’, ‘civil’, etc) to political terms in 2008-
2016 (‘president’, ‘campaign’, ‘government’, etc.), with the same trends observed
for Donald Trump.

The inventory of diachronic corpora used in tracing semantic shifts was
expanded by Jatowt and Duh (2014), who turned to the Corpus of Historical
American (COHA)4. They used COHA as an additional source of data, with
Google Ngrams being the main one. Hamilton, Leskovec, et al. (2016b) continued
the usage of COHA along with the Google Ngrams corpus, and Eger and
Mehler (2016) made the former their main data source (with the granularity of
one decade). Cook, Lau, Rundell, et al. (2013) were the first to use two years
of the English Gigaword news corpus (Parker et al., 2011), while in Kutuzov,
Velldal, et al. (2017b), we employed all its yearly slices in the analysis of cultural
semantic drift related to armed conflicts.

In Table 3.1 we list main English corpora which have been used for diachronic
research with distributional approaches. The sizes of the corpora in word tokens
are provided, but sheer size is not the only important property of a diachronic
corpus. First of all, not all the corpora are publicly available: for example,
New-York Times Annotated Corpus, COHA and Gigaword are available for a
fee only, while Google Books Ngrams does not provide any clear ways to obtain
the full corpus at all. Another aspect to consider is, of course, the time span
covered by the corpus: the Helsinki Corpus might be small in comparison to
Twitter or Gigaword, but if one is interested in Old English and Middle English,
the latter corpora will not be of much help. Finally, the domain composition
of the corpus can be of paramount importance: diachronic shifts occurring in
movie reviews can be very different from those occurring in news pieces.

Note that Table 3.1 does not claim to be exhaustive. Nowadays, researchers
start to use many other diachronic corpora in various languages besides English:
the Deutsches Textarchiv, Berliner Zeitung and Neues Deutschland for German,
the LatinISE for Latin, the Kubhist for Swedish, the Russian National Corpus and
Lenta.ru dataset for Russian, the Corpus of Contemporary American English and
Project Gutenberg for English, and many others, which would be impossible to
list here. The CLARIN association maintains a list of historical corpora (mostly
with long-term time spans) at https://www.clarin.eu/resource-families/historical-
corpora.

4http://corpus.byu.edu/coha/
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Corpus Size, words Reference

Helsinki Corpus 106 Rissanen et al. (1993)
New-York Times Annotated Corpus ≈ 2 × 109 Sandhaus (2008)
Google Books Ngrams ≈ 100 × 109 Michel et al. (2011)
English Gigaword ≈ 4 × 109 Parker et al. (2011)
Corp. of Hist. Amer. Engl. (COHA) 400 × 106 Davies (2012)
Amazon Movie Reviews ≈ 9 × 108 McAuley and Leskovec (2013)
Twitter (also in other languages) ≈ 14 × 109 Banda et al. (2020)

Table 3.1: Popular English corpora for diachronic research

3.2.2 Evaluation of diachronic semantic change modeling

Diachronic datasets are needed not only as a source of training data for developing
systems to trace semantic change, but also as a source of test sets to evaluate such
systems. But in this case the situation is more complicated. Ideally, diachronic
approaches should be evaluated on human-annotated lists of semantically changed
words (preferably ranked by the degree of the shift). However, such gold standard
data is difficult to obtain, even for English, let alone for other languages.

Works on language change from general linguistics like Traugott and
Dasher (2001) or Daniel and Dobrushina (2016) and others as a rule contain
only a small number of hand-picked examples, not enough to properly evaluate
an automatic unsupervised system. The DatSemShift database (Zalizniak, 2018)
features more than 4 000 semantic shifts across 800 languages. But it is focused
on cognitive proximities between pairs of linguistic meanings (with a limited
set of pre-defined senses): in this paradigm, a semantic shift is just a case of
extended polysemy. The DatSemShift database is extremely useful for identifying
recurring cross-linguistic semantic shifts, but it is yet to find out what is the
best way to employ it for evaluation of unsupervised semantic change detection
systems.

Thus, until recently, there were few standard test sets in the field, and the
existing ones were of varying quality and availability. For example, Gulordava
and Baroni (2011) manually annotated a dataset of English words by the degree
of their semantic change from the 1960s to the 1990s (the GEMS dataset). Even
though the inter-rater agreement was not high (see more on that in Chapter 6),
this resource is still of enormous value for the field. However, the authors did
not make the GEMS publicly available. Even eight years later, researchers have
to contact the authors personally to get the dataset.

Fortunately, the situation starts to improve in the recent years. A prominent
example is a package of test sets for English, German, Latin and Swedish
provided in Schlechtweg, McGillivray, et al. (2020), accompanying the SemEval-
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2020 shared task 1.5 They are publicly available and manually annotated using
a framework for the annotation of lexical semantic change called DURel or
‘Diachronic usage relatedness’ (Schlechtweg, Schulte im Walde, et al., 2018).
The RuSemShift datasets for Russian by Rodina and Kutuzov (2020) follow
the same approach, with certainly more to come in the nearest future. This
standardization and unification of annotated test data is beneficial for the whole
field.

Typically, such test sets are simply lists of words where each word is
accompanied either by a binary class label (where ‘1’ means ‘semantic shift’ and
‘0’ means ‘no shift’) or by a continuous value representing the degree of semantic
change. The list is associated with two different time spans (for example, the 19th

century and the 20th century) and the corresponding corpora of texts produced
within these time spans. An automatic system is supposed to predict the class
label or the change score. The first case corresponds to the task of binary
semantic change classification and the second case corresponds to the task of
estimating and quantifying the degree of semantic change (we mentioned these
two main aspects of diachronic semantic change modeling in the Introduction).
As a rule, the classification predictions are evaluated with accuracy or F-1
score, while the change scores are evaluated with the Spearman rank correlation
between the predictions of the system and human annotations.

Unfortunately, manually annotated semantic change datasets are still
unavailable for the majority of world languages, and those that are available
are rather small. Doubts are expressed, for example, about whether one can
trust Spearman rank correlations calculated on sets of 30 or 40 elements (Gonen
et al., 2020). Thus, the problem of evaluating approaches to semantic change
modeling is far from being solved, and practitioners often rely on self-created
test sets, or even on simple eyeballing of the results.

Various ways of overcoming this problem without extensive manual annotation
have been proposed. For example, Mihalcea and Nastase (2012) evaluated the
ability of a system to detect the time span that specific contexts of a word
undergoing a shift belong to (‘word epoch disambiguation’). A similar problem
was offered as SemEval-2015 Task 7: ‘Diachronic Text Evaluation’, where the
participants were challenged to automatically determine the period when a text
was written (Popescu and Strapparava, 2015). Another possible evaluation
method is the so-called ‘cross-time alignment’, where a system has to find
equivalents for certain words in different time periods (for example, ‘Obama’ in
2015 corresponds to ‘Trump’ in 2017). Arguably, manual annotation for such
datasets is easier to obtain than for full-fledged semantic change datasets. There
exist several test sets containing such temporal equivalents at least for English
(Yao et al., 2018).

Another interesting direction is the usage of the existing dictionaries or
thesauri which contain the year when a particular word sense had been introduced.
This approach is taken in the dataset presented in Cook, Lau, McCarthy,
et al. (2014) based on Macmillan English Dictionary for Advanced Learners

5We work with these test sets extensively in Chapter 6.
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(MEDAL), and in the datasets introduced by Tahmasebi and Risse (2017a) and
Tsakalidis et al. (2019) and based mostly on the Oxford English Dictionary. In
the same vein, Aggelen et al. (2019) presented the large HiT dataset based on
the Historical Thesaurus of English6. Notably, they also released several prior
work datasets in a unified format, which is going to be very helpful in further
evaluation and comparison efforts. However, high quality dictionaries (especially
ones which contain diachronic sense information) are still a scarce resource for
the majority of world languages.

Yet another evaluation strategy is to use the computed diachronic semantic
change to trace or predict real-world events like armed conflicts, which took place
in the corresponding time spans. Thus, event datasets (created and annotated by
researchers in other fields of science: history, political studies, social studies, etc.)
can serve as proxies to language change. A somewhat similar idea was employed
in Wijaya and Yeniterzi (2011), who checked that the periods of the detected
semantic shifts coincide with political events in these time spans. However, they
did not develop it into a full-fledged evaluation framework. We employed this
approach in Kutuzov, Velldal, et al. (2017a), Kutuzov, Velldal, et al. (2017b),
Kutuzov, Velldal, et al. (2019), and in this thesis in Chapter 5.

Finally, when lacking manually annotated datasets of semantic shifts, one
can turn to so called ‘synthetic evaluation’. It is rooted in the field of word sense
disambiguation (WSD), where artificially created ‘ambiguous’ pseudo-words have
long been used to evaluate supervised algorithms (Schütze, 1998). In WSD,
pseudo-words are injected in real corpora to imitate synchronic lexical polysemy.
In semantic change modeling, such pseudo-words are injected to imitate polysemy
changing diachronically (for example, a word gradually acquiring or losing a
sense over time). Since these words are injected by a researcher and known
by definition, the gold standard data emerges naturally. Synthetic evaluation
was applied to semantic shift detection by Dubossarsky, Hengchen, et al. (2019)
and Shoemark et al. (2019), among others. However, it should always be kept
in mind that synthetic data follows a researcher’s assumptions about how real
semantic shifts should behave. It is never the same as real annotated data, and
thus the conclusions drawn from synthetic evaluation should be taken with a
grain of salt.

3.2.3 Pre-embedding approaches to semantic change modeling

After settling on a diachronic data set to be used in the system (both for training
and for testing), one has to choose which data-driven methods to employ. Since
our task belongs within the field of semantics, this implies the choice of a
particular type of meaning representation. As already discussed in Chapter 2,
the spectrum of existing data-driven (‘distributional’) representations of meaning
is very rich. They can be document-centric or word-centric. If the meaning is
expressed by vectors, these vectors can be sparse and explicit (with interpretable
components) or dense and distributed (with non-interpretable components); also,

6https://ht.ac.uk/
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these vectors can be produced directly from a co-occurrence matrix (‘count-
based’) or trained via optimizing language modeling loss (‘prediction-based’).
Practically any combination of these representation types can be employed for
semantic change modeling. This thesis is focused on a particular combination:
trained dense word vectors, also known as ‘word embeddings’ (Baroni et al., 2014).
But first, in this subsection, we will outline prior work which uses other corpus-
based approaches

A word can be represented with its corpus frequency only: in fact, at some
time point it was quite common to use change in raw word frequencies in order
to trace semantic shifts or other kinds of linguistic change. For examples of
such work see, among others, Juola (2003); Hilpert and Gries (2009); Michel et
al. (2011); Lijffijt et al. (2012); Bochkarev et al. (2014), or Choi and Varian (2012)
for frequency analysis of words in web search queries. Naturally, frequency-based
methods can be useful in detecting the emergence of neologisms (Ryskina et
al., 2020)7 or the disappearance of existing words, which is arguably more
important for onomasiological research (Tjong Kim Sang, 2016), while vector
representations are useless if there is no co-occurrence data to infer them from.
In fact, a large part of ‘culturomics’ (Michel et al., 2011) revolves around using
frequencies to trace the introduction of new entities into common usage by
language speakers (or how some entities are going into oblivion). The algorithm
here can be as simple as calculating the absolute or normalized difference between
target word frequencies in two time-specific corpora.

However, if one wants to trace semasiological changes to existing word form,
then using raw frequency differences obviously has its limitations. Semantic
shifts are not always accompanied with strong changes in word frequency (or this
connection may be very subtle and non-direct). Since words belong to different
frequency tiers, and absolute frequency values are not distributed across the
vocabulary uniformly, it is difficult to find a robust method to calculate frequency
differences between diachronic corpora. Nowadays, raw frequency is as a rule
used only as the simplest possible baseline for semantic change detection systems
(Schlechtweg, McGillivray, et al., 2020).

As a sort of transfer towards full-scale distributional representations,
researchers also studied the increase or decrease in the frequency of a word A
collocating with another word B over time, and made conclusions about changes
in the meaning of A (Heyer, Holz, et al., 2009). Although these collocates had to
be manually defined prior to any experimentation, this allowed the researchers to
capture phenomena like the English ‘web’ collocating mostly with ‘spider ’ in 1994,
but mostly with ‘designer ’ in 2014, corresponding to the emergence of the new
‘internet’ sense (McEnery et al., 2019). However, naively representing lexical
semantics through specific word collocates suffers from the lack of generalization
power. At the same time, extending the list of collocates to the entire vocabulary
(as in Berberich et al. (2009) start suffering from the curse of dimensionality (see
Chapter 2 for the discussion of this issue in the context of explicit distributional

7In addition to frequencies, this work also uses semantic sparsity information inferred from
word embeddings.
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Figure 3.1: Tensor representation of a semantic space; image from (Jurgens and
Stevens, 2009).

models). There were also attempts to trace diachronic semantic change through
the shifts in grammatical relations of target words (Gerow and Ahmad, 2012),
but they didn’t lead to large-scale success either.

Around 2009, it was proposed that one can use vector-based distributional
methods (similar to modern ones) to reliably detect semantic shifts which are not
manifested through frequency change or simple collocates change. The pioneering
work by Jurgens and Stevens (2009) described an insightful conceptualization
of a sequence of distributional representations changing through time: it is
effectively a Word × SemanticV ector × Time tensor, in the sense that each
word possesses a set of semantic vectors for each time span we are interested
in. The more different are the time-specific vectors, the higher is the degree of
semantic change between the corresponding time bins.

This concept is graphically represented in Figure 3.1. It paved the way
for quantitatively comparing not only words with regard to their synchronic
meaning, but also different stages in the development of word meaning over time.
This conceptualization still remains the foundation of the whole field of using
distributional representations to diachronic semantic change modeling.

Jurgens and Stevens (2009) employed the Random Indexing (RI) algorithm
(Kanerva et al., 2000) to create word vectors from a training corpus, while Sagi
et al. (2009) turned to Latent Semantic Analysis (Deerwester et al., 1990). Both
these methods already worked with dense vectors: technically, the only difference
between these representations and modern word embeddings was that they were
not trained via language modeling. However, the ‘word2vec revolution’ was still
several years ahead, and two years later Gulordava and Baroni (2011) still used
explicit representations consisting of sparse word co-occurrence matrices weighted
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by Local Mutual Information, with a similar approach taken by Tahmasebi,
Gossen, et al. (2012), who traced named entity evolution.

Basile, Caputo, et al. (2014) proposed an extension to Random Indexing,
dubbed Temporal Random Indexing. No quantitative evaluation of this approach
was offered (only a few hand-picked examples based on the Italian texts from
the Gutenberg Project), and thus it is unclear whether Temporal Random
Indexing is any better than other distributional models for the task of semantic
shift detection. A newer study by Basile and McGillivray (2018) does evaluate
Temporal Random Indexing but lacks comparison to modern word embedding
algorithms.

Further on, the diversity of the employed methods increased, with graph
approaches gaining popularity. For example, Mitra et al. (2014) analyzed clusters
of the word similarity graph in the sub-corpora corresponding to different time
periods. Their distributional model consisted of lexical nodes in the graphs
connected with weighted edges. The weights corresponded to the number of
shared most salient syntactic dependency contexts,where saliency was determined
by co-occurrence counts scaled by Mutual Information (MI). Importantly, they
were able to detect not only the mere fact of a semantic shift, but also its
type: the birth of a new sense, splitting of an old sense into several new ones,
or merging of several senses into one. Thus, this work goes into a much less
represented class of ‘fine-grained’ approaches to semantic shift detection. Other
examples of graph-based approaches are Tahmasebi (2013) and Tahmasebi and
Risse (2017a) who tracked individual sense changes (word sense evolution) on
the basis of the curvature clustering algorithm. In these works, the concept of
word sense differentiation is of great importance. Our analysis of word senses in
the context of diachronic semantic change modeling with word embeddings can
be found in Chapter 2 and Chapter 6.

Another vein of research focused on sense changes employed topic modeling
approaches (where topics are interpreted as senses). Prominent example is Lau
et al. (2012) who applied LDA in conjunction with non-parametric Hierarchical
Dirichlet Process. Senses were naturally mapped to automatically inferred
corpus topics, so that the distribution of word senses corresponds to its topic
probabilities. The paper is largely devoted to the task of word sense induction
(WSI), but then the same technique is used to find words which acquired a
novel sense over time. Interestingly, their approach is token-based (each word
occurrence receives its own sense distribution, handling polysemy and contextual
variance naturally) which makes it somewhat similar to contextualized token
embeddings we employ in Chapter 6. With this, Lau et al. (2012) managed
to distinguish lemmas with a novel sense from semantically stable ‘distractor
lemmas’ better than the frequency baseline. However, due to the lack of proper
semantic change datasets, they had to rely on a very small self-created test set
containing only five shifted and five stable English lemmas. Thus, this work was
rather exploratory.

Cook, Lau, McCarthy, et al. (2014) improved the evaluation of novel sense
detection task by presenting the manually annotated SiBol/Port English test
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set8 containing 13 lemmas gaining a new sense between 1993 and 2010. They
also extended the method from Lau et al. (2012) by taking into account the
relevance of each induced sense, which is calculated based on keywords of the
current corpus relative to the previous time-specific corpus. The intuition here
is that it can be helpful to know for what topics we expect to see novel senses
(for example, ‘computing’ is a relevant topic when comparing 2010 to 1993).
However, even with 13 lemmas, the proposed dataset was rather small and the
results on it were not much better than the frequency baseline.

Accordingly, we believe that non-parametric topic modeling approaches have
great potential for semantic change detection. The vein of research based on
dynamic topic modeling (Blei and Lafferty, 2006; Wang and McCallum, 2006),
which learns the evolution of topics over time, is rather strong. In Wijaya and
Yeniterzi (2011), it helped solve a typical digital humanities task of finding
traces of real-world events in the texts. Heyer, Kantner, et al. (2016) employed
topic analysis to trace the so-called ‘context volatility’ of words. Frermann and
Lapata (2016) drew on these ideas to trace diachronic word senses development
(we compare our embeddings-based approach to theirs in Chapter 6). In the
political science, topic models are also sometimes used as proxies to social trends
developing over time: for example, Mueller and Rauh (2017) employed Latent
Dirichlet Allocation (LDA) to predict timing of civil wars and armed conflicts.

But most scholars nowadays seem to prefer parametric distributional models,
particularly prediction-based embedding algorithms like SGNS, CBOW or GloVe.
We outline a surge of word embedding-based research in the next subsection.

3.2.4 Embedding approaches to semantic change modeling

Word embeddings are dense and continuous vector representations of lexical
semantics trained in an iterative unsupervised fashion with the target to improve
loss on the language modeling task. Typical examples are architectures like
word2vec (Mikolov, Sutskever, et al., 2013) and fastText (Bojanowski et al., 2017).
Following their widespread adoption in NLP in general, they have become the
dominant representations for the analysis of semantic change as well.

We emphasize again that the word embedding-based approaches are not the
only existing methods for semantic change modeling. However, this family of
methods is now the most widely used in the field, as is clearly evidenced by
the results of the first SemEval shared task in unsupervised lexical semantic
change detection (Schlechtweg, McGillivray, et al., 2020): 18 of 21 participants
(including all the winners) used either static or contextualized word embeddings.
We believe this provides additional justification to our focus on this type
of semantic representations, apart from us simply being interested in what
diachronic information they can capture.

As discussed in Chapter 2, dense distributional representations provide an
efficient way to tackle synchronous semantic tasks. They represent lexical
meaning with dense vectors (embeddings), produced from word co-occurrence

8Unfortunately, the URLs from the paper for this test set are not valid any more.
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counts. Although conceptually the source of the data for these representations is
still word and collocate frequencies, unlike count-based methods, they ‘compress’
this information into continuous vector representations which are both efficient
and convenient to work with (Baroni et al., 2014).

The work of Kim et al. (2014) was seminal in the sense that it is arguably
the first to employ prediction-based word embedding models to trace diachronic
semantic shifts. Particularly, they used Continuous Skipgram with negative
sampling (SGNS) (Mikolov, K. Chen, et al., 2013).9 Along with that, they
introduced the incremental or chronological training approach (see subsection
3.2.5 below), leveraging new properties of prediction-based embeddings. Kim
et al. (2014) successfully identified semantic shifts in widely used examples like
the English word ‘cell’ (the beginning of the 21 century). Already back then,
they understood the limitation of such method in that it cannot determine the
nature of the shift (narrowing or widening, amelioration or pejoration, etc). This
concern is still valid as of now.

Kulkarni et al. (2015) empirically demonstrated that distributional word
embeddings outperform the frequency-based methods in modeling diachronic
semantic shifts. They managed to trace semantic change more precisely and with
greater explanatory power. One of the well-known examples from their work
is the semantic evolution of the word ‘gay’: through time, its nearest semantic
neighbors were changing, manifesting the gradual move away from the sense of
‘cheerful’ to the sense of ‘homosexual’ (see Figure 3.2).

Hamilton, Leskovec, et al. (2016b) showed the superiority of SGNS over
explicit PPMI-based distributional models in semantic change modeling, although
they noted that low-rank approximations of explicit models with singular value
decomposition (SVD) (Bullinaria and J. P. Levy, 2007) can perform on par with
SGNS, especially on smaller datasets. Since then, the majority of publications
in the field started using dense word representations: either in the form of
SVD-factorized PPMI matrices, or in the form of prediction-based shallow neural
models like SGNS10.

Embedding models provide dense vector representations which are both
efficient, scalable and very convenient to integrate into NLP pipelines, including
those for semantic change detection. However, apart from general shortcomings
of word embeddings, described earlier in Chapter 2, there are some issues
specifically related to their usage in semantic change modeling. Arguably, the
most important is the problem of making the embedding models comparable
(sometimes called ‘the problem of alignment’), which we discuss in the next
subsection 3.2.5.

3.2.5 Comparing embeddings across time

As already mentioned in Chapter 2, it is not straightforward to compare vector
representations across different separately trained embedding models, even if

9Continuous Bag-of-Words (CBOW) from the same paper is another popular choice.
10We remind that O. Levy and Goldberg (2014) showed these two approaches to be equivalent

from the mathematical point of view.
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Figure 3.2: Semantic trajectory of the English word ‘gay’ in the space of its
context words (Kulkarni et al., 2015).

their vocabulary is essentially the same (diachronic word embedding). The
reason is the non-deterministic and stochastic nature of the prediction-based
embeddings. The most popular remedy here is to align different vector spaces
by somehow making the vectors comparable: but this is not the only one. In
this subsection, we describe approaches to overcome this problem.

First of all, it is entirely possible to discard the global states of vector
spaces under comparison and look only at the local lists of k nearest neighbors
produced by different diachronic word embeddings for one and the same target
word (where k is much smaller than the size of full vocabulary). One can then
estimate similarity of these lists, for example, using Jaccard similarity coefficient
(Jaccard, 1901) or Kendall’s τ (Kendall, 1948). The lower the similarity, the
stronger is the semantic shift (if the lists are entirely different, the word meaning
is entirely changed). In doing this, we are moving from the vector space to
the word space, and naturally, the nearest words to a particular word will be
more or less the same in all runs of the same training algorithm on the same
corpus (provided they are trained for long enough): they do not depend on
random initialization like the values of particular vector components. Thus, we
can expect that semantically stable words will have similar nearest neighbors in
embedding models trained on diachronic corpora. Another benefit of this method
is its immediate interpretability: it is much easier for a human to understand
the nature of a semantic shift by looking at two lists of, say, 10 nearest words
than by looking at a single cosine similarity score. This approach was used
to trace semantic shifts between different domains or corpora in Kutuzov and
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Kuzmenko (2015) and Gonen et al. (2020), among others. However, it has
significant downsides: if considering only a few nearest neighbors (in the order
of dozens), the method becomes too local: it might miss the cases when a word
is moving in the semantic space together with its neighbors. On the other hand,
increasing the number of considered neighbors quickly becomes computationally
expensive and sensitive to random fluctuations. Also the nearest neighbor-
based approaches do not take into account the relations between the neighbors
themselves. Overall, directly comparing local ‘semantic neighborhood’ remains
an unpopular technique: the participants of the recent SemEval shared task on
unsupervised lexical semantic change detection did not use it at all (Schlechtweg,
McGillivray, et al., 2020). Still, we demonstrate an example of employing this
approach below in Chapter 4.

If one wants to consider the entire vector spaces when modeling semantic
change, one has to first make the embeddings trained on different corpora
comparable (that is, vectors for semantically similar stable words trained on
C1 should yield high cosine similarity to those trained on C2). In one of the
early publications, Kulkarni et al. (2015) suggested aligning the models to fit
them in one vector space, using linear transformations preserving general vector
space structure. The idea is as follows. If we are given two independently
trained embedding matrices A and B with a significant shared vocabulary (for
example, trained on two diachronic corpora), we can find an orthogonal linear
transformation T such that it projects A to B while minimizing the squared
loss. This problem, shown in in Equation 3.1, is solved using the Orthogonal
Procrustes method (Gower, Dijksterhuis, et al., 2004), which is also popular in
the field of cross-lingual word embeddings (Artetxe et al., 2020).

T = argmin
T

||T · A − B||2 (3.1)

After A is projected to the B vector space, cosine similarities between their
vectors become meaningful and can be used as indicators of semantic change.
Kulkarni et al. (2015) also proposed constructing the time series of a word
embedding over time, which allows for the detection of ‘bursts’ in its meaning
with the Mean Shift model (Taylor, 2000). Notably, almost simultaneously the
idea of aligning diachronic word embedding models using a distance-preserving
projection technique was proposed by Zhang et al. (2015). They were dealing
with the temporal correspondence problem in which, given a query term and the
source time period, the task is to find the counterpart of the query that existed
in the target time period (see Section 3.4). Zhang et al. (2016) expanded on this
by adding the so called ‘local anchors’: that is, they used both linear projections
for the whole models and small sets of nearest neighbors for mapping the target
words to their correct temporal counterparts. Tsakalidis et al. (2019) showed
that it can also be beneficial to base the Procrustes transformation on a limited
set of diachronically stable ‘anchor words’. These approaches operate both in
the space of vector representations and in the space of particular words.

Direct alignment with orthogonal projections is easy and straightforward to
use. This approach is sometimes criticized for its self-contradicting objective
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(it attempts to project each word to itself, even in the presence of a shift) and
for instability with respect to different embedding spaces (Gonen et al., 2020).
However, it is often very efficient in semantic change detection, as shown by
Shoemark et al. (2019) and by us in Chapter 6 of the present thesis. And in case
its performance is not satisfactory, there is a number of alternatives, described
below

Instead of aligning their diachronic embedding using linear transformations,
Eger and Mehler (2016) compared word meaning using so-called ‘second-order
embeddings’: that is, the vectors of words’ cosine similarities to all other words
in the shared vocabulary of all models. This approach does not require any
alignment at all: basically, one simply analyzes the word’s position compared
to other words. The absolute values of cosine similarities in two models under
analysis will almost never be the same (because of different vector space density),
but this is not important for this method. What is important is the relative
ranking of the words from the shared vocabulary by the similarity to the target
word. If the ranking is more or less the same, the similarities’ vectors from both
models will be very similar themselves (by dot product or cosine similarity), and
the conclusion would be that the word semantics has not changed. If, vice versa,
the rankings are substantially different, the similarities’ vectors will yield low
cosine similarity between themselves, leading to the conclusion that a semantic
shift occurs.

A very similar algorithm was described by Yin et al. (2018) under the name
of ‘Global Anchors’ (meaning that all the words from the vocabulary are used
as anchors). Hamilton, Leskovec, et al. (2016b) and Hamilton, Leskovec, et
al. (2016a) showed that these two approaches can be used simultaneously: they
employed both ‘second order embeddings’ and linear transformations to align
diachronic models. Interestingly, J. Xu et al. (2019) used these methods of
vector space alignment not only for language-related tasks, but also for exploring
temporal patterns in dynamic graphs of any nature (they call it ‘diachronic
node embeddings’). Note that although the ‘second-order embeddings’ or Global
Anchors technically operate in the word space, they are very different from the
nearest neighbor comparison approach: they take into account the full global
structure of the vector space, and their results are not directly interpretable
(instead of two short word lists, one has two high-dimensional second-order
similarity vectors). Also, one can argue that computing the intersection of two
models’ vocabularies already constitutes a sort of ‘alignment’.

Further on, it was shown in Bamler and Mandt (2017) (dynamic skip-
gram model) and Yao et al. (2018) (dynamic Word2Vec model, DW2V) that
it is possible to learn word embeddings across several time periods jointly,
enforcing comparability across all of them simultaneously, and positioning all
the representations in the same vector space in one step. This eliminates the
need to first learn separate embeddings for each time period, and then align each
subsequent model pair. The method in Bamler and Mandt (2017) is conceptually
similar to dynamic topic models (Blei and Lafferty, 2006; Rudolph and Blei, 2018)
and combines a Bayesian version of the word2vec Skipgram architecture with a
latent time series. They additionally describe two variations of their approach,
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for the cases when data slices: a) arrive sequentially, as in streaming applications,
and one can not use future observations; b) are available all at once, allowing
for training on the whole sequence from the very beginning. Note, however, that
the dynamic skip-gram architecture assumes some pre-existing division of the
training corpus into specific documents (this is the consequence of being based
on the topic modeling idea), which is not the case for classic word embeddings.

‘Dynamic word2vec’ from Yao et al. (2018) avoids this assumption and learns
time-aware embeddings by jointly optimizing embeddings for all time periods in
question. In this case, a form of ‘alignment’ is enforced through regularization
which smooths changes across time. The main advantage of this method is that
it can be easily used on any number of time bins, while being robust against
cases when a particular time bin has less data and thus yields embeddings of
lower quality. Note that despite the name of the method mentioning ‘word2vec’,
in fact it employs sparse co-occurrence count matrices weighted by positive point-
wise mutual information (PPMI) and factorized to reduce their dimensionality.
This does not change the results: as we already mentioned in Chapter 2, O.
Levy and Goldberg (2014) showed that the objective of word2vec is equivalent
to low-rank factorization of a PPMI matrix. However, it does influence the
computational performance of the method: materializing all these matrices
can require a prohibitive amount of RAM. The authors propose to solve this
issue with scalable block coordinate descent, but unfortunately, do not provide
any reference code to re-implement their approach. Further on, an interesting
extension was presented by Rosenfeld and Erk (2018) who train a deep language
modeling network with word and time representations. Word vectors in this
setup are learned linear transformations applied to a continuous time variable,
and thus producing an embedding of word w at time t.

Dubossarsky, Hengchen, et al. (2019) proposed Temporal Referencing, which
also alleviates the need to explicitly align the vector spaces, while still making it
possible to calculate cosine similarity between word embeddings from different
time periods. One embedding model is trained on all n time bins combined, with
n time-specific vectors learned for each target word. This is done by replacing
each time-agnostic target word token w with a time-specific token wn at train
time: for example, in the corpus corresponding to the 1970s, ‘computer ’ becomes
‘computer_1970 ’ when it is a target word, but stays as it is when it is a context
word. As a result, time-specific target word representations are naturally located
in a shared vector space. Dubossarsky, Hengchen, et al. (2019) report increased
performance of SGNS embeddings with Temporal Referencing in comparison to
SGNS with alignment: mainly because their method is better in understanding
that a word is semantically stable (less susceptible to random noise). Dubossarsky,
Hengchen, et al. (2019) empirically evaluated Temporal Referencing only on the
Word Sense Change test set by Tahmasebi and Risse (2017b), which contains 13
changed and 19 stable English words, and the authors themselves acknowledge
that ‘the results are indicative rather than conclusive’.11

11Dubossarsky, Hengchen, et al. (2019) also conducted evaluation using a synthetic change
dataset, which supported the superiority of Temporal Referencing. However, as we already
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Figure 3.3: Incremental training of word embeddings (in this example, CBOW
models are trained on yearly diachronic corpora).

In fact, Schlechtweg, Hätty, et al. (2019) had the opposite results (they use
the term ‘Word Injection’ instead of ‘Temporal Referencing’). They evaluated
on the German DURel semantic shift dataset which was annotated following
the de-facto standard semantic change annotation framework (Schlechtweg,
Schulte im Walde, et al., 2018), and found that Orthogonal Procrustes alignment
consistently outperforms Temporal Referencing. The size of DURel is comparable
to the Word Sense Change test set. Contradicting evaluation results can be
explained by different tasks which were being solved: Dubossarsky, Hengchen,
et al. (2019) dealt with the classification task trying to distinguish stable words
from those that were changed, while Schlechtweg, Hätty, et al. (2019) dealt
with the ranking task trying to order words by the degree of their semantic
change. It is possible that Procrustes alignment and Temporal Referencing can
be complimentary to each other, depending on the type of the task. Also note
that Temporal Referencing requires knowing what target words are going to be
analyzed before actually training the embedding model, which may not always
be possible in practice. In theory, it is possible to replace all words with their
time-specific tokens; but this will mean the n-times explosion of the vocabulary
size.

Yet another way to make diachronic embeddings comparable is made possible
by the fact that prediction-based word embedding approaches (as well as Random
Indexing) allow one to update the trained models with new data. This is
not the case for the explicit count-based algorithms, which usually require a
computationally expensive dimensionality reduction step. Kim et al. (2014)
proposed the idea of incrementally updated diachronic embeddings: that is, they
train a model on the year yi, and then the model for the year yi+1 is initialized
with the word vectors from yi. See Figure 3.3 for a schema of this workflow. It
is also known as ‘vector initialization’ or VI (Schlechtweg, Hätty, et al., 2019).

mentioned, any evaluation of semantic change modeling on synthetic data should be taken
with a grain of salt.
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This is also an alternative to post-hoc alignment: instead of aligning models
trained from scratch on different time periods, one starts with training a model
on the diachronically first period, and then updates this same model with the
data from the successive time periods, saving its state each time. Thus, all the
models are inherently related to each other. This, again, makes it possible to
directly calculate cosine similarities between the same word in different time-
specific embeddings, or at least makes the models much more comparable. The
method is extremely straightforward and easy to implement using off-the-shelf
libraries. Dubossarsky, Weinshall, et al. (2016) used such incrementally updated
embeddings to compare the speed of semantic change for different parts of speech.

Several works aim to address the technical issues accompanying this approach
of incremental updating. Among others, Peng et al. (2017) described a novel
method of incrementally learning the hierarchical softmax function for the
Continuous Bag of Words and Continuous Skipgram algorithms. In this way, one
can update word embedding models with new data and new vocabulary much
more efficiently, achieving faster training than when doing it from scratch, while
at the same time preserving comparable performance. Continuing this line of
research, Kaji and Kobayashi (2017) proposed a conceptually similar incremental
extension for negative sampling, which is a method of training examples selection,
widely used with prediction-based models as a faster replacement for hierarchical
softmax.

Unfortunately, as far as we know, these techniques were not continued in
further works. Partially this may be due to the fact that incrementally trained
diachronic embeddings are often sub-optimal in comparison to aligned ones
(Shoemark et al., 2019). One of the non-obvious issues here is the one of
vocabulary extension: as the model is trained with additional data, there should
be some procedure to add new lexical entries to its vocabulary, based on their
frequency. It is extremely difficult to do it right and to avoid either catastrophic
forgetting of the past or insensitivity to the present. The same is true for
choosing the vector dimensionalities and the optimal number of updating epochs:
it highly depends on word frequencies (Schlechtweg, Hätty, et al., 2019; Kaiser
et al., 2020). Thus, incremental training should be used with caution; in this
thesis we demonstrate both the cases when it is beneficial (Chapter 5) and cases
when it loses to linear projection based alignment (Chapter 6).

Finally, the relatively novel ‘contextualized embedding’ architectures like
ELMo (Peters, Neumann, Iyyer, et al., 2018) or BERT (Devlin et al., 2019)
offer an entirely new approach to the problem of making diachronic embeddings
comparable. Unlike the ‘static’ embedding models like word2vec, fastText, GloVe,
etc, that produce type embeddings, they work with token embeddings: that is,
context-dependent representations of words. It means that a contextualized
model can be pre-trained on all the time bins of the diachronic corpus
concatenated (or even on an entirely different large corpus in the same language).
After that, this model can be used to infer token embeddings for each occurrence
of a target word in time-specific corpora; recall that similar conceptualizations
were used by Lau et al. (2012) with a topic modeling approach to semantic
change detection. These token embeddings will be similar for tokens used
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in similar contexts and different for tokens used in different contexts. This
makes it possible to formulate various ways of estimating the difference of token
embeddings between two or more time-specific corpora, without the need to
explicitly align anything: the embeddings are produced by one and the same
language model and are comparable by design. This approach to semantic change
modeling is relatively new, but was already successfully employed in several
works (R. Hu et al., 2019; Giulianelli et al., 2020; Martinc, Montariol, et al., 2020;
Martinc, Kralj Novak, et al., 2020). We discuss the advantages and downsides of
using contextualized embeddings for diachronic studies in Chapter 6.

It was already mentioned that different methods of comparing vector
representations are more or less ‘global’ or ‘local’. The distinction between global
and local embedding comparison methods was first introduced by Hamilton,
Leskovec, et al. (2016b) and Hamilton, Leskovec, et al. (2016a), who made an
important observation that it is correlated with the distinction between linguistic
and cultural semantic shifts. The global methods take into account the whole
model (for example, simple cosine similarity between two aligned vectors or
‘second-order embeddings’, when we compare the word’s similarities to all other
words in the lexicon), while the local methods focus on the word’s immediate
neighborhood (for example, when comparing the lists of k nearest neighbors).
They concluded that global measures are more sensitive to regular processes of
linguistic shifts, while local measures are better suited to detect chaotic cultural
shifts in word meaning and usage. Thus, the choice of particular embedding
comparison approach should depend on what type of semantic change one seeks
to detect.

3.3 Laws of semantic change

The use of diachronic word embeddings for studying the dynamics of word
meaning has resulted in several hypothesized ‘laws’ of semantic change. We
review some of these law-like generalizations below, before finally describing a
study that questions their validity.

Dubossarsky, Tsvetkov, et al. (2015) experimented with K-means clustering
applied to SGNS embeddings trained for evenly sized yearly samples for the
period 1850–2009. They found that the degree of semantic change for a given
word (quantified as the change in self-similarity over time) negatively correlates
with its distance to the centroid of its cluster. This distance to the centroid is
also known as ‘prototypicality’: the degree to which a word is representative of
the category of which it is a member of. For example, if considering the category
of pets, ‘cat’ is arguably a more prototypical pet than ‘axolotl’ (although pet
axolotls do exist). In a good word embedding model, the distance of the ‘cat’
vector to the centroid of the ‘pet’ cluster will be much lower than the same
distance for the ‘axolotl’ vector. It was proposed that the likelihood of semantic
change correlates with the degree of prototypicality (the ‘law of prototypicality’
in Dubossarsky, Weinshall, et al. (2017)).

Another relevant study is reported by Eger and Mehler (2016), based
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on two different graph models; one being a time-series architecture relating
embeddings across time periods to model semantic shifts and the other modeling
the self-similarity of words across time. Experiments were performed with time-
indexed historical corpora of English, German and Latin, using time-periods
corresponding to decades, years and centuries, respectively. To enable comparison
of embeddings across time, second-order embeddings encoding similarities to
other words were used, as described in 3.2.5, limited to the core vocabulary (words
occurring at least 100 times in all time periods). Based on linear relationships
observed in the graphs, Eger and Mehler (2016) postulate two laws of semantic
change:

1. a word embedding can be expressed as a linear combination of its neighbors
in previous time periods;

2. the meanings of words tend to decay linearly in time, as modeled in
terms of the similarity of a word to itself; this is in line with the ‘law of
differentiation’ proposed by Y. Xu and Kemp (2015).

In another study, Hamilton, Leskovec, et al. (2016b) considered historical
corpora for English, German, French and Chinese, spanning 200 years and
using time spans of decades. The goal was to investigate the role of frequency
and polysemy with respect to semantic shifts. As in Eger and Mehler (2016),
the rate of semantic change was quantified by self-similarity across time-points
(with words represented by Procrustes-aligned count-based SVD embeddings).
Through a regression analysis, Hamilton, Leskovec, et al. (2016b) investigated
how the change rates correlate with frequency and polysemy, and proposed
another two laws:

1. frequent words change more slowly (‘the law of conformity’);

2. polysemous words (controlled for frequency) change more quickly (‘the law
of innovation’).

Azarbonyad et al. (2017) postulated that these laws (at least the law of
conformity) hold not only for time-specific corpora, but also for other ‘viewpoints’.
For example, semantic shifts can be observed across embeddings trained on texts
produced by different political actors or written in different genres (Kutuzov,
Kuzmenko, and Marakasova, 2016).

In principle, this leads to significant expansion of the ‘semantic change’ notion
itself. Conceptually, the same techniques that are used for diachronic semantic
change detection can be used for analyzing cross-domain semantic differences.
In our previous work, we used Russian word embedding models to trace the
difference of lexical meanings between a general-purpose corpus and a web-
corpus (Kutuzov and Kuzmenko, 2015). Later, Schlechtweg, Hätty, et al. (2019)
evaluated some of the aforementioned techniques on German synchronic semantic
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shift test set SUReL, described in Hätty et al. (2019). Gonen et al. (2020) re-
invented the nearest neighbor comparison technique employed in Kutuzov and
Kuzmenko (2015) to find the words with shifted usage in texts produced by
authors of differing ages, genders, occupations or even published in different
days of week. However, in this thesis we stick to the ‘temporal’ aspect of
semantic change. Note that this allows for a view of the corpora under analysis
as an ordered sequence of more than two elements, which is impossible in the
cross-domain setup. It also increases the difficulty of the task.

Interestingly, Dubossarsky, Weinshall, et al. (2017) questioned the validity of
some of these proposed laws of semantic change. In a series of replication and
control experiments, they demonstrated that some of the regularities observed
in previous studies are largely artifacts of the models used and frequency effects.
Dubossarsky, Weinshall, et al. (2017) considered 10-year bins comprising equally
sized yearly samples from Google Books 5-grams of English fiction for the period
1990–1999. For control experiments, they constructed two additional data sets;
one with chronologically shuffled data where each bin contains data from all
decades evenly distributed, and one synchronous variant containing repeated
random samples from the year 1999 alone. Any measured semantic shifts within
these two alternative data sets would have to be due to random sampling noise.

Then, Dubossarsky, Weinshall, et al. (2017) performed experiments using
raw co-occurrence counts, PPMI weighted counts, and SVD transformations
(Procrustes aligned), and conclude that the ‘laws’ proposed in previous studies –
that semantic change is correlated with frequency, polysemy (Hamilton, Leskovec,
et al., 2016b) and prototypicality (Dubossarsky, Tsvetkov, et al., 2015) – are not
entirely valid as they are also observed in the control conditions. They suggested
that these spurious effects are instead due to the type of word representation used
(count vectors) and that semantic shifts must be explained by a more diverse set
of factors than distributional ones alone. Dubossarsky, Weinshall, et al. (2017)
did not use trained prediction-based embeddings, but in the following paper by
Dubossarsky, Hengchen, et al. (2019), SGNS embeddings were shown to contain
noise as well. In particular, SGNS-based methods can falsely detect ‘semantic
change’ in stable control words which increased their frequency. Note, however,
that Dubossarsky, Hengchen, et al. (2019) did not specifically focus on proving
or disproving any laws. Thus, the discussion on the existence of the ‘laws of
semantic change’ manifested by distributional trends is still open.

3.4 Diachronic semantic relations

Distributional methods can be used not only to trace meaning drift for particular
single words. Word embeddings are known to successfully capture complex
relationships between concepts, as manifested in the well-known word analogies
task (Mikolov, K. Chen, et al., 2013). An example of this is presented in Figure
3.4, where the distributional model captures the fact that the relation between
‘man’ and ‘woman’ is the same as between ‘king’ and ‘queen’. If one adds the
‘king’ vector to the ‘woman’ vector and subtracts the ‘man’ vector, the resulting
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Figure 3.4: Analogy task in a vector space, with the results from two
distributional models (WebVectors service (Fares et al., 2017)).

vector will have ‘queen’ as the closest word in the models’ vocabulary. Thus, it is
a natural development to investigate whether changes in semantic relationships
(links between the meanings of words) across time can also be traced by looking
at diachronic embeddings.

The task of finding ‘temporal co-references’ (Tahmasebi, Gossen, et al., 2012)
is to identify the word in a target time period which corresponds to a query term in
the source time period (for example, given the query term ‘iPod’, the counterpart
term in the 1980s time period is ‘Walkman’). Such identification is supposed
to improve the results of information retrieval from document collections with
significant time depth (Berberich et al., 2009). Tahmasebi, Gossen, et al. (2012)
addressed this problem using plain co-occurrence graphs, while Zhang et al. (2015)
called the same phenomenon ‘temporal correspondences’ and employed prediction-
based Skipgram word embeddings. Note that it is natural to think about temporal
correspondences in terms of onomasiological change (over time, another word
form emerges to express the same concept), unlike the examples in the previous
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sections, which mostly focused on semasiological processes (over time, another
concept emerges to be expressed by the same word form).

Szymanski (2017) framed this as the temporal word analogy problem,
extending the word analogies concept into the temporal dimension. They showed
that diachronic word embeddings can successfully model relations of the type
‘word w1 at time period tα is like word w2 at time period tβ ’. They aligned
embeddings trained on different time periods using linear transformations (see
Section 3.2.5). Then, the temporal analogies were solved by simply finding out
which word vector in the time period tβ is the closest to the vector of w1 in
the time period tα. Later, Yao et al. (2018) solved the same problem using
dynamic embeddings without alignment. A variation of this task was studied
in Rosin et al. (2017), where the authors learn the relatedness of words over
time, for the practical purpose of helping information retrieval, answering queries
like ‘in which time period were the words ‘Obama’ and ‘president’ maximally
related’. This technique can be used for a more efficient user query expansion in
general-purpose search engines.

In our work, we model a different semantic relation: ‘words w1 and w2 at
time period tα are in the same semantic relation as words w3 and w4 at time
period tβ ’ (Kutuzov, Velldal, et al., 2017a) . To trace the temporal dynamics of
these relations, we re-apply linear projections learned on sets of w1 and w2 pairs
from the model for the period t to the model trained on the subsequent time
period t + 1. This is used to address the task of detecting lasting or emerging
armed conflicts and the armed groups involved in these conflicts (we talk more
about this in Section 5.3). Orlikowski et al. (2018) employed a similar framework
to analyze diachronic evolution of concepts on a corpus of Dutch newspapers
from the 1950s and the 1980s. This last paper is again a perfect example of
onomasiological research: the studied semantic shifts are cases of diachronic
lexical replacement (Tahmasebi, Borin, and Jatowt, 2018), where different words
are coming into use to express one and the same concept.

Additionally, there exists a whole bulk of studies devoted to the issues of
extracting synchronic semantic relations from word embeddings models. D. Chen
et al. (2017) pointed out that some relations are predicted much better that
others. They argue that the reason is that vector space approaches cannot model
relations that violate symmetry or triangle inequality. For example, humans
judge ‘North Korea’ to be more similar to ‘China’ than the other way around;
this is a violation of symmetry. In another study, Gábor et al. (2017) also
describe problems with predicting semantic relations, rooted in their symmetry
and selectional restrictions on the answers. They propose taking into account the
second order similarity in order to alleviate these problems. In their experiments,
this considerably improved the task of unsupervised relation classification. Such
problems are directly linked to the task of temporal semantic relations modeling,
and it is crucial to closely study the nature of the semantic relations that one is
trying to trace diachronically. At the same time, the amount of training data
(the size of corpora) is as a rule much larger for the synchronic semantic relation
tasks, so they are somewhat easier than the diachronic ones.
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3.5 Applications

Practical applications of diachronic word embedding-based algorithms can
generally be grouped into two broad categories:

1. linguistic studies which investigate the how and why of semantic shifts,

2. event detection setups which mine text data for actionable purposes.

The first category generally involves corpora with longer time depth, since
linguistic changes happen at a relatively slow pace. Some examples falling into
this category include tracking semantic drift of particular words (Kulkarni et
al., 2015), identifying the breakpoints between epochs (Sagi et al., 2011; Mihalcea
and Nastase, 2012), studying the laws of semantic change at scale (Hamilton,
Leskovec, et al., 2016a) and finding different words with similar meanings at
different points in time (Szymanski, 2017). Chapters 4 and 6 of the present
thesis also fit into this category.

Diachronic studies have been held up as good use case of deep learning for
research in computational linguistics (Manning, 2015). There are opportunities
for future work applying distributional diachronic representations not only in the
field of historical linguistics, but also in related areas like socio-linguistics and
digital humanities. A good example here is the JeSeMe web service12 described
in Hellrich et al. (2018), which allows one to analyze temporal dynamics of
emotions related to a particular word. The emotions are described via three
scales:

1. valence (positive – negative),

2. arousal (calm – excited),

3. dominance (controlled – in control).

Figure 3.5 taken from the said web service shows how the English word ‘climate’
starts evoking more negative emotions in the 1990s, while at the same time the
level of excitement around this topic rises: this is obviously related to the public
discussion about global climate change.

Word Evolution13 (Jatowt, Campos, et al., 2018) is another web service based
on Google Ngrams and the Corpus of Historical American English. It allows a
user to trace changes in semantic associates of the query words across time. We
created a conceptually similar ShiftRy web service14 for analyzing short-term
semantic change in Russian news texts, with extended visualization capabilities
(Kutuzov, Fomin, et al., 2020). It fulfills the need for more user-friendly ‘story-
telling’ systems for diachronic semantic change analysis.

ShiftRy makes a smooth transition to the second category of applications
involving mining texts for cultural semantic shifts (usually on shorter time spans)

12http://jeseme.org/
13https://www.okayama.silk.jp/WordEvolution/
14https://shiftry.rusvectores.org/en/

61



3. Modeling diachronic semantic change: state of the field

Figure 3.5: Diachronic changes of emotions associated with the English word
‘climate’ as visualized by JeSeMe (Hellrich et al., 2018). The vertical axis (labels
omitted for readability) reflects the values of emotion scales, with 0 in the middle.

indicating real-world events. Examples of this category are predicting civil
turmoils like in Chapter 5 of this thesis or in Kutuzov, Velldal, et al. (2017b) and
Mueller and Rauh (2017), temporal information retrieval in Rosin et al. (2017), or
tracing the popularity of entities using norms of word vectors in Yao et al. (2018).
Such systems can be employed to improve user experience in search engines or
for policy-making in governmental structures.

We believe that the near future will see a more diverse landscape of
applications for unsupervised semantic change modeling, especially related to
the real-time analysis of large-scale news streams. ‘Between the lines’, these
data sources contain a tremendous amount of information about processes in
our world, manifested in semantic shifts of various sorts. The task of researchers
is to reveal this information and make it reliable and practically useful.

3.6 Summary

In this chapter, we have presented an outline of the current research related to
computational modeling of semantic change. We covered the linguistic nature of
semantic shifts (both semasiological and onomasiological), the typical sources

62



Summary

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Tim
e ten

sor
with

Ran
do

m
Ind

ex
ing

Se
man

tic
de

ns
ity

co
mpa

ris
on

with
LSA

Goo
gle

Ngra
ms co

rp
us

W
ord

ep
oc

h dis
am

big
ua

tio
n

Pred
ict

ion
-ba

sed
mod

els
(w

ord
2v

ec)

W
ord

em
be

dd
ing

s with
inc

rem
en

tal
up

da
tes

Mod
els

ali
gn

men
t

NYT
co

rp
us

COHA
co

rp
us

Law
s of

sem
an

tic
ch

an
ge

Loc
al

mea
su

res
be

tte
r for

cu
ltu

ral
sh

ift
s

Giga
word

co
rp

us

Diac
hr

on
ic

rel
ati

on
s

Crit
ici

sm
of

sem
an

tic
ch

an
ge

law
s

Jo
int

lea
rn

ing
ac

ros
s tim

e sp
an

s

Use
of

co
nte

xtu
ali

zed
word

em
be

dd
ing

s

ACL
work

sh
op

on
his

tor
ica

l lan
gu

ag
e ch

an
ge

Se
mEva

l sh
are

d tas
k on

sem
an

tic
ch

an
ge

Figure 3.6: Modeling diachronic semantic change distributionally: research
timeline

of diachronic data for training and testing, and the distributional approaches
used to model it: from frequency-based methods to static and contextualized
word embeddings. This emerging field is still relatively new, and although recent
years has seen a string of significant discoveries and academic interchange, much
of the research still appears slightly fragmented. This chapter is partly aimed
at addressing this issue and presenting computational detection of diachronic
semantic shifts with word embeddings as a coherent story.

Figure 3.6 shows the timeline of the development of research in the area of
unsupervised semantic change modeling: introducing concepts, usage of corpora,
important findings and community events.

The next chapters of the present thesis employ several of the embedding-based
approaches described in this chapter. In particular, in Chapter 4, we apply both
global (including Global Anchors) and local (including the nearest neighbors
comparison) methods for semantic change speed estimation. Chapter 5 employs
a local method to detect diachronic changes in connotational meaning associated
with armed conflicts (Section 5.2), while global methods are employed to trace
drift of semantic relations (Section 5.3). Chapter 6 deals with semantic shifts
proper and uses only global methods. To evaluate the abilities of diachronic
embeddings to capture information about semantic change, we use real-world
event datasets (Chapter 5) and manually annotated temporal semantic shift test
sets (Chapter 6).

As for the approaches to make embeddings comparable, in Chapter 4 we either
do not do this at all (since it is not needed for Global Anchors and nearest neighbor
comparison) or use Orthogonal Procrustes alignment. For the less mainstream
armed conflict related tasks presented in Chapter 5, incremental training is
shown to outperform Orthogonal Procrustes. However, for the standard semantic
change detection workflow described in Chapter 6, the Procrustes baseline is
much stronger than the incremental training baseline. Still, they both are
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outperformed by techniques based on contextualized embeddings, which can
be seen as another approach to make diachronic representations comparable.
Contextualized architectures also provide rich possibilities for analysis, while
at the same time having some intrinsic issues to be taken into account (see
Chapter 6 for details). But in the next two chapters 4 and 5 we limit ourselves
to standard ‘static’ embeddings.
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Chapter 4

Measuring diachronic evolution of
evaluative adjectives
In Chapter 3, we suggested that quantitative information about diachronic
semantic change extracted from word embeddings can be used in linguistic case
studies. In this chapter, we conduct research in exactly this vein, measuring
the intensity of diachronic semantic shifts in evaluative adjectives in English,
Norwegian and Russian across five decades.1

‘Evaluative’ adjectives are defined as those which describe object qualities
from the subjective point of view of the speakers, expressing their opinions
about the object being described. Typical English examples are ‘good’, ‘bad’ or
‘brilliant’. We test a particular linguistic intuition: that evaluative adjectives are
more prone to diachronic semantic change than other types of adjectives (that
shifts in their meaning are more probable and occur faster).

4.1 Motivation

Although we are not aware of any publication which explicitly claims that
evaluative adjectives change faster, mentions of evaluative words (including
adjectives) being prone to semantic change abound in scientific works.

We already discussed the categorization of semantic shifts. Borkowska
and Kleparski (2007) studied semantic shift categories naturally related to
evaluative words: namely, amelioration (acquiring more positive sentiment)
and pejoration (acquiring more negative sentiment). They found these types
to be extremely strong and wide-spread. In Hamilton, Clark, et al. (2016),
the authors induced historical sentiment lexicons from English corpora (using
word embeddings, among other methods). They showed that amelioration and
pejoration do occur on a massive scale: many evaluative adjectives in English
have completely switched their sentiment during the last 150 years (probably
due to their emotional load). Multiple examples of evaluative words changing
their polarity can be found in Traugott and Dasher (2001).

Thus, we know that there exist many cases of evaluative adjectives shifting
their sentiment. It does not in itself mean that evaluative adjectives are
specifically important from the viewpoint of modeling diachronic semantic change.
In principle, any lexical cluster can be studied using the same methods: see, for
example, Dubossarsky, Weinshall, et al. (2016) comparing the change degrees of
verbs, nouns and adjectives in general. Evaluative adjectives present a group
of words which is well-defined linguistically, and for which it is comparatively
easy to obtain word lists. Also, adjectives do not receive as much attention

1Parts of this chapter were previously published as Rodina, Bakshandaeva, et al. (2019).
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as nouns in the semantic change detection field. This was our motivation to
choose this particular lexical cluster. We argue that this is exactly the case
where quantitative techniques do provide evidence to general linguistics (not
exhaustive evidence, of course).

Let us consider the English words ‘incredible’ and ‘terrific’ which underwent
amelioration and started to denote positive instead of negative qualities. The
online version of the Merriam-Webster dictionary2 states that the word ‘incredible’
was first used in the negative sense of ‘too extraordinary and improbable
to be believed’, but nowadays it also has a positive sense of ‘amazing,
extraordinary’. Analogously, the original sense of ‘terrific’ was ‘very bad;
frightful’; today the first sense is ‘unusually fine; magnificent’. Note that
both words still retain their original negative senses, but these senses seem to
become less central in their use. An example of pejoration is the word ‘pathetic’:
it moved on from the sense of ‘passionate’ to the much more negative sense of
‘pitifully inferior or inadequate’.

On the other hand, regular adjectives can also become evaluative in the course
of semantic shifts happening across time: consider the history of the English
word ‘monumental’ from the 1960s to the 2000s (Figure 4.1 shows a t-SNE
projection of its nearest distributional neighbors changing over time) or how the
word ‘sick’ slowly acquires a colloquial evaluative meaning (‘That’s sick, dude! ’),
as described in Mitra et al. (2014).

So, the examples of evaluative adjectives changing their sentiment (and thus,
their semantics) are multiple. But do these examples stem from sheer hand-
picking, or is there a general trend in human languages which makes evaluative
adjectives more prone to some types of semantic shift over time? To answer this
question, six different methods of quantifying semantic change are applied in
this chapter. We extend prior work by studying not only sentiment changes,
but semantic shift in evaluative adjectives in general. Additionally, we analyze
data from three languages (English, Norwegian and Russian), and focus on a
more narrow time span. Our time period is limited to only the decades from
1960s to 2000s. The reason for this is the availability of substantial amounts of
reliable textual data for all three languages. As a sanity check, we also conduct
additional experiments on data that spans 10 decades for English.

Frequency-controlled experimental results show that, depending on the
particular method, evaluative adjectives either do not differ from other types of
adjectives in terms of semantic change or appear to actually be less prone to it.
Thus, in spite of many well-known examples of semantically changing evaluative
adjectives, it seems that these processes are not particularly characteristic of
this specific type of words: at least with relatively short-term time spans (on
the order of several decades). Our experiments also show some limitations of
word embedding-based methods (see Section 4.5).

2https://www.merriam-webster.com/dictionary/
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Figure 4.1: Alterations in the nearest distributional neighbors of the English
adjective ‘monumental’: from ‘sculpture’ in the 1960s to ‘awesome’ in the 2000s.
t-SNE projection of CBOW vectors trained on the COHA corpus.

4.2 Training corpora and evaluative lexicons

In the following section, we present the diachronic corpora used in our experiments
with evaluative adjectives, as well as the word embedding models trained on
these corpora. Additionally, the process of creating evaluative adjective lexicons
for three languages is described. Note that here we are interested in semantic
change as a continuous multiple-point process, not as the difference between two
time bins. For this reason, we needed diachronic corpora spanning across several
consecutive time periods.

4.2.1 Corpora

For the purposes of this experiment, we employed corpora in three languages,
selecting texts which were created during the five decades from the 1960s to the
2000s:

• For the English data, we used The Corpus of Historical American English
(COHA).3 We remind the reader that this is a corpus of English texts
annotated with creation dates and balanced by genres. It is composed of
fiction, magazine and newspaper articles, as well as non-fiction texts.

3https://www.english-corpora.org/coha/
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English Norwegian Russian

1960s 12.0 6.0 10.0
1970s 12.0 21.0 10.0
1980s 13.0 25.5 9.0
1990s 14.5 40.5 20.0
2000s 15.0 21.0 39.5

Table 4.1: Corpora sizes (in millions of words).

• For Norwegian data, we used the NBdigital corpus.4 It contains texts in
Norwegian Bokmål from the National Library of Norway’s collection of
texts in public domain. They are mainly documents produced by various
public institutions. The texts have been digitized and converted to a
machine readable form (OCR-recognized) automatically; for each text, the
average OCR confidence is preserved. We kept only the texts with the
OCR confidence higher than 0.9, to exclude poorly recognized cases.

• For Russian data, we used the Russian National Corpus (RNC).5 It includes
a wide variety of genres of written and spoken language, such as non-
translated works of fiction, memoirs, essays, journalistic works, scientific
and popular scientific literature, public speeches, letters, diaries, documents,
etc. It is important that the RNC is also rigorously balanced across genres
and types of texts.

The NBdigital corpus was provided to us already lemmatized and POS-tagged
with the Oslo-Bergen tagger (Johannessen et al., 2012), along with syntactic
disambiguation. The English and Russian corpora were lemmatized and POS-
tagged by ourselves, using the corresponding UDPipe 2.3 models (Straka and
Straková, 2017). Lemmatization was especially important for Russian with its
rich morphology (at least 18 syntactic forms for each adjective).

Table 4.1 lists the corpora sizes for each decade and language under
consideration. We also conducted additional experiments with the English
texts covering a longer COHA time span: all the decades from the 1910s to the
2000s. The size of each of the pre-1960s sub-corpora is similar to the post-1960s
ones: about 12 or 13 million word tokens. Unfortunately, we were not able to
collect comparable (in size and reliability) diachronic corpora for Norwegian
and Russian. Thus, the additional experiments with semantic shifts on a longer
period of time are limited to English only. This dataset is referred to below as
‘English10’, since it covers 10 decades.

4https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-43/
5http://ruscorpora.ru/en/
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4.2.2 Word embeddings

Continuous bag-of-words embeddings (Mikolov, Sutskever, et al., 2013) were
trained from scratch on each decade’s sub-corpus for each of the three languages.
We did not need to train the models incrementally, since all the methods we
use in this chapter (see section 4.3) either employ Orthogonal Procrustes (which
aligns the models itself) or work on the level of the nearest words (which avoids
the need to make the embeddings comparable). Our prior work with lexical
semantic change detection for Russian (Fomin et al., 2019) (not included in
this thesis) showed that for semantic shifts proper, alignment based methods
outperform incremental training based ones, which is in line with the results for
other languages (Shoemark et al., 2019; Schlechtweg, Hätty, et al., 2019).

All the models share the same set of hyperparameters: vector size 300,
symmetric context window size 3, and 10 training iterations (epochs) over the
corpus. We discarded all the words which occurred less than five times in the
training corpus, and additionally limited the maximum vocabulary size to be 100
000, so the less frequent words ranked below 100 000 were discarded as well (this
way, we ensured comparability of the model vocabularies’ sizes). The pre-trained
embedding models are publicly available via the NLPL word vector repository6

(Fares et al., 2017).

4.2.3 Evaluative adjective lexicons

In order to find out whether evaluative adjectives are more prone to diachronic
semantic change, we need an authoritative source providing us with a list of
such adjectives, preferably with a large number of them. Unfortunately, even for
English such a list is hard to find in the published works, and the same is true for
Norwegian and Russian. For this reason, we turned to sentiment lexicons: lists
of positive and negative words widely used in natural language processing for
the purposes of automatic sentiment analysis. The reason behind this choice was
that such words are almost always evaluative by definition. Below we describe
these lexicons for each of the three languages under analysis.

The lists for English and Norwegian come from the same source. The
English list is a general sentiment lexicon composed of a positive and a negative
part. These were created by assigning the positive and negative labels using
a WordNet-based bootstrapping approach (M. Hu and B. Liu, 2004).7 We
thereafter automatically translated (from English to Norwegian) these positive
and negative sentiment lexicons. The translations were manually checked, and
corrected when necessary. Furthermore, if an English word had several senses
that could be translated into different Norwegian words, these were added to
the translations. We have omitted all multi-word expressions, and only kept
single word translations. This resulted in a collection of 3 961 negative and 1
646 positive Norwegian words. The original English lexicons contained 4 783
negative and 2 006 positive words. We did not investigate rigorously to what

6http://vectors.nlpl.eu/repository/
7Available at https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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Language Source Total entries

English Customer Review Dataset (M. Hu and B. Liu, 2004) 2 250
Norwegian same as English (translated) 1 939
Russian RuSentiLex (Loukachevitch and Levchik, 2016) 2 435

Table 4.2: Evaluative adjective lexicons.

extent the translated lexicon is representative of the Norwegian language, but we
believe that it is representative enough, since it is a general lexicon equivalent
to its original English counterpart, and because the Norwegian list was checked
manually to filter out non-evaluative adjectives.

The Norwegian lexical resource SCARRIE8, a full-form lexicon, was used
to identify which of the Norwegian translations were adjectives. Once these
Norwegian adjectives were identified, we selected only the English words that
had a Norwegian adjective as translation. Subsequently, we used the WordNet
(Miller, 1995) to identify which of the selected English words were actually
adjectives. If an English word was not identified as an adjective, WordNet was
used to find its adjective form by analyzing the derivationally related forms of its
lemma. If no such form could be found, then the English word was removed from
our list. Both lists were thereafter lemmatized and manually filtered to remove
non-evaluative adjectives. This resulted in 2 250 English evaluative adjectives
and 1 939 Norwegian evaluative adjectives.

We obtained Russian evaluative adjectives from RuSentiLex (Loukachevitch
and Levchik, 2016), which is a list of sentiment-related words and expressions.
There are three types of entries in RuSentiLex, depending on their source:
‘opinion’, ‘feeling’ and ‘fact’ (words or expressions that do not express an opinion
of the author, but have a positive or negative connotation). Also, each entry
is labeled with its part of speech, lemmatized form and polarity, which can be
positive, negative, neutral or positive/negative for strong context-dependent
semantic orientation. Polysemous words have separate entries for different
senses. The current version of the lexicon contains more than 12 thousand
words and expressions, which were semi-automatically obtained from existing
domain-oriented sentiment vocabularies (initial list), news articles (words with
connotations) and Twitter (slang and curse words). For this research we used
only one-word adjectives labeled with the ‘opinion’ source. Since here we do not
take into account the differences in the sentiment and polarity of polysemous
words, the repeated entries have been removed. In total, there are 2 435 Russian
evaluative adjectives in the final dataset.

Table 4.2 summarizes our evaluative adjective lexicons. After acquiring these
lists and training word embedding models on the texts created in each decade

8https://www.nb.no/sprakbanken/show?serial=sbr-9&lang=nb

70



Estimating the speed of semantic change

under analysis, we were able to move on to the experiments themselves.

4.3 Estimating the speed of semantic change

Our general aim is to measure the degree and strength of temporal semantic shift
in evaluative adjectives compared to all other adjective types. This is necessary
to assess the intuition that evaluative adjectives are less stable than other words
of the same part of speech. Thus, we set out to find evidence across all three
languages under analysis.

We would also like to control for frequency and to exclude its influence on
the results, since it is known that word frequency often correlates with the speed
of semantic change: frequently used words change at slower rates (Hamilton,
Leskovec, et al., 2016b).9 For this reason we experiment both with full sets of
evaluative adjectives and with controlled sets limited to one frequency tier.

4.3.1 Methods for quantifying semantic change across time

We measure the speed of semantic change using three methods of comparing the
meaning of a word x across two embedding models A and B:

1. Jaccard distance (Jaccard, 1901) between sets of 10 nearest neighbors of x
(by cosine distance) in A and B; this is a local method.

2. Orthogonal alignment (Hamilton, Leskovec, et al., 2016b): A and B vector
spaces are first aligned using the Procrustes transformation, and then
cosine distance is calculated between x vectors in two transformed models
At and Bt; this is a global method.

3. Global Anchors (Yin et al., 2018): here, the the intersection of A and B
vocabularies (‘global anchors’, or VAB) is used. The degree of semantic
change is defined as the cosine distance between the vector of the cosine
similarities of x embedding in A to all words in VAB and the vector of the
cosine similarities of x embedding in B to all words in VAB ; this is a global
method.

Note that the 2nd method implies performing Procrustes alignment. We always
align two embedding spaces currently under comparison, independent of other
time bins. Another possible approach could be to align all five models to one of
them, as was done in Kutuzov, Fomin, et al. (2020).

4.3.2 Methods for quantifying change across multiple period
pairs

The aforementioned methods measure the distance between the meaning
representations of one word in two different embedding models. However, our

9Note, however, that this was disputed in Dubossarsky, Weinshall, et al. (2017).
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data includes five embedding spaces (trained on five consequent decades from the
1960s to the 2000s). In order to quantify the speed of semantic change across the
whole time span sequence, we propose two techniques for estimation of semantic
change across multiple points:

1. ‘Mean distances’: simple mean between the four pairwise distances
(‘1960s to 1970s’, ‘1970s to 1980s’, ‘1980s to 1990s’, and ‘1990s to 2000s’).
It measures the degree of ‘semantic jitter’ that the word undergoes: it
is not necessarily a steady movement into one direction, but can instead
consist of fluctuations around one center point or points.

2. ‘Mean deltas from the 1960s’: here, at each decade, we calculate the
distance δ of the current word representation to its representation in the
1960s (the initial point of our time sequence). If δ has increased, one point
is added to the word’s score (initialized as 0); if δ has decreased, one point
is subtracted. Then, the average score is calculated for each word. The
rationale behind this is to measure how steady the shift in meaning is from
the initial point for a given word.
The score here will be low for the words which fluctuate but do not really
substantially change their semantics. At the same time, it will be high for
consistent cases (like, for example, the English adjective ‘solid’ steadily
shifting toward denoting not only qualities of materials, but also generally
being of good quality). See Figure 4.2 for an example of how a word can
first move away from the original meaning, but then start to slowly return
back. It shows the trajectory of the Russian adjective ‘бескомпромиссный’
(‘uncompromising’). It first moved from the sense of ‘cynical, ruthless’
closer to a more positive sense of ‘passionate’, but then returned back to
‘cynical’.

Both ‘mean distances’ and ‘mean deltas from the 1960s’ can be used with
any method of word meaning comparison, from the three described above. Thus,
overall we have 6 scores to assign to each word in our word lists, for all possible
combinations of the techniques.

We work with two word lists for each language: the one with evaluative
adjectives (extracted from sentiment lexicons) and another with what we will
refer to as fillers or distractors: that is, simply all other adjectives present in the
vocabularies of all five models for the current language. We compare the scores
for semantic change speed of the words in the first list to those in the second one.
If the average values are significantly different with the Welch’s T-test p-value
not exceeding 0.110, we conclude that one type of adjectives is more subject to
diachronic semantic change than the other, and report the t-statistics of the
difference between the averages. If, on the other hand, the p-value exceeds the

10The p-value threshold of 0.1 was used intentionally, instead of the more standard 0.05.
We could as well use 0.05, and it wouldn’t change the final results of the chapter (the original
hypothesis would still be rejected). The reason behind choosing 0.1 was to be able to show
that some differences in the speed of semantic change between evaluative adjectives and fillers
can be found, but they are rare and fragile even with a very permissive p-value threshold.
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Figure 4.2: Alterations in meaning of the Russian adjective ‘бескомпромиссный’
(‘uncompromising’): from ‘беспощадный’ ‘ruthless’ over ‘фанатический’
‘fanatical’, ‘страстность’ ‘passion’, to ‘убежденность’ ‘conviction’, ‘героика’
‘heroic’ to ‘непримиримость’ ‘intransigence’, ‘противостояние’ ‘confrontation’.
English equivalents are given in red.

0.1 threshold, we conclude there is no significant difference between two lists,
and report the t-statistics as 0.11 In the next section we provide and discuss the
results produced using the aforementioned techniques.

4.4 Experimental results

Table 4.3 presents the results calculated in the way described in the previous
section. Positive t-statistic values mean that evaluative adjectives change faster
than other types of adjectives, according to particular metrics; negative values
mean they change slower; zero values denotes there were no statistically significant
differences. We also report the number of filler adjectives (‘# fillers’) for each
language. Recall that ‘English10’ describes an additional experiment employing
exactly the same methods, but with 10 diachronic word embedding models for
English, starting from the 1910s, not the 1960s. We report the ‘English10’ scores
in italics, to emphasize that this is an extra experiment, not directly comparable
to the main ones.

As can be seen, across all languages, evaluative adjectives fluctuate less (as
measured by the ‘mean pairwise distances’) with all methods, except for Global

11Full unabridged tables available at https://github.com/ltgoslo/diachronic_multiling_adjectives/
tree/master/full_tables.
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English10 English Norwegian Russian

# fillers 6 746 8 994 3 989 7 535
Frequency difference 0.00001 0.00001 0.00003 0.00001

Method Mean pairwise distances

Jaccard -11.32 -11.08 -4 -15.05
Procrustes -17.34 -15.52 -5.04 -12.01
Global Anchors 0 11.91 -4.40 12.62

Mean deltas

Jaccard 10.67 3.28 0 0
Procrustes 8.73 2.98 0 3.92
Global Anchors 10.39 3.57 3.24 3.11

Table 4.3: Differences in the intensity of semantic change between evaluative
adjectives and fillers. Positive values correspond to evaluatives changing
significantly faster, and vice versa.

Anchors applied to English, English10 and Russian. We will give a possible
explanation for this exception in the next subsection.

At the same time, the majority of methods agree that evaluative adjectives
are more likely to steady shift in one direction, farther and farther away from
the original meaning (as measured by the ‘mean deltas from the 1960s’). This is
less expressed for Norwegian (with the Jaccard and Global Anchors methods,
the difference between the two types of adjectives was not significant).

4.4.1 Experimental results after controlling for frequency

As already mentioned before in this thesis, the speed of semantic change can
correlate with word frequencies, although the previous work provides different
reports on whether frequent words actually change faster or slower. The
‘Frequency difference’ row in Table 4.3 shows the difference between average
word frequencies in the evaluative adjectives lists and the fillers lists (expressed
as word probabilities relative to corpora sizes). All these values are statistically
significant and positive. They show that evaluative adjectives in our dataset are
on average more frequent than other adjectives.

Table 4.4 indicates that there are indeed statistically significant correlations
between word frequencies and the scores returned by all our methods for
measuring the intensity of temporal semantic shift, across all languages.
More frequent words consistently get lower scores from the ‘mean distances’
technique.12 Vice versa, they get higher scores from the ‘mean deltas’ technique,

12It seems to support the law of conformity from Hamilton, Leskovec, et al. (2016b)
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English10 English Norwegian Russian

Method Mean distances

Jaccard -0.38 -0.37 -0.33 -0.32
Procrustes -0.19 -0.19 -0.21 -0.17
Global Anchors 0.21 0.29 -0.08 0.11

Mean deltas

Jaccard 0.09 0.05 0.10 0.08
Procrustes 0.12 0.07 0.12 0.08
Global Anchors 0.20 0.07 0.12 0.05

Table 4.4: Correlation of semantic change speed and normalized word frequency
across all adjectives (evaluative and fillers). Positive values correspond to frequent
words changing significantly faster, and vice versa.

suggesting that frequent words fluctuate less decade-to-decade, but at the same
time they are more prone to a slow and steady semantic drift in a particular
direction.

An interesting observation can be made about the behavior of the Global
Anchors method in Table 4.4. It repeats exactly the phenomenon we already
saw in Table 4.3: the English, English10 and Russian values for this method
are different in their sign from all other values in the ‘mean distances’ part. In
this case, Global Anchors predictions are positively correlated with frequency:
the more frequent the word is, the higher its semantic change score tends to be,
which is directly opposite to the behavior of the other two methods.

It seems that all pairwise semantic change estimation techniques are biased by
lexical frequencies, but they are biased differently. While Jaccard and Procrustes
tend to yield lower semantic change scores for frequent words (on average),
Global Anchors tend to yield higher change scores for the same words. This
bias of the Global Anchors is not manifested for the Norwegian dataset (the
differences and correlations there are essentially the same as with Jaccard and
Procrustes). We believe the reason for this behavior is that our Norwegian
dataset has the lowest number of fillers of all three languages. Arguably, this
reduces the influence of the low-frequency long tail of fillers for which the Global
Anchors yields low change scores. This is also why the Global Anchors returned
no significant differences for English10 in Table 4.3: since English10 deals with
10 diachronic embedding models instead of 5, the number of filler adjectives is
lower than in the regular English dataset (the intersection of 10 vocabularies is
naturally smaller than the intersection of five vocabularies): 6 746 versus 8 994.
Again, the omitted fillers were the ones with the lowest frequencies, which led
to less overall frequency difference between evaluatives and fillers. Because of
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English10 English Norwegian Russian

# fillers 863 1 133 571 929
Frequency difference 0 0 0 -0.00002

Method Mean distances

Jaccard 0 0 -1.68 -2.54
Procrustes -7.33 -4.77 -3.24 -5.03
Global Anchors -6.57 -3.70 -4.07 0

Mean deltas

Jaccard 3.31 0 0 -2.44
Procrustes 0 0 2.94 0
Global Anchors 4.95 0 0 -1.79

Table 4.5: Difference in the intensity of semantic change between evaluative
adjectives and fillers (frequency > 100). Positive values correspond to evaluatives
changing significantly faster (p < 0.1), and vice versa.

that, Global Anchors was ‘de-biased’ to some extent in English10 (but not as
strongly as in Norwegian, with its 3 989 fillers) and did not show any significant
semantic change difference.

It is yet to find out what are the underlying reasons for this varied behavior of
semantic change estimation methods depending on word frequency. But what is
obvious is that different frequencies of evaluative adjectives and fillers introduce
undesired noise, and it would be beneficial to get rid of it, so that the experiment
is more controlled.

To control for the influence of the frequency factor in comparing evaluative and
non-evaluative adjectives, we have to make the average frequencies of both lists
more similar. Since we observed that evaluative adjectives are more frequent, we
decided to use a frequency cutoff threshold. All adjectives with corpus frequency
in at least one decade lesser than the threshold (which is a hyperparameter)
were removed from the word lists (both evaluative adjectives and fillers).13 This
allowed us to get rid of the long tail of low-frequency adjectives, and make both
lists more similar with regards to frequency in all three datasets. In Table 4.5,
we report the results using a threshold of 100; results with the thresholds of 50,
200 and 500 are comparable.

Table 4.5 shows that the number of fillers has naturally declined after
introducing the frequency threshold (it is now in the hundreds, not thousands).
The number of the evaluative adjectives has also declined: not as strongly,
but enough for the datasets to still contain much less evaluative adjectives

13We did not down-sample the evaluative adjectives instead, since they are the main focus
of this study, and we did not want to reduce their number (which is not huge to begin with).
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then fillers. Also, the ’Frequency difference’ row indicates that this time we
managed to eliminate any statistically significant difference between evaluative
and non-evaluative word lists for English and Norwegian. For the Russian data,
the situation has even reversed: now evaluative adjectives are on average less
frequent. Note that word frequencies are not distributed normally, which means
that the Welch t-test as a measure of statistical significance can be misleading
here. Still, one can see that the absolute differences have changed from being all
positive to being of zero or negative value; within the current research, we take
it as enough degree of evidence.

The overall results for the ‘mean distances’ method did not change or even
became more expressed. The most important change after the introduction
of the frequency threshold is that the Global Anchors is no longer an outlier.
It now tells the same story as the other two methods: evaluative adjectives
shift is less expressed. This supports our guess that this method’s difference
from Jaccard and Procrustes was due to the influence of word frequencies.
Overall, when controlled for frequency, evaluative adjectives still seem to be less
prone to ‘fluctuating’ semantic change. For the ‘mean distances’ technique, of
nine returned scores (three languages by three methods), none reports faster
change for evaluative adjectives, with seven reporting slower change, and two
reporting no difference at all. Thus, in this respect, evaluative adjectives are
more semantically stable than other adjectives. This makes us reject the initial
hypothesis about them shifting faster. The additional experiment with the
English10 dataset yields exactly the same result.

For the ‘mean deltas’ technique, filtering out the low-frequency words led
to the differences between evaluative and non-evaluative adjectives losing their
statistical significance (see zeroes in Table 4.5 cells) with all methods for English.
For Norwegian and Russian the results are also similar. Norwegian behaves almost
like English (differences not statistically significant except for the Procrustes
alignment showing faster change). For Russian, the Procrustes alignment method,
vice versa, stopped showing any difference. Instead, the Jaccard and Global
Anchors methods turned the opposite (as compared to the experiment without
controlling for frequency) and now show that the evaluative adjectives change
slower.

Thus, for the ‘mean deltas’ technique, of nine returned scores, only one still
reports faster change for evaluative adjectives, with two reporting slower change,
and six reporting no difference at all. We believe this means that the experiments
do not support the hypothesis of any specificity of evaluative adjectives with
respect to the ‘steadiness’ of diachronic semantic shifts. No stable differences
can be observed here within the time span of five decades.

The picture is more interesting with the English10 dataset, where two methods
out of three resulted in evaluative adjectives more prone to steady semantic shift
in a particular direction. This is not an unanimous vote (and is limited to only
language), but still suggests that on longer time spans the behavior of evaluatives
can indeed be different from other adjectives in this aspect. Considering the
nature of our ‘mean deltas’ technique, this seems natural: on a longer time span,
a slow steady movement can be easier to detect than on a shorter span.
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4.5 Limitations

The experiments in this chapter have some limitations, which we describe in this
section.

First of all, sentiment lexicons as sources of evaluative adjectives are by all
means only proxies. It is quite probable that there are evaluative adjectives
beyond sentiment lexicons, and vice versa. In the future, it is possible to refine
the datasets and probably come up with more linguistically justified word lists.

Second, five time points (decades in our case) might be not enough to reach
convincing conclusions. However, these were the time spans for which we had
access to reasonable amounts of reliable textual data for all three languages. It
was very important for us that our experiments involved several languages, not
English only. Nevertheless, we still reproduce our experiments on 10 decades for
English, yielding largely the same results. Overall, historical corpora are often of
limited size, and this is one of acknowledged challenges for the lexical semantic
change detection field.

Third, better techniques to control for frequency can be devised, not limited
to cutting the long tail of low frequency words. It is possible to generate fillers in
a more intelligent way: for example, picking one random filler for each evaluative
adjective, mimicking its corpus frequency (recall that we simply used all the
remaining adjectives instead).

Finally, although we used well-known methods of lexical semantic change
estimation across word embedding models (many of them were described in
Chapter 2 of this thesis and evaluated in the previous work), there is still a need
to further evaluate the methods themselves.

One option here it to use the SentProp historical sentiment dataset from
Hamilton, Clark, et al. (2016). It describes the variation of English word
sentiment over historical time-periods, and contains about 2000 adjectives per
each decade from the 1960s to the 2000s, annotated with mean sentiment.

As a sort of evaluation, we calculated the adjective-wise differences in the
SentProp sentiment scores between each consecutive decade. Then we found
the correlations between these differences and the degrees of semantic change
returned by our methods described above.The aim here was to find out which
of our algorithms produces results better correlated with the output of another
system. Interestingly, we did not find statistically significant correlation with the
SentProp for any of the employed algorithms. This is not critically wrong, since
the SentProp is not human-annotated data: it was also created automatically.
Still, this observed discrepancy is interesting and we plan to research it further
in the future.

One of the reasons for it can be that it is in general difficult for distributional
representations to handle the differences between antonyms (Ono et al., 2015; Z.
Chen et al., 2015). At the same time, antonymic changes constitute a significant
part of diachronic shifts in SentProp. It is still an open question whether reliable
antonym treatment is possible at all with models based on distributional signals
from corpora. There is an ample room for further research here.
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4.6 Summary

In this chapter, we measured the intensity of diachronic semantic change in
adjectives across three languages (English, Norwegian and Russian) and five
decades (1960s, 1970s, 1980s, 1990s, 2000s), to test whether evaluative adjectives
change faster or more intensely than other adjectives. We did not propose any
new models here, but tested the applicability of the existing ones to a concrete
linguistically motivated problem.

Our results show that, contradictory to the initial hypothesis, evaluative
adjectives change over time less intensely (statistically significant at p < 0.1),
if we measure change as the mean of pairwise differences between successive
decades, and not as a steady drift in one particular direction. At the same time,
when measuring the probability of steadily ‘shifting’ from an original meaning
across time, evaluative adjectives do not differ from other adjectives at all (on
any statistically significant level).

These observations are not frequency artifacts, since we observe the same
behavior when controlling for word frequencies. These controlled experiments
additionally allowed us to trace how semantic change detection methods are
influenced by frequency in different ways. In particular, it seems that Jaccard
distances between the nearest neighbors and cosine distances between Procrustes-
aligned models tend to yield lower semantic change scores for frequent words,
while the Global Anchors method tend to yield higher change scores for frequent
words.

We also conducted an extra experiment with the increased ‘observation
window’ of 10 decades for English (starting from the 1910s). In this case,
two of the three our methods reported more expressed steady drift in one
particular direction for evaluative adjectives (but still less expressed for the
pairwise differences between successive decades). Our interpretation is that there
is no difference between evaluatives and other adjectives in their short-term
fluctuations (independent of the width of the observation window, be it five
decades or 10). But if we observe language data for a longer time, diachronic
embedding-based methods may start to capture a show and consistent movement
of evaluative adjectives away from their original meaning. We hope to study this
in the future with more languages and more varied observation windows.

To sum up, it seems that evaluative adjectives are not more prone to semantic
shifts than other adjectives: at least with the observation window of five decades.
Vice versa, with regards to decade-to-decade pairwise shifts, they are even more
stable than their counterparts; this holds across different languages and semantic
change detection methods.

Diachronic embedding models, word lists and code used at the experiments
in this chapter are publicly available, see Chapter 7 for the links.

In this chapter, we took the existing semantic change detection algorithms
for granted, assuming that they are fit for the task. But we also need a robust
way to evaluate the performance of algorithms which extract information about
semantic change from diachronic embeddings. Before moving on to the specially
designed diachronic semantic change test sets (most of them published very
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recently) in Chapter 6, we will first use databases which record armed conflicts
occurring in the world. They can be employed as proxies to language changes. A
particularly important example of such databases is the Uppsala Conflict Data
Program dataset. The next Chapter 5 describes this dataset. It continues with
the presentation of how we employed it to evaluate diachronic word embedding-
based algorithms with regards to their ability to predict real-world events
unfolding in time. This will demonstrate the versatility of semantic change
related information which can be captured by distributional vector models.
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Chapter 5

Semantic change and world
events: armed conflict dynamics
In the previous Chapter 4, we took the existing semantic change detection
algorithms for granted and applied them to produce answers for our linguistic
question. However, these algorithms should be evaluated as well. As discussed
in Chapter 3, proper test sets for diachronic semantic change have only recently
started to appear. The majority of world languages still lack such test sets. In
this chapter, we attempt to overcome this problem by using language-agnostic
historical event datasets to evaluate and probe semantic change modeling methods
based on word embeddings. In particular, we focus on armed conflict datasets,
containing location and armed group names and the temporal data (when the
conflicts started or ended).

Note that semantic change cases we deal with in this chapter are mostly
of referential or ‘world knowledge’ nature, and fall into the context variance
span on the semantic proximity gradient (see the Introduction and Chapter 2).
We claim that such changes are still semantic, although they are different from
semantic shifts proper (acquiring or losing a lexicographic sense).

Armed conflicts manifest well-defined temporally limited real world events:
they naturally possess starting and ending dates. They also obviously influence
human-generated texts, receiving wide coverage in the news. If we possess
the ground truth about when conflicts started and ended, we are then able to
evaluate our approaches towards semantic change detection with diachronic word
embeddings. Armed conflict data here functions as distant supervision (Fang
and Cohn, 2016), allowing one to indirectly check the usefulness of the machine
learning system when one lacks annotated data. At the same time, armed
conflicts tracing through NLP text analysis algorithms can be practically useful
for peace research, social studies, information retrieval and other disciplines.

Importantly, this paves the way to evaluating semantic change detection
methods for multiple languages. Armed conflicts arguably get approximately
the same amount of coverage in the news texts, independent of language.1 This
means it is sufficient to translate the named entities in the dataset to apply it to
another language (given enough news texts in this language is available).

Note that there is also a large field within NLP called ‘event extraction’
(see for example Ji and Grishman (2008) and Hürriyetoğlu et al. (2020)), with
its own datasets. However, this is out of scope for this chapter: we do not
deal with extracting particular events from particular documents. For example,

1This is of course not entirely true: conflicts can be covered in different ways because
of state propaganda, or even be intentionally silenced. But this is not specifically related to
languages.
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analyzing a particular news text to find out whether it contains a description of
an armed conflict, and if yes, what are the properties of this conflict, is out of
scope. Instead, we are interested in inferring event facts from large corpora as
a whole, without mapping events to certain documents, or text chunks within
these documents.

Importantly, inferring the facts about armed conflict dynamics is not an
aim in itself for us. The temporal event detection task in this chapter is only a
proxy to study and evaluate information captured by diachronic distributional
representations. Because of that, we do not compare against methods from
the event detection field. As already discussed before, what we are doing
resembles probing of machine learning systems. For example, nobody expects
that raw representations at the nth layer of a deep neural architecture will alone
outperform the state-of-the-art in syntactic parsing. However, trying to use these
representations to solve the syntactic parsing task can help researchers to better
understand what the model has learned about language structures (Hewitt and
Manning, 2019). In the same vein, by probing diachronic word embeddings
for their ability to detect or predict changes in the real world, we can better
understand what these models ‘know’ about the accompanying changes in lexical
semantics. Thus, our aim is not to develop a state-of-the-art event detection
system, although admittedly the workflow can look similar, and some of the
methods we propose can in principle be used for this task.

5.1 Armed conflict research data

In this section, we describe the Uppsala Conflict Data Program, which stores and
processes information about armed conflicts happening in the world. Quoting
their web page:2

‘The Uppsala Conflict Data Program (UCDP) is the world’s main provider
of data on organized violence and the oldest ongoing data collection project for
civil war, with a history of almost 40 years. Its definition of armed conflict has
become the global standard of how conflicts are systematically defined and studied.
UCDP produces high-quality data, which are systematically collected, have global
coverage, are comparable across cases and countries, and have long time series
which are updated annually. Furthermore, the program is a unique source of
information for practitioners and policymakers.’

The UCDP Conflict Encyclopedia provides ready-made datasets featuring
regularly updated information about armed conflicts. There exist other similar
databases, like, for example, those used in Zukov Gregoric et al. (2016) (casualties
in Iraq war) or in Mueller and Rauh (2017). However, they are either too small
or don’t have enough coverage for our purposes, or are not publicly available.
Thus, in the rest of this chapter we stick to the UCDP datasets.

In the following subsections, we briefly outline the history of armed conflict
research and peace studies. We then move on to the UCDP project itself and
its datasets. After describing their nature and the process of their creation, we

2https://www.pcr.uu.se/research/ucdp/about-ucdp/
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Figure 5.1: Number of armed conflicts in the world per year. Colors denote
conflict types: pink stands for one-sided violence, scarlet red stands for state-
based violence, and dark red stands for non-state violence (source: Uppsala
Conflict Data Program).

show how they can serve as a distant supervision signal to evaluate semantic
change detection methods. Additionally, finding out what information about
real-word events is captured by diachronic word embeddings is an interesting
research aim in itself.

5.1.1 Conflict Research Overview

Conflict research is a well-established academic discipline within social studies and
is increasingly relevant today. It can be seen as a branch of peace research: peace
is absence of conflict, and conflict research studies the military conflicts which
can jeopardize peace: their origins, dynamics and resolution (Wallensteen, 2013).

The importance of such studies is obvious: hundreds of armed conflicts arise
globally each year, and millions of human beings are affected by them. Figure 5.1
(taken from the UCDP website) reflects the dynamics of the amount of different
kinds of armed conflicts in the world in the recent years. It shows that the
number of armed conflicts is unfortunately growing (although the number of
casualties is steadily decreasing), which means that conflict research becomes
even more topical. Efficient ways to reduce the number of armed conflicts and
to build peace can be devised only if science can explain how these conflicts
arise, what factors influence the possibility of conflicts, and how exactly they
end, including how different peace agreements work.

5.1.1.1 History of conflict research

Proper academic conflict research started from the seminal work of Wright (1942).
It quickly evolved into a full-scale academic discipline, studying both direct
violence in the form of armed conflicts and so called structured (indirect) violence
in the form of lessening human life span in other ways apart from armed conflicts.
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In this chapter, we deal only with the former type of violence as it is much easier
to quantify into events with specific start and end dates.

Both qualitative and quantitative studies must be supported by properly
collected data. This was the reason for the appearance of conflict data collection
initiatives, pioneered by the ‘Correlates of War’ (COW) project (Singer and
Small, 1972). In the eighties it was followed by the Uppsala Conflict Data
Program (UCDP) in Uppsala University, Sweden (Gleditsch et al., 2002). It
features the online UCDP Conflict Encyclopedia with detailed descriptions of
the conflicts and armed groups participating in them, and rich metadata. Its
collaboration with the Peace Research Institute in Oslo (PRIO), Norway allowed
for augmenting this with data from the year 1946 for some selected metadata
fields (UCDP/PRIO dataset). We describe the UCDP datasets in more details
in section 5.1.2.

5.1.1.2 General usage of the conflict datasets

Systematically compiled and manually annotated conflict datasets are in high
demand in today’s world. Eck (2005) enumerates three main types of conflict
data users:

1. Policy makers who need the data to make informed decisions especially
related to peacemaking. For them, it is important that the datasets are
regularly updated and reflect the current situation correctly.

2. Academics doing historic research. They are mostly interested in qualitative
data like conflict summaries to draw on them as the basis for further
inquiries and interpretations.

3. Academics doing quantitative research on a large scale. They possibly
benefit most from the conflict datasets, as quantitative conflict studies are
hardly imaginable without big conflict data, and datasets like UCDP and
others are the only source of this information. The author of the present
thesis clearly belongs to this last group.

All of these groups are interested in scrupulously and systematically curated
datasets. All of them arguably can benefit from using the methods of semi-
automated armed conflict tracing from news texts proposed in this chapter.

5.1.2 Uppsala Conflict Data Program

The UCDP/PRIO Armed Conflict Dataset3 maintained by the Uppsala Conflict
Data Program4 and the Peace Research Institute Oslo (PRIO)5 is a geographical
and temporal dataset with information on armed conflicts, both internal (within
one national state) and external (crossing state borders), where at least one

3https://www.ucdp.uu.se/
4http://www.pcr.uu.se/research/ucdp/program_overview/about_ucdp/
5https://www.prio.org/Data/Armed-Conflict
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party is the government of a state, in the time period from 1946 to the present
(Gleditsch et al., 2002). The Armed Conflict Dataset is updated on a constant
basis and is primarily intended for academic use in statistical and macro-level
research. The collection of the dataset has started in the mid-1980s under the
name ‘Conflict Data Project’, but since then evolved constantly. In the autumn
of 2003 the amount of work on conflict data collection led to a change in the
name of the project and it was thus turned into the ‘Uppsala Conflict Data
Program’.

Two notions are essential for the UCDP datasets: event and armed conflict.
Basically, an event is an incident where armed force was used by an organized
actor against another organized actor, or against civilians, resulting in at least
one direct death at a specific location and a specific date (see more on this in
Sundberg and Melander (2013)). Note that armed force here means the use of
arms in order to promote the parties’ general position in the conflict, resulting
in deaths (in turn, arms means any material means, e.g. manufactured weapons
but also sticks, stones, fire, water etc.). Organized actor can be a government
of an independent state, a formally organized group or an informally organized
group according to UCDP criteria (Sundberg and Melander, 2013).

Such events can evolve into full-scale conflicts, defined as contested
incompatibilities that concern government and/or territory where the use of
armed force between two parties, of which at least one is the government of a
state, results in at least 25 battle-related deaths. Note that it does not need to
be a single event resulting in 25 deaths: this number can be accumulated over
several events over time.

The UCDP datasets constitute a case of quantitatively encoded social data
spanning over decades. Below we describe the datasets in more detail and briefly
overview how we use them.

5.1.3 UCDP Georeferenced Event dataset

The UCDP yearly releases several public datasets with data on major conflicts.6
One of the most important of those is the Georeferenced Event dataset (hereafter
GED). The current version of GED at the time of writing is 19.1, released in
2019.

GED lists and describes armed conflict events themselves (Croicu and
Sundberg, 2015). It includes three types of organized violence:

1. state-based conflict (involving at least one government actor);

2. non-state conflict (violence between two non-governmental actors);

3. one-sided violence (towards civilians).

Thus, the entities in this dataset are armed conflict events. The 19.1 version
of GED contains 152 616 events and about 1 500 different conflict actors. Conflict
actors can be either governments or rebels, separatists, other insurgent groups,

6https://www.ucdp.uu.se/downloads/
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etc. Of all the events in the dataset, 28 929 happened in Afghanistan, 15 328 in
India, and 7 473 in Iraq. These three countries contribute to more than third of
all armed conflict events.7 GED is a rich source of data about exact temporal
moments when armed conflicts within particular locations started or ended.

The UCDP creates GED by examining news texts. The textual data comes
initially from global newswires and BBC Monitoring data sourced from the Dow
Jones Factiva aggregator (sometimes other secondary sources are also used).
UCDP extracts and processes only those texts which contain the following
token-based search patterns:

1. kill*

2. die*

3. injur*

4. dead

5. death*

6. wounded

7. massacre*

The texts which do not contain these patters are ignored altogether. Note
that this means that the datasets are inherently biased towards a particular
kind of armed conflict descriptions in the text. This can in theory influence
the results of any research based on the UCDP data. However, the extent and
the importance of this hypothetical bias is unknown, and in the further text we
ignore it.

The extracted documents are then manually checked by the UCDP human
annotators. Each document is annotated with metadata by at least two
human experts, all the controversial decisions are discussed and resolved in
a reconciliation procedure. If a document is found to be irrelevant, it is marked
as ‘Negative’ (not describing an armed conflict) and further ignored. If the
annotators consider the document as describing an armed conflict event, it ends
up as ‘Positive’, and eventually is linked to some of the events in the GED
dataset.

It is important that the GED dataset extensively describes armed conflicts in
many details (see the Appendix A). It contains not only dates but also the meta
information related to armed conflicts: conflict type, who are the actors, what
are the casualties, etc. This provides us a great amount of temporally changing
gold data which we can try to extract from diachronic word embeddings. This
can also help to evaluate some aspects of semantic change detection approaches,

7Note that at the time being the dataset does not include data for Syria. The maintainers
claim the final product is not releasable at this time with the same level of consistency and
clarity as other UCDP GED data.
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since real-world events often result in cultural (or ‘event-based’) semantic drift.
We describe our evaluation mode in more details in subsection 5.1.4.

Note that although the UCDP datasets are structured data (in addition to
the news texts themselves), they still require at least some pre-processing before
they can be used for evaluation of our approaches. We inferred all the necessary
information from the fields of metadata. The names of the entities (countries
and actors) had to be normalized so that every entity is mapped to exactly one
lexical unit. The UCDP Actor List dataset was of use for this task; it contains
many variants of spelling the names of entities. Other possible resources to help
normalization are JRC Names8 and Wikipedia.

5.1.4 Evaluation of semantic change detection with the UCDP
datasets

The abundance of data fields in the GED dataset makes it possible to apply
it to many tasks. In this work, in particular, we use the dataset to study and
evaluate information captured by diachronic distributional representations. We
do it mainly by referring to the start and end dates of armed conflicts.

As stated in Chapter 1, one of the aims of this thesis is to study robust and
reliable ways to extract semantic change related information from the analysis
of diachronic word embeddings. Fortunately, the existence of datasets like GED
also provides us with much needed evaluation data. Particularly, it is a source
of ground truth about the starting and ending points of armed conflicts and
their development. When accompanied with news corpora like Gigaword (Parker
et al., 2011), SignalMedia (Corney et al., 2016), or News on Web (NOW)9,
it allows us to evaluate how good our approaches are for extracting cultural
semantic shifts from raw texts. Besides significant academic interest, this topic
has a practical application: we are going to implement and test systems which
would use traced semantic change (based on the embeddings trained on news
texts) to predict starting or stopping armed conflicts.

Let us recall our general workflow. We train diachronic distributional word
embedding models (making them comparable through incremental training or
through some variation of alignment) on the news texts, using the sequences of
time spans determined by the periods for which we have data. For example, one
can train 12 ∗ 3 = 36 models for three years, each time adding texts produced in
the next month. This way, we receive a sequence of embedding models reflecting
different time spans10. We can compare them against each other to discover
change in the representations for particular entities. In this case, we start with
geographical locations as entities. We extract the data related to events in these
locations from the GED dataset: we are particularly interested in the starting of
armed conflicts in the previously peaceful locations and in the termination of
such conflicts in the locations which were at war before. In other words, we look

8https://data.europa.eu/euodp/en/data/dataset/jrc-emm-jrc-names
9https://corpus.byu.edu/now/

10See more on that in Chapter 3
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for ‘breaking points’, where the social and political landscape change, which can
lead to significant change in the news texts covering a particular location.

Then, we analyze the output of our approaches to modeling semantic change
based on distributional word embeddings and trace diachronic changes in
semantic representations for the entities mentioned above. We hypothesize
that when an armed conflict starts or stops in some location, it is reflected in
the texts mentioning this location. This, in turn, provokes specific changes in
the embeddings of lexical entities denoting the area or the active armed groups
in this area. Most often, these changes belong to the context variance type we
already mentioned in the Introduction and in Chapter 3: the entity begins to be
employed in entirely new contexts and it now gives rise to different connotations
in the reader’s or listener’s mind. Ideally, these changes should correlate with
the ground truth on armed conflicts extracted from the GED dataset. The
correspondence of predicted results to this ground truth provides the basis for
our evaluation metrics.

5.1.5 Constructing a gold standard dataset

As stated before, to properly evaluate our approaches towards semantic shift
detection, we need precise data on armed conflicts starting and ending. For
this, one can employ the subset of the GED dataset called UCDP Conflict
Termination dataset,11 containing entries on starting and ending dates of about
2 000 conflicts up to year 2015. Another possibility is to extract data directly
from the GED (it provides more unnecessary data fields, but at the same time
contains more recent information).

We omit the conflicts where both sides were governments (about 2% of the
entries), for example, the 1998 conflict between India and Pakistan in Kashmir.
The reason for this is that with these entries, static distributional models have
a hard time telling the name of the state (conflict actor) from the name of the
territory (conflict location): ‘Iraq’ can mean both the ‘government of Iraq’
and the ‘Iraq as a land area’. In principle, this is just a technical issue and can
arguably be solved by, for example, using contextualized embedding architectures
(see the next Chapter 6, where we use them for semantic change detection).
However, such architectures were not yet available at the time of working on
this particular part of the thesis. Additionally, the ‘government – insurgent
group’ opposition is more pronounced and asymmetric, and serves better as an
example of a semantic relationship for the purposes of section 5.3 below. Thus,
we analyze only the conflicts between a government and an insurgent armed
group of some kind (these conflicts constitute the majority of the UCDP data
anyway).

Another group of conflicts we omit in the experiments described further in
this chapter is where at least one of the sides has a corpus frequency of less
than 100 in the corresponding text collection. The rationale for this decision
was that these conflicts have too little contextual coverage in the corpus for

11https://ucdp.uu.se/downloads/monadterm/ucdp-term-conf-2015.xlsx
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distributional models to learn meaningful representations for them. These cases
usually constitute about 1% of the entries, depending on the particular corpus
(Gigaword, NOW, etc.).

The first version of the resulting test set based on the Gigaword corpus
(Parker et al., 2011) and the UCDP Conflict Termination dataset covers the
time span from 1994 to 2010 (the last year of Gigaword). It mentions 52 unique
locations (with ‘India’ being the most ubiquitous), 673 unique armed conflicts,
and 128 unique armed insurgent groups (with ‘ULFA’ or ‘United Liberation
Front of Assam’ being the most ubiquitous). Location names have an average
per-year corpus frequency of 17 749, and for the armed groups this value is 570
(recall that the average yearly corpus size of Gigaword is about 300 million word
tokens). Naturally, in both cases the frequency distribution follows the power
law (several high frequency items with many low frequency items, the standard
deviation much higher than the average value), but still we can see that the
armed group names are much less frequent than the location names, which is
expected.

The UCDP dataset also includes the intensity level of the conflict in each
particular year: 493 conflicts are tagged with the intensity level 1 (between 25
and 999 battle-related deaths), and 180 conflicts with the intensity level 2 (at
least 1 000 battle-related deaths). For location–year pairs with no records in the
UCDP dataset we assign the tag 0, indicating that there were no armed conflicts
in this location at that time.

The resulting test set which we dub Armed Conflicts Evaluation Test Set is
available at https://github.com/ltgoslo/diachronic_armed_conflicts. Further on,
we also produced several other versions of this test set, see the resource list in
Chapter 7 and the sections below.

5.1.6 Summary

The UCDP armed conflict data allowed us to compile a gold standard data
set containing the start and end dates of armed conflicts throughout the world
across several decades. In the following sections, we will extensively use this test
set and its derivatives to study how this information is captured by diachronic
word embeddings via shifts in the context variance of the corresponding entities.
In particular, we will describe two experiments employing the Armed Conflicts
Evaluation Test Set. The first one tries to detect armed conflicts on a year-to-
year basis for a given location (country). The second one traces how semantic
relations between locations and violent armed groups (insurgents) change with
the time.

5.2 From nearest neighbors to anchor words: tracing
armed conflicts

Now that we have the gold standard, it is possible to evaluate our approaches
against it. In this section, we trace changes in the local semantic neighborhoods
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of country names (as measured by static embedding-based methods), applying
it to the downstream task of predicting changes in the state of conflict for
52 countries at the year-level. The input data here is the Armed Conflicts
Evaluation Test Set, and a corpus of news texts published in the years from 1994
to 2010, organized in sequential pairs of years.12

The results of this experiment provide insights about the performance of
several semantic change detection techniques in capturing real-world events:
1) cosine similarities between Procrustes-aligned vector spaces, 2) the domain-
specific anchor words method proposed by us and similar to the ‘local anchors’
method from Zhang et al. (2016). We show that using domain-specific anchor
words outperforms the Procrustes/cosine method when applied to the armed
conflict data (the selection of anchor words is described below). However, the
issue of choosing the method of quantifying differences between representations
of one and the same word in two embedding spaces is more complicated.

5.2.1 Data and labels encoding

We cast armed conflicts state detection from news texts as a classification task
with three classes:

1. Nothing has changed in the country conflict state year-to-year: either the
country remained peaceful, or a conflict continued (‘stable’ class );

2. Armed conflicts have escalated in the country year-to-year (‘war’ class);

3. Armed conflicts have declined in the country year-to-year (‘peace’ class).

We represented the Armed Conflicts Evaluation Test Set as a set of data
points equal to the differences (δ) between the location’s conflict state in the
current year and in the previous year. Conflict state is equal to 0 if no armed
conflict was observed in a particular country and year. If the UCDP records an
armed conflict for this time and location, the conflict state value equals to the
conflict intensity level. It can be either 1 or 2: in the Armed Conflicts Evaluation
Test Set, 493 conflicts are tagged with the intensity level 1 (between 25 and 999
battle-related deaths), and 180 conflicts with the intensity level 2 (at least 1
000 battle-related deaths). If there were several conflicts in the location in a
particular year, we used the average of their intensities. As a result, we have
832 data points in total (52 locations × 16 year pairs).

As an example, in Congo, the conflict with the intensity level 1 had terminated
when transitioning from 2001 to 2002. Thus, for the data point ‘congo_2002’,
δ = 0 − 1 = −1. 0 here means there was no armed conflict in Congo in 2002, and
1 means there was an armed conflict of the intensity 1 in Congo in 2001. After
that, there were no changes (each new δ had the value of 0) until 2006, when
armed conflicts resumed again with the intensity of 1. Thus, for the ‘congo_2006’
data point, δ = 1 − 0 = 1.

12Parts of this section were previously published as Kutuzov, Velldal, et al. (2017b).
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However, for practical reasons it is more useful to predict a human-
interpretable class of the conflict state change, rather than a scalar value. A
version of this test set was produced where δ values were transformed to classes,
following the equation 5.1 (other thresholds are of course possible as well).

class =

⎧⎪⎨
⎪⎩

changing − to − war if δ ≥ 0.5
changing − to − peace if δ ≤ −0.5
stable − state otherwise

(5.1)

The ‘change’ classes changing-to-war and changing-to-peace constitute 10%
and 11% of the data points respectively. Thus, they are minority classes and we
are mostly interested in how good the evaluated methods are in predicting them,
not the majority stable-state class. Also, from the practical point of view, the
changing points are certainly more interesting. Below we describe the evaluated
approaches.

It is important to note that in Hamilton, Leskovec, et al. (2016b) and other
previous work on semantic change modeling, proper names were mostly filtered
out: their authors were interested in global semantic shifts for common nouns. In
contrast to this, we here make proper names (countries and other named entities)
our main target. In this chapter, we are mostly interested in what is happening
to the referential meaning of this or that named entity, not in whether there
were changes in the denotational meaning of a common noun. Thus, this setup
is similar to tracing drift in world knowledge associated with a word in language.
As already discussed in Chapter 2, we follow the opinion of Geeraerts (1997)
that there is no clear borderline between the ‘linguistic meaning’ and ‘world
knowledge’. Thus, these shifts (some country starts being associated with war),
from our point of view, do belong to the domain of lexical semantic change,
although there is no observed change in lexicographic senses.

5.2.2 Detecting changes in armed conflict states

As we are dealing with temporal data, we experiment with different methods
for extracting chronological information from word embedding models. In this
subsection, these methods are described, along with different types of diachronic
word embeddings and domain-specific anchor words we employed (see below).

As a source of the training data, we used the Gigaword English news corpus
(Parker et al., 2011), containing about 5 billion words. All Gigaword texts are
annotated with publishing date, so it is trivial to compile yearly corpora starting
from 1994 up to 2010. Then, we trained three sets of 17 yearly word embedding
models, differing in the way they represent yearly time bins:

1. models trained from scratch on the corpora containing news texts from a
particular year only (dubbed scratch hereafter);

2. models trained from scratch on the corpora from the particular year and
all the previous years (dubbed cumulative hereafter);
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3. incrementally trained models (dubbed incremental hereafter).

The last type was most interesting for us: here one and the same vector space is
incrementally updated with new data. However, unlike the original suggestion by
Kim et al. (2014), we also update the model’s vocabulary as new data arrive.13

Our hypothesis was that this can help coping with the inherently stochastic
nature of predictive distributional models. However, this turned out to be not
entirely true in this case (see below).

We used the Gensim library (Řehůřek and Sojka, 2010) for training
Continuous Bag of Words word embedding models (Mikolov, K. Chen, et al., 2013)
on the Gigaword corpus. In terms of corpus pre-processing we performed
lemmatization, PoS-tagging and name entity recognition using the Stanford
CoreNLP library (Manning et al., 2014). Named entities were concatenated to
one token (for example, ‘United States’ became ‘United::States_PROPN ’).

Once the sets of models are there, one can detect semantic change for a given
target word wq (in our case, always a location name) and a given pair of models.
We compare our domain specific anchor words approach to the alignment with
orthogonal Procrustes method heavily used in previous work and described
before in Chapter 3. The two methods can be described as follows:

1. Procrustes: align two models (trained on the current and previous year,
Mcur and Mprev) using the orthogonal Procrustes transformation (Gower,
Dijksterhuis, et al., 2004). Then measure cosine distance between the wqcur

and wqprev vectors, as proposed in Hamilton, Leskovec, et al. (2016b).
Higher distance means stronger change in meaning. This is an example of
a global approach to semantic change detection.

2. Domain specific anchor words: define a set of words related to the semantic
categories we are interested in. These words are selected manually, and
are called ‘anchors’, since they serve as measures of the degree of word
drift in the vector space. Then, measure this drift of wq towards or away
from these anchors’ vectors in Mcur compared against Mprev (in terms of
cosine distances). Higher values of drift mean stronger change in meaning.
This is, instead, an example of a local approach to semantic change
detection, initially proposed in Zhang et al. (2015) and Zhang et al. (2016)
(called ‘reference points’ there). However, we were the first to enrich this
method with using not just the nearest neighbors but domain-specific
words in general in Kutuzov, Velldal, et al. (2017b) (also, the task was
different). Later, Garg et al. (2018) used a similar approach to analyze the
dynamics of ethnic and gender biases in word embedding models, and Yin
et al. (2018) developed the same idea further to include all words from
the model vocabulary as anchors, thus making it a global approach (we
employed this Global Anchors method in Chapter 4).

13The model Mt+1 is initialized with the weights from the model Mt; if there are new
words in the t + 1 corpus which exceed the frequency threshold, then before the start of Mt+1
training they are added to its vocabulary and their vectors are initialized with random weights.
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The first (Procrustes) method outputs one value of cosine distance for each
data point, representing the degree of semantic change, but not its direction.
In contrast, the domain-specific anchor words method can potentially provide
information about the exact direction of the change. This, in turn, can be
quantified in two ways:

1. Quantification mode 1: for each anchor word, calculate its cosine similarity
against wq in Mcur and Mprev (dubbed ‘Sim’ hereafter);

2. Quantification mode 2: the same, but instead of using the cosine, find the
position of each anchor in the models’ vocabulary sorted by similarity to
wq; we normalize by the size of the vocabulary so that rank 1 means the
anchor is the most similar word to wq while rank 0 means it is the least
similar (we dub this approach ‘Rank’).

Both quantification methods produce two vectors �rprev and �rcur, corre-
sponding to the models Mprev and Mcur. Their dimensionality is equal to the
number of the anchor words, and each component of these vectors represents
the similarity of wq to a particular anchor word in a particular time period.

To compute the difference between �rprev and �rcur (and thus, the degree of
a shift), one can either:

1. calculate the cosine distance between these ‘second-order vectors’, as
described in Hamilton, Leskovec, et al. (2016a); we dub this ‘SimDist’ or
‘RankDist’, depending on whether ‘Sim’ or ‘Rank’ quantification mode was
used;

2. element-wise subtract �rprev from �rcur to understand whether wq drifted
towards or away from the anchors; we dub this ‘SimSub’ or ‘RankSub’,
again depending on the quantification mode.

In the first case, the output is again one scalar value, and in the second case
it is the vector of diachronic differences, with the dimensionality equal to the
number of the anchor words. Either of these feature sets can then be fed into any
classifier algorithm. To predict the actual direction of the change (or the absence
of change), one needs to perform classification into three classes: changing-to-war,
changing-to-peace and stable-state.

5.2.2.1 Anchor word sets

To evaluate the approaches described above, we needed a set of anchor words
strongly related to the topic of armed conflicts. For this, we simply adopted the
list of seven search strings used within the UCDP to filter the news texts for
subsequent manual coding, already mentioned above:

1. ‘kill’,

2. ‘die’,
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3. ‘injury’,

4. ‘dead’,

5. ‘death’,

6. ‘wound’,

7. ‘massacre’.

Additionally, an expanded version of this set was created, where every original
anchor word was accompanied with its five nearest neighbors (belonging to the
same part of speech) in the word embedding model we trained on the full
Gigaword corpus. This resulted in the following set of 26 words (Gigaword
corpus frequencies for each word are given in parentheses):

1. ‘kill’ (2 444 435)

2. ‘death’ (1 318 501)

3. ‘die’ (1 148 940)

4. ‘dead’ (624 942)

5. ‘injury’ (556 580)

6. ‘injure’ (513 973)

7. ‘wound’ (455 361)

8. ‘murder ’ (394 336)

9. ‘killing’ (304 781)

10. ‘massacre’ (97 538)

11. ‘genocide’ (96 074)

12. ‘hospitalize’ (63 192)

13. ‘atrocity’ (53 801)

14. ‘slaying’ (49 073)

15. ‘slay’ (46 248)

16. ‘fatality’ (35 518)

17. ‘slaughter ’ (34 162)

18. ‘gun’ (32 562)

19. ‘missing’ (22 773)
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20. ‘perish’ (18 894)

21. ‘concussion’ (18 098)

22. ‘unaccounted’ (10 845)

23. ‘sprain’ (5 269)

24. ‘bullet-riddled’ (3 457)

25. ‘drowning’ (3 258)

26. ‘contusion’ (1 209)

One can also try to filter the anchor word list by removing low-frequency
words, as suggested in Zhang et al. (2015). We did not do this explicitly, since
(as seen from the frequencies in the list above) our first set of seven conflict
words from the UCDP filtering workflow already contains only high frequency
words. All its seven entries can be found in top 10 most frequent words from
the second set. Thus, the first set also serves as a testing ground for using only
high frequency lexemes.

Ways can be devised to select domain-specific anchor words fully automati-
cally, without using any external seed words. One of the simplest ways to do
that (among many others) is to calculate a set of the nearest neighbors of the
domain name in a relevant word embedding model. Using the embedding model
trained on the full Gigaword corpus and the word ‘conflict’ as the domain name,
we came up with the following set containing the word itself and its 10 nearest
neighbors (evaluated below as ‘automatic anchors’):

1. ‘conflict’

2. ‘strife’

3. ‘bloodshed’

4. ‘war ’

5. ‘hostility’

6. ‘confrontation’

7. ‘bloodsh’ (incorrect lemmatization of ‘bloodshed’)

8. ‘bloodlet’

9. ‘dispute’

10. ‘fighting’

11. ‘violence’
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Finally, it is also possible to compile a list of anchor words associated with
peace instead of conflicts. They would have to be chosen more arbitrarily. Just to
serve as an example, we compiled the following list of ‘peace anchors’ (evaluated
below along with the conflict anchors):

1. ‘cease-fire’

2. ‘ceasefire’

3. ‘cessation’

4. ‘peace’

5. ‘peacemaking’

6. ‘truce’

The classification itself was done using a one-vs-rest Support Vector Machine
(SVM) classifier (Boser et al., 1992) with balanced class weights (the weight
of each class being inversely proportional to class instances frequency in the
training data). The features used were either the cosine distance between �rprev

and �rcur (in the case of ‘SimDist’ and ‘RankDist’) or the result of �rcur − �rprev

subtraction (in the case of ‘SimSub’ and ‘RankSub’). In the first case, we have
only one feature, while in the second case the number of features depends on
the number of the anchor words (7 or 26 in our setup).

5.2.3 Results

The results for Continuous Bag of Words (CBOW) word embedding models,
produced with 10-fold stratified cross-validation, are presented in Table 5.1. Our
evaluation metric is macro-averaged F1 score.

The labels for the different approaches are the same as above. We also use
two baselines. The first one is a very simple frequency-based approach. In it,
the only feature fed to the classifier is the absolute difference between corpus
frequencies of the target word in the current and the previous year. This value
is additionally normalized by dividing it by the corpus frequency of the target
word in the full Gigaword. This baseline turned out to be very competitive, with
only a few techniques outperforming it (see Table 5.1).

The second baseline is the classic Procrustes alignment method. It does not
use any domain-specific anchor words, only the cosine distances between wq
vectors in the aligned models. Note that we also evaluate incrementally trained
embeddings aligned using Orthogonal Procrustes (top right cell), although this is
not a widely used setup: as a rule, either Orthogonal Procrustes or incremental
training is used to make the models comparable, but not both at the same time.
The reason for choosing this setup was to make the presentation of the baseline
results more consistent with the anchor words experiments.

Overall, one can see that more words in the anchor sets is beneficial (even
though it means lower average word frequency in the set). The fully automatically
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Approach Macro F1 score

Frequency baseline 0.27

Embedding model type:
Scratch Cumulative Incremental

Procrustes/cosine baseline 0.15 0.24 0.29

Basic anchor set

SimDist 0.27 0.17 0.25
SimSub 0.31 0.26 0.26

RankDist 0.28 0.19 0.23
RankSub 0.26 0.22 0.21

Expanded anchor set

SimDist 0.25 0.18 0.23
SimSub 0.35 0.31 0.29

RankDist 0.24 0.20 0.28
RankSub 0.36 0.30 0.32

Automatic anchor set

SimDist 0.23 0.21 0.25
SimSub 0.30 0.30 0.32

RankDist 0.24 0.29 0.21
RankSub 0.26 0.26 0.26

Peace anchor set

SimDist 0.20 0.19 0.23
SimSub 0.28 0.27 0.27

RankDist 0.21 0.25 0.16
RankSub 0.22 0.21 0.27

Table 5.1: Macro-F1 scores for predicting conflict state changes (ternary
classification).

97



5. Semantic change and world events: armed conflict dynamics

collected anchor set (just the nearest neighbors of the word ‘conflict’) performed
almost on par with the best manually collected anchor set (the expanded
version), suggesting that borrowing seed words from external sources might
not be necessary. Using �rcur − �rprev (‘Sub’ method) is almost always better
than using cos( �rcur, �rprev) (‘Dist’ method). As for the using of either cosine
similarities (‘Sim’ quantification mode) or ranks (‘Rank’ quantification mode) as
�r values, there does not seem to be a clear winner. We also tried to concatenate
similarities and ranks to produce the feature vector of size 52. However, this
did not improve the classifier performance. Using peace anchor words instead
of conflict anchor words yielded consistently lower results, barely managing to
reach the performance of the frequency baseline (arguably, it can be changed by
using other peace anchors compiled in a different way).

The best results with the conflict anchor words are shown by the ‘scratch’
models, always outperforming the Procrustes baseline and mostly outperforming
the frequency baseline. It means that when using a local semantic change
detection method (looking at particular word neighbors) and for this particular
task, it is not beneficial to employ schemes of incrementally updating the models
with new data14 or concatenating new corpora with the previous ones. Our guess
for the reason of it is that the models trained from scratch on yearly corpora
are more ‘focused’ on the events happening in this particular year, and thus
provide more useful vector representations. Another reason for this behavior
may be related to the issues of incremental training discussed in Shoemark et
al. (2019) and Schlechtweg, Hätty, et al. (2019): it is difficult to tune optimally
the parameters of vocabulary expansion and the amount of new data fed to the
model (expressed in the number of epochs).

Note, however, that for the Procrustes alignment baseline, the scratch models
were the worst choice for alignment, arguably because they are more different from
each other than cumulative or incremental ones (since each model is initialized
independently and with independent collection of training texts). In fact, the
Procrustes alignment with cosine distance approach worked best on incremental
models in this task: this is the only variation of Procrustes alignment which
managed to slightly outperform the frequency baseline. This is an interesting
finding in itself: sometimes using several different methods to make embeddings
comparable might be beneficial.

The best macro-F1 score of 0.36 was produced by using scratch-trained
embeddings, the expanded conflict word list and the ‘RankSub’ method which
employs subtraction of time-specific anchor rank vectors. In this mode, our
domain-specific anchor words approach significantly outperforms both baselines
in all types of models. Hamilton, Leskovec, et al. (2016b) report almost perfect
accuracy for the Procrustes transformation when detecting the direction of
semantic change (for example, the meaning of the word ‘gay’ moving away from
‘happy’ and towards ‘homosexual’). However, our task and the nature of data

14Note though that the best result of the automatic anchor set is achieved using the
incrementally trained embeddings. It is not as good as the expanded anchor set with the
scratch models but still hinting that the choice of the method is anchor dependent.
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Class Precision Recall F1

Changing-to-peace 0.13 (0.06) 0.29 (0.06) 0.18 (0.06)
Stable-state 0.80 (0.79) 0.58 (0.82) 0.67 (0.80)
Changing-to-war 0.17 (0.12) 0.33 (0.08) 0.22 (0.10)

Table 5.2: Detailed performance of the best armed conflict state change detection
method (results of weighted random guess in parentheses).

are different: the time periods are much more granular (years instead of decades)
and we attempt to detect subtle changes in words’ associations or connotations
(often pendulum-like) rather than full-scale lexicographic ‘semantic shifts proper’.
Note also that it is certainly possible to apply the anchor words technique to
Procrustes-aligned embeddings (this may improve the results even more). But
we were interested in discovering whether local change detection methods can
yield meaningful results on their own, without any specific alignment (or other
way of making embeddings comparable). The answer is clearly positive: analysis
of local semantic neighborhood even on non-aligned vector spaces is able to
achieve higher scores than calculating cosine similarities between aligned vectors.

Table 5.2 provides the detailed per-class performance of the best method.
In parenthesis, we give the performance values for the stratified random guess
baseline. If the random guess results are better than our system score, they are
given in bold; if our system results are better, they are made bold instead. In
absolute F1 score values, detecting stability breaks seems to be more difficult
than detecting the stable state. The performance for the ‘changing-to-war ’ and
‘changing-to-peace’ minority classes is far from ideal. However, all of the scores
for these classes are significantly better than chance, while the scores for the
majority class are on par or even below the random baseline scores.

5.2.3.1 Results on peaceful countries

The experiments above implied training and evaluating only on the location
names present in the Armed Conflict Evaluation Test Set. This means that
each of these locations was involved in an armed conflict at least once in the
time span from 1994 to 2010. But what about countries not involved in armed
conflicts? We decided to conduct an additional sanity check experiment to make
sure that our approach does not predict armed conflicts for locations which have
never experienced any. For that, we compiled an additional test set of ‘peaceful
locations’. It consists of all country names15 which:

1. never appeared in the Armed Conflict Evaluation Test Set;
15Taken from https://en.wikipedia.org/wiki/List_of_sovereign_states
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2. occurred at least 100 times in the Gigaword corpus.

This resulted in 111 peaceful locations with the average per-year corpus frequency
of 8 863. This is a bit lower than the average location frequency of the ‘conflict
locations’ which is 17 749; the reason is obviously a large number of states
which are rarely mentioned in the news texts. For this sanity check, we applied
our best approach (scratch-trained embeddings, the expanded anchor word list
and ‘RankSub’ method) to the yearly diachronic embeddings of these peaceful
locations from 1994 to 2010. Since there were no armed conflicts in these
countries, the gold label for each instance here was ‘stable’ (meaning that the
country remained peaceful compared to the previous year).

It would make no sense to train a classifier on this data (with all instances
belonging to one class), so we trained it on the instances from the Armed Conflict
Evaluation Test Set (recall that the majority of them belong to the ‘stable’ class
as well). However, this time the trained classifier was evaluated on the features
generated for the peaceful location instances (111 × 16 = 1776 instances total).
The classifier predicted the ‘stable’ class for 60% of these instances, matching the
corresponding cross-validated recall value for the instances from Armed Conflict
Evaluation Test Set (0.58). This gives us ground to argue that the proposed
method is able to tell stable locations from those with changing armed conflict
states, independent of whether the location ever experienced an armed conflict
at all. It is also general enough to perform equally well on the totally unseen
data.

Still, tracing actual real-world events by detecting short-term cultural
semantic changes in diachronic word embeddings is a difficult task. Calculating
cosine similarities between word representations in Procrustes-aligned time-
specific word embedding models works well for large-scale shifts observed over
decades or even centuries, like in Hamilton, Leskovec, et al. (2016b). However,
as we can see, sometimes it can be outperformed by a simpler local method not
requiring any alignment (our proposed method of manually selecting a couple of
dozens of domain-specific ‘anchor words’ and then measuring word dynamics in
relation to them).

Even the performance of this method is not entirely satisfactory from a
practical point of view, achieving a macro F1 measure of only 0.36 on the task
of ternary classification of armed conflict state changes. But recall that in this
chapter we do not try to build a state-of-the-art system for this particular task
(or for event detection in general). Instead, we study what sorts of referential
semantic change related information is captured by diachronic word embeddings,
and what are the most robust ways to extract this information.

We also remind the reader that incremental updating of word embeddings was
not beneficial in this case. However, in other tasks related to semantic change
detection it can yield promising results, as we show in the next section 5.3.
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5.3 Tracing shifts in semantic relations

Methods based on distributional semantic models (static word embeddings
in particular) can be used not only to trace diachronic semantic change in
single words, but also the temporal dynamics of semantic relations between
pairs of words (see our discussion of this topic above in Section 3.4 and in the
Introduction). Recall that this problem is somewhat similar (but not identical,
see the next subsection 5.3.1) to a number of previous formulations: ‘temporal
co-references’ in Tahmasebi, Gossen, et al. (2012), ‘temporal correspondences’
in Zhang et al. (2015), and ‘temporal word analogies’ in Szymanski (2017) and
Tahmasebi, Borin, and Jatowt (2018). Since the relations we deal with are
semantic in their nature, we again assume that their diachronic change falls
within the scope of diachronic semantic change modeling, although admittedly
in a non-mainstream form.

Manually annotated data on armed conflicts in the world (described earlier
in this chapter) can be used to estimate the ability of the existing methods to
deal with this task. As we show in this section, the necessary prerequisites for
achieving decent performance here are incremental updating of the embeddings
with new training texts and expanding the models’ vocabulary in the course of
this process.16

5.3.1 Formulating the task

It is well known that news texts can be predictive of active violent groups
(Greenawald et al., 2018). A violent group and a geographical location in which
this group is active are linked with a specific type of semantic relationship
(similar in principle to hyponymy, meronymy, etc, with the exception that this
relationship is not annotated in WordNet). These relationships arguably are
also manifested in distributional semantic models trained on large news corpora.
When the relationships change (emerge or vanish), embedding space changes as
well. This is what we explore in this section.

Consider the following task: given that in 2003, ‘Kashmir Liberation Front’
and ‘ULFA’ groups were involved in armed conflicts in India, and ‘Lord’s
Resistance Army’ in Uganda, predict what entities played the same role in
2004 in Iraq, given the corresponding diachronic word embeddings trained on
2003 and 2004 news texts. According to the UCDP data, the correct answer
consists of three entities: ‘Ansar al-Islam’, ‘al-Mahdi Army’ and ‘Islamic State’.
The nature of the task is conceptually similar to analogy reasoning (Mikolov,
Yih, et al., 2013), but with the added complexity of diachronic change.

One can argue that a very similar task can probably be addressed without any
distributional embeddings, using only corpus co-occurrence data. For example,
it is possible to find an armed group active in a given country by calculating
what armed group name co-occurred most often with the country name in the
target corpus (or vice versa, to find the relevant country by the armed group

16Parts of this section were previously published as Kutuzov, Velldal, et al. (2017a).
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name). However, such a solution is not applicable in the context of this chapter
(even without taking into account that our thesis is about studying distributional
embeddings, not other NLP algorithms). The reason is that the ‘co-occurrence
baseline’ would require a given closed set of all words belonging to the target class
(either armed group names or country names) to choose from. Without such a
set, it is logically impossible to solve the task: each word X in the vocabulary
has only one value of its co-occurrence frequency with another word Y , and
there is a potentially infinite number of possible semantic relations for which
one might want to generate predictions.

If the closed set does exist, it of course helps to solve the task of choosing
the most relevant item in this set (if one knows for sure that ‘Ansar al-Islam’ is
the name of an armed group, one can infer that it co-occurs with ‘Iraq’ more
frequently than the names of other armed groups). But this is a different task
from what we formulated above. In our setup, we do not assume the existence of
a stable and immutable set of armed groups (or even countries). The task does
imply that we have access to some example instances (like ‘Kashmir Liberation
Front’, ‘ULFA’ and ‘Lord’s Resistance Army’ above), but the system predictions
are not restricted with respect to any closed set. This is an important difference:
we are interested in diachronic drift of semantic relations, which means that
the elements participating in these relations are fluid as well. We can expect
these elements to appear and disappear (as armed groups obviously do). An
immutable set of possible choices is not applicable here, as well as any co-
occurrence approach based on such a set. For this reason, we do not compare
against methods like this.

On the other hand, vector semantic representations and linear operations
defined on these representations do provide straightforward ways to generalize and
produce predictions not belonging to the initial set of example instances, as we will
show below. In Subsection 5.3.2 we will imitate the standard synchronic vector
analogies setup, in order to show that word embeddings indeed capture semantic
directions like ‘location to armed group’, not only more well-acknowledged
relations like ‘male to female’ or ‘past to present’. Further on, in the subsection
5.3.3, we propose to use a linear projection based method to solve these ‘analogies’,
and in 5.3.4 show that it achieves competitive performance. With this in hand, in
the subsection 5.3.5 we find that the learned relationship projections are preserved
through diachronic word embeddings, and that one can use their dynamics to
trace particular armed groups being involved in conflicts. Subsection 5.3.6
evaluates several variants of this approach on the UCDP data.

Note that our focus here is again the event-driven drift in meaning manifested
in context variance: it is not the lexicographic senses of the names denoting
locations and armed groups that change, but rather their ‘perceived image’ and
typical connotations, as represented in the analyzed texts.

For some researchers, it can be natural to think about temporal analogies
in terms of onomasiological change (as time goes, another word form comes
to express the same concept), unlike many examples in the previous chapters,
which mostly focused on semasiological processes (as time goes, another concept
comes to be expressed by the same word form). However, a closer look shows
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that in fact this setup fuses both semasiological and onomasiological changes,
which seem to be inextricably interlinked here:

• Semasiological aspect: the groups and geographical locations themselves are
perceived as independent lexical entities which undergo semantic changes.
For example, an armed group can gradually drift away from being associated
with violence.

• Onomasiological aspect: the concept slot ‘armed group in an active conflict’
(belonging to the ‘armed conflict’ semantic frame) is filled with different
words in different time periods, as the armed groups appear or disappear.
This slot can also remain empty, if there are no inner conflicts in the
location. Note that the semantic relation itself still remains the same, but
the fillers of its ‘an armed group’ and ‘a government controlling a particular
location’ slots are changing.

Unlike the lexical replacement studies described in Tahmasebi, Borin, and
Jatowt (2018), we deal with instances which are not exclusive at any given time
point. The ‘armed group’ slot is not unique (it exists for each country name)
and it can be filled with any number of named entities (including 0).

Our change detection approach can be defined as ‘local’ to some extent: the
linear projections that we learn are mostly based and evaluated on the nearest
neighborhood data. But even taking this into account, the whole task is very
different from the standard understanding of techniques for local semantic change
detection in that its scope is not single words but pairs of typed entities (‘location’
and ‘armed group’ in our case) and semantic relations between them. We study
how these semantic relations change over time (or remain stable), and how one
can infer this information from diachronic distributional representations.

We continue to employ the Armed Conflicts Evaluation Test Set. Almost
always, the first participant of the conflict (the sideA field of the UCDP metadata)
is the government of the corresponding location, and the second participant
(the sideB field of the UCDP metadata) is some insurgent armed group we are
interested in. In cases when the gold data described the conflict as featuring
several groups on the sideB (several insurgents fighting against the government
in one conflict), we created a separate entry for each group. This resulted in a
test set of 673 ‘Location–Insurgent’ pairs.

5.3.2 Armed conflicts as linear analogies in a vector space

We first conducted experiments to assess the hypothesis that dense embeddings
do contain semantic relationships of the type ‘insurgent participant of an
armed conflict to the location of this armed conflict’. To this end, we trained
a CBOW word embedding model on the full English Gigaword corpus (Parker
et al., 2011) with window size 5, minimal count 100, dimensionality 300, 10
negative samples and five epochs. Note we also experimented with the Continuous
Skipgram algorithm, but it yielded either comparable or worse results, at the
same time being more computationally demanding. For some reasons, it seems
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that CBOW is often better than Skipgram for learning linear projections: see
the same observation for the projection from Ukrainian to Russian model in
Kutuzov, Kopotev, et al. (2016).

To intrinsically evaluate this model, we used the very well established Google
Analogies Dataset from Mikolov, Yih, et al. (2013), which contains English pairs
like ‘country to its capital’, ‘country to its currency’, ‘city to its state’, family
relations, etc (we filtered out the sections containing purely morpho-syntactic
relations like ‘present form of the verb to the past form of the verb’). These
proportional analogies were solved with the Vector Offset method also known
as ‘3CosAdd’ (Mikolov, Yih, et al., 2013)17. When given the analogy a : b, c : d
with an unknown d, and a vector model mapping entities to their embeddings,
the Vector Offset suggests that d can be found with the equation 5.2. If there is
no entity (word) with the exact �d vector in the given model (and this is most
probably the case), the answer is an entity with the highest cosine similarity to
the predicted �d.

�d = �b − �a + �c (5.2)

With this test set and the Vector Offset analogy solving method, our CBOW
model yielded an accuracy of 70.4%, which is comparable to other English word
embeddings (Fares et al., 2017).

The Google Analogies Dataset does not contain ‘country to an armed group’
pairs. However, hand-picking examples illustrate that word embedding models
do capture this information as well. Consider Figure 5.218 where the embedding
models trained on English Wikipedia and on the Gigaword try to solve the
analogy ‘Afghanistan is to Taliban is as India is to X’. X is predicted by
using the Vector Offset method. Note the differences in the behavior of the
two models. The one trained on Wikipedia predicts ‘Tamil Nadu’ (one of India
states) as an entity being in the same relation to India as Taliban to Afghanistan.
Of course Tamil Nadu is related to India, but it is not an armed group, so
the answer is incorrect. At the same time, the model trained on news texts
(Gigaword) predicts ‘ULFA’, the acronym for The United Liberation Front of
Assam, which is indeed a militant group banned in India and seeking to establish
an independent state of Assam. Thus, the Gigaword model makes it possible
to produce the correct prediction in this cherry-picking example, showing that
news texts can at least in theory provide enough distributional signal for this
kind of tasks.

But what if we evaluate this ability systematically? For this purpose, we
created an analogy test set following the same format as the Google Analogies
Dataset, but containing the ‘Location–Insurgent’ pairs from the Armed Conflicts
Evaluation Test Set. Typed pairs of countries and armed groups are organized
in quadruplets in this dataset version, with 20 942 quadruplets in total. For an
example of a quadruplet, see example 1 below, where FARC is an armed group

17There also exist other methods to solve vector analogies, see Gladkova et al. (2016) for
more details.

18Taken from our WebVectors service: http://vectors.nlpl.eu/explore/embeddings/en/calculator/
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Figure 5.2: A word embedding model trained on news texts (Gigaword) correctly
answering a synchronic armed conflict analogy question (predicting the ULFA
armed group active in India).

active in Colombia, while Hamas is an armed group active in Israel. ‘Hamas’ is
the X to be predicted, given three other words in order.

(1) ‘Colombia FARC | Israel Hamas’

The accuracy of our CBOW word embedding model (trained on Gigaword)
on this armed conflict test set using the same Vector offset method was much
lower than on the Google Analogies Dataset, a mere 3.3%. For consistency with
the evaluation below, we also calculated the same accuracy @5 and @10 (that is,
whether the correct answer was among top five or top 10 nearest neighbors of
the prediction yielded by the model). The resulting accuracy @5 was 11% and
the accuracy @10 was 16.2%.

This was expected, since the relations of this kind are much more subtle
than those between capitals and countries. Additionally, the names of insurgent
groups are mostly low frequency words, compared to the named entities in
the Google Analogy test set. This indicates that they have worse embeddings
on average, since they were trained on less examples. Finally, an important
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difference between the datasets is that the Armed Conflicts Evaluation Test Set
contains one-to-many relations: some locations map to several armed groups,
but the Vector Offset method can output only one answer for each quadruplet
(the first nearest neighbor to the calculated vector).

However, we argue these results do not necessarily mean that the relevant
relationships are not encoded in the model. They just have to be retrieved by
some other means, which we outline in the next subsection.

5.3.3 Learning the armed conflict projection

One intuitive way of improving the performance of solving word analogies
(especially with one-to-many data instances) is learning from all available related
word pairs, instead of solving each analogy separately. In this setup, one trains
a supervised model on a train subset of word analogies data and then tests this
model on a held-out subset. Drozd et al. (2016) achieve this by simply averaging
the offsets between all vector pairs in the training set (they dub this method
‘3CosAvg’, as an allusion to the original ‘3CosAdd’).

We employ the same idea, but cast it as actually learning a projection matrix
from the embeddings of entities of one type (source) to the embeddings of
entities of another type (target). This is done for each section of the dataset,
assuming that each of them contains its own type of semantic relations. A
similar method has been used for naive translation of words from a L1 language
to a L2 language by using monolingual word embeddings for both, and a seed
bilingual dictionary (set of one-to-one pairs) (Mikolov, Le, et al., 2013). The
theory behind this approach is described in more details in our paper published
as Kutuzov, Kopotev, et al. (2016).

Essentially, we train a linear regression which minimizes the error in
transforming one set of vectors into another. This amounts to solving d normal
equations (where d is the vector size in the embedding model being used, 300 in
our case), as shown in equation 5.3:

�βi = (Xᵀ · X + λ · L)−1 · Xᵀ · yi (5.3)

where X is the matrix of source word vectors (input), yi is the array of the
ith components of the corresponding target word vectors (correct predictions),
L is the identity matrix of the size d, with 0 at the top left cell, and λ is a
real number used to tune the influence of regularization term (if λ = 0, there
is no regularization). �βi ∈ R

d is our aim: the vector of dimensionality d such
that the dot product of arbitrary source vector and �βi is as close as possible
to the ith component of the corresponding target vector. In other words, �βi

transforms source vectors into these ith components. After learning �β for each
vector component i, we have a linear transformation matrix T ∈ R

d×d which
is able to transform full vectors into full vectors, thus ‘predicting’ a target
embedding from a source embedding.

This general workflow can in principle be used to solve any word analogies,
when one has a set of typed word pairs. In this particular case, our source words
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location→group group→location

λ @1 @5 @10 @1 @5 @10

0.0 0.0 14.6 31.4 8.8 46.7 70.8
0.5 0.7 19.0 35.0 7.3 49.6 70.1
1.0 2.2 19.7 32.8 6.6 47.4 66.4

Vector Offset 3.3 11.0 16.2

Table 5.3: Accuracies at different number of nearest neighbors (k) for synchronic
projections (time periods not taken into account) from locations to armed groups,
and vice versa. The Vector Offset baseline is also reported.

are location names and target words are insurgent armed group names. Below,
we apply it to predict insurgents from locations and vice versa in both synchronic
and diachronic setups.

To evaluate the accuracy of the resulting projections, we employ leave-one-out
cross-validation, i.e., testing the accuracy of predictions on each pair from the
existing dataset, after learning the projection matrix on all the pairs except the
one used for testing. This means that for the purposes of evaluation, we have to
learn the number of projection matrices equal to the number of pairs.

The prediction itself (in the case of predicting an armed group given a location)
consists of dot-multiplying the learned transformation matrix T by the location
vector from the test pair. It results in the ‘armed conflict projection’ î ∈ R

d.
Then, we produce k nearest neighbors of î in the current distributional model.
If the real insurgent group from the test pair was present in these k neighbors,
the accuracy for this pair is 1, otherwise it is 0. The overall performance of the
system is measured as an average accuracy over all pairs.

5.3.4 Results of synchronic evaluation

While still remaining in the synchronic realm, we first test whether employing
the linear projection approach will help us better predict armed groups from
their locations. In Table 5.3 we report the average accuracies of linear projections
with different values of the regularization hyperparameter λ and considering
hits among the 1, 5 and 10 nearest words (these being different values of the k
hyperparameter). We had 137 time-independent ‘location–insurgent’ pairs from
the Armed Conflicts Evaluation Test Set in total. For comparison, we again
report the performance of the Vector Offset method for this task.

First, we note that relations of this kind are not symmetric: it is much easier
to predict the location based on the insurgent (see the right part of Table 5.3)
than vice versa (left part of the table). Second, the achieved ‘group→location’

107



5. Semantic change and world events: armed conflict dynamics

Section # pairs @1 @5 @10

Capital-Common-Countries 506 0.0 56.5 73.9
Capital-World 4 524 53.0 88.7 93.9
Currency 866 0.0 34.5 41.4
City-in-State 2 467 1.5 22.1 52.9
Family 506 10.5 42.1 52.6

Table 5.4: Accuracies at different number of nearest neighbors (k) for synchronic
projections on the pairs from semantic sections of the Google Analogies test set
(λ = 1.0).

results are now very close to the performance of the same linear projection
approach with λ = 1.0 on the Google Analogies test set (after converting it to
a set of unique pairs). The results with the Google Analogies are presented
in Table 5.4. Note though that predicting locations from armed groups is not
our aim in this chapter: we deal with the inverse task of predicting armed
groups from location, and this comparison is given only to better illustrate the
capabilities of word embeddings to capture relational information.

When considering the ‘location→group’ results in Table 5.3, one can see that
the Vector Offset method is only (marginally) better for accuracy @1, but it
is obviously outperformed by the projection method for accuracies @5 and @1
(for any value of λ). It means that employing linear projections leads to better
chances for the correct answer to be located in the immediate neighborhood
of the system prediction (even if not at the nearest position). Thus, using the
proposed workflow does benefit solving word analogies related to armed conflicts.

It also seems that the higher number of pairs in the training set leads (not
surprisingly) to a better performance in learning the transformation matrix: see
the numbers for the Google Analogies ‘Capital-World’ section in Table 5.4, which
has the largest number of pairs. The ‘Capital-Common’ section also exhibits
high performance, probably because it contains very frequent country and city
names which as a rule receive reliable embeddings during training.

Since the amount of armed conflict training pairs is only 137, it comes as no
surprise that the results on this dataset (the left part of Table 5.3) are worse than
on the Google Analogies (with hundreds and thousands of pairs in its sections).
However, with the projection method, the scores are only marginally lower, not
substantially worse as is the case with the Vector Offset @1. Upon a closer look,
the performance on the conflict data pairs is very similar to the ‘Currency’ or
‘City-in-State’ sections of the Google Analogies dataset.

We argue that the lower performance on the armed conflict data in comparison
to the Google Analogies dataset is additionally explained by the following three
factors:
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1. the frequency of words denoting armed groups is lower than any of the
words in the Google Analogies data set; thus, their embeddings are of lower
quality on average;

2. one-to-many relationships in the UCDP dataset (multiple armed groups
can act in one location, or one armed group can act in several locations)
make learning the transformation matrix more difficult;

3. learning the transformation matrix on the embeddings trained on the whole
Gigaword is sub-optimal, since the majority of armed groups were not
active throughout all the Gigaword time span.

From the experiment described above, we conclude that semantic relations
between locations and insurgents do exist and can be extracted from word
embeddings. They are less expressed than the simplistic one-to-one relations
like those in the Google Analogies test set, but still can be found using learned
projection matrices. The synchronic accuracies are comparable to those on
Google Analogies and thus encouraging, especially considering the fact that the
armed conflicts in question are not distributed equally across the whole time
span of our training corpus. In the next subsection we employ the same approach
diachronically.

5.3.5 Learned armed conflicts projections in a diachronic setup

The aim of our diachronic experiments is to find out whether the ‘location–
insurgent’ projections produced from word embeddings trained on one time
period will be able to reveal new conflicts that appeared in the next time period
(or old conflicts which disappeared). If successful, this would allow us to trace
the armed conflict dynamics by calculating whether the armed conflict relation
still holds between the name of the country and the name of a group after some
time has passed (and the embeddings were updated accordingly). Even more
important, this will mean that diachronic embeddings do capture information
about changes in semantic relations between lexical entries.

To this end, we first trained incremental Continuous Bag-of-Words models
on the yearly subsections of Gigaword texts, starting from the year 1994 to the
year 2010 (final Gigaword year). We incrementally updated this same model
with new data, saving a separate model after each subsequent year, following
Kim et al. (2014). New words were added to the vocabulary of the model if their
frequency in the new yearly data conformed to our minimal count threshold of
15 (so called ‘vocabulary expansion’), same as in the previous section. Each
yearly training session was performed in five epochs, with linearly decreasing
learning rate.

At test time, we work with two word embedding models representing two time
bins. As a preliminary example, below we evaluate one of such pairs: namely,
the model saved after incremental training on the years up to 2000 (M2000),
and the model saved after incremental training up to the year 2001 (M2001).
Note that we are trying to find insurgents given a location (as was shown earlier,
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it is generally a more difficult task as compared to ‘find a location given an
insurgent’).

We extract from the Armed Conflicts Evaluation Test Set all the ‘location–
insurgent’ pairs describing the armed conflicts which took place between 1994
and 2000 (this will be 91 pairs total). The projection matrix T2000 is learned on
the location and insurgent embeddings from M2000. Note that we use all conflicts
from 1994 to 2000 to learn the projection matrix, although evaluating only the
2000-2001 pair. The reason behind this is to use all conflict data available from
the past in the given point in time (the year 2000 in this case). This is a realistic
setup, where one has access to gold annotation for the previous years, but not
for the current year (for which the predictions have to be made; in our case,
it is the year 2001). In the next subsection 5.3.6, we will thoroughly evaluate
both this approach (dubbed ‘up-to-now’) and its variation where the projection
is learned only on the ‘salient’ conflicts taking place in the most recent year
for which we still have gold annotation (the year 2000 in this example). For
simplicity, in this subsection we stick to the ‘up-to-now’ approach.

After the T2000 projection is learned, it is applied to the M2001 embeddings of
the locations which experienced armed conflicts in the year 2001. According to
the Armed Conflicts Evaluation Test Set, their number is 47, but after skipping
pairs where either the location or the armed group (or both) is missing from the
M2001 vocabulary, this number lowered to 38. The resulting predicted vectors
î are evaluated against the real (‘gold’) armed groups active in the respective
locations in 2001, in the same way as in the previous subsection 5.3.4. Ideally
performing system is expected to capture all the ‘gold’ armed groups and thus
have the accuracy of 100.

Table 5.5 demonstrates the resulting performance on this particular pair of
years taken as an example. These scores reflect how close the predicted vectors
were to the actual insurgents. Note that out of 38 armed conflict pairs from
2001, 31 were already present in the previous set of training pairs from 2000
(ongoing conflicts). This explains why the evaluation on all the pairs gives very
high results (though still important in confirming that the semantic relations
hold after feeding a model with new data).

However, even when evaluated on the seven new conflicts only, the projection
performance is encouraging. On the qualitative side, among others, it managed
to precisely spot the 2001 insurgency of the members of the Kosovo Liberation
Army in Macedonia (accuracy @1), notwithstanding the fact that the initial
set of training pairs did not mention Macedonia at all (no armed conflicts took
place in this location between 1994 and 2000). Since we did not specifically align
the vector spaces, it seems that the incrementally trained embeddings at least
partially preserve the existing semantic axis, learned by the model before the
new data.

To illustrate the case described above, Figures 5.3, 5.4 and 5.5 plot the
2-dimensional t-SNE (Van der Maaten and Hinton, 2008) projections of location
(red) and insurgent (blue) vectors from the 2000, 2001 and 2002 models
correspondingly. Black arrows are added to represent the average ‘semantic
directions’ between locations and armed groups. Of course, the original
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Conflicts # of pairs @1 @5 @10

All 38 44.7 76.3 81.6
Only new 7 14.3 28.6 42.9

Table 5.5: Accuracies of 2000 → 2001 diachronic projection in armed group
detection at different number of nearest neighbors (k).

Figure 5.3: Locations (red) and corresponding armed groups (blue) active in
2000; t-SNE projection of high-dimensional word embeddings.
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Figure 5.4: Locations (red) and corresponding armed groups (blue) active in
2001; t-SNE projection of high-dimensional word embeddings.

‘directions’ dwell in the high-dimensional vector space of the original embeddings
(300 in our case), but even on the flattened projection these geometrical relations
exhibit clear trends within each year. Essentially, most of the arrows are almost
parallel, thus ensuring that the averaged ‘semantic direction’ does make sense.
Our projection matrix T is an attempt to learn such a direction from data while
minimizing the error.

With the toy evaluation experiment in this subsection, we have shown that a
large part of semantic relations within embedding models can survive at least
some amount of further incremental training with the new texts that have
experienced diachronic change. In the next subsection, we perform a full-scale
evaluation of this approach.

5.3.6 Diachronic evaluation of learned projections

In the previous subsection, we tested our approach to predicting future conflicts
based on the projection matrix learned from the previous year on the example
of one year pair. In this subsection, we systematically evaluate it on the full
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Figure 5.5: Locations (red) and corresponding armed groups (blue) active in
2002; t-SNE projection of high-dimensional word embeddings.

Armed Conflicts Evaluation Test Set for all the years between 1995 and 2010.
We did not use the 1994 data, due to its Gigaword sub-corpus being too small
and having too many out-of-vocabulary words.

The evaluation metric is the same as before: we calculate the accuracy as the
ratio of correctly predicted armed group names for the conflict pairs annotated
as active in the Armed Conflicts Evaluation Test Set (gold standard) for this
particular year.19 The final score is the average of these accuracies over all years.
Location and armed group names present in the gold standard but missing in the
current models (for example, because they were too rare in a particular training
corpus and did not manage to reach the frequency threshold) were skipped. In
the worst case, 25% of pairs were skipped from the test set; on average, 13% were
skipped each year (but see the note below about the ‘stable vocab’ baseline). At
test time, all the entities were lower-cased to eliminate the influence of possible
minor differences in spelling of names.

19Note that this setup does not ask the used method to predict anything for peaceful
locations, which makes the task somewhat easier. We change that in the next Section 5.4.
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As before, our word embeddings were incrementally trained on each successive
year with vocabulary expansion. We compare them against three baselines:

1. yearly models trained on the concatenation of the texts from the current
year and the previous years (hereafter ‘cumulative’);

2. yearly models trained separately from scratch on the corpora containing
news texts from the current year only and then pairwise-aligned using
Orthogonal Procrustes (Hamilton, Leskovec, et al., 2016a) (hereafter
‘Procrustes’);

3. incrementally trained models without vocabulary expansion: they always
use the vocabulary from the chronologically first model (hereafter ‘stable
vocab’).

Our initial workflow was to train the linear projections on all the conflict
pairs from the past and the current years (hereafter ‘up-to-now’). However,
this can somewhat decrease the performance, as the information about conflicts
having ended several years before might not be strongly expressed in the model
after it was incrementally updated with the data from all the subsequent years.
For example, the 2005 model hardly contains much knowledge about the conflict
relations between Mexico and the Popular Revolutionary Army (EPR) which
stopped being active after 1996. Arguably, the direction between these two
entities in the 2005 model vector space is very dissimilar from other, more salient
‘location–insurgent’ pairs.

To test whether this can really influence performance negatively, we
additionally conducted an experiment with the projections learned only on
the salient pairs (hereafter ‘single-year’). In it, we used for training only the
pairs active in the last year up to which the model was trained (‘current year’).

Table 5.6 presents the results for these experiments, as well as for the
baselines (averaged across all years). One can see that for the proposed approach
(incremental models with vocabulary expansion), the performance of the ‘single-
year’ projections is not worse than that of the ‘up-to-now’ learning regime. In
fact, the former even outperform the latter on the accuracies @1 and @5, while
taking less time to learn, because of less training pairs. Our explanation for that
is that the single-year projections are more focused on the salient events.

We find that the results of the ‘cumulative’ baseline are only slightly better
than random jitter. This approach performs much worse than the methods
which imply making the diachronic embedding comparable: Procrustes and
incremental training. This is precisely because the cumulative models are not
comparable to each other: they are initialized with different layout of words
embeddings in the vector space. This gives rise to formally different directions
of semantic relations in each yearly model. The relations themselves are still
present in the embeddings, of course, but they are rotated and scaled differently).
Note that although using Procrustes-aligned embeddings does yield much better
results compared to the cumulative baseline, it still consistently loses out to
incremental training. This means that while Procrustes alignment is often
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Model type up-to-now single-year

@1 @5 @10 @1 @5 @10

Only in-vocabulary words

Cumulative 1.7 8.3 13.8 2.9 9.6 15.2
Procrustes 21.2 39.1 47.8 27.4 50.6 58.2
Stable vocabulary 54.9 82.8 90.1 60.4 79.6 84.8

Incremental 32.5 64.5 72.2 42.6 64.8 71.5

All words, including out-of-vocabulary

Cumulative 1.5 7.4 12.2 2.5 8.5 13.4
Procrustes 14.5 27.0 32.9 21.6 39.9 46.1
Stable vocabulary 20.8 31.5 34.2 23.0 30.3 32.2

Incremental 28.1 56.1 62.9 37.3 56.7 62.6

Table 5.6: Average accuracies of predicting next-year insurgents based on location
vectors and projections learned from the previous year.

reported to outperform incremental training in lexical semantic change detection
(Shoemark et al., 2019; Schlechtweg, Hätty, et al., 2019), this is not the case at
least when dealing with changes in semantic relations. It seems that incremental
training preserves semantic directions in the vector spaces, and does this job
better than the attempts to ‘restore’ these directions by post-hoc alignment.

The results for the ‘stable vocabulary’ baseline are interesting: this setup uses
incrementally updated models without vocabulary expansion (the vocabulary
stays the same from the very first model). When tested only on the words present
in the test model vocabulary (‘Only in-vocabulary words’ part of Table 5.6, at the
top), this baseline seems to outperform all the other approaches, including those
based on incrementally trained embeddings with vocabulary expansion. This
stems from the fact that incremental updating with stable vocabulary means we
never add new words while updating our models. Thus, they essentially keep
the same original vocabulary inferred from the 1994 corpus. The result is that
at test time we skip much more out-of-vocabulary (OOV) pairs than with the
other approaches (about 62% in average, in comparison to 13% with other model
types). Thus, the projections are in fact tested only on a minor part of the test
sets (arguably on the easiest, most frequent words).

Of course, simply skipping the larger part of the data under analysis would
be a major drawback both for real-life applications and for our task of probing
diachronic word embeddings for semantic change information. So the ‘stable
vocabulary’ baseline is not really plausible. For comparison, Table 5.6 additionally
provides the accuracies for the setup in which all the pairs are considered (‘All
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words, including out-of-vocabulary’ part of the table, at the bottom). In this case,
for the pairs with OOV words, the accuracy is set to 0 (not skipped), implying
that the system was not able to predict anything. Our approach with vocabulary
expansion and other baselines are not much affected by this change: their
performance stays almost the same, dropping only marginally (except Procrustes,
which suffers somewhat more). But for the ‘stable vocabulary’ baseline, the
scores drop drastically. As a result, after omitting this non-plausible ‘stable
vocabulary’ baseline, incremental training with vocabulary expansion consistently
and significantly outperforms all its competitors (including Procrustes alignment)
as measured by the average accuracy across all years. We provide the full table
of per-year accuracies for this method together with their standard deviations in
the Appendix B.

With these experiments, we showed that:

1. Diachronic word embedding-based methods can be used to trace not only
semantic shifts in single words, but also changes in typed relations between
word pairs.

2. For this particular task, incremental training of embedding models is more
useful than alignment with the orthogonal Procrustes transformation.

In the next section, we further refine the evaluation setup of diachronic
semantic relations detection, find ways to reduce the number of false armed
group predictions, and reproduce our results on newer corpora and test sets.

5.4 Forecasting future armed conflicts as diachronic
one-to-X analogies

In this section, we use diachronic word embedding-based methods of semantic
change detection to actually predict future armed conflicts and armed groups
involved in them (‘future’ here means ‘not seen in the training data and
chronologically subsequent’).20 In comparison to the experiments in the previous
section 5.3, here we significantly reformulate the analogy task as a ‘one-to-X’
problem, making it more realistic. We find ways to cope with false positives
(insurgent armed groups predicted for locations where no armed conflicts are
registered this year). Finally, we use newer and larger corpora of news texts and
the most recent version of the UCDP dataset.

5.4.1 Why one-to-X?

The issue of linguistic regularity manifested in relational similarity has been
studied for a long time. Due to the long-standing criticism of strictly binary
relation structure (see, for example, Turney (2006)), SemEval-2012 offered the
shared task to detect the degree of relational similarity (Jurgens, Mohammad,

20Parts of this section were previously published as Kutuzov, Velldal, et al. (2019).
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et al., 2012). This meant that multiple correct answers exist (‘one-to-many’
setup), but they should be ranked differently.

Somewhat similar improvements to the well-known Google Analogies dataset
from Mikolov, Yih, et al. (2013) were presented in the BATS analogy test set
(Gladkova et al., 2016), also featuring multiple correct answers.21 Our ‘one-to-X ’
analogy setup extends this by introducing the possibility of the correct answer
being ‘None’. In the cases when correct answers exist, they are equally ranked,
but their number can be different. Overall, particular instances can be either
‘one-to-none’, ‘one-to-one’ or ‘one-to-many’ relations. Thus, this setup is more
difficult than simple ‘one-to-many’, since there may be zero correct answers
(hence ‘X’ in the name of the approach).

5.4.2 Applying one-to-X to armed conflicts

Once again, we rely on the idea that knowing the gold ‘location-insurgent’
pairs from a time period t can help us to retrieve the correct pairs bearing the
same relation from the next time period t + 1, using word embeddings trained
incrementally on these time periods.

We deal with pairs of consecutive years (‘2010–2011’, ‘2011–2012’, etc.). Our
aim is to predict armed conflicts (or their absence) for a fixed set of locations in
the year t + 1. Having the gold armed conflict data for all years, we can train
a predictor on the 1st year, and then evaluate it on the 2nd one (simulating a
real-world scenario where new textual data arrive regularly, but gold annotation
is available only for older data).

We take the gold ‘location-insurgent’ pairs from the year t (as a rule, there are
several dozens of them) and their vector representations from the corresponding
embedding model Mt. Then, these vector pairs are used to train a linear
projection T ∈ R

d×d, where d is the vector size of the embedding model employed.
Linguistically, T can be seen as defining a ‘prototypical armed conflict relation’;
geometrically, it can be thought of as the average ‘direction’ from locations to
their active insurgent groups in the Mt vector space.

The problem of finding the optimal T boils down to a linear regression which
minimizes the error in transforming one set of vectors into another, and we do
it by solving d deterministic normal equations, described earlier in section 5.3.
Since the number of data points is small, the operation is fast. But in the case
of large datasets, (almost) the same T can be learned via stochastic gradient
descent or any other stochastic optimization process.

After T is at hand, one can find the ‘armed conflict projection’ vector î
for any location vector �v in Mt+1 by transforming it with the learned matrix:
î = v · �T . In the simplest case, the word with the highest cosine similarity to î
in Mt+1 is assumed to be a candidate for an insurgent armed group active in
this location in the time period t + 1. However, a more involved approach is

21See also the detailed criticism of analogical inference with word embeddings in general in
Rogers et al. (2017).
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needed to handle cases when the number of insurgents (correct answers) can be
different from 1 (including 0). This approach is described in the current section.

Note again that for this workflow to yield meaningful results, it is essential
for the paired models to be comparable. This is why we train the models
incrementally, thus ensuring that they share common structural properties.

5.4.3 Corpora and datasets

In this subsection, we describe the training corpora and the armed conflict
datasets we employed.

5.4.3.1 Corpora for embeddings

We train word embeddings on two corpora:

1. The English Gigaword news corpus (Parker et al., 2011), spanning the
years 1995–2010 and containing about 300 million words per year, with
about 4.8 billion total. This corpus was used in the previous section 5.3
and we include it for comparison purposes.

2. The News on Web (NOW) corpus,22 spanning the years 2010–2019. The
time-annotated texts in NOW are crawled from online magazines and
newspapers in 20 English-speaking countries. Since our Armed Conflicts
Evaluation Test Set covers conflicts only up to 2017, we use the texts up
to that year, yielding on average 730 million words per year, with about
5.9 billion total.

Before training the embedding models, the corpora were lemmatized and PoS-
tagged using the UDPipe 2.3 English-LinES tagger (Straka and Straková, 2017)
(during the evaluation, PoS tags were stripped and words lower-cased). Chains
of consecutive proper names (‘South_PROPN Sudan_PROPN ’) were merged
together with a special character (‘South::Sudan_PROPN ’). This was important
to handle multi-word location and insurgent names (consider ‘Islamic State’).
Functional words were removed.

5.4.3.2 Conflict relation data

This version of the Armed Conflicts Evaluation Test Set comes from the
UCDP/PRIO Armed Conflict Dataset (ver. 18.1) (Pettersson and Eck, 2018).
Recall that it is manually annotated with historical information on armed
conflicts across the world, starting from 1946, where at least one party is the
government of a state, and frequently used in statistical conflict research.

The dataset contains various metadata described earlier in this chapter,
but we kept only the years, the names of the locations, and the names of the
armed groups. For example, the entry ‘2016: Afghanistan: ["Taliban",
"Islamic State"]’ (serialized here as JSON) means that in 2016, two armed

22https://corpus.byu.edu/now/
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Gigaword NOW

Time span 1995–2010 2010–2017
Unique locations 52 42
Unique armed groups 127 78
Unique conflict pairs 136 102
New pairs share (average) 0.37 0.39
Conflict locations share 0.46 0.56
Insurgents per location 1.65 1.50

Table 5.7: Comparative statistics of our armed conflict test sets.

groups were active in Afghanistan: the Taliban and the Islamic State. Again,
entities occurring less than 25 times in the corresponding yearly corpora were
filtered out, since it is difficult for distributional models to learn meaningful
embeddings for such rare words.

We create one such conflict relation dataset for each news corpus; one
corresponding to the time span of NOW and another for Gigaword. Table 5.7
shows various statistics across these test sets, including the important ‘new pairs
share’ parameter, showing what part of the conflict pairs in the years t + 1 was
not seen in the years t (how much new data to guess).

The new NOW dataset features 102 unique ‘location-insurgent’ pairs, with
42 unique locations and 78 unique armed groups. On average, each year 56% of
these 42 locations were involved in armed conflicts, based on the UCDP data.
The remaining locations (different each year) serve as negative examples to test
the ability of our approaches to detect cases when no predictions have to be
made (since there is no armed conflict in this particular time and location, and
thus no semantic relation of this type exists for the current location). For the
areas involved in conflicts, the average number of active insurgents per location
is about 1.5, with the maximum number being 5.23

5.4.4 A replication experiment

In Table 5.8, we report the results of replicating the experiments from the
previous section 5.3 on both sets. It follows the same evaluation scheme, where
only the presence of the correct armed group name in the k nearest neighbors
of the î mattered, and only locations with armed conflicts were present in the
yearly test sets. In fact, such an approach measures not the accuracy, but the
recall @k, without penalizing the system for yielding incorrect answers along
with the correct ones, and never asking questions having no correct answer at
all (e.g., peaceful locations).

23Congo in the year 2017 featured five active armed groups: ‘Kamuina Nsapu’, ‘M23 ’,
‘CMC ’, ‘MNR’, and ‘BDK ’.
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Dataset @1 @5 @10

Gigaword 0.356 0.555 0.610
NOW 0.442 0.557 0.578

Table 5.8: Average recall of diachronic analogy inference

The resulting performance is very similar on both sets and on the same
level with the results from section 5.3, ensuring that the NOW set conveys the
same signal as the Gigaword set. However, in the next subsection we make the
task more realistic by extending the evaluation schema to the one-to-X scenario
described above.

5.4.5 Evaluation setup

In our setup in this section, each yearly test set contains all possible locations,
but whether a particular location is associated with any armed group (and thus
is plagued by a conflict), can vary from year to year. Conceptually, the task of
the system is to predict correct sets of active armed groups for conflict locations
(in other words, to correctly predict the nodes in a hypothetical semantic graph
which are connected by the ‘armed conflict’ edges to the location node) and to
predict the empty set for peaceful locations. For a test year t + 1, an ‘armed
conflict projection’ î is produced for each location using its Mt+1 embedding
and the learned transformation Tt.

The k nearest neighbors of î in Mt+1 become armed group candidates (k is a
hyperparameter). We calculate the number of true positives (correctly predicted
armed groups), false positives (incorrectly predicted armed groups), and false
negatives (armed groups present in the gold data, but not predicted by the
system). These counts are accumulated, and for each year standard precision,
recall and F1 score are calculated. These metrics are then averaged across all
years in the test set. Using false positives ensures that we penalize the systems
for yielding any predictions for locations with no armed conflicts at all. Such
cases mean that the system was not able to properly compare relational semantic
structures of the Mt and Mt+1 embedding spaces.

5.4.6 Cosine threshold

It is clear that the system described in the previous subsection (dubbed hereafter
‘projection baseline’) will always yield k incorrect candidates for peaceful areas.

Inspired partially by the ideas from Orlikowski et al. (2018), we implemented
a simple remedy to that, based on the assumption that the correct armed groups
vectors will tend to be closer to the î point than other nearest neighbors. Thus,
the system should pick only the candidates located within a hypersphere of a
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Forecasting future armed conflicts as diachronic one-to-X analogies

pre-defined radius r centered around î. rt can be different for different time
periods t. We infer it from the p training conflict pairs from the previous time
period by calculating the average cosine distance between the ‘armed conflict
projections’ î and ‘gold’ armed groups

The procedure is shown in Equation 5.4, where gp is the embedding of the
armed group in the pth pair, and σ is one standard deviation of the cosine
distances in p, extending the radius to include more correct predictions.

r =
1
p

p∑
p=0

cos
(

îp, gp

)
+ σ (5.4)

The hypersphere serves as a cosine threshold. It allows us to keep only the
candidates which are not farther from î than the armed groups in the previous
year tended to be. For example, Figure 5.6 shows a PCA projection of the
process of predicting armed groups for Algeria in 2014. With k = 3, the system
initially yielded three candidates (‘AQIM ’, ‘Al-Qaida’ and ‘Maghreb’), with only
the first being correct, according to the gold data. The red circle is a part of the
hypersphere with the radius r2013 inferred from the 2013 training data. It filters
out the wrong candidates (in black), since the cosine distance from the conflict
projection î (in blue) to their embeddings is higher than the inferred threshold.

Figure 5.7 shows another example where cosine thresholding improves armed
group prediction for Yemen in 2011.

5.4.7 Evaluation of future armed conflicts prediction

For the full-scale experiments on all years of NOW and Gigaword, we chose
k = 2, to be closer to the average number of armed groups per location in our
sets. We evaluate the diachronic performance of our system in the setup when
the matrix Tt and the threshold rt are applied to the year t + 1.

First, we test the influence of the cosine thresholding technique without
taking peaceful areas into account (that is, excluding the possibility of correct
‘None’ answers). The resulting scores for both datasets are shown in Table 5.9.
As expected, in this setup, using the learned threshold is not beneficial for either
dataset: it slightly increases the average precision and slightly decreases the
average recall, but the resulting average F1 score remains almost the same. It
is not able to make serious contribution to precision (to shift F1 significantly),
because in this setup there are no entries for which any answer except ‘None’ is
incorrect.

However, once we move to the realistic one-to-X setup and allow the possibility
of ‘None’ answers (in our domain, such answers are correct for areas without
armed conflicts in a particular time period), everything changes, as evidenced
by Table 5.10. Taking into account peaceful areas, of course does not change
the values of average recall (there are no new armed groups to capture). But
as for the average precision, using the cosine-based threshold now makes much
larger difference for both Gigaword and NOW datasets (and the corresponding
embeddings). The precision differences are statistically significant with t-test,
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Figure 5.6: Prediction of armed groups active in Algeria in 2014, based on a
transformation matrix (red arrow) learned from the 2013 data; 2-dimensional
PCA projection.

Algorithm Precision Recall F1

Gigaword Projection baseline 0.44 0.51 0.47
Threshold 0.69 0.41 0.50

NOW Projection baseline 0.44 0.53 0.48
Threshold 0.60 0.41 0.48

Table 5.9: Average diachronic performance of armed conflicts prediction with
cosine thresholding: testing on conflict areas only.
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Figure 5.7: Prediction of armed groups active in Yemen in 2011, based on a
transformation matrix (red arrow) learned from the 2010 data; 2-dimensional
PCA projection.

Algorithm Precision Recall F1

Gigaword Projection baseline 0.19 0.51 0.28
Threshold 0.46 0.41 0.41

NOW Projection baseline 0.26 0.53 0.34
Threshold 0.42 0.41 0.41

Table 5.10: Average diachronic performance of armed conflicts prediction with
cosine thresholding: testing on all areas.

p < 0.05. Importantly, the integral metrics of F1 consistently improves for the
learned cosine threshold (p < 0.01), supporting our assumption that this method
is effective in cases when ‘one -to-zero’ entries are real and frequent. The detailed
tables with per-year F1 score values for each method and dataset (and their
standard deviations) can be found in the Appendix B.

As a sanity check, we also evaluated the same method synchronically, that
is when Tt and rt are tested on the locations from the same year t (including
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Algorithm Precision Recall F1

Gigaword Projection baseline 0.28 0.74 0.41
Threshold 0.60 0.69 0.63

NOW Projection baseline 0.39 0.88 0.53
Threshold 0.50 0.77 0.60

Table 5.11: Average synchronic performance of armed conflicts prediction with
cosine thresholding: testing on all areas.

those lacking any conflicts). In this easier setup, we observed exactly the same
trends (see Table 5.11 for the scores).

Thus, our one-to-X word analogy task formulation can be applied to the
problem of temporal armed conflicts detection based on word embeddings trained
on English news texts (from different corpora). A simple thresholding technique
based on a function of cosine distance allowed us to significantly improve the
relation detection performance, especially for reducing the number of false
positives. This approach outperformed the simple projection baseline both with
the Gigaword and the NOW news corpora.

The thresholding reduces prediction noise without sacrificing too many correct
answers. In our particular case, this helps to more precisely detect events of
armed conflicts termination (where no insurgents should be predicted for a
location), not only their start. More generally, it means that the system is able
to detect cases when the embeddings of a location and an armed group have
shifted in such a way in the vector space that it is safe to suppose that they are
no longer in the conflict relation. And even more generally, if further supports
our hypothesis that diachronic word embeddings can be used to trace subtle
temporal changes in semantic relations between words.

We believe that this technique can be employed in a wide variety of
applications involving one-to-many or one-to-none relations between linguistic
entities. Note, however, that in our experiments, we observed a performance
drop if one tries to apply a projection matrix to the embedding model too far
away in the future: for example, applying T2000 to M2010. This means that
over time, incremental updates to the model ‘dilute’ the learned projections,
rendering them useless. As a future work, it would be interesting to trace how
quickly it happens and analyze the laws governing this deterioration.

5.5 Summary

In this chapter, we introduced the Uppsala Conflict Data Program (UCDP)
datasets of armed conflict start and end dates throughout the world. A version of
the UCDP Conflict Termination dataset was created and published, convenient for
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Summary

natural language processing tasks (we call it Armed Conflicts Evaluation Test Set).
We showed how this data can be used as a source of extra-linguistic indicators
useful for probing semantic change detection methods based on diachronic word
embeddings, similar to methods of distant supervision. By testing the ability of
these methods to detect or predict changes in the real world, we were able to
better understand what types of information about changes in lexical semantics
is captured by distributional representations. Several different approaches to
extract this information were tested and evaluated using the Armed Conflicts
Evaluation Test Set. Note that this approach and this particular test set can
be used to evaluate semantic change method for any language for which there
exists a substantial amount of news texts. Then it is just a matter of translating
(or transcribing) the named entities.

News texts are abundant and eagerly cover armed conflicts. This means that
beginning or termination of any such conflict is to some extent reflected in the
typical contexts surrounding the names of relevant geographical locations and
groups in news text published in the corresponding time period. This is the type
of information which distributional semantic models efficiently capture.

As an example, one can use such methods in a comparatively simple setup
when one measures the temporal drift of a geographical location embedding in
relation to conflict domain specific ‘anchor words’ like ‘kill’, ‘casualty’, etc. This
allows us to detect an armed conflict start or end based only on the analysis of
word vector changes which in turn reflect context variance and changes in the
referential meaning of a particular named entity. We described such experiments
in Section 5.2.

Further on, in Section 5.3, we investigated how incrementally trained
diachronic word embeddings can serve as the foundation for systems which
are able to trace the dynamics of semantic relations over time. This problem is
similar to the well-known word analogies task, and is much more difficult and
subtle than single-word semantic change modeling, since it involves the analysis
of entity tuples (or even triplets or quadruplets).

We considered the task of detecting and predicting armed groups active in
particular geographical locations. This is essentially answering the questions
like ‘Does this semantic relation still hold between the entity X and the entity Y
after some time has passed?’, where X is, for example, ‘India’, and Y is ‘United
Liberation Front of Assam (ULFA)’. This setup fuses both onomasiological and
semasiological changes. On the one hand, the stable concept slot ‘militant group
in an active armed conflict with the national state X’ can be filled with different
words in different time periods, as the groups appear or disappear (this slot
can also remain empty). This is the onomasiological aspect of the task. On
the other hand, the groups and geographical locations themselves can be looked
at as independent lexical entities undergoing semantic changes (for example,
becoming more or less associated with violence). This is the semasiological aspect
of the task. Overall, when discussing diachronic changes in semantic relations,
onomasiological and semasiological shifts seem to be inextricably interlinked.

We addressed this task by learning linear transformations (projections) on
diachronic word embeddings. In sections 5.3 and 5.4 it was shown that the
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5. Semantic change and world events: armed conflict dynamics

projection learning approach significantly outperforms the baselines and can be
even applied in the cases of one-to-zero and one-to-many relations. Thus, we
proposed a novel model for temporal analogies resolution and redefined the task
itself.

The experiments in this chapter involved only one type of relations: that is,
armed conflicts. However, the approach of projection learning itself is relation-
agnostic. It can be potentially used for any kinds of entities linked by any kind
of one-to-X semantic connections which undergo change over time. As shown in
this chapter, it can be successfully employed in diachronic tasks as well as in
synchronic ones. Provided we possess the relevant corpora, this potentially paves
the way to automatically inferring the temporal dynamics of relations between
persons and organizations, ideas and technologies, etc.

Analyzing diachronic changes in semantic relations (captured by word
embeddings) leads to findings far beyond the usual ‘king is to queen is as man is
to woman’ analogy example by Mikolov, Yih, et al. (2013). Such phenomena are
more complicated and more interesting, because:

1. the entities can be in one-to-X relations to each other;

2. the entities’ involvement in relations can depend on the time period;

3. the relations themselves can change their form and nature (for example,
transforming from one-to-one to one-to-many).

Note that semantic change in this chapter (unlike the previous Chapter 4
and the next Chapter 6) was mostly of referential or ‘world knowledge’ nature.
This corresponds to the context variance span on the semantic proximity scale:
the words dramatically change their typical contexts without (yet) changing
their lexicographic senses. We again argue that such changes are still semantic,
although they are different from semantic shifts proper.

For evaluation of diachronic word embedding models, we prepared the Armed
Conflicts Evaluation Test Set, converted from the UCDP format to a convenient
machine-readable form. The code, test sets and best-performing embeddings
from these experiments trained on the English Gigaword and NOW corpora are
publicly available (see the last Chapter 7 of the present thesis for the links).
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Chapter 6

Contextualized embeddings and
semantic change
The previous Chapter 5 employed diachronic word embeddings for practical tasks
related to tracing and predicting armed conflicts. In this chapter, we explore
contextualized word embedding models based on recurrent neural networks
(RNNs) and transformers with regards to their ability to capture lexical semantic
change. Here, we test on semantic shifts proper: words acquiring new senses or
losing old ones.

In the previous chapters, we used variations of ‘static’ word embeddings
where each occurrence of a word form is assigned the same vector representation
independently of its context. Recent contextualized architectures allow us to
overcome this limitation by taking sentence context into account when inferring
word token representations. The key idea of contextualized embeddings of
linguistic entities is that at inference time each word token is assigned a vector
representation that is a function of the entire input sentence (Melamud et al., 2016;
McCann et al., 2017). It means that these representations are context-dependent:
such models will yield different embeddings for one and the same word used in
different contexts. Thus, the ‘embedding model’ is no longer a simple lookup
table of word vectors: now even at test time it is a full-fledged deep neural
network (trained on a language modeling task), which takes a sequence of words
as an input and produces a sequence of context-dependent word vectors as an
output. Word vectors themselves are now not fixed: instead, they are learned
functions of the internal states of a language model.

However, application of such architectures to diachronic semantic change
detection was up to now rather limited, with one paper published in 2019 (R. Hu
et al., 2019) and three in the first half of 2020 (Martinc, Montariol, et al., 2020;
Martinc, Kralj Novak, et al., 2020; Giulianelli et al., 2020). While all these
studies use BERT (Devlin et al., 2019) as their contextualizing architecture, we
extend our analysis to ELMo (Peters, Neumann, Iyyer, et al., 2018) and perform
a systematic evaluation of various approaches for semantic change detection for
both contextualizer architectures. Our experiments show that contextualized
embeddings generally outperform previous (for example, static embeddings or
Bayesian) approaches, while offering much richer exploration possibilities. We
also analyze how ELMo can be used to trace lexical ambiguity changes over
time and discuss some critical issues important for applying contextualized
architectures in lexical semantic change detection.

Contextualized embeddings allow us to capture word senses in a much
more straightforward and efficient way than the context-independent or ‘static’
word embeddings discussed in the previous chapters. The reason is the higher
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‘precision level’: contextualized architectures deal with individual word token
representations, not with aggregated word type representations. Since different
word senses obviously manifest themselves in different typical token contexts,
this is naturally captured by contextualized models, assigning different vector
representations to words used in different senses. This is supported by empirical
results where contextualized embeddings outperform their static counterparts
in word sense disambiguation and word sense induction tasks (Amrami and
Goldberg, 2018; Kutuzov and Kuzmenko, 2019).

In the next Section 6.1 we describe ELMo architecture and its relation to
word senses in particular. Section 6.2 presents methods for semantic change
detection based on contextualized embeddings that we are going to use and
evaluate. In Section 6.3 a case study is presented, aimed at finding whether two
of these methods capture lexical ambiguity to a level well correlated with human
judgment synchronically. For one of the methods, the answer is positive, and
we conduct an exploratory experiment to trace lexical ambiguity changes over
multiple time bins. However, the core section of this chapter is Section 6.4 where
we undertake a systematic evaluation of multiple semantic change detection
methods based on contextualized embeddings (both ELMo and BERT). For this,
we use the GEMS test set and four test sets from the SemEval-2020 Shared
task 1. Finally, Section 6.5 provides qualitative analysis of the results, including
some unexpected predictions made by the employed methods. We propose
classification and explanation for these issues, as well as possible ways to get rid
of them in the future, if need be.

6.1 Embeddings from Language Models (ELMo) as
contextualizers

ELMo or ’Embeddings from Language Models’ (Peters, Neumann, Iyyer, et
al., 2018) was arguably the first contextualized word embedding model to attract
wide attention from the natural language processing community. After advancing
the state-of-the-art for a number of NLP tasks, it was awarded Best Paper at the
NAACL-2018 conference. Fundamentally, it was based on bidirectional recurrent
neural network with two layers.

A surge of other contextualized models has followed, including BERT
(Bidirectional Encoder Representations from Transformers) by Devlin et
al. (2019), which was based on the Transformer architecture (Vaswani et al., 2017).
BERT is essentially a Transformer with self-attention trained on masked language
modeling and next sentence prediction. BERT has been shown to outperform
RNN-based contextualizers like ELMo in multiple NLP tasks (question answering,
natural language entailment, etc), and received the same award at the NAACL-
2019 conference. However, ELMo allows faster training and inference than
BERT, making it more convenient to experiment with different training corpora
and hyperparameters (which is what we do in this chapter). The number of
parameters in a typical ELMo model as a rule is only half of that in a typical
BERT-base model (57 million versus 110 million), while still offering competitive
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Figure 6.1: ELMo architecture. Image by Karan Purohit, https:
//medium.com/saarthi-ai/elmo-for-contextual-word-embedding-for-text-
classification-24c9693b0045

performance for many tasks. Thus, ELMo remains a very popular algorithm,
with pre-trained embeddings available for many languages (Ulčar and Robnik-
Šikonja, 2020).

ELMo representations are learned in an unsupervised way through language
modeling. The general network architecture consists of a two-layer Bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) on top of a convolutional layer
which takes character sequences as its input (see Figure 6.1). Peters, Neumann,
Zettlemoyer, et al. (2018) have shown that the bottom convolutional layer of
ELMo captures word surface forms, the first LSTM layer specializes on syntactic
information, while the second (upper) LSTM layer focuses on semantics. For
downstream tasks, representations from different layers can be combined in
multiple ways, from simple concatenation to learning weighted functions of them
(see the next Section 6.2).

ELMo is essentially a pre-trained bi-directional language model. Thus, if one
looks at the word representations (embeddings) at the LSTM layers at inference
time,1 one will find that these representations depend on the surrounding words.
Of course, representations of one and the same word will still always have
something in common, since the convolutional embeddings at the first ELMo
layer are deterministic and depend only on the word form (the characters it is
composed of). However, as the deterministic embeddings for all words in the
input text are passed further to the upper layers, word representations become
increasingly context-sensitive. Consider the four English sentences in example 2,

1The same is true for the Transformer layers of BERT, but here we focus on ELMo.
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all containing an ambiguous word ‘bank’ in two different senses:2

(2)

1. ‘She was enjoying her walk down the quiet country lane towards the
river bank.’ (sense 0)

2. ‘She was hating her walk down the quiet country lane towards the
river bank.’ (sense 0)

3. ‘The bank upon verifying compliance with the terms of the credit
and obtaining its customer payment or reimbursement released the
goods to the customer.’ (sense 1)

4. ‘The bank obtained its customer payment or reimbursement and
released the goods to the customer.’ (sense 1)

Obviously, when using a ‘static’ pre-trained word embedding model, like
CBOW (Mikolov, Sutskever, et al., 2013) in the previous chapters, it will return
identical vector representations for ‘bank’ in all the sentences: simply because
the model is essentially a lookup table, mapping words to their embeddings. One
can partially override this by representing ‘bank’ as an average of the surrounding
words’ vectors. Actually, averaging representations of context words as a proxy
to the sense of one particular word is a long established tradition in word sense
disambiguation, starting at least from Schütze (1998). However, this approach
is problematic for at least the following reasons:

1. The context words themselves can be ambiguous. Their (also context-
dependent) senses are not taken into account.

2. Information about word order in the input data is completely lost, although
it can potentially be important for disambiguation.

Contextualized architectures like ELMo and BERT behave completely
differently. In example 2, for all four ‘bank’ tokens, different representations
will be returned, since the context is different in each sentence. However (with
good enough embeddings), the ‘bank’ vectors in the sentences 1 and 2 will
be much closer to each other than to the respective vectors in the sentences
3 and 4 (and vice versa). Thus, in contextualized architectures, the word
representations themselves contain information about the particular sense the
word was used in in a particular sentence. Also, by looking at these four vector
representations, one can possibly infer that the word ‘bank’ has two senses, since
its token embeddings would likely cluster into two groups. If there are no clearly
distinguishable clusters in the set of token representations, this arguably means
that the word is mono-semantic (not ambiguous). Thus, using contextualized
architectures in theory allows direct access to the information about lexical
ambiguity of a particular word.

2Examples from the British National Corpus (http://www.natcorp.ox.ac.uk/).
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Note that token embeddings belonging to one and the same lexicographical
sense can be substantially different in their contexts. This context variance
(already mentioned earlier in this thesis) is sometimes very systematic and
often explained by semantic processes. Thus, strictly speaking, contextualized
embeddings do not capture ‘pure’ lexicographic senses: they rather model what
Kilgarriff (1997) called ‘senses as clusters of word usages’. We discuss what this
issues brings to semantic change detection in Section 6.5.

Another important feature of contextualized architectures is their transfer-
ability. One can pre-train a model on a very large corpus (not time-specific), and
then use it to produce token embeddings of a target word in other time-specific
corpora (they can be much smaller). If the usage contexts for the target word in
the corpora are significantly different, the produced embeddings will be different
as well, which is important for our topic. Note that this not possible with the
traditional static embeddings, where a model (once trained) always produces one
and the same representation for a given token. This means that contextualized
representations can potentially overcome an important problem in diachronic
semantic change detection: historical corpora are often too small in size to train
good-quality embeddings solely on them. Additionally, pre-trained embeddings
can be fine-tuned on the time-specific corpora. In Section 6.4 below we evaluate
both approaches: using pre-trained models ‘as is’ and after fine-tuning. For
ELMo, we additionally test models trained on time-specific corpora only (which
would be not feasible for BERT computationally).

6.2 Ways of comparing contextualized embeddings over
time

Addressing the problem of polysemy and homonymy was one of the original
promises of contextualized embeddings: their primary difference from the
previous ‘static’ generation of word embedding models (Continuous Bag of
Words, fastText, GloVe, etc) is that contextualized approaches generate different
representations for homographs depending on the context.

Accordingly, we hypothesize that such architectures may provide yet
another way to trace and quantify semantic change: by comparing the token
representations for a given word in different contexts from different time periods.
This whole chapter is dedicated to describing our experiments in this direction.
At the time of writing, to the best of our knowledge this is the first attempt at
using ELMo for research in diachronic semantic change, and one of the first to
use contextualized embeddings at all. In particular, in this section below we
outline the contextualized algorithms that we employ for this task.

Comparing contextualized diachronic representations of words over time was
studied by R. Hu et al. (2019), by Martinc, Kralj Novak, et al. (2020) and by
Giulianelli et al. (2020). Unlike in our case, they used only BERT, not ELMo.
Giulianelli et al. (2020) managed to show that contextualized token embeddings
do cluster in meaningful groups, corresponding to word senses, and that the
analysis of the differences in their distribution over time can help to detect known
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semantic shifts. However, their empirical results did not outperform previous
work in diachronic semantic shift detection: mainly because of using frozen
BERT without fine-tuning (see Section 6.4 below for more details). Additionally,
their setup poses a conceptual problem of determining the number of clusters
(senses) for each target word. This number can be inferred directly from the
data, using intrinsic methods like Silhouette score (Rousseeuw, 1987), but it is
not very reliable and still requires performing multiple clustering attempts (with
different number of clusters) and comparing their scores. Martinc, Kralj Novak,
et al. (2020) used the averaging of contextualized token embeddings from BERT,
conceptually similar to the PRT measure we describe below. However, their
quantitative evaluation was limited to the LiverpoolFC dataset (Del Tredici
et al., 2019), which includes only short-term meaning shifts in a particular
domain (football). As for R. Hu et al. (2019), they achieved empirical results
which outperformed previous work, but only with the help of external data
(dictionary sense definitions). See 6.4 below on why we consider their system to
be supervised and thus not directly comparable with ours.

How does one use contextualized lexical representations to estimate word
meaning change between different (including diachronic) corpora? Below we
introduce four possible methods to measure it:

1. Inverted cosine similarity over word prototypes (PRT)

2. Average pairwise cosine distance between token embeddings (APD)

3. Jensen-Shannon divergence between embedding clusters (JSD)

4. Difference between token embedding diversities (DIV)

Given trained contextualized embeddings, a set of corpora and a target word,
they produce a score showing how different are the usages of the target word in
different corpora (and thus, its meanings, following the distributional hypothesis).
Two of the methods (DIV and JSD) additionally produce some estimation of
the word’s lexical ambiguity along the way. The other two (PRT and APD) are
simpler, but, as it turned out, more efficient in practice. All these methods can
be used with any contextualized embedding architecture, be it ELMo, BERT or
something else. Note though, that using ELMo allowed us to experiment more
freely as it has much lower computational requirements than BERT.

We first describe the common part of all four methods. Given two time
periods t1, t2, two corpora C1, C2, and a set of target words, we use a pre-
trained neural language model to obtain contextualized token embeddings of
each occurrence of the target words in C1 and C2 and use them to compute a
continuous change score. This score indicates the degree of semantic change
undergone by a word between t1 and t2, and the target words are ranked by its
value. This corresponds to the second aspect of modeling of diachronic semantic
change that we mentioned in the Introduction: estimating and quantifying the
degree of semantic change. This is also how the Sub-task 2 of the SemEval-2020
Task 1 (Schlechtweg, McGillivray, et al., 2020) is formulated.
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More precisely, given a target word w and its sentence context s =
(v1, ..., vi, ..., vm) with w = vi, we extract the activations of a language model’s
hidden layers for sentence position i. These embeddings can be collected from
the top layer of the used model, averaged over all its layers, or be a product of
some weighted function across all layers (we evaluate these options below). If
w occurs N times in a given corpus, the Nw contextualized token embeddings
collected for w can be represented as the usage matrix Uw = (w1, . . . , wNw ).
The time-specific usage matrices U1

w, U2
w for time periods t1 and t2 are used as

input to all the methods of semantic change estimation we describe here.
Contextualized embeddings certainly have their limitations and by no means

cover all the aspects of lexical ambiguity or semantic change in natural languages.
For example, while token embeddings of homonyms (like English ‘bank’) will
arguably be located far away from each other in the vector space, token
embeddings of polysemous words in different but related senses (like English
‘paper ’ in the senses ‘article’ and ‘material’) will be mutually closer and
this might be harmful for attempts to discern these senses. Another source of
potential problems is related to frequent cases when a word has one dominant
sense and multiple minor senses. As a result, the distribution of word senses
in actual usage is very skewed: it is mostly used in the dominant sense, and
the corresponding embeddings are close to each other, while the number of
tokens used in other senses is so small that it does not influence the overall score.
This will pose problems for the methods which implicitly estimate the word’s
ambiguity (JSD and DIV). We discuss some of these issues in more detail below
in Section 6.5.

Even after acknowledging these potential issues, the evaluation results in
Section 6.4 still show that the introduced methods can be successfully used to
model semantic change, outperforming previous state-of-the-art approaches. We
will now describe these methods.

6.2.1 Inverted cosine similarity over word prototypes (PRT)

Given two usage matrices Ut1
w , Ut2

w , the degree of change of w is calculated as
the inverted cosine similarity between the average token embeddings (‘word
prototypes’) of all occurrences of w in the two time periods:

PRT
(
Ut1

w , Ut2
w

)
=

1

d

(∑
xi∈U

t1
w

xi

N
t1
w

,

∑
xj ∈U

t2
w

xj

N
t2
w

) (6.1)

where N t1
w and N t2

w are the number of occurrences of w in time periods t1 and
t2, and d is a similarity metric, for which we use cosine similarity. This method
corresponds to the standard lexical semantic change detection workflow based
on static embeddings produced by Procrustes-aligned time-specific distributional
models (Hamilton, Leskovec, et al., 2016b), with the only additional step of
averaging token embeddings to create a single vector (a prototype). Since we
want the method to produce higher scores for the words that changed more, the
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inverted value of cosine similarity is used as the prediction3. The theoretical
bounds of the resulting score are [−∞, ∞], but in practice its values almost
always lie in [1, 2].

6.2.2 Average pairwise cosine distance between token
embeddings (APD)

Here, the degree of change of w is measured as the average distance between all
possible pairs of embeddings from different time periods, following Giulianelli
et al. (2020):

APD
(
Ut1

w , Ut2
w

)
=

1
N t1

w · N t2
w

∑
xi∈Ut1

w , xj∈Ut2
w

d (xi, xj) (6.2)

where d is the cosine distance (1 − c where c is cosine similarity). High APD
values indicate a higher degree of semantic change. Note that the computational
complexity of this measure grows quadratically with the increase in the number
of token embeddings, which can become a problem for words with very high
frequencies. To cope with this, one can randomly sample a predefined number
of token embeddings from both time bins and calculate pairwise distances only
between these sampled instances. The bounds of the resulting score are [0, 2].

6.2.3 Jensen-Shannon Divergence between embedding clusters
(JSD)

This measure relies on the partitioning of embeddings into clusters of similar
word usages. We first follow Giulianelli et al. (2020) and create a single usage
matrix with occurrences from two corpora [Ut1

w ; Ut2
w ]. We then standardize it by

removing the mean and scaling to unit variance, and follow Martinc, Montariol,
et al. (2020) to cluster its entries using the Affinity Propagation algorithm (Frey
and Dueck, 2007). Affinity Propagation creates clusters by sending messages
between pairs of samples until convergence. It is perfect for our task, since it
infers the number of clusters for each word directly from the data, without the
need to specify it manually. The clusters arguably correspond to the word’s
senses (their number can be used as a measure of a word’s ambiguity). Finally,
we define probability distributions ut1

w and ut2
w based on the normalized counts

of word occurrences from each cluster and compute a JSD score (J. Lin, 1991):

JSD(ut1
w , ut2

w ) = H
(

1
2

(
ut1

w + ut2
w

))
− 1

2
(
H

(
ut1

w

) − H
(
ut2

w

))
(6.3)

Our JSD score measures the amount of change in the proportions of word usage
clusters across time periods. The bounds of the resulting score are [0, 1].

3We also tried to use cosine distance (1 − d) instead of inverted cosine similarity, but the
results were marginally worse.
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6.2.4 Difference between token embedding diversities (DIV)

Even without actually predicting the exact number of senses, as in JSD (this is
a separate difficult NLP task known as ‘word sense induction’), it is still possible
to estimate the degree of ambiguity for a particular word and then use it to
quantify the degree of semantic change. This can be done by calculating the
corpus-specific measure we call ‘embedding diversity’.

This method is conceptually similar to the notion of ‘semantic density’
introduced by Sagi et al. (2009) (see Chapter 3); in Section 6.4 we evaluate
the ‘semantic density’ as one of the baselines. DIV estimates the degree of
ambiguity for w in Ut1

w and Ut2
w . Like the PRT method, it first calculates the

‘prototype’ embeddings pt1 and pt2 by averaging all token representations of w
in each usage matrix. The difference is that after this, the mean cosine distances
d between w token embeddings and the prototypical embeddings are calculated,
thus producing the ‘variation coefficients’ for both matrices (time periods). The
final metrics is the absolute difference between variation coefficients in t1 and t2.

DIV
(
Ut1

w , Ut2
w

)
=

∣∣∣∣∣
∑

xi∈Ut1
w

d (xi, pt1)
N t1

w

−
∑

xj∈Ut2
w

d (xj , pt2)

N t2
w

∣∣∣∣∣ (6.4)

In other words, given a set of contexts (for example, sentences) where a word
w occurs, and a pre-trained contextualized embedding model E, we:

1. Generate and store a set of representations taken from E for all occurrences
of w in a given corpus. The result is a matrix M ∈ R

n×s where n is the
number of w occurrences (examples) in the corpus, and s is the embedding
size (a parameter of E).

2. Compute �cw ∈ R
s vector by averaging across all rows of M . �cw is,

linguistically speaking, a prototypical representation of w, its ‘centroid’
across different contexts.

3. Calculate the so called ‘variation coefficient’ by taking the mean cosine
distance between each row of M and �cw.4 This coefficient itself can be
used as the measure of word’s ambiguity. The bounds of the resulting
score are [0, 2].

The output of these steps for a given corpus is the mean cosine distance
between actual token embeddings of the word w from E on a given corpus, and
its average, prototypical vector (centroid) �cw in the same corpus. Essentially,
this is a measure of how varied or diverse the embeddings of w are in the input
data, or the measure of w self-similarity. If w is always used in exactly one
sense, then arguably its token embeddings will be close to each other, yielding a
very low variation coefficient. On the other hand, for highly ambiguous words,

4We also tried using average pairwise cosine distances between all rows instead, with the
purpose of mitigating the influence of potential outliers (this setup would be even more similar
to Sagi et al. (2009)). However, the performance did not significantly differ from the ‘centroid’
method, while being much slower. Thus, below we use the ‘centroid’ method in all experiments.
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used in many different senses, the ‘prototypical’ vector will most probably be
nonsensical, being equally far away from each sense (and thus from each real
token embedding). This will result in high variation coefficient. The more senses
the word is used in, the more ‘nonsensical’ the centroid embedding will be: a
randomly sampled word usage is more probable to be distant from the ‘centroid’
and this probability increases as the number of senses (usage clusters) increases.
The DIV method compares variation coefficients of a target word in different
corpora (and possibly with different embedding models) by computing their
absolute difference to produce a semantic change score.

If a word sense disappears from usage, we expect the variation coefficient
to decrease, signaling a change in word meaning. However, the DIV measure
does not attempt to actually induce a sense inventory (or even the number of
senses) for a particular word. Thus, this change can be caused either by a sense
disappearing or by active senses moving closer towards each other.

Before moving on to systematic evaluation of all these methods in Section
6.45, we first describe a case study aimed at finding out whether two of them
(DIV and JSD) actually capture lexical ambiguity to a degree that is strong
enough to correlate well with human-annotated data in a synchronic setup. We
also describe a preliminary experiment which involves large-scale tracing of the
changes in lexical ambiguity over time. This is what the next Section 6.3 is
about.

6.3 Measuring lexical ambiguity with contextualized token
embeddings

6.3.1 Synchronic sanity check

Before turning to diachronic data, we evaluate the ability of contextualized
embeddings and our methods to produce predictions corresponding to the human-
defined degree of semantic ambiguity (at least to some extent). Since we need a
notion of ambiguity, we chose the DIV and JSD methods for this experiment:
from the former, we use only the diversity coefficient itself; from the latter, we
use only the number of clusters produced by Affinity Propagation clustering
technique.

The most obvious source of gold sense-related data is the WordNet lexical
database (Miller, 1995). It of course does not contain any diachronic data, but it
still can be used for evaluation in a synchronic setup.6 Let us define the degree of
semantic ambiguity for a lemma X as the number of WordNet synsets associated
with this lemma: for example, the word ‘book’ is highly ambiguous, since it is
linked to 11 noun and 4 verb synsets, 15 in total.

5We also experimented with the change in mean usage relatedness (Schlechtweg, Schulte
im Walde, et al., 2018), but never obtained significant correlation with human ratings.

6There is ongoing work aiming to build diachronic WordNet-like ontologies, see, for example,
Bizzoni et al. (2019). However, at the current time the generated datasets are not mature
enough.
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To evaluate our methods, we compute their outputs for a reasonable amount of
words in some English corpus, and then calculate the Spearman rank correlation
between these values and the number of WordNet synsets for the same words.
Positive correlation would indicate that the degree of ambiguity can be inferred
from contextualized token embeddings, supporting our hypothesis. Surely, from
the purely technical point of view, the number of the WordNet senses is easily
retrievable for any word mentioned in WordNet or annotated with its WordNet
synset. We use this data only to test our hypothesis that the groupings and
diversity of contextualized token representations do correlate with the number
of word synsets (which in turn approximates the ambiguity of the word).

The evaluation corpus should be reasonably small (so that inferring token
embeddings is not too time-consuming), but at the same time contain many
ambiguous words. For these reasons (and for this exploratory case study) we
used all the sentences from the Senseval-3 English word sense disambiguation
dataset (Mihalcea, Chklovski, et al., 2004). It consists of lexical samples for
nouns, verbs and adjectives, features about 450 000 word tokens in 3 593 text
pieces, and naturally abounds with polysemous words: each text piece contains
at least one ambiguous word (the one which has to be disambiguated) and an
unknown number of other ambiguous words around it.

Note that we do not use the Senseval-3 annotation: in this experiment, it
serves only as a text collection. WordNet, on the other hand, is used as a source
of information about the number of senses for the words occurring in this text
collection.

See example 3 for an example of the word ‘argument’ from Senseval-3 (this
dataset defines it as one of its ambiguous target words), used in a mathematical
sense:

(3) ‘In some situations Postscript can be faster than the escape sequence type
of printer control file. It uses post fix notation, where arguments come
first and operators follow. This is basically the same as Reverse Polish
Notation as used on certain calculators, and follows directly from the
stack based approach.’

In example 4, we find the same word in the sense of ‘reason given for or
against a matter under discussion’:

(4) ‘Environmental organisations, however, put the emphasis elsewhere.
There is no incinerator which completely destroys toxic wastes, Madeleine
Cobbing, Greenpeace’s toxics campaigner, told me. The crux of our
argument is that we don’t need to have toxic wastes and the fact that
plants like Rechem exist, providing easy options for companies, is acting
as a disincentive for companies to clean up...’
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6.3.1.1 Initial experiment

We trained our own ELMo embedding model on the English Wikipedia dump7

from October 2019. Its size is about 2.8 billion word tokens. The texts were
tokenized and lemmatized with the English UDPipe tagger trained on the
Universal Dependencies 2.3 treebank (Straka and Straková, 2017), discarding
punctuation marks and lower-casing the resulting output. The same pre-
processing was applied to the Senseval-3 texts. The ELMo model was trained8

for three epochs with batch size 192, on two GPUs. To train faster, we decreased
the dimensionality of the LSTM layers from the default 4 096 to 2 048.

Then, this model was used to infer contextualized token embeddings for all
content words occurring more than two times in Senseval-3 and associated with
at least one synset in the WordNet (7 674 in total). We used the top layer
representations, since the ELMo authors claim that the top layer ‘specializes’
in semantic-related tasks (Peters, Neumann, Zettlemoyer, et al., 2018). Also,
Ethayarajh (2019) found that upper layers of contextualized models yield more
context-specific embeddings than the lower levels. This aligns well with our
purpose to find embeddings representative of different word senses. In our
systematic evaluation in Section 6.4, we, however, also test averaging the
embeddings from all layers and from the last four layers for BERT.

For each word, we computed their corresponding ambiguity scores: the
variation coefficients (diversities) from the DIV method and the number of
token clusters produced by Affinity Propagation from the JSD method. Then,
the Spearman rank correlation between the words’ ambiguity scores and the
corresponding numbers of synsets in WordNet was calculated. For the sake
of comparison, we also re-implemented the ‘semantic density’ algorithm from
Sagi et al. (2009) by training an LSI model on the whole Senseval-3 corpus,
inferring a matrix of LSI context vectors for each of the target words in the
same corpus (where context vector is a normalized sum of vectors for all words
within a 15-token symmetric context window to the left and to the right of the
current target word occurrence), and then calculating the mean pairwise cosine
distance between all vectors in each context matrix. The resulting ‘semantic
density’ value is essentially a measure of how diverse the word contexts are, and
so ideally it should correlate positively with the number of WordNet synsets.

The results of the experiments are presented in Table 6.1. The ambiguity
scores produced by the JSD and DIV methods across contextualized embeddings
show strong and statistically significant (as measured by the two-sided p-value)
correlation with the number of synsets, and thus, with the degree of lexical
ambiguity. The ‘semantic density’ values also seem to be well correlated with
lexical ambiguity, although to a lesser degree than the ambiguity scores produced
by ELMo DIV.

7https://dumps.wikimedia.org/
8To train and fine-tune ELMo models in this and further experiments, we used the code

from https://github.com/ltgoslo/simple_elmo_training, which is essentially the reference ELMo
implementation updated to the recent TensorFlow versions.
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Model # of words Correlation p-value

ELMo DIV 7 674 0.4276 0.000
ELMo JSD 7 674 0.3448 0.000

Semantic density 7 674 0.3468 0.000

Raw frequency 7 674 0.3772 0.000

Table 6.1: The Spearman rank correlations between the number of WordNet
synsets and ambiguity scores or word frequency: all words.

However, it has been shown many times (Dubossarsky, Weinshall, et al., 2017;
Dubossarsky, Hengchen, et al., 2019; Hamilton, Leskovec, et al., 2016b) that
ambiguity and polysemy are involved in complicated relationships with word
frequencies (for example, frequent words tend to have more senses and vice
versa). Thus, we have to demonstrate that ELMo ambiguity scores are better in
approximating the number of synsets than raw word frequencies (as counted on
Senseval-3). Indeed, the correlation between word frequencies and the number
of synsets is also statistically significant and quite strong: see the bottom of
Table 6.1 (‘Raw frequency’ row).9 ELMo DIV still gives a stronger correlation,
but the difference is only five percentage points (and the number of clusters
from the JSD is actually less correlated with the number of synsets than the
raw frequency), and one can ask whether this is worth the effort, if it is equally
possible to predict the number of senses by simply looking at the word frequency.

6.3.1.2 Discarding rare words: frequency-controlled experiment

Recall that the frequency distribution of words in human languages obeys the
Zipfian power law (Zipf, 1949). It means that among the 7 674 words we analyze,
there should be a huge amount of very rare ones. Since rare words tend to be
less ambiguous (arguably most of them are associated with only one WordNet
synset, if any), they might be the main reason for the strong correlation between
frequency and the number of senses: it simply distinguishes between extremely
rare words (including hapax legomena) which tend to have less synsets and
frequent words which tend to have more synsets.

To shed more light on this, we undertake more controlled experiments
excluding very rare words. The average frequency of Senseval-3 words is 32,
with the standard deviation of 341 (this is a typical power law distribution). We
repeated the experiment described above but this time excluding words with
the Senseval-3 frequency less than a pre-defined threshold. The threshold values

9Interestingly, frequency values calculated on the English Wikipedia (instead of Senseval-3)
did not show a significant correlation with the number of synsets. Arguably, the reason is the
specificity of the encyclopedic genre.
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Model # of words Correlation p-value

ELMo DIV 293 0.2923 0.000
ELMo JSD 293 0.0332 0.572

Semantic density 293 0.0746 0.203

Raw frequency 293 0.0632 0.281

Table 6.2: The Spearman rank correlations between the number of WordNet
synsets and ambiguity scores or word frequency: only words with frequency
higher than 130.

varied from 0 to 130 (where only the 293 top-frequency words are left), with a
step of 10. The results are presented in the Figure 6.2.

Most importantly, the more rare words we discard, the worse is the
performance of raw frequency, ‘semantic density’ and the JSD. Eventually,
when the words with a Senseval-3 frequency less than 100 are excluded, the
frequency-based correlation fails to achieve any statistical significance or strength.
To put it simply, after excluding very rare words, it is next to impossible to tell
the degree of word ambiguity from its frequency. This supports our hypothesis
that the correlation between word frequency and the number of the WordNet
synsets is explained by the long tail of rare words.

Another important observation is that the performance of the ELMo JSD
method almost perfectly repeats the frequency plot (being marginally worse). It
means that clustering ELMo token embeddings with the Affinity Propagation
algorithm does not actually yield clusters associated with word senses. Instead,
it seems, the number of clusters consistently reflects word frequency. This might
be one of the reason why the JSD semantic change detection method based on
Affinity Propagation did not show winning results in the empirical evaluation in
Section 6.4 below. As for ‘semantic density’ from Sagi et al. (2009), it performs
on par with raw frequency and JSD when rare words are not filtered out, but
once this is done, its correlation with WordNet drops even faster.

In contrast, the correlation for ELMo DIV does not suffer much when
calculated after excluding infrequent words. It is weaker than when calculated on
all words, but overall is quite robust to the changes in the frequency threshold,
never falling below 0.25, and always retaining the perfect p-value of 0. Thus, DIV
indeed predicts the word’s ambiguity, not simply its frequency. Table 6.2 gives
the detailed correlation scores for all four methods for the maximum frequency
threshold value of 130. To sum up, it seems that contextualized embeddings
and our DIV method do collect ambiguity information beyond simple frequency
measures and this approach is still efficient when applied to words from a specific
frequency tier, unlike its JSD and ‘semantic density’ counterparts.

If we can approximate lexical ambiguity (that is, the number of senses) of a
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Figure 6.2: Correlation between ambiguity metrics of a word and the number of
its WordNet synsets given different frequency thresholds.

word in a given corpus, then large-scale temporal dynamics of ambiguity can
also be studied, by simply applying the contextualized ambiguity estimation
method to time-specific corpora. We do this in the next subsection 6.3.2, using
the DIV method proved to be best for this task in the current section. Note
that unlike the rigorous evaluation experiments in Section 6.4, here we do not
empirically test the methods themselves: instead, we apply a semantic change
modeling method to a large set of words and several time-specific corpora to
find out whether we can observe any specific temporal tendencies. In that, this
exploratory study is similar to the one we undertook with evaluative adjectives
in Chapter 4.

6.3.2 Diachronic ambiguity changes

Following Chapter 4, we use the same diachronic English corpus: namely, the
Corpus of Historical American English (COHA). It was pre-processed analogously
to the data in the synchronic setup, and split into five time bins corresponding to
decades: 1960s, 1970s, 1980s, 1990s and 2000s. We presented the COHA corpus
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earlier in Chapter 4, and the sizes of each time bin in word tokens were shown
in Table 4.1. The full COHA corpus contains texts from the 1810s to the 2000s.
We used only the texts created starting from the 1960s, to be consistent with
Chapter 4 and with the GEMS dataset used as the ground truth for empirical
evaluation in Section 6.4: its time span is from the 1960s to the 1990s.

6.3.2.1 Making ELMo models comparable

As is the case with static embeddings, in order to employ contextualized
representations for semantic change detection, these diachronic representations
should be first made comparable to each other. With contextualized embeddings
it is much more difficult to align them using Procrustes transformation and
similar approaches. Contextualizing architectures like ELMo and BERT do not
define a single weight matrix, unlike the previous generation of architectures that
produce static representations. Rather, the full model needs to be applied for each
given occurrence of a token, in context, in order to generate a context-dependent
representation.

There are currently no standard, established and well-tested methods to align
deep neural language models, and it is not immediately clear what can be their
possible shared space. Q. Liu et al. (2019) proposed an interesting approach to
align contextualized embeddings trained on different languages for the purposes
of solving cross-lingual NLP tasks, but this requires a bilingual dictionary. In
theory, for diachronic contextualized embeddings trained on different time bins,
one can compile a set of monosemous words with extremely stable meaning across
the studied time span, but this will immediately raise issues of the principles
for such a selection. Schuster et al. (2019) explored methods for cross-lingual
alignment of ELMo models in the absence of a dictionary (unsupervised setup),
but the performance was worse than in the supervised setup, and the approach
is still quite computation-heavy. Overall, inventing and thoroughly evaluating
algorithms of contextualized model alignment is an important NLP problem in
itself, but out of scope for this thesis. Thus, we do not align our monolingual
diachronic contextualized embeddings, but propose and apply two other (much
simpler) approaches instead:

1. Contextualized embeddings allow for a conceptually different vectorization
setup, where one and the same single pre-trained model is used to infer
contextualized token embeddings from time-specific corpora. Since the
embeddings depend on the context, they are not always identical (as is
the case with static embeddings), but yield information about word usage
in particular corpora, while at the same time being directly comparable.
We will use single pre-trained ELMo embeddings trained either on English
Wikipedia or on the full COHA corpus.

2. Another option is to use incremental training to make diachronic embed-
dings comparable. We trained five separate ELMo models incrementally on
the COHA time bins: the training of each model except the first one started
from the last checkpoint of the previous model (in all cases, we trained
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ELMo for five epochs). The softmax layer of all the models used the same
vocabulary: the top 100 000 words by frequency across the concatenation
of all five diachronic COHA sub-corpora. This setup follows the original
idea of incremental training for static word embeddings proposed by Kim
et al. (2014): to initialize the model for the time bin t with the weights
from the model trained on t − 1. We already used this approach earlier in
the thesis (Section 5.3).

6.3.2.2 Creating samples for frequency tiers

In this exploratory experiment, we aim to find out whether the average degree of
lexical ambiguity tends to increase or decrease over time (or stay relatively stable)
for words belonging to different frequency tiers. To compare the ambiguity of
words in COHA across time, we first found the words occurring in each of the
five time bins (45 198 total). This discarded about 500 000 (mostly rare) words
for which we would not be able to trace their full evolution from the 1960s to
the 2000s anyway. The remaining intersection of the five vocabularies contains
both high frequency items (up to 1 million occurrences) and low frequency items
(less than 10 occurrences). The distribution of word frequencies is shown in
Figure 6.3, with the horizontal axis corresponding to the word’s rank in the
frequency dictionary (rank 0 is the most frequent word) and the vertical axis
corresponding to the word’s median frequency across five time bins.

We divided the full intersected vocabulary into three parts, shown on the
Figure 6.3 with the red vertical lines. The first part corresponds to the high
frequency tier and includes words with a rank up to 10 000; the second part
corresponds to the mid frequency tier and includes words with a rank from
10 000 up to 30 000; the third part corresponds to the low frequency tier and
includes words with a rank below 30 000. From each part, we uniformly sampled
1 000 random words, thus forming three word lists representing three frequency
tiers.10

We computed average diversity coefficients (ambiguity scores) of words from
each frequency tier in each decade’s corpus. The token embeddings were produced
with:

1. ELMo model pre-trained on the English Wikipedia,

2. ELMo model pre-trained on the full COHA corpus,

3. the corresponding incremental ELMo model trained on the data up to a
given COHA decade.

To avoid the influence of different inference corpora sizes, all the COHA
sub-corpora were trimmed to the size of the smallest one: 24 million word
tokens (unlike in Chapter 4, we did not discard functional words here). This
required removing from 1 to 4 million word tokens per sub-corpus (to do that, we
sentence-shuffled each sub-corpus and discarded the necessary number of word

10Full word lists are available at https://github.com/akutuzov/elmo_sense/tree/master/data.
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Figure 6.3: Median word frequencies (log scale) for the intersection of COHA sub-
corpora vocabularies. Red vertical lines stand for our frequency tier boundaries.

tokens from the end of the sub-corpus). As a result, none of the observations
reported below can be caused by fluctuations in per-decade corpus sizes.

6.3.2.3 Results

The results of the DIV calculation are plotted in Figure 6.4 for high-frequency,
mid-frequency and low-frequency words. Each line on the plots represents the
ambiguity dynamics of a particular word.

No clear tendency with regards to changes in average semantic diversity
over time can be inferred from the left and central plots (token embeddings
produced by a single model). About three or four words from the high-frequency
tier exhibit extremely high and stable diversity values with both models. They
are (as expected) mostly very frequent functional words like ‘of ’ and ‘the’ and
numerals like ‘17 ’ and ‘29 ’. They are of course lacking any definite ‘sense’
and thus are used in very diverse contexts. Another interesting example is the
blue line going downwards in the upper part of the mid-frequency plot for the
single COHA model (Figure 6.4, central part). This is the word ‘thc’. It was
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High-frequency words:

Mid-frequency words:

Low-frequency words:

Figure 6.4: Dynamics of ELMo lexical ambiguity (DIV). Left: pre-trained on
English Wikipedia; center: pre-trained on the COHA corpus; right: trained
incrementally on the COHA corpus.

extremely ambiguous in the 1960s and 1970s, since it usually was a typo for
‘the’. But gradually a specific sense of ‘tetrahydrocannabinol’ started to
appear, related to marijuana. This led to the decrease of the diversity coefficient
for this word, since a cluster of drug-related contexts was formed, where token
embeddings were close to each other. This word exhibits a similar evolution with
the Wikipedia model, but its diversity values there are not the highest, thus it
is visually lost among other words. Overall, the ambiguity dynamics looks like
jitter, with no clear trend emerging.

Interestingly, if using token embeddings inferred from incrementally trained
ELMo embeddings (right parts of the plots), one can clearly observe the tendency
for average lexical ambiguity to grow over time. This is most obvious for high-
frequency words (including ‘of ’ and ‘the’: the brown and magenta lines at the
top of Figure 6.4), but also visible for mid-frequency and low-frequency samples.

145



6. Contextualized embeddings and semantic change

High frequency words:

Mid frequency words:

Low frequency words:

Figure 6.5: Changes in ELMo diversity brought by each decade. Left: Wikipedia
model; center: single COHA model; right: corresponding incremental models.

What is the reason for this inconsistency?
It is possible to estimate the change of the degree of ambiguity more

formally by simply averaging the pairwise differences between each word variation
coefficient in the time bins t and t − 1 (in other words, their DIV scores as
calculated with Equation 6.4). Figure 6.5 describes this for high, mid and low
frequency tiers. Each bar there shows the average difference within a pair of
decades.

These bar charts and the values behind them show that in fact each new
decade does increase lexical ambiguity in COHA. The differences between
consecutive diversity scores are almost always positive (or so close to zero
that the value is not really significant), independent of the frequency tier or
the ELMo model being used. A notable exception is the mid frequency sample
in 2000s as compared to 1990s: these words have on average decreased their
ambiguity at this time span (as measured by all three models).
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However, there is an important difference between the single models
(Wikipedia and COHA), where token embeddings for all five decades are produced
using the same pre-trained weights, and the incremental approach where token
embeddings for each decade are produced using the model incrementally trained
on the texts published up to and including this decade (without ‘looking into the
future’). The ambiguity differences produced by the single models are very low
in absolute values, not exceeding 0.003, while the differences produced by the
incremental models are usually twice as high, and for the 1960s–1970s decade
pair they are an order of magnitude higher (up to 0.04).

Thus, measuring lexical ambiguity in consecutive time bins with contextual-
ized embeddings incrementally trained on these time bins creates an impression
of ambiguity increasing much more than when measured with a single embedding
model. It seems that the process of incremental training itself is the reason of
diversity increasing: as the model is additionally trained with new data and
updates its weights, the representations it produces are becoming more and more
diverse.

We ran the same experiment by sequentially employing the same five
incremental ELMo models to infer contextualized embeddings for the mid
frequency and low frequency words under analysis as occurring in one temporal
sub-corpus (texts from the 1980s). The contexts and the real ambiguities
obviously stay the same in this setup, only the pre-trained embeddings are being
changed. If incremental training had no effect at all, the diversity should have
stayed approximately the same or fluctuated up and down around some mean
value. Instead, in Figure 6.6, we observe that each subsequent model ‘sees’ more
diversity in one and the same collection of texts, with the exception of mid
frequency sample for 1990s–2000s, reproducing the dynamics we saw on the
previous plots (even including the extremely strong burst of ambiguity in the
1970s compared to the 1960s).

6.3.2.4 Does lexical ambiguity increase over time or not?

Thus, at least part of the ‘increase in ambiguity’ is due to the confounds of the
incremental training process, not to the real linguistic changes (note that we
trimmed the decades’ corpora to approximately the same size, so this is not a
corpus size artifact either). More generally, these phenomena can be seen as
an instance of the type of noise effects discussed by Dubossarsky, Weinshall,
et al. (2017): observed ‘changes’ caused not by the trends in the data, but by the
peculiarities of the employed algorithms. This systematic noise introduced by
continuous training on more data is not unexpected: it was previously described
and explained for static embeddings by Schlechtweg, Hätty, et al. (2019) and
Shoemark et al. (2019), among others. We now confirmed this for contextualized
embeddings as well.

Note also that the DIV scores produced by incremental ELMo embeddings
have slightly higher correlation with the changes of word frequency from one time
bin to another than the DIV scores produced with single COHA or Wikipedia
embedding models. The correlation strength is very low in all these cases (even
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Figure 6.6: Changes in ambiguity for one and the same decade – 1980s – as
calculated with five different incremental ELMo models. Left: mid frequency
words; right: low frequency words.

in the decade pairs where it is statistically significant, it is only about 0.04 for
the single COHA model, about 0.05 for the single Wikipedia model, and about
0.07–0.08 for the incremental models), so the plots above could not be produced
from frequencies alone. Still, higher correlation with frequency changes supports
the claim we made before: incrementally trained contextualized embeddings are
more influenced by the sheer amounts of data (including raw frequency counts),
and thus should be used with caution.

Although a large part of the observed increase in variation coefficients is
explained by the process of incremental training, we still observe this growing
ambiguity even when using single ‘frozen’ models. In these cases, the effects
of incremental training are excluded, but the words’ variation coefficients do
consistently grow over time, although at a much lower scale than could be
induced from looking at the results from the incremental models.

It can be speculated (but only speculated, since it is difficult to draw any
grounded conclusions here) that the reason for the ambiguity growing is fast
technological and cultural progress, requiring human language (in this case,
English) to cover more and more concepts with an inherently limited number
of words (neologisms always form only a minor part of the vocabulary in any
given period of time). This leads to words from this limited inventory becoming
increasingly ambiguous.

We hope to further analyze the results of this exploratory study in future
work. For now, it suffices to say that using incrementally trained contextualized
embeddings does not look especially promising. This is mostly because they
make it difficult to distinguish between 1) representation differences caused by
different word usage in two corpora, and 2) representation differences caused by
the models being trained on different data. Using one pre-trained model to infer
token embeddings for all time bins under analysis avoids this pitfall and allows
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us to focus on real changes. In the next Section 6.4, we find further support for
this hypothesis when evaluating single and incremental approaches on semantic
change test sets and show that as a rule incrementally trained contextualized
models are outperformed by their single counterparts.

6.4 Empirical evaluation of contextualized methods

In this section, we evaluate the methods described above (PRT, APD, JSD and
DIV) on the semantic change test sets from the SemEval-2020 Shared Task 1
(Schlechtweg, McGillivray, et al., 2020).11

6.4.1 Description of the task and related datasets

The SemEval-2020 Shared Task 1 challenged its participants to classify a list
of target words into stable or changed (Subtask 1) and/or to rank these words
by the degree of their semantic change (Subtask 2). The task is multilingual: it
includes four lists of target words, respectively for English, German, Latin, and
Swedish (several dozen words each). Each word list is accompanied with two
historical corpora of varying size, consisting of texts created in two different time
periods. Note that two corpora in a pair are not always balanced with regards to
their size or the number of occurrences of the target words. This makes the task
more realistic. The word lists were manually annotated (in a crowd-sourcing
fashion) with respect to the degree of the words’ semantic change between the
time periods in question. This annotation was held private until the end of the
evaluation phase of the shared task.

The shared task organizers additionally provided two baseline methods for
both sub-tasks:

1. Normalized frequency difference (FD). It first calculates the frequency for
each target word in each of the two corpora, normalizes it by the total
corpus frequency and then calculates the absolute difference in these values
as a measure of change.

2. Count vectors with column intersection and cosine distance
(CNT+CI+CD). It first learns count-based explicit vector represen-
tations for each of the two corpora, then aligns them by intersecting their
columns and measures change by cosine distance between the two vectors
for a target word.

We evaluate our methods on the Subtask 212, with contextualized embeddings
based on ELMo and BERT language models. Our evaluation phase submission
to the shared task ranked 9th out of 34 participating teams, while in the post-
evaluation phase, our submission is the best from those published on the shared

11Parts of this section were previously published in Kutuzov and Giulianelli (2020).
12We did not specifically focus on the binary Subtask 1; our submission achieved the average

accuracy of 0.587 in this track.
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task website13 (but some knowledge of the test sets statistics was needed, see
below).

To enrich and diversify our evaluation, we additionally use the GEMS
(‘GEometrical Models of Natural Language Semantics workshop’) test set14

created by Gulordava and Baroni (2011). It contains 100 English target words.
Five human annotators were asked whether each word has changed its meaning
from the 1960s to the 1990s (based on the COHA corpus again). It should be
noted that GEMS does not explicitly take the number of senses into account
in any way: it is just human intuitions about meaning change, independent of
whether the number of senses is changing as well. Each word was thus assigned
a score on a 4-point scale:

• 0: no change;

• 1: almost no change;

• 2: somewhat changed;

• 3: changed significantly.

We use the average scores as the ground truth. Note that GEMS contains
non-lemmatized word tokens (unlike the SemEval-2020 test sets which are
lemmatized). In two cases, this leads to two different forms of one and the same
word being assigned different scores:

1. ‘woman/women’

• ‘woman’: 2, 1, 0, 0, 0
• ‘women’: 2, 1, 0, 2, 0

2. ‘substance/substances’

• ‘substance’: 2, 2, 0, 1, 1
• ‘substances’: 2, 2, 2, 0, 1

Since we use lemmatized corpora in our experiments, we take the average
scores for ‘woman/women’ and ‘substance/substances’ as the ground truth for
‘woman’ and ‘substance’, and remove ‘women’ and ‘substances’ entries. This
decreases the total number of words in the test set to 98. For comparison, the
SemEval-2020 target word numbers are as follows:

• English: 37 words

• German: 48 words

• Latin: 40 words
13https://competitions.codalab.org/competitions/20948
14We thank Kristina Gulordava for responding to our e-mail and providing the test set.
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Test set Median # of w # of sentences with w Time span
Se

m
Ev

al English 208/326 10/8 % 150 years
German 101/200 3/1 % 118 years
Latin 427/2 922 22/22 % 2 000 years
Swedish 254/2 719 1/2 % 89 years

GEMS 661/923 9/10 % 30 years

Table 6.3: Quantitative characteristics of the lexical semantic change test corpora
(w denotes target words). Slashes separate counts for the older and the newer
sub-corpus in each pair.

• Swedish: 31 word.

Table 6.3 describes various statistical properties of the SemEval-2020 and
GEMS underlying time-specific corpora. As one can see, they vary in the
temporal distance between C1 and C2 (from 30 years for GEMS to 2000 years
for SemEval Latin) and in the median number of test word occurrences in each
sub-corpus (SemEval German has the lowest signal here, while SemEval Latin
and GEMS have the highest).

In Figure 6.7, we show the absolute frequency and the frequency rank of
all target words in each test set (English, German, Latin and Swedish from
SemEval-2020, and GEMS). Respective Wikipedia corpora were used for each
language. Of course, absolute frequency counts are not directly comparable
(for example, Latin Wikipedia is two orders of magnitude smaller than English
Wikipedia), but frequency ranks are. English (including GEMS) and Latin test
sets contain almost exclusively high frequency entities: the majority of target
words have frequency rank higher than 10 000, and only very few are lower
than 20 000. The distribution is different for Swedish and (especially) German,
where about half of the target words are ranked below 20 000 in the Wikipedia
frequency dictionary, about one third is ranked below 40 000, and 11 target
words from German are actually extremely rare, with ranks below 200 000. Thus,
German and Swedish test sets are more biased towards low frequency words.

For GEMS, our contextualized methods are additionally compared to the
static distributional approach originally applied to this test set by Gulordava
and Baroni (2011), the SCAN method from Frermann and Lapata (2016) and
the frozen BERT APD method which was the best in Giulianelli et al. (2020).
Frermann and Lapata (2016) employed a dynamic Bayesian approach, inferring
time-specific senses for target words from their contexts, and then calculating
their novelty scores. Note that our systems, as well as the one by Giulianelli
et al. (2020), do not make any assumptions about the number of senses for the
target words. In contrast, the SCAN method uses this number as an additional
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Figure 6.7: Target word frequencies in the semantic change test sets we use (based
on the respective Wikipedia corpus for each language). Five German words and
one Swedish word omitted from the plot for the sake of visual convenience, since
their frequency ranks are below even 400 000.

hyperparameter (it is the same for all words and was set to eight for evaluation
on the GEMS test set). The BERT-based system by R. Hu et al. (2019) goes even
further and requires sense embeddings created by averaging the contextualized
representations of target words from the example sentences belonging to different
senses of each word. These example sentences (and, consequently, the senses
themselves) are extracted from the Oxford dictionary. We argue that this makes
it a (semi-)supervised approach, and we do not compare against the GEMS
results reported by R. Hu et al. (2019) (Pearson ρ of 0.520 and Spearman ρ of
0.428), since the nature of the data used is completely different, making the
systems entirely incomparable.

Martinc, Montariol, et al. (2020) report a Spearman correlation of 0.510 on
the GEMS dataset using fine-tuned BERT embeddings with Affinity Propagation
clustering and JSD. However, we were unable to reproduce these results, even
when using the published code.
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6.4.2 Description of our approaches

For each of the 4 languages of the shared task and GEMS, we train 4 ELMo
variants:

1. Pre-trained, an ELMo model trained on the respective Wikipedia corpus
(English, German, Latin or Swedish)15;

2. Fine-tuned, the same as Pre-trained but further fine-tuned on the union
of the two test corpora;

3. Trained on test, trained only on the union of the two historical test
corpora;

4. Incremental, two models – the first is trained on the first test corpus, and
the second is the same model further trained on the second test corpus.

The ELMo models are trained for three epochs (except SemEval English
and Latin Trained on test and Incremental models, for which we use five
epochs, due to the small test corpora sizes), with the LSTM dimensionality
of 2 048, batch size 192 and 4 096 negative samples per batch. All the other
hyperparameters are left at their default values.

For BERT, we use the base version, with 12 layers and 768 hidden
dimensions.16 For English, German and Swedish, we employ language-specific
models: bert-base-uncased, bert-base-german-cased, and af-ai-center/bert-base-
swedish-uncased. For Latin, we resort to bert-base-multilingual-cased, since there
is no specific Latin BERT available yet. Given the limited size of the test
corpora (in the order of 108 word tokens maximum) and BERT’s computational
requirements, we do not train BERT from scratch and only test the Pre-trained
and Fine-tuned BERT variants. The fine-tuning is done with BERT’s standard
objective for two epochs (for the English test sets it was trained for five epochs,
due to small test corpora sizes). For the English test sets we also tried using the
large version of BERT with 24 layers and 1 024 hidden dimensions, with only
marginal improvements (see Table 6.5).

We configure BERT’s WordPiece tokeniser to never split any occurrences
of the target words (some target words are split by default into character
sequences) and we add unknown target words to BERT’s vocabulary. We perform
this step both before fine-tuning and before the extraction of contextualized
representations.

At inference time, we use all ELMo and BERT variants to produce
contextualized representations of all the occurrences of each target word in
the test corpora. For the Incremental variant, the representations for the

15The Wikipedia corpora were lemmatised using UDPipe (Straka and Straková, 2017) prior
to training. The punctuation was removed, to better imitate the format of the test corpora in
the SemEval-2020 shared task.

16We rely on Hugging Face’s implementation of BERT (available at https://github.com/
huggingface/transformers, version 2.5.0), and follow their model naming conventions: https:
//huggingface.co/models.

153



6. Contextualized embeddings and semantic change

occurrences in each of the two test corpora are produced using the respective
model trained on this corpus. The resulting embeddings are of size 12 × 768 and
3 × 512 for BERT and ELMo, respectively. We employ three strategies to reduce
their dimensionality to that of a single layer:

1. using only the top layer,

2. averaging all layers,

3. averaging the last four layers (BERT only, since ELMo has only three
layers, one of which is purely character-based).17

Finally, to predict the strength of semantic change of each target word
between the two test corpora, we feed the words’ contextualized embeddings
into the four methods of semantic change estimation described in Section 6.2.
We then compute the Spearman correlation of the estimated change scores with
the gold answers. This is the evaluation metric of the SemEval-2020 Task 1’s
Subtask 2, and we use it throughout our experiments.

6.4.3 Results

In Table 6.4, we report the performance of our contextualized embeddings models
on the GEMS dataset, along with the corresponding performance scores taken
from Gulordava and Baroni (2011), Frermann and Lapata (2016), and Giulianelli
et al. (2020). We also report the performance of the SemEval-2020 baseline
methods (Schlechtweg, McGillivray, et al., 2020), the ‘semantic density’ LSI
method from Sagi et al. (2009) and the standard word2vec cosine similarity
methods. For the latter, we trained CBOW embeddings on the corresponding
historical corpora in two different flavors (see Chapter 3):

1. ‘Incrementally trained’, where the C2 model was initialized with the C1
weights (Kim et al., 2014)

2. ‘Procrustes-aligned’, where the two embeddings were trained independently
on C1 and C2, and then aligned using the orthogonal Procrustes
transformation (Hamilton, Leskovec, et al., 2016b)

We re-implemented the ‘semantic density’ approach by Sagi et al. (2009)
using the Latent Semantic Indexing module from the Gensim library (Řehůřek
and Sojka, 2010). Hyper-parameters from the original paper were reconstructed
as much as possible, with the notable exception of not using a TF/IDF weighting
scheme, since our historical corpora are not separated into documents. Also,
in 2020 we are lucky to have much more computational power than back in
2009, and thus we were able to actually calculate density scores on all word
occurrences, not on a random sample.

17We also experimented with the average of layers 5, 6, 7, and 8 but obtained no improvement
over the strategies described above. Using summation instead of averaging did not bring
improvements either.
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Model Scores

SemEval-2020 baselines
Frequency-based (FD) 0.068
Count-based (CNT+CI+CD) 0.256*

Prior work
(Sagi et al., 2009) 0.155
(Gulordava and Baroni, 2011) 0.386*
(Frermann and Lapata, 2016) 0.377*
(Giulianelli et al., 2020) 0.285*

Word2vec cosine similarity
Incremental models 0.424*
Procrustes-aligned 0.235*

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-train. 0.439* 0.438* 0.406*
+ fine-tuning 0.394* 0.442* 0.417*
ELMo Pre-train. 0.381* 0.365* –
+ fine-tuning 0.323* 0.332* –
Trained on test 0.316* 0.293* –
Incremental 0.414* 0.370* –

Pairwise distance (APD)
BERT Pre-train. 0.203* 0.258* 0.171
+ fine-tuning 0.243* 0.281* 0.214*
ELMo Pre-train. 0.424* 0.385* –
+ fine-tuning 0.323* 0.290* –
Trained on test 0.392* 0.275* –
Incremental 0.416* 0.388* –

Jensen-Shannon divergence (JSD)
BERT Pre-train. 0.456* 0.455* 0.405*
+ fine-tuning 0.433* 0.428* 0.431*
ELMo Pre-train. 0.076 0.287* –
+ fine-tuning 0.225* 0.111 –
Trained on test 0.226* 0.196 –
Incremental 0.035 0.079 –

Diversity (DIV)
BERT Pre-train. 0.199 0.258* 0.204*
+ fine-tuning 0.148 0.224* 0.167
ELMo Pre-train. 0.278* 0.267* –
+ fine-tuning 0.301* 0.314* –
Trained on test 0.275* 0.138 –
Incremental 0.137 0.213* –

Table 6.4: The correlations between our predictions and human judgments from
the GEMS test set (change between the 1960s and the 1990s).
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We report Spearman correlations between our predictions and ground truth
scores from the GEMS test set. In all the tables here and below, ‘*’ denotes
statistical significance (as measured by the two-sided p-value, p < 0.05). Note
that the GEMS inter-annotator agreement, measured as an average of pair-
wise Pearson correlations across five participants, was 0.51 (Gulordava and
Baroni, 2011). This value is an approximate upper bound for the systems’
performance on this data.

Bold values in Table 6.4 are the best results for word2vec, ELMo and BERT.
One can see that the baseline and prior work methods are outperformed even by
a simple cosine similarity between word2vec embeddings incrementally trained
on the corresponding COHA corpora. ELMo embeddings pre-trained on English
Wikipedia and used with the APD method perform on par with the static
embeddings here (ρ = 0.424). BERT outperforms both these approaches using
the JSD method.

Arguably, some of these approaches (count-based embeddings from Gulordava
and Baroni (2011), SCAN, BERT-based and ELMo-based) are not directly
comparable, because of different training corpora. For example, the pre-trained
ELMo and BERT are different in that our ELMo is trained on Wikipedia only,
while the BERT embeddings were pre-trained on a much larger text collection
(more than 3 billion words in size, see Devlin et al. (2019) for details). Frermann
and Lapata (2016) used the DiAchronic TExt Corpus (DATE), which consists
mostly of COHA augmented with 5 million word tokens from other sources, both
for training and for inference. Finally, Gulordava and Baroni (2011) created
their static count-based embeddings from the Google n-grams corpus, containing
25 and 28 million of bigrams for the 1960s and for the 1990s correspondingly.
This is about two times larger than the COHA sub-corpora for the same time
periods. Since the training corpora are different, one can make only preliminary
observations concerning the comparative performance of the aforementioned
approaches on the GEMS test set. As Frermann and Lapata (2016) put it, ‘the
use of a different underlying corpus unavoidably influences the obtained semantic
representations’.

However, the shared task baselines, ‘semantic density’ by Sagi et al. (2009),
and word2vec cosine similarity are directly comparable to ELMo embeddings
trained on the test COHA corpora (either as a single model or as two different
incremental models). Overall, the SemEval-2020 Task 1 test sets and baseline
methods (Schlechtweg, McGillivray, et al., 2020) provide an excellent evaluation
test-bed, due to their consistency and multilingual nature. Tables 6.5, 6.6, 6.7
and 6.8 show the performance of all our methods in comparison with the baselines
for English, German, Latin and Swedish test sets correspondingly.

The average scores across all the four languages of the SemEval-2020 semantic
change shared task for each of the tested configurations are given in Table 6.9.
It shows that no single method achieves statistically significant correlation on all
4 languages, which attests both to the difficulty of the task and the diversity of
the test sets. Cosine similarity between Procrustes-aligned CBOW embeddings
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Model Scores

Baselines
(Sagi et al., 2009) -0.186
Frequency difference (FD) -0.217
Count-based (CNT+CI+CD) 0.022

Word2vec cosine similarity
Incremental models 0.210
Procrustes-aligned models 0.285

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-train. 0.253 (0.107) 0.198 (0.145) 0.191 (0.121)
+ fine-tuning 0.225 (0.156) 0.124 (0.188) 0.162 (0.199)
ELMo Pre-train. 0.209 0.190 –
+ fine-tuning 0.254 0.220 –
Trained on test 0.138 0.132 –
Incremental 0.076 0.053 –

Pairwise distance (APD)
BERT Pre-train. 0.315 (0.078) 0.144 (-0.144) 0.137 (0.104)
+ fine-tuning 0.546* (0.558*) 0.215 (0.362*) 0.368* (0.463*)
ELMo Pre-train. 0.203 0.064 –
+ fine-tuning 0.605* 0.602* –
Trained on test 0.291 0.333* –
Incremental 0.377* 0.302 –

Jensen-Shannon divergence (JSD)
BERT Pre-train. 0.175 (-0.018) 0.091 (0.039) 0.009 (-0.026)
+ fine-tuning 0.261 (0.100) 0.170 (0.069) -0.026 (0.184)
ELMo Pre-train. 0.228 0.235 –
+ fine-tuning 0.223 0.200 –
Trained on test 0.117 0.107 –
Incremental -0.202 -0.114 –

Diversity (DIV)
BERT Pre-train. 0.125 (0.140) -0.065 (0.243) -0.106 (0.118)
+ fine-tuning 0.180 (0.008) -0.127 (-0.165) 0.099 (0.027)
ELMo Pre-train. 0.089 0.072 –
+ fine-tuning -0.110 -0.064 –
Trained on test 0.161 0.190 –
Incremental 0.462* 0.403* –

Table 6.5: Results for SemEval-2020 Task 1 sub-task 2 on English: Spearman
correlation. Scores for BERT-Large are given in parentheses.
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is a very strong approach, consistently outperforming the baselines.18 Only PRT
and APD contextualized methods obtain higher average scores, with fine-tuned
ELMo models performing better than fine-tuned BERT. DIV and JSD methods
did not manage to outperform the static baseline. For DIV, the reason for this
can be that it failed to properly handle cases when a single-sense word has
changed its meaning: its diversity can well stay more or less the same, failing
to indicate a semantic shift. For JSD, imperfect Affinity Propagation can be
blamed, since we saw already in Section 6.3 that it failed to estimate the number
of word senses, approximating word frequency instead. It would be interesting
to study the errors of DIV and JSD in more detail in the future (considering
that in theory these methods are more powerful than PRT and APD), but for
now we will focus on PRT and APD.

6.4.4 Closer inspection: contextualized methods are better

Judging only from the average correlation scores, contextualized embeddings do
not seem to outshine their static counterparts, especially considering that both
ELMo and BERT are more computationally demanding than CBOW. However,
closer analysis of per-language results shows that in fact the contextualized
approaches outperform the CBOW Procrustes-aligned embeddings by a large
margin for each of the shared task test sets. Table 6.10 gathers and repeats
these per-language results for convenience. It features the scores obtained by our
contextualized methods that were the best in most cases:19 PRT and APD with
top layer embeddings from fine-tuned ELMo and BERT. We also again report
their performance on the GEMS test set, and the average performance over all 5
test sets (this is our aggregated evaluation score we deem to be the final one).

As can be seen from Table 6.10, different configurations are preferred by
different test sets: APD works best on the English and Swedish sets, while
PRT yields the best scores for German and Latin. This is why the respective
average scores of these methods across all test sets are lower and hide their real
performance. Admittedly, robustness across test sets (3 out of 4) is an important
benefit of the Procrustes-aligned static embeddings approach. However, with the
right choice of APD or PRT, contextualized embeddings can improve Spearman
correlation coefficients by up to 50%.

The discrepancy between the averaged and the per-language results can be
explained by some differences in the test sets. This is not some language-specific
property: the English GEMS test set does not behave like the English test
set from the shared task (i.e., does not clearly prefer APD). In fact, one can
observe three interesting groups of test sets with regards to the method they
favor and the distribution of gold scores: that is, how uniformly are the degrees

18Note that with the shared task test sets, incrementally trained static embeddings
consistently perform much worse than their Procrustes-aligned counterparts. The situation is
exactly opposite with the GEMS test set, which attests to the importance of the statistical
properties of the test set, see subsection 6.4.5 below.

19Note that we did occasionally get higher scores for some datasets using other configurations,
but rarely and inconsistently.
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Model Scores

Baselines
(Sagi et al., 2009) -0.062
Frequency difference (FD) 0.014
Count-based (CNT+CI+CD) 0.216

Word2vec cosine similarity
Incremental models 0.145
Procrustes-aligned models 0.439*

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-train. 0.311* 0.154 0.227
+ fine-tuning 0.590* 0.459* 0.463*
ELMo Pre-train. 0.664* 0.616* –
+ fine-tuning 0.740* 0.713* –
Trained on test 0.695* 0.645* –
Incremental 0.260 0.251 –

Pairwise distance (APD)
BERT Pre-train. -0.003 0.172 0.037
+ fine-tuning 0.427* 0.332* 0.316*
ELMo Pre-train. 0.422* 0.283 –
+ fine-tuning 0.560* 0.482* –
Trained on test 0.505* 0.397* –
Incremental -0.309* -0.418* –

Jensen-Shannon divergence (JSD)
BERT Pre-train. 0.214 0.121 0.179
+ fine-tuning 0.240 0.356* 0.366*
ELMo Pre-train. 0.417* 0.313* –
+ fine-tuning 0.434* 0.297* –
Trained on test 0.257 0.387* –
Incremental -0.226 -0.129 –

Diversity (DIV)
BERT Pre-train. 0.184 -0.012 0.073
+ fine-tuning -0.066 -0.089 -0.196
ELMo Pre-train. 0.161 0.138 –
+ fine-tuning 0.291* 0.259 –
Trained on test 0.212 0.118 –
Incremental 0.354* 0.369* –

Table 6.6: Results for SemEval-2020 Task 1 sub-task 2 on German: Spearman
correlation.
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Model Scores

Baselines
(Sagi et al., 2009) 0.153
Frequency difference (FD) 0.020
Count-based (CNT+CI+CD) 0.359*

Word2vec cosine similarity
Incremental models 0.217
Procrustes-aligned models 0.387*

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-train. 0.373* 0.304 0.297
+ fine-tuning 0.561* 0.420* 0.498*
ELMo Pre-train. 0.414* 0.399* –
+ fine-tuning 0.360* 0.357* –
Trained on test 0.370* 0.327* –
Incremental 0.349* 0.206 –

Pairwise distance (APD)
BERT Pre-train. 0.408* 0.235 0.312
+ fine-tuning 0.372* 0.199 0.296
ELMo Pre-train. -0.015 -0.115
+ fine-tuning -0.113 -0.071 –
Trained on test 0.078 -0.117 –
Incremental 0.268 0.143 –

Jensen-Shannon divergence (JSD)
BERT Pre-train. 0.461* 0.299 0.416*
+ fine-tuning 0.494* 0.390* 0.429*
ELMo Pre-train. 0.189 0.094 –
+ fine-tuning 0.302 0.154 –
Trained on test 0.474* 0.236 –
Incremental 0.257 0.022 –

Diversity (DIV)
BERT Pre-train. 0.203 0.227 0.209
+ fine-tuning 0.045 0.263 0.065
ELMo Pre-train. 0.238 0.260 –
+ fine-tuning -0.012 0.169 –
Trained on test 0.064 -0.113 –
Incremental -0.318* -0.219 –

Table 6.7: Results for SemEval-2020 Task 1 sub-task 2 on Latin: Spearman
correlation.
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Model Scores

Baselines
(Sagi et al., 2009) -0.144
Frequency difference (FD) -0.15
Count-based (CNT+CI+CD) -0.022

Word2vec cosine similarity
Incremental models -0.012
Procrustes-aligned models 0.458*

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-train. 0.261 0.253 0.254
+ fine-tuning 0.185 0.301 0.266
ELMo Pre-train. 0.212 0.169 –
+ fine-tuning 0.252 0.266 –
Trained on test 0.278 0.264 –
Incremental -0.230 -0.003 –

Pairwise distance (APD)
BERT Pre-train. 0.415* 0.390* 0.402*
+ fine-tuning 0.254 0.375* 0.163
ELMo Pre-train. 0.573* 0.457* –
+ fine-tuning 0.569* 0.610* –
Trained on test 0.479* 0.566* –
Incremental 0.169 -0.031 –

Jensen-Shannon divergence (JSD)
BERT Pre-train. -0.048 -0.005 0.040
+ fine-tuning -0.120 -0.047 -0.083
ELMo Pre-train. 0.197 0.052 –
+ fine-tuning -0.146 -0.065 –
Trained on test 0.051 -0.079 –
Incremental 0.022 0.184 –

Diversity (DIV)
BERT Pre-train. 0.083 -0.117 -0.037
+ fine-tuning 0.081 -0.056 -0.116
ELMo Pre-train. 0.335 0.425* –
+ fine-tuning 0.150 0.165 –
Trained on test 0.071 0.104 –
Incremental 0.343 0.252 –

Table 6.8: Results for SemEval-2020 Task 1 sub-task 2 on Swedish: Spearman
correlation.
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of semantic change distributed in the gold data. For example, this distribution
can be skewed to the left (closer to zero), meaning that most words in the test
set have not changed, or to the right (closer to 1), meaning that most words in
the test set have changed significantly. We explain this measure in more detail
in subsection 6.4.5. The test set groups are as follows:

1. group 1 (Latin and German from SemEval-2020 Task 1) exhibits rather
uniform gold score distributions and prefers PRT;

2. group 2 (English and Swedish from SemEval-2020 Task 1) is characterized
by more skewed gold score distributions and prefers APD;

3. group 3 (GEMS) is in between, with no clear preference.

Interestingly, the method which produces a more uniform predicted score
distribution (APD) works better for the test sets with skewed gold distributions,
and the method which produces a more skewed predicted score distribution
(PRT) works better for the uniformly distributed test sets. Furthermore, there is
a strong negative Spearman rank correlation between the median gold score of a
test set and the performance of the APD method with fine-tuned ELMo models
on this test set; again, see subsection 6.4.5 for further discussion on this point.

Simply averaging the PRT and APD estimations and using them as final
predictions yields surprisingly robust results (see the ‘PRT/APD’ rows in
Table 6.10). For individual test sets, the performance of this approach usually
lies in between PRT and APD, but when averaged over all five test sets, it ranks
higher than any individual approach, and this effect holds for both ELMo and
BERT, although the highest score is observed for the former. Thus, it seems
that the APD and PRT methods are indeed complimentary and together act
as a top-performing ensemble of the models, with the additional benefit of not
having to worry about what method to choose.

Table 6.10 also supports the previous observation that ELMo-based models
perform better than BERT for lexical semantic change detection (at least in the
ranking sub-task). The only test set for which this is not the case is Latin,20

while on GEMS, ELMo and BERT are approximately on par. With the ensemble
approach (‘PRT/APD’) ELMo embeddings are also on average better than
BERT embeddings. One possible explanation is that our ELMo models were
pre-trained on lemmatized Wikipedia corpora and thus better fit the lemmatized
historical corpora. The BERT models were pre-trained on raw corpora, and
fine-tuning them on lemmatized data proves less successful. This is of course not
an advantage of the ELMo architecture per se; however, easy and fast training
from scratch on the respective Wikipedia corpora for each test set was possible
only because of much lower computational requirements of ELMo compared to

20The SemEval-2020 Latin test sets and corpora are indeed peculiar: 1) homonyms in them
are followed by ‘#’ and the sense identifier, which is of course not the case for Latin Wikipedia,
on which our contextualized models were pre-trained 2) the sizes of the C1 and C2 corpora are
very imbalanced, with the latter being four times larger than the former.
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Model Average Spearman correlation

Baselines (Sagi et al., 2009) -0.060
Frequency (FD) -0.083
Count (CNT+CI+CD) 0.144†

CBOW cosine distance Incremental 0.140
Procrustes 0.392†††

Contextualized embeddings Top layer All layers Top 4 layers

Cosine similarity (PRT)
BERT Pre-trained 0.278†† 0.233 0.229
+ fine-tuning 0.373†† 0.320†† 0.338††

ELMo Pre-trained 0.375†† 0.344†† –
+ fine-tuning 0.402†† 0.389†† –
Trained on test 0.370†† 0.342†† –
Incremental 0.114† 0.127 –

Pairwise distance (APD)
BERT Pre-trained 0.237†† 0.163† 0.203†

+ fine-tuning 0.363††† 0.241†† 0.297†

ELMo Pre-trained 0.296†† 0.172† –
+ fine-tuning 0.405††† 0.406††† –
Trained on test 0.338†† 0.295††† –
Incremental 0.126†† -0.001† –

Jensen-Shannon divergence (JSD)
BERT Pre-trained 0.181† 0.125 0.203†

+ fine-tuning 0.176† 0.223†† 0.186††

ELMo Pre-trained 0.251† 0.196† –
+ fine-tuning 0.197† 0.156† –
Trained on test 0.225† 0.163† –
Incremental -0.037 -0.009 –

Diversity (DIV)
BERT pre-trained 0.154 -0.028 0.065
+ fine-tuning 0.036 0.010 -0.042

ELMo pre-trained 0.206 0.224† –
+ fine-tuning 0.080† 0.132 –
Trained on test 0.127 0.075 –
Incremental 0.210††† 0.201†† –

Table 6.9: Correlation scores for the methods under analysis on SemEval-2020
Task 1 Subtask 2 averaged over four languages. The number of † denotes
the number of languages for which the correlation was statistically significant
(p < 0.05).
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Method English German Latin Swedish GEMS Average
SemEval-2020 Task 1 baselines

FD -0.217 0.014 0.020 -0.150 0.068 0.094
CNT+CI+CD 0.022 0.216 0.359* -0.022 0.256* 0.166

Word2vec CBOW cosine distance

Incremental 0.210 0.145 0.217 -0.012 0.424* 0.197
Procrustes-aligned 0.285 0.439* 0.387* 0.458* 0.235* 0.361

Fine-tuned contextualized embeddings (top layer)

ELMo PRT 0.254 0.740* 0.360* 0.252 0.323* 0.386
ELMo APD 0.605* 0.560* -0.113 0.569* 0.323* 0.389
ELMo PRT/APD 0.546* 0.678* 0.036 0.546* 0.360* 0.433

BERT PRT 0.225 0.590* 0.561* 0.185 0.394* 0.391
BERT APD 0.546* 0.427* 0.372* 0.254 0.243* 0.368
BERT PRT/APD 0.498* 0.537* 0.431* 0.267 0.332* 0.413

Table 6.10: Spearman correlations per test set for our best methods. * denotes
statistically significant correlation (p < 0.05).

BERT (on average, our ELMo models had two times less parameters than the
BERT models).

Note also that using BERT-Large instead of BERT-Base does not seem to
improve BERT results much. We replicated our experiments with BERT-Large
for the English SemEval-2020 Task 1 test set. The corresponding results are
given in parentheses in Table 6.5. They follow the trends outlined above, with
the APD method being the best. Using the Large model does yield slightly higher
correlation than using the Base model (0.558 versus 0.546 with the fine-tuned
model and top layer embeddings), but it is still lower than the corresponding
ELMo results (0.605). Considering the marginal value of these improvements
and even higher computational requirements of BERT-Large, we did not test it
with the other test sets, leaving this for future work (although we expect that
the outcome will be similar).

In the post-evaluation phase of the shared task, we submitted predictions
obtained with the optimal system configurations: fine-tuned ELMo + APD
for English and Swedish, fine-tuned ELMo + PRT for German, and fine-tuned
BERT + PRT for Latin. It reached the average Spearman correlation of 0.618
and, at the time of writing, it is the best publicly available post-evaluation
submission for SemEval-2020 Task 1 Subtask 2 (‘UiO-UVA’ team). Certainly,
this was made possible only because we were able to analyze the statistical
properties of the test sets (which were hidden in the evaluation phase) and relate
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them to different semantic change estimation methods. However, we emphasize
that this is not the same as training on a test set: the employed methods still
did not know anything about the gold annotations and took only historical
corpora and target word lists (without any scores) as their inputs. Note also that
using the ensemble ‘PRT/APD’ method avoids the need to know the gold score
distribution beforehand and can be used as is on any test set, outperforming the
non-contextual baselines in most cases.

6.4.5 Dependency between score distribution in the test set and
method preference

In this subsection, we provide some additional analysis of the statistical properties
of the test sets which influence their ‘preferred’ contextualized semantic change
detection methods.

In the top part of Figure 6.8, we show how different the five semantic change
test sets are in terms of how the gold scores are distributed across them. It is
clearly visible on the plot that in some test sets, the normalized gold scores are
skewed to the left, while some have a more uniform distribution. The middle
and bottom parts of Figure 6.8 show the distributions of the predicted scores
produced by the APD and PRT methods (with fine-tuned ELMo embeddings).
PRT tends to squeeze the majority of predictions near the lower boundary (no
semantic change), with a low median score. On the opposite, APD distributes its
predictions in a much more uniform way, with a higher median score. Counter-
intuitively, skewed gold distributions favor uniform predictions and vice versa.

The grouping differences can be quantified with respect to the median gold
score (after unit-normalization). Figure 6.9 shows the dependency of the PRT
and APD performance on the median score of the gold test set. The dots here are
the performance values of PRT or APD methods on different test sets. English
and Swedish test sets are in the left part of the plot with the median gold
scores of 0.200 and 0.203 correspondingly. German, GEMS and Latin are on the
right with 0.266, 0.267 and 0.364 correspondingly. There is a perfect negative
Spearman rank correlation (ρ = −1) between the median gold scores of these
five test sets and the performance of APD semantic change detection method on
each of them (with fine-tuned ELMo embeddings). We currently do not have a
plausible explanation for this behavior. Admittedly, the number of data points
is not large (5), and the effect can be spurious, but this is doubtful, considering
that it is manifested across two independent neural architectures.

6.4.6 Empirical evaluation summary

To sum up, our main findings from the empirical evaluation of contextualized
methods for lexical semantic change estimation (ranking sub-task) are as follows:

1. Contextualized embeddings outperform the methods based on static
embeddings (and other distributional baselines) in all the five test sets we
used.
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Figure 6.8: Top: distribution of semantic change degree in the gold data; middle:
distribution of scores predicted by the APD method; bottom: distribution of
scores predicted by the PRT method.
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Figure 6.9: Performance of the PRT and APD contextualized methods depending
on the median gold score.

2. In three out of five test sets, ELMo consistently outperforms BERT,
while having much less parameters and being much faster in training and
inference.

3. Inverted cosine similarity of averaged contextualized token embeddings
(PRT) and average pairwise distance between these embeddings (APD) are
the two best-performing change detection methods. The methods based
on token diversity calculation (DIV) or on clustering (JSD) turned out
to be inferior. One of the reasons for that can be explained by a quote
from Schlechtweg, Hätty, et al. (2019): ‘dispersion measures are strongly
influenced by frequency and very sensitive to different corpus sizes’. Future
work will show whether controlling for these factors can improve the results
for DIV and JSD (which in theory should be very powerful methods).

4. Different test sets show preference to either PRT or APD method. This
preference is strongly correlated with the distribution of gold scores in a
test set.

5. While it may indicate that there are biases in the available test sets,
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this finding remains yet unexplained. We did not manage to find any
other property of the test sets (word frequencies, the width of the time
gap between the historical corpora, etc) which would correlate with the
performance of either PRT or APD method.

6. In the realistic case of not being able to find out the gold scores distribution
beforehand, it is recommended to use the average of the PRT and APD
predictions (‘PRT/APD’), which proved to be a very robust ‘ensemble’
approach.

6.5 Qualitative analysis

In this section, we qualitatively examine the output of the contextualized methods
evaluated in the previous section. We analyze both the examples of undoubtedly
real semantic shifts and the examples of controversial nature. The latter examples
are arguably more important for future studies, and we propose a working
categorization of such controversial cases.

6.5.1 Good examples of detected shifts

For many words, the scores produced by our semantic change modeling methods
do signal a new emergent sense. As an example, let us consider the word ‘cell’.
The dataset from Tsakalidis et al. (2019) (based on the Oxford English Dictionary
definitions) mentions this word as having acquired a new meaning of ‘mobile
phone’ after the year 2000. We will look at the average of the PRT and APD
change scores calculated for this word using its contextualized token embeddings
inferred from consecutive pairs of COHA decades (1960s-1970s, 1970s-1980s,
1980s-1990s, 1990s-2000s). As a contextualizer, we employ a single ELMo model
trained on the whole COHA corpus.

Recall that PRT and APD (and their average as well) produce as an output
a measure of how strong the semantic change of a query word was between two
time bins; this measure characterizes a pair of decades in our case. The ‘cell’
experienced a change of 0.6727 in the 1970s compared to the 1960s21 (arguably
corresponding to the start of its widespread usage in the biological sense). After
that, the change degrees were smaller, with 0.6694 in the 1980s and 0.6718 in
the 1990s. However, the 2000s saw the change degree of 0.6950 compared to the
1990s (the highest change for this word across all decades), most likely reflecting
the new ‘mobile phone’ sense.

Unlike the ‘static’ word embedding approaches described in the previous
chapters, using contextualized embeddings allows us to visually explore the
sentences where a given word is used in different senses, according to our model.
For this purpose, we use Principal Component Analysis (PCA) to reduce the
1024-dimensional ELMo representations of each ‘cell’ occurrence in our training

21The average change degree for the words from the same frequency tier in the 1960-1970s
decade pair is 0.699, with the standard deviation of 0.103, so in terms of absolute value this is
not actually high. See more on this in the next subsection 6.5.2.
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Figure 6.10: PCA projections of ELMo representations of each occurrence of the
word ‘cell’ in four different decades: actual semantic shift.

corpora to flat 2-dimensional projections. Figure 6.10 shows these projections
for the decades of 1970s, 1980s, 1990s and 2000s. Note that PCA is a lossy
dimensionality reduction technique, and the resulting visualizations only roughly
reflect the similarities and dissimilarities of various ‘cell’ occurrences in the
original high-dimensional vector space. However, one can still make some
observations.

Even at a glance, it is possible to see that the 2000s semantic change is
caused by radical changes in the groupings of the ‘cell’ token embeddings. The
three previous decades are all characterized by a rather vague separation of
this word’s usages into two clusters (at the left and at the right part of the
vector space). In the 2000s, we observe the appearance of a new cluster: now
there are two strong clusters to the left and a third one to the right. But what
senses do these clusters correspond to? Fortunately, since each point on the plot
represents a particular ‘cell’ occurrence from a particular decade’s sub-corpus,
we can retrieve these occurrences from the texts and analyze them qualitatively.
In this way, we observe that in the 1970s, 1980s and 1990s, the right-hand cluster
mostly contains sentences with ‘cell’ in the sense of ‘prison cell’. We give
some examples in 5, where each sentence is from a different decade:
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(5)

1. ‘I’d known Archie Meltzer, the chief turnkey on duty, for over ten
years, but you wouldn’t have known it from the way he processed me
for the cells.’

2. ‘It also happened to me in a jail cell, Peb.’
3. ‘If she had been writing to somebody in the darkness of her prison

cell, what had she done with the message?’

As it turns out, the left cluster (consistently increasing its relative size over
time) mostly contains sentences with ‘cell’ in the biological sense, with examples
given in 6:

(6)

1. ‘The sexual cells of Pyronema show this in ascomycetes.’
2. ‘It’s how a cell decides whether it becomes a muscle cell or a skin

cell.’
3. ‘If those cells are found to be cancerous after being sent to a lab,

that’s a definite diagnosis.’

After exploring the points in the 2000s plot in the same way, one observes
that the two clusters on the left correspond to the old senses of ‘cell’ (biological
still at the bottom and prison at the top). But the new large cluster on the right
almost exclusively consists of sentences mentioning ‘cell’ in the sense of ‘mobile
phone’ (see examples in 7 and Figure 6.11 displaying these clusters with labels).

(7)

1. ‘But how well do the service providers fulfill that objective, and what
about the other health and safety risks - exposure to radio waves and
potentially fatal driver distraction - that the growing use of cell
phones raise?’

2. ‘Gilles swatted Adriana on the upper arm as he walked past, nearly
dislodging the cell phone she had balanced between her chin and her
left shoulder.’

3. ‘You still have the same cell number.’

Interestingly, the ‘mobile phone’ cluster has already started to appear in
the 1990s (the small group of occurrences at the top right corner of the plot).
Examples of sentences from this cluster are given in 8 below. However, it was
too small (not more than 50 tokens out of a total of 2160 ‘cell’ occurrences in the
1990s corpus), and thus did not cause a high change score. Only in the 2000s did
the number of usages for this sense become large enough to achieve the highest
observed change score for this word (and create a clearly visible separate cluster
of vector token representations).
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Figure 6.11: PCA projection of ELMo token representations of each occurrence
of the word ‘cell’ in the 2000s, with clusters labeled with senses.

(8)

1. ‘Congressman John Boehner joined in by cell phone from Florida.’
2. ‘A lot of people seem to forget their own cell phone numbers.’
3. ‘Just use your cell phone.’

One can also visualize ELMo token embeddings for ‘cell’ across all five time
bins, as shown in Figure 6.12. Here, PCA dimensionality reduction is performed
for all occurrences of this word (about 7 500 total), and thus we see how usages
from different decades are grouped in relation to each other. It is clear that the
top right cluster is inhabited almost exclusively with the occurrences from 2000s
and to a less extent the 1990s. Not surprisingly, it contains sentences where
‘cell’ is used in the ‘mobile phone’ sense. At the same time, in other parts
of the plot, occurrences from all decades are dispersed more or less uniformly,
supporting our previous observation that in the 60s, 70s and 80s, this word did
not experience significant semantic shifts.

171



6. Contextualized embeddings and semantic change

Figure 6.12: PCA projection of ELMo contextualized representations of
occurrences of the word ‘cell’ in all five COHA decades (single COHA model).
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In the case of ‘cell’, the groupings of ELMo representations and the changes
detected by our methods are undoubtedly connected to a new sense emerging
(thus, a diachronic semantic shift). The relations between different senses of
‘cell’ fall into the category of homonymy, where word senses are not directly
related to each other (at least, synchronically). However, one can trace the cases
of polysemy as well, where senses are synchronically related to each other. As
an example, let us look at the adjective ‘virtual’. In the COHA corpus, it was
always quite fluid in its meaning (as measured by the single ELMo model and
the PRT/APD method), but it experienced the strongest change in the 1990:
0.7692 (see its scores for other decades in Table 6.11).

Before 1990s, ‘virtual’ was used mostly in two closely related senses: ‘being
such in essence or effect though not formally recognized or
admitted’ (major one) and ‘related to a hypothetical particle whose
existence is inferred from indirect evidence’ (minor).22 However, the
1990s saw the emergence of a large number of ‘virtual’ usages in the sense
of ‘simulated on a computer or computer network’, especially in the
expression ‘virtual reality’ (almost one third of all usages). This sense is related
to the previous ones, thus manifesting a case of a polysemous word. The
emergence of a new related sense in the 1990s is captured by contextualized
embedding based methods, producing a higher change score for this time bin in
comparison to the previous 1980s decade. We can also observe a much weaker
change score in the 2000s, which is supported by the manual inspection of the
occurrences showing that in the 2000s, ‘virtual’ was still used a lot in this third
sense (although, interestingly the ‘virtual reality’ expression itself almost came
out of usage, constituting now only 6% of all ‘virtual’ occurrences).

Figure 6.13 plots the ELMo token embeddings for all occurrences of ‘virtual’
across five COHA decades. The ‘simulated on a computer or computer
network’ usages occupy the left part of the plot, with the ‘virtual reality’
phrases concentrated in the left top corner (as confirmed by manual inspection).
The left part contains almost exclusively the occurrences from the 1990s and
from the 2000s, while the left top corner is dominated by the 1990s.

Note that the 1990s, when the word ‘virtual’ changed most, also saw the
sharpest increase in its frequency: from six instances per million tokens to 22
instances per million. The PRT/APD scores and the frequency changes (δ) for
‘virtual’ and ‘cell’ are given in Table 6.11: positive δ represent an increase in
corpus frequency, and negative δ represent a decrease in corpus frequency (it can
be seen that both words belong to the high-frequency tier, with ‘virtual’ being
somewhat less frequent). In fact, for ‘virtual’, the PRT/APD scores per decade
pair are perfectly correlated with the changes in frequency, either absolute or
normalized to instances per million: Spearman rank correlation is 1.0, with
p-value 0.

However, this does not mean that change detection methods based on
contextualized embeddings always simply approximate frequency changes. We

22The definitions borrowed from the online version of the Merriam-Webster dictionary,
https://www.merriam-webster.com/.
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Figure 6.13: PCA projection of ELMo contextualized representations of
occurrences of the word ‘virtual’ in all five COHA decades (single COHA model).

Decades PRT/APD Absolute frequency δ IPM δ

‘cell’ ‘virtual’ ‘cell’ ‘virtual’ ‘cell’ ‘virtual’
1960s-1970s 0.6727 0.7423 244 -2 11 0
1970s-1980s 0.6694 0.7478 118 50 2 2
1980s-1990s 0.6718 0.7692 597 381 27 16
1990s-2000s 0.6950 0.7401 1 286 -143 52 -6

Table 6.11: PRT/APD predicted semantic change scores and their frequency
differences (δ) across five COHA decades for the words ‘cell’ and ‘virtual’. IPM
stands for ‘instances per million’.
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already showed how this is not the case for the DIV method in Section 6.3.
Table 6.11 demonstrates this for the PRT/APD method as well. Unlike with
‘virtual’, for the word ‘cell’, its predicted scores do not exactly follow its frequency
changes. Although ‘cell’ frequency counts increased in the 1990s (compared to
the 1980s) much more than in the 1970s (compared to the 1960s), PRT/APD still
predicts stronger change for the latter than for the former. Formally speaking,
Spearman rank correlation between ‘cell’ PRT/APD scores and its frequency
changes is only about 0.8, and it is not statistically significant (p-value 0.2).
Additionally, this correlation is observed only if we look at the data limited
to one particular word (for example, ‘cell’ or ‘virtual’). If we concatenate the
data even for only two words ‘cell’ and ‘virtual’, no correlation can be found
between PRT/APD scores and frequency changes at all. Adding more different
words still leaves these data columns uncorrelated. This indicates that in general,
PRT/APD scores cannot be predicted from looking at words’ frequencies in
different time bins.

So far so good: the contextualized embedding-based methods not only
demonstrate high scores on the evaluation sets, they also produce interpretable
predictions corresponding to well-known diachronic semantic shifts. But let us
also look at their darker side.

6.5.2 Controversial examples of detected shifts

Unfortunately, the picture is not as clear if one looks beyond hand-picked
examples. As mentioned above, the change score of ‘cell’ when comparing the
2000s to the 1990s was 0.6950 . But the absolute values of this score are not
very informative themselves. It is not the case, for example, that the scores
higher than 0.7 always point at some breaking points in the history of a word’s
semantics. We can observe much stronger bursts which do not yield to such an
explanation.

To illustrate this, we calculated the PRT/APD scores between the five COHA
decades for a word list consisting of all words we used in subsection 6.3.2 (i.e.,
3 000 lexical entries occurring in all five COHA sub-corpora and representing
three frequency tiers), all words from the SemEval-2020 Task 1 English test set
and all words from the GEMS test set. After excluding numerals and function
words, the size of this list is 2 995 entries. Let us look at the subset consisting of
words with a total frequency of more than 1 000 occurrences across all decades
(to discard unstable rare words representations).

Table 6.12 lists 10 points of the sharpest change across all words and
consecutive decade pairs. None of them can be immediately interpreted in
any meaningful way (as acquiring or losing a sense). The question arises: what
is the cause of these bursts?

Looking closely at these cases reveals three general classes of words which
trigger high semantic change score as measured by PRT/APD and at the same
time do not represent proper semantic shifts. The classes are (colors correspond
to those in Table 6.12):
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Word Decade pair Change score Class

‘banish’ 1980s-1990s 0.7940 Proper name
‘designate’ 1980s-1990s 0.7921 Context-dependent
‘mg’ 1980s-1990s 0.7912 Data burst
‘progressive’ 1990s-2000s 0.7824 Context-dependent
‘indirectly’ 1990s-2000s 0.7803 Data burst
‘form’ 1990s-2000s 0.7801 Context-dependent
‘subsequently’ 1980s-1990s 0.7800 Context-dependent
‘neutral’ 1990s-2000s 0.7792 Data burst
‘traditionally’ 1990s-2000s 0.7791 Syntactic change
‘pointed’ 1960s-1970s 0.7785 Context-dependent

Table 6.12: 10 points of the strongest change in five decades of COHA (as
measured by PRT/APD). Word color indicates its class.

1. Words of very context-dependent meaning (‘designate’, ‘progressive’, etc):
their token embeddings are very different from each other (and thus change
scores are high) when compared either synchronically or diachronically.

2. Words frequently used in a very specific context in a particular time bin,
different from other periods (‘mg’, ‘indirectly’, etc). It can be looked at
either as a result of (unintended) domain shifting when building a corpus
or as real context variance which did not lead to the emergence of a new
lexicographic sense (or losing an old one). We will also call such cases
‘data bursts’. There is an interesting sub-type of this class:

• words used as a proper name in a particular time bin (‘banish’, etc.);
this leads to extremely high context variance and the emergence of
strongly detached token clusters.

3. Words undergoing syntactic changes, not semantic ones; see below.

Figure 6.14 shows the PCA projections of token embeddings for four of
the words from Table 6.12 across the whole COHA time span we use. Let us
describe these diachronic vector spaces more closely to explain the nature of
each controversial word class.

‘Progressive’ (in the bottom left part of the plot) belongs to the 1st class and
presents the easiest case to explain. As can be seen from the plot, the occurrences
from all five decades are spread more or less uniformly over the vector space.
There are no regions inhabited by occurrences only from some subset of the
decades. This means no sense was acquired or lost at any point in time. The
reason for the high absolute value of the change score is the generic meaning
of the word itself. Actually, it featured high change scores in all the previous
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Figure 6.14: PCA projections of ELMo token embeddings for ‘banish’, ‘mg’,
‘progressive’ and ‘indirect’ across all five COHA decades.

decade pairs as well: 0.7814, 0.7795, 0.7783. Its contexts are so diverse and ‘fluid’
that our methods detect strong change whatever corpora are under comparison.
In this respect, ‘progressive’ (as well as ‘designate’, ‘form’ and other similar
items) behaves much like function words: their contextualized embeddings are
in a constant flux. Such cases can be traced and discarded when we have a
long sequence of time bins (for example, five decades of COHA) clearly showing
the constant character of the changes. However, if looking at one pair of time
bins only (like in the previous Section 6.4), a researcher can be mistaken into
concluding that an actual semantic shift is going on.
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‘Indirectly’ and ‘mg’ (bottom and top right parts of the plot correspondingly)
belong to the 2nd class and they do reflect some actual changes in the text
(although possibly not proper semantic shifts). The PCA projection for ‘indirectly’
features a small constellation of the 1990s occurrences in the top left corner.
Otherwise, the occurrences from different time bins are spread uniformly, so this
must be the reason of the detected ‘change’. Indeed, we see that for this word,
high change scores are computed both in the 1990s (0.7785) and in the 2000s
(0.7803), while before that the change scores were much lower. Accordingly, it
seems that something had happened to ‘indirectly’ in the 1990s and then went
back to ‘normal’ in the 2000s. Manual inspection of the 1990s-specific cluster
reveals sentences like those in example 9:

(9)

1. ‘Lane now holds 1,966,692 shares directly and indirectly, worth $
17,700,228.’

2. ‘Parshall now holds 300 Class A shares indirectly, worth $ 3,975.’

All of them are excerpts from a long text titled ‘Depressed shares are a hit
with bargain-hunting execs Banks, utilities among winners’, apparently published
in ‘Insider trading’ magazine in 1994. It abounds with reports on various persons
holding various amounts of shares directly or indirectly. This type of texts is
quite unusual for the COHA as a whole: there are no sentences mentioning both
‘hold’ and ‘indirectly’ simultaneously in other decades, except only one such
sentence in the 1980s. Meanwhile, the 1990s sub-corpus has 27 of them (that
is approximately the size of the outlier cluster we see in the plot). The 2000s
sub-corpus does not include such texts any more, and thus we observe an equally
strong change back when moving from the 1990s to the 2000s.

For the word ‘mg’ (milligram) the situation is similar, except that the change
in the 1990s (change score of 0.7921) was the only burst (for other decade pairs,
the change scores do not exceed 0.71). It means that something changed in the
1990s and stayed like this through the 2000s as well. Inspecting Figure 6.14 (top
right plot) shows that there is indeed a clearly separated cluster consisting only
of the 1990s and 2000s tokens. In the corpus, they always occur in the phrase
‘mg cholesterol’, in sentences like ‘Per serving: 525 calories, 34 gm protein, 18
gm carbohydrates, 36 gm fat, 674 mg cholesterol, 6 gm saturated fat, 409
mg sodium’, of course being part of dish recipes published in newspapers and
magazines. The word ‘cholesterol’ has occurred in COHA before the 1990s, but
never in a similar context (we observe 128 occurrences of ‘mg cholesterol’ in the
1990s, 123 in the 2000s, and 0 before that).

In these cases, no proper semantic shifts occurred: the word ‘indirectly’ still
had the same general meaning in the 1990s, and the word ‘mg’ in the 1990s
and 2000s. However, the PRT/APD method indeed detected anomalous context
variances in the time bins under analysis. Another interesting case belonging
to this type is the word ‘neutral’ also appearing in Table 6.12: it seems that
its 2000s burst is caused by the emergence of the frequent collocation ‘gender
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neutral’, which is missing (or extremely rare) in the previous decades. Are we
observing a new sense gradually appearing, or is it just contextual fluctuation?
Anyway, independent of whether these variances are due to real changes in the
word usage at these decades (caused by social and cultural developments) or
due to improper corpus collection procedure, they are still objective bursts in
the data. In this respect, this type of controversial predicted changes is different
from those like ‘progressive’ or ‘designate’. To some extent, this is another
manifestation of a larger NLP problem of domain sensitivity (Okurowski, 1993):
essentially, what PRT/APD detected was a domain change in comparison to
overall genre structure of COHA.

Finally, the word ‘Banish’ belongs to the proper names subset of the same
2nd class. It features clearly separated cluster of token embeddings containing
exclusively the 1990s occurrences (bottom of Figure 6.14). In fact, all of them
are mentions of ‘Banish’ as the name of one of the main characters of the 1996
novel ‘The Standoff’ by Chuck Hogan, for example:

(10)

1. ‘Banish slipped deeper into thought.’
2. ‘Banish smiled weakly at the sentiment.’
3. ‘The sound man eyed him as he stepped inside, saying nothing about

Banish’s burnt face.’

The novel is included in COHA almost in its entirety, obviously bringing in a
lot of ‘banish’ usages very different from its mainstream verbal meaning.23 This
leads to the high change score we observe when comparing 1990s against 1980s:
0.7940, a strong burst compared to 0.7329 (1960s-1970s) and 0.7305 (1970s-
1980s). Note that the change score is high again when looking at 2000s versus
1990s (0.7928). The obvious reason is that the 2000s corpus does not mention
Banish from ‘The Standoff’ at all, so the meaning of ‘banish’ has returned to
its pre-1990s state (more or less equally distributed between the sense of ‘to
expel’ and the sense of ‘to destroy, to end’).

Using ‘Banish’ in this way is certainly creative, and even more importantly,
these occurrences obviously denote something different from the regular meaning
of ‘banish’. Of course, it can be disputed whether using a verb (or a common
noun) as a proper name is coining a new sense. Note, however, that a very
similar case of the word ‘apple’ acquiring the new sense of a well-known company
proper name is often used as a classic example for word sense disambiguation
Manion (2014). From this point of view, ‘banish’ certainly temporarily acquired
a new sense based on the COHA 1990s corpus (without losing its old mainstream
sense), thus constituting a proper diachronic semantic shift.

The take-away message here is that, when measuring the strength of semantic
change with contextualized embeddings, one should watch out for the unexpected

23We use lemmatized and lower-cased corpora. In this case, pre-processing decisions can
help: keeping proper names capitalized will avoid them mixing with common words.
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results described above. The 1st class (words with naturally ‘fluid’ meaning) is
clearly erroneous and ways must be devised to filter out these cases. Possible
approaches to do this could include measuring change scores between random
subsets of one and the same time bin: if they are as high as those between
different time bins, the possible reason is the word’s fluidity.

The 2nd class can be considered erroneous or not, depending on one’s
definition of semantic change (e.g., whether it includes context variance). It can
be looked at as a training corpus problem: COHA is not entirely well-balanced
with respect to sense distribution. On the other hand, any dataset is biased
and incomplete, and the notion of a ‘100% balanced’ corpus is in fact ill-defined
without further refinement (balanced for what?). Arguably, the creators of
COHA did not set an aim to somehow ‘properly represent’ the distribution of
word senses (even if there existed robust methods to implement this).

But this also raises complicated questions about the nature of meaning and
of what exactly it is to undergo a ‘meaning shift’, especially when we observe a
case of context variance. If we stick to the distributional view that ‘senses are
in fact clusters of corpus usages’ (Kilgarriff, 1997), these cases should definitely
count as sense inventory changes, or at least the appearance of short-term senses
which then fade away. Then, if one does not employ some external data sources
(like ontologies or diachronic dictionaries), there is no reliable way to discern
‘meaning changes’ from ‘differences in the underlying textual data’: they are
simply the same thing. This is an inevitable consequence of accepting the data-
driven distributional paradigm, something we already noted in Chapter 2, when
describing the shortcomings of this approach to semantics.

During our manual analysis, we also observed multiple cases where token
embedding clusters of an unambiguous word manifested this word being used in
different syntactic roles: the 3rd class of controversial change predictions. The
example for the word ‘phone’ is shown in Figure 6.15. There are three clusters
of ELMo token embeddings, stable across all four decades. It turns out they
group occurrences not on semantic, but more on syntactic grounds:

1. The top cluster contains sentences where ‘phone’ is used as a subject:

• ‘Then the phone rang.’
• ‘The phone yanked me awake.’

2. Bottom left cluster contains sentences where ‘phone’ is used as an object
or as an oblique argument:

• ‘Hannah took a deep breath and grabbed the phone.’
• ‘While you’re away, talk to your son on the phone.’

3. Bottom right cluster contains sentences where ‘phone’ is used as a modifier
part of compound nouns:

• ‘Please include a daytime phone number.’
• ‘The phone calls from all over the the US have been so frequent.’
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Figure 6.15: PCA projections of ELMo representations of each occurrence of the
word ‘phone’ in four different decades: stable syntactic clusters.

One can imagine that if for some reason the syntactic role distribution of a
particular word changes diachronically, the semantic change detection methods
based on contextualized embeddings would be triggered by this. As a result, a
syntactic shift will be taken for a semantic one. ‘Traditionally’ from Table 6.12
is such an example: for some reason, the 1990s COHA sub-corpus contains
much less usages of this word as an adjective modifier (‘traditionally christian’,
‘traditionally male’, etc) than the other decades, but there are no semantic
changes. Interestingly, this syntactic influence on the resulting embeddings is
expressed even though we extracted representations from the top layer of the
neural network, which was shown by Peters, Neumann, Zettlemoyer, et al. (2018)
to mostly contain semantic information.

We formulate the take-away message here as follows. Although contextualized
embeddings like ELMo are indeed promising for the tracing of diachronic semantic
shifts (especially for finding supporting examples from the corpus), their usage
is not entirely straightforward. Contextualized representations are by definition
very much influenced by contexts (especially ‘exotic’ ones) and fluctuations
in corpus balance. They also often merge together syntactic and semantic
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characteristics of words. This can lead to a situation when a word occurrence
receives a very different embedding not because the word has acquired a new sense,
but because it is used in an unusual syntactic role, or because it is surrounded
by unusual neighbors (for example, when the domain of the underlying texts
has changed). Since the resulting semantic change score is a derivative of the
arrays of token embeddings, one observes strong bursts which manifest changes
in context variance of a word, not a semantic shift in the lexicographic meaning
of this term. This is probably not what a historical linguist expects to see,
although it can depend on the particular study and the working definition of
‘semantic shift’.

Words with context-dependent ‘fluid’ meaning (like ‘progressive’ or ‘designate’
above) are another problem, as they will always exhibit strong change without
it being of any significant linguistic interest. Finally, contextualized embeddings
often merge together syntactic and semantic characteristics of words, which can
be problematic as well. The discussed issues do not depend on a particular
training algorithm, and there is no reason for it to not manifest itself also when
using BERT and any other contextualized architectures (although to properly
test it empirically could be an interesting future work).

It is not immediately clear whether improving the quality and representative-
ness of diachronic corpora can help alleviating this (producing more historical
data is often not feasible or even impossible). In some cases, very simple pre-
processing decisions can help: for example, keeping proper names capitalized in
the corpora will address the issue of them mixing with common nouns. Another
hypothetical remedy for some of the mentioned issues is smart handling of
syntactic information from the representations used for calculating semantic
change scores. This might be achieved by learning an optimal weighted function
of different layers of the model in the process of training a binary classifier (shift
or not shift) on manually annotated data.

6.6 Summary

This chapter described our experiments with employing recently introduced deep
contextualized embedding architectures for lexical semantic change estimation.
Our results for the SemEval-2020 Shared Task 1 (Subtask 2) and for the GEMS
test set show that using contextualized embeddings to rank words by the degree
of their semantic change produces strong correlation with human judgments,
outperforming static embeddings. Models pre-trained on large external corpora
and fine-tuned on the historical test corpora produce the highest correlation
results, with ELMo (Peters, Neumann, Iyyer, et al., 2018) slightly but consistently
outperforming BERT (Devlin et al., 2019) as a contextualizer. Considering that
ELMo models have about half the number of parameters compared to BERT, we
believe our results give a chance for NLP practitioners to make a more informed
decision about which architecture to use in their cases.

Inverted cosine similarity between averaged contextualized embeddings and
the average pairwise cosine distance between contextualized embeddings turned
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out to be the best semantic change detection methods. An interesting finding is
that the former method favors the test sets with uniform gold score distribution,
while the latter works best with the test sets where the gold score distribution is
skewed towards low values. This distinction is not related to the language of the
test set. We believe this dependency between the statistical properties of gold
scores and the performance of semantic change detection systems deserves to
be investigated further in future work. For the time being, we found that in a
realistic case of not knowing the gold score distribution beforehand, one can use
the average of these two methods’ predictions (model ensemble), which proved
to be a robust choice across the board, with the highest average correlation.
Qualitatively, the proposed method confirm known semantic shifts (for example,
the word ‘cell’ acquiring the ‘mobile phone’ sense in the 2000s).

Additionally, we showed that the diversity of ELMo contextualized token
embeddings for a particular English word in a given corpus does correlate with
the number of the WordNet synsets for this word, and thus with the degree
of its semantic ambiguity. Using this measure, we undertook an exploratory
large-scale analysis of semantic change across five decades of the 20th and 21st

centuries, and across three frequency tiers. We sorted the decades from the 1970s
to the 2000s by their influence on the overall lexical ambiguity, and showed that
the general tendency for the representation diversity to increase holds across all
of these time bins, but most of it is manifested only when using incrementally
trained contextualized embeddings. For this reason, we came to the conclusion
that using incremental contextualized embeddings is generally not recommended,
and single models should be used whenever possible, since they allow one to
avoid the extra training bias.

At the same time, important issues were discovered and described. They
are related to the fact that contextualized architectures capture many different
word aspects, along with is semantics. This leads to token embedding changes
captured by our methods but not representing proper semantic shifts (acquiring
or losing a lexicographic sense). They are caused by the word occurrences
being used in unusual environments and by imbalanced test corpus data (thus,
increasing the size of the corpora will arguably not help). We identified three
typical cases when high semantic change score is produced by our method, but
it does not look like a ‘proper’ semantic shift:

1. Words of very context-dependent ‘fluid’ meaning, used in all sorts of
contexts.

2. Words frequently used in a very specific context in a particular time bin
(‘data bursts’). There is a notable subclass here:

• words used as a proper name in a particular time bin only.

3. Words being used in significantly different syntactic roles.

Contextualized architectures are unfortunately more vulnerable to these
issues than the static architectures: precisely because in them, final word
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representations depend on the input context. This is not necessarily a problem
for the case 2: new senses are born by using old words in new contexts, and
clusters of irregular usages can be looked at as emerging senses. From this
distributional perspective on ‘senses’, contextualized embeddings produce very
reasonable representations. At the same time, the words from the cases 1
and 3 are erroneous semantic change ‘hits’, and we proposed some ways to
remedy this. Researchers must take the aforementioned lexical groups into
account when working with contextualized architectures for semantic change
detection. In the future, ways should be devised for distinguishing word tokens
used in different lexicographic senses from word tokens used in contextually
varied surroundings, but in the same sense. Together with the ‘sensitivity’ of
contextualized embeddings and semantic change detection methods to various
aspects of word usage, this can potentially help to model the nature of subtle
semantic shifts (of course, if they are manifested distributionally at all).

Another interesting issue is whether the proposed methods can be used for
classification (actually detecting shifts). In this chapter, we dealt with the
ranking task (SemEval-2020 Shared Task 1 Subtask 2), where one has to rank
the word by the degree of their semantic change. Subtask 1, instead, challenges
a system to tell whether a word has experienced a sense change (acquiring a new
sense or losing an old one) or was stable across the time bins under analysis.
This is a binary classification task, and we did not try to employ contextualized
embedding based methods to solve it. However, possible approaches can be
easily seen: from simply finding an optimal threshold of semantic change score
(after this threshold is exceed, the word is considered to be shifted) to using
various flavors of clustering token embeddings into groups corresponding to
senses, and then detecting the emergence of new clusters. This can be potentially
problematic: we have shown in Section 6.3 that the number of token embedding
clusters produced by widely used algorithms like Affinity Propagation does not
correlate well with the number of senses the word actually has. This can be
addressed, for example, by using graph-based clustering, after converting vector
representations into ego-graphs of the nearest neighbors (Logacheva et al., 2020).

Anyway, empirical results give us ground to state that despite all the
challenges, approaches based on contextualized distributional embeddings
are bound to replace traditional ‘static’ embeddings in diachronic semantic
change modeling, as has already happened in several other natural language
processing areas. Meaning in human languages is contextual and any attempts
to build context-independent representations will always lead to severe over-
simplifications. Higher expressiveness of contextualized models will allow
researchers to come up with more persuasive examples and to develop change
detection methods which will determine the nature of semantic shifts (narrowing,
widening, metaphorization, metonymization etc). This will certainly remain an
important direction of our own future work.
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Conclusion
Distributional semantic representations (word embeddings) trained on large
amounts of linguistic data capture many aspects of word meaning. Due to the
widespread use of word embeddings in natural language processing, a better
understanding of these representations is of vital importance. There is a vast
amount of literature on testing their abilities in a synchronic setup. However,
at the time of commencing our work on this thesis,there was a definite lack of
corresponding studies focusing on diachronic processes. If word embeddings are
able to infer word meaning at a given point in time, they provide a good starting
point for research aimed at modeling changes which this meaning undergoes
over time. Such representations form a strong empirical basis for linguistic
hypotheses testing and may give answers to many questions regarding lexical
semantic change.

In this thesis, we analyzed the usage of distributional semantic representations
for modeling of various types of diachronic semantic change. Diachronic word
embeddings have by now become established as a central tool in the field of
unsupervised semantic change detection. However, these architectures capture
different aspects of natural language semantics, and semantic change manifests
its multiple aspects in different linguistic phenomena. Semantic shifts proper are
cases of one and the same word form acquiring a new lexicographic sense (like the
English ‘cell’ and the sense of ‘mobile phone’) or losing an old sense (like the
German ‘Zufall’ and the sense of ‘seizure’) over time. Drift in context variance
(like with the English ‘distancing’ at the time of COVID-19 pandemic) is another
type of diachronic semantic change. Encyclopedic meaning or ‘world knowledge’
associated with a word can also change over time, without introducing new
senses: this often happens with country or political group names, sometimes
drastically changing their connotational semantics (cf. the word ‘Crimea’ after
the Russian annexation of the peninsula in 2014). Finally, diachronic semantic
processes differ in the longitudes of the time spans they occur in.

The role of this thesis is to create a comprehensive (although not exhaustive)
publication which covers a broad range of different types of semantic change
captured by word embeddings, but at the same time employs consistent
terminology and vision. We also made an attempt to provide a coherent story
unfolding from simple to more complicated issues and from foundations to
practical approaches. The thesis is summarizing the large body of research
carried out by the author throughout the doctorate years. When the work on the
thesis started in 2015, the field of diachronic semantic change detection was much
more sparse than it is today. In particular, the use of dense word embeddings
for this task was far from common, with only a few quite disconnected papers
exploring this vein of research. Since then, the field grew much more mature.
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This thesis has developed along with the field, as our research was conducted
and published in peer-reviewed venues (14 main conference papers and journal
articles, and nine workshop papers on the topic of semantic change and/or the
properties of distributional meaning representations).

Overall, we design and test various methods to probe semantic word
representations for diachronic information. Word embeddings are not directly
interpretable by humans, making them to some extent a ‘blackbox’ (Linzen
et al., 2019). One can probe embeddings for many different aspects of linguistic
knowledge. We here explore their ability to capture language change: more
specifically, temporal changes in various aspects of lexical semantics, including
semantic relations between words. Note that although we cover other approaches
to the semantic change detection task, word embedding-based methods still
remain our primary focus throughout the thesis.

We first surveyed and systematized a large body of related work on the
topic, both prior and concurrent to our work on this thesis. A selection of
these methods (including those proposed by us) was used to investigate the
semantic change of a linguistically defined category of words, namely evaluative
adjectives, over time. We also introduced novel ways to evaluate semantic change
detection methods and probe diachronic word embeddings: namely, through
distant supervision from historical armed conflict datasets created by social
scientists. The use of these datasets allows us to overcome the lack of gold
standard semantic change data. Based on this foundation, we traced how such
real-world event dynamics (in this case, armed conflict events) are captured by
temporally-aware word embedding representations and how they are related
to diachronic semantic change in named entities (for example, country names).
In addition, we proposed novel methods (based on learning and re-applying
optimal linear transformations) which use such representations to trace temporal
dynamics of semantic relations between words.

Finally, we evaluated the potential of contextualized word embedding
models like BERT and ELMo in tracing semantic change. In particular, we
conducted extensive experiments with the methods employing such architectures
on manually annotated semantic shift datasets: both well-established like GEMS
(Gulordava and Baroni, 2011) and more recent like SemEval-2020 Shared Task 1
(Schlechtweg, McGillivray, et al., 2020). We showed that using contextualized
architectures can significantly improve the performance of unsupervised semantic
change detection in comparison to using static word embeddings. We also
rigorously analyzed some unexpected and potentially controversial predictions
of such methods. A linguistically motivated categorization of these issues was
proposed with suggestions on how researchers can handle them.

Below, we summarize our main contributions and provide a more detailed
summary of the results of our work. We will also outline directions of possible
future research.
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7.1 General contributions

Briefly, the main contributions of this thesis can be listed as follows:

1. We systematically show how word embedding-based methods are effective
in diachronic semantic change detection. The thesis has proposed such
methods for approaching several different aspects of semantic change
modeling: ranging from datasets, tasks and evaluation measures to
architectures and embedding training strategies.

2. We demonstrate how these methods tackle both semantic shifts proper
and more subtle changes in context variance (still belonging to the domain
of semantics).

3. We have structured unsupervised methods for semantic change modeling
along several axes to allow for meaningful comparison between different
approaches. The most important findings and events in the field are
outlined and discussed.

4. In one case study, we apply some of the established semantic change
detection methods to investigate the dynamics of semantic change that
evaluative adjectives undergo over time. This is explored for three
languages.

5. We demonstrate how non-linguistic temporally annotated datasets (in this
case, containing armed conflicts data) can be used to probe diachronic
word embeddings.

6. We introduce a novel extension of diachronic analogical reasoning, and
propose and evaluate a model for approaching this task.

7. The previous point indicates that diachronic word embeddings capture
information about temporal changes in word relations, not only single
words.

8. We propose and evaluate several new methods for semantic change
detection based on contextualized embedding architectures. These methods
outperform previous static embedding-based approaches on several test
sets and languages.

9. We find that contextualized methods allow easier inspection and visual-
ization of temporal shifts in word meaning. At the same time, they are
prone to producing controversial predictions (a high semantic change score
is produced, but it is not a real semantic shift in the lexicographic sense)
in some cases. These cases are identified and manually categorized.
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7.2 Summary

Our primary research question (RQ0 ) was formulated as follows: is it
possible to reliably model diachronic semantic change using dense
distributional word representations? We addressed RQ0 through several
case studies across several languages. These case studies involved working
with time-annotated corpus data, preparing gold standard datasets, training
and comparing different flavors of diachronic word embeddings, and evaluating
semantic change detection methods (both quantitatively and qualitatively).

As a result, we showed that the answer to RQ0 is partially positive: word
embedding changes do capture diachronic semantic change. It is to some extent
possible to create embedding-based computational systems that can model and
detect various aspects of semantic change: shifts in the composition of words’
lexicographic senses, slight but consistent drift in context variance (often caused
by short-term event dynamics), and even changes in typed semantic relations
between words. One of the advantages of these methods is that it is possible
to employ them in an unsupervised manner, with no labeled data. Even under
such setups, methods based on dense distributional representations still yield
meaningful results.

At the same time, many challenges still remain. Some of them are technical,
like the issue of making diachronic embedding spaces comparable or the issue
of controlling for word frequencies. Some of these challenges are conceptual,
like the issue of different lexical aspects being expressed in a word’s usage and
then making their way into a word embedding together, without a clear way to
differentiate, say, semantics from syntax.

Other research directions stem from RQ0. In the subsections below, we
describe the outcomes of the thesis, following the order of the respective chapters
and the research questions identifiers from the Introduction (Section 1.2).

7.2.1 State of the field

We started the thesis with surveying the current research related to unsupervised
semantic change detection. This field is now developing very fast, and often in
unexpected directions. In the recent two or three years, the field has undergone
a strong increase in the number of papers published and events organized. As
new papers on the topic appear almost weekly, any attempt to exhaustively
summarize the relevant research would not be realistic. However, in the present
thesis, we have surveyed the existing publications which we deem to be most
important. We believe that the structure and conceptualization offered in
Chapter 3 will hopefully still be relevant for many years to come. Our survey on
diachronic semantic change modeling using word embeddings (Kutuzov, Øvrelid,
et al., 2018) is now a widely cited reference in the field (Chapter 3 is partially
based on this paper).

To address our research question RQ1.1 (‘What are the main axes along
which one can structure the current research?’), we covered the linguistic nature
of semantic shifts (both semasiological and onomasiological), the typical sources
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of diachronic data for training and testing, and the distributional approaches
used to model them: from frequency-based methods to static and contextualized
word embeddings. The distributional methods were structured according to
several axes: the nature of diachronic data, evaluation metric, the type of word
embedding algorithm, model alignment approach, etc. We also emphasized the
difference between diachronic semantic change detection algorithms being used
for 1) assessing more linguistically oriented questions (as in Chapter 4), and 2)
addressing practical NLP or text analysis tasks (as in Chapters 5 and 6).

As a way of addressing RQ1.2 (‘What were the primary discoveries in recent
years?’), we outlined the most important findings and events in the field of
unsupervised semantic change detection up to 2020 as a timeline in Figure 3.6.
It is important to note here that while the survey in Chapter 3 is up-to-date
as of 2020, other parts of the thesis were carried out step by step in different
time periods since the beginning of this PhD study in 2015. Most of the thesis
chapters are rooted in our papers published in 2017–2020. These studies were
significantly reworked and expanded before inclusion into the thesis.

The emerging field of semantic change detection is still relatively new, and
although recent years has seen a string of significant discoveries and academic
interchange, much of the research still appears slightly fragmented. This survey
is partly aimed at addressing this issue and presenting computational detection
of diachronic semantic shifts with word embeddings as a more coherent story.

7.2.2 Diachronic evolution of a linguistically defined category

Research question RQ2.1 (‘Do evaluative adjectives change over time faster than
other types of adjectives?’) is linguistic in its nature. It serves as an example
of a linguistic case study involving methods of unsupervised semantic change
detection we described before that. Particularly, in Chapter 4, we measured
the intensity of diachronic semantic change in adjectives across three languages
(English, Norwegian and Russian) and five decades (1960s, 1970s, 1980s, 1990s,
2000s), to test whether evaluative adjectives change faster than other adjectives.
This research was motivated by several well-known examples of English adjectives
becoming evaluative or changing their polarity within comparatively short periods
of time (cf. ‘terrific’, ‘sick’, etc).

We did not propose any new models in this part of the thesis, but tested
the applicability of some of the existing ones to a concrete and linguistically
motivated problem limited to a well defined lexical category. Our results showed
that, contrary to the initial intuition, evaluative adjectives change over time
slower (statistically significant at p < 0.1), if we measure change as the mean of
pairwise differences between successive decades, and not as a steady drift in one
particular direction. At the same time, when measuring the probability of steadily
‘shifting’ from an original meaning across time, in our experiments evaluative
adjectives do not differ from other adjectives at all (on any statistically significant
level). Thus our answer to RQ2.1 is negative. There is no statistical evidence for
evaluative adjectives to undergo faster diachronic semantic change, at least with
the observation window of five decades. This holds for three different languages:

189



7. Conclusion

English, Norwegian and Russian. This research was originally published as
Rodina, Bakshandaeva, et al. (2019).

These observations are not frequency artifacts, since we observe the same
behavior when controlling for word frequencies. The controlled experiments
additionally allowed us to trace how word embedding-based semantic change
detection methods are influenced by frequency in different ways. In particular,
for frequent words, Jaccard distances between the nearest neighbors and cosine
distances between Procrustes-aligned models tend to yield lower semantic change
scores, while the Global Anchors method tend to yield higher change scores.

We also conducted an additional experiment with the increased ‘observation
window’ of 10 decades for English (starting from the 1910s). In this case, we
observed a more expressed steady shift in one particular direction for evaluative
adjectives (but still less expressed for the pairwise differences between successive
decades). Our interpretation is that there is no difference between evaluatives
and other adjectives in their short-term fluctuations (independent of the width
of the observation window, be it five decades or 10). However, if we observe
language data for a longer time, diachronic embedding-based methods may start
to capture and show consistent movement of evaluative adjectives away from
their original meaning.

7.2.3 Evaluating semantic change detection through
extra-linguistic data

After applying a selection of existing semantic change detection algorithms in
a linguistic case study, we moved on to actually evaluating them. The goal of
the subsequent chapter was to probe what kind of information about cultural
semantic change is captured by diachronic word embeddings.

The field of automated diachronic semantic change detection often suffers
from the lack of manually annotated data, even now in 2020. This problem was
even more expressed at the onset of the work on this thesis. We proposed to
compensate this by using other temporally annotated datasets (not necessarily
of purely linguistic nature) and assuming that the real-world historical events
described in these datasets are strongly correlated with diachronic changes in word
meaning. In particular, we used the Uppsala Conflict Data Program (UCDP)
datasets which includes start and end dates of armed conflicts throughout the
world.

To answer research question RQ3.1 (‘Can external datasets be used as
proxies to evaluate change detection methods?’), a version of the UCDP Conflict
Termination dataset was created, linguistically pre-processed and published (we
call it Armed Conflict Evaluation Test Set). Using this historical armed conflict
dataset, we showed that it is indeed possible to predict real-world events based
on word vector changes in models trained on news texts. Moreover, it is possible
to evaluate the semantic shift detection algorithms themselves, based on how
good they are in reflecting the dynamics of real-world data. This data can be
used as a source of extra-linguistic indicators useful for evaluating semantic
change detection methods. This represents a case of distant supervision – a
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strategy that is becoming increasingly used in natural language processing (Fang
and Cohn, 2016).

By evaluating these methods for their ability to detect or predict changes
in the real world, we were able to better understand what information about
temporal changes in connotational word meaning is captured by distributional
word embeddings (thus, probing them). Several different approaches to extract
this information were tested and evaluated in Chapter 5 using the Armed Conflict
Evaluation Test Set.

Note that semantic change in this part of the thesis (unlike Chapter 4 and
Chapter 6) is mostly concerned with ‘world knowledge’, and occurs for proper
names. This corresponds to the context variance span on the semantic proximity
scale: the words dramatically change their typical contexts without changing their
lexicographic senses. We claim that such changes are still semantic, although
they are different from what we have dubbed semantic shifts proper.

One can use semantic change detection methods in a comparatively simple
setup when one measures the temporal drift of a geographical location embedding
in relation to conflict domain specific ‘anchor words’ like ‘kill’, ‘casualty’,
etc. This allows us to detect the start or end of an armed conflict based
only on the analysis of word vector changes which in turn reflect changes
in context variance of a particular named entity. For example, in 2006, the
vector representation of ‘Congo’ becomes much closer to these anchor words
by cosine similarity (in comparison to 2005). The ultimate reason for this is
the fact that armed conflicts resumed in this country this year. This event
influenced the connotational components of the meaning of ‘Congo’, because the
‘world knowledge’ associated with this word has changed. This phenomenon is
captured by diachronic embedding-based semantic change detection methods.
We described such experiments in Section 5.2, achieving reasonable performance
on predicting armed conflicts from the Gigaword news texts, by comparing the
similarity of country embeddings to manually or automatically selected anchor
words related to war and peace. This approach significantly outperformed the
frequency baseline. Parts of this work were previously published as Kutuzov,
Velldal, et al. (2017b).

7.2.4 Diachronic dynamics of semantic relations

The majority of research on diachronic semantic change focuses on shifts in
meaning which occur to single words (or other singular linguistic entities).
Continuing to rely on armed conflict datasets as evaluation data, in Section 5.3,
we investigated how diachronic word embeddings can serve as the foundation for
systems which are able to trace the change of semantic relations over time. In
comparison to single words, relations are more complex and high-level structures.
Single words or other entities function as their parts. This problem, indicated
in our research question RQ3.2 (‘Do word embeddings capture information
about diachronic changes in semantic relations?’), is similar to the well-known
word analogies task, but is more difficult and subtle than single-word semantic
change modeling, since it involves the analysis of entity tuples (or even triplets or
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quadruplets). Similar (but not identical) tasks were previously called ‘diachronic
analogies’ (Orlikowski et al., 2018) or ‘temporal analogues/analogies’ (Tahmasebi,
Borin, and Jatowt, 2018).

In this work, we considered the task of detecting and predicting armed groups
active in particular geographical locations. This is essentially answering questions
like ‘Does this semantic relation still hold between the entity X and the entity Y
after some time has passed?’, where X is, for example, ‘India’, and Y is ‘United
Liberation Front of Assam (ULFA)’. This setup fuses both onomasiological and
semasiological changes. Parts of this research were previously published as
Kutuzov, Velldal, et al. (2017a) and Kutuzov, Velldal, et al. (2019).

We addressed this task by learning linear transformations (projections) on
incrementally trained diachronic word embeddings. In sections 5.3 and 5.4, we
found that this approach significantly outperforms the baselines (Vector Offset
and projections on Procrustes-aligned embeddings) and can even be applied in
cases of one-to-zero and one-to-many relations. In particular, it successfully
predicts the state of a semantic relation at a given time period, based purely
on word embeddings trained on the news texts published in this time period
and on the manually annotated data about similar relations in the past (even if
the relation participants were completely different). We also showed how the
comparatively simple technique of cosine thresholding can be used to significantly
decrease the amount of false positive answers produced by this approach (when
an insurgent group is predicted for a country with no armed conflicts at all).

In sum, we have introduced a novel extension of the task of analogical
reasoning (adding a temporal dimension and open-ended relations) in addition to
proposing a model for approaching this extended task. We found that geometric
directions in diachronic word embedding models can correspond to very subtle
semantic relations. Thus, we answer positively to RQ3.2, after demonstrating
that these relations can be traced over time to detect whether they persist or die
out, allowing us to conclude whether the relation still holds between the entities
or not.

These experiments involved only one type of relation: that of an armed
conflict. However, the approach of projection learning itself is relation-agnostic.
It can potentially be used for any kinds of entities linked by any kind of one-to-X
semantic connections which undergo change over time. Analyzing diachronic
changes in semantic relations on the basis of word embeddings leads to findings
far beyond the usual ‘king is to queen is as man is to woman’ analogy example
by Mikolov, Yih, et al. (2013). Arguably, relations of the kind we have studied
here are more challenging because:

1. the entities can be in one-to-X relations to each other;

2. the entities’ involvement in relations can depend on the time period;

3. the relations themselves can change their form and nature (for example,
transforming from one-to-one to one-to-many).

Our experiments with the Armed Conflict Evaluation Test Set described
above allow us to give a positive answer to RQ3.1. We successfully demonstrated
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how an external dataset can be used as a proxy for evaluating semantic change
detection algorithms based on word embeddings. This can be of help for languages
still lacking proper semantic shift test sets.

7.2.5 Contextualized embeddings in semantic shift detection

The recently introduced deep contextualized meaning representations transform
a word embedding model from a simple vector lookup table to a full-fledged
language model (based on recurrent neural networks, transformers, etc.).
Linguistically, this means that different representations are inferred for different
tokens of the same word type in different contexts.

In Chapter 6, we described our experiments with lexical semantic change
estimation based on contextualized embedding architectures. Four methods
employing such architectures were proposed. Addressing the research question
RQ3.3 (‘What new perspectives do contextualized architectures bring to semantic
change detection?’), we showed how these methods allow for easier inspection
and visualization of temporal shifts in word meaning. The reason for this is that
it is now possible to position all the occurrences of a word (token embeddings)
in a vector space where occurrences with similar semantics are close to each
other and vice versa. This brings a natural grouping or clustering of a word’s
occurrences according to its different word senses. As these groupings change
over time, the dynamics of new senses being born and old senses going extinct
can be observed. Additionally, this greatly simplifies the task of collecting corpus
examples relevant to emerging or disappearing word senses.

To answer our research question RQ3.4 (‘Do contextualized embeddings
outperform static embeddings in this task?’), we conducted an empirical
evaluation of the proposed methods. Our results for the SemEval-2020 Shared
Task 1 Subtask 2 (Schlechtweg, McGillivray, et al., 2020) and for the GEMS
(Gulordava and Baroni, 2011) test sets showed that using contextualized
embeddings to rank words by their degree of semantic change produces strong
correlations with human judgments, outperforming previous methods based on
static embeddings. Models pre-trained on large external corpora and fine-tuned
on historical test corpora produce the highest correlations, with ELMo (Peters,
Neumann, Iyyer, et al., 2018) slightly but consistently outperforming BERT
(Devlin et al., 2019) as a contextualizer. Considering that ELMo models have
about half as many parameters than BERT, we believe our results give a chance
for NLP practitioners to make a more informed decision about which architecture
to use in their cases. These results hold for English, German, Latin and Swedish.

We further introduced several new approaches for estimation of semantic
change, based on contextualized embeddings. Inverted cosine similarity between
averaged token embeddings (so called ‘PRT’) and the average pairwise cosine
distance between token embeddings (so called ‘APD’) turned out to be the best
semantic change detection methods, yielding the highest scores for the particular
languages in SemEval-2020 Task 1 Subtask 2 test set. An interesting finding is
that the former method favors test sets with uniform gold score distribution, while
the latter works best with test sets where the gold score distribution is skewed
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towards low values. This distinction is not related to the language of the test
set. We found that in a realistic case of not knowing the gold score distribution
beforehand, one can use the average of these two methods’ predictions (a model
ensemble), which turned out to be a robust approach across the board, with the
highest average correlation. At the time of writing, the results of this method
outperform all publicly available SemEval-2020 Shared Task 1 submissions. In
a significantly shortened version, these experiments were described in Kutuzov
and Giulianelli (2020).

Additionally, we showed that the diversity of ELMo contextualized token
embeddings for a particular English word in a given corpus does correlate
with the number of the WordNet synsets (senses) for this word, and thus with
the degree of its semantic ambiguity. Using this measure, we undertook an
exploratory large-scale analysis of semantic change across five decades of the
20th and 21st centuries, and across three frequency tiers. As a result, we came
to the conclusion that using incrementally trained contextualized embeddings
is generally not recommended, and single models trained from scratch on the
full available corpus should be used whenever possible. They allow us to avoid
the extra training bias which is manifested in a model yielding more and more
diverse token embeddings as it is trained on more and more data.

Another important issue related to RQ3.3 is the fact that contextualized
architectures capture not only token semantics, but also syntactic (and maybe
pragmatic) features of word tokens. This leads to token embedding changes
captured by our methods but not representing semantic shifts proper (acquiring
or losing a lexicographic sense). These phenomena are caused by the word
occurrences being used in unusual environments or by imbalanced test corpus
data. We identified three typical cases when a high semantic change score is
produced, but where it does not correspond to a real semantic shift in the
lexicographic sense:

1. Words of very context-dependent ‘fluid’ meaning, used in all sorts of
contexts.

2. Words frequently used in a very specific context in a particular time bin
(‘data bursts’). There is a notable subclass here:

• words used as a proper name in a particular time bin only.

3. Words being used in a significantly different syntactic role in a particular
time bin.

Contextualized architectures are unfortunately more vulnerable to these
issues than the static architectures: precisely because in them, final word
representations depend on the input context. This is not necessarily a problem
for case 2: new senses are born by using existing words in new contexts, and
clusters of irregular usages can be looked at as emerging senses. From this
distributional perspective on ‘senses’, contextualized embeddings produce very
reasonable representations. At the same time, the words from cases 1 and 3 are
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erroneous semantic change ‘hits’, and in this thesis, we proposed some ways to
remedy this situation.

Still, empirical results support the point of view that the approaches based on
contextualized distributional embeddings are bound to replace traditional ‘static’
embeddings in diachronic semantic change modeling, as has already happened in
several other natural language processing areas. Meaning is contextual, as was
noted by linguists a long time ago (Firth, 1935); any attempts to build context-
independent representations will always lead to severe over-simplifications. The
higher expressiveness of contextualized models will allow researchers to come
up with more persuasive examples and to develop change detection methods
which will hopefully further determine the nature of semantic shifts (narrowing,
widening, metaphorization, metonymization, etc).

In sum, the answer to RQ3.4 is that contextualized embeddings do outperform
static embeddings in lexical semantic change detection. Considering the many
technological advantages of contextualized architectures, they are certainly worth
trying for any practitioner interested in the task of semantic change modeling.

7.3 Future work

Unsupervised semantic change detection (including using word embeddings) is
in general far from being a solved problem. The field is still young and has a
considerable number of open challenges. We consider most of these challenges as
part of our future work. We briefly describe some of them below.

• The existing methods should be expanded to a wider scope of languages.
Hamilton, Leskovec, et al. (2016b) and other authors have started to
analyze other languages, but the overwhelming majority of publications
still apply only to English corpora. This thesis also addresses the issue
to some extent in Chapter 4, providing comparative analysis for three
languages and in Chapter 6 evaluating our methods on four languages.
The language coverage should be expanded to include more typologically
and genetically diverse languages and more varied time spans.

• Carefully designed and robust gold standard test sets of semantic shifts (of
different kinds) should be created and made publicly available. This
is a difficult task in itself, but the experience from synchronic word
embeddings evaluation (Hill et al., 2015) and other NLP areas hints that it
is possible. The SemEval-2020 Task 1 dataset (Schlechtweg, McGillivray,
et al., 2020) based on the DuREL framework (Schlechtweg, Schulte im
Walde, et al., 2018) is a great example. Additional such datasets should be
created and compared, with more languages and language families covered.
It is also important to study the differences between the existing datasets
and properly analyze the issues like the one we noted in Chapter 6: the
dependency between the statistical properties of gold scores in the test
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sets and the performance of semantic change detection systems deserves to
be investigated further.

• Historical corpora are the ultimate source of data for the field. The
existing results can be refined and improved using larger or cleaner (with
pre-processing artifacts fixed) text collections, for example, the recently
presented Clean COHA (Alatrash et al., 2020).

• There is a need for more explanatory formal mathematical models of
diachronic vector representations of meaning. They should make clear
what deficiencies of the current representations need to be first addressed.
Arguably, this will follow the vein of research in joint learning across several
time spans, started by Bamler and Mandt (2017), Yao et al. (2018) and
Rosenfeld and Erk (2018), but other directions are also open.

• Most current studies stop after stating the simple fact that a semantic
shift occurs. However, more detailed analysis of the nature of the shift is
needed. This includes:

1. Sub-classification of types of semantic shifts (broadening, narrowing,
metaphorization, etc). This problem was to some degree addressed
by Mitra et al. (2014) and Tahmasebi and Risse (2017a), but much
more work is required.

2. Identifying the source of a shift (for example, linguistic or extra-
linguistic causes). This causation detection is closely linked to the
division between linguistic drifts and cultural shifts, as explained
in Hamilton, Leskovec, et al. (2016a). Again, manually annotated
datasets of both linguistically motivated and culturally motivated
semantic shifts are needed.

3. Quantifying the weight of senses acquired over time. Many words are
polysemous, and the relative importance of senses is flexible (Frermann
and Lapata, 2016). To address this, methods from sense embeddings
research (Bartunov et al., 2016) might be employed. Another solution
which is gaining popularity now is using contextualized embedding
architectures, as shown in Chapter 6 of this thesis. This work is still
very young, and much more is to be done here.

4. Identifying groups of words that change their meaning together in
correlated ways. Some research in this direction was started in
Dubossarsky, Weinshall, et al. (2016), who showed that verbs change
more than nouns, and nouns change more than adjectives. Also, in
this thesis, we rejected the hypothesis that evaluative adjectives shift
faster than other adjectives (Chapter 4). This is also naturally related
to demonstrating the (non-)existence of the ‘laws of semantic change’
(see Section 3.3) and to studying the processes of co-lexification. Since
the number of lexical groups is potentially infinite, most important
and interesting groups should be identified and analyzed.
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5. Avoiding catastrophic forgetting when training embeddings incremen-
tally. Relational structures tend to completely change after significant
updates of the model. Can it be avoided somehow, while still us-
ing new training data to the full extent? It is also possible that
incremental training should be avoided: especially with contextual-
ized embeddings, where there exists the alternative to use a single
pre-trained model to infer token representations from time-specific
corpora.

• The experiments with diachronic relation prediction in Chapter 5 involved
only one type of semantic relations: that is, armed conflicts. However,
our proposed approach of prototypical projection learning itself is relation-
agnostic. It can be potentially used for any kinds of entities linked by any
kind of one-to-X edges. We already know it can be employed in diachronic
tasks. Provided we possess the relevant corpora, this potentially paves the
way to automatically inferring the temporal dynamics of semantic relations
between persons and organizations, ideas and technologies, etc.

• As we showed in Chapter 6, contextualized embedding-based methods
demonstrate promising results in semantic change detection. However,
ways should be devised for distinguishing word tokens used in different
lexicographic senses from word tokens used in contextually varied
surroundings, but in the same sense. We also intend to explore the
possibilities to improve our best-performing methods (PRT and APD),
in particular with respect to removing the outlier embeddings before
calculating the semantic change score.

• This thesis was mostly about estimating the degree of semantic change
and ranking linguistic entities according to this degree. However, we are
also very interested in the task of binary classification of words into those
that changed their meaning and those that did not. This is unavoidably
linked with the issues of senses and their emergence or dying out.

Finally, community building is essential for any relatively young research
field. As more publications related to the problem of automatic semantic
change modeling appear, more venues will be needed for open discussion of
the issues arising in this research area. The 1st International Workshop on
Computational Approaches to Historical Language Change at the ACL2019
conference (Tahmasebi, Borin, Jatowt, and Y. Xu, 2019) and the SemEval2020
task for Unsupervised Lexical Semantic Change Detection1 (Schlechtweg,
McGillivray, et al., 2020) are perfectly timed steps in the right direction.

7.4 Publicly available code, datasets and models

All the code, datasets and trained embeddings produced in the course of the
work on this thesis, are made publicly available online under permissive licenses.

1https://competitions.codalab.org/competitions/20948
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Below we briefly enumerate the published items.

7.4.1 Code

• Python code for learning and evaluating linear projections between entities
in diachronic word embeddings. The resulting prototypical relations are
tested on other time periods.2

• Python code to measure the pace of semantic change of any given word
in any given sequence of time spans using word embeddings and different
semantic change estimation algorithms.3

• Minimal Python code to work with the vectors from pre-trained ELMo
models in up-to-date TensorFlow versions.4

• Implementations of lexical semantic change detection algorithms using
contextualized embeddings.5

7.4.2 Datasets

• Historical Armed Conflict Evaluation Test Set.6

• English, Norwegian and Russian lists of evaluative adjectives. We adapted
these lists from external sources, by translating, reformatting, filtering and
pre-processing them.7

7.4.3 Pre-trained models

• Diachronic word embeddings trained on the English COHA corpus.8

• Diachronic word embeddings trained on the English Gigaword corpus.9

• Diachronic word embeddings trained on the English News on Web (NOW)
corpus.10

• Diachronic word embeddings trained on the Norwegian NBdigital corpus.11

• Diachronic word embeddings trained on the Russian National corpus.12

2https://github.com/ltgoslo/diachronic_armed_conflicts
3https://github.com/ltgoslo/diachronic_multiling_adjectives
4https://github.com/ltgoslo/simple_elmo
5https://github.com/akutuzov/semeval2020
6https://github.com/ltgoslo/diachronic_armed_conflicts/tree/master/2019_dataset
7https://github.com/ltgoslo/diachronic_multiling_adjectives/tree/master/datasets
8http://vectors.nlpl.eu/repository/11/188.zip
9http://vectors.nlpl.eu/repository/11/191.zip

10http://vectors.nlpl.eu/repository/11/192.zip
11http://vectors.nlpl.eu/repository/11/189.zip
12http://vectors.nlpl.eu/repository/11/190.zip
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Appendix A

Structure of the GED dataset
The structure of the GED dataset is rather rich. It contains information about:

• event identifiers,

• actors and dyads (established pairs of actors),

• sources,

• geography,

• time,

• clarity (whether the reporting was sufficiently clear for the coder to be
able to fully identify the event itself or not),

• fatality figures.

For the full explanation, see the relevant Codebook (Sundberg and Me-
lander, 2013).1

To illustrate the richness of the data, below we give an example of a GED
dataset entry with comments where necessary. The entry describes the event of
heavy shelling which took place in the Northern Sri Lanka in the March of 2009.
This event is linked to the long-standing conflict between the government of Sri
Lanka and the organization of Tamil Eelam. This structured information was
extracted by the UCDP human coders from the news text 11:

(11) Embassy Colombo reported that 72 people were killed and 91 injured by
continued shelling in the NFZ. The U.S. Embassy was told that a
multi-barrel rocket launcher sent 40 shells into the NFZ in one barrage,
and that 21 of the 72 deaths were individuals who were in line to receive
their food ration. Upon learning of the shelling, an organization spoke
with the GSL military in Vavuniya and requested that the shelling cease.
An organization provided messages from a source in Mullaittivu with
similar details about a multi-barrel rocket launcher attack in Mullivaikkal,
wounding 93 people. A source near Mattalan reported to HRW very heavy
shelling to the west. Many shells landed within 200 meters of the source.

1. Event identifiers

a) id: ‘76479’ (unique for each event)
1https://ucdp.uu.se/downloads/ged/ged191.pdf
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b) year : ‘2009’
c) active_year : ‘True’ (the event belongs to an active conflict/dyad/actor

year)
d) type_of_violence: ‘1’ (1 means state-based conflict, 2 is non-state

conflict, and 3 is one-sided violence)
e) conflict_new_id: ‘352’ (unique code for the conflict)
f) conflict_name: ‘Sri Lanka (Ceylon):Eelam’

2. Actors and dyads

a) dyad_new_id: ‘776’ (unique identifier for a dyad: a pair of conflict
sides)

b) dyad_name: ‘Government of Sri Lanka - LTTE’ (the name of the
dyad)

c) side_a: ‘Government of Sri Lanka’ (state actors are as a rule assigned
side a)

d) side_b: ‘LTTE’ (‘Liberation Tigers of Tamil Eelam’ armed insurgent
group)

e) side_a_new_id: ‘145’ (actor identifier)
f) side_b_new_id: ‘320’ (actor identifier)

3. Sources

a) number_of_sources: ‘-1’ (-1 means not applicable here; this field has
real values only for very recent data)

b) source_article: ‘Report to Congress on Incidents During the Recent
Conflict in Sri Lanka. U.S. Department of State, 2009.’ (the title of
the source)

c) source_office: no information
d) source_date: no information
e) source_headline: no information
f) source_original: ‘Embassy Colombo’ (organization providing infor-

mation about the event)

4. Geography

a) where_prec: ‘2’ (geographical precision; the higher is this value, the
less sure is the coder about the location; 2 means the coder is certain
the event occurred within 25 km from the coded coordinates)

b) where_coordinates: ‘NFZ2’ (standardized and normalized name of
the location)

c) adm_1 : ‘Northern’ (administrative division where the event took
place)
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d) adm_2 : ‘Mullaittivu’ (even more fine-grained administrative division,
can be a village or a small town)

e) latitude: ‘9.321175’
f) longitude: ‘80.771919’
g) geom_wkt: ‘POINT (80.771919 9.321175)’ (An Open Geospatial

Consortium textual representation of the location)
h) priogrid_gid: ‘143082’ (PRIO Grid cell of the event (Tollefsen et

al., 2012))
i) country: ‘Sri Lanka’
j) country_id: ‘780’
k) region: ‘Asia’

5. Clarity

a) event_clarity: ‘1’. It means the coder was able to fully identify the
event, lower values mean more uncertainty)

6. Time

a) date_prec: ‘1’ (date precision; 1 means the coder knows the exact
date of the event)

b) date_start: ‘2009-03-11’
c) date_end: ‘2009-03-11’

7. Fatality figures

a) deaths_a: ‘0’ (always 0 for one-sided violence events)
b) deaths_b: ‘0’ (always 0 for one-sided violence events)
c) deaths_civilians: ‘0’ (number of deaths of persons of civilians)
d) deaths_unknown: ‘0’ (number of deaths of persons of unknown status)
e) best: ‘0’ (the sum of deaths_a, deaths_b, deaths_civilians and

deaths_unknown)
f) high: ‘72’ (the highest reliable estimate of fatalities)
g) low: ‘0’ (the lowest reliable estimate of fatalities)
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Per-year accuracies for next-year
armed group predictions
In this appendix, we provide full list of per-year accuracies for our best-performing
methods for next-year insurgents predictions from Chapter 5.

Table B.1 gives the details of the performance of the incremental training
approach with vocabulary expansion and single-year projection learning. Its
average accuracy was given in Table 5.6.

Tables B.2 and B.3 report yearly F1 scores for the same task in the One-to-X
setup for the Gigaword and NoW datasets correspondingly. The average F1
scores for these experiments were given in Table 5.10 (Section 5.4).
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B. Per-year accuracies for next-year armed group predictions

Year Accuracy @1 Accuracy @5 Accuracy @10

1996 0.317 0.439 0.512
1997 0.333 0.524 0.643
1998 0.415 0.634 0.634
1999 0.325 0.525 0.550
2000 0.348 0.478 0.565
2001 0.404 0.617 0.638
2002 0.366 0.488 0.585
2003 0.395 0.632 0.684
2004 0.351 0.514 0.541
2005 0.355 0.581 0.645
2006 0.300 0.500 0.525
2007 0.351 0.649 0.649
2008 0.417 0.583 0.639
2009 0.400 0.629 0.714
2010 0.516 0.710 0.871

Average 0.373 0.567 0.626
Standard deviation 0.054 0.077 0.090

Table B.1: Yearly accuracies (including OOV words) of predicting next-year
insurgents based on location vectors and projections learned from the previous
year. Best approach from Section 5.3.
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F1 scores
Year Projection baseline Threshold

1996 0.22 0.29
1997 0.28 0.40
1998 0.34 0.51
1999 0.29 0.37
2000 0.30 0.48
2001 0.35 0.46
2002 0.27 0.39
2003 0.27 0.52
2004 0.23 0.42
2005 0.21 0.30
2006 0.24 0.38
2007 0.26 0.33
2008 0.29 0.40
2009 0.33 0.45
2010 0.32 0.47

Average 0.28 0.41
Standard deviation 0.04 0.07

Table B.2: Yearly F1 scores of armed conflicts prediction in the One-to-X setup
(Gigaword dataset).

F1 scores
Year Projection baseline Threshold

2011 0.25 0.46
2012 0.29 0.50
2013 0.36 0.32
2014 0.37 0.34
2015 0.37 0.42
2016 0.33 0.36
2017 0.41 0.44

Average 0.34 0.41
Standard deviation 0.05 0.07

Table B.3: Yearly F1 scores of armed conflicts prediction in the One-to-X setup
(NoW dataset).
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