UiO ¢ University of Oslo

Vidar Norstein Klungre

Adaptive Query Extension Suggestions
for Ontology-Based Visual Query
Systems

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics

Faculty of Mathematics and Natural Sciences

SIRIUS - Centre for Scalable Data Access

2020

© Vidar Norstein Klungre, 2020

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2307

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

To Johanne, Sverre, Ingve, and Frede

Abstract

Ontology-based visual query systems enable users to construct ad-hoc
queries in a way that is intuitive, and which allows them to receive feedback
directly from the system interface. In this query construction setting, dead-
ends are the undesirable query extensions leading to queries without any
answers. Dead-end detection is then the problem of detecting and possibly
disabling such extensions. The standard approach used to detect dead-
ends, which requires querying over the data, is often too inefficient. This
can be solved by using efficient indices, but current solutions only work
when the user queries are limited to one single class and a fixed number of
properties. We consider systems where the user is allowed to make more
complex queries with two or more connected classes, but it is impossible to
ensure both perfect and efficient dead-end detection in this setting because
it would require an index of infinite size.

This thesis introduces an index-based framework that can be used
to efficiently approximate dead-end detection in systems that support
ad-hoc, complex queries. In order to use this framework, it is necessary
to provide a configuration structure where the classes and properties to
support are given. This configuration determines both which parts of
the data to include in the index, and how precise the dead-end detection
approximation will be.

Finding the configuration that leads to the highest possible precision
while keeping the cost (index size) at an acceptable level is a non-
trivial combinatorial optimization problem. The search space of possible
configurations is too extensive for exhaustive search, and finding the true
cost and precision of a configuration is time-consuming. We propose a
solution to this problem where efficient cost and precision estimates are
used to guide the search for the optimal configuration. Our evaluation of
this search, which uses an extensive benchmark based on Wikidata, shows
that it is able to efficiently compute non-trivial configurations with both
high precision and an acceptable cost.

Acknowledgements

This work would not have been possible without the help and support of many
people. I would like to thank all those who have helped and inspired me during
my study.

First and foremost, I would like to thank my two supervisors Martin Giese and
Ahmet Soylu for their continuous support and invaluable guidance throughout
the whole thesis project. Martin deserves a big thanks for helping me to keep my
motivation up for over four years. His deep insight, extensive experience, and
exceptional ability to find structure where I only see chaos has been essential.
I simply could not wish for a better main supervisor. A big thank you goes
to Ahmet for his patience and support, for guiding me with his expertise in
visual query systems, and for pushing me towards the goal by encouraging me
to publish my work.

I would like to extend my gratitude to all my friends and colleagues at
ASR/SIRIUS/LogID for their support of my growth as a researcher, and for
making such a welcoming and cooperative work environment. I would like
to thank all my co-authors for the opportunity to collaborate with them. In
particular, I would like to thank Ernesto Jiménez-Ruiz and Evgeny Kharlamov,
for our collaboration on ontology projection, ranking, and dead-end detection
in the context of ontology-based visual query systems. Furthermore, I would
like to thank Leif Harald Karlsen, Daniel Lupp, Andreas Nakkerud, Lars Tveito,
Sigurd Kittilsen, Martin Skjeseveland, Dag Hovland, Tom Christoffersen, and
Basil Ell for all the exciting and helpful discussions we have had related to my
work and other interesting topics. A special thank you goes to Arild Waaler for
the incredible work he has done to build up the logic and semantic data research
community at UiO, with connections to strong academic and industrial partners
from all over the world.

Finally, I would like to thank my family and friends for their never-ending
support in all aspects of life. A special personal thank you goes to my lovely
wife, Johanne, and my three adorable children, Sverre, Ingve, and Frede, for
their incredible patience during this period. I promise that I will never do this
again!

The work presented in this thesis was funded by SIRIUS — Centre for Scalable
Data Access (Research Council of Norway, project no.: 237889).

Contents

Abstract iii
Acknowledgements v
Contents vii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Contributions 3

1.2 Research Papers 3

1.3 Thesis Structure oL 6

2 Preliminaries 9
2.1 Semantic Technologies 9

2.1.1 RDF Data Model 9

2.1.2 OWL. 12

213 SPARQL 13

2.2 Mathematical Definitions 16

2.2.1 Functions oo 17

2.2.2 Labeled, Directed Graphs 17

3 Dead-End Detection 21
3.1 Data Access Systems 21

3.1.1 Aspects of Data Access Systems 21

3.2 Existing Systems Lo 26

3.2.1 Faceted Search Systems 26

3.2.2 RDF-Based Systems 28

3.2.3 Information Retrieval Systems 34

3.3 Dead-End Detectiono 37

4 Ontology-Based Visual Query Systems 43
4.1 Resource Graphs 44

4.2 Main Structures 50

4.2.1 The Navigation Graph 52

4.2.2 The Dataset 53

4.2.3 Queries 54

4.3 Query Answers oo 59

Vi

Contents

viii

Query Extensions

5.1 User Actions i

5.2 Legal Extensionso

5.3 Productive Extensions

5.4 Value Functions
5.4.1 Simple Value Functions
5.4.2 Precision and Recall
5.4.3 Advanced Value Functions
5.4.4 Comparison of Value Functions

The Index-Based Extension Framework

6.1 The Configuration-based Value Function: SZ
6.1.1 Configuration Queries
6.1.2 The Configuration-based Value Function: SZ

6.1.3 Experiment 1: Precision of SZ
6.2 The Extension Index
6.2.1 Index Construction

6.2.2 Index Efficiency

6.2.3 Index Cost,

6.2.4 Bucketing oo

6.3 Optimal Configuration Queries
6.3.1 Experiment 2: Pareto Optimal Configuration
Queries

6.4 Configuration Sets oo
6.4.1 Special Configuration Sets

6.4.2 The Configuration Generation Problem

The Wikidata Benchmark

7.1 WD Navigation Graph

7.2 WD Dataseto o

7.3 WD Query Log
7.3.1 Query Transformation Process
7.3.2 Transformed Queries

Configuration Generation

8.1 Cost and Precision Estimation
8.1.1 Basic Counts
8.1.2 Edge Target Distributions
8.1.3 Cardinality Estimation: ans
8.1.4 Cardinality Estimation: ansp
8.1.5 Cardinality Estimation: ansp
8.1.6 Cardinality Estimation: ansg

8.2 Search Methods

8.3 Evaluation o
8.3.1 Evaluation basedon Lp
8.3.2 Evaluation basedon L4

63
63
68
70
73
73
74
78
80

83
83
84
87
93
99
101
109
110
111
112

114
116
119
122

127
129
129
132
132
134

Contents

9 Conclusion and Future Work

9.1 Conclusion
9.2 Future work

Bibliography

Index

171

List of Figures

21

2.2

2.3

3.1

3.2
3.3
3.4

3.5
3.6

4.1
4.2

4.3

5.1

5.2
5.3

6.1

6.2

6.3

6.4
6.5
6.6
6.7

Visual presentation of The Semantic Web stack by Wikipedia user
Marobil, licensed under CCO.
Graph representation of a small RDF dataset. The two blue circles

represent resources, while the yellow rectangle represents a literal.

Two labeled, directed graphs: Gand G'.

Screenshot of the faceted search interface used by PriceSpy, where
the facet section is on the left side, and the result section is on
the right side.
Screenshot of RDF Surveyor.
Screenshot of OptiqueVQS.
Google search engine results for the query “information retrieval
search engine”, ranked by relevance.
The QA feature of Google Search answering a factual question. .
Google auto-completing a user’s question.

The resource graph defined in Example 4.1.4.
A visual representation of a dataset. The types of each instance
and data value is given below its name.
The two rooted queries Q1 and Qs.

Query Qg and how focusing on each of its three object variables
results in three different rooted queries.
The query Qp, and the resulting query Qs after extension.

The query Q3.

Two queries, Q4 and Qs, to the left, and two configuration queries,
Zy, and Z5 to the right. Q4 is not covered by Z1, but its subquery
Q5 is covered by Z1. Z5 is the subquery of Z; that corresponds
to Q5.
The partial query Qjs, its extended version Q, the configuration
query Z1, and query Qs, which is the result after pruning Q4 with
respect tO0 Z1. ... L
The two queries Q7 and Qg are the only two maximal subqueries
inprune(Qe, Z2). « o o oo
Precisions for Query 2.6.
Precisions for Query 2.8.o oL
Precisions for Query 3.5.o
Average precision of all queries of size 6.

11
19

27
29
31

35
36
40

46

55
57

66
68
74

85

90

91
96
97
97
98

Xi

List of Figures

6.8
6.9
6.10
6.11

6.12

6.13
6.14

6.15

6.16

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Xii

The configuration query Zo. 101
The query Qo. « . o o o o o 103
Configuration queries Z1 and Z5. 106
SPARQL queries with nested optionals used to calculate

ansp(Z21,D) and ansp(Z22,D).o 106

Chart showing all considered configuration queries when using
Query 6.2 to calculate precision. The connected configurations
are Pareto optimal. L oL 115
The same results as in Figure 6.12, just with a normalized y-axis. 116
Pareto optimal configuration queries for all 29 queries with a
normalized cost. The red curve shows the median, and the blue

curve is the upper quartile. oo 117
The six configuration queries in W, when using the navigation
graph from Example 4.2.3. 120
The two configuration queries in W, when using the navigation
graph from Example 4.2.3. L. 121

The navigation graph from Example 4.2.3 with basic counts
included. 144
The precision and cost of the six reference configuration sets Wy,
Wi W, Wld, Wi, and W,,, over query log Lp. Wjy is not visible

because the y-axis uses a logarithmic scale. 159
Configuration sets generated by the Greedy Query Weight Method
(yellow) and the Random Method (red) over query log L. . . . 161

Configuration sets generated by the Greedy Query Weight Method
(yellow), the Greedy Precision Method (teal), and the six reference
configuration sets over query log Lp. 162
Configuration sets generated by the Greedy Query Weight Method
(yellow), the Greedy Precision Method (teal), the Exploratory
Method (orange), and the six reference configuration sets over
query log Lp. . . . o L 163
The sequence of configurations generated by the Exploratory
Method over the query log Lp, with a maximum cost of M =

1.0 X 107 (green Crosses). o v v v v it 164
Precision and cost of every generated configuration when evaluated
with respect to query log L4. 168
Precision and cost of every generated configuration with precision
above 0.95 when evaluated with respect to query log £4. 169

List of Tables

3.1

4.1
4.2
4.3

5.1

6.1
6.2

6.3
6.4
6.5
6.6
6.7

6.8
6.9

7.1

7.2

7.3

74

7.5

7.6

7.7
7.8

8.1

The 17 different aspects of data access systems we consider. . . . 22

Summary of the sets of components needed to model N, D, and Q. 51

Answers returned by ans(Q1,D). 60
Answers returned by ans(Q2,D). 60
Summary of the five value functions Sy, S, S;, S,, and Se. . . . 82
All the 50 functions in Zz, = ansg(22,D). 102
Index 77 = ansp(Z2,D), which only includes the maximal

functions from Zz, = ansg(Z2,D). 104
SEED 1o« o o e 105
SEED 20« o e 105
SEED 3.« o e 105
StED 4« o o 105

Every function remaining from ansp(Z2,D) after introducing
existential object variables, and before removing subfunctions
one more time.o Lo 108
Every function in ansg(22,D). 108
Summary of the six special configuration sets we have considered. 122

The number of incoming and outgoing properties of each class and
datatype in the WD navigation graph. In: Incoming properties.
Out: Outgoing properties. DP: Outgoing data properties. OP:

Outgoing object properties. L. 130
The number of instances in the WD dataset typed to each of the
15 classes. 131
All types of triples that occur more than 100000 times in the WD
dataset sorted by frequency. 132
Weight of the queries grouped by size after the transformation
PTOCESS. « v v v v v it e e e e e e e 135
The effect of removing queries with small weight from each of the
two query logs.o 136
Overview of queries in £4 grouped by size. 136
Overview of queries in Lp grouped by size. 136
Popularity of each class in the two query logs L4 and Lp. . . . 137

Summary of the six special configuration sets we have considered. 158

Xiii

List of Tables

8.2

8.3

8.4

8.5

Xiv

The precision and cost of the six reference configuration sets Wy,
Wi W, Wld, Wi, and W,,, with respect to query log Lp.
The two types of index tables each of the 80 object property
configuration queries in W, can correspond to.
Overview of the 15 classes and why most of our methods only
construct configuration queries for four of them when calculating
precision based on Lp. oL
The precision and cost of the six reference configuration sets Wy,
W, W;i, Wy, Wld, and W, with respect to query log L4.

159

160

165

Chapter 1

Introduction

In a world where companies tend to rely more frequently on data and data-driven
decisions, the need for employees with the ability to find and process data has
increased. The task of extracting useful sets of data requires technical skills
and knowledge about databases, in order to access the necessary data, but also
sufficient knowledge about the domain and how to use and interpret data related
to it. This combination of skills is quite rare among single employees, which
means that often two persons, one database expert and one domain expert,
are needed. This scenario is not ideal. In addition to the cost of involving an
additional employee in the process, it can also be problematic for the domain
expert to precisely express their information need to the database expert in a
language both of them understand.

It is possible to make systems that allow the domain expert to formulate
ad-hoc queries directly over the data using the domain vocabulary they already
know, but this requires that the system has access to a domain model and a
way to connect the data to this model. Due to the emergence of the Semantic
Web [5] and ontology-based data access technologies [30, 37, 44], we have seen an
increased interest in ontology-based visual query systems [51, 2] in the recent years.
These are systems that have access to a given domain ontology, and which use
visual elements to support query construction over this domain. Such a system
could, for example, show a visual representation of the partially constructed
query, and present the domain implicitly by providing lists of valid modifications
to the constructed query. From this, the user can select an extension to make a
new version of the query. This extension process is repeated until the user is
satisfied, and after that, they can run the final query over the dataset.

In rare cases, it may be interesting for a user to know that a query returns no
answers, but we are going to assume that the user is searching for a non-empty
subset of the data. In this setting, we want to make a system that is able to
effectively detect and prevent the user from selecting extensions that lead to
queries with no answers. Such extensions are called dead-end extensions.

This feature of detecting dead-ends is actually quite common in the search
paradigm used by most e-commerce websites, known as faceted search. In these
systems, the search query is modified by adding or removing filters on the
available properties/facets, which means that each such filter is a potential
dead-end. For example, if a user is searching for cars, and they apply a filter
indicating that they only want cars produced in the last five years, then an
additional filter on the lowest price range will be detected as a dead-end unless
a cheap and new car actually exists in the data.

In general, dead-ends can be found by simply executing the queries generated
by each of the possible extensions, and flag those where the corresponding result

1. Introduction

is empty. But, unless the database is optimized for these kinds of queries, this
process could take minutes, which is not acceptable because it interrupts the
user’s workflow. State of the art faceted search systems solve this problem by
using index-based search engines like Lucene/SOLR or Elastic Search. However,
these engines only support queries over one single class, which means that they
cannot be used in our more general case where the query may consist of multiple
connected classes. In fact, since we allow queries with arbitrarily many connected
classes, an index to support every such query would need to be infinitely large.

Since it is impossible to guarantee both efficient and complete dead-end
detection using a finite amount of memory, we are instead going to consider
approximations that detect most dead-ends, but not necessarily all of them. This
can be done by only considering certain essential subsets of the data, which then
only requires a finite index.

In this thesis, we present a flexible framework based on this idea, where a
configuration structure is used to determine which parts of the data to include
in the index. In general, a small configuration leads to a cheap index in terms of
memory consumption, but low precision on dead-end detection. An extensive
configuration, on the other hand, will generally lead to a more costly index,
but also higher precision. This trade-off between precision and memory usage
is not straightforward, because certain combinations of classes, properties, or
patterns, can have multiplying effects on the index size. Hence, finding suitable
configurations is a non-trivial task. To solve this problem, we also provide
methods to calculate optimal configurations based on the underlying data, query
logs, and a given maximum index size.

Contributions

1.1 Contributions

The scientific contributions of this thesis are listed below:

C1: We have developed an index-based framework that allows ontology-based
visual query systems to detect dead-end extensions of queries that combine
multiple classes.

C2: We have made a benchmark based on Wikidata.! This benchmark consists
of a dataset, an ontology, and a query log with queries that our VQS model
supports, rewritten from original arbitrary Wikidata queries.

C3: We have defined a way to configure the framework in C1, and we have
developed methods to generate configurations that lead to systems with high
precision and a cheap corresponding index. Using the benchmark described in
C2, we have evaluated all these configuration generation methods.

The core contribution, which is the index-based framework (C1), has gone
through several iterations during the thesis project period, and most of our
early experimental work was related to the improvement of this framework. The
experiments gave promising results but highlighted the importance of setting
up the system based on the relevant dataset and predictions of which queries
users are going to make. Hence, we started to work on methods to generate
configurations based on the dataset and query logs (C3). In order to evaluate
the configuration generation methods experimentally, we needed a large query
log over a dataset with a corresponding ontology, and this led us to make the
Wikidata benchmark (C2).

1.2 Research Papers

In this section, we list eight relevant papers published by the author, numbered
from P1 to P8. All of them are peer-reviewed except for P3. Most of these
papers are related to contribution C1. Our work done on C2 and C3 was recently
finished and has not been published yet.

P1: Ontology-based Visual Querying with OptiqueVQS: Statoil and Siemens
Cases [53]
A peer-reviewed demo paper presented at The 2nd Norwegian Big Data Sympo-

stum (NOBIDS 2016) and published in Proceedings of the 2nd Norwegian Big
Data Symposium (NOBIDS 2016)

Authors: Ahmet Soylu, Martin Giese, Ernesto Jiménez-Ruiz, Evgeny Kharlamov,
Rudolf Schlatte, Christian Neuenstadt, Ozgiir L. Ozcep, Hallstein Lie, Vidar N.

L https://www.wikidata.org/

https://www.wikidata.org/

1. Introduction

Klungre, Sebastian Brandt, and Tan Horrocks

Summary: This paper presents OptiqueV(Q)S, an ontology-based visual query
system developed as a part of the EU project Optique? [16] where six European
universities, four industrial partners, and over 40 researchers, including the
author participated. The paper gives a short description of the role OptiqueVQS
had in the two biggest industrial cases we did in Optique Project in collaboration
with Statoil (now Equinor) and Siemens. The author of this thesis contributed by
participating at the OptiqueVQS user evaluation at Siemens. He also presented
the paper and a demo of OptiqueVQS at NOBIDS 2016.

P2: KeywDB: A System for Keyword-Driven Ontology-to-RDB Mapping
Construction [64]

A peer-reviewed demo paper presented at The 15th International Semantic Web
Conference (ISWC 2016) and published in Proceedings of the ISWC 2016 Posters
& Demonstrations Track.

Authors: Dmitriy Zheleznyakov, Evgeny Kharlamov, Vidar N. Klungre, Martin
G. Skjeeveland, Dag Hovland, Martin Giese, lan Horrocks, and Arild Waaler

Summary: This paper presents KeywDB, a useful tool in the ontology-based
data access (OBDA) setting defined by Optique Project, which allows domain
experts to add or suggest missing classes and their corresponding mapping to
relational databases while formulating queries. KeywDB was discontinued after
Optique Project ended. The author of this thesis had an active role in KeywDB
project. He implemented large parts of KeywDB, and did all of the evaluation.
He took part in the writing process, and he presented the results at ISWC2016.

P3: A Faceted Search Index for Graph Queries [24]
Research report no. 469 of the Dept. of Informatics, UiO, 2017

Author: Vidar N. Klungre

Summary: This paper presents the first definitions of the navigation graph (a
simplification of the ontology), the dataset, and typed, tree-shaped queries,
which are the three most important components of the VQS framework we
use. Furthermore, the paper introduces the configuration query, and how this
structure is used to both define an index over the data, and how it prunes queries
before executing them over this index. The paper is quite elaborate and was
originally written to support the short demo paper published at ISWC 2017
(P4), which had a hard page limit.

2http://www.optique-project.eu/

http://www.optique-project.eu/

Research Papers

P4: A Faceted Search Index for OptiqueVQS [25]

A peer-reviewed demo paper presented at The 16th International Semantic Web
Conference (ISWC 2017) and published in Proceedings of the ISWC 2017 Posters
& Demonstrations and Industry Tracks.

Authors: Vidar N. Klungre and Martin Giese

Summary: This paper presents our implementation of the index-based system
in OptiqueVQS. It was published at ISWC 2017, and the system was presented
at a combined poster and demo session at the same conference, where we got
valuable feedback from researchers in the Semantic Web community. The paper
and the corresponding implementation shows that our dead-end detection system
can be used in real VQSs like OptiqueVQS.

P5: Approximating Faceted Search for Graph Queries [26]

A peer-reviewed workshop paper presented at The 12th International Workshop
on Scalable Semantic Web Knowledge Base Systems (SSWS 2018) and published
in Proceedings of the 12th International Workshop on Scalable Semantic Web
Knowledge Base Systems.

Authors: Vidar N. Klungre and Martin Giese

Summary: This paper presents measures to evaluate a given configuration with
respect to precision, by comparing it to a fully adaptive system, i.e., a system
that perfectly detects dead-ends. It presents results from an early experiment
where our method was evaluated using various queries and configuration queries
over the NPD Factpages RDF dataset. This experiment highlights the trade-off
between precision and configuration size (and hence index size), and it shows that
relatively small configurations often can provide very high precision. Furthermore,
it shows how crucial object variables in the configuration query can be in certain
situations.

P6: Evaluating a Faceted Search Index for Graph Data [27]

A peer-reviewed conference paper presented at The 18th International Confer-
ence on Ontologies, DataBases, and Applications of Semantics (ODBASE 2018)
and published in On the Move to Meaningful Internet Systems. OTM 2018
Conferences.

Authors: Vidar N. Klungre and Martin Giese

Summary: This paper introduces a new and better cost measure on configuration
queries, defined by the number of cells in its corresponding index table. Based on
this, and the already established precision measure over one query, we explored

1. Introduction

the full space of configurations using the same experimental setup as in P3. We
presented all configurations in a cost/precision-diagram and highlighted Pareto-
optimal configurations. By doing this for all the queries, we again confirmed
that a small index can lead to high precision in the best-case scenario.

P7: On Enhancing Visual Query Building over KGs Using Query Logs [28]

A peer-reviewed conference paper presented at The 8th Joint International
Semantic Technology Conference (JIST 2018) and published in Semantic Tech-
nology: Proceedings 8th Joint International Conference, JIST 2018, Awagji,
Japan, November 26-28, 2018, Part of the Lecture Notes in Computer Science
book series (LNCS, volume 11341)

Authors: Vidar N. Klungre, Ahmet Soylu, Martin Giese, Arild Waaler, and
Evgeny Kharlamov

Summary: This paper presents the idea of utilizing query logs, i.e., previously
executed queries to enhance VQSs. In particular, it presents some ideas on how
to use such query logs to rank and detect dead-ends among query extensions.

P8: Query Extension Suggestions for Visual Query Systems Through
Ontology Projection and Indexing [29]

A peer-reviewed journal paper published in New Generation Computing in 2019.

Authors: Vidar N. Klungre, Ahmet Soylu, Ernesto Jimenez-Ruiz, Evgeny
Kharlamov, and Martin Giese

Summary: This extensive paper covers not only our framework for index-based
dead-end detection but also the process of projecting OWL 2 ontologies into
navigation graphs, which is required by our model of VQSs. In addition to
unifying all theory and experimental results from the previous papers, and
existing theory on ontology projection, the paper also includes new results from
experiments measuring the performance of the ontology projection algorithm.

1.3 Thesis Structure

The structure of this thesis is as follows: in Chapter 2, we present preliminary
theory that will be useful when we later present the main work of the thesis. Then,
in Chapter 3, we describe and present some examples of data access systems, and
how dead-end detection is done in these systems today. In Chapter 4, we define
the core parts of the VQS model we use, including the navigation graph, the
dataset, and the queries it supports. In Chapter 5, we describe how to extend a
query in the VQS, and how the VQS can suggest extensions to the user. Then,
in Chapter 6, we present the index-based extension framework, which is the most

Thesis Structure

central part of the thesis. In Chapter 7, we present the Wikidata benchmark,
and in Chapter 8 we present a set of configuration generation methods, which we
also evaluate over the Wikidata benchmark. Finally, in Chapter 9, we conclude
and present future work.

Chapter 2

Preliminaries

In this chapter, we present preliminary theory that we build on in this thesis.
The chapter contains two sections: Section 2.1 gives a brief introduction to
semantic technologies, including a description of the RDF data model, SPARQL,
and OWL, while Section 2.2 covers some standard mathematical definitions we
are going to make use of.

2.1 Semantic Technologies

To better understand the work in this the-
sis, the reader should know the basics of |
semantic technologies. In particular, we

require some knowledge about OWL and _

SPARQL, the two most popular languages I o |J

User interface and applications |

used to describe ontologies and queries
respectively, in addition to RDF', which I
is the framework that both of them are vy, | Ontalogies: ” bdless |
based on. RDF, SPARQL, and OWL are | <paror
all central parts of the Semantic Web stack
(Figure 2.1), which is a collection of tech- | Data interchange:RDF |
nologies recommended by the World Wide
Web Consortium (W3C). They support fea- I
tures that are a central part of the vision of

the Semantic Web, like effortless semantic T
integration of multiple heterogeneous data Figure 2.1: Visual presentation of
sources, and reasoning over data. Seman- The Semantic Web stack by Wikipedia
tic technologies have also gained attention user Marobil, licensed under CCO.

in the industry, where they are being ex-

plored as a core technology of knowledge management systems [22, 23]. In this
section, we cover the essentials of these three standards?.

Unifying Logic

I Taxonomies: RDFS |

AydeibordAid

Syntax:XML I

2.1.1 RDF Data Model

The Resource Description Framework (RDF) is a conceptual data model, initially
made to annotate web-accessible resources, but which has later been developed

L If the reader needs more resources on this topic, we suggest either to read a textbook
about semantic technologies (e.g. [18]) or to visit each technology’s official specification page
online.

RDF': https://www.w3.org/TR/rdf11-concepts/
SPARQL: https://www.w3.org/TR/spargl11-overview/
OWL: https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/owl2-overview/

2. Preliminaries

into a general-purpose language for describing structured information. It is
the most fundamental semantic layer of the Semantic Web stack, which both
SPARQL and OWL are based on.

RDF can be used to express basic statements about entities and the relations
between them. Each such statement follows a strict triple pattern, made up
of three parts in the following order: a subject, a predicate, and an object.
A statement is interpreted as follows: The subject is the entity we want to
state something about, while the predicate and object, answer how and what
the subject is related to respectively. For example, the two statements “The
USA borders Canada.”, and “The population of the USA is 330 mill.”, can be
represented as triples like this:

subject predicate object
USA borders Canada
USA population 330 mill

Because every RDF statement follows this triple pattern, they are also called
RDF triples or just triples.

In general, each subject, predicate, and object must either be a resource, a
literal, or a blank node, but in our work, we do not consider blank nodes, so we
simply ignore them. A literal is a data value with a corresponding datatype, so
in the two triples above, only the object of the second triple is a literal. This
literal consists of the number 330 mill., and its corresponding type, which is
integer, and it can be expressed formally as given below, where an XSD datatype
is used to specify the datatype:

"330000000"""xsd:integer

Everything that is not a literal, i.e., all entities and relations, is considered to be
resources in RDF. These resources must have a global identifier, which allows
them to be recognized and reused in multiple triples to form more complex
structures. To achieve this, RDF requires that each resource is associated with
a Uniform Resource Identifier (URI). For example, we could assign URIs to the
resources in the two statements above in the following way:

Resource URI

USA http://www.example.com/USA
Canada http://www.example.com/Canada
borders http://www.example.com/borders

population http://www.example.com/population

URISs are usually long and complicated, and often many of them share a common
prefix. For that reason, it is common to replace these prefixes with some shorter
alias. For example, the prefix http://example.com/ is a part of each URI
above, so we can simplify the URIs by replacing this prefix with an alias ex.

@prefix ex: <http://example.com/> .

10

Semantic Technologies

ex:Canada

3et®
00"
[

=

4,00,Ou/a tor

330000000

Figure 2.2: Graph representation of a small RDF dataset. The two blue circles
represent resources, while the yellow rectangle represents a literal.

Now we can present our two triples in a more compressed, formal, and machine-
readable format:

Two RDF triples.
@prefix ex: <http://example.com/> .

ex:USA ex:borders ex:Canada.
ex:USA ex:population "330000000"""xsd:integer.

W N~

The way we have defined the prefix and how we present triples, correspond
to a way of serializing RDF that is called Turtle.? There are several different
serializations for RDF, but Turtle has the advantage of being relatively compact,
and easy to read both for machines and humans.

A collection of RDF triples is called an RDF dataset. The RDF dataset
above consists of two RDF triples, and can be visualized as a labeled, directed
graph, where each vertex corresponds to a subject or object, while each edge
corresponds to a predicate (see Figure 2.2). If two vertices in the graph have the
same URI, then they are merged into one vertex, like ex:USA in our example.

This graph representation of an RDF dataset gives origin to the term RDF
graph, which is used as a synonym for an RDF dataset. In general, it is not
always possible to translate an RDF dataset into an RDF graph as we did above.
For example, if a resource occurs in the subject position in one triple, and the
predicate position in another one, then it is not clear whether it should be an
edge or a vertex in the RDF graph. However, almost all the RDF graphs we
consider in the thesis can be visualized like this, and we will also use the same
kind of visualization for other kinds of graph structures throughout the thesis.

Vocabularies It is up to the publishers of RDF datasets to decide which URIs
to give the included resources, but at the same time, it is advantageous when
different publishers use identical URIs when they refer to the same resource,
because this simplifies the data integration process if the datasets are going to

2 https://www.w3.0rg/TR/turtle/

11

https://www.w3.org/TR/turtle/

2. Preliminaries

be combined later. RDF encourages the creation and use of shared vocabularies,
which are documents that contain a collection of URIs, combined with a
description of the resource each URI intends to represent in a human-readable
format. Vocabularies are usually limited to a specific domain, and the defined
resources are commonly associated with URIs that all share the same prefix.
For example, FOAF is a popular vocabulary used to describe persons and their
corresponding data and relations. It contains resources with URIs that all start
with the prefix:

@prefix foaf: http://xmlns.com/foaf/0.1/

One such resource is foaf:Person, which is defined as the class of all persons.
Another vocabulary worth mentioning is the RDF vocabulary,?, which is a
part of the RDF standard. It is defined by the following prefix:

@prefix rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

This vocabulary describes a set of general resources related to the RDF model,
which are useful in many different contexts. One of the most important resources
it defines is rdf:type, which is used to assert class membership. For example,
we can state that ex:Alice is a person with the following triple:

ex:Alice rdf:type foaf:Person.

The resource rdf:type makes a clear connection between instances and their
corresponding class, and it will have a central role in our work.

2.1.2 OWL

Knowledge management systems should ideally use the same vocabulary as
the user, because this makes the interaction between the system and the user
effortless. Specifically, in the context of query construction systems, which is what
we consider in this thesis, this allows the user to formulate their information need
directly to the system. For example, if the user wants information about actors
with first name Daniel, then the system must provide classes and properties that
allows the user to express this need, for example, with an actor class and a first
name property.

Additionally, in order for the system to behave intelligently, it must use the
classes and properties in the way that the user expects. I.e., the system must
incorporate general relationships and rules about them, and use these rules to
determine how to present information to the user. For example, the system
should know that an actor is a person and that every person has exactly one
first name. Hence, the system should allow users to construct queries asking for
the first name of actors.

Both of the features presented above can be achieved by using what is known
as an ontology. To use the words of Guarino et al. [17]: “An ontology is a

3 https://www.w3.0rg/1999/02/22- rdf-syntax-ns

12

https://www.w3.org/1999/02/22-rdf-syntax-ns

Semantic Technologies

formal, explicit specification of a shared conceptualization.”. I.e., an ontology
fixes a shared vocabulary (classes and properties), and the general relationships
between them. When this ontology is about a specific domain, it is known as a
domain ontology.

There are different ways of formalizing ontologies, but W3C recommends the
Web Ontology Language (OWL) (see the Semantic Web stack in Figure 2.1),
and in the context of RDF, OWL is the undisputed standard ontology language.
Technically, OWL is a language that can be used to express a variety of general
rules over a domain, called axioms. For example, one such axiom could state that
all actors are also persons, and another axiom could state that every person has
exactly one first name. An OWL ontology is then simply a set of such axioms.

OWTL ontologies can be processed by reasoners like Pellet [48] and Hermit [46],
and this allows systems to infer logical consequences from the ontology and
possibly data related to the ontology. For example, if the dataset states that A
is an actor, then a reasoner should be able to infer that A must also be a person,
and hence, that they must have a first name. OWL ontologies are supported by
the open-source ontology editor Protégé [39], which also has an extensive plugin
library.

2.1.3 SPARQL

The SPARQL Protocol And RDF Query Language (SPARQL) is the W3C
recommended RDF query language. It is used to extract data from RDF datasets,
similar to how SQL is used to query over the relational model. Readers familiar
with SQL should notice many similarities between the two query languages,
however, since they operate over two fundamentally different data models, they
also have significant differences.

SPARQL supports four types of queries: SELECT, CONSTRUCT, ASK and
DESCRIBE, but only SELECT is relevant to our work in this thesis, so we simply
ignore the three other types. The simplest form of SELECT query consists of
only one basic graph pattern, which is an RDF graph, i.e., a set of RDF triples,
where some of the resources may be replaced by variables. When such a query is
executed over an RDF dataset, it returns all possible ways to replace the variables
in the graph pattern with entities such that the pattern perfectly matches a
subgraph of the data.

Let us consider an example. The following SPARQL query, Q;, asks for the
population of all countries that share a border with the USA:

13

2. Preliminaries

Q;: Population of countries that borders the USA.

?country ex:population ?population.

1 PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
2 PREFIX ex: <http://example.com/> .

3

4 SELECT ?country ?population

5 WHERE {

6 ?country rdf:type ex:Country.

7 ?country ex:borders ex:USA.

8

9

}

This query consists of three major parts, denoted by the upper-case keywords
PREFIX, SELECT, and WHERE. The first part, covered by the two lines starting
with the PREFIX keyword, are just prefix declarations, similar to those we
presented for RDF in Section 2.1.1. The second part of the query is line 4,
starting with the keyword SELECT. The part after this keyword specifies which
format the query results should have. In this example, this is just a list of the
two variables to return: ?country and ?population. Every word in SPARQL
starting with a question mark is a variable. The remaining part, starting with
the keyword WHERE on line 5, defines the actual query pattern we want to match
in the dataset. In this example, the clause only defines one basic graph pattern
consisting of three triple patterns. The first of these declares a variable ?country
of type ex:Country, while the two others relate this variable to the resource
ex:USA and another variable ?population via the two predicates ex:borders
and ex:population respectively.

Now consider the example RDF dataset below, which contains facts about
four countries.

RDF dataset: four countries.

1 @prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
2 @prefix ex: <http://example.com/> .

3

4 ex:Mexico rdf:type ex:Country.

5 ex:USA rdf:type ex:Country.

6 ex:Canada rdf:type ex:Country.

7 ex:Cuba rdf:type ex:Country.

8 ex:USA ex:borders ex:Canada.

9 ex:USA ex:borders ex:Mexico.

10 ex:Mexico ex:borders ex:USA.

11 ex:Canada ex:borders ex:USA.

12 ex:Canada ex:population "37000000"~"xsd:integer.
13 ex:USA ex:population "330000000"~"xsd:integer.

14 ex:Mexico ex:population "129000000"~"xsd:integer.

If query Q; is executed over this dataset, we get two possible assignments of the
variables ?country and ?population:

?country ?population
ex:Mexico 129000000
ex:Canada 37000000

14

=

Semantic Technologies

SPARQL supports a broad set of filters. For example, it is possible to filter
only on countries with a population less than 100 million like this:

Qs: Countries that border the USA with a population less than 100 million.

1 PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
2 PREFIX ex: <http://example.com/> .

3

4 SELECT ?country ?population

5 WHERE {

6 ?country rdf:type ex:Country.

7 ?country ex:borders ex:USA.

8 ?country ex:population ?population.

9 FILTER (?population < 100000000).

0 1}

This filter excludes Mexico from the list of results, leaving Canada as the only
remaining country.

?country ?population
ex:Canada 37000000

A general SPARQL filter has the form FILTER (exp), where exp is a boolean
expression that has to be true for a potential solution to be accepted. SPARQL
supports an extensive set of operators and functions, which can be used to
construct such boolean expressions, including >, <, =, 1= >= <= &&, ||, +, -, *,
/, bound, and regex. A full overview can be found in the SPARQL specification.*

Another feature of SPARQL that is central to the work of this thesis is the
OPTIONAL keyword, which makes it possible to define parts of a query to be
optional, similar to how LEFT JOIN works in SQL. For example, if we want a
list of all the countries and their corresponding population, given that it exists
in the dataset, then we have to enclose the triple about the population with an
OPTIONAL clause like this:

Qs: All countries and their population, if it exists.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
PREFIX ex: <http://example.com/> .

SELECT ?country ?population
WHERE {
?country rdf:type ex:Country.
OPTIONAL { ?country ex:population ?population. }

0O Utk WK

}

The resulting tuples of this query are given in the table below. It lists all the four
countries from our dataset, but only the population for three of them, since the
population of Cuba is missing in the data. If the OPTIONAL clause around the
population triple in Qs was not included, Cuba would not have been included in
the results at all.

4https://www.w3.org/TR/sparqI1 1-query/

15

https://www.w3.org/TR/sparql11-query/

2. Preliminaries

?country ?population
ex:Mexico 129000000

ex:Canada 37000000
ex:Cuba
ex:USA 330000000

The third feature of SPARQL we are going to cover is UNIONSs, which makes
it possible to combine the results of two smaller query patterns. For example,
query Q4 below requests all countries that either has a population of more than
100 mill. people, or shares a border with the USA.

Q4: Union of two graph patterns.

1 PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
2 PREFIX ex: <http://example.com/> .

3

4 SELECT ?country

5 WHERE {

6 {

7 ?country rdf:type ex:Country.
8 ?country ex:population ?population.
9 FILTER (?population > 100000000) .
10 }

11 UNION

12 {

13 ?country rdf:type ex:Country.
14 ?country ex:borders ex:USA.

15 }

16 1}

9, gives the following results:

?country
ex:Mexico
ex:Canada
ex:USA

In addition to what we have already described, it is worth mentioning that
SPARQL features aggregation functions like COUNT, SUM, AVG, MIN, and MAX,
and it allows the user to group these aggregates by a particular set of variables
with the GROUP BY keyword. It also supports DISTINCT and REDUCE, which are
keywords that can be used to remove duplicates in sets of tuples.

2.2 Mathematical Definitions
In this short section, we review the definitions of a few standard mathematical
concepts that will be used throughout this thesis. The first part presents three

definitions related to functions in general, while the second part covers some
useful basic concepts related to labeled, directed graphs.

16

Mathematical Definitions

2.2.1 Functions

Given a function defined on a domain X, we may be interested in the function
restricted to only a subset of X. This is called function restriction.

Definition 2.2.1 (Function Restriction). Let f: X — Y be a function and let X
be a subset of X. The restriction of f to X, denoted flx,: Xs — Y is defined
as flx,(x) = f(z) for all z € X;.

_|

Another mathematical definition we will use in this thesis is the function
over a set defined below.

Definition 2.2.2 (Function of Set). Let f: X — Y be a function and let X, be a
subset of X. Then f(X;) is the f-image of X, onto Y, i.e.,

f(Xs) ={f(@) | v € Xs}
_|

A result of this is that we can use the statement f(X) C Ys to express that
each value in X maps to something in Y5, i.e.,

f(Xs) CYs & {f(z) |z € X} CYs & f(x) €Ys Vo € X

Definition 2.2.3 (Function Composition). Let f: X — Y and g: Y — Z be two
functions. The function composition of g and f, denoted g o f, is the function
from X to Z defined by (go f)(z) = g(f(z)) for all z € X. !

When defining functions, it will sometimes be convenient to just list the set
of mappings from each element in the domain to its corresponding element in the
codomain. For example, if X = {x1,20,235}, Y = {y1,92,y3}, and f: X = YV
is defined by f(x1) = y1, f(z2) = y1, f(x3) = ys, then the following shorthand
notation may instead be used:

f=A{21 =y, 22— y1, 23 = Yo}

2.2.2 Labeled, Directed Graphs

In Chapter 4 we will define a special kind of graph, called a resource graph, to
model RDF datasets, SPARQL queries, and the navigation graph. Resource
graphs will share many properties with standard labeled, directed graphs, so in
this short section, we will just cover some basic notions related to them.

A standard labeled, directed graph is formally defined as a pair G = (V, E),
where V and E are sets called vertices and edges respectively. An edge e € E in
this graph is defined as a triple (vs, [, v:) where vs € V' is the starting point of
the directed edge, called the source vertex of e, v; € V' is the endpoint of the
edge, called the target vertex of e, and [is the label associated with the edge.

Given two graphs G = (V, F) and G' = (V' F’), a function f: G — G’ is
called a graph homomorphism if it maps the endpoints of each edge in G to
endpoints of an edge in G’ with the same direction and label.

17

2. Preliminaries

Definition 2.2.4 (Labeled Directed Graph Homomorphism). Let G = (V, E) and
G' = (V', E’) be two labeled, directed graphs. A function f: V — V' is called a
homomorphism from G to G’ if

('US,Z,'Ut) €L = (f(vs)vlaf(vt)) € El (21)

_{

If a function f from G to G’ is bijective, its inverse f~! is well-defined, and
if both f and f~! are homomorphisms, then f is an isomorphism, and G and
G’ are said to be isomorphic.

Definition 2.2.5 (Labeled Directed Graph Isomorphism). Let G = (V, E) and
G’ = (V', E') be two labeled, directed graphs. A bijective function f: V — V' is
called an isomorphism between G and G’ if both f and f~! are homomorphisms.
If f is an isomorphism, then G and G’ are said to be isomorphic. o

Intuitively, both homomorphisms and isomorphisms are functions that
preserve structure between the two graphs in some way. An isomorphism
preserves the full structure between the graphs, i.e., the two graphs become
completely equal if the vertices are renamed by the function f. Homomorphisms,
on the other hand, are less restrictive and can map between non-isomorphic
graphs.

Example 2.2.6. Consider the two graphs G and G’ in Figure 2.3, and the three
functions f1, f2, f3 from G to G’ defined below.

fi={a— Ab— Ajc— A/d— A}
fo={a— Ab— B,c— A,d — B}
fa={a— Ab— B,c— C,d+— D}

Function f, which maps every vertex in G to the vertex A in G’ is not a
homomorphism. We can prove this by considering the edge e = (a,p,b) in G:
the two endpoints of e (a and b) are both mapped to A, but there is no edge
from A to A with label p. Function f5 is a homomorphism because each edge
of G corresponds to the edge (A,p, B) in G'. Notice that the two vertices C'
and D are completely ignored by this function. Hence f; would have been
a homomorphism even if C' and D were removed from G’. Function f3 is an
isomorphism: (a,p,b), (b,p,c), and (¢, p,d) corresponds to (4,p, B), (B,p,C),
and (C, p, D) respectively. We also see that we get G’ if we replace each variable
in G with its corresponding upper-case letter.

¢

18

Mathematical Definitions

G/

%pﬁ?
o

’ﬁ °

7Y
©

Figure 2.3: Two labeled, directed graphs: G and G'.

19

Chapter 3

Dead-End Detection

In this chapter we describe existing data access systems, and how they approach
the problem of detecting dead-ends, i.e., how they prevent the user from
constructing queries that lead to no answers. We start by introducing data access
systems in general, including some of the most relevant aspects of such systems in
Section 3.1. Then, in Section 3.2, we present some examples of existing systems.
Finally, in Section 3.3 we take a more detailed look at how dead-end detection
is done in data access systems today, and in particular how it is done in the
systems from Section 3.2.

3.1 Data Access Systems

When we use the term data access system, we refer to any system that allows
a user to access and interact with data. This definition is very broad, and it
includes ontology-based visual query systems, which is the kind of system we
target in this thesis. The term also includes other RDF-based systems, faceted
search systems, information retrieval systems, and many other types of systems.
By considering all of these different kinds of systems, and not only VQSs, we
give context to our work. Furthermore, much of the existing work related to
what we try to do in this thesis project is not tied directly to VQSs, but other
similar systems. For example, dead-end detection is very established in faceted
search systems, and it is important that we understand how it is done in those
systems before we start to describe our approach for VQSs, which covers less
restrictive queries.

3.1.1 Aspects of Data Access Systems

Before we consider any actual systems or types of systems, we need to describe
and discuss the most relevant aspects of such systems. We have also included
aspects related to the systems’ Ul, their intended user group, and the dataset
they are supposed to work with, since they are closely related to the system
itself. Defining these aspects now makes it easier to understand and compare
the different concrete systems when we present them, and it enables us to better
understand how our work relates to existing systems and approaches. Data
access systems have been studied many times before, and all the aspects we
present below have been described in earlier papers (see [31, 11, 52, 49]). The
purpose of defining these aspects here is not to compete with existing analyzes,
but rather to give the selection of aspects that we believe are relevant to our
work. For an overview of the 17 different aspects we consider, see Table 3.1,
where each of them is presented and described briefly.

21

3. Dead-End Detection

Aspect

Description

User Intention

User Skills

Usability

Query Expressivity
Query Repetitiveness
Provided Actions
Interactivity

Query Presentation
Results Presentation
Domain Presentation
Data Structure

Data Quality

What the user intends to do.

How skilled the user is.

How usable the system is in general.
How expressive the queries are.

How much queries tend to repeat.
Which actions the system provides to the user.
How interactive the system is.

How the query is presented.

How results are presented.

How the domain is presented.

How the data is structured.

How complete and granular the data is.

Data Volume
Data Velocity

How large the dataset is.
How frequently the dataset is updated.

Portability How easy it is to port the system to other datasets.
Efficiency How efficient the system is.
Adaptivity How well the system adapts to the context.

Table 3.1: The 17 different aspects of data access systems we consider.

User Intention We start by considering the aspect of whether the user is looking
for a specific subset of the data, or if they just want to explore the dataset. Our
work will focus on the scenario where the user wants to extract a specific subset
of the data, i.e., they have an exact information need. In this setting, the user
needs a system that allows them to transform this information need into some
kind of query, which can then be executed over the data to give answers, which
will then be presented back to the user. This is in contrast to the scenario where
the user wants to understand the dataset or domain as a whole. If this is the
case, then they would benefit much more from a system that is made for this,
like an exploration system [61], or a data browser [15].

User Skills Users who know how to use databases, query languages, and who
have technical skills in general, are called database experts or IT experts. They
have the skills needed to fetch data directly from databases, but unfortunately,
they often lack the domain knowledge necessary to make value out of the data
they extract. This is in contrast to domain experts, who have the needed domain
knowledge but lack the technical skills. They need access to the data but are not
able to access it without help. One solution to this problem is to let the database
expert map data from the database to some conceptual model of the domain
used by the system. After that is done, the system can be used by multiple
domain experts to formulate queries over the domain they already know. Some
authors also use the two terms lay users and casual users [11]. They are more
or less considered to be synonyms, and they refer to users who in general lack
technical skills, i.e., those who are not IT experts. Casual users could also refer

22

Data Access Systems

to those who will only use the system once or a few times. For those users, it is
important with an intuitive system, which does not require any upfront training.
The opposite of casual users is those who work with a system for hours, days, or
years, like employees in a company. These users will eventually learn how to to
use the system, even if it is less intuitive initially [11].

Usability A common metric used to measure the quality of a system is usability,
which combines four more concrete quality metrics: effectiveness (i.e., accuracy
and completeness), efficiency (i.e., time/effort required), learnability (i.e., time
and effort required to learn the system), and user satisfaction [54]. In general,
one should aim for systems with as high usability as possible. This can be done
to some degree by using general design principles, but in order to achieve the
best possible result, it is very important to also consider the needs of the target
user group. A system can score high on usability for one user group, but low for
another. The usability of systems can also be both quantified and compared by
using the standardized SUS scale, [7] for example.

Query Expressiveness The next thing we consider is the system’s expressivity,
which is a measure of how much can be represented in the query language
supported by the system. If the expressivity of the system is lower than the
expressivity of a user’s information need, the user has to simplify their need
before they can formulate it as a query, which means that the system will be less
useful, or not useful at all to them. In general, higher expressivity is better, but
this often comes at the expense of the usability [57, 52]. The challenge, for most
systems, is therefore to find the right balance between expressivity and usability
for the target user group. It should allow all, or most of their information needs
to be formulated, while still providing the highest possible level of usability.

Query Repetitiveness If we consider all the information needs of all the users
over time, it may be possible to discover certain patterns. If some parts are
repeated frequently, or even specific queries occur often, for example, it may be
worthwhile to consider a template-based query system, where users can just fill
in the small parts that change from one query to the next. Or, if the queries
that are constructed follow a strict, predictable pattern, it should be possible
to automate the process entirely. In our work, we are focusing on the more
challenging scenario, where users want answers to ad-hoc queries.

Provided Actions and Interactivity The UI of the system should allow the user to
interact easily with the query they are formulating. In practice, this means to
provide actions that allow the user to add, delete, or edit any part of the query,
while at the same time only allowing queries covered by the expressiveness of
the system. Furthermore, as in any interactive UI, each user action should be
followed up with an appropriate response.

23

3. Dead-End Detection

Query Presentation What the UI actually displays to the user varies between
systems, but it is natural to present the status of the partial query in some
way. One way of doing this is to present the textual representation of the
query, expressed in the relevant query language, but, since many users are not
familiar with this language, it is often better to provide some kind of visual
representation [11]. Many systems use a graph-based representation of the query,
but it is also possible to have a form-based UI where the query is both formulated
and presented by the selections in the form. If the query includes filters, each
filter must be displayed with the variable they are applied to.

Results Presentation Some systems will also display the results of the partial
query in the UI, and update this after every change done to the constructed
query. This is useful, at least if the user wants to explore the results before they
continue to modify the query. However, it can also be time-consuming, since it
requires the query to be executed over the data, but this depends on the size
and complexity of the query and the underlying dataset. If the amount of data
is small, and the query is simple, then this may only take a few milliseconds,
which is not a problem at all. However, if the query is complex, and it needs
to be executed on a large dataset, this may take minutes, which is too much
time, at least if the user needs the results before they can continue to work. The
alternative is to only show results when the user specifically asks for them, for
example, when the user believes they are done with the query.

Domain Presentation Finally, if the system has a model of the domain, like an
ontology, this could be displayed to the user. This is probably more relevant for
domain exploration systems than query construction systems. It is also possible
to display the actual database schema in cases where a domain model does not
exist, and the user has to construct queries directly over the schema.

So far we have considered the user, their information needs, the queries that
can be made, and the UI of the system. Now we will consider some aspects
related to the underlying data.

Data Structure We start by considering the format of the data, i.e., how it is
organized. It is, for example, of interest to know which data model the data uses,
if any, and if it follows constraints defined by a database schema or a similar
higher-level structure. This very much determines how structured the data is,
and hence how easy it is to extract useful subsets from it. For example, consider
data in a relational database. It must adhere to the relational model, where a
predefined schema determines its structure and the constraints it must adhere to.
Other kinds of databases, which fall under terms like NoSQL, graph databases, or
key-value stores, also have enough structure to allow precise querying, but there
is not necessarily a predefined schema over the data stored in these databases. In
contrast to this, we have everything that is considered unstructured data, which
covers collections of text documents in natural language, images, videos, and

24

Data Access Systems

audio files. These formats are hard to access and query over directly, and usually,
they have to be processed into more structured formats, either by humans or
statistical methods, before the data can be used.

The aspects related to the structure of the data determine if the system is a
data retrieval system or an information retrieval system. In data retrieval systems,
the underlying data is very structured, and this allows the user to formulate
precise queries, which can also be precisely answered. In the information retrieval
setting, on the other hand, the underlying data is not structured in a way
that enables the system to give precise answers to queries. In this setting, it
is impossible to know precisely which objects should be returned, and often
statistical methods are used to calculate a ranking of each object before the top-k
most relevant of them are returned. A Web search engine is a typical example
of an information retrieval system, which attempts to rank web documents of
different sizes, types, and complexities based on a simple query containing just a
set of keywords.

Data Quality Next, we consider the data quality aspect, which is a measure of
how detailed, correct, and complete the data is. A typical example of a dataset
with high quality is a dataset covering a specific domain, controlled by a company,
where data is collected and updated by sensors and computer programs. The
opposite of this, a dataset with low quality, could be a dataset where humans
are responsible for updating and adding data, and where the domain is very
broad, and where it is hard to control who is editing what. An example of this
is Wikipedia, since it is a huge collaborative project, which aims to cover all
areas of human knowledge.

Data Volume The next aspect related to data, is its volume, i.e., how many facts,
or bytes are stored in the dataset. Larger datasets are in general harder to both
store and access, because there is more data to manage and search over. Some
datasets are even so large that they cannot be stored on a single computer, which
means that they have to be stored in some kind of distributed database. Smaller
datasets, on the other hand, could possibly be stored in in-memory databases
or other storage solutions that boost the efficiency of processing by storing the
data closer to the processing unit.

Data Velocity The third aspect related directly to the data is its welocity, which
indicates how frequently the data is updated, or how fast new data is added to
the dataset. The velocity of the data, and how crucial up-to-date data is for the
users, affects how successful indexing is going to be. It is, for example, pointless
to construct an index if it becomes outdated before it is even is set up. Since our
work is based on indices of the data, we require data with relatively low velocity.

The aspects described so far have had a natural relationship to either the
user, the query, the UI, or the dataset, but the three remaining aspects are more

general and relate to the system as a whole.

25

3. Dead-End Detection

Portability The system’s degree of portability refers to its ability to work on
arbitrary domains without the need for manual tuning or configuration in advance.
For example, if a system made for the oil and gas domain contains source code
or UI widgets that are specifically related to drilling, then these parts of the
system need to be rewritten before it can be used on another unrelated domain.
It is also worth considering whether the system requires some kind of upfront
processing, data analysis, or indexing each time it encounters a new dataset.
This does not usually require manual work, but it will cause some extra setup
time before the system can be used.

Efficiency The next aspect to consider is the system’s efficiency, i.e., how
fast it finishes important tasks like fetching results, making suggestions, and
preprocessing data. In general, faster results are better, but there is no need
to improve the efficiency if the system is already fast enough, at least if such
an improvement lowers the system’s quality on other aspects. For example, if
an interactive system provides new action suggestions to the user in 50ms, it is
already so fast that the user cannot even notice the delay, so improving it to
something like 10ms should not have high priority.

Adaptivity Last, but not least, we consider the system’s adaptivity, which refers
to the system’s ability to adapt based on the context, or previous experience.
For example, a system that always presents the same static list of filters, is
not very adaptive, while a system that detects dead-ends, and removes filters
based on this, scores high on adaptivity. Another example of high adaptivity is
when a system ranks possible actions by how frequently they have been used in
previously constructed queries.

3.2 Existing Systems

In this section, we are going to present and discuss three categories of data access
systems: faceted search systems, RDF-based systems, and information retrieval
systems. For each of these three categories, we will consider some concrete
systems, and highlight interesting aspects of them.

3.2.1 Faceted Search Systems

Faceted Search [59] is a search paradigm that is commonly used by e-commerce
websites like eBay,! PriceSpy,2 and Amazon.? It allows users to search for
objects of a given class by applying filters to independent properties of the class,
called facets, in any order preferred by the user. This is often also combined
with free-text search.

1 https://www.ebay.com/
2 https://www.pricespy.co.uk/
3https://www.amazon.com/

26

https://www.ebay.com/
https://www.pricespy.co.uk/
https://www.amazon.com/

Existing Systems

HOME > PHONES&GPS > MOBILE PHONES
Filter

Mobile Phones

O ting syst latest
s ® D Both simple and more advanced mobile phones. It s practical to choose

based on the operating system you want to use, the size of the screen and

Lowest price: 0-100 ® [JfelSag .
the resolution of the phone's camera. You can also filter by storage space

Find filter size, water resistance, 4K video capture support and fingerprint reader.

Perhaps you want a particular material for the cover or the phone should be

Lowest price (GBP) [] aspecial colour?
700
PRODUCTS AND PRICES
___‘ 281 results (2 RN sorTey PoPULARITY v BRI

4
0 1 3 1030100 1000 30000

Name prce peraing tem

Screen size Release year

Brand Huawei Y6 zme £85.41

Android 9.0 (Pie) 6.09 inches 2019
29(E 4 e

Apple (0)

Nokia 4.2 32GB £94.99
e

o Android 9.0 (Pie) 571 inches 2019

Google (2)

Honor (6) Zo0.50
Motorola Moto E6 Plus (2GB RAM) 32GB ow ANdroid90(ie) 6.1inches 2019
Huawei (11) E

Motorola (11) n X\aum\Red}m;ZyA[ZGBRAM)SZGB £77.A!z Android 9.0 (Pie) 5,45 inches 2019

SHOW MORE OPTIONS

Samsung Ga\axyjd Plus SM-J415FN/DS £5.99

Jw Android £0(Oreo) 6 inches 2018

Operating system i o
(Iatest version)
£79.11

N Huawei Y5 2019 16GB p Android 9.0 (Pie) 5.71 inches 2019
Android (281) 1 4

BlackBerry (0) Sony Xperia L1 G3311 571.9!9 Android 7.0
356 (6)

5.5 inches 2017
(Nougat)
KaiOs (0)

Cubot X19 850 Android 1 (Oreo) 593inches 2019

Nokia (0)

Figure 3.1: Screenshot of the faceted search interface used by PriceSpy, where the
facet section is on the left side, and the result section is on the right side.

After the user has selected a particular class, e.g., a product category from
the given taxonomy, they are presented with the faceted search interface, which
is typically divided into two sections: a facet section, and a result section. The
facet section lists each of the facets related to the relevant class, together with
elements that allow the user to add, remove, or change filters to each of them.
Meanwhile, the result section displays a list with all the objects satisfying the set
of active filters. This result list is updated after each filter change. For example,
consider the interface of PriceSpy in Figure 3.1, where the user is searching over
the class of mobile phones. The facet section to the left shows three facets: Price,
Brand, and Operating system, and two active filters: price lower than £100, and
operating system equal to Android. The result section to the right displays the
281 mobile phones that satisfy both of these filters.

The set of filters chosen by the user defines a query, which can be formulated
in the query language of the underlying database. Each time the user changes
any of the filters, this query is updated in the background before it is executed
over the dataset. This leads to an updated result list, which is then presented in
the result section. Since the user can see the active filters in the filter section,
and the results of the query in the result section, there is no need to present the
query explicitly in the UL

Queries generated by faceted search systems are quite simple since they
only ask for objects belonging to one particular class. It is, for example, not
possible to ask for mobile phones that fit a particular kind of phone cover, since

27

3. Dead-End Detection

this requires a relation between two different classes: phone and cover. More
precisely: queries generated by faceted search systems must contain exactly one
variable typed to the selected class, and this variable can only be connected to
at most one variable for each facet. In the context of SPARQL, these queries are
called star-shaped queries, while in the context of SQL, they are queries without
any joins. These queries can be answered efficiently by using state-of-the-art
search engines, and this scales well to millions of objects. For example, eBay
allows its users to search in eBay’s collection of 44 million books using faceted
search. Two well-known search engines, which both support faceted search, are
SOLR* and Elastic search.’

In addition to the standard faceted filtering we described above, it is also
common to include adaptive features that help the user to select useful filters.
One such feature is to add a number to each possible filter, indicating how many
objects will be returned if the user activates the filter. This can be seen in
Figure 3.1, under the brand facet, where for example Google is listed with the
number 2 behind it. This tells the user that if they filter on Google phones, only
two phones will remain. Another related feature is the detection of dead-ends,
which in this context are filters that lead to queries without answers. Dead-ends
are usually disabled or removed entirely, in order to prevent the user from
selecting them.

The dead-end detection framework we present in this thesis achieves the
same thing as dead-end detection in faceted search, in the sense that they both
prevent the user from making queries without answers. But, while faceted search
is limited to queries containing only one class, i.e., star-shaped queries, we will
instead address the problem of detecting dead-ends when the queries combine
variables typed to multiple classes. More precisely, we are going to detect
dead-end extensions of arbitrary large typed, tree-shaped SPARQL queries.

3.2.2 RDF-Based Systems

When we refer to RDF-based systems, we mean data access systems that help
the user to access data from an RDF dataset. A special kind of RDF-based
systems is what we call ontology-based systems, which are systems that use an
ontology actively. In this section we take a closer look at five RDF-based systems:
RDF Surveyor [61, 60], PepeSearch [62],” OptiqueVQS [51, 54],% SemFacet [1,
3, 4, 2],% and Rhizomer [8, 9].1°

Among these five systems, OptiqueVQS plays a special role, because it defines
the VQS model we have based our work on [55]. Therefore, the description
of OptiqueVQS is much more detailed than the description of the other four

4 https://lucene.apache.org/solr/

5https://www.elastic.co/

6 http://tools.sirius-labs.no/rdfsurveyor/

7 https://github.com/guiveg/pepesearch

8 https://sws.ifi.uio.no/project/optique-vags/

https://www.cs.ox.ac.uk/isg/tools/SemFacet/
LOnhttp://rhizomik.net/html/rhizomer/

28

https://lucene.apache.org/solr/
https://www.elastic.co/
http://tools.sirius-labs.no/rdfsurveyor/
https://github.com/guiveg/pepesearch
https://sws.ifi.uio.no/project/optique-vqs/
https://www.cs.ox.ac.uk/isg/tools/SemFacet/
http://rhizomik.net/html/rhizomer/

Existing Systems

% Surveyor

Surveying repository
SPARQL URI: hitp://dbpedia.org/spard|

Named graph URI: http://dbpedia.org
Filter namespaces >

Upper classes v

yagoYagoLegalActorGeo <D >

owThing D e B3
dporPlace @ D >
dboiTopical concept @ >
aboWork [iscY i1) >
dbo:Mean of transportation b D >
dbo:Anatomical structure [10c] >
Show more

yagorAbstraction100002137 @ >

Figure 3.2: Screenshot of RDF Surveyor.

systems. That said, both SemFacet and Rhizomer use similar models, while
both RDF Surveyor and PepeSearch use simpler models, so our system will be
applicable also for the four other systems we present.

The five systems we have decided to present, are interesting because they
have some kind of search functionality, which helps the user to find specific
subsets of the data. The alternative to this is RDF-based systems that are more
focused on the task of exploring or browsing the data. They are often called
linked data browsers, or just RDF-based exploration systems. Some examples of
such systems are Tabulator [6], Marbles,!! Lodview,'? and Phuzzy.link [43], just
to mention a few.

RDF Surveyor RDF Surveyor [61, 60]'? is a lightweight, browser-based linked
data exploration system. It requires no manual setup, just a link to the SPARQL
endpoint of the dataset to explore. After this link has been provided, RDF
Surveyor constructs a taxonomy, i.e., a hierarchy, of the classes in the dataset
based on class membership and subclass axioms in the dataset. This taxonomy
is then presented to the user, such that they can select a particular class to
browse. After selection, the system returns a list of instances belonging to that
class. Instances or classes can also be found by using the provided search bar

11http://mes.github.io/marbles/
12 https://www.lodview.it/
13 http://tools.sirius-labs.no/rdfsurveyor/

29

http://mes.github.io/marbles/
https://www.lodview.it/
http://tools.sirius-labs.no/rdfsurveyor/

3. Dead-End Detection

on the top, but except for that, there are no filtering options. Figure 3.2 shows
the interface of RDF Surveyor, where the taxonomy of DBpedia [32]'* classes is
presented as an indented tree, ready to be selected by the user.

RDF Surveyor is very portable since it can be used directly from the web
browser after the URL to the endpoint has been specified. It is targeted towards
lay users and has a clean, simplistic interface. The system poses queries directly
to the data source it is connected to after each user action. The most challenging
task is to generate the class hierarchy, but this is only done once at the beginning
of the session and takes less than 5 seconds with large RDF-graphs like DBpedia.
Other queries posed to the data source are relatively simple, and the system
responds relatively fast (within about a second), even when working over large
datasets.

PepeSearch PepeSearch [62]'° is a form-based search interface over RDF data,
designed for casual users. It uses a SPARQL endpoint analyzer'® to extract the
set of relevant classes and properties. A PepeSearch session starts by letting the
user select one of these classes to focus on. A form is then generated based on
not only this class and its properties, but also all classes related to the focus class,
and their properties. This form can be filled out by the user, and after submitting
it, the system generates a corresponding SPARQL query which returns answers
when it is executed over the dataset.

The set of queries that can be made by PepeSearch, i.e., its expressivity, is
especially interesting. It is very common to support queries with one class and
its properties, but PepeSearch extends this idea by also including the properties
of every class connected to this focus class. While it is clever to associate another
class’ property to the focus class, it is also important to highlight when such a
property belongs to another class, to not confuse the user. PepeSearch achieves
this by having different sections in the form, one for each of the connected
classes. The expressivity of PepeSearch is still lower than the expressivity we
are targeting with our system, which is arbitrarily large, typed, and tree-shaped
queries.

The PepeSearch paper [62] also includes an interesting related work section,
where several related systems are presented and compared. This includes
SPARQL editors, keyword-based search interfaces, question-answering systems,
graph-based query editors, and form-based query editors.

OptiqueV@S OptiqueVQS [51, 54| is an ontology-based visual query system,
which was developed as a part of Optique Project [16], an EU project that
lasted from 2012 to 2016.'7 The goal of Optique Project was to develop
methods and software to support ontology-based data access (OBDA). One
of the main products was the Optique Platform: an end-to-end OBDA system.

M hitps://wiki.dbpedia.org/
15https://github.com/guiveg/pepesearch
16https://github.com/simenheg/sparql—endpoint-analyzer
17http://optique-project.eu/

30

https://wiki.dbpedia.org/
https://github.com/guiveg/pepesearch
https://github.com/simenheg/sparql-endpoint-analyzer
http://optique-project.eu/

Existing Systems

Location

Product
supplies Product name(o)

‘Suppliers from Japan ‘Supplier @
Company name(o) ~t
etal o
japan, and the products & Location
ey su = Country(o)

locatecin County(@) 2

©) DeleteNode | ©) Undo () Redo © NewQuery € SaveQuery () Stored Queries © sPaRaLQuery | €) Run Query

Location Location

@ Region

Company
The company located in this location.

Employee
“The employee located in this location.

Order
An order this location receives. @ Country

Japan (x)

Figure 3.3: Screenshot of OptiqueVQS.

After setting up this platform, end-users will be able to construct SPARQL
queries in OptiqueVQS, guided by an input ontology. Then, by using R2RML
mappings and Ontop [10], this SPARQL query will be rewritten into an SQL
query, which can then be distributed efficiently over the set of data sources using
Exareme.'® The results from this process will then be piped back to OptiqueVQS,
where they are presented to the end-user. Recently, OptiqueVQS was separated
from the Optique platform, to make a standalone application that can be used
to construct SPARQL queries over any input ontology, before sending it to a
given SPARQL endpoint.!?

A typical user of OptiqueVQS is an employee in a company with a complex
information need, who needs access to company data, but who struggles to do so
because they lack IT and database skills. Without OptiqueVQS, this employee
would need to contact a database expert each time they need access to data,
which is obviously not ideal. OptiqueVQS helps the employee to access data
without assistance from a database expert in two ways. First, it provides a
visual system with an intuitive UI, which allows the user to construct queries
without having to know the query language. Second, it uses the vocabulary
of the domain ontology, which the user already knows. In order to make the
interface as simple as possible, and not overwhelm the user, OptiqueVQS does
not support full SPARQL. It supports tree-shaped queries where each variable is
typed to exactly one class or datatype, and where filters can be applied to the
data properties.

18 http://madgik.github.io/exareme/dfl.html
19 https://sws.ifi.uio.no/project/optique-vqs/

31

http://madgik.github.io/exareme/dfl.html
https://sws.ifi.uio.no/project/optique-vqs/

3. Dead-End Detection

The interface of OptiqueVQS, which is displayed in Figure 3.3, contains one
large section at the top, where the current state of the query is presented as a
graph. Below this, to the left and right, are two more sections, listing possible
object property extensions, and data property extensions respectively. If we
ignore the leftmost vertex of the query, which only displays the title of the query,
the graph-based visualization in Figure 3.3 displays three vertices, all with the
shape of a rectangular box. Each box represents a variable of the query that is
typed to a given class, and the name of their corresponding classes, Supplier,
Product, and Location, are displayed inside the boxes. The three boxes are
connected by edges representing object properties, and this tree-shaped graph
makes the core of the query. In our example from Figure 3.3, there is one variable
typed to Supplier, which is connected to both a Product via the supplies object
property, and a Location via the locatedIn object property. In addition, there
is a filter on the data property that links the supplier to the name of its country,
and this filter states that the country name should be Japan. Below is the
SPARQL query that corresponds to this query. The three variables ?¢1, 7¢2, and
?¢3 correspond to the supplier, the product, and the location respectively.

SPARQL query: Suppliers from Japan, and their products.

1 SELECT * WHERE {

2 ?cl rdf:type ex:Supplier.
3 ?c2 rdf:type ex:Product.
4 ?c3 rdf:type ex:Location.
5

6 ?cl ex:supplies ?c2.

7 ?7cl ex:located_in ?c3.

8

9 ?cl ex:company_name ?al.
10 ?c2 ex:product_name ?a2.
11 ?cl ex:country ?a3.

12

13 FILTER(?a3 = "Japan").

14 3}

By selecting one of the boxes, i.e., a variable in the query, it will turn orange,
and the variable will become the focus variable. The two sections below will then
update to show information and actions related to this focus variable. The left
side will display a list of possible object property extensions, i.e., pairs consisting
of one object property, and the target class of this property. The user can select
any of these pairs to extend the query with a new variable connected to the
focus variable. The selected pair will then specify the type of the new variable,
and which object property is used to connect the focus variable to this new
variable. For example, in Figure 3.3, the variable of type Location is in focus,
and the system suggests a list of three possible object property extensions in the
bottom left section. The first extension suggested in this list is a new variable of
type Company, which will be connected to the Location variable by a locatedin
property. Meanwhile, the bottom right section displays the set of all datatype
properties related to the class in focus. By selecting any of these, a new variable

32

Existing Systems

will be added, but this variable will not be displayed as a box, like those who
are assigned to a class. Instead, the data property will appear inside the box
of the variable it is attached to. For example, the variable of type Location is
connected to a variable via the data property country, which relates a location
to the name of the country it lies inside. The bottom right section also contains
elements that allow the user to specify filters.

Which object properties and data properties to display in the two bottom
sections, should be determined by the ontology that is given to the system.
But an ontology itself does not state how queries should be constructed, so
OptiqueVQS uses an algorithm to project the ontology into a navigation graph,
which is a graph structure that clearly states how the classes and properties in
the ontology are allowed to be combined. For example, if the ontology contains
the classes Supplier and Location, and an object property locatedIn, then the
projection algorithm may, based on, for example, range and domain axioms,
conclude that suppliers should be allowed to be connected to locations in queries.
The navigation graph will then get an edge with label locatedIn from the vertex
of Supplier to the vertex of Location. In general, there are many ways to project
an ontology into a navigation graph, which can be used directly by a VQS. But,
since the ontology contains classes and properties that the user is familiar with,
these should be reused in the navigation graph, and they should be set up in
alignment with the axioms in the ontology. The concrete projection algorithm
used by OptiqueVQS has been described in earlier work [50, 29].

OptiqueVQS strikes a good balance between usability and expressivity for the
type of users it is targeting, which are persons with complex information needs,
like engineers in a company, for example. The high usability has been confirmed
by user studies done with employees from Statoil and Siemens [54, 52]. These
users tend to construct fairly complex queries, with up to 10 different variables,
and various filters, and these queries may take minutes, or even hours to run,
because the database may need to join data from multiple large sources. This
means that there is not enough time to retrieve answers from the dataset during
the construction phase, and therefore, OptiqueVQS does not present results after
every query change, but only when the query is finished and the user decides to
execute it over the data.

OptiqueVQS does not support dead-end detection on the possible query
extensions, but this was requested by employees at Statoil and Siemens. In
particular, the user studies showed that dead-end detection based on combinations
of filters on one single variable, like in faceted search, was not enough. Users
explicitly asked for the removal of suggestions that contradicted with filters made
on other variables in the query. This was one of the main factors that motivated
us to start on the work of this thesis.

The work of this thesis is based on a VQS model that is almost identical to
the one used by OptiqueVQS, which we define in Chapter 4 and Chapter 5. We
also assume that the VQS targets domain experts, and that it takes too long
time to run queries over the underlying dataset for interactive use.

33

3. Dead-End Detection

SemFacet SemFacet [1, 3, 4, 2] is a semantic facet-based search system. Like
OptiqueVQS, it generates a navigation graph based on an input OWL2 ontology,
which is then used to make a facet-based UI. This UI allows the user to construct
conjunctive SPARQL queries with filters on the different facets, which can be
executed over the corresponding dataset. In contrast to OptiqueVQS, which
requires exactly one type per variable, SemFacet can be used to construct queries
where the variables are not necessarily typed. SemFacet presents the constructed
query as a text-based indented tree. This, together with the results, are always
visible to the user, and updated as the user changes the query. This is inspired
by faceted search, and in contrast to OptiqueVQS, which only displays the query,
but not the results before they are explicitly requested. This approach relies
on an underlying database that can consistently return answers to queries fast
enough to make the system usable.

Rhizomer Rhizomer [8, 9] is a web application that facilitates publishing and
exploration of Semantic Web data. The exploration component allows the user
to construct queries with variables belonging to different connected classes, just
like OptiqueVQS and SemFacet does. In fact, the functionality of Rhizomer is
very similar to the one of SemFacet: it can be used to combine multiple classes,
it presents facets and possible filter actions, it updates results after each change
to the query, and it allows the user to select which class to focus on.

All of the RDF-based systems presented above need to somehow determine
which queries the users should be allowed to make, and they do this by considering
either the dataset, the ontology, or both of them. Here we assume that the
dataset only contains facts about instances and their properties (also known
as the ABox), while the ontology only describes the conceptualization of the
relevant domain (also known as the TBox). For example, OptiqueVQS relies only
on the given ontology, while PepeSearch will work fine even when just the dataset
is available. An ontology declares explicitly all classes and properties that are
available in the relevant domain, and it may also contain useful relationships
between these classes and properties, like subclass relationships, for example.
Ontology-based systems will use the same classes and properties for all datasets,
and they will more closely match the actual domain. Data-driven RDF-based
systems will also be able to find classes and properties, but only those that are
actually used in the given dataset. A dataset alone does not explicitly provide
any high-level relationships between the classes, like subclass relationships, for
example, but some systems may still try to generate possible class hierarchies
from the data. Both ontology-based systems and more data-driven systems have
advantages and disadvantages, and both approaches have use-cases.

3.2.3 Information Retrieval Systems

Information retrieval systems are systems that attempt to find relevant
information in unstructured data. They differ from systems that construct
formal queries over structured databases, in the sense that it is not absolutely

34

Existing Systems

(=
0

information retrieval search engine X

en.wikipedia.org » wiki » Information_retrieval v

Information retrieval - Wikipedia

Information retrieval (IR) is the activity of obtaining information system resources that are
relevant to an information need from a collection of those resources. Searches can be based on
full-text or other content-based indexing. Information retrieval is the science of searching for
information in a document, ... Web search engines are the most visible IR applications.
Overview - History - Performance and ... - Timeline

www.ionos.com » digitalguide » search-engine-marketing v

Information Retrieval: how Search Engines retrieve Data ...

Dec 20, 2017 - Information Retrieval — a Definition The typical application is an Internet search
engine. Information retrieval systems solve two central issues: Vagueness: User inquiries are
often inaccurate. The search terms entered by a user often leave a lot of room for interpretation.

salt.agency > Blog v
A brief introduction to search engine information retrieval ...

Feb 27, 2018 - The informational retrieval process. A search engine is a piece of software that
uses custom applications to collate information (such as plain-text, ...

www.search-engines-book.com » slides v

Slides: Search Engines: Information Retrieval in Practice
1, Search Engines and Information Retrieval, pdf - ppt. 2, Architecture of a Search Engine,
pdf - ppt. 3, Crawls and Feeds, pdf - ppt. 4, Processing Text, pdf - ppt.

Figure 3.4: Google search engine results for the query “information retrieval search
engine”, ranked by relevance.

clear anymore when a particular document, or part of a document is a match
of a query, i.e., information retrieval systems work over a probabilistic setting.
We will consider two types of information retrieval systems: search engines and
question answering systems.

Search Engines In general, the term search engine refers to any information
retrieval system that helps users to find relevant information in unstructured
data, but here we will specifically consider systems that search in collections of
text documents, and where queries are represented by a sequence of keywords. A
well-known example of such a system is Google Search,?? which is a Web search
engine, i.e., a search engine that finds information in documents published on the
World Wide Web. Figure 3.4 shows the interface of Google Search. It contains a
search bar at the top, where the query, i.e., the sequence of keywords can be
entered, and a list of resulting documents sorted by relevance below.

In the simple case where the user is just looking for one, or maybe a few
documents of high relevance, and a query to express the need is simple, search
engines are very convenient: they do not require the user to know any formal
query language, nor do they limit the vocabulary of the user. Furthermore,

20https://www.google.com/

35

https://www.google.com/

3. Dead-End Detection

What year was Donald Trump born? X $y Q
QA Eimages O Maps [)Videos O Shopping : More Setings Tools
About 93,600,000 results (0.95 seconds)
Donald Trump / Date of birth Donald Trump <
45th U.S. President
June 14, 1946 Donald John Trump is the 45th and current president of the United
v 73 yenr States. Before entering politcs, he was a businessman and
e 4 television personality. Trump was born and raised in Queens, a
X borough of New York City, and received a bachelor's degree in
economics from the Wharton School. Wikipedia
Donald John Trump was bom on June 14, 1946, at the Jamaica Hospital in the borough of Queens,
Party: Republican Party Trending
New York City. His father was Frederick Christ Trump, a Bronx-bom real estate developer whose
parents were German immigrants. Born: June 14, 1946 (age 73 years), Jamaica Hospital Medical

Center, New York, United States.
‘en.wikipedia.org » wiki > Donald_Trump

Donald Trump - Wikipedia

Full name: Donald John Trump
Net worth: 2.1 bilion USD (2020)

Education: Wharton School of the University of Pennsylvania

People also search for
(1966-1968), MORE

I Barack Ry semie PRy Joe Bicen Spouse: Melania Trump (m. 2005), Maria Maples (m. 1993-1999),
! Obama (5@ sancers ESll November 20, Ivana Trump (m. 1977-1992)

2 augusts, September 8, 1942

1961 1941 Parents: Fred Trump, Mary Anne MacLeod Trump

Foedback
Profiles
® K
People also ask u E
Twitter YouTube Instagram Facebook

How old is President Trump currently? v Soures nciude CTCL Wikpodia Loam Foodback

Where was Donald Trump bom? v

What nationality is Trump? v

Figure 3.5: The QA feature of Google Search answering a factual question.

by presenting a ranked list of multiple documents, which the user will have to
manually pick from in the end, the system will have a good chance of finding a
document the user is satisfied with. On the other hand, if the user has a more
complex information need, which requires more structure than the available
documents have, then search engines will not be very useful. For example, if
the user only wants the documents mentioning children of persons who have
been the head of state of a country outside Europe, then a search engine with
a keyword-based query language will not be of any help. This is the kind of
trade-off between expressivity and usability we mentioned in Section 3.1.

Question Answering Systems Question Answering Systems (QA systems) are
systems that attempt to give concrete answers to questions presented by users in
natural language. Some well-known examples of such systems are IBMs Watson,
which is famous for being the first computer program to beat humans in the
game of Jeopardy!, and Wolfram Alpha,?! which excels at finding answers based
on concrete facts. QA is also a key feature of popular voice assistants like Siri,
Cortana, and Google Assistant. [19]. It is also worth mentioning PowerAqua [34],
which is a QA system that uses semantic data to answer questions. Google
Search, which is primarily a search engine, is also able to answer simple factual
questions (see Figure 3.5).

There are two main approaches to QA, depending on which kind of data
source is available to the system. If the system has access to a knowledge base,

21 https://www.wolframalpha.com/

36

https://www.wolframalpha.com/

Dead-End Detection

like Wikidata?? or YAGO,?? for example, then the only challenging part is to
find a formal query that matches the question. This requires techniques from
both natural language processing (NLP) and knowledge representation (KR). On
the other hand, if the system only has access to a collection of natural language
documents, where the answer has to be found, it must instead use a combination
of techniques from information retrieval (IR) and NLP, similar to the techniques
used by search engines. If the system has access to both types of sources, it is
also possible to make hybrid systems. They will usually perform better than
systems that only consider one type of source [63].

QA systems are easy to use and require no training because the users can
simply pose their questions in natural language. However, natural language is not
as precise as formal query languages, and even if the question is well-formulated,
the system may still not be able to answer it precisely every time, because this
requires reasoning and full understanding of both natural language and the
relevant domain. Question answering has for a long time been, and is still, one
of the most challenging tasks in the NLP research field.

3.3 Dead-End Detection

In everyday language, the term dead-end refers to paths that do not lead any
further, and hence cannot lead to the goal. Following a dead-end is never
productive, because the only way out is back the way one came from. A dead-
end in the context of computer systems has a similar meaning: it refers to a state
or an action that leads to a state, which is not the goal state, and which only
leads back to the state one just came from. In the data access setting, where
the user is searching for information in a dataset, we can be even more concrete:
a dead-end is an action that leads to a situation where no results are returned
to the user. This happens when the query that produces results becomes too
restrictive.

For example, in faceted search systems, the results are produced by the query
defined by the active filters. The user starts a session without any filters, which
usually returns too many objects, and a natural path towards relevant results
involves the addition of one or more filters. Filters restrict the query and reduce
the number of results, and if a filter limits the query down to no results, it is by
our definition considered to be a dead-end. When this happens, the user must
remove at least one of the added filters before results will be presented again.

Dead-end detection is then the task of finding every dead-end action, i.e., every
action that leads to a query without answers. Such actions are not productive, so
it is common to either label them, to warn the user, or to disable them entirely,
such that the user cannot even select them.

The results returned by dead-end queries are empty, and hence useless in
themselves. Without dead-end detection, users cannot know for sure whether
a query is going to return results or not, and they may construct queries that

22https://www.wikidata.org/
23http://yago.r2.enst.fr/

37

https://www.wikidata.org/
http://yago.r2.enst.fr/

3. Dead-End Detection

are only revealed to be dead-end queries after they have been made. Dead-end
detection is useful in these cases because the system can then tell the user
about dead-end queries right before the user creates them, and this completely
eliminates the reason to make the query — there is no need for the user to
construct a query without results when they already know that it will return
no results. This is similar to how dead-end signs tell drivers about dead-end
roads in real life. With lack of a better word to describe actions and queries that
are not dead-ends, we are going to use the term productive. Conversely, we may
use the term unproductive when we refer to queries or actions that are in fact
dead-ends.

Perfect Dead-End Detection The most straightforward way for a system to check
if an action is a dead-end is to construct its resulting query in the background,
and run it over the dataset to see if it returns any results. This requires one
query for each possible action provided in the given situation.

Often, detection can be done more efficiently by using the answers of one single
query to detect dead-ends among many actions. For example, in faceted search,
it is possible to extend the current query with a single variable corresponding
to a given facet, and if this variable is without filters, the resulting query will
return the set of values that should be presented as possible filters on this facet.
This trick may reduce the overall time it takes to compute dead-ends, but it does
not eliminate the need to run at least one query over the underlying database.

Since the system’s future actions depend on the answers of these extended
queries, it is important that the underlying database is able to return answers
fast enough. A user may accept to wait for a few seconds, but ideally, the system
should be able to detect dead-ends in less than 200ms, which is close to what
humans consider to be instant [36].

The time required to answer these extended queries depends on the size and
structure of the underlying database, and the complexity of the extended query.
But the extended query is just a small modification of the current, active query,
which is bounded by the complexity of the query language of the systems. So in
general, the problem of detecting dead-ends becomes harder as the expressivity
of the supported query language increases. If the database is small, and/or the
expressivity of the system is simple enough, it should be unproblematic to get
answers within an acceptable time frame. But if this is not the case, then it
will be necessary to turn to other solutions, like an index that is optimized for
answering these kinds of extended queries. The size of such an index will again
depend on the size of the underlying dataset and the expressivity of the system:
an index over a large database and a system with high expressivity will lead to
a large index. In particular, if the expressivity of the queries is not bounded in
size, then the corresponding index will, in general, have to be infinitely large to
cover all possible queries.

Dead-End Detection in Existing Systems Now that we have established what dead-
end detection is, we will re-visit the different systems we presented in Section 3.1,

38

Dead-End Detection

to see if they feature dead-end detection, and how they are able to do it.

Faceted Search Systems often include dead-end detection on the available
filters, and this can be implemented efficiently over large datasets by using
state-of-the-art search engines. As we have already established, these solutions
ensure efficient dead-end detection over millions of objects, but they are limited
to one class and its corresponding properties/facets, i.e., star-shaped queries.

RDF Surveyor allows the user to select which class to browse, and then it
shows all instances of this class that exist in the dataset. The system does not
provide any filtering opportunities beyond that, so dead-end detection in this
context would be to prevent the user from selecting classes without instances.
RDF Surveyor ranks the available classes such that classes with the most instances
are presented first, but it does not label or remove empty classes, i.e., it does
not feature any form of dead-end detection.

PepeSearch does not include any dead-end detection features, and allows
the user to fill out the form in a way that returns no answers. But given the
limitation on the queries it allows: a single class, its connected classes, and all
their properties, it would be possible to implement dead-end detection efficiently
by using a finite index. The key insight here is to consider each property of a
connected class to be a facet of the main class. By doing this, we have translated
the PepeSearch query into a star-shaped query similar to those supported by
faceted search systems. This means that PepeSearch can use SOLR, or another
search engine that supports faceted search, to implement efficient dead-end
detection over all the included properties.

The three remaining RDF-based systems described in Section 3.1 all have
different approaches to dead-end detection. OptiqueVQS suggests a list of
values for each property, but this list is not adaptive, it just presents the static
list of every value in the dataset that corresponds to the given property. This way
of suggesting values is very easy to implement and does not require much effort,
but it does not prevent dead-ends, of course. Both SemFacet and Rhizomer
support dead-end detection over multiple multiple classes, which is challenging
because the queries can be arbitrarily large. SemFacet is still able to achieve
reasonable results performance, but it does so by using RDFOx [40] as the
underlying database. RDFox is an in-memory, scalable RDF store, which boosts
the performance of the whole system, including dead-end detection. However,
this solution will struggle in the scenario we consider, were complex queries with
up to 10 variables are posed over very large datasets. Rhizomer on the other
hand, only provides data value suggestions for a given property after it has been
specifically requested by the user. This prevents the system from spending time
on dead-end detection right after each query change, but it still does not make
the process efficient, and Rhizomer also struggles as the size of the queries and
data increases.

Dead-end detection is a less common feature in search engines and QA
systems, and there are several reasons for this. The first one is that the query
construction process is not very iterative: often the query is formulated by
the user without any breaks, hence, there is no time for the system to tell
the user about dead-ends. This is especially the case for QA-systems with

39

3. Dead-End Detection

Q. What year was Do X

(=

what year was donald trump born

June 14, 1946

Q. what year was donald trump elected
O, what year was dolly parton born
Q. what year was doris day born
O, what year was don knotts born
Q. what year was donkey kong released
©. what year was dolly the sheep cloned
@, what year was don mescall born

what year was doug meehan born

Q. what year was donald j trump born

Google Search I'm Feeling Lucky

Report inappropriate predictions

Figure 3.6: Google auto-completing a user’s question.

voiced-based interfaces. If we consider QA-systems and search engines with
text-based interfaces, and assume that the user may take breaks during the query
construction process, then there is room for the system to provide feedback to
the keywords and letters written by the user so far. Google Search already does
this with its drop-down list of suggestions on how to complete the query (see
Figure 3.6), and a similar kind of list could be presented also for QA systems.
But, since these systems work over a probabilistic setting, it is not clear to
neither the system nor the user what a dead-end really is. The system has a
way of calculating the relevance of items, and it is possible to define dead-ends
based on this. For example, the system can define a dead-end query to be one
that does not return any items with relevance higher than 0.5. This approach
is still problematic, since the relevance score set by the system likely differs
from the relevance perceived by the user, and since it is hard to set a relevance
threshold that fits all users. And, even if dead-ends are removed, the vocabulary
of the domain these systems cover is often so big that the number of remaining
suggestions exceeds what it is sensible to present to the user. In practice, this
is solved by only showing the top-k most relevant query extension suggestions,
but this is quite different from the type of dead-end detection we are trying to
achieve in this thesis.

Approximating Dead-end Detection As already indicated, we will be working with
a model that is very similar to the one that OptiqueVQS uses. L.e., we will try

40

Dead-End Detection

to detect dead-end extensions of arbitrary large tree-shaped queries where every
variable is typed exactly once, and where filters are allowed on data properties.

Since there is no way to ensure both correct and efficient dead-end detection
with a finite index over this type of query, we are going to consider a way of
approximating it instead. The idea is to define an index that stores precomputed
answers of queries that use the most central classes and properties of the ontology
or navigation graph. If the query the system needs to execute in order to detect
dead-ends is covered by this index, then it can retrieve answers efficiently directly
from the index, and use the answers to find and present all dead-ends. But, if
the query is not covered by the index, then the system needs to prune it until the
remaining part can be answered by the index. When the system has to prune
the query, it may fail to detect some dead-ends, but, by selecting what to index
in a clever way, the approximation will give very good results.

In the following chapters we will present the formal VQS model we use, and
the type of queries we target, in addition to the framework that allows us to
calculate most dead-ends in the way we just described.

41

Chapter 4

Ontology-Based Visual Query Systems

In the previous chapter, we discussed a variety of different data access systems and
how dead-end detection is done in each of them. In particular, we presented the
VQS model we will be using in this thesis project, which is based on OptiqueVQS,
and then we established that it is impossible to achieve perfect, efficient, and
space-efficient dead-end detection, since this model allows arbitrary large queries
of multiple related classes.

In this chapter, we present this VQS model formally. This requires formal
descriptions of the three most central parts of the VQS, which are:

o Tree-shaped queries Qp, Qs, ..., Qk, all with one type per variable, and
filters only on data properties.

e A navigation graph A/, which dictates how classes and properties can be
combined in these queries.

e A dataset D, which the queries will be executed over.

We assume that both A/, and D are static, and that the same versions of
N and D will be used over multiple sessions, where a session is defined to be
a single user’s process of constructing a query, and then executing it over the
dataset D. In fact, the index we present in Chapter 6 needs to be rebuilt every
time either A/ or D changes, which means that our approach is going to be less
useful unless they are both fixed over a long period of time. We will mostly be
focusing on one single session, and within this session, it is safe to consider both
N and D to be fixed.

A single session starts with an empty query, and the user can modify it by
selecting between available actions (see Section 5.1). Each action results in a
new version of the query, and this kind of transition can be made multiple times
until the user is finally satisfied with it. At this point, they should run the query
over the dataset D, and wait for the results to be returned by the system.

In other words, a single session receives a fixed navigation graph A/, and a
fixed dataset D, and produces a sequence of queries Q, Q1, ..., Qi, where Qg
is the empty query, and Qy is the final query. Within this session, we are going
to focus mostly on the period of time right after a transition from Q; 1 to 9;
(0 < ¢ < k), when the system needs to detect dead-ends among the possible
actions. In this context, we will only consider the current version of the query,
Q;, hence, we will just ignore the subscript index and refer to it as the partial
query Q.

43

4. Ontology-Based Visual Query Systems

4.1 Resource Graphs

In Section 2.1.1 we saw how RDF data can be represented as a graph consisting
of two types of vertices: instances and literals. This same partitioning can also be
made in the queries supported by our system, where each variable is associated
with either a class or a datatype, and it will exist in the navigation graph we
use, where the same classes and datatypes define two types of vertices. In other
words, if we define an appropriate graph structure where the vertices are split
into two parts, we can use it to define the core parts of N, D, and Q.

In this section, we describe resource graphs, which is the kind of graph
structure we are going to use. As already indicated, these graphs allow two
types of vertices, which we call object vertices and data vertices. Resource graphs
also have labeled, directed edges. Each resource graph must be defined over a
universe, which is a triple (I'y, ', I';) that declares all available object vertices
I',, data vertices I'y, and edge labels I'; respectively.

Definition 4.1.1 (Universe). A universe is a triple (I',, 4, T;), where T',, Ty, and
I'; are pairwise disjoint sets, and where each element [€ I'; has a unique inverse,
denoted [~! € T';, which has [itself as inverse, i.e., (I71)~t = 1. =

The requirement that every label must have an inverse, allows us to define
inverse edges later (see Definition 4.1.8).

Definition 4.1.2 (Resource Graph). A Resource Graph G over a universe (I',, T, T),
is a triple G = (V,, Vy, E), where V,, C T', is the set of object vertices, V4 C Ty is
the set of data vertices, and E C V, x I'; x (V,UV}) is the set of edges included in
the graph. If both V,, and Vj are finite sets, then G is a finite resource graph. -

Given a resource graph G = (V,, Vg, E), we will frequently need to access
its three elements V,, Vy, and F, in addition to the full set of vertices V, U Vj.
Below, we define four functions that simplifies the process of accessing each of
them.

Definition 4.1.3. Given a resource graph G = (V,, Vg, E), we define the following
four functions to return all vertices, all object vertices, all data vertices, and all
edges respectively:

All vertices: V(G) =V, UV,
Object vertices: V,(G) =V,
Data vertices: Vy4(G) = Vg
Edges: E(G) =F

#

Example 4.1.4. Before a concrete resource graph can be constructed, we need to
first declare a universe, i.e., sets of available object vertices, data vertices, and
labels:

T, = {Person, Country}

44

Resource Graphs

'y = {Integer, String}

T, = {visited, visited By, knows, borders, age, age™ t

population, population™t, name, name ™ 1}
where

visited™! = visitedBy

1

knows™ " = knows

borders™t = borders
Now, let G = (V,, Vg, E) be the resource graph over (T',,T'y,T';) where

V, =T, = {Person, Country}

Va =Ty = {Integer, String}

E ={(Person,visited, Country),
Country, visited By, Person),
Person, knows, Person),

Country, borders, Country),

Person,name, String),

(
(
(
(Person,age, Integer),
(
(Country, population, Integer),
(

Country, name, String)}

This resource graph contains two object vertices given by V,(G) = V, =
{Person, Country}, two data vertices given by Vy(G) = Vy = {Integer, String},
and eight edges given by E(G) = E. In total it has four vertices, given by
V(G) = V, UVy = {Person, Country, Integer, String}. Figure 4.1 shows a
visual representation of GG, where blue circles are object vertices from V,,, yellow
rectangles are data vertices from Vj, and the labeled, directed edges are the
edges in E. ¢

If we consider the resource graph from Example 4.1.4, we see that each edge
starts in an object vertex. This is a property of resource graphs that follows
directly from Definition 4.1.2. Even though the universe defined in Example 4.1.4
is quite minimalistic, there are still some unused labels of I';. For example, the
label age is used in the resource graph, while age™" is not. Definition 4.1.2 only
states that used components have to exist in the universe, so our example is still
valid. It is also worth noting that the inverse of each property is included in I';,
which is a requirement (see Definition 4.1.1).

When visualizing resource graphs and similar structures in this thesis, we
will use the same color codes as the graph in Figure 4.1, where object vertices
are represented by blue circles, and data vertices are represented by yellow
rectangles.

45

4. Ontology-Based Visual Query Systems

knows Person borders

%, " %2, %
.G ‘e, =Y
b \o"“m “e %
e
Q \
Integer String

Figure 4.1: The resource graph defined in Example 4.1.4.

Resource graphs are not really graphs, according to the standard mathemat-
ical definition. However, we can transform any resource graph into a labeled,
directed graph by merging V, and V; into one set of vertices, which gives us
the graph (V, U Vg, E). The reader should keep this possible transformation in
mind, and be aware of the fact that many of the following definitions about
resource graphs are just modified versions of corresponding definitions related to
standard, labeled, directed graphs. Many of the properties of labeled, directed
graphs are therefore also going to apply to resource graphs.

Edges So far the edges we have considered have been limited to connections
going out from object vertices in a resource graph. But we need to consider
edges in a more general sense, so now, we extend the scope of edges to cover any
connection between two vertices from I', U I'y with a label from T';.

Definition 4.1.5 (Edges in Universe). The set of all edges in the universe (I'y, T4, I';)
is given by

(FoUTyg) x Iy x ([pUTy)
#

Fach of these edges is modeled like edges in labeled, directed graphs, where
the first, second, and third element refers to the source, label, and target of the
edge respectively. Given an edge, we need a quick way to access each of these
three parts, and below we introduce three functions that help us with this.

Definition 4.1.6 (Source, Label, and Target of Edge). Let (I',, 'y, I';) be a universe,
and let e = (v,1,v") be an edge in this universe. The three elements of this edge:
v, [, and v’ are called the source, label, and target of e respectively. We can

46

Resource Graphs

access each of them directly from e by using their corresponding function below:

Source : src(e) =wv
Label : lab(e) =1
Target : tar(e) =o'

_|

Two edges are considered equal if their corresponding triples are identical,
i.e., if they have the same source, label, and target. This allows us to construct
graphs with interesting arrangements like e.g. multiple edges with the same label
but different source or target, like the two edges labeled by name in the graph
presented in Figure 4.1, or multiple edges between the same pair of vertices,
where the labels differ.

Similar to how the vertices are split into object vertices and data vertices,
we can also split the edges into two parts, object edges and data edges, based on
the type of their targets.

Definition 4.1.7 (Object Edges and Data Edges). Let (I'y,T'4,I';) be a universe,
and let e be an edge in this universe. If tar(e) € I'y, then e is called an object
edge, and if tar(e) € T'y, then e is called a data edge. Given a resource graph G
over (I',,T4,T}), we define E,(G) and E4(G) to be the object edges and data
edges of G respectively. .

Given an edge, we define its inverse to be the edge with the inverse label,
pointing in the opposite direction. Such an edge can always be constructed
since the universe requires that each label in I'; actually has an inverse (see
Definition 4.1.1).

Definition 4.1.8 (Edge Inverse). Let (I'y,I'y,I';) be a universe, and let e =
(vs,l,v) € (ToUTy) x Ty x (T, UTy) be an edge in this universe. The inverse of
e, denoted e~ !, is defined as e=t = (vy, 171, vy). 5

Assume that we have a resource graph G over (I',,['4,T). It is possible
to construct the inverse e~! of every edge e € E(G), but this inverse will not
necessarily be a part of G itself. If e is a data edge, for example, then its inverse
will start in a data vertex, which means that it cannot be included in any resource
graph.

Example 4.1.9. Let us re-visit the resource graph from Example 4.1.4. Three of
the edges in this graph are:

e1 = (Person,visited, Country)
es = (Country, visited By, Person)

es = (Country, name, String)

47

4. Ontology-Based Visual Query Systems

The source, label, and target of e; is given by

src(ey) = Person
lab(ey) = visited
tar(ey) = Country

Since visited is the inverse of visitedBy, i.e., visited ' = visited By, then we
get

e; ! = (Person,visited, Country) ™"

(
(Country, visited™ ", Person)
(

Country,visited By, Person)

262

Le., e; and e; are inverses of each other. By using the definition of edge inverses,
we can construct the inverse of es:

ez ' = (String, name™', Country)

This is a proper edge over the given universe, but it can never be included in G,
since its source is a data vertex. ¢

Although an edge e is not the same as its inverse e !, they will be considered
equivalent in certain settings, like when they are used in queries. For example,
querying for all persons that have visited a country, should give the same results
as querying for all countries visited by a person. It is just the same query flipped.

Subgraphs A subgraph of a resource graph is just another resource graph where
only a subset of the vertices and edges from the original graph is included.

Definition 4.1.10 (Subgraph). Let G = (V,, Vg, E) be a resource graph. A resource
graph G’ = (V, V], E’) is a subgraph of G it V] C V,, V] C Vg, and E' C E.

Homomorphisms and Isomorphisms In Section 2.2.2, we formally defined
homomorphisms between two labeled, directed graphs. Now we will give a
similar homomorphism definition for resource graphs.

Definition 4.1.11 (Resource Graph Homomorphism). Let G and G’ be two resource
graphs over (I'y,Tq,T;) and (I'), T, T;) respectively. A function f: V(G) —
V(G') is called a homomorphism from G to G’ if all the following properties are
satisfied:

f(v) € V(G for all v € V,(G) (4.1)

f(v) € V4(G") for all v € Vy(G) (4.2)

(v,1,v") € E(G) = e € E(G') or e ! € E(G’) where e = (f(v),1, f(¢))) (4.3)
_{

48

Resource Graphs

Equations 4.1 and 4.2 in the definition above states that f has to map data
vertices in G to data vertices G', and object vertices in G to object vertices
in G'. Equation 4.3 formulates the homomorphism requirement. Notice that
Equation 4.3 accepts both e and e~! in the target graph. Which is another way
of saying that homomorphisms consider edges and their inverses to be equivalent.
An isomorphism in this context is now a homomorphism whose inverse is also a
homomorphism.

Definition 4.1.12 (Resource Graph Isomorphism). Let G and G’ be two resource
graphs. A bijective function f: V(G) — V(G') is called an isomorphism between
G and G’ if both f and f~! are homomorphisms. If f is an isomorphism between
G and G, then G and G’ are said to be isomorphic. -

Resource Trees The queries supported by our system are tree-shaped, and they
will be based on tree-shaped resource graphs. It is not obvious what the term
tree-shaped actually means in the context of resource graphs, so now we will
describe it formally. This requires formal definitions of walks and paths in
resource graphs.

Definition 4.1.13 (Walk). Let G be a resource graph. A walk from a vertex v to a
vertex v’ is a sequence of vertices vg,v1,...,v, € V(Q) and a sequence of edges
€o,€1,...,en—1 € E(G) that satisfies the following three conditions:

vy = (4.4)
vy =0’ (4.5)
v; = src(e;) and v;4q = tar(e;) forall i =0,1,...,n—1 (4.6)

A walk is called direction-ignorant if it ignores the direction of the edges. A walk
becomes direction-ignorant if we replace Equation 4.6 above with

v; = src(e;) and v;41 = tar(e;)
or

v; = tar(e;) and v; 11 = src(e;)
foralli=0,1,...,n—1

_|

Intuitively, a walk is given by process of starting in a vertex and transition
along the direction of the edges in the graph. A direction-ignorant walk is the
same thing, except that it allows transitions along edges in reversed direction.
Notice that walks can both re-visit vertices multiple times, and transition along
the same edge multiple times. Notice also that it is possible to construct a walk
without any edges. This is then just a walk from a single vertex to itself. Now,
we define a path to be a walk where edges are not repeated.

Definition 4.1.14 (Path). A path is a walk where the sequence of visited edges
contains no duplicates. A direction-ignorant path is a direction-ignorant walk
where the sequence of visited edges contains no duplicates or inverses. =

49

4. Ontology-Based Visual Query Systems

Now we can use direction-ignorant paths to formally define resource trees.

Definition 4.1.15 (Resource Tree). A resource tree is a resource graph R with
exactly one unique direction-ignorant path between each pair of vertices. o

If there exists exactly one vertex v, € V(R), called the root of R, that can
reach all other vertices in R when walking along the edges, then we call R a
rooted resource trees.

Definition 4.1.16 (Rooted Resource Tree). A rooted resource tree is a resource tree
R that contains exactly one vertex, v, = root(R), called the root of R, such that
there is a unique path from v, to every vertex in V(R). =

In a rooted resource tree, every vertex except for the root has exactly one
incoming edge. We define the source of this edge to be the parent of the vertex.

Definition 4.1.17 (Parent of Vertex). Let R be a rooted resource tree, and let
v € V(R)\ {root(R)} be a vertex other than the root. We define the parent of
v, denoted parent(v) to be the unique vertex v, such that (v,,1,v) € E(R) for
some label [. —

We also need to refer to all the children of a given vertex.

Definition 4.1.18 (Children of Vertex). Let R be a rooted resource tree, and let
v € V(R) be a vertex in R. We define the children of v, denoted children(v) to
be the set of all vertices v, such that parent(v.) = v. -

Since resource trees are a special case of resource graphs, all the definitions
we have presented related to resource graphs, will also be applicable to resource
trees.

4.2 Main Structures

Before we can formally define the navigation graph N, the dataset D, and the
partial query Q, we have to specify the sets of components to be used in these
structures. We already know that A/, D, and Q will be based on resource graphs,
and the components we now present are important because they will be used to
define the universes that these resource graphs are defined over.

More specifically, we are going to assume that there exists a set of classes
I'., a set of datatypes I'y, a set of instances I';, a set of data values T',,, a set of
object variables I',,, a set of data variables I'g,, and a set of properties I'y,.

The navigation graph N is a specific type of resource graph over the universe
(T¢,Ty4,T'p). In other words, N is a resource graph where the object vertices are
classes, the data vertices are datatypes, and the edges are labeled with properties.
When we refer to something that is either a class or a datatype, i.e., a general
element in ', UT'y, we use the term type.

The most essential part of the dataset D is a resource graph Gp over the
universe (I';, Iy, T'), called the data graph of D. In this graph, the object vertices
are instances, the data vertices are data values, while the edges are labeled with

50

Main Structures

Term Sub Term Symbol | Used in

Properties | Properties r, N, D, Q
Tvoes Classes I, N
M Datatypes Iy N
.. Instances I D
Entities Data values T, D
. Object variables | Ty, Q
Variables Data variables T Q

Table 4.1: Summary of the sets of components needed to model N, D, and Q.

properties. When we refer to something that is either an instance or a data
value, i.e., a general element in I'; UT",,, we use the term entity.

Finally, the core of a query Q is a resource tree Rg over the universe
(Tov, Taw,T'p), called the query tree of Q. In this tree, the object vertices are
object variables, data vertices are data variables, and the edges are labeled with
properties. When we refer to a general element of I',,, UT'y,, we use the term
variable.

An overview of all seven component sets is presented in Table 4.1. Components
cannot belong to more than one of these sets at the same time, i.e., we assume
that all the seven sets are pairwise disjoint. This means that we can determine
the type of a component by checking which set it belongs to. Furthermore, since
the properties in I',, will be used as labels in all the resource graphs we consider,
it is required that each property has an inverse.

As long as all the seven component sets are pairwise disjoint and every
property has an inverse, we do not put any other limitations on the components.
However, in order to make a useful system, it is important that the user recognizes
classes, datatypes, and properties from the domain. In practice, this means that
every class, datatype, and property from the domain should be included in T,
I'4, and I',, respectively. Similarly, in order to make a precise model of the RDF
dataset, it is important that every class, datatype, property, instance, and data
value is available in their corresponding component set.

Example 4.2.1. These seven sets, combined with the inverse relationships defined
below, defines a valid collection of component sets.

I, = {visited, visited By, knows, borders, name, age, population, ...}
T'. = {Person,Country, Actor, ...}

Ty = {Integer, String, Double, Boolean, ...}

I, ={P1,P2,P3,P4,...,C1,C2,...}

I', = every integer, string, double, datetime etc.

Ty = {?01,70], 709,70}, 03,705, ...}

gy = {?dy,?d}, 7da, 7d5, 7ds, 7d, . . . }

51

4. Ontology-Based Visual Query Systems

visited™ ! = visited By
knows™' = knows

borders™' = borders

These sets are all pairwise disjoint, and every property has an inverse. Both
knows and borders are their own inverses. ¢

In all the examples later in this thesis where a set of components is needed,
we will use the components from Example 4.2.1.

4.2.1 The Navigation Graph

The navigation graph is a structure that defines how classes, datatypes, and
properties can be combined into queries in our system. We model it as a resource
graph N, where object vertices are classes from T, data vertices are datatypes
from I'y, and edges are labeled with properties from I',. In addition, we require
it to be finite, and that the inverse of each object edge is included.

Definition 4.2.2 (Navigation Graph). A Navigation Graph is a finite resource graph
N over (I';,T'4,T')), where the inverse of each object edge is included. Le.,

e € Eo(N) = et € E,(N)
_{

Each edge (t,p,t') in N where ¢’ is an object vertex, is called an object edge,
and we will use the term object property when we refer to the property p of this
edge. Similarly, we will use the term data property when we refer to properties
used in the data edges of N.

Example 4.2.3. Given I';, I'y, and I, from Example 4.2.1, the figure below depicts
a valid navigation graph N. Notice that this is exactly the same resource graph
as we presented in Example 4.1.4.

knows Person borders

§: o 2, %’
0 3
b “\o"“” “e B
[\
Integer String

52

Main Structures

N has two classes, given by V,(N) = {Person, Country}, and two datatypes,
given by Vy(N) = {Integer, String}. Furthermore, it has a total of eight edges.
The properties age, population, and name are all data properties since the targets
of their edges are all datatypes. The properties knows, visited, visited By, and
borders are all object properties. ¢

This is the only navigation graph we will present in this thesis, and it will
be used in every example throughout this thesis, where a navigation graph is
needed.

The purpose of the navigation graph is to have a structure that clearly states
which types the user is allowed to include in their query, and how these types
can be connected by properties. More precisely, a property between two types in
N indicates that the same property can be used to connect variables of the two
types in the query. For example, if one constructs a query over the navigation
graph from Example 4.2.3, then visited is the only allowed property from a
variable of type Person to a variable of type Country.

The reason why we require each object edge to have an inverse is that this
allows users to navigate in both directions between classes when they construct
queries. L.e., if a user wants all persons and the countries each of them has
visited, they may either start with Person and connect it to Country, or start
with Country and connect it to Person. Why this is only needed on object edges,
and not data edges, becomes clear when we define queries in Section 4.2.3, and
query extensions in Chapter 5.

4.2.2 The Dataset

To model the dataset D, we need both a data graph Gp, and a typing function
Tp. The data graph Gp specifies which instances from I'; and data values from
T', that are included in the dataset, and how they are connected by properties
from I',. This can be modeled by a finite resource graph defined over the
universe (I';,T',,T,). The typing function Tp is used to specify which classes
and datatypes each entity in G'p is typed to. In other words, it maps each entity
in Gp to a subset of I'. UT'y. In the definition below, we use P(I'. UT,) to
denote the power set of I'. UT',.

Definition 4.2.4 (Dataset). A dataset D is a pair D = (Gp,Tp) where:

o Gp is a finite resource graph over the universe (I';,T',,T,), called the data
graph of D.

e Tp: V(Gp) = P(I.UTy) is a function, called the typing function of D.

4|

This dataset definition is very flexible. It does not restrict or limit which
instances, data values, or properties to use, and it allows typing to any subset of
the available types. The dataset could, for example, have an instance without
types, or a data value typed to five different classes and one datatype.

53

4. Ontology-Based Visual Query Systems

However, we will be using queries that follow the structure of N, and
when these queries are executed over the dataset, they will only extract data
that matches the structure given by the query, and hence N. (See upcoming
Definitions 4.2.9 and 4.3.1 for details.) In other words, if parts of the dataset do
not conform to N, then it will simply be ignored by the system, so indirectly,
the dataset will have a connection to N. A result of this is that all typing
from instances to datatypes, and data values to classes, will be ignored. This
is in accordance with how classes and datatypes should be used in a clean
dataset: instances should be typed to classes, while data values should be typed
to datatypes.

Since the most important part of a dataset D = (Gp,Tp) is its data graph
Gp, we will often refer to entities, edges, or properties, in this graph directly, as
if they were components of D itself. In particular, we define

V(D) = V(Gp) E(D) = E(Gp)
Vo(D) = 70(GD) EO(D) :EO(GD)
Va(D) =V4(Gp) E4(D) = E4(Gp)

Example 4.2.5. Given the setup of components from Example 4.2.1, Figure 4.2
shows a valid dataset D. It contains eight instances (blue circles) and 16 data
values (yellow rectangles) in total. The types corresponding to each entity is
listed inside its vertex, below its name. Notice that each entity is associated
with exactly one single type, except for Ps, which is typed to both Person and
Actor, and 16, which is not typed to any class. The dataset presents a small
group of six persons, and the countries they have visited. It is relatively simple
and well-structured, but observe that two of the persons share the same name:
Alice, and that Py is not connected to the other persons and countries, which
makes the data graph disconnected. ¢

The dataset in Figure 4.2 is the only dataset we will present in this thesis,
and every example that requires a dataset D, will use this dataset.

So far we have given definitions describing the structure of both the navigation
graph N and the dataset D. These two structures are both very central parts of
our work, and they will be used in many of the definitions presented throughout
the thesis. Hence, from this point on, we will just assume that A refers to the
only relevant navigation graph and that D refers to the only relevant dataset.

4.2.3 Queries

The core of a query Q is a tree-shaped query graph that specifies which variables
to include, and how they are connected by properties. Each of these variables
will be associated with a certain type. If the variable is typed to a class, it is
defined to be an object variable, and if it is typed to a datatype, it is defined to
be a data variable. This can be modeled by a resource tree Rg over the universe
(Tow, Taw,T'p), and a typing function Tg, which maps each object variable in

54

Main Structures

smouy

2.
%,
=
S

s

Z”'Sz't.gd

0

W
l"“

visited —|
)

' agc\{

B
3

Figure 4.2: A visual representation of a dataset. The types of each instance and
data value is given below its name.

55

4. Ontology-Based Visual Query Systems

V,(Rg) to a class in T, and each data variable in V4(Rg) to a datatype in T'.
In addition to Rg and Tg, Q must also contain a filter function Fo, which maps
each data variable v to its set of legal data values, i.e., Fg must map the variable
v to a subset of the possible data values I',,.

Definition 4.2.6 (Query). A query Q is a triple (Rg, To, Fg) where:

e Rg is a resource tree over (I'yy, gy, I'p), called the query tree of Q.

o To: V(Rg) — (' UTy) is a function, called the typing function of Q,
which satisfies both of the following requirements:
— To(v) € T, for every v € V,(Rg)
— To(v) € Ty for every v € Vy(Rg)

e Fg: Vy(Rg) — P(T,) is a function, called the filter function of Q.
_{

In the next chapter, where we describe how to extend queries, we need a way
to represent queries where a particular variable v, is in focus. To do this, we
use queries where the query tree Rg is rooted, and where the root of Rg equals
this special variable v,.. Since the query tree of such a query is rooted, we call it
rooted query. Furthermore, we will use the term root variable when we refer to
v, and we will use the function root to access this root.

Definition 4.2.7 (Rooted Query). A rooted query is a query Q = (Rg,To, Fo)
were Rg is a rooted resource tree. The root variable of Q, denoted root(Q), is
defined to be the root of Rg, i.e., root(Q) = root(Rg). -

Example 4.2.8. Consider the two queries:
Q1 = (RQNTQUFQl) and Qp = (RgzaTQzaFQ'z)

where

Rg, = ({01}, {?d1},{(?01, name, 7dy)})
To, = {?01 — Person,?d; — String}
Fo, ={%d; — T}

RQQ = ({?01}7 {?dla ?dQ}v {(?017 name, ?dl)a (?017 age, ?dQ)})
To, = {?01 — Person,?d; — String, 7ds — Integer}
Fo, ={?% —T,,%dy = {uel, |u>18}}

Since both Rg, and Rg, are rooted resource trees, Q; and Qs are in fact rooted
queries where root(Q;) =701 and root(Qs) =705. Visual representations of both
Q1 and Qs are given in Figure 4.3, where each vertex contains the name, type,
and potential filter of the variable it corresponds to, and where the arrow below
each query points at the root.

¢

56

Main Structures

?d2

?dy ?d1
String Uiegzar fe—_ _»| String
name > 18 e name
701 201
Person Person

Q1 Q2

Figure 4.3: The two rooted queries Q1 and Qs.

The way we have chosen to model filters is very general: the function Fg
links each data variable v to the set of values it can be mapped to. We call
this the filter set of v. These filter sets can be used to model all kinds of user
interface filter elements over the system, as each such element essentially just
defines a set of values the variable can take. By default, we consider a variable
to be unrestricted, which corresponds to a filter set equal to I',. Any significant
restriction to a variable will then correspond to a filter set equal to a proper
subset of the values in T',,.

Notice that in Figure 4.3 we did not include the filter set of the variable 7d;
in query Q. This is because it is unrestricted. Variable ?ds, on the other hand,
is restricted to values not below 18, and since this is not the default filter, we
have to specify it explicitly in the visual representation of the query.

If all the data variables of a query are unrestricted, the query is called a
filterless query. There is no need to specify the filter function of such a query
since it will just map every variable to I',. Hence, if a query is filterless, we
will often just exclude the entire filter function from the query specification,
and represent a query by only its query tree and typing function. Using this
shorthand notation, we can represent query Q; again like this:

Ql - (RQI y TQl)
where
Ro, = ({701}, {?d1}, {(?01,name, 7dy)})
To, = {?01 — Person,?d; — String}

Since the most important part of a query @ = (Rg, Tg, Fo) is its query tree
Rg, we will often refer to variables, edges, or properties in this tree directly, as
if they were components of Q itself. In particular, we define

V(Q) = V(Rg) E(Q) = E(Rg)
_O(Q) = _O(RQ) _O(Q) = EO(RQ)
Va(Q) =Va(Ro) F4(Q) = Eq(Ro)

Legal Queries The queries we have considered so far do not have any connection
at all to the navigation graph N. But as indicated earlier, the purpose of having

57

4. Ontology-Based Visual Query Systems

the navigation graph is to control which queries the user is allowed to make.
More precisely, the system should only allow queries where the typing function
To is a homomorphism from the query tree of Q to N. When this is the case,

we say that the query conforms to N, or that the query is legal with respect to
N.

Definition 4.2.9 (Legal Queries). A query Q = (Rgo,To, Fo) is legal with respect
to N if Tg is a homomorphism from Rg to V. 8

Given a legal query Q = (Rg,To, Fo), the typing function T can be applied
to any variable v € V(Q) to get the type To(v) € V(N that corresponds to v.
But, this typing function indirectly also maps each edge e = (vs,p,v;) € E(Q)
to a corresponding edge in N, given by Tg(e) = (To(vs),p, To(vi)).

Example 4.2.10. Consider the two queries Q; and Qs from Example 4.2.8. Both
of them are legal with respect to N from Example 4.2.3. To prove that Q; is
legal, we need to show that T, is a homomorphism from Rg, to . Rg, only
has one edge, e = (Y01, name, ?d;), and in order for Tg, to be a homomorphism,
there must a corresponding edge To,(e¢) = (To,(?01),name,Tg,(?d1)) =
(Person,name, String) in N, which is indeed the case. To prove that Qs
conforms to N, one has to do a similar check for Tg, and the two edges in

Qo. ¢

Simple Queries A rooted query is called simple if it does not have two of the
same outgoing properties. Simple queries will play a central role later in the
thesis.

Definition 4.2.11 (Simple Rooted Queries). A rooted query Q = (Ro,To, Fo) is
simple if no variable has more than one outgoing edge with the same label and
target type. lLe.,

(vs, P, v1), (vs, p,v}) € E(Rg) and Tg(v¢) = To(v)) = v; = v,

Conversely, a query that is not simple is called non-simple.

Subqueries If a rooted query Q, contains only a subset of the variables of
another query Q, and they both have the same root, then we say that Q is a
subquery Q. The typing function and filter function of Q can be used also in
Qs, but it must be restricted to the variables of Qg first.

Definition 4.2.12 (Subquery). Let Q@ = (Rg,To, Fo) and Qs = (Ro.,To., Fo.)
be two rooted queries. Qg is a subquery of Q, denoted Q4 C Q, if all the following
statements are true:

o root(Rg) = root(Rg,)

e Rg, is a subgraph of Rg

58

Query Answers

_|

Query Renaming The names of the query variables does not contain any useful
meaning in themselves — they are essentially just identifiers of the variables.
Hence, if two queries have the same structure, types, and filters, but they differ
on one or more of the variable names, they will still have the exact same semantic
meaning. This kind of renaming from one query to another can be described by
what we call a renaming function, which is a function that maps each variable
in the first query to a corresponding variable in the other query.

Definition 4.2.13 (Query Renaming). A renaming function f, from a rooted query
Q = (Rg,To, Fg) to a rooted query Q" = (Rg/,To/, For), is an isomorphism
from Rg to Rgo/ that preserves the types, the filters, and the root, i.e.,

To(v) = To/(f-(v)) for each variable v € V(Rg)

Fo(v) = Fo/(f.(v)) for each data variable v € Vy(Ro)
root(Rg/) = fr(root(Rg))

If f. is a renaming function from Q to Q’, then its inverse, f!, will be a
renaming function in the opposite direction, from Q' to Q. If there exists a
renaming function from Q to Q’, then Q' is will be called a renaming of Q (and
vice versa). =

Notice that renaming functions can only be found between queries that
are actually semantically identical. Also observe that if the two queries are
non-simple, then there may be more than one renaming function between them.

4.3 Query Answers

When executing a query Q = (Rg,To, Fg) over the dataset D = (Gp,Tp), we
are interested in all parts of the data graph Gp that matches the query pattern
defined by Rg. Such a match can be represented by a homomorphism 7 from
Rg to Gp, which also preserves the types. Furthermore, to ensure the filters
are satisfied, m must map variables to values accepted by Fg.

Definition 4.3.1 (Query Answers). Let Q@ = (Rg,To,Fg) be a query. The
answers of Q over D, denoted ans(Q,D), is the set of all homomorphisms
m: V(Rg) — V(Gp) from Rg to Gp that satisfies:

To(v) € Tp(m(v)) for each v € V(Rg)
m(v) € Fg(v) for each v € Vy(Rg)

59

4. Ontology-Based Visual Query Systems

™ ?01 ?dl
1 P1 Alice ™ ?01 ?dl ?dz
7wy | P2 | Robert m | P1 | Alice 21
w3 | P2 | Bob mo | P2 | Robert | 35
ws | P3 | Carol w3 | P2 | Bob 35
w5 | P4 | Dave my | P3 | Carol | 45
me | P5 | Eve w5 | P4 | Dave 30
mr | P6 | Alice
Table 4.2: Answers returned by Table 4.3: Answers returned by
ans(Q1,D). ans(Q2, D).

Example 4.3.2. If we execute queries Q1 and Qs from Example 4.2.8 over the
dataset D from Example 4.2.5, we get the results presented in Table 4.2 and
Table 4.3, respectively. In both of these tables, each row corresponds to a
homomorphism 7;, while each column corresponds to a query variable in the
relevant query. Each cell corresponds to the entity one gets by applying the
row’s homomorphism to the column’s variable.

¢

Projected Answers The answer function ans(Q, D) gives us the full set of answers
to the query Q over the dataset D, but we will often only be interested in the
entities assigned to one specific variable of Q, i.e., the projected answers onto a
variable v.

Definition 4.3.3. Let Q be a query and let v be a variable in V(Q). We define the
projected answers of Q with respect to the variable v, denoted ansp(Q, D, v), to
be the set of distinct entities assigned to v by functions in ans(Q, D). lLe.,

ansp(Q,D,v) = {r(v) | m € ans(Q, D)}
#

Example 4.3.4. In Example 4.3.2 we executed Q over D using the standard answer
function ans. If we gather all distinct values from each column in the result table
of this operation, we get the projected answers:

ansp(Q1,D,%01) = {P1, P2, P3, P4, P5, PG}
ansp(Q1,D, 7dy) = {Alice, Bob, Carol, Dave, Eve}

¢

Productive Queries Now when we have defined what it means to be an answer
to a query Q, we can formally define what our system needs to detect dead-ends.
We define a query to be productive if it returns answers over D, and unproductive
if this is not the case. The task of detecting dead-end queries is then equivalent
to the task of finding unproductive queries.

60

Query Answers

Definition 4.3.5 (Productive Query). A query Q is productive with respect to D if
|ans(Q, D)| > 0. If the query is not productive, it is called unproductive. -

For example, query Q> is productive, because when executing it over
D, five answers are returned. If, however, we changed the filter on 7dy to
{ueT, | u>50}, it would become unproductive, because every person in the
dataset is younger than 50 years.

Theorems Finally, we present some useful theorems about queries and their
answers. Given two queries Q and Q4 C Q, an answer 7 to Q is also an answer
to Q, after restricting it to the variables of Q.

Theorem 4.3.6. If Q. = (Rg,,To,, F'o,) is a subquery of @ = (Rg,To, Fg), and
7w € ans(Q, D) then n| V(Rg,) € ans(Qs, D). o

Proof. In order to prove this, we must check that all requirements from
Definition 4.3.1 holds for m, = 7] V(Rg,). Since 7 is a homomorphism from
Q to D, then 7y must be a homomorphism from Rg, to D. Furthermore,
since To(v) € Tp(w(v)), To(v) = To.(v), and Tp(w(v)) = Tp(ms(v)) for
all v € V(Rg.), then Tg,(v) € Tp(ns(v)). Finally, since n(v) € Fgo(v),
m(v) = m4(v), and Fg_(v) = Fgo(v) for all v € Vy(Rg.), then we also get

7s(v) € Fo_(v). |

If we project answers onto a variable v that exists in both Q4 and Q, then
we get the following theorem.

Theorem 4.3.7. If O, = (Ro,,To.,Fo.) is a subquery of Q = (Rg,To, Fo), then
ansp(Q,D,v) C ansp(Qs, D, v)
for each variable v € V(Rg,). —|

Proof. I u € ansp(Q,D,v), then there must be a m € ans(Q, D) such that
m(v) = u. From Theorem 4.3.6, we then know that 7| Rg, € ans(Qs, D), and
since v € V(Rg,), then v = w(v) = 7| Rg,(v) € ansp(Qs, D, v). |

In this chapter, we have presented the most essential structures and definitions
that our VQS model relies on. In the next chapter, we will complete this VQS
model, by defining how the user can extend the partial query. We will also define
how the system can provide query extension suggestions to the user.

61

Chapter 5

Query Extensions

In the previous chapter, we formally defined the most central parts of our
VQS model: the navigation graph A/, the dataset D, and the type of queries
it supports. Furthermore, we defined the two answer functions ans and ansp,
which returns respectively the full set of answers, and the projected answers of a
query when it is executed over D. Finally, we defined a query to be legal when
it follows the structure outlined by N, and we defined it to be productive when
it returns non-empty answers over D.

We also described briefly how a session can be described by the sequence of
queries the user makes: Q1, Qs, ..., Q. In this chapter, we will take a closer look
at the transition between these queries, i.e., how the user modifies a query Q; 1
into a new version Q;, and in particular, we are interested in query extensions
since they can potentially lead to dead-ends.

This chapter contains four sections. In Section 5.1, we describe the three
user actions our VQS supports: delete, refocus, and extend. All of them make
modifications to the partial query, but extend is the most interesting one in
the context of our work since it is the only action that can possibly lead to
dead-end queries. Based on the definitions of legal and productive queries from
the last chapter, we define legal and productive extensions in Sections 5.2 and 5.3
respectively. Then, in Section 5.4 we discuss different approaches to detect such
productive extensions.

5.1 User Actions

We assume that the VQS supports three actions that allow the user to modify
the partial query:

e Delete: Remove a given leaf variable from the query.
o Refocus: Change the focus variable of the query.
o Extend: Extend the query with a new variable.

Multiple uses of these three actions can be done in sequence, and this allows the
user to formulate any legal query. They can also be combined to make other
more advanced user actions, like editations. For example, if the user requests
the system to edit the filter set of a variable, this can be done by deleting the
whole variable, and then replace it with a new variable coupled with the correct
set of filters. The three actions presented above are not necessarily the same
as those that are presented to the user, but since they make a complete set of
actions, it is sufficient to only consider them.

63

5. Query Extensions

Delete The delete action allows the user to select and delete an existing leaf
variable from the query, i.e., remove a variable that is only connected to one
other variable. This action also deletes the edge that connects it to the rest of
the query, and it discards both the type and the filter of the variable. Only leaf
variables can be deleted, because if internal variables (i.e., non-leaf variables) are
deleted, then the resulting query would become disconnected, which is illegal. If
the user really wants to delete an internal variable, they need to first delete other
leaf variables, one by one, until the internal variable becomes a leaf variable.
After that, they can delete it directly.

We define the deletion process formally by a function del, which takes as
input a query Q and the variable v to delete, and returns the parts of Q that
are left after v has been removed.

Definition 5.1.1 (Delete Function). Let Q = (Rg,Tg, Fo) be a query, and let
v e V(RQ) be a leaf variable of Q. The query Q' that remains after removing
both v and the only edge e connected to v from Q, denoted del(Q, v), is defined
as @ =del(Q,v) = ((V,,V],E'),To, Fo') where

‘/O/ =1, \ {’U}

Vi=Va\{v}

E' = FE\{e}
Tor =Tolwyuvy)
For = Folvy

_{

In the definition above, v should be removed from V, if it is an object variable,
and from Vj if it is a data variable, but since we do not want to make one delete
function for each of the two cases, we just try to remove it from both sets, and
then it will be removed from the set where it actually exists.

Refocus Before the user can extend the query with a new variable through the
extend action, they must first decide which variable to extend from. This is done
through a process called focusing or refocusing, where the user just selects one
of the variables, which is then set to be the focus variable.

After a variable has been selected, it is always possible to turn the partial
query into a rooted query where the focus variable is the root, by replacing
a particular subset of the edges with their inverse. Technically, this process
makes a new version of the query, but since ans considers each edge and its
corresponding inverse to be equivalent, this new query will return the exact same
answers as the original query over every dataset. In other words, this flipping
process does not change the semantic meaning of the query. At the same time,
this representation is very convenient, because it standardizes the form of queries,
by making sure that every edge points away from the focus variable. Because of
this, we will be using this rooted version of the partial query frequently in this
and the remaining chapters.

64

User Actions

It should always be clear to the user which variable is in focus at any time, so
it is important that the system labels the focus variable in some way. However,
the user will not necessarily be interested in the rooted version of the query,
where some of the edges have been flipped, so this rooted version should only be
used internally by the system and kept hidden to the user.

Selecting a focus variable is then, from a technical perspective, just the
process of defining which variable to use as root in the query. We now formalize
this rooting process by the function setRoot, which turns a query Q into the
semantically equivalent rooted query Q' where the given variable v, is the root.

Definition 5.1.2 (Set Root Function). Let @ = (Rg,To, Fo) be a query, and let
v, € V,(Rg) be an object variable of Q. The rooted query Q' returned after
rooting on v,., denoted setRoot(Q, v,.), is the query that keeps all variables, types,
and filters of Q, but where every edge e = (vs,p,v¢) € V(Rg) is replaced by e~*
if the unique direction-ignorant path from v, to vs contains v;. -

If the direction-ignorant path from v, to vs contains v, it means that v is
closer to v, than v, which means that e points towards v,.. This is not what we
want, so if that is the case, e has to be flipped, i.e., it has to be replaced by e~!.

Since we are representing the partial query with focus as a rooted query, most
of the remaining work of this thesis will actually be related to rooted queries.
In fact, there will just be a few cases where we consider queries where a root
variable is not set, so instead of specifying every time that a query is rooted, we
will instead specify when this is not the case — we then use the term unrooted
query. When we are working with rooted queries, we will use both of the two
terms root variable and focus variable when we refer to the root of the query.
We will use the terms root class or focus class when we refer to the type of the
root variable.

Example 5.1.3. Consider the unrooted query Qg in Figure 5.1. It can be turned into
the rooted query Qg, by focusing on the variable 701, i.e., Qg, = setRoot(Qyg, 701).
Similarly, it can be turned into Qg, and Qg. by focusing on 7oy and 7os
respectively. Notice how the edge (709, visited By, 701) in Qg got replaced by its
inverse edge (701, visited, ?05) in Qg,. This was done because all edges have to
point away from the root in a rooted tree.

¢

Extend The third, and most important user action we consider, is the extend
action, which allows the user to add a new extension variable v, to the query by
connecting it to the current focus variable v, via a property p.. The extension
variable v, also needs a type t., and a filter set X, if it is a data variable. This
gives us two types of extensions: object property extensions when v, is an object
variable, and data property extensions when v, is a data variable. These two
types of extensions are quite different due to the way the navigation graph and
queries are defined. The most notable difference is that data property extensions
require a filter set that must be attached to the extension variable, while this
is not required for object property extensions. This actually makes dead-end

65

5. Query Extensions

bo@,

T
>
Q
=
<L
S
=
3
-2
B

knows —|

Figure 5.1: Query Qg and how focusing on each of its three object variables results
in three different rooted queries.

66

User Actions

detection much harder in the case of data property extensions. In fact, object
property extensions and data property extensions are so different, that it is hard
to make a unified extensions model for them, so we will for now just consider
dead-end detection over data property extensions, and then, later, we will discuss
how the methods we develop can be used to also detect dead-ends over object
property extensions.

A data property extension can be specified by the triple consisting of the
extension property pe, the extension type to, and the extension filter set X.. We
group them together into what we call an extension specification (pe,te, Xe).

Definition 5.1.4 (Extension Specification). An eztension specification is a triple
(Pe,te, Xe) € Ty x Tg x P(T'y), where p. is called the extension property, te is
called the extension type, and X, is called the extension filter set. —

When we use the term extension, we usually refer to the whole process of
extending Q into a new version Q’, as described above. But, since there is a
one-to-one correspondence between extensions and extension specifications, we
may occasionally use the term extension also when we refer to specifications.

We can now define the extension function ext, which formalizes the process
of extending our query Q according to an extension specification o.

Definition 5.1.5 (Extension Function). Let Q@ = (Rg,Tg, Fo) be a query, where
Rg = (V,, Vg, E) and v, = root(Rg), and let o = (pe, te, X.) be an extension
specification. The query Q' resulting from extending a query Q according to
the extension specification ¢, into a new extension variable v, € (g, \ V(Q)),
denoted ext(Q,0,v,), is given by Q' = ext(Q,0,v.) = ((V,,V},E’),To, For)
where

v, =V, (5.1)
Vi o= Vi Ufu) (5.2)
E' = E U{(vr,pe, ve)} (5.3)
To =To U{ve — te} (5.4)
For = FoU{v. — X.} (5.5)

_|

Even though this definition is quite extensive, it still just describes the
relatively simple process of adding one new data variable to the query. The new
query Q' keeps everything from the original query, but adds what is needed to
include the new variable. All object variables are kept unchanged (Equation 5.1),
while both a new data variable and an edge are added (Equation 5.2 and
Equation 5.3). The types and filter sets are kept unchanged for all variables,
except for v, which is mapped to the type t. and filter set X, (Equation 5.4
and Equation 5.5).

Example 5.1.6. Let Q1 be the query defined in Example 4.2.8, which is presented
again in Figure 5.2. Furthermore, let o = (age, Integer, {u € T, | u > 18}) be
an extension specification. Using the extension function ext, we can construct the

67

5. Query Extensions

?d2

?dy ?d,
String liatiagey String
nameé - 218 [Tage name
2?01 01
Person Person

Q1 Q2

Figure 5.2: The query Q1, and the resulting query Qs after extension.

query we get by extending Q@ according to the specification o, into a new variable
?dy. This gives us Qo = ext(Q1, 0, 7ds), which is also defined in Example 4.2.8,
and presented visually in Figure 5.2, next to Q;.

¢

Notice that the extension variable v is not included in the specification o
in Definition 5.1.4. This is because it is just a reference to the variable, and
this does not affect the meaning of the resulting query. Or, said in another way,
the query Q' = ext(Q, g, v.) is just a renaming of the query Q' = ext(Q, o, v’),
which we get if we extend Q into another variable v/. In particular, we are very
interested in the projected answers of Q' with respect to the extension variable,
and those do not depend on the extension variable’s name.

Among the three actions we now have considered, only the extend action
makes the query more restrictive, which means that this is the only action that
may lead the user into queries that are illegal or unproductive. Hence, we will
only focus on extensions in the remainder of this thesis.

5.2 Legal Extensions

In Definition 4.2.9 we defined what it means for a query to be legal with respect
to . Now we extend this term to also cover extension specifications: we consider
them to be legal if they lead to legal queries.

Definition 5.2.1 (Legal Extension Specification). Let Q be a query, and let o be
an extension specification. o is a legal extension specification if ext(Q, o, v.) is
legal for each data variable v, € (T'gy \ V(Q)). =

If we know that Q is already a legal query, then it is relatively easy to
determine if o is a legal extension: we have to consider the focus concept of
the partial query and check that one of its outgoing edges in A has a property
and target type that matches the property and type of . For example, if we
work over the navigation graph from Example 4.2.3, and have a query with
root class Person, then legal extensions must be of the form (name, String, X.)
or (age, Integer, X..) because the only two outgoing data edges of Person are
(Person,name, String) and (Person, age, Integer).

68

Legal Extensions

Theorem 5.2.2. Let Q = (Rg,Tg, Fo) be a legal query, let ¢, be the root class of
Q, and let 0 = (pe, e, X¢) be an extension specification. o is legal if and only if
(tr,pe, te) € E(N). B

Proof. Since Q is a legal query, we know that Tg is a homomorphism from Rg
to N, i.e., there exists a corresponding edge in A for each edge in Rg. The
only difference between the edges of Q and Q' = ext(Q, 0, v.), is the new edge
(Ur, Pe, Ve), SO we just need to show that this edge has a corresponding edge in
N. From Definition 4.2.9 and Definition 4.1.11, this edge has to equal

(Tor (vr),pe, Tor(ve)) = (tr, Pe, te)

so Q' is legal if and only if (¢, pe,t.) € E(N). []

Notice that we only need to consider p. and t., and not X, in order to
determine whether an extension is legal or not. This complies with Definition 4.2.9
of legal queries, where the filter of the query is not even considered. It also
makes sense if we highlight the fact that A/ does not contain any data values,
and hence, cannot dictate which data values to filter on. We will combine the
property p. and the type t. into a pair 7 = (pe, t.), called an extension pair, and
we say that an extension is based on 7 if it uses the property and type specified
by 7, i.e., if it has the form (pe,t., Xe).

Definition 5.2.3 (Extension Pair). An extension pair is a pair 7 = (pe, te) € I' xI'g.
An extension specification o = (p,t., X.) is based on 7 if both p. = p, and
te =1t 1

The system should only allow legal queries, hence, it should only allow legal
extension specifications. Based on our findings from Theorem 5.2.2, we can
define the set of all legal extension pairs, i.e., all pairs such that any specification
based on such a pair is legal.

Definition 5.2.4 (Legal Extension Pairs of Class). Let t,. € V,(N) be a class. The
set of all legal extension pairs of t, with respect to N, denoted J(¢,,) is defined
as

J(tr, N) = {(pe, te) | (tr,pe.te) € E(N)}

We extend the definition of legal extension pairs to also cover queries.

Definition 5.2.5 (Legal Extension Pairs of Query). Let Q@ = (Rg,Tg, Fo) be a
legal query, and let ¢, be the root class of Q. The set of all legal extension pairs
of Q, denoted J(Q,N), is equal to J (¢, N). .

Example 5.2.6. Given the navigation graph A from Example 4.2.3 and the query
9, from Example 5.1.6 with root class Person, we get the following set of legal

69

5. Query Extensions

extension pairs:

J(Q1,N) = J(Person,N)
Peste) | (Person,pe,t.) € E(N)}
name, String), (age, Integer)}

={(
={(
¢

The VQS should never allow the user to construct illegal queries, but this
can easily be avoided by only allowing extension specifications that are legal. In
the remainder of the thesis, where we focus mostly on productive queries, we
will just assume that the partial query is legal and that only legal extensions
will be considered.

5.3 Productive Extensions

Similar to how we defined and analyzed legal extensions in the previous section,
we are now going to consider productive extensions, i.e., extensions that lead
to productive queries. In Chapter 4, we defined a productive query to be a
query Q that returns at least one answer when executed over D. In other words,
productive extensions are the extensions we want the system to suggest and allow
because they are exactly the ones that are not leading to dead-end queries. In
order to detect if a query Q is productive, we have to execute it over D and check
if it returns any answers. This is a much more demanding task than checking if
a query is legal because the dataset is much larger than the navigation graph.

Definition 5.3.1 (Productive Extension Specification). Let Q be a query, and let o
be an extension specification. o is productive if the query Q" = ext(Q, o, v.) is
productive for all data variables v, € (g, \ V(Q)), i.e., if ans(Q',D) # 0. -

Example 5.3.2. Consider query Q; and the extension specification o =
(age, Integer,{u € T, | u > 18}) from Example 5.1.6. This is a productive
extension, because if we extend Qp according to o, we get Qo = ext(Qy, g, 7ds),
and Qs returns five answers over D (see Example 4.3.2). However, the extension
specification ¢’ = (age, Integer,{u € T, | u > 50}), is not productive, because
the query ext(Q1,0’,7ds), which asks for all named persons with age greater
or equal to 50, returns no answers. The filter on the variable 7ds is simply too
strict to make the resulting query productive. ¢

If we only need to determine whether one single specification o is productive
or not, then we only need to calculate ans(ext(Q, o,v.), D) and check how many
answers it returns, like we just did in Example 5.3.2. But, if we have to check
multiple extension specifications based on the same extension pair (pe, t.), then
it is better to first collect the set of all data values that can be assigned to the
extension variable . For example, if we re-visit query Q; from Example 5.3.2,
and consider extensions based on the extension pair 7 = (age, Integer), there
are only five different data values the extension variable can take, given by the

70

Productive Extensions

ages of the people in the dataset: {11,21,30,35,45}. We call this the set of
productive values. When we have this set, it is, for example, very easy to see
that {u € T, | u > 50} is a too restrictive filter set.

Definition 5.3.3 (Productive Values). Let Q be a query, and let 7 = (pe, t.) be an
extension pair. The set of productive values of 7, denoted X,(Q, 1), is the set of
all data values u € T',, such that the query we get by extending Q according to
the extension (pe,t.,{u}) returns at least one answer. lLe.,

Xo(Q,7) ={u €T, |ans(ext(Q, (pe,te, {u}),ve), D) # 0}
4|

Theorem 5.3.4. Let Q be a query, and let 7 = (p¢,t.) be an extension pair.
Furthermore, let Q. be the query produced by extending Q according to the
extension specification (pe,te,I'y), i.e., Qo = ext(Q, (pe,te,'v),ve). Then the
following statement is true.

XO(Q,T) = ansP(Qe7D7ve)
_|

Proof. Select an arbitrary data value u € T',,, and let QL = ext(Q, (pe, te, {u}), ve).
Notice that Q. is identical to Q., except for the filter set on v., where Q. is
more restrictive. Hence, the two following statements are true.

1. m € ans(Q.,D) = = € ans(Q,, D).
2. If 7 € ans(Q,, D) and 7(ve) = u, then 7 € ans(Q., D).

We start by proving that X,(Q,7) is included in ansp(Q., D, v.). If u €
X,(Q,), then by Definition 5.3.3, there has to exist a function 7 € ans(Q%, D),
such that m(ve) = u. From the first statement above, we then know that 7 €
ans(Qe, D). If we now project onto v, we get that u = w(v.) € ansp(Qe, D, ve).

We can make a similar argument to prove inclusion the other way. If
u € ansp(Q, D, v.), then there exists a function 7 € ans(Q., D) such that
m(ve) = w. But then 7 must also be in ans(Q., D), according to the second
statement above, which means that v must be in X,(Q, 7). [|

Given the set of productive values of a given extension pair 7, it is very easy
to determine if an extension specification based on 7 is productive or not: it is
productive if the extension filter set contains at least one productive value.

Theorem 5.3.5. Let Q be a query, and let 7 = (p., t.) be an extension pair. An
extension specification o = (pe, te, X.) based on 7 is productive if and only if
XeNXo(Q,7) # 0. _|

Proof. Let X, € P(I,) be an arbitrary subset of T,, let Q. =
ext(Q, (pe,te, '), ve), and let Q. = ext(Q,0,v.). Notice that Q) is identi-
cal to Q., except for the filter set of v., where Q. is more restrictive. From this
we know that the two following statements are true.

71

5. Query Extensions

1. m€ans(Q.,D) = 7 € ans(Q., D).

2. If 7 € ans(Q,, D) and 7(v.) € X, then w € ans(Q., D).

We start by proving that if o is productive, then X, N X,(Q,7) # 0. o is
productive if and only if ans(Q., D) # 0, and this only happens if there exists a
function 7 € ans(Q., D). Notice that 7(v.) € X.. Using the first statement above,
we then know that 7 € ans(Q., D), which implies that 7(v.) € ansp(Q., D, v.).
Now we have proved that m(v.) is included in both X, and ansp(Q.,D,v.),
hence X, Nansp(Q.,D,v.) = X. N X,(Q,7) # 0.

To prove the statement in the other direction, we assume that X. N
ansp(Qe, D, v.) = X, N X,(Q,7) # 0. This means that there has to be at least
one data value u € T, which is included in both X., and ansp(Q., D, v.), which
means that there exists a function 7 € ans(Q., D) such that w(v.) = u € X,.
From the second statement above, we then know that m € ans(Q., D). Hence,
ans(Q., D) # (), which means that o is productive. [|

Example 5.3.6. Consider query Q; from Example 5.1.6, and the extension pair
7 = (age, Integer). The set of productive values of 7 equals X,(Q,7) =
{11,21,30, 35,45} ¢

The set of productive values X,(Q, 7) of an extension pair 7 = (pe, t.) can
either be used by the system to generate extension specifications, which the
user can select from, or they can be used to validate one or more extensions
suggested by the user. For example, if the system for some reason only wants to
allow singleton filters, then it should make a drop-down list with one element
for each productive value. Each item in this drop-down list would correspond to
an extension (pe, te, {u}), where u is a productive value of 7. The productive
values could also be used to guide auto-completion in text-fields, to validate filter
forms, to generate checkboxes, or to set upper and lower bounds on range-sliders.
A special case occurs when there are no productive values for an extension
pair 7, i.e., when X,(Q,7) = (). When this happens, the system should not
suggest any extensions based on 7, since all of them will be dead-ends. Extension
specifications can be generated or selected in many different ways, but if the
system wants to detect dead-ends, i.e., detect unproductive extensions, it will
almost always be an advantage to calculate the set of productive values first.

We know that we can get the full set of productive values X,(Q,7) by
executing the extended query Q. = ext(Q, (pe,te,I'y),ve) over D, and then
project onto the extension variable v.. But, there is no guarantee that this can
be done fast enough for our needs since it requires querying over D, so we need
to consider other, faster solutions. In particular, we are going to look at efficient
methods that return approximations of X,(Q, 7). We need a way to describe
these approximations, which allows us to compare them to a perfect system, and
this leads us over to value functions.

72

Value Functions

5.4 Value Functions

When we use the term value function, we refer to a function that attempts to
calculate productive values based on an extension case, i.e., a partial query Q
and a given legal extension pair 7 € J(Q, N).

Definition 5.4.1 (Value Function). A value function, is a function S, which takes
as input a query Q and a legal extension pair 7 = (pe, t.) € J(Q,N) of Q, and
returns a set of data values X € P(T,). .

5.4.1 Simple Value Functions

We now present three relatively simple value functions: the productive value
function S,, the domain-based value function Sy, and the empty value function
Se. The productive value function S, returns the set of all productive values,
the domain-based value function Sy returns the whole domain of possible data
values: Ty, while the empty value function S, returns just the empty set: (). All
three value functions are defined formally below.

Definition 5.4.2 (The Productive Value Function: S,). Let Q be a query, and
let 7 = (pe,te) € J(Q,N) be a legal extension pair of Q. The productive value
function, denoted S, is defined as

So(9,7) = X,(9,7)
_|

Definition 5.4.3 (The Domain-based Value Function: Sy). Let Q be a query, and
let 7 = (pe,te) € J(Q,N) be a legal extension pair of Q. The domain-based
value function, denoted Sy, is defined as

Sd(Q; T) = F'u
4

Definition 5.4.4 (The Empty Value Function: S,). Let Q be a query, and let
T = (pe,te) € J(Q,N) be a legal extension pair of Q. The empty value function,
denoted S., is defined as
S (Q,7)=10
4|
Example 5.4.5. Let Q3 be the query in Figure 5.3, and let 7 = (name, String) €

J(Q3,N) be a legal extension pair of Q3. Then the three value functions S,, Sy,
and S, return the following three sets of values.

So(Q3,7) = X,(Qs,7) = {Alice, Bob, Robert}
Sd(Q?))T) = Fv
Se(QBvT) =

73

5. Query Extensions

7ds
Integer
> 100.000.000

/
&

?dy
Integer
>18 [T—age

701
Person

Uy .
‘ “Stte @

Figure 5.3: The query Qs.

5.4.2 Precision and Recall

We can evaluate a value function by measuring how close its set of suggested
values is to the real set of productive values defined by X,. This can be done with
the two standard measures of precision and recall, where we consider X,(Q, 7)
to be the set of relevant values.

Definition 5.4.6 (Precision). Let S be a value function, and let 7 € J(Q,N) be
a legal extension pair of the query Q. The precision of S with respect to Q
and 7, denoted precq (S, Q,), is the fraction of values returned by S that are
productive, i.e.,

15(Q,7) N Xo(Q,7)|

preCC(Sa QvT): |S(Q 7_)|

#

Definition 5.4.7 (Recall). Let S be a value function and let 7 € J(Q,N) be a legal
extension pair of the query Q. The recall of S with respect to @ and 7, denoted
rec(S, Q,7), is the fraction of productive values that are also returned by S, i.e.,

15(Q,7) N Xo(Q,7)]
[Xo(Q,7)|

rec(S,Q,7) =

_{

The precision and recall of the three value functions presented so far: S,, Sy,
S., are calculated below.

- |X0(QvT) ﬂXO(Q7T)| - |X0(Qa7—)| _
Preco(0, @7 = R e Al K@)
(@A) N X(Q7)] | IXu(Qr)
el Q) = TR @ K@)

74

Value Functions

- |Fv ﬁXO(Q,T)| _ |X0(Qv7')‘

preco(Sq, Q,7) = T T ~0
|Fv ﬂXO(Q,T)| |X0(Q 7’)‘
= = =1
eSe QD= T 1%
_0nXe(Qm) 0
precc(Se, Q,7) = 7|®| = T =1
rec(Se, Q,7) = 00 Xo(Q,7)l _ 9 =0

[Xo(Q 1) [Xo(Q,7)]

S, gets perfect score on both precision and recall. This is not a surprise
since it is defined to return exactly the data values we need. Sy returns all of
I',, which is too much in all non-trivial cases. This is reflected by its precision,
which is the fraction of values in I',, that are productive. Since we assume that
I, is a relatively large set, maybe even infinitely large (if it contains e.g. all
strings or all real numbers), while the set of productive values is finite and often
relatively limited, the precision of Sy will in many cases be close to 0. However,
since all productive values are in I',,, the recall of Sy is perfect. S., on the other
hand, returns just the empty set, which results in perfect precision, but a recall
of 0.

While S, is the function that returns exactly what we want, Sy and S, are the
two extreme cases with respect to precision and recall: S; suggests everything
that can be suggested, while S, does not suggest anything at all. S; and S,
are interesting from an analytical perspective, but they should not be used to
suggest values in a real-life system because this would lead to terrible extension
suggestions: Sy would accept any extension, while S, would instead reject them
all.

Type | and Type Il Errors In general, there are two types of errors that can occur
when the system attempts to predict whether an extension ¢ is productive or
not:

o Type I: The system classifies o to be productive, but in reality it is
unproductive.

o Type II: The system classifies o to be unproductive, but in reality it is
productive.

Both of these two types of errors have some unfortunate effects, which users
of systems with perfect dead-end detection never experience: Type I errors may
lead to some undetected dead-ends, and this may cause the user to make a query
that they believe is productive, but which later appears to be unproductive when
it is executed over the dataset, and no results are returned. A Type II error, on
the other hand, may lead to a situation where a productive extension is classified
as a dead-end. This may either discourage or prevent the user completely from

75

5. Query Extensions

selecting this extension, which causes the user to miss out on interesting parts
of the dataset.

These two types of errors are directly connected to the precision and recall of
the value function S used by the system. To be more precise, in order to prevent
Type I errors, S needs perfect precision, and in order to prevent Type II errors,
S needs perfect recall. For example, if our system uses Sy to calculate productive
values, it will, according to Theorem 5.3.5, always classify ¢ as productive. This
will likely cause some Type I errors, but on the other hand, since the recall of Sy
is perfect, all Type II errors will be completely eliminated. Since Type II errors
in the worst case prevent the user from making queries and access the data they
want, we consider them to be inferior to Type I errors. Therefore, we are going
to focus mostly on value functions with perfect recall in the remainder of this
thesis.

Precision of Multiple Extension Cases So far we have only defined the precision
of a value function S over a single extension case, where a particular query Q
and extension pair 7 is given (see Definition 5.4.6). But a value function is not
only going to be used once — it will be used multiple times in different cases over
multiple sessions. Hence, to get an idea of how useful S is in general, we must
calculate the average, or a similar aggregated value, over a set of cases that are
representative for those cases where S will be used.

Representative cases can, for example, be extracted from a log of completed
queries made in earlier query sessions. This assumes that future queries are built
under the same conditions as the queries from the log, i.e., it assumes that the
user base, the navigation graph, and the dataset have not changed significantly.
There are multiple ways of extracting cases from a query log, and below we
consider some of them, which we will make use of later in the thesis when we
evaluate more sophisticated value functions.

We start by considering exactly one rooted query Q that has been made by
a user earlier. The simplest way of generating cases from Q is to pair it with
every possible extension pair in J(Q,). We can average over all these cases to
get the following precision formula:

1
—— Z prec(S, Q,7)
TN 25,

This way of generating cases assumes that the user has already made the query
Q and that they need suggestions on how to extend it further, but this is not
the case since Q in this formula refers to the final version made by the user.

A better approach is therefore to focus on the already existing outgoing data
edges of the root v, = root(Q). By removing such an edge e = (v,, p,v) and its
corresponding data variable v, we get the resulting query del(Q,v). We can then
generate a case by pairing this query with the extension pair corresponding to
the edge and variable that was just removed, i.e., 7 = (p,Tg(v)). When we do
this for all the outgoing data edges of v,., we get the following precision formula
for S over a rooted query Q.

76

Value Functions

Definition 5.4.8 (Precision over Rooted Query). Let S be a value function, let Q be
a rooted query, and let F, be the set of all outgoing data edges of v, = root(Q).
The precision of S over Q, denoted precg (S, Q), is defined as

precq(S, Q) = El S prece(S, del(Q,v), (p, To(v)) (5.6)

‘ UT| (vr,p,0)EE,,

_|

This way of calculating the precision over a single rooted query was used in
the two first experiments we did as a part of the thesis project. Both of them
are presented in Chapter 6.

We also need to calculate the precision of a value function over a whole
query log where the queries are unrooted. An unrooted query can be turned
into several rooted queries by focusing on each of the object variables in Q, one
at a time. If we now use Equation 5.6 to calculate a precision over each such
rooted query, and then calculate the average of all these precisions, we give equal
weight to each possible root in the query, not each possible extension edge. So
instead of doing this, we use a slightly different way of calculating the precision
of an unrooted query, where each possible extension edge is weighted equally:

Definition 5.4.9 (Precision over Unrooted Query). Let S be a value function and
let Q be an unrooted query. The precision of S over Q, denoted precy; (.S, Q), is
defined as

1
precy (S, Q) = m Z preca (S, Qa, (p, Ta(v)))

(vrp0)EE(Q)

where
Q4 = del(setRoot(Q, v,.),)

_|

We will represent a query log as a set of pairs (w;, Q;), where w; is a number
that specifies the significance of the unrooted query Q;. This weight can, for
example, correspond to the frequency of a query in the log. So if two queries
appear five and nine times, they get a weight of 5.0 and 9.0 respectively.

Definition 5.4.10 (Query Log). A query log £ is a finite set of pairs £ =
{(w1, @1), (w2, Q2), ..., (wk, Qi) }, where every w; € R>(is a non-negative real
number and every Q; is an unrooted query. —|

We can now calculate the weighted average over the precisions of each
unrooted query in £ to get a precision over the whole query log.

Definition 5.4.11 (Precision over Query Log). Let S be a value function, and let
L= {(w1, 1), (w2, Qa), ..., (wk, Qr)} be a query log. The precision of S over
L is defined as the weighted average of precisions for each of the queries in L,

77

5. Query Extensions

ie.,

> wj - precy(S, Qi)

1<i<k
>, w;
1<i<k

preCL(Sa E) =

_{

If two value functions S; and Sy are designed such that S5 is more precise
than S; for all extension cases, then S, will also be more precise than S; when
they both are evaluated over rooted queries, unrooted queries, and even query
logs.

Theorem 5.4.12. Let S; and Sy be two value functions. If precs(S1, Q,7) <
preca(S2, Q, 7) for every extension case of Q and 7, then all three of the following
statements will be true:

precq (51, Q) < precq(Sz2, Q)
preCU(Slv Qu) S preCU(527 Qu)
precy,(S1, £) < precy, (Se, £)

For all rooted queries Q,., unrooted queries Q,, and query logs L. o

Proof. Since all of these three advanced precision metrics are just linear
combinations of the precision of a basic case, they all must be true. |

5.4.3 Advanced Value Functions

We are now going to consider two more sophisticated value functions: the
range-based value function S, and the local value function Sj.

The Range-Based Value Function: S;. We start by defining the range-based value
function S, to be the value function that only suggests values that actually exist
in D. More precisely, it considers every instance in D typed to the root class
t, of Q, and each of its connected edges that corresponds to the extension pair
T = (pe,te). Each data value in the target position of such an edge will be
suggested by S,.. For example, if the root class is Person, and the extension
pair is (name, String), then S, will return the full list of all names that are
assigned to at least one person in the dataset. The values produced by this
process can also be obtained by calculating the projected answers of Q,. onto v,
where Q,. is the query that consists of two variables: v, and v., typed to t, and
t. respectively, and one edge (v, pe, ve).

Definition 5.4.13 (The Range-based Value Function: S,.). Let Q be a query with

root variable v, and let T = (p, t.) € J(Q,N). The range-based value function,
denoted S,., is defined as S,.(Q,7) = ansp(Q,., D, v.) where

Q= (({U’I‘}’ {Ue}’ {(UT?p7 1]5)}), {UT =t Ve te})

78

Value Functions

Example 5.4.14. Let Q3 be the query in Figure 5.3, and let 7 = (name, String) €
J(Q3,N). Then the value function S, returns the following set of values:

Sy (Qs, 1) = {Alice, Bob, Robert, Carol, Dave, Eve}
¢

This way of suggesting values is very simple. It does not consider anything
from the actual query, except for the root class and the extension pair. Hence,
given an extension pair, the list of suggested values will always be the same. The
small query Q, will probably return answers fast when executed over D, but
since the lists it suggests are static, it is better to calculate all these lists offline
and store them in an index that guarantees fast lookup. In order to support
every legal extension pair 7, this index then needs one list for each such pair 7.

The Local Value Function: S; The next value function we are going to present
is the local value function S;. S; modifies the extended query Q. into a new
version Q;, by removing every variable that is more than one edge away from
the root of Q., i.e., it keeps only the local properties. This pruned query can
then be executed over D, with projection on the extension variable, to get a set
of values to suggest.

Definition 5.4.15 (The Local Value Function: S;). Let Q be a rooted query with
root variable v, and let 7 = (p.,t.) € J(Q,N). Let Q. = ext(Q, (pe,te,['y), ve).
The local value function, denoted 5; is defined as:

Sl(Q7T) = anSP(Ql,D, Ue)

where Q; is the subquery of Q. that only contains v, and all variables of Q.
that have v, as parent. -

Example 5.4.16. Let Q3 be the query in Figure 5.3, and let 7 = (name, String) €
J(Q3,N). Then the value function S; returns the following set of values

S1(Qs, 7) = {Alice, Bob, Robert, Carol}

¢

The result of the pruning done by S; is a star-shaped query Q;. If Q, and
hence also Q., is star-shaped, then Q; will not remove anything from Q., which
means that Q; will equal Q.. When this is the case, then S; considers all parts
of the query and will return exactly X,(Q, 1), just like S, does. On the other
hand, if Q. is a very deep query, such that a significant amount of its variables
are far away from the root, then Q; will differ a lot from Q., and the values it
suggests will not be as precise.

It makes sense to compare S; with faceted search over one class since both
of them generate dead-ends based on only the properties connected directly to
the root variable. They both require answers to star-shaped queries, but in FS
these queries are always simple, while in our case, Q; may not be simple. This

79

5. Query Extensions

can be solved by further removing variables from Q; until the query becomes
simple. This may reduce the precision of Sj, but will be necessary if we want to
use faceted search engines to calculate the answers of Q; efficiently.

5.4.4 Comparison of Value Functions

We have now defined five different value functions in this section, all of which
have different approaches to the task of calculating and suggesting values. They
have already been used to suggest values over the same example case (see
Example 5.4.5, Example 5.4.14, and Example 5.4.16), where they returned the
following sets of values:

Se(Q3, T) =0

So(Qs, 1) = {Alice, Bob, Robert}

S1(Qs,) = {Alice, Bob, Robert, Carol}

Sr(Qs, 1) = {Alice, Bob, Robert, Carol, Dave, Eve}
Sa(Qs,7) =Ty

Notice that each of the value functions in the list above returns a larger set
of values than the value function above it. This is not a coincidence, this is true
for any possible extension case.

Theorem 5.4.17. The five value functions S., S,, S;, S, and Sy generate sets of
values that satisfy

0 =5.(Q,7) C So(Q,7) CS(Q,7) C S (Q,7) C Sq(Q,7) =T, (5.7)

for any query Q and extension pair 7. -

Proof. All value functions must return a subset of the data values in I';,, see
Definition 5.4.1). Therefore, S,(Q, 1), Si(Q,7), and S, (Q,) must all be both
supersets of S.(Q,7), and subsets of S4(Q,7). To prove that S,(Q,7) C
S1(Q,7) C S,.(Q,7), we can use the fact that each of these three sets can
be expressed as the result of evaluating a query over D, and projecting onto the
variable v.. In particular, we know that

SO(Q»T) = ansP(Qeapvve)
Si(Q,7) = ansp(Qi, D,)
S’I‘(Q?T) = ansP(QT7D7U€)

where Q, C Q; C Q.. By using Theorem 4.3.7, we then get

SO(Q,T) g SZ(Q;T) g Sr(QvT)

80

Value Functions

Since both S, and S; always produce a superset of the values defined by S,,
they must both have perfect recall. They will also have non-perfect precision,
unless they are able to produce the same set of values as .S, does, i.e.,

rec(Sy, Q,7) = rec(S;, Q,7) = rec(S,, Q,7) = 1.

preCC(STa QvT) < preCC(Slv Qa T) < preCC(SOa QaT) =1

Efficiency So far, we have been focusing on the values produced by each of
the value functions, but before these value functions can be used in a real-life
system, we must ensure that they can produce values efficiently. In general, an
algorithm is considered to be efficient if it scales well with respect to its input.
This definition fits our case too: we consider our dead-end detection algorithms
to be efficient if the time it takes to calculate dead-ends scales well with respect
to the size of the navigation graph, the dataset, and the partial query. But, what
really matters in practice, is that dead-ends are calculated fast enough for the
user to take advantage of them (see Section 3.3). In other words, we are looking
for value functions that can be calculated in less than a few seconds, and ideally
in less 200ms [36].

Three of the value functions we have presented, S,., S;, and S,, all depend on
the answers of ansp(Qg, D, v.) for some query Q, which means that they will
be too slow when used on large databases, where complex queries with many
joins may take minutes, or even hours. The two remaining value functions, S,
and Sy, on the other hand, are very efficient, since they simply return the same
predefined set every time.

The only thing we actually need in order to calculate S,.(Q, 7) is the root class
t, of the partial query Q and the extension pair 7. There is a limited number of
possible such pairs (¢,,7), and we can compute all pairs by considering every
possible root class ¢, in A/, and every legal extension pair of this class, given by
T = (pe, te) € J(t,N). For each such pair, we can construct Q, as described in
Definition 5.4.13, and then calculate the values that S, should return for a query
with root class t,.. All of this can be done offline, i.e., before any query session
starts, and the computed sets of values for every pair (¢,,7) can be stored in
a small index. Now, given a partial query Q and an extension pair 7, S, (Q, 7)
can be computed efficiently by looking up the set of values corresponding to the
pair (¢,,7) in the index. Essentially, we only need to loop over all instances of
type t, in the dataset to collect all the data values they are connected to with a
property p.. For example, if the root class ¢, equals Person, and the extension
pair 7 is (name, String), then we have to collect the set of all names given to a
person in the dataset, and store this in the index.

It is also possible to construct an index that will make S; efficient, but this
index will be more expensive. Q; is made by removing all parts of Q that are not
connected directly to the root, i.e., Q; is a star-shaped query. This is exactly the
type of queries that can be answered by a standard faceted search index, so if we
make one such index for each possible root class ¢, € V,(N) and define J(t,,)

81

5. Query Extensions

S | Precision | Recall | Eff. w.o. Index | Index Size
S. |1 0 | Instant 0

S, |1 1 | Slow o0

S; | Medium 1 | Slow Medium

S, | Low 1 | Slow Small

Sq | =0 1 | Instant 0

Table 5.1: Summary of the five value functions Sq4, Sy, Si, So, and S..

to be the set of facets, then we have a way to calculate S,.(Q, 7) efficiently for
all Q and 7 € J(t,., N).

Since @ is unbounded in size, Q. from Theorem 5.3.4 will also be unbounded,
which means that it is impossible to make a finite index that can be used to
calculate S,(Q, 7) efficiently. This is exactly the same conclusion we got when
we discussed dead-ends in Section 3.3.

Table 5.1 presents a summary of the five value functions we have considered
in this chapter. Sy and S, can both be calculated very efficiently, but the sets of
values they produce are not useful. S, has perfect precision and recall, but it is
too slow in the worst-case scenario, and it is not possible to improve its efficiency
with an index, because this index would need to be infinitely large. Both S; and
S, are also inefficient, but it is possible to make them efficient by using finite
indices. Without any knowledge about the concrete dataset and extension case,
it is impossible to quantify the precision and required index size of S; and S,..
The only thing we know, which we proved above, is that S; is more precise than
S, and that it needs a larger index than 5.

Notice how both S; and .S, are pruning away certain parts of the partial query
Q. before running the remaining query over D to find the values to return. This
pruning process reduces their precisions, but it also allows them to be computed
efficiently with a precomputed index. In the next chapter, we generalize this
idea, and we present a framework that enables us to construct value functions
based on arbitrary pruning boundaries.

82

Chapter 6

The Index-Based Extension Framework

In the previous chapter, we defined general query extensions, and how one can
easily detect or generate dead-end extensions among such extensions by first
calculating the set of productive values X,(Q, 7) for a given partial query Q and
extension pair 7. Unfortunately, this set of productive values can in general not
be computed efficiently. However, it can be approximated efficiently, and we
demonstrated this by presenting five different value functions with an analysis
of their accuracy and efficiency (see Section 5.4).

Two of these value functions, S, and S;, use similar approaches to
generate values: instead of returning the full set of productive values, given
by ansp(Qe,D,v.) they replace Q. with a query Qs C Q., and return
ansp(Qs,D,v.). S, and S; use two different ways of determining what to
remove from Q.: S, removes everything except for the root and the extension
variable, while S; removes everything that is not connected directly to the root
variable. The result of doing this kind of replacement is a value function that
returns a superset of all productive values. This value function will then have
perfect recall, but a precision that is less than perfect in most cases. The process
of pruning Q. may seem like a bad approach since it reduces the precision of
the results. But, by doing it, the value function defines a boundary on the type
of queries that needs to be answered, and this makes it possible to construct an
index based on D that ensures efficiency of the value function.

We are going to generalize this idea, and consider other value functions that
prune Q. into such a subquery Q,. More precisely, in this chapter, we will define
a framework that allows us to generate value functions based on a description
of which parts of Q. to keep. We will represent such a description by a simple,
filterless query Z, called a configuration query since it needs to be specified
during the configuration phase of the VQS. The value function defined by Z,
denoted SZ, will then return the values given by ansp(Qs, D, v.), where Qy is
the subquery of Q. that remains after it has been pruned with respect to Z.
Furthermore, we will describe how to set up an index Zz based on Z and D,
which will be able to efficiently provide answers to Qg, regardless of how complex
the extension query Q. is. This index has to be set up during the configuration
phase of the VQS and will be used to support multiple sessions.

6.1 The Configuration-based Value Function: Sf

In this section we formally define configuration queries, and how each such
configuration query Z can be used to generate a concrete value function SZ.

83

6. The Index-Based Extension Framework

6.1.1 Configuration Queries

A configuration query Z is a special type of query that has to be defined during
the configuration phase of the VQS, i.e., outside all of the query sessions, where
the system only has access to A" and D, but not the partial query Q. Z has two
main purposes:

o Z will be used to set up an index Zz during the configuration phase, based
on the data of D.

e Z defines a value function S2

=, which can be computed efficiently if the
system has access to Zz.

Formally, a configuration query is a simple, filterless query that is legal with
respect to NV.

Definition 6.1.1 (Configuration Query). A configuration query Z is a simple, legal,
rooted, filterless query Z = (Rz,Tz). =

Since a configuration query is just a special type of rooted query, every
definition we have presented so far related to rooted queries will also apply to
configuration queries. But, configuration queries will have a special role in our
system, and there will be a need to distinguish them from other more general
queries. In general, when we use the term configuration query, we refer to the
query used to set up the system, which has to be constructed or generated
by an administrator before query sessions can even start. We will never use
the term configuration query when we refer to a query made during a query
session by an end-user, even when it satisfies the requirements in the above
definition. Actually, it would have been possible to present and use tree-shaped
configurations without defining them as queries, but since we want to compare
configurations and queries later, it is convenient that they are defined in the
same way.

Now, we define a query Q, to be covered by a configuration query Z if it has
a similar, but smaller graph structure than Z. Below we formally define what
we mean by this.

Definition 6.1.2 (Query Covered by Configuration). Let Qs = (Ro,,To., Fo.) be
a rooted query, and let Z be a configuration query. Q, is covered by Z if there
exists a configuration query Z such that:

° Zs E Z
e Z,is a renaming of (Rg,,To.)

#

The renaming from (Rg_,Tg,) to Z, in the definition above is in fact just a
renaming from Qg to Z, where the filters are ignored. We call such a renaming
a filter-ignorant renaming.

84

The Configuration-based Value Function: Sf

?d3

Integer ?dy
> 100.000.000 String

s B
S 3
'703
Perscm
¥y »f
) S
7dz § 7d, m, % K m'
ltiagrz fe String Integer] Strmg
>18 age namme am®
701 701
Person Person
Q Zl

3
?d> N

String Integer _~| String
>18 [“—ag. namme ame
01 "01
Person Person

Qs Zy

vz,
: @
.
~

Figure 6.1: Two queries, Q4 and QOs, to the left, and two configuration queries, Z1,
and Z2 to the right. Q4 is not covered by Zi, but its subquery Qs is covered by Z;.
Z5 is the subquery of Z; that corresponds to Qs.

Example 6.1.3. Figure 6.1 displays two queries to the left: Q4 and Qs, and two
configuration queries to the right: Z; and Z5. Q is not covered by Zi, because
Q, contains a variable referring to the population of the visited country, while
2y does not. However, Qs, which is a subquery of Q4, is indeed covered by
Z,, since Z; contains variables corresponding to all of the four variables of Qs
(a person with name, age, and visited country). To prove formally that Qj is
covered by Z7, we must show that there exists a subquery of Z; that is also a
filter-ignorant renaming of Q5. 25 is such a configuration query. ¢

In order for a query Qg to be covered by a configuration query Z, each of
its variables must correspond to a particular variable in Z, given by the filter-
ignorant renaming from Qg to Z, which is then also a filter-ignorant renaming
from Qg to some of the variables in Z. This renaming preserves the type of each
variable in Qg, including the root variable, so, if the root classes of Q¢ and Z

85

6. The Index-Based Extension Framework

differ, then Qg can never be covered by Z.

Theorem 6.1.4 (Unique Z;). The configuration query Z;, and the filter-ignorant
renaming function from (Rg,,To.) to Zs in Definition 6.1.2 is unique. In
addition, the query Qs must be simple. -

Proof. Assume that there are two distinet configuration queries Z. and Z”
satisfying the two requirements from the theorem. Since they are both filter-

ignorant renamings of (Rg,.,To,), there has to be a renaming f.: V(Z.) —
V(2" from Z! to Z!. We will use structural induction to prove that f,.(v) = v
for each varible v € V(Z!), which then shows that Z/ must be identical to Z/.
Base case: every renaming maps the root of the source query to the root of
the target query, hence f,(root(Z.)) = root(Z”). Inductive step: assume that
fr(v) = v for some variable v € V(Z2!), and assume that e = (v,p,v.) € E(Z")
is an edge going out from v. If we define v/, = f,(v.), then edge ¢’ = (v,p,v.)
must be in E(Z!), but since both Z! and Z/ are subqueries of Z, then both e
and €’ are also in Z, which is only possible if e = €/, and hence v, = v/, since £
is simple.
We can prove that the filter-ignorant renaming function from (Rg,,7To.) to
Zs must be unique in a similar fashion, again by using structural induction.
Assume that there are two filter-ignorant renaming functions, f. and f/, from
(Ro.,To.) to Z,. We need to prove that f.(v) = f”(v) for each v € V(Rg,).
Base case: both f; and f;’ map the root of (Rg,, T,) to the root of Z. Inductive
step: assume that v’ = f/(v) = f”(v) for some variable v € V(Rg,), and assume
that e = (v,p,v.) € E(Rg,) is an edge going out from v. If f’(v.) = v/, while
" (ve) = v, then both (v, p,v.) and (v/, p,v”) must be edges in Z,, which is
impossible unless v/, = v/, since Z; is simple.
Since Qj; is a filter-ignorant renaming of Z,, which is simple because it is a
subquery of the configuration query Z, Q¢ must also be simple. |

The reason why we are particularly interested in queries covered by Z is
because these queries can be answered efficiently by the index Zz defined by Z
(see Section 6.2), and they will have a central role in the new value function we
are going to define in the next few paragraphs.

If a query Q is not covered by the configuration Z but has the same root
class, then it is always possible to prune Q, i.e., remove some of its branches,
to make a smaller query, Qg, that is covered by Z. In the most extreme case,
Q must be pruned down to only the root variable before it is covered by Z,
but often it is possible to just prune relatively small parts of Q in order to get
coverage. In Example 6.1.3, we considered query Q4, which is not covered by
Z1. But, the query Qs, which we get by pruning away variable 7ds from Qy, is
indeed covered by Z;. It would also be possible to remove any subset of the
three variables 7dy, 7ds, and 709 from Qs, and still have a query covered by Z.
Even the smallest possible subquery of Q4, consisting of only the root variable,
is a query covered by Z;.

86

The Configuration-based Value Function: Sf

Given a query Q and a configuration query Z, we define a pruned version of
Q with respect to Z to be a subquery of Q that is covered by Z. There may be
many such queries, and they define a set, which we will denote prune(Q, Z).

Definition 6.1.5 (Query Pruning). Let Q be a query and let Z be a configuration
query. A pruned version of Q with respect to Z, is a query Qs T Q that is
covered by Z. The set of all pruned versions of @ with respect to Z is denoted
prune(Q, Z). -

We will also need a variant of the pruning function that preserves a given
variable v connected to the root of Q.

Definition 6.1.6 (Variable-Preserving Pruning). Let Q be a query and let Z be
a configuration query. The set of all pruned versions of Q with respect to Z,
where the variable v € V(Q) is preserved, denoted prune(Q, Z,v), is defined as

prune(Q, Z,v) = {Q, € prune(Q, Z) | v € V(Q,)}

4|

Later, we will compare configuration queries with queries that have a different
root class, and when this is the case, then both prune(Q, Z) and prune(Q, Z,v)
will be empty. But for now, we are going to focus mostly on configuration queries
and queries with the same root class.

Example 6.1.7. Query Q, in Figure 6.1 has a total of eight subqueries that
are covered by Zi, so prune(Qy, Z1) contains eight queries. prune(Qy, 21, 7dy)
contains every query in prune(Qy, Z1) that includes ?d;, and there are four such
queries. Both prune(Qy, Z1) and prune(Qy, 21, ?d;y) contain the query Qs, which
is also the largest query in both these sets. ¢

6.1.2 The Configuration-based Value Function: Saz

Now, given the partial query Q and an extension pair 7 = (pe,t.), we can
formulate the extended query Q. = ext(Q, (pe,te,I'y), ve) as before. If we prune
Q. with respect to Z, while preserving the variable v., we get a set containing
multiple subqueries of Q.. Each such subquery, Q, corresponds to a set of data
values given by ansp(Qs, D, v.), which must be a superset of the productive
values defined by X,(Q,7), since Qs T Q.. Hence, if we intersect the sets
corresponding to each subquery Q, we get a smaller set that is still a superset of
Xo(Q,). Since this final intersection is a relatively small superset of X,(Q, 7), it
should make a relatively precise set of values, so we define the configuration-based
value function based on Z, denoted SGZ, to return this set.

Definition 6.1.8 (The Configuration-based Value Function: SZ). Let Q be a
query, let 7 = (pe,te) € J(Q,N) be a legal extension pair of Q, and let
Q. = ext(Q, (pe,tes I'y),ve). The configuration-based value function based on

87

6. The Index-Based Extension Framework

the configuration query Z, denoted SZ, is defined as

Sf(QaT) =Iy,N m 3n5P(Q57DaUe)

Q. €prune(Qe,Z,ve)
_{

Notice that we only consider the pruned versions of Q. where v, is preserved.
This is important because ansp(Qs, D, v.) is undefined when v, is not contained
in Q4 — it is not possible to project onto a variable that does not exist in the
query. It may seem pointless to intersect all the projected answers with I',, since
ansp(Qs, D, ve) is always a subset of T',,, but we need it when Z does not cover
the extension pair 7, i.e., when there is no variable in Z that corresponds to
ve. When this is the case, then prune(Q., Z,v.) will be empty, and there will
be no pruned versions of Q. that can contribute with useful values. When this
happens, then SZ should fall back to just suggesting I',,. From a technical point
of view, we are only going to allow the use of the nullary intersection, i.e., the
intersection of zero sets, when it is intersected with I',,, and then we define it
to equal Iy, i.e., we always define I', N (N 4.9 A) = I'y. Suggesting I, is not
ideal, but the system cannot do anything better, since Z, and its corresponding
index Zz is not set up to efficiently return any better answers. The only way to
prevent SZ from returning I, is to make sure that Z covers 7, and the only way
to prevent it from returning T, for any of the legal extension pairs 7 € J(Q, N,
is to make sure that Z covers all of them. Since the root class of the partial
query changes as the user changes focus, one single configuration query is not
enough to prevent SZ from returning I', in every case. In fact, to cover every
potential root class of Q, and every possible extension pair of such a query, we
need a set with multiple configuration queries, at least one for each class in N.
We will discuss this later in Section 6.4, where we extend S, to take advantage
of multiple configuration queries, but before that, we will need to make a proper
analysis of the case with only one configuration query.

In general, when Qj; is a small query without many restrictions, the resulting
set of values ansp(Qs, D, v.) will be relatively large, and hence it will not affect
the final set of values returned by SaZ so much. On the other hand, if 9, is
a large and more restrictive query, then ansp(Q;, D, v.) will be a smaller set,
which will likely have a higher impact on the set of returned values. In particular,
if Q5 and Q! are two queries in prune(Q., D,v.), and Q) C Q,, then we know
from Definition 4.3.7 that ansp(Qs, D, v.) C ansp(Q~L, D, v,), which means that
we can completely ignore Q' without changing the final results produced by
SZ.

Now, consider the partially ordered set defined by the subquery relation
over all the queries in prune(Q., Z,v.). If Z covers the relevant extension pair,
then prune(Q., Z,v.) will at least contain the query consisting of only the root
variable v, = root(Q) and v,. Since v, and v, are both required to be a part of
prune(Q., Z,v.), this query is a smallest query in the set, i.e., it is a subquery of
every other query in prune(Q., Z,v.). There will also be a set of maximal queries,

88

The Configuration-based Value Function: Sf

i.e., queries which are not a subquery of any other query in prune(Q., Z,v,.).
But, since every Q € prune(Q., D, v,) is either a maximal query, or a subquery
of a maximal query, we actually only need to consider the maximal queries of
prune(Q., D, v.) when calculating the values in SZ(Q, 7).

Theorem 6.1.9. Let SZ be the value function defined in Definition 6.1.8, and let
prune;;(Qe, D, v.) be the set of all maximal queries in prune(Q., D, v.). Then

SZ(Q,7)=Tyn N ansp(Qs, D, ve)

Q,€prune,, (Qc,D,ve)

_|

Proof. This follows directly from the definition of maximal queries, Defini-
tion 4.3.7, and our arguments above. |

From this theorem, it should be clear that if there exists a maximum query
in prune(Qe,D,v.), i.e., a query Q,, such that Q, C Q,, for all queries in
prune(Q., D, v.), then we can calculate the values of SZ(Q,7) only based
on Q,,, ie., we get SZ(Q,7) = ansp(Qm,D,v.). For example, if Q. is
already covered by Z, then prune(Q., D, v.) will contain Q, itself, which must
then be both simple and maximum in prune(Q.,D,v.). This means that
SZ(Q,7) = ansp(Q., D, 7) = X,(Q,7). In other words, if the extended query
Q. is covered by Z, then SZ will return perfect results. If Q is a simple query,
then there will be a maximum query in prune(Q., Z,v.).

Theorem 6.1.10. If Q from Definition 6.1.8 is simple, then there exists a maximum
query in prune(Q., Z,v.), ie., a query Q,, such that Q, C Q,, for all

Qs € prune(Q., Z,v.). 4

Proof. Let the union superquery of two queries Q. C Q. and Q7 C Q., be the
query Q, that contains all variables and edges from both @’ and Q7, and which
uses the types and filters given by O, restricted to the included variables. Now,
if both Q% and QY are in prune(Q., Z,v.), then we can prove that Q, will also
be in prune(Q., Z,v.). The union superquery of all queries in prune(Q, Z) will
then be the maximal query Q,,.

If Z! and Z! are the two configuration queries corresponding to Q% and QY
respectively, and f/, f// are the filter-ignorant renaming functions from Q. to 2!,
and Q7 to Z! respectively, then the union superquery of Z! and Z//, denoted
Z,,, will correspond to Q,,, and by combining f and f, we get a filter-ignorant
renaming function from Q, to Z,. Since Q is simple, it is impossible to pick
two different variables v’ € V(Q.) and v" € V(Q”) such that f.(v') = f(v").
This can happen if Q is non-simple. |

Now, we will consider two examples where the two above theorems are used
when calculating values based on S, .

89

6. The Index-Based Extension Framework

?d3
Integer
> 100.000.000

/

?d2
Integer
>18 [T—ag,

?01
Person

vy
‘ M%d \‘@
20,
w,

7dly
StT’mg

70}
Perso'n

7
Integer Smn
9 [age ame 9

'
Lo
. Nou“\

&
N
$
N

2,
70}
Person

2

> 100.000.000

?d3
Integer

24
ey @

Lo,

2.

?d2
Integer
>18

[age name
?01
Person

Q4

[
Zszy, @
.

?d2
Integer
> 18

—
age name
%
701
Person

Qs

/

?dy
String

?dy
String

Figure 6.2: The partial query Qs, its extended version Qu, the configuration query
Z, and query Qs, which is the result after pruning Q4 with respect to Z.

Example 6.1.11. Let us define a value function SZ* based on the configuration
query Z; in Figure 6.2, and let us go back to the case we considered in
Example 5.4.5, where Qs is the partial query, and values are requested

for the extension pair (name,String).

We start by extending Qs with

(name, String,T’,) into a the new variable ?d;, which gives us the extended
query Q4 = ext(Qs, (name, String,I',), 7dy), depicted in Figure 6.2. Since Qy is
simple, there exists a maximum query in prune(Qy, 21, 7dy), and this query is Q.
Hence we do not need to consider any other of the queries in prune(Qy, 21, 7d;),

and SZ1 will return the following values:

S21(Qs, (name, String)) = ansp(Qs, D, ?d;) = {Alice, Bob, Robert, Carol}

90

The Configuration-based Value Function: Sf

?dz ?dg ?2d.
Integer Integer I .t 2 -
< 100.000.000 > 100.000.000 ntege

\ /

i
N
&
S ?dy
String
name

s
ot
P

?d)
__»| String
name

201
Person

20!
70}
Person

I

. ‘
(=)
a0t
a
W @
,\)’9

Z3
?dz ?d3
Integer Integer
< 100.000.000 > 100.000.000

-1
2

b.
mmz \@
20,
7

701
Person

v
s @
2

?dy ?dy
e String ame _» String
701
Person

Q7 Qs

Figure 6.3: The two queries Q7 and Qg are the only two maximal subqueries in
prune(Qg, Z2).

If Q. is not simple, there may be several maximal pruned versions of Q.,
which all need to be evaluated using ansp in order to calculate the full set of
values to return. We demonstrate this in the example below.

Example 6.1.12. Consider the non-simple extended query Qg, which has just been
extended with the variable ?d;, in Figure 6.3, and the configuration query Z3
next to it. There are two maximal queries in prune(Qg, Z3, 7d;): Q7 and Qs.
We calculate the projected values given by each of them:

ansp(Q7, D, ?dy) = {Bob, Robert, Carol}
ansp(Qs, D, 7dy) = {Alice, Bob, Robert, Eve}

By intersecting these two sets, we get the values generated by SZ3: {Bob, Robert}.
¢

91

6. The Index-Based Extension Framework

In some cases, it is not even necessary to check all maximal queries of
prune(Q.,D,v.). For example, if two maximal queries are renamings of each
other, they will evaluate to the same set of values, hence we do not need to
calculate ansp for more than one of them. Another case that can occur, is
that two maximal queries have the same overall shape, but they differ on the
filters applied to two corresponding variables, and one of the filters is more
restrictive than the other. For example, if the filter set on 7ds was changed to
{u €T, | u>200.000.000} in query Qg, and hence also in Qr, then Q7 would
become an overall more restrictive query than Qg, so there would be no need to
calculate ansp(Qs, D, 7dy) at all, since ansp(Q7, D, 7ds) C ansp(Qs, D, 7ds).

In the case we presented in Example 6.1.12, the results produced by SZ2 are
optimal, i.e., they equal the complete set of productive values. But, SZ does
not always generate optimal results, as we saw in Example 6.1.11, where S
produced a proper superset, of the productive values.

In general, the results produced by SZ are closer to the true set of productive
values when Z is large. This is because it then leads to some large, restrictive
queries in the set of pruned queries. Furthermore, SZ will, in general, give more
precise results when O is small, because this increases the chance that Q is
covered by Z, which again decreases the chance of missing restrictions that lead
to dead-ends. But it is not only the size of Q@ and Z that matters: it is also
important to consider how much they overlap. It does not help to have a small Q
and a large Z if Z mostly covers parts outside of Q. That said, one configuration
query gives origin to a value function that will be used to generate values for
multiple cases with different queries Q, hence, it is important to consider the
whole collection of queries, and not only individual queries when deciding which
configuration queries to use. We do this in Chapter 8, where we explain how to
generate configurations that lead to high precision over a whole set of different
queries.

Since there is a one-to-one correspondence between each configuration query
Z and its corresponding value function SZ, we are going to allow SZ to be
replaced by Z in all the precision formulas we presented in Chapter 5. IL.e., for
each rooted query Q, unrooted query Q,,, extension pair 7, and query log L, we
define:

precc(Z,Q, 1) = precq (5%, Q,7)
precq(Z, Q) = precq (57, Q)
precy (2, Qu) = precy (57, Qu)
precy (Z, L) = precy (SZ, L)

Our discussion and examples above show how much the results of SZ depends
on Z. In the worst-case scenario, Z does not cover the relevant extension pair
7, which leads SZ to return I',. On the other hand, if Z is large, and covers
all of Q., then S’az will instead return the set of productive values. This is
summarized in the statement below, which holds for every configuration query

92

The Configuration-based Value Function: Sf

Z and extension pair .
Xo(Q,7) = 9,(Q,7) € 52(Q,7) € Sa(Q,7) =T,

If we know that Z covers the extension pair 7, then SZ will not suggest a
larger set of values than S,, i.e.,

Xo(Q,7) = S,(Q,7) € S7(Q,7) € 5:(Q,7) € Sa(Q,7) =T\, (6.1)
A consequence of this is that SZ always will have perfect recall:

_ 152 1) N Xo(Q7)| _ [Xo(Q,7))|

G

rec(SaZ, Q,7)

S is not included in the analysis above because it is impossible to compare
SZ to S; without access to Z.

In Section 5.4.2 we discussed how Type I errors and Type II errors are directly
related to the precision and recall of the value function that is used. Since the
value function SZ has perfect recall, our system will never classify a productive
extension as a dead-end (Type II), but since the precision is not necessarily
perfect, it may fail to detect some dead-ends (Type I). The user may be confused
if they are not aware of the fact that Type I errors are possible, so any system
that uses our approximation should make sure to tell the user about this. But,
it is easy for the system to compare Q. with Z, and if Q. is covered by Z,
then the system will know for sure that its precision will equal 1, which means
that all predictions will be correct. Conversely, if Q. is not covered by Z, then
the system may want to notify the user about the fact that some of the true
dead-ends likely have not been detected. This would then make a system that is
quite different from standard dead-end detection with respect to user experience.

6.1.3 Experiment 1: Precision of Sf

In order to get an idea about how well SZ performs compared to the other value
functions we have defined, and how the shape and size of Z affect the overall
precision, we decided to conduct a simple experiment over a real-life dataset,
where we compared the methods. The experiment was done relatively early in
the thesis project, and the results have been presented in three of the papers
related to the thesis: Paper P1 [26], Paper P6 [27], and Paper P8 [29] (see
Section 1.2).

Experiment Setup In this experiment, we used the RDF version of the NPD
Factpages,’ which contains data about oil and gas drilling activities in Norway.
The dataset has over 2 million triples, and its corresponding OWL ontology
contains 209 classes and 375 properties. This RDF dataset contains data
extracted from the original NPD Factpages, which is a relational database (RDB)

1 https://gitlab.com/logid/npd-factpages

93

https://gitlab.com/logid/npd-factpages

6. The Index-Based Extension Framework

that every oil company in Norway are legally required to report to. This means
that both the original RDB version and the generated RDF version, are fairly
complete and homogeneous. This is an optimal environment for our system
since we target large, complex queries, which require long chains of connected
entities. The classes in this dataset have, on average, 14.1 different outgoing
data properties, and 6.4 outgoing object properties. The number of distinct
entities each such property leads to, is 572 on average, with a median of 12.

Unfortunately, the provided SPARQL query log over the NPD dataset was
not suited for our experiment: just a few of the queries were typed and tree-
shaped, as required by our system, and none of them contained more than a few
variables.? So instead of using this, we constructed a new query log, consisting
of 29 simple (see Definition 4.2.11) queries.®> They ranged from 5 to 8 object
variables and 0 to 12 data variables, and their corresponding result sets over
the NPD dataset ranged from just 12 tuples to over 5 million tuples. This
setup over NPD Factpages was also used in Experiment 2, which is presented in
Section 6.3.1.

We ran multiple test cases, where each test case was based on one of the 29
queries, Q, from the query log, and one generated configuration query Z. For
every query, we selected the variable 7cl to be the focus variable, i.e., we turned
each of the queries into rooted queries by always focusing on the same variable.
From this focus variable of Q, we determined its root class, which was also used
as the root class of Z, to make pruning possible. When generating Z, we tried to
avoid cases where Q was covered completely by Z, because we knew that those
cases would lead to perfect precision, hence, it was not necessary to actually
evaluate them. In fact, all branches of Z that exceeded the boundary defined by
Q were discarded, because we knew these branches would never lead to higher
precision anyway. Instead, we focused on configurations Z with a shape covered
by Q, as these would result in pruning, and hence a lower precision compared to
the case without pruning. For each test case, we calculated the precision of SZ
with respect to the selected query Q, using precg, presented in Definition 5.4.8.
The reason why we calculated the precision over only one rooted query, and not
the whole query log, for example, is because a single configuration query and its
corresponding value function can only generate reasonable values if it has the
same root class as the query it evaluating precision over. Hence, if we calculated
the precision over the whole query log using precy,, then the resulting precision
would be unreasonably low.

When generating configuration queries for the test cases, we first made a
configuration query Z., called the core, consisting of only object variables. We
explored the set of all such Z., including the smallest core, containing only the
root variable, and the largest possible core (not exceeding the current query Q).
The cores were not used directly. Instead, they were used as a basis for two
other configuration queries each:

o ZDat: The configuration query where Z, is fully saturated with data

2 https:/gitlab.com/logid/npd-factpages/-/tree/develop/query/sparqgl
3 https://github.com/Alopex8064/npd-factpages-experiments

94

https://gitlab.com/logid/npd-factpages/-/tree/develop/query/sparql
https://github.com/Alopex8064/npd-factpages-experiments

The Configuration-based Value Function: Sf

properties, i.e., where every data property from the navigation graph is
added to the variables of Z., where the type matches.

ZObiPat; The configuration query where Z. is fully saturated with data
properties and object properties, i.e., where every property from the
navigation graph is added to the variables of Z., where the type matches.
Since Z9%Dat gsaturates variables of Z. with both object properties and data
properties, while ZP9! only saturates them with data properties, we know that
zDbat £ zObjDat These two ways of saturating the core define two groups, and
this distinction was made to explore how the addition of object properties affects
the precision.

After running sufficiently many test cases, we grouped them by the query Q
that was used, the size (number of variables) of the core Z., and which type they
belonged to: Dat or ObjDat. Then, we calculated the average of each group’s
precisions, and made one plot per query, with the size of Z. on the z-axis, and
the average precision on the y-axis. After adding the precision of S, to these
charts, they all presented the results of three different series: Dat, ObjDat, and
S,. Notice that since S, is independent of the configuration query 2., it gives
the same results for all sizes of Z..

Da
For each choice of Q, 7, and Z., both of the value sets returned by Sazc
ObjDat

and Saz c will be a subset of the values returned by S,., and a superset of
the values suggested by S, (see Equation 6.1), i.e.,

t

at zObjDat

$,(Q,7) 2 82" (@, 1) 2 82" (Q,7) 2 8,(Q,7)

This leads to the following relationship between their precisions:

0 < precq (S, Q) < precQ(SaZ‘Pm7 Q) < precq(Sa CObjDat, Q) < precq(S,, Q) = 1.
(6.2)

Results Figures 6.4, 6.5 and 6.6 present results for three selected individual
queries, while Figure 6.7 shows the average precision for all the queries of size 6.
(15 of the 29 queries have exactly 6 object variables.) The same type of charts for
queries with 5, 7, and 8 object variables are omitted from the thesis since they
look very similar to the chart in Figure 6.7, but they can be found on Github*
together with charts for every individual query used in the experiment.

The yellow line in each chart shows the precision of the range-based value
function ;.. Notice that since it does not depend on the configuration query, it
stays constant as the size of the configuration core increases. Since this is the value
function with the lowest precision we consider, it acts as a baseline — marking
the worst-case scenario for S,. The blue and red curves represent the average
precision of the value functions in the groups Dat and ObjDat respectively. As
expected, these two curves are non-decreasing, since larger configuration queries

4 https://github.com/Alopex8064/npd-factpages-experiments

95

https://github.com/Alopex8064/npd-factpages-experiments

6. The Index-Based Extension Framework

Query 2.6

PREFIX nsl: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ns2: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {

?cl nsl:type ns2:ExplorationWellbore.

?c2 nsl:type ns2:Field.

?c5 nsl:type ns2:ProductionLicence.

?c3 nsl:type ns2:Company.

?7c4 nsl:type ns2:FieldStatus. e Dat ObjDat * Range
10 ?c8 nsl:type ns2:Discovery.

11 ?c6 nsl:type ns2:ProductionLicenceStatus.

12 ?c¢7 nsl:type ns2:ProductionlLicenceArea.

© 00O Uk W

13

14 ?cl ns2:explorationWellboreForField ?c2. 075

15 ?cl ns2:explorationWellboreForLicence ?c5. §

16 ?c2 ns2:currentFieldOperator ?c3. :g 05

17 ?c4 ns2:statusForField ?c2. ,;‘-j

18 ?c¢8 ns2:includedInField ?c2.

19 ?c6 ns2:statusForLicence ?c5. 025

20 ?c7 ns2:isGeometryOfFeature ?c5.

21 o

22 ?7c3 ns2:name ?ab6. 1 2 3 4 5 6 7 8
23 ?c4 ns2:status ?a5.

24 ?c6 ns2:status ?a4. Configuration Query Size

25 ?c7 ns2:isStratigraphical ?al.

26 ?cl ns2:wellboreBottomHoleTemperature ?a7.

27 ?7¢2 ns2:name ?a8. Figure 6.4: Precisions for Query 2.6.
28 ?c2 ns2:status ?a9.

29 ?c5 ns2:isActive ?al0.

30 ?c5 ns2:name ?all.

31 ?c5 ns2:originalAreaSize ?al2.

33 FILTER(?a7 >= 150).
34 FILTER(regex(?a8, "TAMBAR", "i")).

36}

lead to higher precision. We also see that the curve representing ObjDat always
beats the curve of Dat, which is also as expected (see Equation 6.2).

The precision given by each of the three curves very much depends on how
many of the important key restrictions of Q they are able to capture. A key
restriction is a restriction that drastically reduces the number of data values one
could assign to the extension variable, and hence, missing such a restriction, will
lead to low precision. For example, Query 2.6 has only one key restriction on the
data property name of the Field concept variable in depth 2 of Q. Since this key
restriction is associated with a datatype variable, both Dat and ObjDat perform
about equally well. The slight difference between them is caused by other less
important restrictions, which ObjDat manages to capture earlier than Dat. If
this chart had shown the maximum precision of each test case, both Dat and
ObjDat would have been close to perfect already at size 2 because that is the
smallest size required for each of them to reach the field name. However, since
we average over multiple differently shaped configurations for each size, and the
branching factor of @ equals 2, both Dat and ObjDat will instead grow slowly

96

The Configuration-based Value Function:

5;23

a

Query 2.8

OO~ Uk WN -

PREFIX nsl: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ns2: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {

7cl
?c2
?¢5
?c3
?7c4
?7c8
7¢c6
?c7

?cl
7cl
?c2
?c4
?7c8
7¢c6
?c7

?cl

nsl:
nsl:
nsl:
nsl:

nsl
nsl
nsl

ns2:
ns2:
ns2:
ns2:
ns2:
ns2:
ns2:

ns2:

rtype
rtype
rtype
nsl:

ns2:ExplorationWellbore.
ns2:Field.
ns2:ProductionLicence.
ns2:Company.
ns2:FieldStatus.
ns2:Discovery.
ns2:ProductionlLicenceStatus.
ns2:ProductionlLicenceArea.

type
type
type
type

type

explorationWellboreForField ?c2.

explorationWellboreForLicence ?c5.

currentFieldOperator ?c3.
statusForField ?c2.
includedInField ?c2.
statusForLicence ?c5.
isGeometryOfFeature ?c5.

wellboreBottomHoleTemperature ?a7.

FILTER (?a7 >= 190).

}

Query 3.5

© 00Uk WN -

Precision

e Dat e ObjDat * Range

0.5

1 2 3 4 5 6 7

Configuration Query Size

Figure 6.5: Precisions for Query 2.8.

PREFIX nsl: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ns2: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {

?cl
?c2
?7c3
?c4
?c5
?c7

7cl
?c3
?c3
?c5
?c7

?c7

nsl:type

nsl:type
nsl:type
nsl:type
nsl:

nsl:

ns2:
ns2:
ns2:
ns2:
ns2:

ns2:

ns2:ExplorationWellbore.
ns2:Field.
ns2:FieldOperator.
ns2:Company.

ns2:BAA.

ns2:BAAArea.

type
type

explorationWellboreForField ?c2.
operatorForField ?c2.
fieldOperator ?c4.
baaOperatorCompany ?c4.
isGeometryOfFeature ?c5.

areaSize ?7a3.

FILTER(?a3 >= 300).

}

Precision

e Dat e ObjDat * Range

0.50

e

1 2 3 4 5

Configuration Query Size

Figure 6.6: Precisions for Query 3.5.

97

6. The Index-Based Extension Framework

e Dat ¢ ObjDat = Range

1.00

0.50

Precision

0.25

0.00

Configuration Query Size

Figure 6.7: Average precision of all queries of size 6.

upwards until they reach size 5. At this point, the configuration is guaranteed
to cover the key restriction regardless of its shape.

In general, it is not easy to know which parts of Q that are important key
restrictions, because this requires a complete overview of the whole dataset. In
some cases, it may also be the combination of several parts of Q that limits the
result set, which means that a configuration query needs to cover all of them to
achieve high precision.

Query 2.8, used in Figure 6.5, has two key restrictions. The first restriction is
associated with a data property filter on the root node (wellboreTemperature >
190). This is captured by all the configuration queries we used in the experiment,
and the difference between S, and Dat at size 1 shows the effect of capturing it.
The other key restriction is associated with the Field concept variable in depth
2. Since ObjDat includes one additional layer of concept variables, it captures
this already from size 1, which gives it perfect precision. Dat, on the other hand,
needs to be of the correct shape in order to capture it, hence the steadily rising
curve, similar to the one we saw in Figure 6.4.

Query 3.5, used in Figure 6.6, is a linear query (the tree has only one branch),
which means that there only exists one possible core for each size. This query
also has two key restrictions: The first one is an object property restriction in
depth 2 of the query — the effect of capturing this restriction is shown by the
precision increase of ObjDat between size 1 and 2. The second restriction is a
data property restriction associated with the only concept variable in depth 6 of
the query. This restriction is very hard to capture for both ObjDat and Dat,

98

The Extension Index

since it is so far away from the root, but when the core reaches size 6, which
means that both ObjDat and Dat covers the whole query, they both get perfect
results.

The rules that control ObjDat and Dat also applies to S,.: it only performs
well if it is able to capture all of the important key restrictions. But since S,
never considers Q, except for its root and the extension variable, it will always
perform poorly if one or more such key restrictions exist. In both Query 2.6 and
Query 2.8, we see that S, only achieves a precision of less than 0.25 because of
this. In query 3.5, the two key restrictions mentioned above are not as significant,
since S, gets a precision above 0.6 without catching any of them.

The chart in Figure 6.7 shows the average precision over all queries of size 6
used in the experiment. Notice the relatively high precision of the range-based
function S,., equal to 0.58. Since precisions are always between 0 and 1, 0.58
is reasonable, at least when we consider how simple it is. But, the range-based
solution is not sufficient, according to feedback from the user studies performed
over OptiqueVQS. I.e., the users expect a higher precision.

In the cases where key restrictions are associated with object properties,
ObjDat performs much better than Dat. In fact, it quite often returns
suggestions with perfect precision, like it did for Query 2.8 in Figure 6.5. The
average difference between ObjDat and Dat, we see in Figure 6.7, tells us that
object variables indeed should be considered since they have the potential to
increase precision quite a lot.

6.2 The Extension Index

So far we have been focusing on the configuration query Z and its relation to
the value function SZ. In this section, we describe how the same configuration
query can be used to set up the index Zz, and how this index can be used to
efficiently return answers to every query Qg covered by Z, which is necessary to
ensure sufficient efficiency of SZ.

Ideally, we would like to make an index that can return efficient answers to
Q. directly, as this would allow us to just calculate the set of productive values.
But, since we do not have access to Q. at the point in time when the index
has to be constructed, we would have to build an index that can support any
such query, and since both @ and Q. are unbounded, this index would be of
infinite size. But, we do have access to Z, and we know that there will be a
filter-ignorant renaming function f, from the pruned query Qg to a subquery
Zs of Z. Hence, if we store answers of Z; over D in the index, we can combine
them with f,. and the filters of Q, to generate the answers of Q. The theorem
below formalizes this idea.

Theorem 6.2.1 (Answers Renaming). Let Qg = (Ro,,To., Fg,) be a query, and
let f, be a filter-ignorant renaming from Q, to a configuration query Z5. Then
ans(Qs, D) is equal to the set of every m € {¢po f,. | ¢ € ans(Z,, D)} that satisfies:

w(v) € Fg,(v) for all v € I_/d(QS)

99

6. The Index-Based Extension Framework

%

Proof. If we ignore the variable names, then Z; is just Q, without filters, and
when we add the filter requirement on the renamed answers we get from ans(Z, D),
they must equal the answers of ans(Qg, D). |

Based on this, we want to make an index that contains the answers of Z,
over D, for every Z; C Z. To unify all these answers, which are functions from
Zs to D, we extend their domain to the union of all variables they are defined
for: Uz czV(Z,) = V(Z). For answers of any subquery Z, where not every
variable of Z is included, these excess variables have to be mapped to a special
null symbol w. In addition, we introduce a special symbol y, which will be used
to mark the existence of an entity from D. It will play a central role later. An
index over Z is then a set Zz of functions from V(Z) to V(D) U {w, x}.

Definition 6.2.2 (Index over Z). Let Z be a configuration query. An index over Z
is a set Zz of functions ¢: V(Z) — (V(D) U {w, x}). —

Inspired by Theorem 6.2.1, we now define how to use this type of index to
answer queries.

Definition 6.2.3 (ans; and anspy). Let Z be a configuration query, and let Zz be an
index over Z. Let Qg be a query covered by Z, and let f,. be the filter-ignorant
renaming function from Q; to its corresponding subquery Z; of Z. The set
of answers of Q, over Zz, denoted ans;(Qs,Zz=), is defined to be the set of all
functions 7: V(Q,) — V(D) from M = {(@lv(z.) 0 fr) | ¢ € Iz} that satisfy
both of the following requirements:

m(v) #w Yo € V(Qy) (6.3)
m(v) € Fo,(v) Vv € V4(Qs)

The set of projected answers of Q, over Zz, onto the variable v € V(Qy), is
defined as follows:

anSp[(QS,IZ,'U) = {7‘(('[}) ‘ ™€ ansI(Qs,Ig)}
#

In the definition above, each function m € M is a transformed version of a
function ¢ € Zz, where the restriction of ¢ to V(ZS) gives a function that can
legally be composed with f,., so each function in M is defined from V(Qj) to
V(D). Any answer to Q, should not map any of its variables to w, and it should
satisfy all the filters defined by Qg, and this is expressed by Equation 6.3 and
Equation 6.4.

Our goal is to construct an index that gives the same projected answers to Qg
as the original dataset D does. If the index is populated in a way that ensures
this, then it is considered to be correct.

Definition 6.2.4 (Correct Index). Let Z be a configuration query, and let Zz be an
index over Z. Iz is correct if ansp;(Qs,Zz,v) = ansp(Qs, D, v) for every query
Q, covered by Z, and every variable v € V(Qj). .

100

The Extension Index

=
nameé

Zdl
Integer
9T [~ age

2d,
String

20!
70}

Person

T

2y
Figure 6.8: The configuration query Z.

6.2.1 Index Construction

There are many ways to construct an index from D, but not all of them are
correct. We will start by presenting an index that is easy to prove correct: the
index that contains all the padded answers to every subquery of Z. We formalize
this by introducing the function ansg in the following definition.

Definition 6.2.5 (Subquery Answers of Z). Let Z be a configuration query. The set
of subquery answers of Z, denoted ansg(Z, D), is the set of all padded answers
to any subquery Z; of Z, i.e.,

ansg(Z,D) U {fp(®) | ¢ € ans(Z,,D)}
Z,CZ

where f, transforms ¢ into the padded function ¢,: V(2) — (V(D) U {w, x})
defined by:
ov) ifveV(Z)

w otherwise

¢p(v) = [fp(9)l(v) = {

Example 6.2.6 shows how to use ansg to construct an index over D.

Example 6.2.6. Let us reconsider configuration query Zs, which is presented again
in Figure 6.8. Z5 has eight different subqueries, and the set of all 50 (padded)
answers they produce is given by Zz, = anss(Z3,D), which is presented in
Table 6.1.

¢

The following example shows how we can use the index to produce correct
answers to a query.

Example 6.2.7. Consider the index Zz, in Example 6.2.6, and let us revisit query
95, which is presented again in Figure 6.9. If we compute the projected answers

101

6. The Index-Based Extension Framework

1) 70, | ?d} 704 | 7d) 1) 70, | ?d} 704 | 7d,
o1 | Pl | w w w ¢og | P1 | w w 21
oo | P2 | w w w o29 | P2 | w w 35
o3 | P3 | w w w ¢30 | P3 | w w 45
o4 | P4 | w w w ¢31 | P4 | w w 30
o5 | P5 | w w w P32 | P5 | w w 11
o6 | P6 | w w w

o7 | P1 | Alice w w ¢33 | P1 | Alice w 21
¢s | P2 | Bob w w ¢34 | P2 | Bob w 35
¢9 | P2 | Robert | w w ¢35 | P2 | Robert | w 35
¢10 | P3 | Carol | w w ¢36 | P3 | Carol | w 45
¢11 | P4 | Dave w w o37 | P4 | Dave w 30
¢12 | PS5 | Eve w w ¢3s | P5 | Eve w 11
¢13 | P6 | Alice w w

¢4 | P1 | w Cl |w P39 | P1 | w C1 |21
b5 | P2 | w Cl |w ba0 | P2 | w Cl | 35
¢)16 P2 w C2 w ¢41 P2 w C2 35
b | P3| w 2 | w ¢s2 | P3 | w c2 | 45
¢18 P5 w C1 w (1543 P5 w C1 11
¢19 | P6 | w Cl |w

b2 | P1 | Alice | C1 | w baa | P1 | Alice | C1 | 21
b | P2 | Bob | C1 | w éis | P2 | Bob | C1 | 35
¢22 | P2 | Robert | C1 | w ¢a6 | P2 | Robert | C1 | 35
b3 | P2 | Bob | 02 | w éur | P2 | Bob | 02 | 35
doy | P2 | Robert | C2 | w 48 | P2 | Robert | C2 | 35
¢as | P3 | Carol | C2 |w ¢a9 | P3 | Carol | C2 | 45
@26 | P5 | Eve Cl |w ¢s0 | P5 | Eve c1 |11
¢o7 | P6 | Alice Cl | w

Table 6.1: All the 50 functions in Zz, = ansg(Z2, D).

of Qs over D, onto the variable 7d; we get

ansp(Qs, D, 7dy) = {Alice, Bob, Robert, Carol, Dave}

We get the same data values if we execute Qy over the index Zz,: Let us
consider every ¢ € Zz, from Table 6.1, and find out which of them will result in
a function 7 = Py (g, © fr that satisfies both Equation 6.3 and Equation 6.4.
We can for example discard functions ¢; to ¢o7, because they all map ?d), to w,
which gives w(?d2) = ¢(f(?d2)) = ¢(?d}) = w. We can do the same with ?d} to
discard all functions ¢aog to ¢32, and the functions ¢39 to ¢43. The remaining 13
functions (¢33 to ¢ss and ¢aq to ¢50) result in the following 13 answers of Qo
after renaming, and before filtering.

102

The Extension Index

?dz

?dy
Integer St
>18 [Tage ‘ name |

701
Person

Qs

Figure 6.9: The query Q-.

™ ?01 ?dl ?dz
733 P1 Alice 21
T34 P2 Bob 35
w35 | P2 | Robert | 35
w3e | P3| Carol | 45
w37 | P4 | Dave 30
38 P5 Fve 11
maa | P1 | Alice 21
w45 | P2 | Bob 35
w46 | P2 | Robert | 35
47 P2 Bob 35
m4s | P2 | Robert | 35
w9 | P3 | Carol | 45
50 P5 FEve 11

Many of these functions are duplicates, and both m3g and 750 fail to
satisfy the filter of age equal or higher than 18. After merging dupli-
cates and projecting onto the variable ?d;, only five distinct values remain:
{Alice, Bob, Robert, Carol, Dave}, which is exactly ansp(Qa, D, ?dy). ¢

Based on our arguments up to this point, it should not be a surprise that
the index Zz = ansg(Z, D) is correct.

Theorem 6.2.8. The index Zz = ansg(Z,D) over a configuration query Z is
correct. -

Proof. In order to prove this we are going to show that ans(Q,,D) =
ans;(Qs,Zz), for any Qg covered by Z, which implies that ansp(Qg, D,v) =
anspr(Qs,Zz,v) for any variable v € Q,. We assume that f,. is the filter-
ignorant renaming from Qg to its corresponding configuration query Z; C Z.
Any function 7 contained in either ans(Qs,D) or ans;(Qs,Zz) has to satisfy
the filters defined by Qg, so we do not need to pay attention to the filters.
Now, pick any 7 € ans(Qs, D). According to Theorem 6.2.1, there has to be
a function ¢ € ans(Z,,D) such that 7 = ¢ o f,.. Since ¢ € ans(Z;,D), and
Zs € Z, then the padded version of ¢, denoted ¢,, will be in Zz. Now, consider
7 = (¢ply(z.) © fr)- Since ¢yl (z.) = ¢, we get 7' = ¢ o f. = m. Furthermore,
7' (v) = ¢(f.(v)) cannot equal w, since f,.(v) is in V(Z,), and ¢ € ans(Z,, D), so

103

6. The Index-Based Extension Framework

o} 70} | ?d} 705 | ?d)
¢o7 | P6 | Alice Cl |w
¢s7 | P4 | Dave w 30
¢44 P1 Alice C1 21
¢45 P2 Bob C1 35
¢a6 | P2 | Robert | C1 | 35
éu7 | P2 | Bob c2 |35
¢ss | P2 | Robert | C2 | 35
da9 | P3 | Carol C2 | 45
¢50 P5 FEve C1 11

Table 6.2: Index 1'22 = ansp(Z2, D), which only includes the maximal functions
from Zz, = anss(Z2, D).

7’ = 7 satisfies all requirements from Definition 6.2.3, and hence it must be in
ans;(Qs,Zz).

The argument the other way is very similar. Assume that 7 € ans;(Qs,Zz).
Then there must exist some ¢, € Zz such that 7 = (¢, V(2. © fr). Now,

¢ply(z,) must be in ans(Z,, D), because for every v € V(Zs), we get ¢,(v') =
¢p(fr(v)) = m(v) # w, where v is a variable in V(Q;). From Theorem 6.2.1
follows that 7 must be in ans(Qs, D). |

Eliminate Redundancy The index based on ansg is correct, but it contains many
redundant functions. In Zz,, for example, all the entities ¢7 refers to are also
included in ¢oq, so if we remove ¢7 from the index, it will still be correct. This
relationship between two functions is called a subfunction relationship.

Definition 6.2.9 (Subfunction). Let ¢: X — Y and ¢4: X — Y be two functions.
o5 is a subfunction of ¢, denoted ¢ C ¢, if ¢s(x) = ¢(x) or ¢4(x) = w for each
r e X. -

Since the subfunction relationship is transitive, we can improve the index by
removing every subfunction from ansg(Z, D). This is equivalent to keeping all
maximal functions with respect to the subfunction relationship. The result is a
subset of the answers in ansg(Z, D), which we denote ansp(Z, D).

Example 6.2.10. Let us reconsider the index Zz, from Example 6.2.6. If we
extract all maximal functions from Zz,, we get the much smaller index
T’ = ansp(Z3,D), presented in Table 6.2. ¢

2

We can generate the index of maximal functions iteratively by starting with
the column of the root variable, and then add the column of one more variable
at a time, moving away from the root, until every variable is covered.

For example, to generate the index 1'132 given in Table 6.2 from scratch, we
start with all instances matching the root of Z5: ?0]. This gives us 6 functions,
one for each person in the dataset (see Table 6.3). Next, we add the variable ?d},

104

The Extension Index

70} 707 | ?7d}

P1 P1 | Alice

P2 P2 | Bob

P3 P2 | Robert

P4 P3 | Carol

P5 P4 | Dave

P6 P5 | FEve

P6 | Alice

Table 6.3: Step 1. Table 6.4: Step 2.
70, | ?d} 70}, 70, | ?d} 20, | ?d)
P1 | Alice C1 P1 | Alice c1 |21
P2 | Bob C1 P2 | Bob 1 | 35
P2 | Bob C2 P2 | Bob C2 |35
P2 | Robert | C1 P2 | Robert | C1 | 35
P2 | Robert | C2 P2 | Robert | C2 | 35
P3 | Carol C2 P3| Carol C2 | 45
P4 | Dave w P4 | Dave w 30
P5 | Eve 1 P5 | Eve 1 11
P6 | Alice C1 P6 | Alice Cl | w
Table 6.5: Step 3. Table 6.6: Step 4.

and this extends each function from Table 6.3 with the names of each person.
Since P2 has two names, we need to create two copies of P2, one for each
of the names Bob and Robert (see Table 6.4). Next, we add the variable 70,
which includes every country a person has visited. Notice that P2 has visited
two countries, so again, each function from Table 6.4 containing P2 must be
duplicated. P5, on the other hand, has not visited any countries, so 70}, must
be mapped to w to indicate that this branch has ended (see Table 6.5). Finally,
the last variable, d/, is added, and the full set of answers are given in Table 6.6.
Notice that P6 is not registered with any age in the dataset, and again we use w
to indicate this. As expected, the functions in Table 6.6 perfectly matches the
functions given in Table 6.2.

The results of the construction above can be obtained by running a single
SPARQL query over the dataset, where every branch is enclosed by the
OPTIONAL keyword. Figure 6.10 presents the two configuration queries Z; and
Z5 again, while Figure 6.11 shows the two SPARQL queries needed to calculate
ansp(Z1,D) and ansp(Z2, D). Notice the nested optionals that occur in the
SPARQL query corresponding to Z;. Since the answers of ansp(Z, D) are so
closely related to OPTIONALs in SPARQL, we call them the optional answers of
Z.

Definition 6.2.11 (Optional Answers). Let Z be a configuration query. The
optional answers of Z over D, denoted ansp(Z,D), is all maximal functions

105

6. The Index-Based Extension Framework

7d,
String

?d,
Integer

1’
?d‘3
String
El
2
%
/
7o}
Person
= >
< N
1’ E N
; ?dj
nteger _
[~ age name
/
70}
Person
Z

Figure 6.10:

¥
1\5,”
N
< U
S?dl
tring
[~ age , name L
?
70}
Person
)

Configuration queries Z; and Zs.

Query returning ansp (21, D).

20}

SELECT * WHERE {

7?0l rdf:type ex:Person.
OPTIONAL {

702 rdf:type ex:Country.
70l ex:visited ?02.

¥
OPTIONAL {

703 rdf:type ex:Person.
7?01 ex:knows ?03.
OPTIONAL {

703 ex:name ?7d3.

}

}
OPTIONAL {

70l ex:age ?dl1.

}
OPTIONAL {

}

701 ex:name ?d2.

Query returning ansp (22, D).

SELECT * WHERE {
?0l rdf:type ex:Person.
OPTIONAL {
702 rdf:type ex:Country.
70l ex:visited ?02.

}
OPTIONAL {
70l ex:age ?dl.
}
OPTIONAL {
70l ex:name ?7d2.
}
}

Figure 6.11: SPARQL queries with nested optionals used to calculate
ansp (21, D) and ansp (22, D).

106

The Extension Index

¢ € ansg(Z, D) with respect to the subfunction relationship. -

Now we just need to prove formally that the index Zz = ansp(Z,D) is
correct.

Theorem 6.2.12. The index defined by Zz = ansp(Z, D) over the configuration
query Z is correct. —

Since ansp(Z, D) is just ansg(Z, D) where subfunctions are removed, we can
show that Theorem 6.2.12 is true by proving a more general theorem, which
states that the act of removing a subfunction from an index does not change the
results of ans;(Q,7Zz).

Theorem 6.2.13. Let Zz be an index over a configuration query Z, and let Qg be
a query covered by Z. Furthermore, let ¢ and ¢s C ¢ be two functions in Zz.
Then
ans;(Qs,Zz) = ans;(Qs,Zz \ {¢s})
_|

Proof. Assume that we use the same notation as in Definition 6.2.3, and assume
that 7 € ans;(Qs,Zz) is an answer that depends on ¢y, i.e., T = (¢s[‘7(25) o fr).
Now, for every variable v’ € Z,, we get ¢5(v') = ¢s(f-(v)) = 7(v) # w, where v
is the variable in Q, that corresponds to v’. But since ¢5 C ¢, we then know that
bs(v") = ¢(v') Vv’ € V(Z,), which leads to the fact that ¢, iz = ¢lv(z.)
So even if ¢, is removed from the index, we still get m as an answer because
7T:(¢f\7(zs)ofr)- n

Existential Object Variables We can further reduce the size of the index by
utilizing the fact that our queries do not apply any filters on the object variables.
In Definition 6.2.3, the only requirement on object variables is that they should
not be assigned to w. In other words, we do not need to store the particular
instances in the index, we just need to know whether such an instance exists or
not. For example, consider the functions in Table 6.2 again, and in particular ¢35
and ¢47, which are identical for all variables except for the object variable 70,
which tells which countries the person has visited. When answering queries, it is
not relevant whether the person visited C'1 or C2 — all our system needs to know,
is that there exists a country visited by the person. Hence, our index will still
be correct if we replace each variable assignment to an instance with a similar
assignment to the special ezistence symbol y, which indicates to the system that
such an instance exists. Some functions in the index will then become equal,
and they can together be represented by only one function. In our example, this
will happen to ¢45 and ¢47, but also ¢46 and ¢45. By merging these function,
we get the index presented in Table 6.7.

Notice that by introducing existential object variables, the function ¢},
suddenly becomes a subquery of ¢},. This problem can be solved by first
introducing existential object variables, and then removing subfunctions. Let us
formalize this process into a new type of answer function: the existential answers
ansg.

107

6. The Index-Based Extension Framework

o |20 | 2d, |70} | ?d}

% Alice X w
Y Dave | w 30
| X Alice | x 21
s | X Bob X 35
6 | X Robert | x 35
o | X Carol | x 45
Y Eve X 11

Table 6.7: Every function remaining from anso (22, D) after introducing existential
object variables, and before removing subfunctions one more time.

o |20, | 2d, |0} | ?d}
dhr | X Dave | w 30
Dha | X Alice X 21
bus | X Bob X 35
Dhe | X Robert | x 35
Dho | X Carol | x 45
b50 | X Eve X 11

Table 6.8: Every function in ansg(Z2, D).

Definition 6.2.14 (Existential Answers ansg). Let Z be a configuration query. The

set of every existential answer of Z over D, denoted ansg(Z, D), is the set of all

maximal functions in {fg(¢) | ¢ € anss(Z,D)} with respect to the subfunction

relation, where fg is a function that transforms every function ¢ into ¢’ given

by

o(v) = {X ifve 1./0(2) and ¢(v) # w (6.5)
o(v) otherwise

_{

Example 6.2.15. If we revisit the configuration query Z5 used in the previous
examples, and compute ansg(Z2, D) we get the functions presented in Table 6.8

¢

Notice that the first column in Table 6.8 that corresponds to the root variable
of Z5 only contains the symbol x. This is not a coincidence — every function
7 € ansg(Z, D) will map the root of Z to x, since it is an object variable that
cannot be mapped to w.

Theorem 6.2.16. The index defined by Zz = ansg(Z,D) over the configuration
query Z is correct. o

Proof. We already proved that ansg(Z,D) is correct in Theorem 6.2.8, and that
removing subfunctions does not make an index incorrect in Theorem 6.2.13,

108

The Extension Index

so we only need to show that the introduction of the existence symbol does
not make the index incorrect. In other words, if we let Q4 be a query covered
by Z, and we consider a function 7 € ans;(Qs,Zz), where Zz = anss(Z,D),
then we only need to show that fg () still qualifies as an answer, i.e., that it
satisfies both requirements given by Equation 6.3 and Equation 6.4. If this is
true, then projection on a given variable still returns the same results, since fg
does not change the values assigned to data variables of Z. But fg(m) satisfies
Equation 6.3, because it does not reassign any variables to w, and it satisfies
Equation 6.4, because it does not reassign any of the data variables. |

This final way of setting up the index based on ansg is the best we can
achieve under the index definition we use, so we will use this index from here on.
Le., we assume that Zz = ansg(Z, D) unless stated otherwise.

Object Property Extensions Early in Chapter 5, we presented two different types
of extensions: object property extensions and data property extensions. So far
we have only been focusing on data property extensions, but now we will briefly
explain how to use the index to also detect dead-ends among object property
extensions. The approach is very similar to the one we use to calculate dead-ends
among data property extensions.

Since object variables can not have filters, an object property extension can
be specified by just an extension pair 7 = (p.,t.) € ') x I'c, where p, is an
object property and t. is a class. All legal such pairs can be determined from
the navigation graph, and to check if 7 is productive, we just have to extend the
partial query with respect to 7 and execute the resulting query Q. over the index
with projection on the extension variable v.. Since v, now is an object variable,
and every column corresponding to an object variable in the index only contains
values from {y,w}, the projected result of Q. will be a subset of {x,w}. The
extension should be classified as productive if there exists at least one answer,
i.e., if x is contained in the answers of Q.. For each case with a partial query
and extension pair, we then just get a binary prediction, and the precision of
this prediction is perfect if the extension is classified correctly, and 0 otherwise.

6.2.2 Index Efficiency

So far we have described how to set up an index based on ansg, and how to use
it correctly with ans; and ansp;. Now we will explain how to implement it in a
way that ensures sufficient efficiency.

The simplest way to do it is to use state-of-the-art faceted search systems,
like the ones we presented in Chapter 2. Earlier we claimed that these systems
cannot be used in the multi-class setting we work in because they require both
queries and a dataset that is limited by a predefined schema. But this is more or
less exactly what we have left after introducing the configuration query Z: both
the index and the queries we work with are limited by the variables and structure
of Z. Or, phrased in another way: we can turn our configuration-based solution
into standard faceted search by considering every data property in Z to be a

109

6. The Index-Based Extension Framework

facet of the root. By implementing our index-based solution in state-of-the-art
search systems, we are guaranteed both sufficient efficiency and scalability.

Another way to implement our system is to materialize Zz into its
corresponding index table, which is the table with one row per function in
Tz, and one column per variable in Z, and where each cell contains the value
one gets when applying the row’s function on the column’s variable. This is
similar to the tables of functions we have presented earlier in this chapter, like
Table 6.8. Think of the index table as a large, denormalized table where all
possible joins are precomputed.

This index table can be stored in a relational database, under the schema
defined by Z. The process defined by ans; is then just a table scan, where
only rows that satisfy the filters of the relevant query are returned. Such table
scans can be done efficiently (logarithmic with respect to the number of rows) if
database indices are added to each column. Table scans can also be parallelized
easily, i.e., it is easy to distribute the work over multiple machines if needed.

The time it takes to build the index based on Z is mostly consumed by the time
it takes for the query engine to calculate ansg(Z, D). How fast this actually is,
depends on the database, and how well it handles the nested optionals that occur
in the SPARQL query corresponding to ansg(Z, D). Index construction should
be as efficient as possible, but it is not as time-critical as dead-end detection.
If data is updated daily, then index construction can be done overnight, for
example.

6.2.3 Index Cost

One of the main drawbacks of using index-based solutions is that the index has
to be stored somewhere. We have to include this aspect in our model, i.e., we
need to somehow quantify the size of the index. Ideally, we would like to use
the actual size in bytes of the index as a cost measure, but this depends too
much on the implementation, and it is too complicated for our model. Instead,
we define the cost of an index to equal the number of cells in its corresponding
index table. This is a reasonable cost function, which grows at about the same
rate as the size of the index in bytes, at least if we assume that the index is
stored in its tabular form. Since we assume that Zz = ansg(Z, D), and since we
know that the column corresponding to the root variable only includes x (see
Table 6.8 for an example), we get the following cost function:

Definition 6.2.17 (Configuration Query Cost). Let Z be a configuration query. The
cost of Z over D, denoted cost(Z, D), is given by

cost(Z,D) = (|[V(Z)| = 1) - |ansp(Z, D)| (6.6)
_{

In Equation 6.6, |V (Z)| equals the number of columns in the index table,
while |ansg(Z,D)| is the number rows. We subtract 1 from the number of
columns |V (Z)| in the cost function since the column of the root only contains
X, and hence, does not need to be stored.

110

The Extension Index

6.2.4 Bucketing

Some properties in the dataset may have a large set of distinct values they can
refer to. One example of this is the fortune of a person, which can be any amount
of money between $0 and $100 billion. Few persons have the exact same fortune,
and even if we reduce the precision to whole dollars, there are still extremely
many possible fortunes left, if we consider all living persons. Properties with
many possible values are problematic, because they require a large amount of
storage space in general, and because they may cause information overload when
presented to the user. In our context, they are also problematic because they
lead to many rows in the index table, which again results in a high cost.

In order to eliminate the problems mentioned above, we can use a common
technique called bucketing, which combines similar data values or entities into
one group, called a bucket. For example, one could make a set of four buckets
B = {by, b, b3, by} for the following four fortune ranges:

o by: < $100

o by: $100 - $10.000

o b3: $10.000 - $1.000.000
e by: > $1.000.000

One way to integrate these buckets into our system, is to transform the dataset
by replacing each individual’s fortune with the bucket it belongs to. This reduces
the number of distinct fortunes in the dataset, which may be millions, down to
only four buckets.

The drawback of introducing buckets as described above is that it reduces
the quality of the data, which again affects which queries the dataset can provide
answers to. For example, if a user wants the list of all persons with a fortune
between $4000 and $9000, then the dataset will not be able to provide a precise
answer, because this fortune range does not comply with the buckets given above.
In other words, if buckets are used to reduce the dataset, then they also have
to be incorporated in the query filters. So, instead of allowing filters that are
specified by a subset of the values in I';,, filters must instead specify a subset of
the given buckets. The reduction from multiple data values to just a few buckets
in query filters must be implemented also in the user interface of the relevant
system. I.e., instead of providing a list with millions of possible fortunes, the
user interface will instead only show 4 fortune buckets. In other words, bucketing
is an efficient way of reducing the problem of information overload.

Bucketing is most commonly used for numerical datatypes, because the
range of possible numbers is often infinitely large, and since they have a natural
ordering that makes it easy to define buckets and place values in them. It is
also possible to define buckets for any other type of data, but it is less common.
For example, if the dataset uses a fine-grained set of food categories, it may be
possible to define buckets based on categories higher up in the food category
hierarchy.

111

6. The Index-Based Extension Framework

This way of implementing buckets, where buckets are used everywhere, is not
the only way of implementing them into our system. For example, it is possible
to only use buckets in the index, but this requires a new definition of ans; that
still works for arbitrary filters in the queries. The use of buckets to simplify
datasets is nothing new. For example, they are commonly used by e-commerce
services like eBay to specify price ranges of products. Buckets are also a central
part of the construction and usage of histograms internally in databases, which
are often used to estimate the cardinality of queries [21, 42, 20]. In this thesis
project, we have not been focusing on buckets, but, we know that bucketing is a
useful technique, which our system would likely benefit from (index reduction),
and we know that there exist research and methods that would allow us to use
them [21, 42, 20]. Furthermore, in Section 8.1, we are going to estimate the
cardinality of queries, and in parts of that estimation process, we assume that
the distinct values associated with each property can be described by a finite,
discrete set, as this allows us to construct histograms based on the dataset.

6.3 Optimal Configuration Queries

Given a configuration query Z, we now have a definition of its corresponding
value function, SZ, which we can evaluate over one or more different extension
cases using any of the precision formulas from Section 5.4.2. In Section 6.1.2,
we tied this precision directly to the configuration query Z itself. In other
words, given Z, we have methods to calculate the precision it leads to over single
extension cases, rooted queries, unrooted queries, or query logs. We also have a
cost function that allows us to express how costly Z is with respect to D (see
Definition 6.2.17).

In general, a large configuration query tends to result in both high cost and
high precision, while a small configuration query tends to result in both low
precision and low cost. This is interesting because we are obviously interested in
configuration queries with high precision, but low cost. In this section, we are
going to explore the trade-off between the two measures. In particular, we are
going to discuss Pareto optimal configuration queries, and present the results of
an Experiment related to them (see Section 6.3.1).

If Z is a configuration query and Z; is a subquery of Z, then Z will be at
least as costly as Z; and at least as precise as Z; with respect to all the four
possible precision functions we have defined.

Theorem 6.3.1. Let Z and Z, be two configuration queries. If Z5 C Z, then all of
the following statements are true:

cost(Zs, D) < cost(Z,D) (6.7)
precc (25, Q,7) < prece(Z, Q,T) (6.8)
precq(Zs, Q) < precy(Z, Q) (6.9)
precy (Zs, Qu) < precy(Z, Qu) (6.10)
prec,(Zs, L) < precy,(Z, L) (6.11)

112

Optimal Configuration Queries

where Q is any rooted query, and 7 is a legal extension pair, @, is an unrooted
query, and L is a query log. -

Proof. If we can prove Equation 6.8, then the three equations below it will also
be true, according to Theorem 5.4.12. Hence, we only need to prove Equation 6.7
and Equation 6.8

To prove Equation 6.7, we have to consider both of the factors in Equation 6.6,
and show that they both are smaller when we evaluate the cost of Z4 compared
to the cost of Z. |V(Z)| — 1 is obviously smaller than |V (Z)| — 1, since the
subquery Z has fewer variables than Z (unless Z, = Z). To prove that
|ansg(Zs,D)| is smaller than |ansg(Z,D)|, we are going to show that for
each m € ansg(Zs,D), there exists a corresponding function in ansg(Z, D).
Notice that since subfunctions will always be removed from ansg(Zs, D) and
ansg(Z, D), both of these sets only contain maximal functions with respect to
the subfunction relation. Now, let ¢ be the padded version of m where each
variable in V(Z)\ V(Z,) is mapped to w. If ¢ is maximal in ansz(Z, D), then we
are done with 7, since we have found a corresponding function. If not, then select
one maximal function ¢™ € ansg(Z, D) such that ¢ C ¢, and let ¢™ be the
query that corresponds to . Now we only need to show that no two functions
m and 7o in ansg(Z,, D) correspond to the same function in ansg(Z,D). So
let us assume that there exists a maximal query ¢™ € ansg(Z,D) such that
@1 C @™ and ¢ C ¢™, where ¢ and ¢ are the padded versions of 7w and 7y
respectively. But then 7™ = ¢™ [‘7(38) will be a superfunction of both 7; and
o, which is only possible if m; = w9 = 7", since both m; and w2 are maximal in
ansg(Z,, D).

To prove Equation 6.8, it is enough to show that SZ<(Q,7) 2 SZ(Q, 7). But
this is true, because prune(Q., Z5,v.) C prune(Q., Z,v.) (see Definition 6.1.8),
so every Q, and its corresponding ansp(Qg, D, v) that limits the set returned by
SZ:(Q, 1), will also be limiting SZ(Q, 7), but SZ(Q, 7) may also contain other
subqueries that limits it even more. |

Pareto Optimal Configurations A configuration query is considered to be good
if it has high precision, but also if it has a low cost. But, as we have already
established, there is a natural trade-off between these two measures, so usually,
we will not be able to find a single configuration query that is simply better than
every other configuration query. Instead, there will be a set of what is called
Pareto optimal configuration queries, i.e., configurations that are better than
each other configuration with respect to either cost or precision.

Definition 6.3.2 (Pareto Optimal Configuration Queries). Let X be a set of
configuration queries. A configuration query Z € X is Pareto optimal in X if
for every configuration query Z’ € X, at least one of the following statements is
true:

1. preca (2,9, 1) < prece(Z, Q,T)

2. cost(Z',D) > cost(Z,D)

113

6. The Index-Based Extension Framework

3. cost(Z,D) = cost(Z',D) and prec(Z,9,7) = prec(Z2', Q,7)
_{

The definition above is defined using precq, the precision over one single
case, but it can also be applied to all the other three types of precisions we
have defined. The third requirement covers the special case when two different
configurations have the exact same cost and precision. In that case, we consider
both to be Pareto optimal. The set of Pareto optimal configuration queries is
also called the Pareto frontier.

Definition 6.3.2 defines Pareto optimality over a set of configuration queries
X. This can be any set of configuration queries, but we are mostly interested
in configuration queries that are globally Pareto optimal, i.e., Pareto optimal
configuration queries with respect to the set of all possible configuration queries.

6.3.1 Experiment 2: Pareto Optimal Configuration Queries

In order to get an idea about what the relationship between cost and precision
looks like in practice, we do a second experiment where we explore the full set of
configuration queries and their corresponding cost and precision over one rooted
query.

The results of this experiment have been published and used in two of the
papers related to this thesis: Paper P6 [27] and Paper P8 [29].

We use the same setup as in Experiment 1 (see Section 6.1.3), based on the
NPD Factpages dataset, and we calculate precisions based on only one rooted
query at a time (see Definition 5.4.8), which is also what we did in Experiment
1. For each rooted query Q, we generate the set of all configuration queries with
the same root class as Q, which are also covered by Q. Then we calculate the
precision and cost of each such configuration query.

Figure 6.12 presents the results of Query 6.2. It contains a chart with
precision on the z-axis, and cost on the y-axis, and each considered configuration
query is represented by a point in the position that corresponds to its cost and
precision. All points close to the bottom right corner are good because they
have both high precision and low cost. Some of these configuration queries are
Pareto optimal, and to highlight those, we have connected them with lines.

Notice how the different configuration queries tend to group together on a
limited set of fixed precisions. This is because the precision does not always
increase when a new variable is added to a configuration query, but the cost will
always increase.

Since we evaluate the precision over a rooted query Q, we want configuration
queries that at least contains all the local data properties in Q. In other words,
the smallest configuration query in Figure 6.12, denoted Z,,;,, which is the one
closest to the bottom left corner, is a star-shaped configuration query containing
just the root variable and all local data properties that are also in Q. The
largest configuration query we use, denoted Z,,.., is the configuration query
that is a filter-ignorant renaming of Q itself. The precision of this configuration
query is 1.0 because it fully covers Q, and it is represented by the point closest

114

Optimal Configuration Queries

350000 A
Zma,::: °

300000 A

250000 -

200000 A

Cost

150000 A

100000 A

50000 A

Zmi n

0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Precision

Figure 6.12: Chart showing all considered configuration queries when using Query
6.2 to calculate precision. The connected configurations are Pareto optimal.

to the upper right corner. While Z,,;, is Pareto optimal over all queries we
consider, this is not always the case for Z,,,,. For example, in Figure 6.12 we
see that there exists another Pareto optimal configuration query below Z,, 4.
with a precision of 1.0 but lower cost than Z,,...

If we were to also explore configuration queries with branches outside of O,
which would not contribute to higher precision, only higher cost, we would get
configurations placed right above the points we already have. Such configuration
queries would never be Pareto optimal, so we are not missing any Pareto optimal
configuration queries by not considering them.

If we only consider the Pareto optimal configuration queries over Query 6.2,
they make a non-decreasing sequence of points in the chart, where the first point
corresponds to Zin. Zmin has a cost of about 30000, and a precision of 0.33,
while the Pareto optimal configuration query with perfect precision has a cost of
63000. In other words, with about twice the index size, the precision increases
from 0.33 to 1.0.

We want to do a similar analysis over all queries, but in order to compare
the results, we need to first normalize the cost axis by dividing each cost by the
cost of Z,,;n. When we do this for the results of Query 6.2, we get the chart in
Figure 6.13. Since Z,,;, only contains the root variable and all local properties,
we can then interpret the normalized cost as to how large the index will be
compared to the index needed in the case of standard faceted search.

Figure 6.14 presents the normalized results of all the queries in the query log

115

6. The Index-Based Extension Framework

2.0 A

1.8 1

1.6 A

1.4 1

Cost (normalized)

1.2 A

1.0 4 Zm'i,n

0.0 0.2 0.4 0.6 0.8 1.0
Precision

Figure 6.13: The same results as in Figure 6.12, just with a normalized y-axis.

in the same chart.

The overall results from Figure 6.14 seems promising, as most of the
transitions between Pareto optimal points (black line segments) are more
horizontal than vertical. This indicates that with a clever selection of branches
in the configuration query, one can transition to much higher precisions without
having to increase the cost very much. The median (red curve) and upper
quartile (blue curve) have similar horizontal profiles, but with a slight increase as
they approach the perfect precision, resulting in a more convex curve. In other
words, the last 10% of precision is more expensive than any other 10% increase.

When interpreting these results, it is important to remember that we here
only evaluate over one query at a time and that in real life, one configuration
query and its corresponding value function will need to provide values for multiple
different queries. All these queries are likely to have many different root classes,
and if the root class of a query does not match the root class of the configuration
query Z, then the value function SZ will not be able to provide any better set
of values than just I',. In order to solve this problem, we are going to extend
our system to use more than one configuration query at a time.

6.4 Configuration Sets

So far we have only considered one particular configuration query at a time and
seen how its corresponding value function SZ can be used to suggest values. This
value function may return reasonable values when the root class of Q@ matches

116

Configuration Sets

2.0 1 ,

1.8 1

1.6 A

1.4 1

Cost (normalized)

1.2 A

1.0
0.0 0.2

Precision

Figure 6.14: Pareto optimal configuration queries for all 29 queries with a
normalized cost. The red curve shows the median, and the blue curve is the upper
quartile.

the root class of Z. However, when this is not the case, it will just return T,
which is far from optimal.

In this section we define configurations sets, or just configurations, which are
sets containing multiple configuration queries, possibly with multiple different
root classes. Such a configuration set defines multiple value functions with
corresponding indices, and all of these value functions can be combined into
a complex value function with higher precision, but also higher cost than the
value functions induced by each individual configuration query. This extension
to configuration sets is essential when the goal is to achieve high precision over
multiple real-life query construction sessions, where there are multiple extension
cases to consider, usually with many different root classes.

Definition 6.4.1 (Configuration Set). A configuration set is a finite set W =
{21, 2s,...,2,} of configuration queries 21, 2,5, ..., Z,. 5

Fach configuration query Z € W corresponds to a concrete value function
SZ which can be used to produce a set of values to suggest. If the root class
of Z is not the same as the root class of Q, or if Z does not cover the relevant
extension pair, then it will default to only suggest the full set of data values I',.
But, if it overlaps to a high degree with Q, then the resulting set of values will
often be much closer to the actual set of productive values defined by X,. If
there is more than one configuration query with significant overlap, then their

117

6. The Index-Based Extension Framework

corresponding value functions may all produce different value sets, which can be
intersected to get results even closer to what X, would produce. Based on this
idea, we now formally define the value function S?Y based on a configuration set

W.

Definition 6.4.2 (Configuration-based Value Function: S!V). Let Q be a query, let
7€ J(Q,N), and let W be a configuration set. The configuration-based value
function based on the configuration set W, denoted S}V, is defined as

SY(Q,m)=Tyn () SZ(Q.7)

Zew
-

This value function is well-defined, because SZ(Q, 7) is defined to return a
subset of I', even in the cases when Z does not cover 7 (see Definition 6.1.5).
Also, note that we intersect with I',, just like we did in Definition 6.1.8, which
means that S, will just return I', when W is empty.

All the precision formulas (see Section 5.4.2) we have defined for general value
functions will also, of course, be valid for SYV, and since there is a correspondence
between W and SV we will link each of these precisions directly to W itself. In
other words, for each rooted query Q, extension pair 7, unrooted query Q, and
query log L, we define:

precc(W, Q, 1) = preca(SYY, Q,)
preco(W, Q) = precQ(, Q)
precy (W, Qu) = precy (S, W7 Qu)
precy, (W, L) = precy,(SYV, L)

The indices generated by the configuration queries in W are all independent,
so the cost of W and its corresponding value function S?Y must equal the sum
of the costs of each individual configuration query in W.

Definition 6.4.3 (Cost of Configuration Set). The cost of a configuration set W,
denoted cost(W, D), is the sum of the cost of each of its configuration queries.
Le.,
costW, D) = Z cost(Z,D)
Zew
_{

We already know that large configuration queries in general result in both
high precision, and high cost. There are similar general rules that hold for
configuration sets:

o Configuration sets with large configuration queries will in general have
both high precision and high cost.

o Configuration sets with many configuration queries will in general have
both high precision and high cost.

118

Configuration Sets

In some cases, one can directly compare the configuration queries contained
in two configuration sets, and infer from that a relationship between their costs
and precisions. For example, if we construct a successor of W, which is the
new configuration set W we get after extending one of the configuration queries
in W, then both the precision and cost of W’ will be equal or higher than the
precision and cost of W. lLe.,

precc(W, Q, T
precqo(W, @

) ecc(W',Q,71)

)
prch (W7 Qu)

)

)

(:
ecq(WV', Q)
ecy (W', Qu)
ec;, (W', L)
cost W', D)

INIA

pr
pr
pr
precy, (W, L) < pr
cost(W, D

IN AN

for each rooted query Q, unrooted query Q,,, extension pair 7, and query log L.

6.4.1 Special Configuration Sets

In Chapter 5, we defined five different value functions: S,, S;, S, Sq, and Se.
With our new extended framework, which uses configuration sets, we will now
attempt to model these value functions. In order to do this, we need to introduce
some special configuration sets, which we will also use in Chapter 8 when we
consider the problem of generating optimal configuration queries.

Se S, is only able to produce value functions with perfect recall, but S, has a
recall of 0, which means that it is impossible to model S, with S,.

Sq Sy is supposed to return I';, in every case, which can be achieved by using
the empty configuration set Wy =) over S,. Without any configuration queries,
SWa will not be able to suggest anything better than T, itself, which is exactly
what Sy does. Since W, = () leads to a value function that always returns T,
its precision will be close to 0. The cost of W, will also be 0 since it does not
contain any configuration queries, and hence indices are not required either.
This cost and precision match the cost and precision we calculated for Sy in
Chapter 5.

S, S is defined to only keep the parts of the query that match the extension
pair itself. This can be achieved by using a configuration set W,, consisting of
many small configuration queries, one for each edge in NV, i.e.,

W, = U (2.} (6.12)

e:(ts,p,tt)EE(N)

where
Z, = (({UT’U}v {<UT7p’U)})v {UT = ls, v tt})

119

6. The Index-Based Extension Framework

7d; 2d), 20}, ?d) 7d;
String Integer Person String Integer
ek 9k o
Person Person Person

z} z? z3 z4 Z

T

age —|
—|
pop. —|

name
name

visited ﬂ@

visited By |

Ta

ZG

o

Figure 6.15: The six configuration queries in W, when using the navigation graph
from Example 4.2.3.

In the declaration of Z. above, we have used Rz, = ({v,, v}, {(v,,p,v)}) to
represent the query tree of Z.. This notation differs from the notation we have
used earlier in the thesis, but it is just shorthand notation for

e

_ ({vr, v}, {} {(vr, p,v)}) if v is an object variable
({v-}, {v}, {(v-, p,0)}) if v is a data variable

This notation is more convenient to use in the above formula because whether v
is an object variable or a data variable depends on the particular edge e in N/
that is considered. We will also use this notation later in the thesis.

To show what W, may look like, consider the following example: if we use
the navigation graph from Example 4.2.3, then all the six configuration queries
of W, are presented in Figure 6.15.

Now, given an extension case with a query Q and an extension pair
T € J(Q,N), there will only exist one single configuration query in W, that
covers 7, and after pruning, it will only return one pruned query, which consists
of only the root of Q and the extension variable.

S; In Definition 5.4.15, we defined the value function .S; to remove every part of
Q. that is not connected directly to the root variable of Q., and then calculate
values based on the remaining query. We are not able to model S; exactly
with S,, because we only allow simple configuration queries, but by using a
configuration set with multiple star-shaped, configuration queries, one for each
class in NV, we get something that is relatively close to S;. Le., we define W, to
be the configuration set
Wy = U {2}

teV,(N)

where Z; is the star-shaped configuration query with a root variable v, of type
t, and one edge of the form (v, p,v) from v, to v of type ¢’ for each outgoing

120

Configuration Sets

@
2d’, ey ?d.
cdz Mtt
Integer IPerazm String
N 1 %
X @ 3
2 N =% N
N = N
N i3]
?d} <= ?dY,
Strin, Integer
9~ "2 pop: /7g
ZPerson ZCountry

Figure 6.16: The two configuration queries in W, when using the navigation graph
from Example 4.2.3.

edge (t,p,t') of t in N. For example, if we use the navigation graph from
Example 4.2.3, then both of the configuration queries of W, are presented in
Figure 6.16.

SWi prunes away everything of Q. that is not connected directly to the
root, which is exactly what S; does. But, in addition, it will need to prune
away all additional branches if Q. is non-simple. So, in general we have that

S1(Q,7) C S™M(Q,7), and if Q is simple, then S;(Q,7) = SV (Q, 7).

So S, is able to deal perfectly with non-simple queries, which is not something
we can do with S,, and because of this, we will not be able to model S, with
S,. Additionally, since S, never prunes away anything from Q., we would need
very large configuration queries in the configuration set. In fact, in order to
support arbitrary large queries, they would need to be infinitely large, which is
not possible in practice.

However, we can still make a configuration-based value function that
approximates S, quite well, by using a configuration set W with very large
configuration queries. For example, if we for each class in N added one
configuration query with all possible branches given by A down to a given
depth 4, then this value function would return exactly the same as S, for all
non-simple queries Q of depth § or less, and it would also give reasonable results
for all the queries deeper than 4. This is likely not something that would work
in practice though, since the corresponding index would be extremely large, even
for small navigation graphs.

Another possibility, which may lead to very large configuration sets, is to
generate the configuration set W, that only extends as far as the set of queries
in the query log requires. More precisely, for every branch from a potential
root variable v, in one of the queries of the query log, the configuration query
of the type v, must have a corresponding branch (there should only be one
configuration query for each type). This configuration set can still not include

121

6. The Index-Based Extension Framework

Set | Description

Wy | The empty configuration set: Wy = (0.

W, | One small configuration query for each edge in N.

W2 | Variant of W, where only data properties are included.

W, One fully saturated configuration query for each class.

Wld Variant of W, where only data properties are included.

Wi, | The maximum configuration set containing all paths in the query log.

Table 6.9: Summary of the six special configuration sets we have considered.

non-simple configuration queries, so it will not be able to achieve perfect precision
for non-simple queries. But despite this, SYV= is going to return very good results.
Just like the configuration set covering queries down to a given depth §, W,
will also lead to a very large index if the query log is large, so in practice, W,,
will likely not be a good solution.

To summarize, we have now presented four different configuration sets:
Wy =0, W;, and W,, which both can be generated directly from N, and W,,,
which must be generated from a query log. W, can be used to model S; = S¥Va
and W, can be used to model S, = SZVT. S;/V ! is not equivalent to S; in general,
only if the partial query is simple. W,, is also not a perfect copy of S, in general,
only if the partial query is non-simple, and covered by the query log used to
generate W,,.

In addition to these four configuration sets, we define W and W{ to be
the two versions of W, and W, respectively, where all object properties have
been removed, such that only data properties remain. For example, if we use
the navigation graph from Example 4.2.3, then W< would be the set containing
{22,223, 25, 25} from Figure 6.15, and W{ would be the set containing Zpe,son
and Zcountry from Figure 6.16, after removing the object variable 70, from both
of them. The reason why we define variants of W, and W, that only focus on
data properties is that we want to see how good they are compared to W, and
W, themselves. IL.e., we would like to measure the effect of removing all object
properties, similar to what we did in Experiment 1, where we defined two groups
of configuration queries: one saturated with both data properties and object
properties (ObjDat), and one saturated with only data properties (Dat).

A summary of the six configuration sets we have just presented is given in
Table 6.9.

6.4.2 The Configuration Generation Problem

We have now completed the description of our configuration-based framework
S., where a configuration set W defines a value function S}V, which again can
be used to make an estimate of the productive values when a partial query Q
and extension pair 7 is given. In order to ensure a high efficiency of SY, it
is important that the index corresponding to W is constructed in advance of

122

Configuration Sets

all query sessions where SV is going to be used. In other words, W must be
specified during the configuration phase of the VQS it will be used for.

We do not know how to select a successful configuration query W, because
we do not know which queries the users are going to construct in the VQS. But,
we have access to the dataset D during the configuration phase, and we also
assume that we have access to a query log £ with representative queries. A
good configuration set is then one that has low cost with respect to D, and high
precision over L.

For every realistic dataset D, there will not only be one such configuration
set but many, given by the frontier of all Pareto optimal configuration sets. In
Section 6.3, we only discussed Pareto optimal configuration queries, but since we
extended the cost and precision measures to also cover configuration sets, the
principles of Pareto optimality will still apply to configuration sets.

Which of all these Pareto optimal configuration sets we actually want to use,
depends on how much space we allow the index to use, or how precise we want
the system to be. We can either specify a maximum cost, M, and then use the
most precise configuration set with cost less or equal to M, or we can specify a
minimum required precision P, and then use the cheapest configuration set with
precision higher or equal to P. We will assume the former of these two cases,
which leads us to the configuration generation problem:

Definition 6.4.4 (Configuration Generation Problem). Let D be a dataset, let £ be
a query log, and let M be a maximum allowed cost. The configuration generation
problem is to find the configuration set VW with the highest precision, which also
has cost less or equal to M. I.e., to calculate

argmax prec;, (W, L)
cost(V\}/,vD) <M

_|

This optimization problem is trivial to solve when the number of configuration
sets is so small that one has time to loop over each of them and calculate
the precision and cost, but this is almost never the case, due to the rapid
growth of possible configuration sets. In addition, it will take a lot of time to
actually calculate the cost and precision of any single configuration set, given
our assumption that executing one single query may take minutes. Below we
discuss these two challenges in detail.

The Search Space In order to find the optimal solution to the configuration
generation problem, we need to consider every configuration set in the search
space, so let us take a look at how many such sets there are. As long as N
contains at least one object property, the set of possible configuration sets over
N is infinite because it is possible to construct arbitrarily long configuration
queries by traversing back and forth between the two types that are connected by
the object property. We can reduce this to a finite number by only considering
configuration queries where the branches are contained in the query log. Or,

123

6. The Index-Based Extension Framework

phrased differently, if W,, is the configuration set generated from the provided
query log, then we only need to consider configuration queries that are subqueries
of a configuration query in W,,.

The number of subqueries N of a particular configuration query Z with root
variable v, can be calculated exactly by using the following recursive formula:
N = n(v,), where n(v) = 1 if v is a leaf variable, and

s= [@)+

(v,p,v")EE(Z)

if v is an internal variable. We can make a rough estimate of N if we assume that
Z has a branching factor of b and a depth of d: N = 20D A configuration set may
select any subset of these configuration queries, which gives us approximately

2N = 2(2(bd>) possibilities. Now, if we assume that there are ¢ classes, and
hence ¢ configuration queries in W,,, to select subqueries from, then the total
number of possible configuration sets we have to consider becomes approximately
(2(2(bd)))C = (26'(2(bd))). With a branching factor of b = 2, a depth of d = 3
and ¢ = 10 classes, for example, the number of possible configuration sets will
already be larger than 107, In other words, it will not be possible to consider
every possible configuration set in the search space given a query log of say 1000
queries, with queries of decent size (5-10 variables), and a navigation graph
with maybe 30 classes. In the calculations above we have not been considering
the redundant configuration queries that are subqueries of other configuration
queries, but even after removing these, there will still be too many possible
configuration sets to consider.

In Experiment 2, we were able to calculate the cost and precision of every
configuration query, which allowed us to both make the chart in Figure 6.12,
and calculate all Pareto optimal configuration queries. The problem we have
now looks similar, but it is much harder: now we work with configuration sets
instead of configuration queries, and we evaluate precision over a full query log,
not a single query.

Efficiency of Cost and Precision The second problem that makes the configuration
generation problem hard, is the fact that calculating the precision and cost of
a single configuration set W is too inefficient. In Section 8.1 we cover this in
detail, but essentially the problem is that we have to execute multiple queries
over D in order to calculate both the exact precision and cost.

In the two following chapters, we are going to work on the configuration
generation problem. In order to solve the problem with the search space that
is too large, we are going to use heuristics to select which configuration sets
to consider, and which ones to discard (see Section 8.2). This process may
discard the true optimal configuration set, but with good heuristics, the result
should still be very good. In order to solve the problem with inefficient cost
and precision calculation, we are going to use estimates of these measures (see
Section 8.1).

124

Configuration Sets

The configuration generation problem requires a large query log £ as input,
and in order to make a good evaluation of the configuration generation algorithms,
we need a more extensive query log than the one we used for Experiment 1 and
Experiment 2, which only contains 29 hand-made queries for the NPD Factpages
dataset. So, for the configuration generation evaluation, we make a benchmark
based on Wikidata, which we present in the next chapter.

125

Chapter 7

The Wikidata Benchmark

In order to evaluate the configuration generation methods presented in the
next chapter, we need a setup to evaluate over. This setup must consist of the
following three parts:

o A large dataset D, preferably about a well-known domain.
e A navigation graph A/ that matches D.

o An extensive query log £ with complex queries over A/, which reflects the
information need of human users.

The NPD Factpages setup, which we used for both of the experiments
presented in Chapter 6, is not extensive enough for our needs. The main problem
with this setup is the query log, which only contains 29 queries hand-made by
the author. We need a query log that captures the information need of real
human users, and this query log must contain many queries, and large queries.

Dead-end detection is not the only research problem related to OptiqueVQS
and similar systems that requires a query log like this. For example, query
extension ranking algorithms need realistic queries to check if a particular
suggested order is helpful for the user. Ideally, a set of queries should be harvested
from real-life use of the VQS itself, but there is a chicken and egg problem here:
until the usability of the VQS improves, e.g., by providing suggestions that avoid
dead-ends, there will be no intensive use of the VQS that could generate such
queries.

In this chapter we present the Wikidata benchmark, which is an extensive
setup based on Wikidata! (WD). While this benchmark was mainly constructed
to be used for the evaluation of our configuration generation methods, it is
of course well suited for evaluation of other systems related to ontology-based
VQSs. In fact, the WD benchmark has already been used in another project, to
evaluate an adaptive ranking method that attempts to place suggested object
and data properties in VQSs in the right order [13].

Desirable Properties Since we do not have access to any in-use VQS to make a
benchmark from, we need to construct it from some other source. Before we do
that, let us first describe in detail the properties we are looking for in such a
benchmark.

First of all, the benchmark should be as realistic as possible: we want a
dataset and a corresponding navigation graph that has real-life applications, and
we want queries over this navigation graph that matches real information needs

L https://www.wikidata.org/

127

https://www.wikidata.org/

7. The Wikidata Benchmark

of humans. In other words, we want to avoid a computer-generated or fabricated
setup.

The benchmark must obviously also fit the formal models we have defined
in this thesis. Any RDF graph fits our dataset model, and any ontology can
be transformed into a navigation graph by using the projection algorithm of
OptiqueVQS [50], or similar algorithms. We do not require that the dataset
fully conforms to the navigation graph in our setup, but in order to make the
evaluation interesting, at least some of the queries must have non-empty answers.
In addition, we want a relatively complete dataset — the data quality must be
so high that it makes sense to pose large, complex queries and expect useful
answers. With respect to queries, we are more demanding, because our system
does not support all features of SPARQL. Specifically, we need queries that are
both typed and tree-shaped, without any of the complex SPARQL operators
that we do not support, like OPTIONAL and UNION. In addition, the queries have
to be legal with respect to the navigation graph.

Furthermore, the dataset, the navigation graph, and the query log must
have a suitable size. None of them should be so small that the configuration
generation problem becomes trivial. The dataset must contain enough triples to
demonstrate that scalability with respect to data is sufficiently good, i.e., we
want millions of triples. The actual number of queries in the query log is not
very important, as long as it contains a representative sample of the queries that
are going to be made in the future. But, this is often easier to achieve with
many queries. The size of each individual query is more important: our system
is intended for relatively complex information needs, so a query log consisting
of queries with five or more variables would be ideal. For the configuration
generation problem, the size of the navigation graph is not as important, but
it should contain enough classes and properties to allow for a good variety of
possible queries. On the other hand, if the navigation graph is very large, then
more queries are needed in order to make sure that we have a representative
sample.

Wikidata The largest query log we were able to find, was the query log over
Wikidata (WD)? provided by the Knowledge-Based Systems group at TU
Dresden [35].2 This log consists of 3.5 million human-made queries from 2017
and 2018. Most of these queries are very small, with only one or two variables,
and few of them have exactly the typed, tree-shaped form that we require. But,
the query log also contains many queries with more than five variables, and some
of the queries even have more than ten variables, so we decided to attempt to
rewrite these queries into the typed, tree-shaped form we require, and use the
resulting query log in the benchmark. The Wikidata dataset is a collaboratively
edited knowledge base hosted by the Wikimedia Foundation.* The RDF version
of the dataset contains 11 billion triples, pertaining to large parts of human

2https://www.wikidata.org/
3 https://iccl.inf.tu-dresden.de/web/Wikidata_ SPARQL_Logs/en
“https://wikimediafoundation.org/

128

https://www.wikidata.org/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://wikimediafoundation.org/

WD Navigation Graph

knowledge. It is used actively by several projects, including Wikipedia, and all
of the data is available under a free license. Wikidata does not provide any
ontology to generate a navigation graph from, so in order to make a complete
benchmark, we had to construct this navigation graph based on the WD dataset
and the WD query log.

In the following three sections, we describe each of the three parts that
constitute the WD benchmark: the WD navigation graph, the WD dataset, and
the WD query log.

7.1 WD Navigation Graph

Wikidata does not provide a suitable ontology to generate a navigation graph
from, so we have to construct a navigation graph by hand, based on the given
WD query log and WD dataset.

In a complete setup, every query in the query log must conform to N (see
Definition 4.2.9), so after making the navigation graph, the whole query log must
be filtered with respect to it. Hence, if we construct a navigation graph that
only contains classes and properties that occur infrequently in the original query
log, then the resulting log after filtering will become very small.

The original WD query log contains many queries about persons and the
properties and classes related to them (films, TV-series, countries, cities, etc.),
so we decided to build a navigation graph based on this.

The resulting WD navigation graph contains 15 classes, 5 datatypes, and a
total of 107 properties. All the 15 classes are presented in Table 7.1, together
with an overview of how many incoming and outgoing properties each of them
has. Based on the sum of incoming and outgoing properties, Person is the most
central class, followed by Country and City. Both Film and Television Series
are also central classes, while Capital, on the other hand, is not connected to
any other classes. Notice that the navigation graph contains both City USA and
Capital, which are both subclasses of City in real life. If the navigation graph
had support for subclasses, then subclass relationships could have been added
where it makes sense, but this is not the case, so our system just considers all of
these three classes to be regular classes without any special relationship.

The datatypes only have incoming data edges, naturally. String is the most
popular of the five datatypes, with 12 incoming data properties, while Double is
not used at all. Notice also that six of the classes only have one outgoing object
property, i.e., they are only connected to one other class. When the user focuses
on one of these six classes, there will be no legal data property extensions, which
means that dead-end detection will not be relevant. Hence, it is pointless to
construct a configuration query rooted in one of these classes.

7.2 WD Dataset

The Wikimedia Foundation provides a public SPARQL endpoint to WD, but
the server’s timeout settings prevent us from using it as a part of the setup.

129

7. The Wikidata Benchmark

Type Name Category In | Out | DP | OP
Person Class 30 37 7 30
Gender Class 1 1 0 1
Profession Class 1 1 0 1
Eye Color Class 1 1 0 1
Hair Color Class 1 1 0 1
Country Class 11 16 5 11
City Class 7 11 4 7
City USA Class 6 10 4 6
Continent Class 3 5 2 3
Capital Class 0 0 0 0
Film Class 7 8 1 7
Filmography Class 1 1 0 1
Film Genre Class 1 1 0 1
Television Series | Class 5 9 4 5
Award Class 5 5 0 5
String Datatype 12 0 0 0
Integer Datatype) 0 0 0
Datetime Datatype 6 0 0 0
Location Datatype 4 0 0 0
Double Datatype 0 0 0 0
Sum - 107 | 107 | 27 | 80

Table 7.1: The number of incoming and outgoing properties of each class and
datatype in the WD navigation graph. In: Incoming properties. Out: Outgoing
properties. DP: Outgoing data properties. OP: Outgoing object properties.

Furthermore, this version is not static: WD is an open, collaborative project,
so the data in this database changes every day. The dataset is also not from
the same time period as the queries in the query log (2017-2018). Therefore,
instead of relying on this public SPARQL endpoint, we decided to run queries
on a local copy of the dataset. Ideally, we would like to use the version of WD
from the same period as that when the query log was gathered, but the only
database dump we found from this period was too large to work with, so we had
to instead use a database dump from 2015. This is two years before the time
period the queries were constructed, but with about 1 billion triples in total, the
dataset should still contain enough relevant data to make a good benchmark.

When we first tried to load all these triples into Blazegraph,® which is the
same graph database as the Wikimedia Foundation uses to host WD, it failed
because of hardware limitations. In order to solve this problem, we decided to
filter the dataset with respect to the navigation graph. This removed over 98%
of the dataset, which left us with about 17 million triples. This dataset was so
small that we managed to load it into Blazegraph without problems.

5 https://blazegraph.com/

130

https://blazegraph.com/

WD Dataset

Class Frequency
Person 2771131
Gender 5
Profession 2204
Eye Color 10
Hair Color 10
Country 143
City 19460
City USA 133
Continent 10
Capital 341
Film 151632
Filmography 641
Film Genre 252
Television Series 19269
Award 11734
Sum 2976975

Table 7.2: The number of instances in the WD dataset typed to each of the 15
classes.

By removing everything in the dataset that does not conform to the navigation
graph, we do not change the answers of the queries in the query log, since they
also conform to the navigation graph. This means that all the costs and precisions
stay unchanged after data filtering, which is important since they are essential
metrics used in the definition of the configuration generation problem.

Table 7.2 presents all classes in the WD navigation graph and the number
of instances in the final dataset that is typed to the given class. In total, the
dataset contains 2976649 distinct instances, and in total there are 2976975 typing
relationships. In other words, each instance has slightly more than one type on
average. This is natural since the classes we have chosen tend to be disjoint in
real life. The exception to this is the three classes Capital, City, and City USA:
all American cities and capitals are also cities in real life, so all American cities
and capitals should also by typed to City in the dataset.

Among all the instances in the dataset, over 93% are of type Person. The
second most frequent class is Film with about 150 thousand instances, which
corresponds to about 5%. Classes with many instances will in general lead to
more costly indices, but only if they are combined with data properties that
lead to a large number of different values, like persons and their family name for
example.

Table 7.3 shows all types of triples that occur more than 100000 times in
the WD dataset sorted by frequency. Notice that three of them (given name,
date of birth, family name) are data properties related to persons, while the
remaining ones are object properties that connect persons to other classes. In
other words, persons, and data related to them, make up a large part of the

131

7. The Wikidata Benchmark

Source Class | Property Target Class | Frequency
Person given name String 1888994
Person date of birth Datetime 1832109
Person occupation Profession 1736987
Person country of citizenship | Country 1234515
Film cast member Person 503050
Person place of birth City 339316
Person award received Award 109858
Person family name String 109340

Table 7.3: All types of triples that occur more than 100000 times in the WD dataset
sorted by frequency.

dataset. This is of course not a problem, it is quite common that a few classes
dominate in a dataset, but it is something to be aware of. It is also important to
remember that only properties that correspond to edges in the navigation graph
are included here, and we know from Section 7.1 that many of the properties
are related to persons.

7.3 WD Query Log

The original WD query log contains about 3.5 million human-made queries, but
many of them do not have the typed, tree-shaped form our system requires.
Furthermore, not all of the queries conform to the navigation graph described
in Section 7.1. To solve this problem, we need to transform the query log, i.e.,
rewrite the queries into the required form.

7.3.1 Query Transformation Process

In this section, we describe all the ten modification steps that are needed to
transform the original WD query log into the required form. All of the ten steps
are formulated as rules, and by applying these rules exhaustively to the query
log, it eventually gets the correct form. Some of the modification steps have to
be done in a particular order. For example, it is not possible to check whether a
query is tree-shaped or not before it has been reduced to a basic graph pattern.
Other modifications, like merging identical queries, for example, can be done
to the query log regardless of its state. Below, the steps are listed in the most
natural order to apply them.

Recall that our formal model of the query log associates a given weight to
each query. Initially, we give each of the queries a weight of 1.0, as we want each
of them to be equally significant. But, as we modify the log, we will sometimes
need to change this weight. In particular, when we merge identical queries, we
add up their weights and assign the sum of the weights to the merged version,
and when we divide a query into multiple new versions, we distribute the weight
of the original query equally over all of them. This ensures that the total weight

132

WD Query Log

of the query log is always the same and that the weight distribution of the final
query log matches the distribution of the original query log as much as possible.
The only exception to this is step 9, where empty, disconnected, and acyclic
queries are just removed from the query log — this reduces the total weight of
the query log.

1. Remove Solution Sequence Modifiers A solution sequence modifier in SPARQL
is an operator that changes the solution sequence before it is returned to the
user. It includes modifiers like LIMIT, OFFSET, ORDER BY, GROUP BY, DISTINCT,
and REDUCE, in addition to variable projections. None of these operators are
supported by our system, so in this modification step, all of them are just
removed from the query. These modifiers also appear outside the main clause of
the query, so by removing them, the important core part still remains.

2. Split Queries with UNIONs Queries that contain a UNION of two or more clauses
are in this step divided into multiple queries, one for each of the clauses that are
combined by the UNION. The assumption here is that if a query with a UNION
is of interest, then all of the clauses it is composed of must also be of interest.
The resulting queries should not each get the same weight as the original query,
because this would put too high significance on original queries with many unions.
Instead, the weight of the original query must be distributed equally over all the
new versions.

3. Split Queries with OPTIONALs Queries that contain OPTIONAL clauses are not
supported by our system, so they must be modified. We divide them into two
new queries: one where both the OPTIONAL keyword and its corresponding clause
are removed, and one where only the OPTIONAL keyword is removed, while
everything inside the corresponding clause is kept. Each of the two new queries
gets a weight equal to half of the weight of the original query in order to preserve
the total weight of the query log.

4. Resolve Property Paths We expand finite property paths into their correspond-
ing version of multiple triples and explicit variables. Property paths using the
asterisk symbol (*) to denote paths of arbitrary length are modified into three
different queries, using the property 0, 1, or 2 times respectively, and each of
the three resulting queries gets a weight equal to one-third of the weight of the
original query. The assumption here is that it is unlikely that a property is used
three times or more, while it is about equally likely that it is used 0, 1, or 2
times. All other types of property paths are just discarded in this step.

5. Remove Remaining Unsupported Keywords All SPARQL keywords that are
not resolved by any of the steps above, except for filters, are just removed in
this step. This ensures that all the remaining queries only consist of basic triples
and filters.

133

7. The Wikidata Benchmark

6. Resolve Unsupported Triples All triples in a query of the correct form must
either connect two variables by a concrete property or type a variable to a
concrete class. In this step, we remove all unsupported triples, except for
those connecting a variable to a concrete entity, where we instead just replace
the concrete entity with a new variable. E.g., a triple like (P1, visited, 7vy) is
replaced by (?vg, visited, Tv1), and a triple like (?vy, visited, Canada) is replaced
by (?v1,visited, Tvy), where 7vg is a new variable.

7. Filter on Navigation Graph All queries in the final query log must conform to
the navigation graph, so in this step, we remove every property triple that is not
supported by a corresponding edge in the navigation graph and every typing
triple that types a variable to a class that does not exist in the navigation graph.

8. Add Types to Variables Since our system requires types on all variables in the
query, we need to add types to variables that are not typed. For each variable,
we consider all incoming and outgoing edges, to determine the possible types
for the variable. Then, for each possible assignment of types to the variables,
we make a new, typed version of the query. The weight of the original query
is distributed equally onto all of the new versions. In most cases, there is only
one way to assign types to the variables, but if some classes have many of the
same ingoing and outgoing properties, like City and City USA, then there may
be multiple ways of adding types.

9. Remove Empty, Disconnected, and Cyclic Queries Our system does not support
disconnected or cyclic queries, so this step removes those queries from the log.
There will also be many empty queries in the log after all the modifications we
have done in the above steps, and all of them must also just be discarded.

10. Merge Identical Queries Finally, we merge identical queries into one query
with a new weight equal to the sum of the weights of each of the individual
queries.

7.3.2 Transformed Queries

After transforming the query log according to the transformation process
described above, we get a query log with 54195 unique queries and a total
weight of 1415505.5. Since the total weight of the original query log was about
3.5 million, the transformation removed about 60% of the original weight. Whole
queries are only removed in step 9, where empty, disconnected, and cyclic queries
are discarded. Most of these discarded queries are empty, but they are not empty
because they were empty in the original query log — they have been stripped
down to nothing by the earlier steps.

Most of the transformed queries are still very small — almost 95% of the total
weight comes from queries of size 1 and 2 (see Table 7.4). Queries with size
one, i.e., queries with only one variable, does not lead to any extension cases,

134

WD Query Log

Size Weight | Weight (%)
1 684004.0 48.3

2 654876.8 46.3

3 44642.2 3.2

4 23778.6 1.7

5 6171.4 0.4

6 1588.5 0.1

7 317.1 ~0.0

8 76.8 ~0.0

9 32.1 ~0.0

10 8.8 ~0.0
>10 9.1 ~0.0
Sum | 1415505.4 100.0

Table 7.4: Weight of the queries grouped by size after the transformation process.

since they do not have any data edges (see Definition 5.4.10), so they will not
be useful, and can in fact just be ignored. But, even after removing queries
of size 1, over 89% of the remaining queries have size 2. With queries of this
size, there is no point in using our configuration-based value function, because a
simple value function, like S;., will be able to perform extremely well with a very
low cost. Hence, we generate two logs based on the set of transformed queries:
La (A for all queries), where all queries of size > 2 are included, and Lp (B
for big queries), where only queries of size > 6 are included. The idea is that
by only including large queries in Lz, we get a query log that better simulates
the scenario and the type of users our dead-end detection system is made for:
trained professionals with complex information needs. £ 4, on the other hand,
can be used to find out how useful dead-end detection is for the more general
case where most of the queries are really simple.

After filtering on size, these two logs still contain 53822 and 7895 unique
queries respectively, which is quite many, considering the fact that we need to
loop over all of them to calculate the precision of a single configuration query
(see Definition 5.4.11). In order to reduce the number of unique queries while
keeping most of the weight, we, therefore, remove queries with low weight from
both L4 and Lp. More specifically, we construct the two query logs as follows:

e L4: Queries with 2 or more variables and weight > 10.0
e Lp: Queries with 6 or more variables and weight > 0.1

Our choice of removing all queries with low weight in the two logs is a very
effective way to reduce the number of unique queries, while at the same time
preserving most of the weight. In L4, this reduction removes 95% of the unique
queries while keeping 94% of the weight, and in Lp, the reduction removes 69%
of the unique queries while keeping 93% of the weight (see Table 7.5).

The size distributions of the two resulting logs, and to which degree the
queries are simple or not, are presented in Table 7.6 and Table 7.7. Since 93%

135

7. The Wikidata Benchmark

Description ‘ La ‘ Lp
Total weight before reduction 731501.4 | 2032.5
Total weight after reduction 686757.3 | 1899.8
Unique queries before reduction 53822 7895
Unique queries after reduction 2608 2448

Table 7.5: The effect of removing queries with small weight from each of the two

query logs.

Size Simple | Non-simple | Simple (%)
2 638516.6 0.0 100.0

3 29012.5 1047.7 96.5

4 15641.1 389.5 97.6

5 1939.1 87.0 95.7

6 82.1 12.0 87.3

7 29.6 0.0 100.0

8 0.0 0.0 -

9 0.0 0.0 -

10 0.0 0.0 -
>10 0.0 0.0 -
Sum | 685221.1 1536.2 99.8

Table 7.6: Overview of queries in £4 grouped by size.

Size | Simple | Non-simple | Simple (%)
6 1089.7 409.6 72.7

7 199.3 86.9 69.7

8 29.1 42.5 40.6

9 10.5 16.4 39.0

10 2.0 4.8 29.6
>10 7.0 2.0 77.8
Sum | 1337.7 562.2 70.4

Table 7.7: Overview of queries in Lp grouped by size.

136

WD Query Log

Class La (%) | L (%)
City 28.6 6.1
Person 21.9 31.6
Country 15.5 15.5
Continent 11.1 0.3
City USA 11.0 6.1
Profession 7.8 21.8
Gender 1.8 15.9
Television Series 1.2 ~0.0
Film 0.6 ~0.0
Award 0.2 2.4
Eye Color 0.2 ~0.0
Hair Color ~0.0 0.2
Capital 0.0 0.0
Film Genre 0.0 0.0
Filmography 0.0 0.0
Sum 100.0 100.0

Table 7.8: Popularity of each class in the two query logs £4 and Lp.

of the query weight in £ 4 has size 2, and since all of this weight corresponds to
simple queries, the total fraction of simple queries in £ 4, measured by weight, is
99.8%, which is very high. £p has an overall lower fraction of simple queries, of
70.4%.

Table 7.8 shows to which degree the variables in the two query logs are typed
to the different classes. For each class, we have computed the weighted sum
of all instances that are typed to this class. The table shows the percentage
of the weighted sum over all instances in the whole log. The two query logs
have a similar focus: persons and different places (cities, countries, continents)
are the most popular classes, while film genres, capitals, filmographies, are all
non-existent. There are also classes that are just barely represented, like films,
TV-series, and awards.

It might seem unlikely that a company invests in the curation of data that is
not used in queries. On the other hand, it might be the case that this data is
used in predefined dashboards or reports, and just not in the ad-hoc queries we
consider, so keeping all the infrequent classes should not be a problem. A good
configuration generation algorithm should not focus on these infrequent classes,
and by including them in the navigation graph, we can see if this is indeed the
case. Furthermore, the WD benchmark may be used to evaluate other systems
where these infrequent classes play a more central role.

The class frequency in £ 4 and Lp indirectly tells us which properties the two
query logs contain. For example, the property that relates a Person to the city
they live in will probably appear very frequently in both query logs, while the
property that links a film to its film genre will not be present at all. This gives
us an idea of what a useful configuration set may look like: it should include

137

7. The Wikidata Benchmark

properties and classes that are used frequently in the queries, so configuration
queries about cities, persons, and countries should do well.

The benchmark we have created and presented in this chapter is not perfect.
It does not use the original WD query log, but instead, it uses a transformed
version where queries have the required form. In addition, the navigation graph
is made by hand, based on the query log and the data. But, the setup does
fulfill most of our requirements, and based on the assets we had access to, we
are satisfied with the final result. And, most importantly, the benchmark is
sufficient for the evaluation of the configuration generation, which we present in
the next chapter.

138

Chapter 8

Configuration Generation

In Chapter 6 we described the index-based query extension framework and how
it can be used to turn any predefined configuration set into a value function that
can be efficiently calculated by using the corresponding index. Given a fixed
dataset and query log, we then described how to calculate the cost and precision
of such a configuration set, and how both precision and cost tend to increase
with respect to its size. Furthermore, we presented the configuration generation
problem, which is to find the most precise configuration set with a cost less than
or equal to a given cost threshold M.

In this chapter, we present a collection of different search methods, which
all attempt to solve the configuration generation problem. The search space of
possible configurations these methods have to search over is very large in general
(see Section 6.4.2), so the search methods will need to prioritize which of the
configurations to actually consider. Furthermore, with a setup of decent size, it
will take too much time to actually evaluate each configuration exactly as defined
by the precision and cost formulas in Definition 5.4.11 and Definition 6.2.17. More
precisely: it will be possible to calculate the exact cost and precision of a single
configuration set, but since the search needs to evaluate many configurations,
this evaluation has to be very efficient. In order to overcome this problem, we
introduce efficient cost and precision estimates that can be used instead of the
exact measures.

This chapter has three sections. Section 8.1 describes in detail the cost and
precision estimates required to evaluate single configuration sets efficiently, while
Section 8.2 presents all the different search methods we consider. Finally, in
Section 8.3, we present the evaluation of our methods, which is based on the
WD benchmark from Chapter 7.

8.1 Cost and Precision Estimation

In this section, we present algorithms that allow us to estimate the cost and
precision of a given configuration set W efficiently. More specifically, we will
consider the cost and precision formulas we have already presented, and detect
which parts of them that are expensive to compute, and then we will present
efficient alternatives to those parts.

Cost Estimation According to Definition 6.4.3, the cost of W equals the sum of
the costs of each of its included configuration queries:

costW, D) = Y cost(Z2,D) = »_ ([V(Z)|—1)-|ansp(Z,D)|
Zew Zew

139

8. Configuration Generation

The process of calculating this for any Z is not going to be efficient enough for
our search, because it requires the exact size of ansg(Z, D), which can only be
obtained after querying over D. This is the most time-consuming part of the cost
calculation process, so if we can find an efficient way to estimate | ansg(Z, D)|,
for any arbitrary configuration query Z, then we also have an efficient way of
estimating cost(Z, D), and hence cost(W, D).

Precision Estimation The precision of a configuration set YW over a query log
L is a weighted average of all the specific extension cases that are generated
from the query log (see Definition 5.4.11). If Q is the rooted query and 7 is the
extension pair of such an extension case, then the precision of this case is given
by Definition 5.4.6:

o ISV N X0 [X.(Q7)
Preca(Sa’> 7)== ewig o 180 (@, 1)

We start by considering the numerator of this fraction. From Theorem 5.3.4, we
know that |X,(Q, 7)| equals |ansp(Q., D, v.)|, where Q. is the extended version
of @ with respect to 7, extended into a new, filterless data variable v.. In order
to calculate this exactly, we have to execute a query over D, which is something
we want to avoid. In other words, we need a way to efficiently estimate the
cardinality of ansp(Q., D, v.).

Furthermore, we must consider the denominator in Equation 8.1, which can
be expanded into this formula:

(8.1)

1SV(Q,7)| = [Ty N N ansp(Qs, D, v.) (8.2)
Zew
Qs €Eprune(Qe, Z,ve)

This is an intersection of all the value sets produced by the possible pruned
versions of @ with respect to each configuration query Z € W where v, is
preserved. We need the cardinality of this intersection. Many of the considered
configuration queries will not even cover the relevant extension pair, so they will
only suggest I',,, which will not have any effect on the final intersection. Among
the possibly very few configuration queries that actually cover the relevant
extension pair, there may also be so little partial overlap that using just the
smallest of all the sets we intersect over will be a relatively good approximation.
I.e., we can assume that

|1SW(Q,7)| ~ min | T, glel% |ansp(Qs, D, v.)| (8.3)

Q. €prune(Qe,Z,ve)
Alternatively, one could make an extensive analysis of all the pruned queries that
are considered, and see how much their tree-structures overlap with each other,

and the original query Q, in order to calculate a better cardinality estimate of
the intersection, but this is future work.

140

Cost and Precision Estimation

Regardless of how we choose to estimate the intersection of these sets, we
still need an efficient way to estimate |ansp(Qs,D,v.)|. This is exactly the
same conclusion we got when we analyzed the numerator | X,(Q, 7)|, except that
now we have to calculate ansp of Q;, C Q.. But this will not be harder than
calculating or estimating | ansp(Qe, D, v.)|, so the takeaway from our analysis is
that if we can estimate |ansp(Q., D, v.)| efficiently, where Q. is a query with
a filterless data variable v., then we can efficiently calculate the precision of a
configuration set over a query log.

Cardinality Estimation The problems of estimating the number of results returned
by ansp and ansg are both cardinality estimation problems. Cardinality
estimation in general is the problem of efficiently estimating the number of
answers returned by a query over a given database. It is useful in any setting
where efficiency is crucial, and where only a rough estimate of the number of
answers is sufficient. Its most well-known application is in the context of query
planning, where estimated cardinalities are used to decide the optimal order to
execute joins in. The database community has studied cardinality estimation
for decades, mostly in the context of relational databases [12, 33]. In recent
years, cardinality estimation has also been studied in the context of RDF and
SPARQL [41, 56, 45].

The most common approach to cardinality estimation of queries over a
relational database is to base it on relatively simple statistics about the dataset,
which is often gathered as new data is added. This could for example be the
number of rows or columns in a table, the number of distinct values of a column,
the number of null values in a column, or the distribution of values in one or
more columns. Cardinality estimates can also be based on constraints over
the database, like uniqueness constraints or key relationships between columns.
Similarly, statistics can be prefetched from RDF graphs in order to support
cardinality estimation for SPARQL queries. For example, one could count how
often different entities occur in the subject or object positions in triples, which
equals the number of incoming and outgoing edges their corresponding vertices
have in the RDF graph.

By making certain assumptions, it is possible to calculate the number of
answers to a query based on these statistics alone, but because these assumptions
are almost never completely true, the calculated cardinality will just be an
estimate. One common such assumption is the independence assumption, which
states that any pair of joins affects the number of answers independently. Another
common assumption is the uniformity assumption, which asserts that all values
are distributed uniformly over the set of possible values. Another more advanced
variant of this is to assume that the values follow another form of distribution.
For example, many real-life datasets follow the skewed Zipfian distribution. We
consider different such distributions in Section 8.1.2.

The queries we consider, where the structure is tree-shaped, and every variable
is typed exactly once, are quite specific. Furthermore, when these queries are fed
into ansg, the resulting SPARQL query that actually is executed over the data

141

8. Configuration Generation

becomes very distinctive, with nested OPTIONAL clauses and BOUND on all object
variables. We were not able to find a suitable method, or an existing system,
that allows us to estimate the cardinality of these queries. Therefore, we had to
develop a set of new cardinality estimation techniques, tailored for our special
queries. In the remainder of this section, we present these cardinality estimation
methods.

8.1.1 Basic Counts

Before we present how to estimate the cardinalities of the results produced
by ansp and ansg, we need to gather some statistics from the dataset. More
specifically, we will gather four kinds of counts, called basic counts, related to
the classes and edges of N:

o Class count
o Edge count
o Edge source count

o Edge target count

Class Count We start by defining the class count of a class t € V,(N), which is
the number of distinct instances in D that are typed to ¢. If an instance belongs
to multiple classes, that is fine, but in order to included in the count, ¢ must be
one of these classes. The class count can be calculated using ansp on a query
consisting of only one variable of type ¢, as described in the following definition:

Definition 8.1.1 (Class Count). Let ¢t € V,(N) be a class in NV, and let Q =
(v} A}, {(v—t)}) for some variable v € T',,. The class count of t, denoted
C.(t), is given by

C.(t) = |ansp(Q, D, v)]

_{

Edge counts The three remaining basic counts are all related to the edges of
N. Given any edge e of N, we first consider the set of all e-edges in D, which
is the set of every edge ¢’ € D that satisfy lab(e) = lab(e’), src(e) € Tp(src(e’)),
and tar(e) € Tp(tar(e’)). The number of such edges is called the edge count of
e. Furthermore, we count the distinct sources and targets that occur in any of
these edges, which gives us what we call the edge source count and edge target
count of e. The definition below formalizes this and describes how each of the
edge counts can be computed by using the answer functions we have defined
earlier.

Definition 8.1.2 (Edge Counts). Let e = (t,,p,t;) € E(N) be an edge in AV, and
let Q be the filterless query defined by

Q= (({US7 Ut}7 {(US,]L ’Ut)})’ {US = ls, U tt})

142

Cost and Precision Estimation

The edge count of e, denoted C.(e), the edge source count of e, denoted Ces(e),
and the edge target count of e, denoted Cei(e), are defined as:

Ce(e) = [ans(Q, D)
Ces(e) = [ansp(Q, D, vs)|
Cer(e) = [ansp(Q, D, vy)|

_|

Each basic count can be calculated easily by executing a simple query over D,
as described in the definitions above. Each of them will also likely be used many
times, so if we cache these numbers, there will be no need to execute queries
over the dataset anymore, which will ensure good performance of the estimation
algorithms. A cache containing all basic counts will need to store one number
per class in A/, and three numbers for each edge in N, so the memory footprint
of this cache will be about as large as the memory footprint of A/ itself.

Given how the basic counts are defined, we can infer some simple relationships
between them. For example, the distinct source count of an edge must be lower
than the class count of the edge’s source — there cannot be more distinct persons
who have visited any country than there are persons in total. The following
theorem formalizes this and some other relationships that are always true for
the basic counts.

Theorem 8.1.3. For every edge e € E(N), the following two statements are always
true:

Ces(e) < Ce(src(e)) (8.4)
Ce(e) S Cet(e) : Ces (6) (85)

If e is an object edge, then these statements are also true:

Cer(e) < Ce(tar(e)) (8.6)
Cele) = Cele™) (8.7)
Ces(e) = Cer(e™) (8.8)
Cet(e) = Ces(e™) (8.9)

4

Proof. Both sides of Equation 8.4 are calculated by counting the number of
projected answers returned by queries, but C.(src(e)) uses a query that is a
subquery of the query used to calculate Cc,(e), hence, C.(src(e)) will be at
least as large as Ces(e). Equation 8.5 holds because with Ces(e) possible source
instances, and C.(e) possible target instances, the number of possible e-edges
is at most Ces(e) - Cer(€): when every source is connected to every target.
Equation 8.6 holds by the same argument as we used for Equation 8.4, but it can
only be used when e is an object edges, because unless, C.(tar(e)) is not defined.
Equations 8.7, 8.8, and 8.9 all holds because the answer function considers edges
and their inverses to be equivalent. |

143

8. Configuration Generation

/ mszted \

knows borders

msztedBy

5

5 §> 7,7 22

/ 20:’@0“ e B

/ qu\ \ \

9

50 o 6 2

J \
Integer String

Figure 8.1: The navigation graph from Example 4.2.3 with basic counts included.

Example 8.1.4. Given the navigation graph N from Example 4.2.3 and the dataset
D from Example 4.2.5, all the basic counts are given in Figure 8.1. The numbers
above each of the two classes are their class counts: there are a total of 6
distinct persons, and 2 distinct countries in D. Each edge is labeled with
three numbers: the number closest to the source of the edge is the edge source
count, the number near the middle of the edge is the edge count, while the
number close to the target of the edge is the edge target count. For example,
it e = (Person,visited, Country), then Cc(e) = 6, Ces(e) = 5, and Cei(e) = 2.
Notice that e~ = (Country, visited By, Person) has the same edge count as e,
and that Ces(e) = Cer(e™ 1), and that Cey(e) = Ces(e™t). This is in accordance
with Theorem 8.1.3. Notice also that the edge (Person, knows, Person) is its
own inverse, so its edge source count is equal to its edge target count.

¢

8.1.2 Edge Target Distributions

In addition to the four basic counts presented above, our cardinality estimation
algorithms need access to an edge target distribution function H. for each edge
e € E(N). The purpose of this function is to provide the estimation algorithms
with a distribution that is supposed to match the distribution of entities in the
target position of all e-edges in D. H. will be used both to estimate the effect of
query filters and to estimate the number of distinct values in multisets, which is
needed to estimate both ansp and ansg.

144

Cost and Precision Estimation

Definition 8.1.5 (Edge Target Distribution Function). Let e € E(N) be an edge in
N. An edge target distribution function of e, is a probability distribution over
I'; UT,, ie., a function H,: (I'; UT,) — [0, 1] that satisfies

> He(u) =

ue(T;Uly,)

_|

We are going to allow H, to be any possible distribution. For example, if we
want to rely on the uniformity assumption, then we just need to define H. to be
uniform. But, in order to get the best possible estimates, H, should be based
on the true distribution of the edge targets in D.

Definition 8.1.6 (Edge Target Distribution Function Based on Dataset). Let
e = (ts,p,t;) € E(N) be an edge in N/. The edge target distribution function
based on D is defined by

[{m € ans(Q,D) | w(vi) = u}|

He(u) = [ans(Q, D)|

for all w € (I'; UT,), where

= (({U&'Ut}’ {(’Us,p, Ut)})’ {US = s, v > tt})
4

When distributions are collected directly from a dataset like this, they are
also called histograms over the dataset. While the true histogram defined above
is preferred, it is often sufficient with an approximation based on samples of the
dataset.

Notice that if D does not contain any e-edges, then the above definition will
not be able to produce any distribution function. If this is the case, then a target
distribution cannot be made based on D, and one would need to define H, in
another way, e.g., one can assume that H. is the uniform distribution.

Example 8.1.7. The histogram of the data edge e; = (Person,name, String)
induced by the dataset from Example 4.2.5, denoted H.,, is given by

H,, (Alice) = 2/7
H.,(Bob) = 1/7
H,., (Robert) =1/7
H,, (Carol) =1/7
H. (Dave) =1/7
H., (Eve) =1/7

For every remaining entity v € (I'; UT,,), He, (u) equals 0.

145

8. Configuration Generation

The histogram of the object edge es = (Person,visits, Country) is given by

H.,(Cy)=4/6
H.,(Cy) =2/6

For every remaining entity v € (I'; UT,), He, (u) equals 0. ¢

Like the basic counts, each H, should be cached, such that H.(u) for a given
entity u can be calculated efficiently without the need to query or sample from
the data. The most naive way to do this would be to store each pair of an
entity and its corresponding probability, but this would become infinitely large if
I'; UL, is infinite, which is the case if ', contains all possible strings, for example.
A much better approach is to only store the entities with nonzero probability.
If H. is a histogram based on D, then the cache corresponding to H. will be
finite, since we assume that the dataset is finite. An alternative is to just store a
function that corresponds to the distribution we want. For example, if we want
to use a uniform distribution of the range of natural numbers from 1 to 10, then
we can represent that as a function that returns probability 1/10 for all natural
numbers between 1 and 10, and 0 otherwise. Other general distributions can
also be represented like this: Zipfian distributions and Gaussian distributions
can be cached by storing the parameters that define them, and possibly the
order the values occur if that is not obvious. We also mentioned bucketing
in Section 6.2.4 as a technique to reduce infinite continuous ranges to a small,
finite set of buckets, and this may help if caching is problematic in practice. In
two of the three cases where the distribution functions will be used, only the
distribution of data edges will be needed, while in the third case, distributions
over both data edges and object edges will be required.

8.1.3 Cardinality Estimation: ans

We will now estimate the cardinality of ans(Q, D) when Q is a rooted, filterless
query. Later we extend this to queries with filters, which again can be used to
make a cardinality estimate of ansp(Q, D, v) where v is a filterless data variable
of Q. In order to estimate the cardinality of ans(Q, D), we first need what we
call the branching factor of an edge e € E(N):

Definition 8.1.8 (Branching Factor). The branching factor of an edge e € E(N),
denoted bf(e), is defined as

(8.10)

_{

bf(e) is the number of e-edges in the dataset divided by the number of
instances of type src(e). This means that bf(e) equals the expected number
of outgoing e-edges an instance of type src(e) has in D. For example, the
branching factor of the edge e = (Person,visited, Country), in the dataset of

146

Cost and Precision Estimation

Example 4.2.5, is equal to

bf(c) = Ce(e) _ Ce((Person,visited, Country)) 6 _ 1
~ Cu(src(e)) C.(Person) 6

and this tells us that a person on average has visited exactly one country, i.e.,
the expected number of visited countries for a person is 1.

Now, let us go back to the filterless, rooted query Q. If we only consider the
root variable v,. of Q, it can be assigned to exactly C.(Tg(v,)) = C.(Tg(root(Q)))
instances in D, by the definition of the class count. L.e., we can exactly calculate
the cardinality of the query consisting of only the root variable. We will use this
as our initial estimate, and then we will update it as we consider the remaining
variables of Q. As we introduce new variables to the query, propagating out from
the root, and assume that their instantiations will be independent of each other,
we can update our cardinality estimate by multiplying the current estimate
with the branching factor of Tg(e), where e is the edge in Q that leads to the
new variable. When doing this, we assume that each of the possible entities
assigned to the source of e leads to bf(Tg(e)) new target entities each. This is
a fair assumption, but it is not always true, hence the new number we get by
multiplying with the branching factor will be an estimate. For example, 70% of
all persons overall may have a driving license, but if we only consider persons
who own a car, then the fraction of persons with a driving license should be
closer to 100%.

If we multiply our estimate by the branching factor corresponding to each
edge e in Q, we get the following cardinality estimate of ans(Q, D), denoted
ans(Q,D):

ans(Q, D) = Ce(To(root(Q))) - [| bf(Ta(e))
c€E(Q)
We can modify this equation into a more convenient form, and the first step in

this process is to replace bf(Tg(e)) with a fraction of basic counts according to
Equation 8.10.

ans(Q, D) = CelTo(root(Q))) - [| Cf(f%

eEE(Q)

(8.11)

The denominator of the product in this equation can be rewritten to
C.(Tg(src(e))). Here src(e) refers to source variables in the query, so we can turn
the product over edges into a product over vertices if we are able to calculate
how often each of them is the source of an edge. But this is relatively easy to do
since Q is tree-shaped: a variable v is the source of n, — 1 edges, where n, is
the sum of incoming and outgoing edges of v. The exception to this is of course
the root variable v,., which appears as the source of an edge exactly n,, times.

Using this, we can pull out the denominator product from Equation 8.11, and
replace it with a product over the vertices. After canceling the factor containing

147

8. Configuration Generation

the root, we get a cleaner cardinality estimate of ans(Q, D):

- 1 Ny—1
ans(Q,D) =[] (C(TQ(U))>] Ce(Tale))

vEV,(Q) ecE(Q)

This equation is independent of both the root of the query and the direction of
its edges, which means that it can be used also on the unrooted version of Q
and every other rooted version of Q where any of the object variables are set to
be the root. In other words, it is an estimate that can be used for any filterless
query.

Definition 8.1.9 (Estimated Cardinality of ans). The estimated cardinality of a
filterless query Q = (Rg,Tg) over D, denoted ans(Q, D) is defined as

. 1 MNy—1
ans(Q,D) = H (CL(TQ(U))> H Ce(To(e))

vEV,L(Q) e€E(Q)

where n, is the sum of incoming and outgoing edges of v. o

Queries with Filters In order to estimate the cardinality of a query Q =
(Rg,To, Fo) with filters, we first need to estimate the cardinality of its filterless
version (Rg,To) as described above. Then we can consider each data edge e in
the query, one at a time, and multiply our estimate by a factor f. representing
the effect of the filters of v = tar(e). If we assume that the values that are
assigned to v are distributed according to Hr, (), then we want f. to equal the
fraction of answers accepted by the filter set of v, which we get by summing up
Hry(ey(u) for each data value u € Fg(v). Le., we define f. to be

f@ = Z HTQ (E) (U)
ueFg(v)
This gives us the following cardinality estimate of queries with filters:

Definition 8.1.10 (Estimated Cardinality of ans). The estimated cardinality of a
query Q@ = (Rg,To, Fg) over D, is defined as

a/\nS(Qa’D) = a/n\s((RgvTQ)vD) ! H Z HTQ(e)(u)

e€Eq4(Q) \uEFg(tar(e))

8.1.4 Cardinality Estimation: ansp

Our estimate of |ans(Q, D)| can now be used to estimate |ansp(Q, D, v)|, where
v is a filterless data variable of Q: First we define Y to be the multiset of data
values defined by m(v), for each 7 € ans(Q, D). |ansp(Q, D, v)| is then just the

148

Cost and Precision Estimation

number of distinct data values in Y. We cannot calculate the data values in Y
efficiently, because this requires that we actually calculate ans(Q, D). But, we
can estimate the number of distinct data values in Y by considering both its
size and the distribution that determines which values it contains. This requires
the following general theorem about how to estimate the number of distinct
elements in a multiset:

Theorem 8.1.11. Let Y be a multiset with k£ elements sampled with replacement
from the set U according to a probability distribution H: U — [0,1]. Then the
expected number of distinct values in Y equals

> 1-(1-Hu)"

uelU
-

Proof. Let A, be the random variable that equals 1 if element v is in Y, and 0
otherwise. The expected value of A, i.e., the probability that u is included in
Y at least once, is equal to E (A,) =1 — (1 — H(u))*. The expected number of
distinct values included in Y is now the sum of the expected value of each A,
which equals

E() A)=) EA)=) 1-(1-Hw)"

uelU uelU uelU
|

Now, if e is the incoming edge of the projection variable v in Q, then we can
assume that the values in Y are sampled from I',, according to the distribution
defined by Hr, (). We also have an estimate of the number of sampled values
k, because this equals the number of answers in ans(Q, D), which we have an
estimate for: ans(Q, D). If we insert all of this into the formula in Theorem 8.1.11,
we get the following cardinality estimate of ansp.

Definition 8.1.12 (Cardinality Estimate: ansp). Let Q = (Rg,To, Fg) be a query
and let & = ans(Q, D). Let v be a data variable in Q, and let e be the data edge
of Q where v is the target variable. The estimated cardinality of ansp(Q, D, v),
denoted ansp(Q,D,v), is given by

ansp(Q,D,v) = > 1— (1= Hry(e)(u))
uely

8.1.5 Cardinality Estimation: ansp

While we had to calculate estimates for ans and ansp for arbitrary queries Q, we
only need estimates for ansp and ansg when they are applied to configuration
queries, i.e., simple, rooted queries Z = (Rz,Tz).

149

8. Configuration Generation

In Section 6.2 where we introduced ansy, we saw how one can construct the
index table of ansp(Z2, D) by starting with a table corresponding to just the
root variable (see Table 6.3), and then expand this by adding one new variable at
a time, propagating away from the root. During this whole process, the number
of rows (i.e., answer functions) in the index table increased from 6 to 9. This is
mostly due to the person P2, who has visited two countries, and who has two
names. In the final index table (Table 6.6), P2 is assigned to the root variable 4
times, while the other persons are only assigned to the root once each. We call
this number the expansion factor of the given entity, so P2 has an expansion
factor of 4, while P1 has an expansion factor of 1, for example. If we calculate
the average expansion factor of all persons, we get 1.5, and we will assign this
expansion factor to the variable 70].

If we have the expansion factor of the root variable of Z, then we can easily
calculate the number of rows in ansp(Z, D) by multiplying the expansion factor
with the number of instances that can be assigned to the root. In our example
this would be |ansp(Z3,D)| =6-1.5=09.

We can extend the concept of an expansion factor to any other variable v of
Z by defining it to be the expansion factor of the root variable (v) of the query
that is formed by only considering v and all its descendants. This tells us how
much we can expect the index table to expand when we include the descendants
of v. We are going to use m, to denote our estimate of the expansion factor of a
given variable v € Z.

If v has exactly one outgoing edge e to another variable v., then we can
calculate m, by using the estimated expansion factor of v, and basic counts. In
particular, we get

mvz(l—p)—t-p-gm-m% where p=

Ces (TZ (6))
C.(src(T=z(e)))

Here p is the probability that a randomly chosen entity of type Tz(src(e)) =
src(Tz(e)) = Tz(v) has at least one outgoing e-edge. When this happens, then
the relevant row will expand into a number of new rows, and the expected
%. Then, each of these new rows may
expand even more when we consider the descendants of v., and therefore we also
have to multiply by the expansion factor of v., which we have estimated to be
my,. There is then a probability of (1 — p) that the entity is not the source of
any e-edges in D, and when this is the case, we just get one resulting row where
v is assigned to w. All the descendants of v, will then also be assigned to w
later, and this stops all expansion from this row.

If v has more than one outgoing edge, then we will assume that the expansion
of each edge is independent of the expansion of all the other edges, i.e., we get a
product over all the edges. Finally, if a variable has no outgoing edges, then it
will not lead to any more expansion, i.e., its expansion factor is equal to 1.

Now we can calculate m, for every variable in the query recursively, and
finally multiply the expansion factor of the root with the number of possible
root instances in order to get an estimate of the cardinality of ansp(Z, D).

number of such rows is equal to

150

Cost and Precision Estimation

Definition 8.1.13 (Cardinality Estimation ansp). Let Z be a configuration query
with root variable v,. The estimated cardinality of anso(Z,D), denoted
ansp(Z,D), is defined as

ansp(Z,D) = Ce(To(vy)) - My,

where m,, is defined as follows

my, = . Ces<TZ(e)) CE(TZ(C)) . alle ~
ve—(v)pgeE(lz) Ce(sre(Tz(e))) * Ceo(src(T=(e))) v for all v € V(2)

_|

Notice that m, > 1 for all variables v € Z, since C.(Tz(e)) is always larger
than Ces(To(e)). This makes sense when we think about ansp(Z, D) intuitively:
adding variables to Z should never reduce the number of rows in ansp(Z, D).

8.1.6 Cardinality Estimation: ansg

Given our estimate of |ansp(Z,D)|, we are now going to make an estimate
of |ansg(Z,D)|. Every function ¢ € ansp(Z,D) corresponds to a particular
¢’ = fe(¢), where fg is defined in Definition 6.2.14. Two functions ¢1, ¢2 €
ansp(Z, D) will both be mapped to the same function ¢’ if they map each data
variable of Z to the same value, and if they map each object variable to w only
when the other function does it too. If this happens, then we get a reduction in
the number of answer functions compared to ansp(Z, D).

In order to estimate the amount of distinct target functions left after the
transformation defined by fg, we can use the number of source functions in
ansp(Z, D), which is approximately k = ansp(Z, D), and the number of possible
target functions n, which we can also estimate, as described below.

First, we will let d,, denote our estimate of the number of possible ways of
assigning entities to the variable v and all its descendants in ansg(Z, D). For
each data variable v with incoming edge e, the number of possible assignments
is equal to Cet(Tz(e)) + 1, where one is added to include the null symbol w.
Le., we set d, = Cet(Tz(e)) + 1 when v is a data variable. When v is an object
variable, then it can be assigned to either x or w, and when it is assigned to Y,
then each of its descendants v, will contribute with d,_ possible entities. All of
them are independent, so we can multiply them to get

dy=1+] du

veEchildren(v)

When this formula is used on v,., it will be off by one, since v,. cannot be assigned
to w. We are not going to define a separate formula for d,,., but instead we
will subtract one when we calculate n, i.e., we set n = d,, — 1. For the sake of
simplicity, we assume that each of the n possible answer functions is equally
likely to occur. Now we can use Theorem 8.1.11 with a uniform distribution to
calculate an estimate of ansg(Z, D), as described by the following definition.

151

8. Configuration Generation

Definition 8.1.14 (Cardinality Estimate ansg). Let Z be a configuration query
with root variable v, and let k = ansp(Z,D). The estimated cardinality of
ansg(Z,D), denoted ansg(Z, D), is given by

VK
a/n\sE(Z,D):n—n<1—n>

where n =d,, — 1, and d, is defined for every variable v € Z below:

dy=1+ [[dv. whenveV,(2)

v Echildren(v)

dy = Cet(e) + 1 when v € V4(2)

where e € E(Z) is the edge from parent(v) to v. -

All the estimates presented in this section are relatively simple, but they
allow us to make reasonable estimates of the cost and precision, which is what
we need to perform a proper search. There are several ways to improve these
estimates if needed. One possibility is to gather more detailed statistics about
the dataset, and in particular, one should consider multidimensional histograms,
which is a natural next step that has been studied before [38, 21, 58]. If this is
too costly, one could instead analyze the data to discover which distribution each
property is most similar too. As already mentioned, many real-life properties
follow Zipfian or Gaussian distributions, and not uniform distributions, which
are often assumed. Different constraints from the database schema can also be
used, if this is given, to outline the distributions that are used. Finally, one
could improve the main algorithms used to calculate the estimates or consider
other angles of attack when estimating. For example, with the precision estimate
we have presented, there is still a need to consider every possible extension case
induced by the query log, one by one, and if there are many such cases, then
the overall precision estimation will take a long time to compute. In order to
improve this, one could for example make a summary of the query log, and
compare the configuration set to this summary instead of comparing it to every
query in the log, one at a time.

But, even if the cost and precision estimates we use are imprecise, our
configuration generation methods may still be able to find optimal, or close to
optimal configuration sets, since estimation errors often have similar effects on
all configurations they are applied to. For example, if all estimated precisions are
equal to 0.8 of their true precision, then the configuration set with the highest
true precision will also have the highest estimated precision. The uncertainty
of the cost function is a little more problematic because of the concrete cost
threshold M we want to stay below. For example, if the cost estimates are too
low, then the configuration generation methods may suggest a configuration with
too high true cost, while if the cost estimates are too high, the configuration
generation methods will fail in the sense that they are not using all the cost
they are allowed to use, which will cause it to find a configuration with lower
precision than the optimal one.

152

Search Methods

The actual time it takes to calculate the cost and precision depends on the
dataset, the navigation graph, the query log, and of course, the configuration
set itself. But, over the WD setup, where both of the query logs have between
unique 2000 and 3000 queries, the evaluation time of a single configuration set
was reduced from minutes and hours to about one second after introducing the
estimates. Most of this time is consumed by the precision estimate because it
has to consider each of the queries one by one. In the future, we would like to
improve this by making a summary of the query log and compute a precision
estimate much faster by comparing the configuration to only this summary. This
would make the estimation time constant with respect to the number of queries
in the log, i.e., it could reduce our estimates over WD from about a second down
to milliseconds, which would allow us to search more extensively.

8.2 Search Methods

Now that we have established efficient cost and precision estimates, we are able
to evaluate configuration sets fast enough to perform a proper search over the
possible configurations. Recall what we are trying to achieve: we are looking for
configuration sets with low cost and high precision. In particular, we are trying
to solve the configuration generation problem defined in Section 6.4.2, i.e., we
want to find the configuration set with the highest possible precision and a cost
less than a given cost threshold M.

In this section, when we refer to the process of extending a configuration set
W, we mean to extend one of the configuration queries in W or to add a new
configuration query with only one variable to WW. The resulting configuration
set of this process is a new configuration set YW. When W’ can be produced by
extending W once, we call W’ a successor of W, and we define succ(W, N) to
be the set of all successors of W with respect to the navigation graph N i.e.,
succ(W, N) is the set of all configuration sets that can be made by adding just
one more variable to W.

For all non-trivial setups, the set of all possible configuration sets over N/
is infinitely large, because one can always produce a new configuration set by
adding a new object edge to any of the configuration queries in an existing
configuration set, or by adding a completely new configuration query to the set.
But, in the context we have defined, the set of configuration sets we actually
need to consider is limited by the maximum cost M. It is also limited by the
given query log £ and the maximal configuration set W,, that is defined by this
query log (see Section 6.4): since W, covers all non-simple parts of £, we never
need to consider any configuration sets larger than W,,,. More precisely, if there
exists a sequence of extensions that transforms W,, into a configuration query
W, then the cost of W will be higher than the cost of W,,,, which means that it
is worse than W,, with respect to both cost and precision.

If we place a directed transition edge from each configuration set to its
successors, we get a directed acyclic graph (DAG) where W; = 0 is the
only configuration without any incoming transition edges. A natural way of

153

8. Configuration Generation

traversing this DAG is by doing a breadth-first-search starting from (), which
first considers (), then all configurations in succ()), then all configurations in
{succW) | W € succ(0)}, ete.

The number of outgoing transition edges of a given configuration set in
this graph is determined by the navigation graph. In the beginning, when the
configuration set is empty, then the number of possible successors is equal to
the number of possible root classes. As more and more configuration queries
are added, and each of them is populated with more variables, the number of
possible successors tends to increase. More precisely: when a new data variable
is added, then the number of possible successors decreases by 1 since we only
allow simple queries, and since a data property does not lead to any new possible
successors. But, when an object property is added, then the number of successors
increases quite much instead. How much it increases depends on the type of
the newly added variable, and how many outgoing properties its type has in
the navigation graph. For example, if we consider the WD setup again, and a
configuration set is extended with a variable of type Person, then the resulting
configuration set will have 37 — 1 new possible successors because Person has
37 outgoing properties, and -1 because this property cannot be added one more
time (simplicity). On the other hand, if the type is Eye Color, then the number
of new possible successors does not increase at all, because Eye Color can only
lead to Person (see Table 7.1). The average number of outgoing properties of a
class in the WD navigation graph is 7.1 if all the classes are weighted equally, but
since the number of incoming edges is so unevenly distributed over the classes,
there is a much higher chance of extending to a person than to an eye color, for
example. If we take this into account, and if we consider both data properties
and object properties, then we can calculate the expected increase in the number
of successors after a new variable has been added. This is equal to 11.0 for
the WD navigation graph. So after adding 10 variables, we should expect a
configuration set with 110 successors, and after adding 10 more variables, then
the expected number of successors is equal to 220. For comparison, YW, has 122
variables and 1585 successors.

If we discard all extensions that are not represented at all in the given query
log, since we know that they will not lead to higher precision anyway, we both
reduce the overall search space and the number of successors of each configuration.
For the query log L4 (small queries) this reduction is about 10%, while it is
about 50% for Lp (large queries). This still does not reduce the search space
enough to allow brute-force search. For example, if we assume that the number
of successors is reduced with about 50% such that the number of successors
of a configuration with ¢ variables equals 7 + 5i, then the number of possible
configuration sets of size 10 we need to consider is about

7-(7T4+5-1)-(7T4+5-2) - (T+5-9) ~ 1.0 x 10*
and this is too many configuration sets to evaluate, at least when we know that it

takes about a second to estimate the cost and precision of a single configuration
set.

154

Search Methods

There may exist some configuration queries in the configuration set that are
redundant, in the sense that they are completely covered by at least one of the
other configuration queries in the set. These configuration queries are completely
useless because they only lead to indices that do not contribute to higher precision,
only increased cost. In other words, these redundant configuration queries should
be removed. Even if we prune away all these redundant configuration sets, and
only consider configurations covered by W,, as described above, the search space
will still be too large to do a brute-force search. So, in this section, we present
some alternative heuristic-based search methods, which only consider parts of
the search space. The actual results we got by applying these search methods to
the WD setup are presented in Section 8.3.

Reference Configuration Sets In Section 6.4 we defined six different configuration
sets: Wy, W3 W, Wld, W,., and W,,,. Each of them is in themselves reasonable
configuration sets, and since we have already discussed them quite extensively,
it makes sense to use them as a frame of reference when we now present new
methods and the configuration sets they generate. They are also natural default
configuration choices if one does not have any knowledge about the data or the
query log since they are symmetric with respect to the classes and properties in
N. In that sense they act as a good benchmark: if our search methods are not
able to find any configurations that are better than the obvious defaults, then
they are useless. The reference configurations can also be generated without
much effort, i.e., we can generate them directly from N without considering D or
the relevant query log. The two configuration queries W; = () and W,,, are also
guaranteed to be Pareto optimal: all configuration sets with 0 cost will also have
zero precision, just like Wy, and W,, is the cheapest configuration query that
is able to achieve the maximum precision (this may be less than 1 if there are
non-simple queries in the query log). In other words, they are the two extreme
endpoints of the Pareto frontier.

Greedy Query Weight Method If we consider the query log, there will be some
properties that occur frequently, while others are not used at all. The Greedy
Query Weight Method uses this to build a configuration set: it starts with one
configuration query of only one variable for each class, and then it selects greedily
the extension that corresponds to the most popular property in the query log
not added yet. More precisely, the method calculates a score for every possible
walk in the navigation graph, and this score is equal to the sum of the weights
of the queries where a path corresponding to this walk is present. For example,
to calculate the score of a walk from Person to Country via the property visits,
the method must start with a total score of 0.0, and then it must loop over all
queries in the query log, and check if it contains a variable typed to Person,
which is also connected to a variable of type Country via the visit property. If
so, then the weight of the query is added to the total score. The list of walks
can then be sorted by their score, and this defines an order to add new variables
and edges to the configuration set.

155

8. Configuration Generation

This method is not really a search method since it has to follow a certain
sequence of extensions, which does not allow it to explore the search space. It
also does not consider the data at all, it only assumes that properties that are
used frequently in the query log lead to high precision, and it will include them
in the index disregarding the cost they lead to.

If this method is given a maximum cost M, then it will only be allowed to
extend if the result has a cost lower than M. This means that in some cases,
it may have to skip the extension with the highest score, and rather select the
one with the second-highest score. If the method is implemented without a
maximum cost, then it will eventually reach the end of its extension sequence, at
which point the configuration set includes every path that occurs in the query
log and is equal to W,,.

Random Method If we add new properties to the configuration set in random
order instead of adding them by decreasing weight in the query log, then we
get the Random Method. This method will, just like the Greedy Query Weight
Method, eventually reach W,,, it just picks a less optimal path to get there. The
Random Method will for all non-trivial cases perform very poorly, so it should
not be considered a real configuration generation alternative, but rather just a
reference method that shows what random selection leads to.

Greedy Precision Method The Greedy Precision Method is also a greedy method,
which starts with a configuration set W = (J, and then iteratively extends W by
always selecting the successor of VW with the highest precision. This method will
rapidly find configurations of high precision if they exist in the set of possible
successors. But, it does not consider the cost at all, so it may end up selecting a
successor that leads to a very high cost. It is also not able to see more than one
step forward, which means that it will fail to select successors with low precision,
but high potential, in the sense that they lead to other configuration sets with
very high precision. Just like the Greedy Query Weight Method, this method
can be implemented with or without a maximum cost M.

None of the two greedy methods presented so far are guaranteed to return
the optimal configuration set, but they work in a very intuitive way, and will
often lead to reasonable solutions. Like any other greedy method, they will do
well when the current best choice is also the choice that leads to the best result
overall. Both methods will struggle when they have to make sacrifices in order
to gain a large reward later.

Exploratory Method The problem with both of the greedy methods presented so
far is that they are not able to look further than one step ahead, and hence will
fail to select extensions that lead to large future rewards. This can be solved by
looking further, and consider all configuration sets two or more steps ahead. But,
this is problematic, because it increases the number of configuration queries that
need to be evaluated by a large factor. For example, using query log L5 and
after adding about 20 variables to the configuration set, the Greedy Precision

156

Evaluation

Method has to evaluate about 200 successors, which takes about 3 minutes.
If it instead would have to consider all successors of these successors, which
corresponds to about 40000 configuration sets, then this same evaluation task
would take over 11 hours, which is too long for just one iteration.

There already exist heuristic-based search methods that are suited for search
spaces with large branching factors. For example, Monte Carlo tree search
(MCTS) [14, 47] has been used with success in game engines for Go and Chess,
where the branching factor typically is very high. We did some initial experiments
with MCTS over single configuration queries, but ended up discarding the method
because it was not fast enough. We did not investigate in detail why this search
method performed so poorly — it could be that our problem does not fit the
algorithm, but we believe that it is more likely that the evaluation process is
just too slow, or that the parameters we used for the search were too ambitious.

Based on the ideas of MCTS, we developed the Ezploratory Method, which
selects a successor W € succ(W) based on the best precision among a set of 10
random extensions out from W'. Le., instead of considering every configuration
two steps ahead as described above, we consider only ten random ones for each
direct successor. This allows the method to find good configuration sets even if
they are not directly connected to the current configuration, but it will only do so
occasionally, when one of the random extensions are able to find a configuration
with high precision. This method will only be successful if the precision improves
after at most two steps, so if the configurations with high precision are three or
more steps away, then this method will not be able to find them.

8.3 Evaluation

In this section, we evaluate the configuration generation methods presented in
the previous section. For each of the search methods, we generate configuration
sets over the WD setup presented in Chapter 7 and evaluate them using the
cost and precision estimates described in Section 8.1. Recall that we defined
two different query logs in Chapter 7: L4, which contains 2608 queries with
seven or fewer variables, and Lp, which contains 2448 queries, each with six or
more variables. We first present the results based on the large queries in Lp in
Section 8.3.1, and after that, we present the results based on the small queries
in L4, in Section 8.3.2.

The way we have formulated the configuration generation problem in
Definition 6.4.4 targets one particular optimal configuration set by asking for the
most precise configuration set below a given maximum cost threshold M. All
our methods can produce such a configuration in two different ways. Either the
search method is given M before it starts, which prevents it from extending into
a configuration set with a too high cost. Or, the method is applied without any
cost threshold, and then, after it has produced enough results, the configuration
with the best precision and a cost less than M is chosen. The former approach
will give an overall better result because it actually uses M to make decisions.
The latter approach allows us to make a sequence of configurations that tells

157

8. Configuration Generation

Set | Description

Wy | The empty configuration set: Wy = (0.

W, | One small configuration query for each edge in N.

W2 | Variant of W, where only data properties are included.

W, One fully saturated configuration query for each class.

Wld Variant of W, where only data properties are included.

Wi, | The maximum configuration set containing all paths in the query log.

Table 8.1: Summary of the six special configuration sets we have considered.

approximately how well the method performs for many different cost thresholds,
which is overall more interesting. Hence, most of the runs we present in this
section are done without a built-in cost threshold.

Adding a property to a configuration that is not used in the query log will not
increase the precision, only the cost. Therefore, when we implemented the search
methods, we limited them to only build configurations with paths that occur
in the given query log. So, instead of considering every possible successor in
succ(W, N'), the methods only look at successors that are covered by the query
log. This improves the overall results because the search methods can spend
time on the good candidate configurations. Two of the methods we consider, the
Random Method and the Greedy Query Weight Method, are also programmed
to only produce at most one configuration query per class.

Each method we consider produces multiple configuration sets, and we are
going to present them all by their estimated precision and cost in the same kind
of cost/precision diagram as we used in Experiment 2 (see Sec. 6.3.1). The
estimates we use are the same as the ones presented in Section 8.1, but we only
used uniform edge target distribution functions for the estimates.

All parts of the evaluation were done on a personal laptop computer with a
2.2 GHz processor and 16GB of RAM. Some of the runs, like the ones we did
with the Random Method and the Greedy Query Weight Method, completed in
less than a minute. Other methods, like the Exploratory Method, spent so much
time that it had to be terminated after about 100 iterations and 10 hours.

8.3.1 Evaluation based on L p

Table 8.2 and Figure 8.2 present the precision and cost of each of the six reference
configurations we defined in Section 6.4: Wy, W, Wld, W,, W, and W,,, when
evaluating them over the WD setup and query log L. Table 8.1 is a copy of
Table 6.9, to help recall the structure of all the six configurations.

Notice first that two of these configurations, W, and W4, are presented with
the same cost and precision. The only structural difference between these two
configurations, is the extra configuration queries W, has for each of the 80 object
properties in A/. These configurations will not lead to any higher precision,
because they do not contain any data variables. So W, and W¢ should indeed

158

Evaluation

Set | Precision | Cost

Wy 0.00 0
wd 0.14 | 1.6 x 10°
W, 0.14 | 1.6 x 10°
we 0.17 | 2.0 x 107
W, 0.72 | 8.4 x 1010
Win 0.89 | 8.6 x 108

Table 8.2: The precision and cost of the six reference configuration sets Wy, wé,
Wr, WE, Wy, and W,,, with respect to query log £5.

1.00E+12

1.00E+11

1.00E+10

1.00E+09

1.00E+08

1.00E+07

1.00E+06

Cost (log)

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01

1.00E+00
0.0

0.1

*Wd & Wr

0.2

0.3

WrD ¢ Wl ¢ WD &Wm

0.4 0.5 0.6 07 0.8 0.9 1.0

Precision

Figure 8.2: The precision and cost of the six reference configuration sets Wgq, W2,
Wr, WE, Wi, and W,,, over query log L. Wj is not visible because the y-axis uses a

logarithmic scale.

159

8. Configuration Generation

v
X | x X |w

Table 8.3: The two types of index tables each of the 80 object property configuration
queries in W, can correspond to.

have the exact same precision. The cost of W% and W, is just almost the same:
in reality, the cost of W, is 80 more than the cost of Wﬁ, but this is so little
that the difference is not visible in Table 8.2 with the precision we have used.
This cost difference is a result of the extra object property configuration queries
we just referred to. Each of them results in an index table similar to either of
the two tables presented in Table 8.3, which both has cost 1 since the cell of the
root column is not counted. With 80 such tables, the total cost of these extra
configuration queries is equal to 80.

W, contains large enough configuration queries to cover every non-simple
query in the query log, so its precision of 0.89 is the highest that can be achieved
with S, over this query log. In order to beat this precision, we need another
value function or framework that performs better on non-simple queries than
what our framework does. Since W,,, defines the highest possible precision, it
also marks the highest possible cost that ever should be considered: it is pointless
to use a more expensive configuration because then W,, will outperform it with
respect to both cost and precision. But, W, is exactly such a configuration, with
its precision of 0.72 and cost of 8.4 x 10'°. W, has such a high cost because it
is generated based only on A and not the query log Lp. In other words, W),
contains many local properties that are never actually used in the query log, and
this gives it a very high cost and a lower precision than W,,,. A better alternative
to W, would be a version where all of these useless properties are removed. It
would provide the exact same precision as W, but with a lower cost than both
W, and W,,,. In fact, this is also the case with Wld, W,, and W: they all may
contain properties that are useless because they are not used in any queries in
Lp. If we remove all these useless properties from these configurations, we get
versions with the same precision but lower cost.

Since Wld is the variant of W, where only data properties are included, it
should have both lower cost and precision than W,;. Our results show that this is
indeed the case, but its precision is only 0.17, which is surprisingly low compared
to the precision of W,. This shows the importance of including object variables
in the configuration queries from a precision perspective, which is something we
also discovered in Experiment 1 (see 6.1.3).

Both W, and its variant W? have very low precision scores of only 0.14,
however, their cost is also very low: 1.6 x 10°. Finally, W, gets both a precision
and cost of 0, as expected, since it is just the empty set.

Figure 8.3 shows the same reference configurations from Figure 8.2 together
with 477 configurations generated by the Greedy Query Weight Method (yellow
points), and 477 configurations generated by the Random Method (red crosses).

160

Evaluation

¢ Wd e Wr WrD ¢ Wl ¢ WID ¢ Wm x Random Greedy Query Weight

1.0E+9

9.0E+8

<

8.0E+8

x
X
7.0E+8 ¥ l

6.0E+8 I
3

5.0E+8

4.0E+8 I
X
3.0E+8 '

2.0E+8 !

1.0E+8)l

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost

i

Precision

Figure 8.3: Configuration sets generated by the Greedy Query Weight Method
(yellow) and the Random Method (red) over query log L.

Notice that this chart uses a linear scale on the y-axis and a cost range that
excludes W, because of its high cost. Both of these methods make only one single
configuration query per class, and they extend the set of all these classes by only
adding properties that have been used in the query log. The Random Method
adds these properties in random order, while the Greedy Query Weight Method
adds them by decreasing popularity in Lp. Regardless of how they choose to
extend, they both eventually lead to the same configuration set, W,,, where all
paths from the query log are included. While the Greedy Query Weight Method
should be considered to be a real attempt in generating useful configurations,
the Random Method is just included for reference. The yellow points produced
by the Greedy Query Weight Method form a convex function. IL.e., the precision
increases rapidly in the beginning when extensions with high weight are chosen,
but it slows down as it approaches the maximum precision defined by W,,,. This
is in contrast to the Random Method, which is slightly concave. This shows
clearly that not every configuration query in the search space is useful, and that
clever techniques are needed to find good configuration sets.

Since the Greedy Query Weight Method is not bounded by any maximum cost,
it produces configuration queries with costs ranging from 0 and all the way up to
the maximum cost defined by W,,,. Almost all of these configurations are Pareto
optimal when we only consider the configurations generated by the Greedy Query
Weight Method, since extending a configuration always increases the cost, and
the precision never decreases (it may stay fixed for some datasets). But, if we also

161

8. Configuration Generation

*Wd & Wr WrD ¢ Wl ¢ WID ¢ Wm x Random Greedy Query Weight ® Greedy Precision

1.0E+9

9.0E+8

e

8.0E+8

X
X
7.0E+8 ¥ l

6.0E+8 .’
X

5.0E+8

4.0E+8 l
X
3.0E+8 |

2.0E+8 !
1.0E+8)'

° ° Y L 4

D

Cost

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

Figure 8.4: Configuration sets generated by the Greedy Query Weight Method
(yellow), the Greedy Precision Method (teal), and the six reference configuration sets
over query log Lp.

consider all the six reference configurations, some of the greedy configurations
will not be Pareto optimal anymore since they are weaker than either W, or
W4, The Greedy Query Weight Method produces numerous alternatives to the
reference configuration sets, and given a maximum allowed cost M, one can just
pick the most precise configuration set with a cost lower than M.

In Figure 8.4, we have added 72 configurations generated by the Greedy
Precision Method (teal points). This method starts with the empty configuration
set, and then it iterates by always transitioning to the successor with the highest
precision. The method is very good at detecting and selecting properties that
result in an immediate increase in precision, but it fails to select object properties
that give it the potential to select valuable properties later. The Greedy Query
Weight Method, on the other hand, is based on the assumption that extensions
with high weight in the query log also leads to high precision. This causes it to
make some suboptimal local choices with respect to precision, but it also leads
it to select object properties with high future potential. We can see this effect
in the results presented in Figure 8.4: the Greedy Precision Method performs
better than the Greedy Query Weight Method in the beginning when there are
still many good successors with high cost. But after reaching a precision of about
0.7, it runs out of good options and converges slowly towards a precision of 0.75,
where it stagnates, because it keeps adding data properties with extremely little
precision gain, instead of selecting an object property with no direct gain, but

162

Evaluation

¢ Wd & Wr WrD ¢ Wl ¢ WID ¢ Wm x Random Greedy Query Weight ® Greedy Precision x Explore

1.0E+9

9.0E+8

<

8.0E+8

x
X
7.0E+8 ¥ l

6.0E+8 I
x 3
5.0E+8 l
4.0E+8 I
X
3.0E+8 '
2.0E+8 !
1.0E+8 ‘ J
X P
1 ,._A’ f ¥ X o X 0 00N X X OC XX
ol mna xa. °
0.0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

Cost

Precision

Figure 8.5: Configuration sets generated by the Greedy Query Weight Method
(yellow), the Greedy Precision Method (teal), the Exploratory Method (orange), and
the six reference configuration sets over query log Lp.

high potential.

In Figure 8.5 we have included 94 configurations generated by the Exploratory
Method, which selects how to extend the configuration set by evaluating ten
random successors of each possible direct successor. It performs about equally
good as the Greedy Precision Method up to a precision of 0.75, and after that,
it continues to generate new Pareto optimal configurations until it reaches a
precision of about 0.85, where it starts to bend upwards towards W,,. We
chose to terminate the method at this point, but if we had not done this, then
the method would have continued to generate configurations until it eventually
reached W,,. These results demonstrate that exploring one more step ahead
can solve the problems the Greedy Precision Method has, which is to choose
successors that lead to good results in the long term. The Exploratory Method
gives very good results, despite the fact that it only explores ten extensions out
from each possible successor — all of the configurations it generates are Pareto
optimal, or close to Pareto optimal, among the configurations generated in the
experiment.

Finally, in Figure 8.6 we present the configurations generated by the
Exploratory Method when it is enforced to only construct configurations that
are cheaper than a maximum cost M = 1.0 x 107.

This sequence more or less follows the path of the unrestricted Exploratory
Method (orange crosses) until it is right below a cost of M, where it instead bends

163

8. Configuration Generation

¢ Wd & Wr WrD ¢ Wl ¢ WID ¢ Wm x Random Greedy Query Weight ® Greedy Precision x Explore x Explore 1e7

1.0E+8 ~ - .
L]
x
5 © x
9.0E+7 x o x
X : x
»
L]
8.0E+7 % : .
x . x
x py x
7.0E+7
% : l
6.0E+7 e XX
% XX XXX
X
o X o X
3 s0E7| X X
o X -
40847 | % - -]
x x .
X X L]
30E+7 | x
x x
x L]
2.0E+7
‘ L]
1.0E+7 X K00 0K
o 3
oMl ey X
0.0 0.1 02 03 04 05 06 07 08 09 1.0
Precision

Figure 8.6: The sequence of configurations generated by the Exploratory Method
over the query log £z, with a maximum cost of M = 1.0 x 107 (green crosses).

slightly to form an almost straight horizontal line. It continues to improve until
it reaches a configuration that cannot be extended anymore without becoming
more expensive than M. The last configuration set in the generated sequence has
a precision of 0.42, and a cost of 9928188, which is very close to M = 1.0 x 107.

So far, we have only considered the cost and precision of the generated
configurations, but now we are also going to take a look at the actual
configurations that are generated. Let us consider the configuration set W53
generated by the Exploratory Method in its 53rd iteration, with a precision of
0.88 and a cost of 9.27 x 107. This is one of the best configurations generated
by any of our methods, so it is interesting to see which configuration queries it
actually contains. W®3 only has three configuration queries, rooted in the three
classes Person, City, and City USA. This is very few, considering the fact that
there are 15 classes in total in the navigation graph, but it makes sense if we
look back at the WD setup we are working with (see Chapter 7): 8 of the classes
do not even have any outgoing data properties in the navigation graph, so there
will not be any extension cases out from a variable of this class. In other words,
a configuration query for any of them will be useless. Three more of the classes
(Film, Award, and Continent) occur very infrequently in the query log, so having
a configuration query for any of them would not increase the precision very much.
The last class is Country, which has five outgoing data properties, and which is
frequently used in the queries. This class should be a reasonable configuration
root class, and in fact, if we look at the configuration generated 19 iterations

164

Evaluation

Class Explanation

Person Useful in configuration
City Useful in configuration
City USA Useful in configuration
Country Useful in configuration
Film Few queries in Lp
Award Few queries in Lp
Continent Few queries in Lp
Gender No data properties in N/
Profession No data properties in N/
Eye Color No data properties in N/
Hair Color No data properties in N/
Filmography No data properties in N/
Film Genre No data properties in N/
Television Series | No data properties in N
Capital No data properties in N/

Table 8.4: Overview of the 15 classes and why most of our methods only construct
configuration queries for four of them when calculating precision based on Lpg.

later by the Exploratory Method, then Country is also included. If we look at
the last and 94th iteration W4 of the Exploratory Method, it also only contains
four configuration queries, for the four same classes. In Table 8.4, we give an
overview of the 15 classes in A/, and how useful their potential configuration
queries are based on their roles in the navigation graph and the query log.

Let us inspect the configuration query with root class Person in WW®3. The
root of this configuration query is connected to 14 object properties and 7 data
properties, and 4 of the object properties have outgoing edges to 2, 2, 1, and 1
more variables, respectively. We have presented the whole configuration query
as an indented tree below.

165

8. Configuration Generation

Configuration query generated for the class Person.

country of citizenship — Country
official name — String
part of — Continent

place of birth — City
population — Integer

child of — Person
occupation — Profession
has child — Person

9 has child — Person

10 child of — Person

11 occupation — Profession

12 award received — Award

13 sex or gender — Sex Or Gender

14 spouse — Person

15 number of children — Integer

16 height — Integer

17 date of birth — DateTime

18 place of birth — City

19 hair color — Hair Color

20 residence — City

21 residence — City USA

22 work location — City

23 work location — City USA

24 birth name — String

25 name native language — String

26 family name — String

27 given name — String

0O~ Ut WN

The configuration queries of City and City USA are actually identical, so
we only present the configuration query of City below. It has two outgoing
object properties and two outgoing data properties, and the Person it is the
birthplace of is again connected to six more object properties and three more
data properties.

Configuration query generated for the class City.

1 birthplace of — Person

2 country of citizenship — Country
3 place of birth — City

4 occupation — Profession

5 award received — Award

6 sex or gender — Sex Or Gender
7 spouse — Person

8 number of children — Integer
9 height — Integer

10 date of birth — DateTime

11 population — Integer

12 official name — String

13 coordinate location — Location

It is natural to question why the configuration queries of City and City USA
are equal. We believe that this is because the two classes and their related

166

Evaluation

properties are equally weighted, or close to equally weighted in £p, and we think
that this is a consequence of the query transformation process we presented in
Section 7.3. If none or very few of the large queries in the original query log has
assigned types to the variables, then any query with a variable that could match
a city would also match an American city, since these two classes are connected
to the exact same properties in the navigation graph. The transformation process
described in Chapter 7 will then turn each such query into two versions where
the variable is typed to City in the first one, and City USA in the other one.
These two versions will be given equal weight, and hence give both City and
City USA equal weight in the resulting query log.

The class City has 11 outgoing properties in total in the navigation graph,
and only four of them have been included in the configuration query rooted in
City in W53 . Meanwhile, nine different properties are added to the person it
is the birthplace of. This confirms the importance of the Person class in the
WD setup. All nine of these properties are also connected directly to the root of
the Person configuration query, which makes sense: paths that are useful in one
configuration query are likely to be so also in another configuration query.

Both of these configuration queries show that the Exploratory Method is able
to construct non-trivial configuration queries where some second-level properties
have been prioritized before some of the local properties, i.e., it is able to
construct uneven configuration queries that are good solutions for the given
setup.

8.3.2 Evaluation based on L 4

In Table 8.5, we present the precision and cost of the six reference configurations
when they are evaluated using query log £ 4. These results show how easy it is to
find precise configurations when the query log contains mostly small queries like
L4 does. All of the reference configurations achieve close to perfect precisions,
except for Wy of course. Even W, and W, which both only had a precision of
0.14 with respect to query log Lp, now provide a precision of over 0.98 with
query log L£4. It is also worth pointing out that all of these configurations,
except for W,,, have the same cost as they had when we evaluated over Lz.
This makes sense since both the structure of these configurations and the dataset
their cost is based on, are unchanged. W,,, on the other hand, depends directly
on the query log that is used, and both its cost and precision have increased
compared to W,,, based on Lg. In fact, the cost of W,, is now so high that it
exceeds the cost of W.

In addition to evaluating the six reference configurations, we also generated
configurations with the Random Method, the Greedy Query Weight Method,
the Greedy Precision Method, and the Exploratory Method, all without any cost
threshold, just like we did with query log L£5. The results are all presented in
Figure 8.7 (note the logarithmic scale on the y-axis). Since most of the precisions
are above 0.95, we present an additional chart with only this range in Figure 8.8.

All search methods, except for the Random Method, are able to find very
precise configurations after just a few iterations. Again, this is not very surprising,

167

8. Configuration Generation

Set | Precision | Cost

W, 0.000 0
wed 0.985 | 1.6 x 10°
W, 0.985 | 1.6 x 10°
wi 0.991 | 2.0 x 107
W, 1.000 | 8.4 x 100
Win 1.000 | 1.6 x 10

Table 8.5: The precision and cost of the six reference configuration sets Wq, W,
W2, Wi, WP, and W,,, with respect to query log L.

*Wd «Wr ¢« WrD Wl ¢ WID ¢ Wm x Random © Greedy Query Weight ® Greedy Precision > Explore
x Explore 0.5e7 x Explore Wr

1.00E+15

1.00E+13

1.00E+11 x
e

1.00E+09

=)
2 i
= K
B 1.00E+07
8
K
1.00E405 ¢ x x - Xy
x x X
) 4 o x - x L] =
1.00E+03
K
1.00E+01
00 0.1 02 03 04 05 06 07 08 09 1.0
Precision

Figure 8.7: Precision and cost of every generated configuration when evaluated with
respect to query log La4.

168

Evaluation

+Wd ¢Wr ¢« WrD Wl ¢WID Wm x Random © Greedy Query Weight @ Greedy Precision * Explore
x Explore 0.5e7 x Explore Wr

1.00E+15

XX X x x x x X O
X
1.00E+13
1.00E+11 OO XX o .
1.00E+09
>
S ‘,-J
= [2
B 1.00E+07 . o o o o o & ¢ o 2 0 o s oo
8 X X X X X XX XXX TX X X 0 O x
1.00E+05 x XXX 0 08K <

1.00E+03

1.00E+01
0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

Precision

Figure 8.8: Precision and cost of every generated configuration with precision above
0.95 when evaluated with respect to query log La4.

since most of the queries in £, are small: this makes it easier to find good
configurations in each iteration, and it overall requires smaller configurations,
which can be built with just a few extensions. Large parts of the results
presented in Figure 8.7 are qualitatively the same as the results we got with
Lp: the Random Method is significantly worse than the Greedy Query Weight
Method, which is again outperformed by the Greedy Precision Method and the
Exploratory Method.

If we only consider the results of the Greedy Precision Method and the
Exploratory Method, it looks like a configuration with cost above 1.0 x 107 is
needed in order to achieve precisions above 0.995. We wanted to see if this was the
case, so we tried to run the Exploratory Method with a smaller maximum cost of
M = 0.5x 107 (blue crosses), to see if it still was able to produce a configuration
with precision higher than 0.995. This is not the case, the Exploratory Method
stops improving at a precision of 0.992.

We also did an exploratory run with a maximum cost of M = cost(W,,, D) =
1.6 x 10° (green crosses), in an attempt to beat the precision that W, and W2
are able to provide. This run ends at a precision of 0.981, which is lower than the
precision of W,.. This probably happens because the Exploratory Method makes
some suboptimal choices in one of the first iterations. For example, already in
iteration number eight, it combines two properties into a V-shaped configuration
query, which gives it a high cost compared to the alternative, which is two
separate configuration queries with one property each. Since almost all queries

169

8. Configuration Generation

in £, have size 2, V-shaped configuration queries are often not ideal. Even
though the Exploratory Method was not able to find any better alternative to
W, and W, it is still likely that there exists such a configuration set. It is, for
example, possible that a given data property is totally non-existent in the query
log, while it is still represented in the dataset, and if this is the case, then the
configuration query corresponding to this property in W, is totally useless and
can be removed from W, or W? to achieve a lower cost, but the same precision.

To illustrate how easy it is to make a configuration set with high precision,
let us consider W?, the fifth configuration set generated by the Greedy Precision
Method, which has a precision of 0.981 and a cost of 1.26 x 10%. This only
contains 5 configuration queries with only one property each, and all of them
are presented below.

Configuration query generated for the class City.

Person — name native language — String
Continent — coordinate location — Location
Country — coordinate location — Location
City USA — coordinate location — Location
City — coordinate location — Location

Tk W N~

According to this, there must be many queries of high weight asking for the
location of cities, countries, and continents, in addition to the name of persons.

In this chapter, we have presented a set of different search methods that all
attempt to find useful configuration sets given a particular setup of a dataset, a
navigation graph, and a query log. All of these methods need to evaluate many
different configurations during the search process, so they all rely on the efficient
cost and precision estimates that we presented in the first section of this chapter.

Our evaluation of the search methods based on the WD benchmark shows
that the methods we present, and in particular the Exploratory Method, are
able to find useful configuration sets for settings with many large and complex
queries (query log Lp).

170

Chapter 9

Conclusion and Future Work

In this thesis project, we have been working on the problem of detecting dead-
end query extensions in ontology-based VQSs that support tree-shaped, and
arbitrarily large queries with typed variables and filters. For large datasets
and queries, the process of calculating dead-ends perfectly in this setting is too
slow, since it requires the system to execute complex queries over the database
after each change to the partial query. Other systems with a more limited
query expressivity solve this efficiency problem by constructing and using indices
specialized for dead-end detection. This kind of solution cannot be used in the
more complex setting, because that would require an infinitely large index. But,
it is possible to use a variant of the solution if we allow some inaccuracy in the
detected dead-ends, and this is the idea that our configurable dead-end detection
system is based on.

The configuration used to set up our system determines both the structure
of the index and how many dead-end extensions it detects, and based on this
we can calculate both the precision and cost of the configuration. Obviously,
we want a configuration with high precision and low cost, but finding such a
configuration is non-trivial, because the search space of possible configurations
is very large, and because it takes relatively long time to evaluate a single
configuration. To solve this problem, we present a set of different configuration
generation methods that use efficient cost and precision estimates and search
heuristics to produce useful configurations. To evaluate these configuration
generation methods, we constructed the Wikidata benchmark, which contains
a large dataset and a corresponding navigation graph, in addition to a large
collection of typed, tree-shaped queries that reflects human information needs.
Our evaluation shows that the configuration generation methods are able to
produce complex configurations with both low cost and high precision.

9.1 Conclusion

Since it is impossible to construct an index that can be used to efficiently compute
dead-ends for queries of arbitrary size, the best alternative is to approximate
them. The main idea of the approach presented in this thesis, which is to ignore
the less important parts of the partial query when computing dead-ends, works
because it limits the number of joins that needs to be pre-computed, which
means that efficient results can be computed with the use of a finite index. The
proposed way of defining which parts of the query to ignore with configuration
queries is flexible enough to define any desired instance of the system since
the tree shape it uses is essentially the set of paths to not ignore. Non-simple
configuration queries are not supported in the presented framework, but we

171

9. Conclusion and Future Work

believe it should be possible to support them without too much extra work (see
Section 9.2). But it is worth questioning how useful such configurations will be
since they will only result in higher precision when properties are repeated twice
in the partial query.

The configuration query structure makes the pruning process intuitive, and
it allows us to define index tables based on the answers to subqueries of the
configuration query and the subfunction relationship (see Section 6.2). In
addition, it can be extended easily to configuration sets, to support multiple
different root classes (see Section 6.4). In this thesis, we prove theoretically that
it is possible to construct an efficient index based on the configuration query
and the dataset, and that this index returns the same results as the dataset
to pruned queries. The recall of the proposed solution will always be perfect
since all pruned versions of the partial query are less restrictive than the partial
query itself. On the other hand, the precision depends on the dataset and the
configuration, in addition to the particular query the user is making.

Chapter 7 and Chapter 8 are devoted to the problem of finding out what
the best possible configuration is, and how useful this configuration will be.
The result of the configuration generation process depends on which cost and
precision measures that are used, and the measures we suggest in Chapter 6 are
reasonable: the cost is based on how large the different index tables are, and the
precision is based on how many of the suggested productive values that are truly
productive. Comparing these measures to other cost and precision measures
would be interesting, but it is hard to come up with reasonable measures that
are fundamentally different from our proposed measures if the goal is to generate
configurations that are useful in practice. The proposed way of using a query
log to generate extension cases assumes that the queries in the query log are
representative for future queries. This may not always be the case, but if the
user base and time period are the same or almost the same, then it is safe to
assume that there will be similarities. At least it should give better results than
a method that does not take into account that some queries are more likely to
be posed than others.

The cost and precision estimates presented in Section 8.1 are based on
techniques that are used for cardinality estimation in the database community.
But despite this, there is no guarantee that the estimates are sufficiently good,
and a proper evaluation of the estimates we have used is future work. And, even
though we have been evaluating many different search methods, they are all
still based on the same approach, which is to start with an empty configuration
and extend it based on heuristics. This probably misses some configurations of
high quality, but how problematic this actually is, must be investigated in future
work. But, it is important to remember that the purpose of the estimates and
the search techniques is to sacrifice accuracy on configuration generation in order
to make the process efficient. In other words, if the generated configurations are
not good enough, it is always possible to use more complex cost and precision
estimates and a more extensive search to find a better configuration, but then
the search will also spend more time on the configuration generation process.

The results produced by the configuration generation methods in Section 8.3

172

Future work

are all based on only one setup: the WD benchmark, and it is important to
remember that other setups could result in a completely different kind of result.
In fact, by evaluating over both query log £4 and query log L, we discovered
how much the results can change by just replacing the query log. While the
presented configuration generation methods are likely to be robust enough to
find a configuration that is close to optimal, this does not mean that the resulting
system will actually be useful. For example, the system will work well in cases
where the users repeat the same classes and properties frequently, and where
the index of these classes and properties does not explode when they are joined
together. In contrast, if the queries are either not representative, or if they cover
classes and properties that result in a large index, then it is impossible to find
good configurations, at least if a small maximum cost threshold is set. In the
concrete evaluation we did based on the WD benchmark, the results indicate
that the exploratory method is able to produce the best configurations. This
is not a surprise, due to the fact that it is more complex and time-consuming
than the other methods, and it highlights the fact that a proper evaluation of all
the search methods must be able to take both the resulting configuration and
the efficiency into account. But, it is worth highlighting that this method was
able to produce configurations that lead to a system that is objectively better
than a system based on W, and Wld, which are the configurations that represent
standard faceted search.

The popularity of dead-end detection in faceted search systems shows how
useful this feature is during query construction. Current dead-end detection
solutions used by systems that support complex queries suffer from inefficiency,
and our solution is unique since it ensures efficiency by sacrificing precision of
the detected dead-ends. Approximations to dead-end detection have, to our
knowledge, not been explored much, so this thesis is a contribution to that
area of research. The overall conclusion of our work is that the approximation
approach we use to tackle the dead-end detection problem is practically possible
to use, and that it will perform better than current solutions unless configuration
generation fails due to hard setups.

9.2 Future work

In this final section, we highlight and discuss possible future projects related to
our work. Most of them have already been discussed to some degree earlier in
the thesis.

Changes to the Dataset Throughout the whole project, we have assumed that
the dataset does not change very often and that when it does, all indices have to
be rebuilt from scratch. But building an index from scratch may be very time
consuming, so if the change in the dataset is small, it may be more efficient to
instead update the index by this change. If we are able to develop methods that
allow us to update indices efficiently, our system will become useful in situations
where a full index re-creation is too slow.

173

9. Conclusion and Future Work

Changes to the Navigation Graph Changes to the navigation graph are more
problematic than changes to the dataset because they alter the foundation that
both the configuration queries and the query log are based on. For example, if a
new edge is added to the navigation graph, it must be decided if it should be
added to any of the configuration queries. If so, then their corresponding indices
must be re-constructed or updated. In order to determine if the new edge should
be used by the system, one could re-run some of the configuration generation
methods. But, since the query log does not contain any queries where the new
edge has been used, this edge will not contribute at all to higher precision. Hence,
none of the configuration generation methods will even consider to include it.
This means that either a human has to decide whether the edge should be added,
or that a new configuration generation method has to be developed, where new
edges will be considered, even when they are not present in the query log.

Alternative Index Structures In Section 6.2.2, we suggested two ways of storing
the extension index: either as tables in a relational database or as an instance
of a search engine that supports faceted search. Both of these approaches are
scalable, in the sense that the task of querying over them can be distributed
efficiently over multiple machines. However, they are not especially memory
efficient: each row in the index table corresponds to one way of assigning entities
to the variables of the index table’s corresponding configuration query, where
variables that are not assigned to any entities are just filled with the null symbol
w. If the index was instead represented as a tree-structure, all these cells would
not be needed. In the future, we want to consider other types of data structures,
databases, or indexing systems, which take less space than our table-based
approach, while still being scalable. We believe that some NoSQL databases,
and in particular document-oriented databases, should be very suitable for the
tree-shaped structures we are working with.

Bucketing We have already mentioned bucketing as a technique that can be
used to both reduce the cost of the extension indices and minimize information
overload in the user interface. But deciding how to use buckets, and when to
use them is not completely clear and requires good insight about the navigation
graph, the dataset, and the queries. There already exist techniques that generate
buckets in ways that optimize for minimal memory footprint [21], and these
techniques can probably be used with our system too, possibly with slight
modifications.

Incorporate Subclass Relationships The navigation graph our system currently
use does not include subclass relationships, even though such relationships are
a central part of most ontologies. For example, if Man, Woman, and Person
are three of the classes in the navigation graph, there is no way to state that
both Man and Woman are subclasses of Person. It is not hard to extend the
navigation graph with subclass relationships from the ontology, but if this is
done, then we have to reconsider some parts of our system. In particular, we

174

Future work

would like to find out if it is possible to use the indices of Man and Woman to
calculate values when the partial query is rooted in Person, or if a third separate
index for Person is always needed. And, if classes can use the indices of their
subclasses, then we would also like to find out how this affects the configuration
generation methods we presented in Chapter 8.

Remove Redundancy over Multiple Indices We have already described different
techniques that reduce the size of one individual index, but none of these
techniques prevent redundancy over multiple indices. For example, if we have
two indices over the class Person, and both of them include data about the
person’s name, in addition to other properties and classes, then there will be a
significant amount of overlap between the two indices. But redundancy can also
exist between indices over different classes. For example, if there is one index
of Person that includes data about the countries any person has visited, and
another index of Country that includes data about all persons that have been
to any of the countries, then every person and each of their visited countries will
be a part of both indices. In the future, we would like to see if it is possible to
remove redundancy over multiple indices while still maintaining the scalability
and efficiency we need.

Extend the Framework to Non-Simple Configuration Queries The requirement
that configuration queries have to be simple, is a limitation of our system,
which becomes very clear with setups where non-simple queries are frequently
constructed. We believe that it is possible to extend our system to support
non-simple configuration queries, which will then define indices that can be used
to detect dead-ends perfectly for non-simple queries covered by this configuration

query.

Extend Query Expressivity The typed, tree-shaped queries that our system
supports are able to cover many information needs, but not all, and in the
future, we would like to extend our framework to also cover more expressive
queries. Based on the queries from the WD query log, the most popular missing
features are:

e optionals

e unions

e typeless variables

o multi-typed variables

e non-tree-shaped queries

Each of these features must be considered carefully before they can be introduced,
because they may alter some of the rules that we base our extension index on.
For example, if queries without types are allowed, then we cannot even use the

175

9. Conclusion and Future Work

navigation graph anymore to decide when a query is legal or not since there is
no type corresponding to each of the variables.

Improve Cardinality Estimation The cardinality estimation techniques we pre-
sented in Section 8.1 are based on simple assumptions and statistics about
the data, and the quality of these estimates can be improved by using better
statistics or more advanced estimation techniques. In particular, it would be
interesting to see if it is possible to obtain a better estimate of the set intersection
in Equation 8.3, based on the tree structure of the pruned queries that generate
these sets. Proper analysis and evaluation of these cardinality estimates are also
needed, to indicate how good they really are.

Improve Search Methods The configuration generation search methods we
presented in Section 8.2 are relatively simple, and we believe that there exist more
sophisticated search methods that would lead to either better configurations,
faster generation, or both. Omne possible improvement is to incorporate the
cost and maximum cost M when deciding which direction the search should
go. Another idea is to let the search methods remember how promising certain
properties are, and reuse this knowledge to make the search more efficient in
future steps. For example, if adding the height of a person leads to no precision
increase initially, then it will likely not be a good choice later either. A third
approach is to start the search from another configuration than the empty one,
and possibly allow the search to remove variables from a configuration set.

Use Query Log Statistics in Evaluation The way we calculate the precision of a
given configuration query with respect to a query log is relatively slow, because
we have to consider every single query in the whole log, and all possible ways to
make it into a rooted query (see Section 5.4.2). The efficiency of the evaluation
can be improved by making a summary of the query log, and then estimate the
precision based on this summary and not the whole query log. This may allow
the system to explore a larger part of the search space for configurations, to find
a better result. But, at the same time, this would introduce yet another source
for estimation errors, so the quality of the resulting estimates would again have
to be evaluated carefully.

Incorporate Ontology Constraints If the ontology contains constraints that limit
which data values a particular property can take, they are today just ignored by
the VQS, because the navigation graph we use does not support such constraints.
In the future, we would like to use this information to improve the suggestion of
extension values.

User Studies Throughout the whole project, we have been using precision and
recall of the productive data values as the main evaluation measure. But high
precision and recall do not necessarily correspond to high usability, so a natural
next step would be to perform a user study of the system. Such a user study

176

Future work

should compare multiple copies of the system, where different configurations
based on different maximum cost thresholds are used. It should also be compared
to the system based on W, and W, and a possibly very slow system where
perfect dead-end detection is done without an index.

177

Bibliography

1]

[10]
[11]

[12]

[13]

Arenas, Marcelo et al. “Faceted Search over Ontology-Enhanced RDF
Data”. In: CIKM 2014 — Proceedings of the 2014 ACM International
Conference on Information and Knowledge Management (Nov. 2014),
pp- 939-948.

Arenas, Marcelo et al. “Faceted search over RDF-based knowledge graphs”.
In: Journal of Web Semantics vol. 37-38 (2016), pp. 55-74.

Arenas, Marcelo et al. “SemFacet: Semantic Faceted Search over Yago”. In:
Proceedings of the 23rd International Conference on World Wide Web. New
York, NY, USA: Association for Computing Machinery, 2014, pp. 123-126.

Arenas, Marcelo et al. “Towards Semantic Faceted Search”. In: Proceedings
of the 23rd International Conference on World Wide Web. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 219-220.

Berners-Lee, Tim, Hendler, James, and Lassila, Ora. “The Semantic Web”.
In: Scientific American vol. 284, no. 5 (May 2001), pp. 34-43.

Berners-Lee, Tim et al. “Tabulator: Exploring and Analyzing linked data
on the Semantic Web”. In: Proceedings of the 3rd International Semantic
Web User Interaction. 2006.

Brooke, John. “SUS: a quick and dirty usability scale”. In: CRC press,
1996, p. 189.

Brunetti, Josep Maria, Auer, Séren, and Garcia, Roberto. “The Linked
Data Visualization Model”. In: Proceedings of ISWC 2012, Posters &
Demonstrations Track. Vol. 914. CEUR, 2012, pp. 5-8.

Brunetti, Josep, Garcia, Roberto, and Auer, Séren. “From Overview to
Facets and Pivoting for Interactive Exploration of Semantic Web Data”.
In: International Journal on Semantic Web and Information Systems vol. 9
(Apr. 2013), pp. 1-20.

Calvanese, Diego et al. “Ontop: Answering SPARQL queries over relational
databases”. In: Semantic Web vol. 8 (Feb. 2016).

Catarci, Tiziana et al. “Visual Query Systems for Databases: A Survey”. In:
Journal of Visual Languages & Computing vol. 8, no. 2 (1997), pp. 215-260.

Chaudhuri, Surajit. “An overview of query optimization in relational
systems”. In: Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART
symposium on Principles of Database Systems. 1998, pp. 34—43.

Christoffersen, Tom Fredrik. “SPARQL Extension Ranking — Collaborative
filtering for OptiqueVQS-queries”. Department of Informatics, University
of Oslo, Norway, May 2020.

179

Bibliography

[14]

[21]

[22]

[26]

[27]

180

Coulom, Rémi. “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search”. In: Computers and Games. Ed. by Herik, H. Jaap van den,
Ciancarini, Paolo, and Donkers, H. H. L. M. (Jeroen). Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 72-83.

Dudas, Marek et al. “Ontology visualization methods and tools: a survey
of the state of the art”. In: Knowledge Eng. Review vol. 33 (2018), e10.

Giese, M. et al. “Optique: Zooming in on Big Data”. In: Computer vol. 48,
no. 3 (Mar. 2015), pp. 60—67.

Guarino, Nicola, Oberle, Daniel, and Staab, Steffen. “What is an ontology?”
In: Handbook on ontologies. Springer, 2009, pp. 1-17.

Hitzler, Pascal, Krtzsch, Markus, and Rudolph, Sebastian. Foundations of
Semantic Web Technologies. 1st. Chapman & Hall/CRC, 2009.

Hoy, Matthew. “Alexa, Siri, Cortana, and More: An Introduction to Voice
Assistants”. In: Medical Reference Services Quarterly vol. 37 (Jan. 2018),
pp- 81-88.

Joannidis, Yannis E. and Poosala, Viswanath. “Balancing Histogram
Optimality and Practicality for Query Result Size Estimation”. In:
SIGMOD Rec. Vol. 24, no. 2 (May 1995), pp. 233-244.

Ioannidis, Yannis E. and Poosala, Viswanath. “Histogram-Based Solutions
to Diverse Database Estimation Problems”. In: IEFE Data Eng. Bull.
Vol. 18 (1995), pp. 10-18.

Kharlamov, Evgeny et al. “How Semantic Technologies Can Enhance Data
Access at Siemens Energy”. In: The Semantic Web — ISWC 2014. Ed. by
Mika, Peter et al. Cham: Springer International Publishing, 2014, pp. 601—
619.

Kharlamov, Evgeny et al. “Ontology Based Access to Exploration Data
at Statoil”. In: The Semantic Web — ISWC 2015. Ed. by Arenas, Marcelo
et al. Cham: Springer International Publishing, 2015, pp. 93-112.

Klungre, Vidar N. A Faceted Search Index for Graph Queries. Tech. rep.
469. Department of Informatics, University of Oslo, 2017.

Klungre, Vidar N. and Giese, Martin. “A Faceted Search Index for
OptiqueVQS”. In: Proceedings of the ISWC 2017 Posters € Demonstrations
and Industry Tracks. Ed. by Nikitina, Nadeschda et al. Vol. 1963. CEUR
Workshop Proceedings. CEUR-WS.org, 2017.

Klungre, Vidar N. and Giese, Martin. “Approximating Faceted Search
for Graph Queries”. In: 12th Intl. Workshop on Scalable Semantic Web
Systems (SWSS). Vol. 2179. CEUR-WS, 2018, pp. 61-76.

Klungre, Vidar and Giese, Martin. “Evaluating a Faceted Search Index
for Graph Data”. In: Proc. On the Move to Meaningful Internet Systems
(OTM 2018). Vol. 11230. LNCS. 2018, pp. 573-583.

Bibliography

[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

Klungre, Vidar et al. “On Enhancing Visual Query Building over KGs
Using Query Logs”. In: Semantic Technology (JIST 2018). Ed. by Ichise,
Ryutaro et al. 2018, pp. 77-85.

Klungre, Vidar et al. “Query Extension Suggestions for Visual Query
Systems Through Ontology Projection and Indexing”. In: New Generation
Computing (Aug. 2019).

Kogalovsky, Mikhail R. “Ontology-based data access systems”. In: Pro-
gramming and Computer Software vol. 38 (2012), pp. 167-182.

Kules, William et al. “From Keyword Search to Exploration: How Result
Visualization Aids Discovery on the Web”. 2008.

Lehmann, Jens et al. “DBpedia — A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia”. In: Semantic Web Journal vol. 6 (Jan.
2014).

Leis, Viktor et al. “How good are query optimizers, really?” In: Proceedings
of the VLDB Endowment vol. 9, no. 3 (2015), pp. 204-215.

Lopez, Vanessa and Motta, Enrico. “PowerAqua: an ontology question
answering system for the Semantic Web”. In: (2005).

Malyshev, Stanislav et al. “Getting the Most out of Wikidata: Semantic
Technology Usage in Wikipedia’s Knowledge Graph”. In: Proceedings of the
17th International Semantic Web Conference (ISWC’18). Ed. by Vrandecié,
Denny et al. Vol. 11137. LNCS. Springer, 2018, pp. 376-394.

Miller, Robert B. “Response Time in Man-Computer Conversational
Transactions”. In: Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I. AFIPS 68 (Fall, part I). San Francisco,
California: Association for Computing Machinery, 1968, pp. 267-277.
Munir, Kamran, Odeh, Mohammed, and Mcclatchey, Richard. “Ontology-
Driven Relational Query Formulation Using the Semantic and Assertional
Capabilities of OWL-DL”. In: Knowledge-Based Systems vol. 35 (Nov.
2012).

Muralikrishna, M. and DeWitt, David J. “Equi-Depth Histograms
For Estimating Selectivity Factors For Multi-Dimensional Queries”. In:
SIGMOD 1988. 1988.

Musen, Mark A. “The Protégé Project: A Look Back and a Look Forward”.
In: AT Matters vol. 1, no. 4 (June 2015), pp. 4-12.

Nenov, Yavor et al. “RDFox: A Highly-Scalable RDF Store”. In: The
Semantic Web — ISWC 2015. Ed. by Arenas, Marcelo et al. Cham: Springer
International Publishing, 2015, pp. 3—20.

Neumann, T. and Moerkotte, G. “Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins”. In: 2011 IEEE 27th
International Conference on Data Engineering. 2011, pp. 984-994.

181

Bibliography

[42]

[43]

[54]

182

Poosala, Viswanath et al. “Improved Histograms for Selectivity Estimation
of Range Predicates”. In: SIGMOD Rec. Vol. 25, no. 2 (June 1996), pp. 294—
305.

Regalia, Blake, Janowicz, Krzysztof, and Mai, Gengchen. “Phuzzy.link: A
SPARQL-powered Client-Sided Extensible Semantic Web Browser”. In:
8rd Intl. Workshop on Visualization and Interaction for Ontologies and
Linked Data (VOILA2017). Vol. 1947. CEUR-WS, Nov. 2017.

Rodriguez-Muro, Mariano and Calvanese, Diego. “Quest, a System for
Ontology Based Data Access”. In: CEUR Workshop Proceedings vol. 849
(Jan. 2012).

Schmidt, Michael, Meier, Michael, and Lausen, Georg. “Foundations of
SPARQL Query Optimization”. In: Proceedings of the 13th International
Conference on Database Theory. ICDT ’10. Lausanne, Switzerland:
Association for Computing Machinery, 2010, pp. 4-33.

Shearer, Rob, Motik, Boris, and Horrocks, Ian. “HermiT: A Highly-Efficient
OWL Reasoner.” In: OQwled. Vol. 432. 2008, p. 91.

Silver, David et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature vol. 529, no. 7587 (2016), pp. 484—489.

Sirin, Evren et al. “Pellet: A practical owl-dl reasoner”. In: Journal of Web
Semantics vol. 5, no. 2 (2007), pp. 51-53.

Soylu, Ahmet and Giese, Martin. “Qualifying Ontology-Based Visual
Query Formulation”. In: Flexible Query Answering Systems 2015. Ed. by
Andreasen, Troels et al. Cham: Springer International Publishing, 2016,
pp. 243-255.

Soylu, Ahmet and Kharlamov, Evgeny. “Navigating OWL 2 Ontologies
Through Graph Projection”. In: Metadata and Semantic Research. Ed. by
Garoufallou, Emmanouel et al. Cham: Springer International Publishing,
2019, pp. 113-119.

Soylu, Ahmet et al. “Experiencing OptiqueVQS: A Multi-paradigm and
Ontology-based Visual Query System for End Users”. In: Universal Access
in the Information Society vol. 15 (Mar. 2016), pp. 129-152.

Soylu, Ahmet et al. “Ontology-based End-user Visual Query Formulation:
Why, what, who, how, and which?” In: Undversal Access in the Information
Society (Apr. 2016).

Soylu, Ahmet et al. “Ontology-based Visual Querying with OptiqueVQS:
Statoil and Siemens Cases”. In: Norwegian Big Data Symposium (NOBIDS)
2016, Trondheim, Norway. Ed. by Gulla, Jon Atle et al. CEUR Workshop
Proceedings. CEUR, 2016.

Soylu, Ahmet et al. “OptiqueVQS: a Visual Query System over Ontologies
for Industry”. In: Semantic Web (Aug. 2017).

Bibliography

[55]

[56]

[61]
[62]

[63]

Soylu, Ahmet et al. “Towards Exploiting Query History for Adaptive
Ontology-Based Visual Query Formulation”. In: Metadata and Semantics
Research. Ed. by Closs, Sissi et al. Cham: Springer International Publishing,
2014, pp. 107-119.

Stefanoni, Giorgio, Motik, Boris, and Kostylev, Egor V. “Estimating
the Cardinality of Conjunctive Queries over RDF Data Using Graph
Summarisation”. In: Proceedings of the 2018 World Wide Web Conference.
WWW ’18. Lyon, France: International World Wide Web Conferences
Steering Committee, 2018, pp. 1043-1052.

Storrle, Harald. “VMQL: A visual language for ad-hoc model querying”.
In: J. Vis. Lang. Comput. Vol. 22 (Feb. 2011), pp. 3-29.

Sutherland, Dougal J. and Carlson, Ryan. Fvaluating Multidimensional
Histograms in ProstgreSQL. 2010.

Tunkelang, Daniel. Faceted Search. Synthesis Lectures on Information
Concepts, Retrieval, and Services. Morgan & Claypool Publishers, 2009.

Vega-Gorgojo, Guillermo, Giese, Martin, and Slaughter, Laura. “Exploring
semantic datasets with RDF Surveyor”. In: Proceedings of the ISWC 2017
Posters € Demonstrations and Industry Tracks. Oct. 2017.

Vega-Gorgojo, Guillermo et al. “Linked Data Exploration with RDF
Surveyor”. In: IEEE Access vol. 7 (Nov. 2019), pp. 1-1.

Vega-Gorgojo, Guillermo et al. “PepeSearch: Semantic Data for the Masses”.
In: PLOS ONE vol. 11 (Mar. 2016), e0151573.

Xu, Kun et al. “Hybrid Question Answering over Knowledge Base and Free
Text”. In: COLING 2016, 26th International Conference on Computational
Linguistics, Proceedings of the Conference: Technical Papers, December
11-16, 2016, Osaka, Japan. Ed. by Calzolari, Nicoletta, Matsumoto, Yuji,
and Prasad, Rashmi. ACL, 2016, pp. 2397-2407.

Zheleznyakov, Dmitriy et al. “KeywDB: A System for Keyword-Driven
Ontology-to-RDB Mapping Construction”. In: Proceedings of the ISWC
2016 Posters & Demonstrations Track co-located with 15th International
Semantic Web Conference (ISWC 2016), Kobe, Japan, October 19, 2016.
2016.

183

Index

Qc, 71

Sa, 87

Sa, 73

Se, 73

S, 79

Sy, 73

Sy, 78

Wa, 119
Wy, 121
Wi, 122
Wi, 121
W, 119
wd, 122
X,, 71
ansy, 100
ansp, 105
ansg, 108
anspry, 100
ansg, 101
bf, 147

Ce, 143
Ces, 143
ans, 147, 148
ansp, 150, 151
ansg, 151, 152
ansp, 149
Cet, 143
X, 65

De, 69

te, 65

Ve, 65

X, 100, 107
H,., 145

w, 100
precq, 74
prec;,, 77
precq, 77
precy, 77
prune, 87

setRoot, 65
J, 69

actions, 63

ad-hoc query, 23

adaptivity, 26

advanced value functions, 78
Amazon, 27

ansopt, 105

aspects of data access systems, 21

basic counts, 142

basic graph pattern, 13
branching factor, 146, 147
bucketing, 111, 146, 174

cardinality estimation, 141, 176

casual user, 23

children, 50

class, 50

class count, 142

component set, 51

configuration generation, 139

configuration generation problem,
122,123

configuration query, 84

configuration set, 117

configuration-based value function,
87

contributions, 3

correct index, 100

cost, 110, 118

cost estimation, 139

coverage, 84

data access system, 21
data browser, 22

data edge, 47

data graph, 53

data property extension, 65

185

Index

data quality, 25 extension index, 99

data retrieval, 25 extension pair, 69

data values, 50 extension property, 67
data variable, 50 extension specification, 67
data velocity, 25 extension type, 67

data volume, 25 extension variable, 65
database expert, 22

dataset, 53 facet, 27

datatypes, 50 faceted search, 27
dead-end detection, 21, 37 filter, 15, 148

Dead-end extension, 1 filter-ignorant renaming, 84
delete, 64 focus, 64
direction-ignorant path, 49 focus class, 65
direction-ignorant walk, 49 focus variable, 33, 64, 65
distribution, 144 function composition, 17
domain expert, 22 function restriction, 17

domain ontology, 13

domain-based value function, 73 Greedy Precision Method, 156

Greedy Query Weight Method, 155
eBay, 27
edge, 46
edge count, 143
edge Counts, 142
edge inverse, 47

Hermit, 13
histogram, 145
homomorphism, 17, 48

independence assumption, 141

edge target distribution, 144 index. 99. 100. 174

edge target distribution function, index,cor;struétion, 101
o145 index cost, 110, 118

efﬁme.ncy, 26, 81 index efficiency, 109

Elastic search, 28 . index table, 110

empty value function, 73 information retrieval, 25, 35

entity, 51 instances, 50

errors, 75

interactivity, 23
inverse, 47
isomorphism, 18, 48, 49

Exareme, 31
existence symbol, 100, 107

existential answers, 108 IT expert, 22

existential object variables, 107 '

exploration system, 22 labeled, directed graph, 17
Exploratory Method, 156 lay user, 23
expressiveness, 23 legal extension, 68
expressivity, 23 legal extension pair, 69
extend, 65 legal query, 57

extended query, 71 linked data browser, 29
extension, 63 literal, 10

extension filter set, 67 local value function, 79
extension framework, 83

extension function, 67 Monte Carlo tree search, 157

186

Index

navigation graph, 33, 52
NPD Factpages, 93

null symbol, 100
nullary intersection, 88

OBDA, 31

object edge, 47

object property extension, 65
object variable, 50

ontology, 12

ontology constraints, 176
ontology projection, 33
ontology-based data access, 31
Ontop, 31

optionals, 15

Optique Project, 31
OptiqueVQS, 31

OWL, 9, 12

parent, 50

Pareto frontier, 114

Pareto optimality, 113

path, 49

Pellet, 13

PepeSearch, 30

portability, 26

precision, 74, 76

precision estimation, 139, 140
prefix, 10, 14

PriceSpy, 27

probabilistic setting, 35
productive extension, 70
productive query, 38, 60
productive value function, 73
productive values, 71
projected answers, 60
property, 50

Protégé, 13

pruning, 87

QA system, 36

query, 54

query answers, 59

query construction session, 43
query coverage, 84

query expressiveness, 23

query expressivity, 175

query extension, 63

query log, 77

query pruning, 87

query renaming, 59

query repetitiveness, 23
question answering system, 36

Random Method, 156
range-based value function, 78
RDF, 9, 10

RDF graph, 11

RDF Surveyor, 29
RDF triple, 10
RDF-based systems, 28
recall, 74

refocus, 64
repetitiveness, 23
research papers, 3
resource, 10

resource graph, 44
resource tree, 49, 50
Rhizomer, 34

root class, 65

root variable, 65
rooted query, 56

rooted resource tree, 50

search engine, 35

search methods, 176
search space, 123
semantic technologies, 9
semantic web stack, 9
SemFacet, 34

session, 43

set root, 65

simple query, 58

simple value functions, 73
SOLR, 28

SPARQL, 9, 13
star-shaped query, 28
subclasses, 174
subfunction, 104
subgraph, 48

subquery, 58

subquery answers, 101

187

Index

successor, 119, 153

Turtle, 11

type, 50

type I error, 75
type II error, 75
typing function, 53

uniformity assumption, 141
union, 16

universe, 44

URI, 10

usability, 23

user actions, 63

user intention, 22

user studies, 176

value function, 73

variable, 51
variable-preserving pruning, 87
visual query system, 43
vocabulary, 12

W3C, 9

walk, 49

Wikidata, 127, 128

Wikidata dataset, 130

Wikidata navigation graph, 129
Wikidata query log, 132

World Wide Web Consortium, 9

Zipfian distribution, 141

188

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Research Papers
	Thesis Structure

	Preliminaries
	Semantic Technologies
	RDF Data Model
	OWL
	SPARQL

	Mathematical Definitions
	Functions
	Labeled, Directed Graphs

	Dead-End Detection
	Data Access Systems
	Aspects of Data Access Systems

	Existing Systems
	Faceted Search Systems
	RDF-Based Systems
	Information Retrieval Systems

	Dead-End Detection

	Ontology-Based Visual Query Systems
	Resource Graphs
	Main Structures
	The Navigation Graph
	The Dataset
	Queries

	Query Answers

	Query Extensions
	User Actions
	Legal Extensions
	Productive Extensions
	Value Functions
	Simple Value Functions
	Precision and Recall
	Advanced Value Functions
	Comparison of Value Functions

	The Index-Based Extension Framework
	The Configuration-based Value Function: SaZ
	Configuration Queries
	The Configuration-based Value Function: SaZ
	Experiment 1: Precision of SaZ

	The Extension Index
	Index Construction
	Index Efficiency
	Index Cost
	Bucketing

	Optimal Configuration Queries
	Experiment 2: Pareto Optimal Configuration Queries

	Configuration Sets
	Special Configuration Sets
	The Configuration Generation Problem

	The Wikidata Benchmark
	WD Navigation Graph
	WD Dataset
	WD Query Log
	Query Transformation Process
	Transformed Queries

	Configuration Generation
	Cost and Precision Estimation
	Basic Counts
	Edge Target Distributions
	Cardinality Estimation: `39`42`"613A``45`47`"603Aans
	Cardinality Estimation: `39`42`"613A``45`47`"603AansP
	Cardinality Estimation: `39`42`"613A``45`47`"603AansO
	Cardinality Estimation: `39`42`"613A``45`47`"603AansE

	Search Methods
	Evaluation
	Evaluation based on LB
	Evaluation based on LA

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Index

