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Remember to look up at the stars,

and not down at your feet.

Try to make sense of what you see,

and wonder about what makes the universe exist.

Be curious.

And however difficult life may seem,

there is always something you can do,

and succeed at.

It matters that you don’t just give up.

Stephen Hawking
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SUMMARY

Investigating the relationship between genotype and phenotype is a topic of
major interest in evolutionary biology. The mapping from genotype to phenotype
shape the space that is explored through evolutionary processes when an organism
evolves. Theoretical rules that specify the mapping are commonly known as the
genotype-phenotype map.

This thesis introduces and expands on two different mathematical models of
the genotype-phenotype map to study the paradoxical relationship between evolv-
ability and robustness. Evolvability is the ability to respond to selection and pro-
duce heritable and selectable phenotypic variation. On the other hand, robustness
is the ability to persist against perturbations. Based on that definition, a system
cannot be evolvable and robust at the same time. However, evolvability and ro-
bustness are both important for the evolution of complex traits, which generates
a paradox in evolutionary theory. How can organisms be evolvable, while main-
taining robustness against perturbations?

Paper I resolves the paradox between evolvability and robustness using a net-
work approach. Here, I use a Boolean genotype-phenotype map that defines geno-
types and phenotypes as binary states comparable to an on-off switch. I demon-
strate that the relationship between evolvability and robustness is dependent on the
topology and structure of the map. I found a large amount of genotype-phenotype
maps that gave a positive correlation between evolvability and robustness, but
I also found maps with negative correlations. Negative correlations were more
common in maps with higher degree of pleiotropy. In Papers II and III, I use a
reaction-diffusion model as a mapping function for the genotype-phenotype map.
The reaction-diffusion model is motivated by the development of butterfly eye-
spots in Bicyclus anynana. In Paper II, I illustrate that interactions between param-
eters in the model lead to sudden jumps in evolution, epistasis, and the emergence
of novel structures. In Paper III, I demonstrate that evolvability and robustness
are indeed negatively correlated on that particular genotype-phenotype map of the
used reaction-diffusion model.
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Finally in Paper IV, I introduce a statistical tool to analyze two-dimensional
embryonic images to study interindividual differences in shape and tissue densi-
ties between different developmental stages of rainbow trout. This work resulted
in a new method to quantify developmental variation as color and shape varia-
tions in images. The method allows to study the genotype-phenotype map exper-
imentally by combining geometric morphometrics and image analysis. Such an
approach allows us to quantify morphological change during development, study
developmental variation, and the evolution of novelties.
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1 INTRODUCTION

The relationship between genotype and phenotype is a major topic of interest
in evolutionary biology (Alberch, 1991; Gerhart and Kirschner, 1997; Maynard
Smith, 1970; Oster and Alberch, 1982; Raff, 1996; A. Wagner, 2005; G. P. Wagner
and Altenberg, 1996). The Modern Synthesis (Dobzhansky, 1937; Huxley, 1932;
Mayr, 1982) proposed that genes determine the phenotype as a ‘genetic blueprint’
metaphor (Pigliucci, 2010), but the processes that connect them are neglected
and treated as a ‘black-box’ (Hendrikse et al., 2007). However, it is necessary to
understand how genotypes translate into phenotypes to broaden our understanding
of evolution.

1.1 What is the Genotype-Phenotype Map?

The relationship between genotypes – an organism’s genetic information – and
phenotypes – an organism’s ‘observable’ structure – can be defined by a set of
theoretical rules that describe the process of the mapping between genotype space
and phenotype space. This set of rules is commonly named genotype-phenotype
map (Alberch, 1991; Hendrikse et al., 2007; Lewontin, 1970; Maynard Smith,
1970; Pigliucci, 2010). The genotype-phenotype map is a metaphor to describe
the process that spans the space that is explored through evolution when an or-
ganism adapts to its environment (Wright, 1932, 1967). Genotypic information
is passed onto the next generation as heritable information in accordance with
Mendelian laws. The selection itself does not act on the level of the genotype,
instead, it acts on the phenotype – the product that is defined by the genotype of
an organism. The process in-between these two levels of the genotype-phenotype
map is commonly argued to be development (fig. 1). However, development was
long treated as a ‘black-box’ and not seen as an important factor to understand
evolutionary processes (Arthur, 1997, 2000; Hall, 1999; Hall, 2003; Pigliucci,
2010). Genes do not directly generate phenotypes. Instead, they regulate gene
expression relevant for a phenotypic structure to emerge, change enzyme activity
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and structural proteins, etc. Hence, the mapping itself is a combination of genetic
and developmental interactions (Alberch, 1991) defined by a genetic architecture
that in turn determines the structure of the genotype-phenotype map.

Phenotype 
space

Genotype 
space

development

fitness

in
heritan

ce
selectio

n
 

Figure 1: Illustration of the genotype-phenotype map. The filled circles repre-
sent different genotypes, the open circles represent different phenotypes and the
lines in between denote which genotype realizes which phenotype. The colors
correspond to a set of genotypes that realize one and the same phenotype (same
color). The genotype-phenotype map is a set of functions that explains the rela-
tionship between genotype and phenotype space. Often this function is interpreted
as a developmental process. The heritable information is processed through the
genotype, but selection acts on the phenotype that determines the fitness of an
organism.

Evolutionary biologists tend to assume that development does not play a ma-
jor role (Laland et al., 2014; Mayr, 1961; Pigliucci and Müller, 2010; Wallace,
1986) for evolution and can be easily neglected. They assume that the genotype-
phenotype map can best be approximated through a linear relationship (DiFrisco
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and Jaeger, 2019; Fisher, 1930; Orr, 2000). Hence, phenotypic variation can be
expressed as genotypic variation and evolutionary dynamics can be described by
the latter one. On the contrary, evolutionary developmental biologists argue that
the genotype-phenotype map is highly complex and non-linear (Alberch, 1991;
DiFrisco and Jaeger, 2019; Gjuvsland, Vik, et al., 2013; Minelli and Fusco, 2012;
Newman and Müller, 2000; Rice, 2002, 2004; Riedl, 1978; G. P. Wagner and
Zhang, 2011). Here, the genotype-phenotype map is structured through develop-
mental dynamics based on genetic and environmental interactions.

Phenotype 1 Phenotype 2

Phenotype 3 Phenotype 4

Figure 2: Schematic illustration of a genotype-phenotype map based on discrete
genotypes and phenotypes. The black dots represent genotypes that are muta-
tionally connected (black lines). A set of associated genotypes realise the same
phenotype. Each of the grey open circles represent a phenotype.

Today the concept of the genotype-phenotype map is widely used in evolu-
tionary biology to understand evolutionary processes and their underlying mech-
anisms and dynamics. There are different models used to understand the struc-
ture of the genotype-phenotype map in different systems, e.g. in RNA-secondary
structure, transcription-factor binding sites, and computational models of evolu-
tion (Altenberg, 1994; Cotterell and Sharpe, 2010; Fontana, 2002; Greenbury et
al., 2010; Payne, Moore, et al., 2014; Salazar-Ciudad and Marín-Riera, 2013;
Schuster et al., 1994; A. Wagner, 2008). Many of these models have in common
that the genotype-phenotype map consists of a network-like structure and assume
that discrete genotypes map to discrete phenotypes. The idea behind that goes
back to Maynard Smith’s idea of protein spaces (Maynard Smith, 1970). He ar-
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gued that proteins build a network that can be walked through by single mutational
steps to evolve from one protein into another one. Each of the proteins occupies a
connected area of the genotype space that makes it easier for an evolutionary pro-
cess, driven by random mutations, to find them. The genotypes are mutationally
connected with the underlying assumption that a certain set of genotypes realize
the same protein or phenotype. Hence, that many genotypes map to a few phe-
notypes (fig. 2). The set of genotypes that realize one particular phenotype is
called a neutral network (Fontana, 2002; Fontana et al., 1993; Gavrilets, 2004;
Grüner et al., 1996; S. A. Kauffman, 1993; Schuster et al., 1994) or genotype net-
work (Payne and A. Wagner, 2014; A. Wagner, 2011). Neutral, because mutations
inside a certain neutral network do not change the phenotype.

ANRV292-ES37-06 ARI 17 October 2006 7:13

Genotype
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Figure 1
The genotype-phenotype map and canalization: The mapping from genotype to phenotype is
a mathematical function that assigns a phenotypic change to each change in genotype. In the
flat (canalized) region a given genetic change (!g) has a small effect (!p), whereas in the steep
(decanalized) region the same change has a large effect. Canalization is evolution toward flat
regions, whereas decanalization is evolution toward steep regions.

in the model. This decomposition also generalizes to multiple traits. In this case,
the additive genetic variance is replaced with a variance matrix, the G-matrix, which
contains the additive genetic variances and covariances between the traits.

We can also study genetic architecture on the level of the genotype-phenotype
map, the relationship between individual genotypes and their phenotype (Figure 1).
It is useful here to recall G.P. Wagner’s (1996, Wagner & Altenberg 1996) distinction
between variance and variability. Variability has a technical meaning as propensity or
disposition to vary. This propensity is conceptually independent of allele frequencies,
variances, and other population parameters; it depends on the genotype-phenotype
map and mutation rates. The distinction between variation and variability is related
to the difference between the G-matrix describing segregating variation, and the
mutational M-matrix, describing new (additive) variance and covariance that arise by
mutation each generation (e.g., Pigliucci 2004).

Until recently, relatively little attention was paid to the distinction between popu-
lation parameters and parameters describing the genotype-phenotype map. We may
suspect that these were often confused or thought to measure similar things. The
development of an explicit conceptual distinction between population or statistical
notions of genetic architecture on one hand, and functional/physiological/biological

126 Hansen

A
nn

u.
 R

ev
. E

co
l. 

Ev
ol

. S
ys

t. 
20

06
.3

7:
12

3-
15

7.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f O

slo
 - 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

06
/1

8/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Δ gx Δ gy

Δ Px

Δ Py

Figure 3: The function between the genotype and the phenotype defines the slope
of the genotype-phenotype map. The larger the genetic effect on the phenotype,
the steeper the slope. The absolute difference of the genotypes between the blue
and the red areas is the same, but the effect on the phenotype is different. The
change in genotype gy has a larger effect on the phenotype than the change in
genotype gx, resulting in a steeper slope. (modified from Hansen, 2006).

The view of the genotype-phenotype map as a network that maps discrete char-
acters to each other is somewhat simplistic. Many morphological quantitative
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traits are continuous, like measurements of e.g. height, area, weight, and angles.
Genotype-phenotype maps based on discrete characters cannot capture the prop-
erties that arise through the developmental processes of continuous traits. If we
are interested in observing and quantifying traits that are on a continuous scale,
we need to make different assumptions about the underlying genetic architecture
to get different insights into properties that influence evolvability, robustness, and
epistasis. Continuous morphological traits can be used to study the effect of a
genetic change on a phenotype. The effect size of the genetic change defines the
steepness of the slope of the map (fig. 3). Robusntess of a phenotype is deter-
mined through the slope that differs throughout the map. The slope is flatter in
areas with more robust and canalized phenotypes, because the effect of a genetic
change is smaller (Hansen, 2006).

The structure of the genotype-phenotype map is defined by its genetic archi-
tecture. However, we also need to take into account the impact of developmental
dynamics on the relationship between genetic and phenotypic variation. Com-
paring genotype-phenotype maps based on phenotypes on different measurement
scales and increasingly realistic assumptions about selection and adaptation will
help us to understand how organisms are evolving and adapting to a constantly
changing environment.

1.2 Waddington’s Epigenetic Landscape: a Metaphor for us-
ing the Genotype-Phenotype Map

The illustration of the epigenetic landscape (Waddington, 1959; Wadding-
ton, 1957) can be a piece of the puzzle to understand the processes that connect
the genotype and the phenotype and their underlying genetic architecture. The
metaphor is useful to provide insights into biological processes that shape the sur-
face of the genotype-phenotype map and to make inferences about properties like
evolvability and robustness (Alberch, 1991; Jaeger and Monk, 2014).

The epigenetic landscape was Waddington’s way to represent his concept of
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118   TO WA R D S  A  T H E O RY  O F  D E V E L O P M E N T

gene products, and what we today would call gene 
expression profiles, in their turn dependent on 
other molecules, were thought of as the proximal 
cause of developmental trajectories. The depend-
ence of gene product concentrations on ‘the dos-
age of the genes’ (allele dosage) represented a key 
passage in his attempt to relate genes and develop-
ment. By giving a pioneering image of development 
regulated by chemical interactions involving gene 
products, Waddington grasped the intuition of gene 
regulatory networks with a view strikingly similar 
to that in modern systems biology (Fagan, 2012).

Waddington’s landscape was described in more de-
tail in The Strategy of the Genes (1957), where its most 
famous graphical instances are found (Figure 7.4). In 
the image, which can be considered the ‘icon’ of the 
developmental process of differentiation (Figure 7.4a), 
the graphic represents a tilted moulded surface, down 
which a marble is going to roll. The rolling marble’s 
path corresponds to the development of some part of 
an organism from an early undifferentiated state to a 
mature differentiated state. The landscape topogra-
phy presents a system of diverging valleys that be-
come shallower and coalesce towards the top, while 
becoming deeper and fanning out towards the bottom 
of the slope. The bottom edge sees a series of depres-
sions representing alternative differentiated states of 
the system. The particular shape chosen for the slope 
also conveys other ideas about development. The 

Waddington’s landscape is clearly a reduction to 
three dimensions of this first intuition, through the 
transformation of a branching-track diagram into a 
system of bifurcating valleys. This transformation al-
lowed Waddington to animate the track graph with 
notions like equilibrium, disequilibrium, and distur-
bance. The familiar behaviour of water streaming by 
gravitation provided Waddington with the means 
of conjugating several ideas, namely that embryo’s 
parts (i) are in dynamic disequilibrium (like water 
running downstream) with a progressive loss of po-
tential, (ii) follow a developmental track which, as a 
whole, is more or less stable (‘the normal develop-
mental track is one towards which a developing sys-
tem tends to return after disturbance’ (Waddington, 
1940: 93)), and (iii) generally decrease their sensitiv-
ity to disturbances, from periods of high sensitivity 
where regulation is possible (‘a valley with gently 
sloping sides’) to periods of strong canalization (‘the 
valley as having vertical sides’). These concepts, 
with different degree of importance, survived in 
later developmental biology studies (Gilbert, 2000).

Looking for the ‘evocator’, i.e. the key causal fac-
tor within the organizer, Waddington argued for 
its chemical nature. He further argued for a chemi-
cal explanation of development in general, where 
concentrations of different chemicals are causally 
relevant to developmental pathways and decisions. 
In Waddington’s view, chemical compounds were 

Figure 7.4 Waddington’s (1957) depiction of his ‘epigenetic landscape’ (reprinted with permission). (a) The marble represents a biological 
system (e.g. a cell) at the verge of taking a developmental path toward one of a set of alterative more differentiated states represented by the 
three ending depressions at the base of the slope (Waddington, 1957: 29). (b) A vision from behind an epigenetic landscape. The shape of the 
slope is determined by tension of several interconnected guy-ropes (interacting gene products) that are attached to pegs stuck in the ground 
(genes) (Waddington, 1957: 36).

9780199671434-Minelli.indb   118 12/04/14   12:13 PM

Figure 4: C. H. Waddingtons illustration of the epigenetic landscape. The cell
fate is represented by a ball that rolls down a landscape of ridges and valleys.
Depending on the way the ball goes the cell ends up in different states. (originally
in Waddington, 1957)

embryonic development (fig. 4). The idea behind is the illustration of the way
a cell takes to differentiate. The landscape is marked by ridges and valleys that
represent the possible paths a cell can take. The cell itself is illustrated as a ball
that is rolling down the landscape. The valleys are the developmental pathways or
‘chreods’, like Waddington called them, that lead the ball (or cell) to its final state
of tissue. The surface of the landscape is shaped by the interaction of genes and
their regulation that structure the valleys and ridges. The process of regulation
through genes represents the canalization of the developmental process. Some
mutations or environmental perturbations would be strong enough to push the ball
over a ridge into another valley (Gilbert, 2000).

Waddington suggested that canalization evolved by natural selection and would
be enhanced through evolution towards an optimum. Populations under stabilizing
selection around an optimum tend to end up in an area of the genotype-phenotype
map that is most robust against perturbations. There still would be plenty of un-
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derlying genetic variation, but stabilizing selection would reduce the effect of the
genetic variation onto the phenotype and stabilize the phenotypic outcome by re-
ducing developmental noise (Ancel and Fontana, 2000; Gavrilets and Hastings,
1994; Rice, 1998; Siegal and Bergman, 2002; A. Wagner, 1996; G. P. Wagner,
Booth, et al., 1997).

We need to expand on the currently used models (Altenberg, 1994; Cotterell
and Sharpe, 2010; Fontana, 2002; Greenbury et al., 2010; Omholt, 2013; Payne,
Moore, et al., 2014; Salazar-Ciudad and Marín-Riera, 2013; Schuster et al., 1994;
A. Wagner, 2008) by defining the genetic architecture as developmental pathways.
Then we will be able to explore genotype-phenotype maps based on developmen-
tal models and assess their impact on evolutionary processes.

1.3 Epistasis, Pleiotropy and the Landscape of the Genotype-
Phenotype Map

Most quantitative morphological traits are affected by many genes (Barton and
Turelli, 2004; Boyle et al., 2017; Hermisson et al., 2003; Phillips, 1998, 2008).
Their combined genetic effect determines the topology of the genotype-phenotype
map and with that influences evolvability and robustness measures (Carter et al.,
2005).

Bateson et al. (1909) were the first to introduce the term epistasis. They used
the term epistasis to explain that the effect of an allele was covered by the effect
of another allele. The principle was later picked up again by Ronald A. Fisher
(1918), who first used the term ‘epistacy’. He argued that contributions of allelic
effects on a phenotype are additive and that epistasis is the deviation from that
additive effect.

Theoretical models of the genotype-phenotype map demonstrate that epistasis
is a crucial factor in e.g. the evolution of sex and recombination (Barton, 1995;
Kimura, 1956; Maynard Smith, 1978), in Muller’s ratchet (Lynch et al., 1995),
in models of speciation (Gavrilets, 2004; Templeton, 1979; Templeton, 1980) and
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the evolution of canalization and robustness (Hansen, Álvarez-Castro, et al., 2006;
Hermisson et al., 2003; Le Rouzic et al., 2013; A. Wagner, 2005). However,
quantitative geneticists fail to show empirical evidence of epistasis (Barton and
Turelli, 2004; Cheverud and Routman, 1996; Goodnight, 1988; Hansen, 2013).

The debate about the evolutionary importance of epistasis originated in the
discussions between Ronald A. Fisher and Sewall Wright (Fisher, 1918; Wright,
1931). Fisher argued that the effect of epistasis is irrelevant to evolution. In large
populations, the epistatic effect would average out over the population and can be
treated as statistical noise. On the contrary, epistasis is known to play a major role
in shaping "Wrightian" adaptive landscapes by introducing multiple fitness peaks
that complicate evolutionary dynamics (Cheverud and Routman, 1995; Hansen,
2013; S. Kauffman and Levin, 1987; Wright, 1932; Wright, 1980). The multiple
peaks are generated through intermediate effects between interacting genes that
have larger fitness than their independent effects. In a multipeak landscape a pop-
ulation tends to evolve to the closest fitness peak that would necessarily not be
the one with the highest fitness. To solve the problem of a population crossing
a fitness valley to a higher peak, Wright introduced the shifting-balance theory
that consists of a combination of genetic drift, natural selection, and migration
(Wright, 1932).

Quantitative geneticists base their assumptions on the infinitesimal model and
argue that epistasis has only weak effects on natural and artificial selection of
quantitative traits. The model assumes that most quantitative traits are built upon
an infinitely large number of loci where each locus has an infinitely small effect
on the phenotype. Compared to genetic drift selection on each of the loci is weak
enough to not affect response to selection, which is also true for interaction ef-
fects (Barton, 2017; Barton and Turelli, 2004; Cheverud and Routman, 1995).
The argument is based on Ronald A. Fisher’s (1918) statistical model of epistasis.
Such models are based on statistical properties as population averages and regres-
sion coefficients. Epistasis is approximated as interaction terms in regressions
on allelic effects in a population and therefore, epistasis is a population property
(Cockerham, 1954; Kempthorne, 1954).
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Cheverud and Routman (1995) introduced a physiological model of epistasis
that measured the effect of a genetic change regardless of the population they are
measured in. Hansen and G.P. Wagner (2001) extended the physiological model
and called it the functional model. Here, a genetic effect is dependent on its
genetic background and relative to a reference genotype. To assess the evolution-
ary importance of epistasis they introduced a model of a multilinear genotype-
phenotype map (multilinear model).

The multilinear model describes the phenotype z as a multilinear function of
genotypic reference effects g = {1y,2 y, ..ny}, where the reference iy is defined as
a phenotypic effect of a genetic change in locus i. For a one trait one locus case
this gives

z = zr +
1y, (1)

where z is the resulting phenotype, zr the reference phenotype and 1y the
genetic effect of a change in locus 1. In the case of one trait two loci, we need to
add an interaction term – the epistasis coefficient ε –

z = zr +
1y + 2y + 12ε1y2y (2)

or as general formula for n loci

z = zr +
∑
i

iy +
∑
i

∑
j>i

ijεiyjy. (3)

The epistasis coefficient is used to quantify the strength and directionality of
epistasis between the corresponding loci. It is defined in inverse phenotypic units
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and difficult to interpret and compare between different traits. Therefore, Hansen
and Wagner (2001) suggest to use the unitless epistatic factor that describes how
much a genetic change in locus 1 is affected by a genetic change in locus 2 and
vice versa. The epistatic factor is formulated as

f1 = 1 + 12ε2y (4)

f2 = 1 + 12ε1y. (5)

In case f = 1 there is no epistasis, f < 1 negative epistasis, f > 1 positive
epistasis and f < 0 sign epistasis. Positive epistasis increases the genetic effect
compared to the additive effect in the presence of another genetic change and
negative epistasis decreases the genetic effect. Sign epistasis changes the sign of
the effect, e.g. a deleterious mutation can increase the beneficial effect of another
mutation.

However, we need to consider a third model of epistasis - called mechanistic
or mechanical epistasis (DiFrisco and Jaeger, 2019; Hansen, 2008; G. Wagner
et al., 2000). Here the genotype-phenotype map is defined through models of
developmental or physiological systems, gene-regulatory networks or metabolic
control systems (Bagheri-Chaichian et al., 2003; Gjuvsland, Hayes, et al., 2007;
Jernvall, 2000; Salazar-Ciudad and Jernvall, 2004; A. Wagner, 1996).

The development of quantitative traits requires complex underlying genetic ar-
chitectures consisting of interacting genes that build complex regulatory networks
(Mackay, 2014). Thus, complex quantitative traits can only develop as a result
of many genes interacting with each other and not based on a single gene. The
complex underlying genetic architecture will generate large amounts of epistasis.
We need to understand the patterns of epistasis that are generated through de-
velopmental systems of complex quantitative traits to enhance our knowledge on
epistasis affecting evolutionary dynamics.

The landscape of the genotype-phenotype map is not only shaped through
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epistatic interactions of genes, but also by pleiotropy and the fact that one gene
can affect many traits. Ronald A. Fisher (1930) explained the effect of pleiotropy
on evolvability in his geometric model with a metaphor. He interpreted mutations
as the tuning of a microscope, whereas large changes have only a small probabil-
ity to improve the image. In a phenotype with many traits mutations with smaller
effect sizes have a higher probability to bring the organism towards his fitness
optimum. Fisher concluded that a phenotype that consists of more traits needs
smaller mutations to improve.

1.4 The Paradox: Evolvability and Robustness

Evolvability is the ability to respond to selection and adapt to changing envi-
ronments through mutation. Robustness, on the other hand, is the ability to persist
against perturbations as mutations. Evolvability and robustness are both thought
to be properties that are essential for evolving complex traits (Conrad, 1990; Ger-
hart and Kirschner, 1997; S. A. Kauffman, 1993; A. Wagner, 2005), but they are
contradictory (Lesne, 2008; Visser et al., 2003). Neutral mutations that occur in
highly robust phenotypes can be hidden from selection and induce the accumula-
tion of hidden genetic variation that is not accessible for selection. If the selection
pressure on the phenotype changes – e.g. a changing environment – hidden ge-
netic variation can suddenly be available for selection. This sudden increase in
variation can facilitate evolvability and is the reason for the argument that organ-
isms need to be highly evolvable and robust at the same time to evolve complex
phenotypes (Conrad, 1990; Gerhart and Kirschner, 1997; S. A. Kauffman, 1993;
Masel and Trotter, 2010; A. Wagner, 2005). However, this is a paradox in itself,
because based on the definition of evolvability and robustness a phenotype cannot
be robust and evolvable at the same time.

Andreas Wagner (2008) resolved the paradox of the relationship between evolv-
ability and robustness by arguing that the paradox originated by thinking of evolv-
ability and robustness as properties of the genotype. Here, evolvability and robust-
ness indeed conflict with each other. By his definition a mutation of the genotype
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either changes the phenotype or not. He argued that the paradox can be resolved
by seeing evolvability and robustness as a property of the phenotype and not as a
property of the genotype. Andreas Wagner (2008) argued that most phenotypes
would have large and highly connected underlying neutral networks. Such pheno-
types would consist of many different genotypes so that a mutation in a particular
genotype would often result in the same phenotype. On the other hand, such phe-
notypes are connected with many different neighboring neutral networks – other
phenotypes – and mutations in many cases would indeed change the phenotype.
Hence, such phenotypes would be highly evolvable, and at the same time highly
robust (fig. 5, upper left corner). He could confirm his hypothesis using simula-
tion studies of RNA-secondary structure, where he defined the secondary structure
as phenotype and its nucleotide sequence as genotype. Nucleotide sequences that
realize the same secondary structure define a neutral network.

This argument is based on the structure and topology of the genotype-phenotype
map and is only true for either large neutral networks that are highly connected
and have many neighbors or small neutral networks that are poorly connected (fig.
5). Here, the relationship between evolvability and robustness would be positive.
However, theoretically one could think about structures of the neutral network
that lead to negative relationships between evolvability and robustness. The net-
work could either be poorly connected and have many neighbors (fig. 5 lower-left
corner) or highly connected but not have many neighbors (fig. 5 upper right cor-
ner). In other words, the structure of the genotype-phenotype map influences the
relationship between evolvability and robustness. Thus, the relationship between
evolvability and robustness of phenotypes is not necessarily positive and instead
defined by the structure and topology of the underlying genotype-phenotype map.

The above assumptions and consequences only hold for network-like struc-
tured genotype-phenotype maps that are based on discrete characters. They do
not describe the complexity that exists in most quantitative morphological traits
of continuous character. Small changes in a genotype of a continuous character
can have a huge effect on the phenotype itself and its fitness. These models also
neglect the impact of developmental dynamics on the genotype-phenotype map
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and its relationship between evolvability and robustness.

Figure 5: Evolvability and robustness of a phenotype (circles) depend on the size
of its underlying neutral network (black dots are genotypes) and the number of
its neighboring phenotypes. In each quadrant evolvability and robustness are as-
signed to the phenotype colored in grey, e.g. for the upper left quadrant the phe-
notype marked as a filled grey circle is highly evolvable and highly robust.
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2 THE CONTRIBUTION OF THIS THESIS

Evolvability and robustness are argued to be important to evolve complex or-
ganisms (Conrad, 1990; Gerhart and Kirschner, 1997; S. A. Kauffman, 1993; A.
Wagner, 2005) and are influenced by the topology and structure of the genotype-
phenotype map. Our knowledge about epistasis and pleiotropy is essential to gain
insight into the mechanisms that structure the genotype-phenotype map. To make
general implications about the epistatic and pleiotropic structure, we need to study
different representations of the genotype-phenotype map (Hansen, 2013).

Several studies of the relationship between evolvability and robustness ana-
lyze the structure and topology of genotype-phenotype maps (Altenberg, 1994;
Fontana, 2002; S. Kauffman and Levin, 1987; Payne and A. Wagner, 2014; P. F.
Stadler and B. M. R. Stadler, 2006; A. Wagner, 2008). Many of them are based on
discrete characters in a neutral space and use examples of special cases to make
general implications. Nevertheless, studies of genotype-phenotype maps based on
developmental models remain underrepresented.

The focus of my thesis is to assess the properties of the genotype-phenotype
map that influence the relationship between evolvability and robustness. Com-
pared to the studies mentioned above I will use a general abstract representation
of the map, a map that is based on a developmental model, and morphological
data to solve the following questions:

1. Does robustness facilitate evolvability? Paper I
I will introduce a general abstract model of the genotype-phenotype map to
challenge Andreas Wagner’s (2008) results on evolvability and robustness.

2. Is the relationship between evolvability and robustness the same for a genotype-

phenotype map that is based on a developmental process? Paper II & III
I will present a framework to study a realistic genotype-phenotype map
based on a developmental model to investigate the structure and topology
of the map and examine if robustness does facilitate evolvability.
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3. How does genetic variation translates into phenotypic variation? Paper IV
I will introduce a method to quantify the developmental variation of ex-
perimentally gained morphological data to study a real genotype-phenotype
map.

To approach the above questions I expand the genotype-phenotype map lit-
erature by using two different mathematical models to study the structure of the
genotype-phenotype map that influences properties like evolvability, robustness,
epistasis and pleiotropy and how they are connected. The first model is based
on a Boolean genotype-phenotype map that describes a static network. The sec-
ond model is based on a simple reaction-diffusion model of a dynamic genotype-
phenotype map that mimics development. These two models allow us to explore
the topology of the landscape in two different types of genotype-phenotype maps
that are on different measurement scales. The Boolean genotype-phenotype map
defines genotypes and phenotypes on a discrete scale as binary states, whereas the
map built upon the reaction-diffusion model defines genotypes and phenotypes on
a continuous scale as quantitative morphological traits. Last, I introduce a method
called Geometric Morphometric Image Analysis (GMIA) to quantify the develop-
mental variation of morphological data to study how genetic variation maps onto
phenotypic variation.

22



3 THEORY

The key to understand the topology and structure of the genotype-phenotype
map is to understand the genetic architecture that defines the mapping of the geno-
type space to the phenotype space. The existing challenge consists of developing
a framework to study the different properties of the genotype-phenotype map in
different contexts. It is not possible to design one single framework or model
to study all possible genotype-phenotype maps. We need to distinguish between
network-like maps (Aldana et al., 2007; Draghi et al., 2010; Payne and A. Wag-
ner, 2014; A. Wagner, 2008) and dynamic maps that are defined through biological
processes (Jaeger, Irons, et al., 2012; Milocco and Salazar-Ciudad, 2020; Salazar-
Ciudad and Marín-Riera, 2013; Verd et al., 2014). However, both of these types of
genotype-phenotype maps have in common that the basic approach to define their
underlying genetic architecture consists of the definition of two parameter spaces
– genotype space and phenotype space – and a function that connects both of these
spaces. Therefore, the genotype-phenotype map can be defined as a mathematical
function linking the phenotype and genotype (fig. 6).

3.1 Boolean Genotype-Phenotype Maps

The Boolean genotype-phenotype map is characterized through discrete geno-
types and phenotypes that consist of vectors of Boolean variables – coded as 0
and 1. Such coding can be interpreted as true and false or on and off, e.g. of
gene expression or a trait that is either present or absent. The mapping function
itself is based on a combination of Boolean logic operators like AND, OR or NOT
(fig. 7). Boolean algebra is a convenient way to model abstract forms of genotype-
phenotype maps to make general conclusions about their properties (Aldana et al.,
2007; Ebner et al., 2001; Espinosa-Soto et al., 2004; Frank, 1999; S. A. Kauffman,
1969, 1993).

Boolean genotype-phenotype maps can be used to explore the properties of a
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Phenotype

Genotype

mapmapping function

Figure 6: The genotype-phenotype map is the connection between genotype and
phenotype space through a mapping function.

network-like structured map with discrete characters. In Paper I I used Boolean
maps to explore the relationship between evolvability and robustness in maps with
different degrees of pleiotropic structure. This setup allows for an exhaustive
analysis of genotype-phenotype maps with different topologies.

The Boolean genotype-phenotype map is also a special case of the multilinear
epistatic model of Hansen and G.P. Wagner (2001), where the logic operator can
be expressed as a multilinear form in Boolean variables. The multilinear form of
the three Boolean operators AND, OR and NOT are defined as follows:

AND z = 1y2y3y...ny (6)

OR z = 1y + 2y + 3y − 1y2y − 1y3y − 2y3y + 1y2y3y (7)

NOT z = 1− y (8)
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Here, z is the phenotype and y is the genotype locus. The AND operation
results in in a phenotype z that is 1, if all the genotype loci y are true or 1. By
using the OR operator at least one of the genotype loci y need to be 1 to result in a
phenotype z that is 1. The NOT operator changes the phenotype z from either 1 to 0
or from 0 to 1. The advantage of expressing the Boolean genotype-phenotype map
in the multilinear framework is the possibility to explore properties like epistasis.

Phenotype

Genotype

map

0 1 1 0 0 1

0 1 1

Boolean logic operators

Figure 7: The Boolean genotype-phenotype map is defined through a genotype
and a phenotype that consist of Boolean variables. The mapping function are
Boolean logic operators – like AND, OR and NOT.

3.2 Reaction-Diffusion Models as Genotype-Phenotype Map

Alan Turing (1952) proposed a theory of morphogenesis to study how natu-
ral patterns are generated out of a homogenous state. Today the theory of Turing
patterns is widely used to understand embryonic development (Jaeger, Surkova,
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et al., 2004; Kondo and Miura, 2010; Kondo and Asai, 1995; Lange et al., 2018;
Murray, 2002; Raspopovic et al., 2014; Salazar-Ciudad and Jernvall, 2004). Tur-
ing’s idea is based on reaction-diffusion models, where two morphogenes diffuse
over an area and react with each other. Here, one reagent acts as an activator and
the other one as an inhibitor. Both initially have a homogenous concentration that
over time changes to a periodic pattern like stripes, spots, and spirals (Meinhardt,
1983; Murray, 2002).

Figure 8: Two mechanisms that generate Turing patterns. The activator-inhibitor
model (A = activator, I = inhibitor) on the left and the substrate-depletion model
(A = activator, S = substrate) on the right (originally in Marcon & Sharpe, 2012).

Marcon and Sharpe (2012) distinguish two different types of interaction net-
works that can generate such periodic patterns (fig. 8) – the activator-inhibitor
model and the substrate-depletion model. The first is characterized through an ac-
tivator that activates itself and its inhibitor to form a periodic pattern where both
morphogens are in phase. In contrast, the second has an activator that consumes
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the substrate to activate itself and forms a periodic pattern where both morpho-
genes are out of phase with each other. Both types of models can be described
using a system of nonlinear partial differential equations. For two morphogenes
in two-dimensions the general form is:

∂A

∂t
=f(A, I)+DA

(
∂2A

∂x2
+
∂2A

∂y2

)
(9)

∂I

∂t
= g(A, I)+DI

(
∂2I

∂x2
+
∂2I

∂y2

)
(10)

In eq. 9 and eq. 10, A and I are the two morphogenes. The first part of the
equations ∂A

∂t
and ∂I

∂t
describe the change of the concentration of the morphogenes

over time. The second part f(A, I) and g(A, I) are functions of the morphogenes
that define the reaction between both of them. The last part DA(

∂2A
∂x2

+ ∂2A
∂y2

) and
DI(

∂2I
∂x2

+ ∂2I
∂y2

) describes the diffusion of the morphogenes over an area, whereDA

and DI are the diffusion constants that give the speed of the diffusion for A and
I , respectively. The width and length of the area are defined by x and y.

In Paper II and Paper III I use a modified version of a substrate-depletion
model (Connahs et al., 2019) that is motivated by the development of the center
of an eyespot in the butterfly Bicyclus anynana (fig. 9). The model is defined as
the following:

∂U

∂t
= KU2V − kUU+DU

(
∂2U

∂x2
+
∂2U

∂y2

)
+σ

∂ε

∂t
(11)

∂V

∂t
= α−KU2V − kV V+DV

(
∂2V

∂x2
+
∂2V

∂y2

)
+σ

∂ε

∂t
(12)

In the above equation, U is the activator, and V is the substrate that gets con-
sumed by U . In eq. 11 and eq. 12 the terms KU2V and α − KU2V are the
reaction terms and DU(

∂2U
∂x2

+ ∂2U
∂y2

) and DV (
∂2V
∂x2

+ ∂2V
∂y2

) are the diffusion terms.
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Figure 9: Example development of the butterfly eyespot generated through the
reaction-diffusion model.

The degradation rates of the morphogenes are denoted by the expressions kUU
and kV V . The last term σ ∂ε

∂t
describes developmental noise as a stochastic change

per time step, where ∂ε is an independent, normally distributed random variable
with mean zero and variance ∂t. The σ denotes the standard deviation of the
stochastic changes in the model.

Reaction-diffusion models can be used to model actual developmental pro-
cesses to map the genotype onto the phenotype and hence they are dynamic (fig.
10). The genotype is defined through the model parameters – in our case α, K,
kU , kV , DU , and DV . The mathematical description of the model maps the pa-
rameters to the phenotype through the modeled process over time. The resulting
phenotype is a quantitative morphological trait: the relative size of the concentric
rings that define the butterfly eyespot in our case.
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)

Figure 10: The genotype-phenotype map that is generated by the reaction-
diffusion model is defined through a genotype that consists of the parameters of
the model and a phenotype that is an actual quantitative morphological trait – here
a butterfly eyespot in Bicyclus anynana.
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4 THE PAPERS

4.1 Paper I: Evolvability and robustness: A paradox restored

Evolvability and robustness are crucial for the origin and maintenance of com-
plex organisms, but may not be simultaneously achievable as robust traits are also
hard to change. Andreas Wagner has proposed a solution to this paradox by ar-
guing that the many-to-few aspect of genotype-phenotype maps creates neutral
networks of genotypes coding for the same phenotype. Phenotypes with large
networks are genetically robust, but they may also have more neighboring pheno-
types and thus higher evolvability. In this paper, we explore the generality of this
idea by sampling large numbers of random genotype-phenotype maps for Boolean
genotypes and phenotypes. We show that there is indeed a preponderance of pos-
itive correlations between the evolvability and robustness of phenotypes within
a genotype-phenotype map, but also that there are negative correlations between
average evolvability and robustness across maps. We interpret this as predicting
a positive correlation across the phenotypic states of a character, but a negative
correlation across characters. We also argue that evolvability and robustness tend
to be negatively correlated when phenotypes are measured on ordinal or higher
scale types. We conclude that Wagner’s conjecture of a positive relation between
robustness and evolvability is based on strict and somewhat unrealistic biological
assumptions.

4.2 Paper II: Genotype-phenotype maps and developmental dy-
namics: Insights from a simple reaction-diffusion model

The variational properties of development determine the highly complex and
non-linear structure of the genotype-phenotype map. However, models in quan-
titative genetics do not account for the influence of developmental dynamics on
the structure of the genotype-phenotype map. Statistical representations of the
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genotype-phenotype map cannot capture properties like sudden jumps in evolu-
tion, generation of epistasis, and the emergence of novelties. Reaction-diffusion
models are a powerful tool to study developmental processes and their varia-
tion. Here, we are using a reaction-diffusion model as a mechanical represen-
tation of the genotype-phenotype map that describes the development of eyespots
on the wings in Bicyclus anynana. We can demonstrate that even if the geno-
type space is continuous, the phenotype space shows discontinuities, especially
towards the boundaries. We conclude that a mechanistic representation of the
genotype-phenotype map can be used to find sudden jumps in evolution, epistatic
patterns and the emergence of novelties.

4.3 Paper III: Evolvability and robustness of a simple reaction-
diffusion model

Evolvability is the ability to respond to selection through heritable and se-
lectable phenotypic variation, while robustness is the ability of a phenotype to per-
sist against perturbations. Hence, evolvability and robustness may conflict. They
are, however, both important for the evolution of complex phenotypes. Develop-
ment plays an important role in determining how genetic variation translates into
phenotypic variation and thus affecting the relationship between evolvability and
robustness. We use a simple reaction-diffusion process to model the development
of eyespots in the butterfly species Bicyclus anynana to explore the relationship
between evolvability and robustness on a biological realistic genotype-phenotype
map. We investigate the quantitative morphological change of eyespots under se-
lection and show that evolvability and robustness are negatively correlated.
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4.4 Paper IV: Studying developmental variation with geomet-
ric morphometric image analysis (GMIA)

The ways in which embryo development can vary across individuals of a pop-
ulation determine how genetic variation translates into adult phenotypic variation.
The study of developmental variation has been hampered by the lack of quanti-
tative methods for the joint analysis of embryo shape and the spatial distribution
of cellular activity within the developing embryo geometry. By drawing from the
strength of geometric morphometrics and pixel/voxel-based image analysis, we
present a new approach for the biometric analysis of two-dimensional and three-
dimensional embryonic images. Well-differentiated structures are described in
terms of their shape, whereas structures with diffuse boundaries, such as emerg-
ing cell condensations or molecular gradients, are described as spatial patterns of
intensities. We applied this approach to microscopic images of the tail fins of lar-
val and juvenile rainbow trout. Inter-individual variation of shape and cell density
was found highly spatially structured across the tail fin and temporally dynamic
throughout the investigated period.
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5 DISCUSSION

The paradox of the relationship between evolvability and robustness is still a
puzzling question in evolutionary biology. Establishing an understanding of the
nature of the paradox is one of the key solutions to gain insight into the evolution
of complex organisms. Is it necessary to be highly evolvable and highly robust to
evolve complex organisms? How can it be that an organism is highly evolvable
and therefore, easy to change by a mutation and at the same time highly robust,
and not easy to change by a mutation?

5.1 Network-like Genotype-Phenotype Maps

Andreas Wagner (2008) showed in his paper ‘Robustness and evolvability:
a paradox resolved’ that robustness indeed enhances evolvability when thinking
about them as properties of the phenotype. However, he could not find the same
results on the level of the genotype, where evolvability and robustness contradict
each other.

A negative relationship between the so-called genotype evolvability and geno-
type robustness lies already in Andreas Wagner’s (2008) definition of them. Ro-
bust mutations are not changing the phenotype and the rest of possible mutations
change the phenotype. This will always give a negative correlation because the
more robust mutations are possible, the less evolvable mutations are possible and
vice versa. This argument is not as clear for phenotype evolvability and pheno-
type robustness. I made the theoretical argument that the relationship between
evolvability and robustness of phenotypes depends on the topology of the under-
lying genotype-phenotype network. The positive correlation between them only
holds for phenotypes that consist of large and highly connected neutral networks
as found in RNA-secondary structure or TF-binding sites (Aldana et al., 2007;
Draghi et al., 2010; Payne, Moore, et al., 2014; A. Wagner, 2008). Mutations on
such large neutral networks would often stay on the network. Yet, they would also
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Phenotype 
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Genotype-Phenotype Map 
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Figure 11: Evolvability and robustness can be determined by the topology of ei-
ther the phenotype (left) or the map (right). The size of the neutral network (black
dots) and its neighboring phenotypes determine evolvability and robustness of the
phenotype, whereas evolvability and robustness of the map are expressed as their
average overall phenotypes.

often leave the network and hence, change the phenotype, because large networks
tend to have more neighbors (fig. 11 – left panel, upper left corner). Thus, the
relationship between evolvability and robustness is defined through the topology
of the genotype-phenotype map. Theoretically, it is possible to construct large
neutral networks with only a few phenotypic neighbors (fig. 11 – left panel, upper
right corner) or small neutral networks with many neighbors (fig. 11 – left panel,
lower left corner).

Based on the above theoretical considerations I challenge Andreas Wagner’s
(2008) general results on a positive correlation between evolvability and robust-
ness. In Paper I I establish a mathematical model of a Boolean genotype-phenotype
map and show that Andreas Wagner’s (2008) result is an artifact of the structure of
the genotype-phenotype map found in systems of RNA-secondary structures. In-
terestingly, I indeed found a large amount of genotype-phenotype maps that gave
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a positive correlation between phenotype evolvability and phenotype robustness. I
also found maps with negative correlations (up to 10%) between phenotype evolv-
ability and robustness. Negative correlations were more common in genotype-
phenotype maps with complex topologies and larger amounts of pleiotropy.

It is argued (Payne, Moore, et al., 2014; Schuster et al., 1994; A. Wagner,
2012) that genotype-phenotype maps often consist of one large and highly con-
nected neutral network that has many neighbors. These neighbors are mostly
smaller neutral networks that themselves have fewer neighbors. By considering
the average phenotype evolvability and phenotype robustness over a genotype-
phenotype map, we avoid the overrepresentation of one large neutral network.
The average phenotype evolvability and phenotype robustness is a property of
the genotype-phenotype map itself and can be used to directly compare differ-
ent structures and topologies. Here, I found consistently negative relationships
across the used averages (fig. 11, right panel). Therefore, evolvability and ro-
bustness indeed tend to be positively correlated across phenotypic states but are
negatively correlated across characters. This argument holds for network-like
genotype-phenotype maps based on discrete phenotypes.

5.2 Genotype-Phenotype Maps of Development

How genetic variation maps onto phenotypic variation is crucial for the un-
derstanding of the structure of the genotype-phenotype map. Development is the
mechanism that defines how genotypes and phenotypes are connected (Alberch,
1991; Pigliucci and Müller, 2010). Phenotypes are products of their development,
and evolutionary change happens through modifying developmental mechanisms
(Amundson, 2005; Brigandt, 2015). Despite, the obvious importance of develop-
ment for evolutionary theory, the Modern Synthesis assumes that ‘black-boxing’
of developmental processes does not cause any explanatory problems for evolu-
tionary processes (Hendrikse et al., 2007; Mayr, 1961; Pigliucci, 2010; Wallace,
1986). This argument is based on the assumption that the genotype-phenotype
map is linear and therefore, the effect of development on its structure can be ne-
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glected (DiFrisco and Jaeger, 2019). However, we need to understand how devel-
opmental processes shape the genotype-phenotype map to gain insight into their
impact on evolutionary change.

In Paper II and Paper III I introduce and expand a model of the genotype-
phenotype map that is based on a developmental process – the development of
eyespots on the wing of Bicyclus anynana. The developmental process is imple-
mented as reaction-diffusion processes. I used this model to explore and inves-
tigate the structure of the genotype-phenotype map. Followed, by asking how
evolvability and robustness can be measured and how they are related to each
other. The differences of that model to the Boolean genotype-phenotype map is
the use of a biological realistic genotype-phenotype map of continuous traits.

In Paper II I investigate the impact developmental interactions may have on
the topology of the genotype-phenotype map and thereupon, on evolutionary dy-
namics. Polly (2008) argued that three consequences would arise through ne-
glecting developmental interactions. First, that even if the genotype is quasi-
continuous the phenotypic change can be discontinuous and lead to a rugged
genotype-phenotype map and sudden jumps in evolution. Second, developmental
interactions lead to epistasis. Third, developmental interactions produce novelties
– which can be as well defined as the loss or gain of structures (Müller and G. P.
Wagner, 1991). I indeed found evidence for all of them, but mostly at the bound-
ary of the phenotype space. The first consequence was not as clear and mostly
only found in the rings the eyespot consisted of. I defined the rings as relative to
the total size that caused constraints between them. In case if one ring got larger,
one of the other rings had to get smaller. This causes a slightly rugged pattern
of the genotype-phenotype map. I could find epistatic patterns as proposed in the
second consequence as deviations from additivity. This implies that continuous
genotypic changes do not map additively onto the phenotype. I could as well
demonstrate the emergence of novel patterns as the gain and loss of rings.

The results of Paper II indicate that the studied genotype-phenotype map is
complex and non-linear. However, the genotype-phenotype map appears most
non-linear at the boundaries of the investigated phenotype space. These non-
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linearites complicate the prediction of evolution (Milocco and Salazar-Ciudad,
2020).

In Paper III I used the same genotype-phenotype map to explore the relation-
ship between evolvability and robustness. First, I investigated the three rings of
the eyespot and its total size under directional selection. Second, I examined the
eyespot as a whole structure under stabilizing selection. Locally evolvability is
defined as mutational evolvability and should shed light on the influence of the
local structure of the genotype-phenotype map around an eyespot and short-term
evolution. Globally evolvability is defined as realized evolvability and should give
insight into the connection between robustness and long-term evolution.

As hypothesized I found negative correlations between robustness and evolv-
ability throughout all analyses. The result for mutational evolvability and robust-
ness is determined through its definition. Robustness is the average change caused
by a mutation, except for the mutation that caused the largest fitness advantage.
The change that is caused by the mutation that gives the largest fitness advantage
is mutational evolvability. This definition implies a negative correlation between
evolvability and robustness, arguably similar to genotype evolvability and geno-
type robustness defined by A. Wagner (2008). Additionally, robustness and re-
alized evolvability are negatively correlated. This finding confirms the results of
Paper I, where I could show that robustness hinders the evolvability of sequential
adaptations.

The main implications for evolvability and robustness are holding for the par-
ticular model I used. There are limitations to the used simulations. It could be
argued that I used only one particular phenotype and ignored the surrounding
phenotypes, which makes it difficult to compare it with the original results of A.
Wagner (2008). Of course, there is potential for future exploration and to ex-
tend the analysis to the whole morphospace. Capturing the gain and loss of traits
still causes difficulties using modern morphometrics, because morphospaces are
constructed by variables that appear in all phenotypes. This does not capture the
emergence or loss of traits (Polly, 2008).
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5.3 Quantifying Embryological Development

Modern developmental biology has led to a large body of knowledge about
the qualitative effects of developmental genes and their regulatory function in
the formation of tissue and organs. Much less is known about the quantitative
properties of development. Quantitative developmental studies are crucial to a
detailed understanding of mechanisms that lead to a normal versus perturbed de-
velopment. The variational properties of development determine how genetic and
environmental variation translates into phenotypic variation in postnatal and adult
individuals (Hallgrímsson and Lieberman, 2008; Mitteroecker, 2009; Müller and
Newman, 2003; Pigliucci and Müller, 2010; Salazar-Ciudad, 2006; G. P. Wag-
ner and Altenberg, 1996; West-Eberhard, 2003). In turn, the population pool
of phenotypic variation is the substrate for natural selection, and hence, a ma-
jor determinant of organismal evolution (Müller and Newman, 2003). The lack
of quantitative studies of developmental variation has impeded the long-expected
connection of developmental biology with the formal core of evolutionary theory.

Population models in evolutionary theory, genetics, and epidemiology are based
on quantitative representations of phenotypic and genetic variation. Yet variation
in embryological development and growth – the processes translating genetic vari-
ation into phenotypic variation – is still poorly understood. It has been argued on
theoretical grounds that the properties of development assume to play a major role
in shaping phenotypic variation within and across populations (Hallgrímsson and
Lieberman, 2008; Mitteroecker, 2009; Müller, 2007).

In Paper IV I introduce a method – Geometric Morphometric Image Analysis

(GMIA) – to measure the geometry of a developing embryo together with spatial
patterns of tissue formation. The method consists of two steps. For structures
with sharp boundaries and well-differentiated tissue, morphological variation is
quantified as variation in shape, position, size, and orientation of the structure.
Structures with diffuse boundaries are described as spatial patterns of intensities
or directions within the organism. This approach results in two sets of data, rep-
resenting well-differentiated anatomical structures and imaged tissue properties.
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A

B

Figure 12: Visualization of shape change and change of tissue density (A) between
21 days post fertilization and 40 days post fertilization and (B) between 40 days
post fertilization and 56 days post fertilization. The shape of the fin changes from
a round to a more triangular shape in both steps. The change in tissue density
shows an increase (blue) in the fin between 21 days post fertilization and 40 days
post fertilization, a decrease (red) of tissue density in musculature and notochord,
and an increase of tissue density in the fin rays between 40 days post fertilization
and 56 days post fertilization.
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Statistics can be calculated separately for shape and texture, or both together.

I applied the method onto two-dimensional microscopic images of a sample of
rainbow trout (Oncorhynchus mykiss) tail fins and could illustrate average changes
in shape and cell density over a developmental period of 35 days. By combining
modern morphometrics and image analysis, I quantified variation in the shape
of developmentally homologous structures (e.g., fin outline, notochord) and used
this information to register microscopic images. The RGB values (the values of
red, green, and blue color channels of a pixel) of the registered images were an-
alyzed to observe spatial changes in tissue densities and the emergence of novel
structures, such as the fin rays. Both shape and tissue densities can be averaged
and analyzed by multivariate statistical methods. The visualization of statistical
results (fig. 12) can include shape differences, tissue densities or both at the same
time.

The method allows us to quantify how genetic variation translates into pheno-
typic variation. It can be applied to study the properties of the genotype-phenotype
map that are caused by developmental mechanisms. However, there are limita-
tions to the method as the manual setting of landmarks (shape variables) to define
the boundaries of the studied structure. Hence, it is not possible yet to use the
method in large-scale evolutionary simulations.

5.4 Concluding Remarks

"Nothing in biology makes sense except in the light of evolution."

– Theodosius Dobzhansky (1973)

Dobzhansky (1973) argued that the observed diversity on earth only makes
sense if life on earth has a shared history. To understand life’s history and how
diversity is generated it is crucial to expand our knowledge on the mechanisms be-
hind evolutionary processes. The debate around how it is possible to evolve com-
plex organisms is a major driving force for research in evolutionary biology. On
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the ground of that debate stands the question about the relationship between geno-
types and phenotypes. The Modern Synthesis proposes that genes determine phe-
notypes, but neglects the importance of developmental processes. Nevertheless, it
has been shown (Hallgrímsson and Lieberman, 2008; Mitteroecker, 2009; Müller
and Newman, 2003; Pigliucci and Müller, 2010; Salazar-Ciudad, 2006; G. P. Wag-
ner and Altenberg, 1996; West-Eberhard, 2003) that development plays a major
role in shaping the genotype-phenotype map. Large amounts of genetic variation
are arguably concentrated by a limited number of developmental pathways into a
lower-dimensional space of phenotypic variation (Hallgrímsson and Lieberman,
2008; Martinez-Abadias et al., 2012). C.H. Waddington (1942) showed that de-
velopmental canalization or robustness is an important factor when it comes to
buffering genetic variation and the accumulation of cryptic variation. Hence, the
actual underlying developmental mechanisms are still poorly understood.

The genotype-phenotype map is the metaphorical construct that refers to the
underlying processes that explain the translation of genetic into phenotypic vari-
ation. However, we still lack an understanding of the processes that shape and
structure the genotype-phenotype map. This thesis aims to shed light on proper-
ties that shape the genotype-phenotype map like epistasis and pleiotropy and with
that influence the relationship between evolvability and robustness. But, it also
emphasizes the need to understand the impact of developmental mechanisms onto
the genotype-phenotype map. We need to gain knowledge about the mechanistic
properties that build the genotype-phenotype map (G. Wagner et al., 2000).

The arguments made here are progressing from being based on a simple static
network-like genotype-phenotype map (Paper I) to the introduction of a frame-
work to build a biological realistic genotype-phenotype map based on an actual
model of development (Paper II, Paper III). I show that the relationship be-
tween evolvability and robustness is dependent on the structure of the genotype-
phenotype map. The structure of the genotype-phenotype map is not general and
seems to vary over different systems dependent on its epistatic and pleiotropic
structure.

A full understanding of the influence of the structure of the genotype-phenotype
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map on evolutionary dynamics can only be achieved considering all different ap-
proaches that are proposed so far. There is a need to combine statistical, func-
tional and mechanical representations of the genotype-phenotype map in a com-
mon framework.

Finally, I completed my argumentation by introducing a powerful biometric
tool for studying the variation of a developing organism (Paper IV). Geomet-

ric Morphometric Image Analysis is a statistical method to study developmen-
tal variation that is central to gain insight into the mechanisms that structure the
genotype-phenotype map.

The contribution of this thesis provides a piece of the puzzle in connecting evo-
lutionary and developmental biology. Combining evolutionary and developmental
models can promote the integration of developmental biology and Evolutionary
Developmental Biology (EvoDevo) together with population and quantitative ge-
netics. It may thus provide an additional contribution to an extended evolutionary
synthesis (Pigliucci and Müller, 2010).
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6 FUTURE PERSPECTIVE

All of the work done here expands our knowledge about the structure of the
genotype-phenotype map. The structure influences the ability to evolve novel
phenotypes and adapt to a changing environment. The next step to achieve full
integration of population genetics with EvoDevo is to understand how evolution
changes the distribution of phenotypes in a population. We need to understand
how heritable variation is passed onto the next generation (Barton and Turelli,
1989) – a process that is influenced by the underlying genetic architecture and
therefore, the structure of the genotype-phenotype map.

Population Genotype-Phenotype Map

Phenotype

Genotype

map

stabilizing selection

Evolvability Robustness

directional 
selection

Evolvability as response to 
selection on the inner ring of 
the butterfly eyespot. 

mutation

Robustness as deviation in size of 
the inner ring of the butterfly eyespot
between wild-type and its mutants.   
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IV XI

Robustness as deviation between 
wild-type and mutant phenotype

Evolvability as response to 
selection

Population Genotype-Phenotype Map

Phenotype

Genotype

map

stabilizing selection

Evolvability Robustness

directional 
selection

Evolvability as response to 
selection on the inner ring of 
the butterfly eyespot. 

mutation

Robustness as deviation in size of 
the inner ring of the butterfly eyespot
between wild-type and its mutants.   

Figure 13: Illustration of the individual-based simulations to calculate evolvability
and robustness in a population under selection.
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Therefore, we need to expand the model presented in Paper II and Paper
III. The reaction-diffusion model can be used in simulations of populations. The
parameters again are used as genotype and the resulting pattern as phenotype. By
improving the introduced GMIA method to work landmark-free it is possible to
use it to analyze the simulated patterns in a population. The advantage would be
the potential to quantify novelties and emerging structures.

The relationship between evolvability and robustness is analysed using pop-
ulations that are in mutation-selection balance at first. Evolvability is defined as
response to directional selection and measured as the average change of the trait
– e.g. size – per generation in the population. Robustness is calculated as mu-
tational effect and measured as average change between a mutant population and
the wild-type population (fig. 13).

Here, we would explore the properties of a statistical representation of the
genotype-phenotype map. Such an approach would allow us to study the connec-
tion between developmental variation, and genetic and phenotypic variation. In
the case of adding developmental noise and select for a reduction of it, it would
be possible to explore the relationship between developmental robustness (canal-
ization) and evolvability. This approach would broaden our insight into the mech-
anisms that shape the connection between evolvability and robustness.
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a b s t r a c t 

Evolvability and robustness are crucial for the origin and maintenance of complex organisms, but may not 

be simultaneously achievable as robust traits are also hard to change. Andreas Wagner has proposed a so- 

lution to this paradox by arguing that the many-to-few aspect of genotype–phenotype maps creates neu- 

tral networks of genotypes coding for the same phenotype. Phenotypes with large networks are geneti- 

cally robust, but they may also have more neighboring phenotypes and thus higher evolvability. In this 

paper, we explore the generality of this idea by sampling large numbers of random genotype–phenotype 

maps for Boolean genotypes and phenotypes. We show that there is indeed a preponderance of positive 

correlations between the evolvability and robustness of phenotypes within a genotype–phenotype map, 

but also that there are negative correlations between average evolvability and robustness across maps. We 

interpret this as predicting a positive correlation across the phenotypic states of a character, but a neg- 

ative correlation across characters. We also argue that evolvability and robustness tend to be negatively 

correlated when phenotypes are measured on ordinal or higher scale types. We conclude that Wagner’s 

conjecture of a positive relation between robustness and evolvability is based on strict and somewhat 

unrealistic biological assumptions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evolvability and robustness are both thought essential for 

the origin and maintenance of complex, well-adapted organisms 

( Conrad, 1990; Kauffman, 1993; Gerhart and Kirschner, 1997; Wag- 

ner, 2005 ), but these two properties conflict as evolvability de- 

pends on the ability to generate new potentially adaptive pheno- 

types through mutation while robustness depends on the ability to 

maintain the same phenotype in the face of mutation. The easier 

it is to change the phenotype through genetic change, the more 

evolvable and less robust is the genotype. This creates a paradox 

for the evolution of complex phenotypes. 

Andreas Wagner (2008) proposed an ingenious solution to this 

paradox. He argued that the paradox originated in thinking about 

evolvability and robustness as properties of the genotype. In this 

case, the two properties indeed conflict. His resolution of the para- 

dox was to consider evolvability and robustness not as properties 

of the genotype, but as properties of the phenotype. A phenotype 

may be realized by a number of different genotypes, which then 

forms a neutral network ( Fontana et al., 1993; Kauffman, 1993; 

Schuster et al., 1994; Gruener et al., 1996; Fontana, 2002 ), also 

called a genotype network by Wagner (2011) and Payne and Wag- 

ner (2014) . By defining phenotype evolvability as the number of 

∗ Corresponding author. 

E-mail address: christine.mayer@ibv.uio.no (C. Mayer). 

different phenotypes that can be generated through mutations of 

any member of the corresponding neutral network, and pheno- 

type robustness as the average probability that the phenotype will 

not change through mutation of a member of the corresponding 

neutral network, Wagner argued that phenotypes with large, con- 

nected neutral networks could be both robust and evolvable, be- 

cause they would have many neighbors at the same time as most 

mutations would leave them unchanged. 

Wagner (2008) confirmed the general possibility of a positive 

correlation between phenotype evolvability and robustness in sim- 

ulation studies in which the phenotypes were secondary structures 

of RNA and the associated neutral networks were sets of nucleotide 

sequences that generated the same secondary structure. Wagner 

(2005, 2012 ) and Payne and Wagner (2014) discuss other exam- 

ples in which robustness facilitates evolvability including protein 

folding and transcription-factor binding, while Ebner et al., (2002), 

Aldana et al., (2007), Lesne (2008) and Draghi et al., (2010) have 

made similar arguments. 

Here we explore the generality of these findings and discuss 

properties of the genotype–phenotype map (GP map) that gener- 

ate either a positive or a negative relation between evolvability 

and robustness. We are using a general abstract representation of 

genotype–phenotype maps in which the genotype and the phe- 

notype are represented by Boolean variables connected through 

Boolean operators. We demonstrate that both positive and nega- 

tive relations between evolvability and robustness are possible de- 

http://dx.doi.org/10.1016/j.jtbi.2017.07.004 

0022-5193/© 2017 Elsevier Ltd. All rights reserved. 
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Fig. 1. How evolvability and robustness may vary across phenotypes within a GP 

map. The black dots represent genotypes with lines representing possible muta- 

tions, and the circles represent phenotypes. In each quadrant evolvability and ro- 

bustness are assigned to the focal phenotype colored in grey. Evolvability is the 

number of phenotypic neighbors, and robustness is the fraction of mutations that 

do not leave the phenotype. Note how all combinations of phenotype evolvability 

and robustness are possible. 

pending on the logical structure of the map. Initially we follow the 

definitions of Wagner (2008) closely, but later we relax some of 

the inherent assumptions and debate whether they are biologically 

reasonable. 

2. Theory and methods 

2.1. General considerations 

Wagner (2008) proposed the following definitions (rendered in 

our terminology): 

• Genotype robustness is the number (or fraction) of mutations 

of a genotype that do not lead to an alternative phenotype. 
• Genotype evolvability is the number of alternative phenotypes 

that can be generated by a single mutation of the genotype. 
• Phenotype robustness is the average of genotype robustness 

over all genotypes within a neutral network. 
• Phenotype evolvability is the number of alternative phenotypes 

that can be generated from the phenotype through mutation. 

While genotype evolvability and robustness are negatively re- 

lated almost by definition, phenotype evolvability and robustness 

need not be. Positive relationships can arise, as explained by 

Wagner (2008) , if evolvable networks with many neighbors tend 

to be internally highly connected as illustrated in the upper-left 

quadrant of Fig. 1 , and if networks with few neighbors also tend 

to have few internal connections as in the lower-right quadrant of 

Fig. 1 . However, as illustrated by the two other quadrants in Fig. 

1 , inverse relationships can also arise because internally connected 

networks do not necessarily have many neighbors and vice versa. 

Some genotype–phenotype maps may also tend to generate more 

evolvable or robust phenotypes than others. As illustrated in Fig. 2 , 

any combination of evolvability and robustness is possible across 

maps. Phenotype evolvability and phenotype robustness are thus 

not automatically positively related, and the relationship needs to 

be established on a case-by-case basis. To explore the relative oc- 

currence of the different relationships, we will do an exhaustive 

investigation of all possible genotype–phenotype maps up to a cer- 

tain level of complexity. 

Fig. 2. How robustness and evolvability may vary across GP maps. Each quadrant 

shows a genotype–phenotype map with a different combination of robustness and 

evolvability averaged over the four phenotypes each map generates. Notation as in 

Fig. 1 . 

2.2. The Boolean genotype–phenotype map 

In our model both genotypes and phenotypes are vectors of 

Boolean variables coded as 0 and 1, and the genotype–phenotype 

map is defined as a combination of Boolean logic operators. 

Boolean variables and functions have often been used as a con- 

venient way of modeling genotype–phenotype relationships in the 

abstract, or to approximate threshold responses (e.g. Kauffman, 

1969, 1993; Frank, 1999; Gavrilets, 1999; Thieffry and Romero, 

1999; Ebner et al., 2002; Albert and Othmer, 2003; Espinosa-Soto 

et al., 2004; Quayle and Bullock, 2006; Aldana et al., 2007; Fierst 

and Phillips, 2015 ). It is also worth noting that any Boolean func- 

tion or logic operator can be represented as a multilinear form 

in Boolean variables and are thus special cases of the multilinear 

epistatic model of Hansen and Wagner ( 2001 ). Here we will gener- 

ate large numbers of random Boolean maps. Pleiotropy is modeled 

by allowing elements in the genotype vector to affect more than 

one element in the phenotype vector, and mutation is modeled by 

changing single elements of the genotype vector. 

The evolvability and robustness of phenotypes generated by a 

Boolean genotype–phenotype map can be calculated from the fol- 

lowing formula: 

B zz = B zg B gg B gz , (1) 

where B gg is a genotypic adjacency matrix where the ij th element 

is 1 if the i th and j th genotypes are connected by a single muta- 

tion, B gz is a matrix where the ij th element is 1 if the genotype 

i is associated with the phenotype j , and 0 if not, and the matrix 

B zg = B gz 
T is thus a description of the genotype–phenotype map. 

The resulting symmetric matrix B zz describes the connections of 

phenotypes by mutation in their corresponding genotypes. Its di- 

agonal elements give the number of ways the corresponding phe- 

notype can mutate into itself, and its off-diagonal elements, ij , give 

the number of ways phenotype i can mutate into phenotype j . The 

robustness of a phenotype is thus given by the corresponding di- 

agonal element of B zz , or alternatively as a fraction by dividing this 

with the sum of the corresponding row (or column). The evolvabil- 

ity of a phenotype in Wagner’s sense is the number of non-zero 

off-diagonal elements in the corresponding row (or column). 

If we arrange the Boolean genotypes according to the value of 

their corresponding binary number, then the matrix B gg has a char- 

acteristic pattern, as illustrated here for a genotype of length three: 
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B gg = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 1 0 1 0 0 0 

1 0 0 1 0 1 0 0 

1 0 0 1 0 0 1 0 

0 1 1 0 0 0 0 1 

1 0 0 0 0 1 1 0 

0 1 0 0 1 0 0 1 

0 0 1 0 1 0 0 1 

0 0 0 1 0 1 1 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

The corresponding list of genotypes is {0 0 0, 0 01, 010, 011, 100, 

101, 110, 111}, so that the entry of “1” in position 13 shows that the 

genotype 010 can mutate into 0 0 0, while the entry “0” in position 

23 shows that the genotype 010 cannot mutate into 001. In general, 

this matrix can be constructed by an iterative procedure. If B gg is 

the matrix of dimension n (i.e. the genotype is based on an n -digit 

Boolean number) then B gg for dimension n + 1 is given by [
B gg I 
I B gg 

]
, (3) 

where I is an 2 n × 2 n identity matrix. The main diagonal is always 

zero as a genotype cannot mutate to itself. Note that this operation 

is similar to constructing an n -dimensional hypercube by joining 

all vertices of two n −1-dimensional hypercubes. 

The matrix B zg for mapping a three-digit genotype to a single 

Boolean phenotype ordered as {0,1} could be: 

B zg = 

[
1 1 0 1 0 1 1 0 

0 0 1 0 1 0 0 1 

]
(4) 

Hence, the genotypes 0 0 0, 0 01, 011, 101 and 110 code for phe- 

notype 0, and genotypes 010, 100 and 111 code for phenotype 1. 

There are no constraints on this matrix except that each column 

must have one and only one non-zero entry, so that each genotype 

corresponds to one and only one phenotype. 

Calculating B zz using Eqs. (1 ), ( 2 ) and ( 4 ) yields: 

B ZZ = 

[
6 9 

9 0 

]
, (5) 

which means that there are 6 mutations that change phenotype 0 

into itself, 9 mutations that change phenotype 0 into phenotype 

1 and vice versa, and 0 mutations that change phenotype 1 into 

itself. In this case both phenotypes have evolvability 1, since they 

can each change into one and only one other phenotype. Meaning- 

ful variation in evolvability across phenotypes requires maps that 

generate more than two phenotypes. 

2.3. Generating random maps 

The phenotypes in our model consist of three Boolean traits 

(digits), each calculated from one or more loci in the genotype. 

Thus, we have a total of eight different phenotypes. The genotypes 

consist of five or six loci. We chose the sizes of the phenotype and 

genotype to be small enough to create complete sets of genotype–

phenotype maps, but also large enough to generate a range of dif- 

ferent map topologies. 

We defined six different topologies with varying degrees of 

pleiotropy to test the influence of complexity on the relation- 

ship between phenotype evolvability and robustness. Within each 

topology, we generated all possible maps in the sense of generat- 

ing all possible combinations of all possible truth tables for each of 

the three components of the phenotype. Some of these maps are 

pseudoreplicates in the sense that they are equivalents with just 

the order of the loci swapped. 

Topology 1 – no pleiotropy: Here each of the three components 

of the phenotype is determined independently by two loci each, 

and no locus has an effect on more than one phenotype compo- 

nent. It turned out that all phenotypes generated within such a 

topology have exactly the same numbers of neighbors, and thus 

the same evolvability. Different genotype–phenotype maps may 

show different levels of evolvability, however. 

Topology 2 – low pleiotropy: Here we use the same setup with 

two loci affecting each phenotypic component, but additionally we 

allow one locus to affect two traits so that one phenotype com- 

ponent is affected by three loci and the other two components by 

two loci. 

Topology 3 – medium pleiotropy: Same as topology two except 

that the one pleiotropic locus now affects all three phenotype com- 

ponents. Here, two phenotype components are affected by three 

loci and one phenotype component is affected by two loci. 

Topology 4 – high pleiotropy: Same as topology three except that 

one additional genotype locus can affect two phenotype compo- 

nents. All three phenotype components are affected by three loci. 

Topology 5 – modular: This topology has two modules with 

three genotype loci jointly affecting two phenotype components 

and the three other genotype loci jointly affecting the third phe- 

notype component. 

Topology 6 – integrated modules: Same as topology 5, but the 

modules get connected through one genotype locus, which thus af- 

fects all phenotype components. In addition, one genotype locus is 

dropped so that each “module” is determined by two loci plus the 

shared one. There are thus only five genotype loci in this topology. 

We also sampled ten million B zg matrices out of all possible 

combinations for a genotype of length six and a phenotype of 

length three. Due to computational constraints, it was not possi- 

ble to calculate the whole set of all B zg matrices. 

3. Results 

3.1. Phenotype evolvability and robustness within 

genotype–phenotype maps 

We computed evolvability and robustness across the individual 

phenotypes generated by each specific genotype–phenotype map 

(i. e. a specific B zg matrix). Many of these maps, and particularly 

those from the simpler topologies, do not generate any variation 

in evolvability among their phenotypes. Among the “nondegener- 

ate” cases with variation in evolvability, the results in Fig. 3 show 

that the majority generate a positive relationship between evolv- 

ability and robustness across phenotypes. Cases of negative corre- 

lations are always a minority, but become more common in the 

more complex topologies. 

3.2. Character evolvability and robustness across genotype–phenotype 

maps 

The evolvability and robustness of a particular genotype–

phenotype map can be measured as the average of the evolvabil- 

ity and robustness of the phenotypes it generates. We suggest in- 

terpreting this as the evolvability and robustness of a character 

(or character identity sensu GP Wagner, 2014 ) as opposed to the 

evolvability and robustness of individual character states (i. e. phe- 

notypes). As illustrated in Fig. 4 , evolvability and robustness tend 

to be negatively correlated across genotype–phenotype maps. This 

holds true both within the specific topologies and across the whole 

sample. Note, however, that some of this is driven by genotype–

phenotype maps that generate only one or two phenotypes. These 

necessarily have high robustness and low evolvability. Indeed, it 

makes sense that genotype–phenotype maps that can generate 

many phenotypes, or characters with many possible states, are 

considered more evolvable. Our results show that such characters 

also tend to be less robust. 
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Fig. 3. Boxplot of correlation coefficients between phenotype evolvability and ro- 

bustness across phenotypes within a GP map. The boundaries of the boxes in the 

plot represent the first and the third quartile. The line in the middle of the box is 

the median. The whiskers are the 5th and 95th percentiles. “Sample” refers to a 

random sample of 10 mill maps from the complete set, “T2” to topology 2, “T3” to 

topology 3, “T4” to topology 4, “T5” to topology and “T6” to topology 6 as defined 

in the main text. The numbers below the boxes are the percentage of negatively 

correlated maps found in the corresponding topology. While the majority of maps 

yield a positive correlation, the more complex maps have a larger probability of 

generating a negative correlation. 

3.3. Robustness and evolvability of sequential adaptations 

An inherent assumption in Wagner’s ( 2008 ) definitions is 

that evolvability depends on finding a single random phenotype 

through a single random mutation. This stands in sharp contrast 

to the traditional neo-Darwinian view of adaptations being built 

sequentially through many contingent steps. It seems likely that 

the positive relations between evolvability and robustness found 

for RNA secondary structures and transcription-factor binding de- 

pend crucially on this assumption. In this section, we introduce a 

model to explore the effects of phenotype robustness on evolvabil- 

Fig. 5. Transversing genotypes on ordinal scale. The grey circles represent 4 differ- 

ent phenotypes (denoted by the bold binary numbers below) of increasing fitness 

from left to right. The small binary numbers are the genotypes and the black arrows 

represent mutational connections between genotypes. 

ity when the latter is operationalized as the time to transverse a 

sequence of phenotypic steps. 

Let an adaptation require transversing a sequence of pheno- 

types ordered by their Boolean numbers as illustrated in Fig. 5 . 

This introduces an ordinal scale for phenotypes. Specifying the rel- 

ative fitness of the phenotypes will lead to a stronger interval scale 

type where the selection coefficient for a transition between two 

Boolean phenotypes equals the sum of the selection coefficients for 

each step between them. 

Now consider the rate of transition between two genotypes in 

this system. We assume that mutation is sufficiently rare for the 

population to be fixed at one genotype before the next mutation 

appears. If the mutation rate between the genotypes is u , then the 

transition rate for the population will also be u if the genotypes 

code for the same phenotype ( Kimura, 1983 ). If the genotypes code 

for different phenotypes, and the change from one phenotype to 

the next is associated with a relative fitness advantage of s , then 

the rate of transition will be b ≈ 4 sNu , where N is effective pop- 

ulation size, and we have assumed an approximate fixation proba- 

bility of 2 s (e. g. Haldane, 1927; Bürger and Ewens, 1995 ). 

If the pairwise transition rates between all genotypes are spec- 

ified in a matrix A , then the time development of the vector of 

probabilities, x , of being in each state can be described with a 

system of ordinary differential equations: d x = Ax d t . From this the 

distribution of times to pass through the system can be derived 

with standard methods as detailed in the Appendix. For a given 

genotype–phenotype map on Boolean variables as specified by a 
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Fig. 4. Correlation between evolvability and robustness across GP maps. (A) Sample of complete set. (B) Topology 1: no pleiotropy. (C) Topology 2: low pleiotropy. (D) 

Topology 3: medium pleiotropy. (E) Topology 4: high pleiotropy. (F) Topology 5: modular. (G) Topology 6: integrated modules. All topologies show consistent negative 

correlations between GP map evolvability and robustness. 
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B zg matrix, the transition matrix can be constructed as 

A = B gz T B zg � B gg − ( B gg B gz T B zg ) � I , (6) 

where � signify Hadamard product, I is an identity matrix, and the 

matrix T is a transition matrix for the phenotypes. The ij element 

of T is the rate of transition from a specific genotype in phenotype 

j to a specific genotype in phenotype i if there were a mutation 

that made this transition possible. For example, for the system il- 

lustrated in Fig. 5 of four phenotypes coded by two-digit Boolean 

numbers ordered as {00, 01, 10, 11}, and with constant mutation 

rates and selection coefficients, the T-matrix is 

T = 

⎡ 

⎢ ⎣ 

u 0 0 0 

b u 0 0 

2 b b u 0 

3 b 2 b b u 

⎤ 

⎥ ⎦ 

, (7) 

where the u ’s on the main diagonal give transition rates between 

connected genotypes within a phenotype, and the multiples of b 

below the diagonal specify rates between connected genotypes be- 

longing to different phenotypes as functions of their fitness dif- 

ferences. For example, the 3 b entry in row 4 and column 1 gives 

the rate of transition from a genotype in phenotype 00 to a 

mutationally-connected genotype in 11 (regardless of whether such 

a mutation exists or not). This will have a selection coefficient that 

is three times the selection coefficient for a single step in the se- 

quence, and hence a transition rate of 3 b . This ensures that the 

fitness gain of moving from one phenotype to another is the same 

regardless of the number of steps that were made to achieve it. 

The zeros above the diagonal mean that it is impossible to move 

backwards in the system of phenotypes. The off-diagonal elements 

of the matrix B gz TB zg give the transition rates between genotypes if 

all transitions were mutationally possible, and the Hadamard mul- 

tiplication with B gg removes all transitions that are not possible. 

The second term in the equation constructs the diagonal so as to 

make A a proper probability transition matrix. 

For the genotype–phenotype map illustrated in Fig. 5 , 

B zg = 

⎡ 

⎢ ⎣ 

1 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 

0 0 0 0 1 1 1 0 

0 0 0 0 0 0 0 1 

⎤ 

⎥ ⎦ 

, (8) 

and using this in Eq. (6 ) yields: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−4 b 0 0 0 0 0 0 0 

b −u − b 0 u 0 0 0 0 

b 0 −u − b u 0 0 0 0 

0 u u −2 u − 2 b 0 0 0 0 

2 b 0 0 0 −2 u u u 0 

0 b 0 0 u −u − b 0 0 

0 0 b 0 u 0 −u − b 0 

0 0 0 2 b 0 b b 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(9) 

Using the method in the Appendix, we compute the mean pas- 

sage time from genotype state 0 0 0 to state 111 to be 

t̄ = 

b 2 + 11 bu + 14 u 

2 

4 bu ( 2 u + b ) 
≈ 1 

4 u 

(
1 + 

11 

4 sN 

)
, (10) 

where the approximation is due to ignoring terms in u 2 . This 

shows that the passage time is inversely proportional to muta- 

tion rates and approaches a lower limit of 1/4 u when selection is 

strong ( sN >> 1). 

To explore the relations between robustness and evolvability it 

is useful to consider more complex maps. We will use a sequence 

of eight phenotypes coded by three-digit Boolean numbers and dif- 

ferent genetic architectures. The T-matrix for this system, given in 

Fig. 6. Mean times to adaptation as a function of the strength of selection for four 

degrees of robustness. Each graph shows the mean passage time through a se- 

quence of 8 phenotypes in units per mutation rate, u . Hence, a value of 1.0 means 

that the passage time is the inverse of the mutation rate (e.g. a million genera- 

tions if u = 10 −6 /generation). The four functions show genetic architectures based 

on three-, four-, five- and six-digit Boolean genotypes with subsequently coarser 

dashing for higher dimensions. Note how the more robust higher-dimensional ar- 

chitectures have longer passage times and are thus less evolvable. 

Fig. 7. Mean times to adaptation as a function of the strength of selection with dif- 

ferent numbers of selectively distinct phenotypes. The whole line shows the case 

where all 8 phenotypes are selectively distinct as in Fig. 6 . The dashed lines show 

cases where the six intermediate phenotypes are grouped into, from bottom up, 

three, two or one selectively-distinct phenotypes. In all cases, there are 64 six-digit 

Boolean genotypes. Note how the cases with fewer and thus more robust pheno- 

types have longer passage times and are thus less evolvable. Time in units of mu- 

tation rate as in Fig. 6 . 

the supplement, has the same structure as above in keeping with 

the idea that the fitness gain for transversing the entire system 

should be the same regardless of the number of steps it takes. The 

genotype–phenotype maps will always have the first and the last 

phenotypes (0 0 0 and 111) coded by a single genotype (all zeros 

and all ones, respectively), and we will then vary the genetic ar- 

chitectures of the six intervening phenotypes by altering the B zg 

matrices as detailed in the supplement. 

In Fig. 6 we show that the mean passage time is increasing 

with the number of genotypes that code for each phenotype and 

hence with robustness. This is implemented by increasing the di- 

mensionality of the genotypes from a three-digit to a six-digit 

Boolean number. The B zg matrices are built by assigning as simi- 

lar as possible number of genotypes to each phenotype with geno- 

types grouped according to the similarity of their Boolean number. 

In Fig. 7 we illustrate the negative relation between evolvabil- 

ity and robustness in another way by collapsing phenotypes while 

keeping the number of genotypes constant. We do this starting 

from a map from 64 genotypes to 8 phenotypes, and then com- 

bining the six intervening phenotypes into sets of three, two or 

one phenotype(s). This shows that the mean passage time is in- 

creasing with the increased size and hence intraconnectedness and 

robustness of the phenotypes despite the fact that there are fewer 

phenotypic steps and stronger selection for each step. This can also 
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be illustrated with the simpler map in Fig. 5 by collapsing the two 

intermediate phenotypes (01 and 10) into one, and letting the se- 

lection coefficient for the step from this to the phenotype 11 be 2 s . 

Then the mean passage time is 

t̄ = 

8 u + 3 b 

6 bu 

≈ 1 

2 u 

(
1 + 

2 

3 sN 

)
, (11) 

which is longer than the time computed above for the less ro- 

bust system provided sN > 1/12; i.e. for all cases with a meaningful 

strength of selection. Generally, we may say that robustness ham- 

pers the evolvability of sequential adaptations because there are 

more genotypes for which no advantageous mutation exists, and 

when the population hits these it has to wait for slow neutral evo- 

lution to bring it to a genotype that allows advantageous muta- 

tions. 

4. Discussion 

Evolvability and robustness are crucial to the evolution of com- 

plex phenotypes but they have been thought to conflict with each 

other (reviewed in de Visser et al., 2003; Lesne, 2008 ). Wagner 

(20 05, 20 08 ), however, argued that evolvability and robustness un- 

derstood as properties of phenotypes may be positively related if 

the genotype–phenotype map is many-to-few, so that each pheno- 

type can be realized by a network of mutationally-connected geno- 

types (see also Ebner et al., 2002 ). This conjecture has been sup- 

ported by models of RNA secondary structure, transcription-factor 

binding and gene regulation ( Aldana et al., 20 07; Wagner, 20 08, 

2012; Draghi et al., 2010; Payne and Wagner, 2014 ). Robustness 

has also been argued to facilitate evolvability through capacitance 

mechanisms allowing the accumulation of hidden genetic variation 

that can be released to fuel adaptive evolution ( Rutherford, 20 0 0; 

Hermisson and Wagner, 2004 ). 

While we do not deny that large and connected neutral net- 

works can be simultaneously robust and evolvable in the sense of 

Wagner (2008) , we have shown that this is not a general result. As 

illustrated in Fig. 1 the correlation between phenotype evolvability 

and phenotype robustness depends on the specific architecture of 

the genotype–phenotype map. In our systematic investigation of all 

possible genotype–phenotype maps up to a certain level of com- 

plexity we found that maps with a positive relation between phe- 

notype evolvability and robustness are indeed more common, but 

we also found many maps with negative correlations. In a more 

dramatic contradiction of Wagner’s conjecture we found that av- 

erage evolvability and robustness were consistently negatively re- 

lated across genotype–phenotype maps leading to the prediction 

that evolvability and robustness may be consistently negatively re- 

lated across characters even if they tend to be positively related 

across phenotypic states of the same character. 

Schuster et al. (1994), Wagner (2012) , and Payne and Wagner 

(2014) argue in their studies that one larger phenotype with high 

phenotype robustness and high phenotype evolvability tend to be 

surrounded by many smaller phenotypes that are less robust and 

evolvable. Looking at evolvability and robustness on the level of 

the map itself averages out the massive influence of the one large 

phenotype that drives the negative correlation between evolvabil- 

ity and robustness across phenotypes within a map. 

A crucial inherent assumption of Wagner’s argument and all the 

model systems used to support it is that the evolvability of a char- 

acter state can be understood as the total number of other char- 

acter states or phenotypes accessible from this character state. The 

evolvability of a RNA secondary structure is measured as the num- 

ber of other secondary structures that can be reached by a single 

mutation from the focal structure. Although this can be rephrased 

as a probability of being able to find a specific structure, we think 

it represents a restricted and unusual view of evolution. In ef- 

fect, it assumes that evolution happens on a nominal scale with 

no ordering of phenotypes. More commonly, complex adaptations 

are thought to involve gradual improvement through specific se- 

quences of innovation or the near-continuous improvement of a 

quantitative trait. For evolution on ordinal or higher scale types 

it seems more likely with a tradeoff between evolvability and ro- 

bustness, as we have illustrated with a simple model of adaptation 

through a sequence of phenotypes. 

Another inherent assumption of Wagner’s argument is that 

the mapping from genotype to phenotype is many-to-few. This 

is indeed a common assumption in many evolutionary arguments 

depending on systems drift (e.g. Schuster et al., 1994; Gavrilets 

and Gravner, 1997; True and Haag, 20 01; Gavrilets, 20 04; Wag- 

ner, 2005; Haag, 2007; Fierst and Hansen, 2010 ). But, as Hansen 

(2006a) argued in his review of Wagner (2005 ), this is not self- 

evident, because phenotypes can also be complex and many di- 

mensional (see also Houle, 2010 ). Many of the models concocted 

by “geneticists” achieve their many-to-few mappings through ex- 

tremely simplified assumptions as to what constitutes a pheno- 

type. Even the relatively realistic models of secondary RNA struc- 

ture provide a seriously depauperate view of the potential pheno- 

typic complexity of RNA molecules. Although many nucleotide or 

even amino-acid substitutions may have none or insignificant phe- 

notypic effects, we may ask whether such redundancy really mat- 

ters for either evolvability or robustness on the phenotype level. 

This would require some form of epistatic interaction where neu- 

tral changes alter the probability of the changes that matter. If 

non-neutral changes are not affected by the state of the neutral 

component of the phenotype, then the latter simply does not mat- 

ter for either evolvability or robustness at the phenotype level. 

All of these arguments leave out the effects of within- 

population variation. In both Wagner’s and our models, it is as- 

sumed either that population variation is insignificant or that it 

is uniformly distributed among the genotypes in a neutral net- 

work. In reality the population distribution would be determined 

by population-genetical processes such as mutation-selection bal- 

ance that should generate a non-uniform distribution clustering in 

the more strongly connected parts of a network. Van Nimwegen et 

al. (1999) found that the mutation load of a neutral network de- 

creases with its average connectedness. The population robustness 

of the phenotype can be equated with the inverse of the mutation 

load, and is hence predicted to increase with connectedness. This 

assumes that all other phenotypes have the same low fitness how- 

ever, and it remains to be studied how this will pan out in com- 

plex genotype–phenotype maps generating several connected phe- 

notypes with varying fitness. Evolvability is also crucially depen- 

dent on population variation. While the genetic variation stored 

in a neutral network may be “hidden” on the phenotypic level, it 

can facilitate access to other phenotypes through systems drift, and 

may also be revealed by decanalization due to environmental or 

genetic changes if the neutrality is caused by canalization in the 

first place ( Hermisson and Wagner 2004 ). 

Modularity and integration have long been thought crucial de- 

terminants of evolvability in complex characters (e.g. Wagner and 

Altenberg 1996; Hansen 2006b; Pavli ̌cev and Cheverud 2015 ). In 

our models, integration and complexity increase with increasing 

pleiotropy between the components of the phenotype. The more 

pleiotropic topologies indeed seem to present more variation in 

evolvability and robustness, as well as in the relation between 

them. Hansen (2003) and Pavli ̌cev and Hansen (2011) have pre- 

viously found that an intermediate level of pleiotropy and a high 

degree of variation in types of pleiotropy may facilitate average 

evolvability over different directions in morphospace even if it may 

not optimize evolvability along particular directions of change. Ro- 

bustness has not been investigated in this perspective, and future 
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studies may benefit from considering robustness as a trait that 

may vary across different morphological directions. 

In conclusion, we have partially restored the “paradox” that 

Wagner (2008) resolved. This does not detract from the impor- 

tance of the conceptual innovations of Wagner (20 05, 20 08 ), or 

questions the specific relationships identified by him and others, it 

simply shows that biology is complex and case dependent. While 

a positive relation between robustness and evolvability across phe- 

notypic states may indeed be common in systems conforming to 

Wagner’s assumptions, we suspect that trade offs between phe- 

notype robustness and evolvability may be more common across 

characters as opposed to character states, or when adaptation re- 

quires transversing phenotypes along ordinal or continuous scale 

types. 
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Appendix. The mean time to adaptation 

Given a matrix of transition probabilities, the time evolution of 

the probabilities of being in each state can be found with standard 

techniques from stochastic process theory (e.g. Karlin and Taylor, 

1981 ). To find the distribution of the time to pass through the sys- 

tem we use the approach from Appendix B of Hansen et al. (20 0 0) . 

Briefly, amend the system with an additional absorbing state and 

add a transition at a high rate k to this from the final state of our 

system so that the final transition does not add significant time. 

Let t be the time to reach the additional absorbing state. If f ( t ) is 

the probability density of t , then we can note that the amount of 

probability mass that has arrived at the terminal state is 

y ( t ) = 

∫ t 

0 

f ( τ ) dτ, (A.1) 

which means that f ( t ) = dy / dt and thus that f ( t ) = kx n ( t ), where x n 
is the probability mass of the final genotype in our system (e.g. 

of 111 for the system in Fig. 5 ). Hence, if we solve the system of 

differential equations for the x -vector, we can use the solution for 

x n ( t ) to find f ( t ). Hence, we need to solve 

d 

dt 
x = Ax , (A.2) 

where A is amended with adding −k to its nn th element. The solu- 

tion to this system is x ( t ) = e A t x ( 0 ). The vector Laplace transform of 

this is L ( z ) = −( A − z I ) −1 x (0), and the moment generating function 

for t is hence the last element of the vector 

M ( z ) = k L ( −z ) = −k (A + zI ) −1 x ( 0 ) , (A.3) 

where x (0) is the vector {1, 0, .., 0}, which puts all probability mass 

on the first element (e.g. 0 0 0 in Fig. 5 ). The mean of t can then be 

found by taking the derivative of M ( z ) in z = 0, or also calculated 

directly as 

t̄ = 

∫ ∞ 

0 

τ f ( τ ) dτ = 

∫ ∞ 

0 

τk x n ( τ ) dτ

= k 

∫ ∞ 

0 

τ
[
e A τ x ( 0 ) 

]
n 
dτ = k 

[
A 

−2 x ( 0 ) 
]

n 
. (A.4) 
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	 1	

Supplement	

To	compute	the	passage	times	in	Figure	6	we	used	the	following	matrices:	

𝐓 =

𝑢 0 0 0 0 0 0 0
𝑏 𝑢 0 0 0 0 0 0
2𝑏 𝑏 𝑢 0 0 0 0 0
3𝑏 2𝑏 𝑏 𝑢 0 0 0 0
4𝑏 3𝑏 2𝑏 𝑏 𝑢 0 0 0
5𝑏 4𝑏 3𝑏 2𝑏 𝑏 𝑢 0 0
6𝑏 5𝑏 4𝑏 3𝑏 2𝑏 𝑏 𝑢 0
7𝑏 6𝑏 5𝑏 4𝑏 3𝑏 2𝑏 𝑏 𝑢

,	

(S.1)	

and	different	Bzg	matrices	for	the	different	dimensions	of	the	genotype.	For	the	3-digit	

genotype	we	used	a	8	x	8	identity	matrix.	For	the	4-digit	genotype	we	used	

𝐁-. =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

,	

(S.2)	

For	the	5-digit	genotype	we	used	

𝐁-. =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

	,	

(S.3)	

and	for	the	6-digit	genotype	we	used	a	8	x	64	matrix	that	is	too	big	to	illustrate,	but	with	

similar	structure	to	earlier	cases	except	that	it	has	eleven	ones	in	rows	2	and	3,	and	ten	

ones	in	rows	4	to	7.		
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	 2	

To	make	Figure	7	we	used	the	same	Bzg	matrices	for	the	6-digit	genotype,	but	modified	

the	T-matrix	to	collapse	the	phenotypes.	To	make	three	intermediate	phenotypes	we	

used	

𝐓 =

𝑢 0 0 0 0 0 0 0
𝑏 𝑢 𝑢 0 0 0 0 0
𝑏 𝑢 𝑢 0 0 0 0 0
3𝑏 2𝑏 2𝑏 𝑢 𝑢 0 0 0
3𝑏 2𝑏 2𝑏 𝑢 𝑢 𝑢 0 0
5𝑏 4𝑏 4𝑏 2𝑏 2𝑏 𝑢 𝑢 0
5𝑏 4𝑏 4𝑏 2𝑏 2𝑏 𝑢 𝑢 0
7𝑏 6𝑏 6𝑏 4𝑏 4𝑏 2𝑏 2𝑏 𝑢

,	

(S.4)	

to	implement	the	two	intermediate	phenotypes,	we	used	

𝐓 =

𝑢 0 0 0 0 0 0 0
𝑏 𝑢 𝑢 𝑢 0 0 0 0
𝑏 𝑢 𝑢 𝑢 0 0 0 0
𝑏 𝑢 𝑢 𝑢 𝑢 0 0 0
4𝑏 3𝑏 3𝑏 3𝑏 𝑢 𝑢 𝑢 0
4𝑏 3𝑏 3𝑏 3𝑏 𝑢 𝑢 𝑢 0
4𝑏 3𝑏 3𝑏 3𝑏 𝑢 𝑢 𝑢 0
7𝑏 6𝑏 6𝑏 4𝑏 4𝑏 2𝑏 2𝑏 𝑢

,	

(S.5)	

and	for	a	single	intermediate	phenotype	we	used	

𝐓 =

𝑢 0 0 0 0 0 0 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
𝑏 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 0
7𝑏 6𝑏 6𝑏 6𝑏 6𝑏 6𝑏 6𝑏 𝑢

.	

(S.6)	
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Abstract
The ways in which embryo development can vary across individuals of a population

determine how genetic variation translates into adult phenotypic variation. The

study of developmental variation has been hampered by the lack of quantitative

methods for the joint analysis of embryo shape and the spatial distribution of

cellular activity within the developing embryo geometry. By drawing from the

strength of geometric morphometrics and pixel/voxel-based image analysis, we

present a new approach for the biometric analysis of two-dimensional and three-

dimensional embryonic images. Well-differentiated structures are described in

terms of their shape, whereas structures with diffuse boundaries, such as emerging

cell condensations or molecular gradients, are described as spatial patterns of

intensities. We applied this approach to microscopic images of the tail fins of larval

and juvenile rainbow trout. Inter-individual variation of shape and cell density was

found highly spatially structured across the tail fin and temporally dynamic

throughout the investigated period.

Introduction

Despite the rapidly growing knowledge of the mechanisms underlying
embryological development, little is known about how development varies across
the individuals of a population. The variational properties of development
determine how genetic and environmental variation translate into phenotypic
variation in postnatal and adult individuals [1–8]. In turn, the population pool of
phenotypic variation is the substrate for natural selection and, hence, a major
determinant of organismal evolution [8, 9]. The lack of quantitative studies of
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developmental variation has impeded the long-expected connection of develop-
mental biology with the formal core of evolutionary theory. In addition, modeling
developmental variation is key for understanding the multifactorial etiology of
many diseases. Genetic and environmental factors that alter the pattern of
developmental variation may increase the probability of individuals to pass a
threshold towards pathological development [10, 11].

The study of developmental variation has been hampered by the difficulties of
measuring the geometry of developing embryos jointly with the spatial patterns of
tissue formation and cellular activity. Yet an integrated understanding of organ
formation and evolutionary change requires the coordinated study of gene
expression, cellular activity, and organismal geometry [1, 7, 12]. In this paper, we
present a novel approach that integrates geometric morphometrics and pixel- or
voxel-based image analysis into a combined biometric method, allowing for the
joint analysis of embryological shape and spatial patterns of tissue properties. For
a demonstration, we apply this approach to a set of two-dimensional microscopic
images of the tail fins of rainbow trout, but the approach can equally be applied to
other imaging and staining methods as well as to three-dimensional images
obtained from embryonic specimens [13, 14].

Geometric morphometrics is the state-of-the-art method for biological shape
analysis [15–19]. It is based on the representation of homologous point locations,
curves, and surfaces by landmarks and semilandmarks (two- or three-dimensional
measurement points). Semilandmarks are points on curves or surfaces for which
the exact position along the curve or surface cannot be determined using
anatomical criteria. They are estimated in the course of the analysis, establishing
geometric homology within the sample [20, 21]. The careful – usually manual –
setting of the landmarks and semilandmarks, based on criteria of anatomical
homology, leads to biologically interpretable estimates of means and variances
and allows for an effective visualization of such statistical results as actual shapes
or shape deformations [15]. However, this limits the application of geometric
morphometrics to structures that are present and clearly visible in all individuals
of the studied sample. With this method it is not possible to investigate the
emergence or loss of structures, which is characteristic for embryological
development. Nor does standard geometric morphometrics permit the assessment
of structures with unclear boundaries, such as cell condensations or molecular
gradients.

Statistical image analysis based on the gray values or color values of image
elements (two-dimensional ‘‘pixels’’ or three-dimensional ‘‘voxels’’) is frequently
used in medical imaging [22–24]. The variety of image analysis methods differ,
among other aspects, in the way images are registered in order to yield
correspondence across the compared pixels or voxels. Usually, the registration is
an automatic or non-label based (without manual specification of points or
curves), non-affine (non-linear) transformation that minimizes some measure of
overall dissimilarity across the images [23, 25]. Shape differences between
individuals are often considered as nuisance rather than signal and hence are not
explicitly estimated. These kinds of approaches have proven powerful for object

Geometric Morphometric Image Analysis
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classification and computer vision, but the imperfect registration of the
boundaries of homologous anatomical structures in different individuals may lead
to sample averages and variance patterns that are not biologically meaningful [26].
For example, an average of well-delineated structures tends to have fuzzy
boundaries, so that this average may no longer represent an actual anatomical
structure. The variance of gray values or color values typically is concentrated at
the misaligned edges of structures.

In the new method we term Geometric Morphometric Image Analysis (GMIA),
we take advantage of the strengths of both approaches. It consists of two steps that
represent two complementary ways in which developmental differences typically
are described in biology. For structures with sharp boundaries, such as organs,
bones, and other well-differentiated tissues, morphological variation is described
in terms of variation in the shape and in the relative position, size, and orientation
of these structures. Structures with diffuse boundaries, such as emerging cell
condensations or molecular gradients, instead are described as spatial patterns of
intensities or directions (scalar or vector fields) within the organism or within
selected organs.

GMIA thus starts with a careful, manual or semi-automatic representation of
homologous, well-defined anatomical point locations, curves, and surfaces by the
assignment of a dense set of landmarks and semilandmarks. The positions of the
semilandmarks are estimated by the sliding landmark algorithm, which minimizes
the ‘‘bending energy’’ of the thin-plate spline interpolation, a measure of local
form difference, between the specimens and their sample average [20, 21, 27]. The
image registration consists of two steps. First, the landmark configurations are
superimposed by Generalized Procrustes Analysis (a least squares-based rigid
registration plus scaling; [28]), which standardizes for variation in overall
position, scale, and orientation. The coordinates of the registered landmarks and
semilandmarks, the so-called Procrustes shape coordinates, parameterize the
shape of the digitized structures. Second, the actual images are all registered to the
sample average shape of the landmark configurations by another use of the thin-
plate spline interpolation [27]. In these registered images, the anatomical
structures (point locations, curves, and surfaces represented by landmarks and
semilandmarks) thus have exactly the same shape in all specimens, and the spaces
in between the landmarks are interpolated as ‘‘smoothly’’ as possible (minimizing
the integral of the squared second derivatives; see Methods section for details). In
the vicinity of the aligned anatomical structures, the registered pixels are likely to
represent homologous tissue locations within the sample. Depending on the
actual imaging and staining methods, the gray values or RGB values (the values of
red, green, and blue color channels) of these pixels represent the tissue properties
of the imaged structures.

This approach yields two complementary sets of data: (1) the Procrustes shape
variables, describing variation of well-differentiated anatomical structures, and (2)
the texture of the registered images (i.e., the pixel or voxel values), representing
variation in the spatial distribution of imaged tissue properties. Statistics and
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resulting visualizations can be computed separately for shape and texture, and also
jointly for both.

This two-step approach resembles the separate parameterization of shape and
‘‘shape-free’’ texture in active appearance models and related techniques, which
have found wide application in face recognition and some areas of medical
imaging [29, 30]. But while active appearance models are aimed at identifying or
classifying objects from images that display variation in viewpoint, lighting, and
other conditions, geometric morphometric image analysis is a biometric method
for the joint analysis of shape and tissue properties in a biological context.

To illustrate this approach, we use a sample of 20 larval and juvenile specimens
of rainbow trout (Oncorhynchus mykiss), seven of them fixed at 21 days post
fertilization (dpf), eight at 40 dpf, and five at 56 dpf. All specimens were stained
in the same way with Mayer’s hematoxylin and were stored in 75% glycerol.
Microscopic images, prepared under identical conditions, were taken of the tail
fins or their corresponding precursors (see Methods section for details).
Hematoxylin stains the cell nuclei, hence the color intensity in the microscopic
images is taken to correspond with local cell density. We recorded the two-
dimensional coordinates of four anatomical landmarks and 95 semilandmarks on
each specimen in order to quantify the shape of the developing fin fold, the
notochord, and the musculature (Fig. 1).

Materials and Methods

Staining and imaging
Our sample consists of 20 rainbow trout specimens (Oncorhynchus mykiss) from
the zoological collection of the University of Vienna. The fish were collected from
one hatchery in the year 2000. Specimens were euthanized by overdose of MS222,
fixed in buffered formalin, and stored in 70% ethanol. Seven of them were fixed at
21 days post fertilization (dpf), eight at 40 dpf, and five at 56 dpf. In 2013, the
specimens were transferred into distilled water before they were stained with
Mayer’s hematoxylin for 10 minutes. After keeping them in tap water for
15 minutes, they were transferred to a Scott Solution (tap water, sodium
bicarbonate, magnesium sulfate) for 10 minutes, and then again rinsed in tap
water for 10 minutes. The stained specimens were stored in 75% glycerol. The tail
fins of all specimens were photographed with a Leica MZ16F stereomicroscope.
All images were taken under identical light conditions and standardized specimen
orientation with a 56 magnification (see S1, S2, S3 Figures). All use of trout
specimens are in compliance with EU guidelines for the treatment of vertebrate
animals in laboratory research (DIRECTIVE 2010/63/EU on the protection of
animals used for scientific purposes). No specific ethical approval was necessary
for the use of these collection specimens.
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Landmarks
We recorded 4 anatomical landmarks and 95 semilandmarks on each of the 20
images (Fig. 1) using the software TPSdig (James Rohlf). The anatomical
landmarks represent the tip of the notochord, the posterior end of the anal fin,
and the two points where the dorsal and ventral outlines of the musculature meet
the outline of the notochord. The semilandmarks represent the outlines of the
notochord, the musculature, and the fin fold.

The positions of the semilandmarks along their corresponding curves were
computed by the sliding landmark algorithm [15, 20, 21, 31], which iteratively
‘‘slides’’ the semilandmarks along tangents to the curve in order to minimize the
bending energy of the thin plate spline (TPS) function between each individual
and the sample average configuration. The tangent to the curve at each landmark
was estimated by a vector connecting the two neighboring landmarks. The TPS
function between two sets of landmarks is a non-affine interpolation that maps
the landmarks exactly and the in-between space as ‘‘smoothly’’ as possible by
minimizing the integral (in all two or three dimensions) of the squared second
derivatives, a quantity referred to as bending energy [15, 27].

In most applications of the sliding landmark algorithm, the curves start and end
with anatomical landmarks that constrain the sliding of the semilandmarks. As the
curves in our application were all open, we computed the average landmark
configuration only once and iteratively slid the semilandmarks against this
average. This guaranteed convergence to a non-degenerate mean shape.

Fig. 1. Landmark configuration. Tail fin of a 21 dpf O. mykiss specimen with four anatomical landmarks
(black points) and 95 semilandmarks (white points). The anatomical landmarks represent the tip of the
notochord (1), the posterior end of the anal fin (2), and the two points where the dorsal and ventral outlines of
the musculature meet the outline of the notochord (3, 4). The semilandmarks represent the outlines of the
notochord, the musculature, and the fin fold. These landmarks were digitized on microscopic images of 20 O.
mykiss specimens, seven of them fixed at 21 dpf, eight at 40 dpf, and five at 56 dpf.

doi:10.1371/journal.pone.0115076.g001
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Shape analysis
The 20 configurations of landmarks and semilandmarks were superimposed by
Generalized Procrustes Analysis [18, 28]. Thereby the configurations are translated
to a common origin (the centroid – the coordinate-wise average of each
configuration – is sent to the origin of the coordinate system), scaled to unit
centroid size (square root of summed squared distances between every landmark
and their centroid), and iteratively rotated to minimize the sum of squared
distances among the homologous landmarks. The resulting Procrustes shape
coordinates only describe the shape of each landmark configuration because
variation in position, scale, and orientation was removed by the Procrustes
registration. The Euclidean distance (square root of summed squared differences)
between two sets of shape coordinates approximates the Procrustes distance, a
measure of shape difference between the corresponding landmark configurations
[16, 18].

Group mean shapes are estimated by averages of the shape coordinates. A low-
dimensional ordination of shape space was computed by a between-group
principal component analysis [32], which is an orthogonal projection of the
individual shapes on the principal components of the group means. The between-
group PCs thus constitute an orthonormal basis that optimally (in a least-squares
sense) represents the Procrustes distances between the group mean. This
technique typically leads to a better group separation than ordinary PCA and does
not have the problems associated with discriminant analysis [32]. Shape
differences between group means are visualized by thin-plate spline deformation
grids [15]. These deformation grids are computed by applying the TPS
interpolation between the two mean shapes to the vertices of a regular grid that is
superimposed onto the template configuration [15, 18, 27].

Texture analysis
All images were registered to the sample mean shape based on the measured
landmarks and semilandmarks by using the thin-plate spline interpolation [27]. In
the registered images, the structures digitized by landmarks all have the same
shape within the sample, and the space in between the landmarks is interpolated
by minimizing the bending energy of the TPS function. The pixels of the
registered images hence are assumed to represent corresponding anatomical
structures. In order to avoid empty image elements (in areas of expansion) or
overlapping pixels (in areas of compression), the images were subject to backward
warping (also referred to as unwarping) instead of forward warping. In the
typology of image registration techniques devised by Maintz & Viergever [23] this
is an intrinsic (landmark-based), non-affine (or curved), local, semi-automatic,
monomodal, intersubject registration with directly computed transformation
parameters.

Mean cell density was computed as the average of the RGB values of the
registered images, computed separately for every color channel of every pixel. For
calculating group mean differences and variances of image texture, we
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transformed the RGB values of each pixel into a scalar value by using the average
of the RGB values of each pixel. This average corresponds to the brightness of the
pixel and was interpreted as cell density in our application. Group mean
differences and variances of image texture (cell density) were visualized by color
maps. As for shape, the pattern of individual and group mean differences in
texture were ordinated by between-group principal component analysis. Principal
components of images are also referred to as eigenimages in the image analysis
literature [24, 33] and are least-squares ordinations of the Euclidean distances
between the image textures.

Joint analysis of shape and texture
Group mean shape and mean texture were jointly visualized by unwarping the
average texture to the corresponding average shape. Group mean differences for
both shape and texture were displayed by superimposing a TPS deformation grid
and a color map of texture differences.

A joint ordination analysis of shape and texture is not possible via PCA because
the scaling of the pixel values relative to the shape coordinates is ambiguous.
While both shape and texture can be separately equipped with a Euclidean metric
(but see also [34]), the arbitrary scaling between shape and texture prevents the
use of a common Euclidean metric. To approach a common ordination of shape
and texture, we instead used a two-block partial least squares analysis (PLS
[35, 36]). PLS yields two linear combinations (each with squared coefficients
summing up to 1), one for shape and one for texture, that have the maximum
possible covariance. When scaling the two linear combinations via major axis
regression so that they also correspond in magnitude, the combined scaled
coefficient vectors can be interpreted as a common factor of joint variation (for
details see [37]). After projecting both shape and texture in the subspaces
perpendicular to these vectors, a second pair of vectors can be computed in the
same way, and similarly for further dimensions. We used the first two dimensions
of such a scaled PLS analysis to represent the joint variation of shape and texture.

All analyses and visualizations of shape and texture were computed in
Mathematica 9.0 (Wolfram Research Inc., Champaign, IL, USA)

Results

After estimating the semilandmark positions and superimposing the configura-
tions by Generalized Procrustes Analysis, the resulting shape coordinates were
averaged for each of the three age groups in order to estimate the age-specific mean
shapes. Fig. 2a illustrates how the average size of the fin fold and the musculature
increased relative to the notochord, and how the fin changed from a rounded to a
more triangular shape.

After registering all images to the same shape, texture can likewise be averaged
for the three age groups in order to estimate age-specific image texture, which, in
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our case, represents the spatial pattern of average cell density. While no fin rays
were visible at 21 dpf, they were partly formed at 40 dpf, and were extended
towards anterior at 56 dpf (Fig. 2b). The structures measured by (semi)landmarks
– the outlines of the fin fold, the musculature, and the notochord – necessarily are
perfectly registered. Note, however, how well the fin rays are registered by the TPS
interpolation, even though they were not measured by landmarks (compare these
averages with the individual images in S1, S2, S3 Figures).

In Fig. 2c, the average image textures are warped to the corresponding average
shape, allowing for the joint visualization of age-specific average shape and
average cell density.

The differences between the age groups, i.e., the developmental transformations,
can explicitly be visualized by superimposing a thin-plate spline deformation grid,
depicting developmental shape change, and a color map that represents increase
or decrease of cell density. For this purpose, the full color information for each
pixel was reduced to brightness (average of the RGB values). The higher the cell
density (number of projected stained cell nuclei), the darker the pixel will appear
and the lower the brightness will be. Fig. 3a shows the transformation from a
rounded to a more triangular fin shape between 21 dpf and 40 dpf, which was
associated with an average increase of cell density in the fin fold and a decrease of
cell density in the musculature and the notochord. Between 40 dpf and 56 dpf,
average cell density decreased in the musculature, the notochord, and also in
between the fin rays, while density increased inside the fin rays (Fig. 3b).

Fig. 2. Averages of fin shape, cell density, and both together. Average fin shape (first row), average cell
density (second row), and average fin shape together with average cell density (third row) for each of the three
age groups (the three columns). The structures measured by (semi)landmarks – the outlines of the fin fold, the
musculature, and the notochord – are perfectly registered, but note also how precisely the fin rays, which
emerge at 40 dpf, are registered by the TPS interpolation, even though they are not measured by landmarks.

doi:10.1371/journal.pone.0115076.g002
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The spatial pattern of individual variation of cell density is also visualized via a
color map (Fig. 4). Clearly, variation in cell density was not uniform across the
tail fin and differed between the age groups. This reflects different ongoing
developmental processes with varying degrees of canalization. At 21 dpf, the
variance in cell density was mainly located in the fin fold, whereas cell density in
the notochord and in the musculature was relatively similar in all individuals
(Fig. 4a). At 40 dpf, variation had increased in the musculature and, after the fin
rays had formed, cell density was more variable in between fin rays than within the
fin rays (Fig. 4b). At 56 dpf, variance of cell density in the musculature had
reduced again, whereas variation in between the fin rays had increased. Note that
due to the precise registration, variance is located within the assessed structures,
not at their boundaries.

The multivariate pattern of individual differences can be assessed by an
ordination analysis that yields a low-dimensional diagram in which the distances
between the individuals approximate a certain measure of multivariate
(dis)similarity. The shape metric typically used in geometric morphometrics is
Procrustes distance (approximated by the Euclidean distance between the sets of
shape coordinates [16]). As a metric for image texture, we likewise used the
Euclidean distance between the sets of RGB values [33], even though other
metrics, e.g. based on mutual information, are equally possible.

We used a between-group principal component analysis [32] to ordinate the
multivariate shape differences among the specimens (Fig. 5a). In the scatter plot
of the first two between-group principal components (PCs), each symbol
represents one individual, and the distance between two symbols approximates
the magnitude of overall shape difference between the respective individuals. The
first two PCs represent the shape distances among the three group means exactly
and account for 91% of total variation between the 20 individual shapes. The
shape features corresponding to the two axes are visualized by reconstructed
shapes along the corresponding axis locations. The scatter plot shows that –

Fig. 3. Visualization of average shape change together with average change of cell density. (A)
Between 21 dpf and 40 dpf and (B) between 40 dpf and 56 dpf. The deformation grid shows how the shape of
the fin changed from a rounded to a more triangular shape during both periods. Changes of cell density are
represented by the color map. From 21 to 40 dpf, cell density increased (blue) in the fin, whereas it decreased
(red) in the musculature and the notochord. From 40 to 56 dpf, cell density increased in the fin rays and
decreased in between.

doi:10.1371/journal.pone.0115076.g003
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despite considerable individual variation – the three age groups differed in average
fin shape and were even separated without individual overlap. The groups differ
along PC 1, mainly representing the relative size increase of the fin fold, associated
with a shape change from a rounded to a triangular shape. More of these changes
had occurred between 21 dpf and 40 dpf as compared to the second period. The
second principal component, representing the shape of the fin fold independent of
its size, appeared considerably more variable at 21 dpf as compared with the two
later stages.

Fig. 5b shows the first two between-group principal components of the
registered images, which account for 58% of individual variation in image texture
(cell density) and for all the variation between the three group means. In the
scatter plot, the symbols represent individuals and the distances between them
approximate the magnitude of overall difference in texture. As for shape, the age
groups were clearly separated with regard to the spatial pattern of cell density.
Within the three age groups, the individuals varied mostly along PC1, which
resembles the average differences between 21 dpf and 40 dpf: a shift of cell density
from the musculature and the notochord towards the fin fold, along with the
formation of fin rays.

Fig. 5c provides a joint ordination of both shape and image texture, based on a
scaled partial least squares analysis (see Methods section). The visualizations along
the corresponding axes hence comprise differences in fin shape as well as in cell
density.

Quantitative developmental studies, such as our example, typically are
exploratory; statistical tests of the usual null-hypotheses do not bear much
biological relevance here. However, as already obvious from the ordination
analyses, permutation tests indicated significant group mean differences in shape
as well as in image texture between the age groups (P,0.0013 for each of the
pairwise comparisons, using the Euclidean distance between group means as test
statistic).

Fig. 4. Individual variation in cell density. The spatial pattern of variation in cell density is shown by a color map for each age group. (A) 21 dpf, (B) 40 dpf,
(C) 56 dpf. Variation in cell density was not uniform across the tail fin and differed between the age groups. At 21 dpf, the variance was concentrated in the
fin fold, whereas cell density was very similar across all individuals in the notochord and in the musculature. At 40 dpf and 56 dpf, variance between the fin
rays was higher than variance of cell density in the fin rays.

doi:10.1371/journal.pone.0115076.g004
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Discussion

Population models in evolutionary theory, genetics, and epidemiology are based
on quantitative representations of phenotypic and genetic variation. Yet variation
in embryological development and growth – the processes translating genetic
variation into phenotypic variation – is still poorly understood. In fact, it has

Fig. 5. Principal component analyses. Principal component analyses of (A) fin shape and (B) cell density,
as well as (C) a joint ordination of both fin shape and cell density based on a scaled partial least squares
analysis [37]. Each symbol in the scatter plots corresponds to one individual, and the distance between
individuals approximates the overall amount of shape difference or difference in cell density. The axes of
these plots correspond to patterns of shape change, to patterns of change in cell density, and to a combination
of both, respectively. These patterns are visualized by reconstructed shapes and cell density patterns along
the axes that correspond to the limits of variation occurring in the sample (approximately 3 standard deviations
from the mean).

doi:10.1371/journal.pone.0115076.g005
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rarely been addressed empirically. Nevertheless, it has been argued on theoretical
grounds that the properties of development assume a major role in shaping
phenotypic variation within and across populations [1–8]. For example, the vast
amount of genetic variation is assumed to be ‘‘funneled’’ and structured by the
limited number of possible developmental pathways into a much lower-
dimensional pattern of phenotypic variation [2, 38]. Strong developmental
constraints on the expression of genetic variation may even cause phenotypic
stasis [39]. Already in the mid-20th century, C. H. Waddington [40] emphasized
the importance of developmental canalization for buffering genetic and
environmental variation and the accumulation of cryptic genetic variation, but the
actual molecular and developmental mechanisms underlying canalization are still
not well understood. The pivotal role of the pattern of developmental variation in
humans has recently been adopted by the ‘‘Developmental Origin of Health and
Disease’’ paradigm [10, 11].

The study of developmental variation has been hampered by difficulties with
the quantification of embryological traits. Our morphometric approach combines
the strengths of geometric morphometrics and pixel- or voxel-based image
analysis. Well-defined tissue structures are described by the shape of their
boundaries, whereas diffuse spatial patterns, such as cell condensations or
molecular gradients, are described as scalar fields that are extracted from the
texture of the registered images. We demonstrated how to separately analyze
embryological shape and image texture (cell density), and we also outlined a
strategy for their joint analysis. The anatomical structures are perfectly registered
by our method and, hence, group averages of anatomical structures have well-
defined boundaries. Variance in image texture is concentrated within the
structures, not at their misaligned boundaries [26]. This separate parameteriza-
tion of shape and image texture resembles the approach in active appearance
models and related techniques [29, 30], but the biometric strategy originates from
geometric morphometrics [18, 41] and statistical parametric mapping in voxel-
based image analysis [22, 24].

In our application of GMIA we analyzed two-dimensional microscopic images.
The method can equally be used with other imaging methods, including 3D
imaging such as confocal microscopy and micro-CT [13, 14, 42]. Most
importantly, it can also be applied to staining methods more specific than the
hematoxylin used in our study. Other developmental techniques, such as in situ
hybridization or antibody staining, can also be combined with GMIA and will
permit the statistical analysis of spatial patterns of gene expression within a
population of developing embryos.

Several components of the GMIA approach, most notably the registration of the
images in between the landmarks, were based on the TPS interpolation. This
algorithm has proved powerful in multiple morphometric contexts, and it worked
excellently for registering the fin rays in our application. But the algorithm
originated in material physics [27] and may not be optimal in all biological
contexts. Likewise, the way in which we transformed RGB values and differences
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between RGB values into scalar values worked well for our images, but it may
need adjustment for other staining and imaging techniques.

By applying GMIA to a sample of rainbow trout tail fins, we were able to
demonstrate how average fin shape and average cell density changed within a
period of 35 days. These changes include the emergence of the fin rays as novel
tissue structures between 21 and 40 dpf, a process associated with a general shift
of cell density from the musculature to the fin fold (Figs. 2 and 3). Inter-
individual variation of cell density was highly spatially structured and temporally
dynamic throughout the investigated period (Fig. 4; compare also [43]). For
example, the average increase of cell density within the fin fold between 21 and
40 dpf was accompanied by a reduction (canalization) of variation in cell density
in the fin fold and with a temporary increase of variation in the musculature.
Between 40 and 56 dpf, variation in the musculature decreased again. The
ordination analyses (Fig. 5) demonstrate that the individuals clearly separated
between the age groups, even though this separation was more pronounced for
shape than for cell density. Within the limits of the small sample, these analyses
further indicate that variation along PC2 of shape (i.e., rounded versus triangular
shape of the fin fold, independent of its relative size) canalized within the observed
age range, whereas no such general trend was apparent for cell density.

In order to verify these results, we produced histological sections along the
frontal plane for one fish of each age class. Between 21 and 40 dpf, the tail fin
became thicker and the density of mesenchymal cells increased. Also, the number
of mucous glands increased. The myotomes decreased in width relative to the
notochord. This corresponds well to our results of increasing (projected) cell
density in the fin fold and decreasing density in the musculature. Between 40 and
56 dpf, the relative thickness of the myotomes increased again, associated with an
increase of visible muscle fibers by approximately 50%. The fin rays and the in-
between connective tissue were well differentiated at 40 and 56 dpf. Again, this is
represented by our results (Fig. 3).

Highly variable embryonic structures, resulting from variation in the onset,
tempo, or mode of developmental processes, are particularly responsive to
environmental or genetic disturbances and, hence, are promising candidates for
experimental studies. These loci of developmental variation constitute the pattern
of phenotypic variation that is subject to natural selection during development
and adulthood. But because tissues differ in their degrees of canalization, variation
generated at early developmental stages is not equally maintained during later
stages and may induce different evolutionary dynamics (see also [44, 45]).

GMIA presents itself as a powerful biometric tool for studying variation in
organismal shape in concert with variation in the spatial patterns of various tissue
properties. This approach may foster research in an emerging field of biomedical
science, the study of developmental variation, which, at the same time, is central
to any formal connection between evolutionary and developmental biology. More
generally, the inherent strategy underlying GMIA can be used to study the
statistical properties of various scalar fields, vector fields, or even tensor fields
embedded within in the geometries of different organisms. This includes color
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patterns, such as in butterfly wings or in human facial skin, or even biomechanical
properties, such as the distribution of stress and strain in samples of adult or
subadult individuals (e.g., [46, 47]). This capacity of GMIA – the combined
registration of variation in embryonic shape, gene expression, and physical
properties of cell and tissue masses – can foster the integration of developmental
biology and EvoDevo with the population genetic account of evolutionary theory.
It may thus provide an important element of an expanded formal framework, or
an Extended Synthesis [8] of evolutionary theory.

Supporting Information

S1 Figure. Images of the 21 dpf specimens.
doi:10.1371/journal.pone.0115076.s001 (TIF)

S2 Figure. Images of the 40 dpf specimens.
doi:10.1371/journal.pone.0115076.s002 (TIF)

S3 Figure. Images of the 56 dpf specimens.
doi:10.1371/journal.pone.0115076.s003 (TIF)
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