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Abstract

Macros are a powerful tool for generating code that would be difficult or
tedious to write by hand. Rust is a programming language that supports
a macro system called procedural macros. The programmer can define a
procedural macro by using standard Rust code on a stream of tokens and
thus does not have to rely on a domain-specific language for writing macros.

Usually, when someone wants to write procedural macros, they would
use the libraries syn and quote. syn is a library for parsing token streams to
data structures, and quote reads data structures and produce token streams.
Both libraries are useful because of the flexibility they offer. However, they
don’t solve some of the hard problems with macros in Rust that arise from
dealing with lifetimes and generics.

This thesis introduces a new library called reflect that is designed to deal
with some of the hard problems with procedural macros.
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Chapter 1

Introduction

A macro is a function that accepts a sequence of symbols, and outputs
a sequence of symbols. The output of a macro is usually code for the
programming language the macro was written in, but it could be anything.
Macros are commonly used for writing abstractions that are hard or
impossible to express using standard code.

Rust [12] is a modern programming language with support for macros.
There are two kinds of macros in Rust, declarative macros and procedural
macros. Declarative macros, also known as macros by example, are defined
using a particular domain-specific language. They are useful when writing
macros for syntactical transformations, but should be avoided when we need
to do more complicated analysis. Procedural macros, on the other hand,
accept a token stream as input, that we can parse using standard Rust
code. Since we can use Rust code to make procedural macros, and are
not limited by a domain-specific language, it offers more flexibility than
declarative macros.

A subset of procedural macros in Rust are called derive macros. Their
purpose is to add functionality associated with a Rust type. A derive macro
takes the token stream of a type definition as input, and produces output
that adds functionality for that type. Writing these kinds of macros can
be difficult. One complication has to do with Rust’s complex type system,
especially when dealing with generics and lifetimes. Since the input of derive
macros may be a generic type, the macro will most likely have to deal with
generics, sometimes in complex ways.

With the ecosystem surrounding Rust today, we have some good choices
when it comes to parsing macro input, and producing macro output. This
is usually done using the libraries syn [20] and quote [19]. The library syn
allows for easy parsing of macro input, and quote can read data structures
and produce valid macro output. However, they don’t offer any tools for
reasoning about types and generics. The macro author have to figure out
where to place every type parameter, lifetime parameter, what constraints
there are, and where to place every bracket, parentheses and semicolon in the
generated code. Because of the complexity of Rust, making robust macros
requires extensive knowledge of the language.

This thesis proposes another tool for making derive macros, a library
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called reflect. The reflect library uses a programming model that is inspired
by reflection APIs in other languages such as Java and Go. Reflection is a
technique that lets a program inspect or modify its own types and structures,
either during runtime or compile time. When using reflect, the user does not
have to think about generics. Instead, when the user of the API accesses
a field or invokes a function, the values they produce should act as if they
have been resolved to a concrete type, even if the type contains generic
parameters. The promise of reflect is that if a user of the API can produce
a macro that works for non-generic types, it should work for any generic
types as well, without having to do additional work.

1.1 Goals and Contributions
The initial implementation for reflect was made by David Tolnay a couple
of years ago. It was a proof of concept for an alternative way of making
derive macros. The idea was to allow people without extensive knowledge
of Rust to make robust macros with little effort. Even people with more
knowledge of Rust could use the library to produce code with equal quality
as if they had used syn and quote, but with fewer lines of code, and less
room for errors.

About a year ago, David Tolnay offered me to work on the reflect library
as my master thesis project. After I had gotten a look at the project, I knew
it was something I wanted to work on, so I took him up on his offer.

When I started working on the project, the reflect library could barely
produce working code for some simple examples using structs with named
fields, without any generics. He had laid down a good foundation for the
project, although it was incomplete. After I started working on the project,
I have primarily been working on it alone. David Tolnay has been busy
with other projects, but he has made minor changes here and there. I have
probably made changes to every file in the reflect library, although there are
places where I have made more substantial contributions than others.

The areas where I have contributed the most are:

• Parsing related to generics, lifetimes and traits. This also includes
defining every data structure related to generics, lifetimes and traits.

• Making inferences related to generic types, lifetimes and traits, and
generating generic trait bounds in the output code.

• Internal data type changes, as well as changes to the memory layout.
This includes adding a global memory storage for certain types.

My goals for this thesis have been to provide a simpler way of making
certain kinds of derive macros in Rust, through the reflect library. The
library achieves this by abstracting away details that macro authors usually
have to consider. Particularly, details related to generic code. I have focused
primarily on supporting generics and lifetimes, since this was not supported
when I began working in the project. It is also a selling feature of reflect
and perhaps the biggest reason why someone would want to use it.
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I am the only contributor to generics, lifetimes, and traits, but David
Tolnay is has had the biggest influence on the overall architecture. He also
wrote most of the code for the code generation, which I haven’t changed
that much since he wrote it. However, I have modified substantial parts of
the code and data structures, in addition to my work on generics. Therefore,
the architecture is not exactly the same as when I started, although it takes
a lot of inspiration of how it used to be. Lastly, it should be noted that
reflect is still a work in progress, with important missing features, and is
therefore not a replacement for other approaches to making macros just yet.
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Chapter 2

Background

Since this thesis is mainly about the reflect library and Rust macros, a
basic understanding of the Rust language is helpful. The quality of a
macro is usually dependent on how well the macro author understands Rust.
Although reflect is supposed to change that, it is helpful to have a good
understanding of Rust’s syntax and semantics to see how the library works.
To abstract away the finer details of the language for the library users, one
must first understand them.

This chapter will be an introduction to the Rust programming language.
We start simple with some basic concepts, like structs and functions, and
move on to concepts that are more unique to Rust, like borrowing and
lifetimes. After that, we will look at the different kinds of macros that Rust
has to offer, as well as some often used libraries for making macros in Rust.
The chapter ends with an overview of reflection, since that is a concept
which is relevant for the reflect library.

It should be noted that this chapter is not a complete introduction,
although it tries to include what is necessary to understand the rest of the
thesis. If the reader wants a more comprehensive introduction to Rust, I
would recommend checking out The Rust Programming Language [9], also
known as The Book. Rust by Example [13] is a useful resource for someone
who prefers a more practical introduction to the language.

2.1 The Rust Programming Language

Rust is a modern open-source programming language backed by Mozilla. It
has a rich type system, and supports programming in multiple paradigms,
including functional and procedural. The language offers high-level features
like closures and iterators, as well as low-level control if the programmer
needs it. The low-level features include library support for SIMD
instructions, and inline assembly. The combined features of Rust is enough
to make an operating system [11].

Rust is unique for being the only mainstream programming language
without a garbage collector, that is also memory safe. Memory safety, in
this case, means that the program can only access memory that has been
initialized, and not memory that has been invalidated. This means no null
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pointer exceptions, no dangling pointers, and no segfaults. The borrowing
semantics in Rust also makes it impossible to get race conditions in parallel
code, although it doesn’t prevent deadlocks.

Some other selling points of using Rust are performance and tooling. A
Rust program performs comparably to that of a well-written C program.
When it comes to tooling, Cargo [2] is a package manager and build tool for
Rust that makes managing dependencies and building projects fairly easy.
There is also rustfmt [15] for auto-formatting code, clippy [4] for linting, and
several other tools that makes the developing experience smoother. Another
thing worth mentioning is that the Rust compiler probably has the best
error messages I’ve encountered. The error messages usually give detailed
information on why a program doesn’t compile, and what part of the code is
likely to have caused it. The messages also link to a reference with examples
of how to resolve that specific issue. For anyone who has struggled with
writing Rust code, this is especially important, as it can be harder to get
Rust code to compile than other languages.

In the following sections, we will take a look at the basics of Rust.

2.2 Packages, Crates, and Modules
A crate in Rust is either a binary or a library. Crates are used to group
together similar functionality. Packages contains one or more crates. A
package can contain more than one binary crate and contain zero or one
library crates. It must, however, contain at least one crate. The build
instructions of a package is provided in a Cargo.toml file.

The cargo command-line tool can be used to initialize a new package.
It can also be used to upload crates to the crates.io web page, which is the
primary place for sharing and downloading crates.

Crates can be subdivided into modules. Modules provide a more fine-
grained control of how to divide the content of a crate. If we want to divide
a crate into several files, each file becomes a module. It is also possible to
define modules inside other modules.

The use keyword is used to bring something into scope. If I were
to write use std::collections::HashMap; in program, I could now use
HashMap instead of std::collections::HashMap in my program. I could
also choose to only bring the module collections into scope, by writing
use std::collections;. Now I can refer to the same type by writing
collections::HashMap, or if I want a different kind of map I can write
collections::BTreeMap.

2.3 Structs
A struct in Rust is a collection of data, similar to structs in C
and C++. There are three different kinds of structs. Structs with
named fields as in Listing 2.1, structs with unnamed fields like this:
struct Person2(String, usize), or unit structs: struct Unit, that
does not have any fields.
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struct Person {
name: String,
age: usize,

}

Listing 2.1: Struct with named fields

2.4 Enums

Enums are types that can represent one of several possible variants. In some
languages, enums are referred to as tagged unions, and in Haskell they go by
the name of algebraic datatypes. In any case, the different names represents
the same concept. The difference between enums in Rust and enums in Java
or C, is that with enums in Rust the variants may have parameters which
may be any Rust type where the size of the type is known at compile time,
including other enums. This means that enums can be defined recursively.

Listing 2.2 shows how we can define an enum called Request. A value
of type Request can either be the value Pending, Result(result) or
Error(err), where result and err are values of type String.

enum Request {
Pending,
Result(String),
Error(String),

}

Listing 2.2: Request enum with three variants

When working with enums we often want to perform different actions
based what variant a certain enum value is. We can do this by using match
expressions. A match expression have several match arms on the form:
Pattern => Expression. The Pattern describes what variant(s) can be
matched on that arm, and the Expression is the code that gets executed
if there is a match. The match arms must be able to match any possible
patterns a value may have, otherwise the program won’t compile. To match
any remaining patterns we can use the _ pattern, that matches anything.
Listing 2.3 shows how we can match on an incoming request.

match request {
Pending => println!("Pending, please wait"),
Result(result) => println!("Result: {}", result),
Error(err) => println!("Unexpected error!: {}", err),

}

Listing 2.3: Matching on Request
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2.5 Unions
Unions in Rust are like unions in C, and exist primarily to be compatible
with C unions. Syntactically, they are declared in the same way as structs
with named fields, except that the struct keyword is replaced with union.
Like enums, a union can be one of several types. Unlike enums, unions can
not be matched during runtime to see which type it is. Therefore, accessing
a union field is not memory safe and must be done inside an unsafe blocki.

2.6 Functions and Methods
Rust has functions and methods. Methods are functions that are attached
to objects and can be defined within an impl block. Every method has
a self parameter which refers to the type that the method is being
implemented for. A difference between a function and a method is that
a method can be called like this: value.method(param1, ...), where
the value is assigned to the self argument. It can also be called like this
TypeName::method(value, param1, ...), where the method is prefixed
with the type it has been implemented for, and the self argument is moved
to the front of the argument list, instead of appearing before the method
name.

A function is just like a method, but without a self parameter. It
can be defined within the top level of a module or within an impl block.
If a function is defined within an impl block it can be called like this:
TypeName::function(param1, ...), otherwise it can be called like this:
function(param1, ...). When a function is defined at the top level of a
module, which means it is not inside an impl block, I will refer to it as a
standalone function.

Listing 2.4 shows an example of a standalone function, and Listing 2.5
shows a method definition in an impl block, and two ways of calling that
method.

fn hello() {
println!("Hello, world!")

}

Listing 2.4: Hello world function

iIn simple terms: an unsafe block lets you write code that is potentially not memory
safe.
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impl Request {
fn is_pending(&self) -> bool {

match self {
Request::Pending => true,
_ => false,

}
}

}
// Two different ways to call the same method
assert!(Request::Pending.is_pending());
assert!(Request::is_pending(&Request::Pending));

Listing 2.5: Request impl

2.7 Ownership and Borrowing

Rust has a concept of ownership of values. A value is owned by exactly
one variable at a given time. A value can change ownership, but can never
have two owners at the same time. In Listing 2.6 the string "Hello" is first
owned by the variable s1, and then the ownership is handed over to s2.
Trying to use s1 after the change of ownership would result in a compile
error.

let s1 = String::from("Hello");
let s2 = s1;

Listing 2.6: String ownership

When an owned value goes out of scope the drop method is called on that
value, which is responsible for releasing all the resources, including memory
that is on the heap, for that value.

It is also possible to get access to a value without changing ownership.
We can borrow a value by using the & operator. A borrowed value is also
referred to as a reference. If we had written let s2 = &s1; in Listing 2.6,
s1 would still be the owner of the string. We can have several references
to the same value at the same time, so it is more convenient than passing
the owned value back and forth all the time. For this reason, these kinds of
references are also known as shared references. We cannot, however, mutate
the value referenced by a shared reference. If we want to mutate a value we
need to use a mutable reference.

let mut s1 = String::from("Hello");
let s2 = &mut s1;
s2.push_str(", World!");

Listing 2.7: Mutable String reference
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Listing 2.7 shows the syntax for how to do this. There is one restriction
that comes with mutable references, and that is if a mutable reference exists
for a value at a given time, no other references may reference that value
at the same time. This is more strict than most languages, but one of the
benefits of this is that race conditions can be prevented during compile time,
since no two threads can have a mutable reference to the same data. There
are workarounds to lessen this restriction, but then we have to use unsafe
blocks.

2.8 Generics

Like many other languages, Rust has support for generics. We can think
of generic things as templates with placeholders that can be swapped out
for something concrete. In Rust, we have generic type parameters that
act as a placeholder for some unspecified type. These are usually just a
single uppercase letter like: T, U, or S, but any Rust identifier can be used
as a type parameter. Sometimes we may want to have a type parameter
with a more descriptive name like ReturnType. There are also generic
lifetime parameters, that represents some yet unspecified lifetime. A lifetime
parameter is written with a leading apostrophe followed by an identifier.
Commonly the identifier is just a single lowercase letter so we often see
lifetime parameters like 'a, and 'b.

There are several places where generics can be used. There are generic
types, like Vec<T>, generic functions, generic traits and generic impl blocks.
See examples in Listing 2.8.

// Generic function
fn identity<T>(value: T) -> T {

value
}

// Generic trait
trait From<T> {

fn from(value: T) -> Self;
}

// Generic impl
impl<T> Vec<T> {

fn push(value: T) {
// Definition goes here

}
}

Listing 2.8: Examples of generics
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2.9 Traits

A trait is a collection of methods that can be implemented for a type. Traits
are similar to interfaces in Java or typeclasses in Haskell. The benefit of using
traits, is that they mix well with generics. Say we want to make a function
called square, that takes a number and squares it. If we implemented it for
the type i32 it would look like this:

fn square(num: i32) -> i32 {
num * num

}

This is fine if we only ever want to multiply numbers of type i32, but
we may also want to multiply u32 and i64 as well. Instead we can rewrite
the function like this:

use std::ops::Mul;
fn square<T>(num: T) -> <T as Mul>::Output
where

T: Mul,
T: Copy,

{
num * num

}

There are a few things going on in this function. First of all, the function
takes a value num of the generic type T. Secondly, the input must satisfy
all the constraints in the where clause. For us to be able to multiply the
input, T must implement the Mul trait. The num * num is just syntactic
sugar for num.mul(num), where mul is the method that is defined in Mul.
We also have the constraint that T must implement Copy. This lets us
automatically copy num to more than one place without moving the value.
All the number types implement Copy, so this is not a problem. We also see
that the return value of the function is <T as Mul>::Output. This may
look a bit confusing, so let’s first look at the definition of Mul.

pub trait Mul<Rhs = Self> {
type Output;
fn mul(self, rhs: Rhs) -> Self::Output;

}

The declaration: type Output; means that we have an associated type
called Output that is bound to the trait. Any type T that implements Mul
must choose what the Output shall type be for T. The return value of mul
is Self::Output, which means that the returned value of the function is
whatever the Output type is for the type implementing the trait. For this
trait, the output type is usually the same type as the input types. but it
doesn’t have to be.
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This trait also takes an optional generic parameter Rhs, that defaults to
the type of Self. Self is the same type as the type implementing the trait.

The return value <T as Mul>::Output is the associated type Output,
when T is seen as a Mul type. When T is i32, both the Rhs type, and Output
type is i32.

2.10 Lifetimes

Most programming languages have a concept of lifetimes, although it is not
always made explicit for the user of the language. In short, a lifetime is the
duration in which a value is live and can be accessed. In garbage-collected
[7] languages, the programmer does not need to think about the lifetimes of
values most of the time, since the runtime makes sure that the values live
long enough so that any variable referencing that value can access it. Only
when every reference to that value has gone out of scope, or been cleared
in some way, then the value can be dropped. Depending on how eager the
garbage collector is, the value may live until the end of the program, or be
cleared right away. It could also be cleared some time in between.

Rust does not use a garbage collector, and the lifetimes of values must
be managed another way. The lifetime of an owned value begins when it
is created and ends when no variable has ownership of that value anymore.
The lifetime of a reference must end before the value it is referencing. It is
possible to extend the lifetime of a value by purposefully leaking it.

One thing that is different in Rust from most other programming
languages, is that lifetimes can be a part of a type. All reference types
and types containing references have lifetime parameters, either explicitly
or implicitly. In addition to this, types can also be bounded by one or
more lifetime parameters. Lifetime parameters can be declared and used
in a function signature, a type declaration, a trait declaration, or an impl
block. A lifetime parameter does not represent a concrete lifetime, but is
generic over any lifetime, like a type parameter is generic over any type. The
only concrete lifetime parameter is the 'static lifetime, which represents
the lifetime of the program execution. Even though we cannot specify a
concrete lifetime for a lifetime parameter, every lifetime parameter will be
instantiated with a concrete lifetime by the compiler.

When the compiler type checks a program, it will ensure that the
concrete lifetimes for every value will not lead to access of invalidated
memory. It also makes sure that any lifetime constraints written by the
programmer is upheld.

Some types, including all reference types, are generic over one or more
lifetimes. Take for example the function signature:
fn fun<'a, 'b>(s1: &'a str, ref2: &'b str). The function fun is
generic over two possibly distinct lifetimes 'a and 'b, where s1 has to be
live for the duration of some lifetime 'a and s2 must be live for the duration
of some lifetime 'b, however long that may be. The actual lifetimes gets
decided at the call site, and depends on the lifetimes of the incoming values
s1 and s2.
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2.10.1 Lifetime Elision

In some cases we don’t have to explicitly write down the lifetime parameters
in a function signature. This is referred to as lifetime elision. There are three
rules for lifetime elision. These are:

• Every input type of the function where the lifetime has been elided
gets assigned a new lifetime.

• If the signature of the function has exactly one lifetime position,
whether it is elided or not, this lifetime gets assigned to every elided
lifetime in the output type.

• If the first parameter of a method is &self or &mut self, the lifetime
of the self parameter is assigned to every elided lifetime in the output
type.

• Otherwise, eliding the lifetimes of an output type is an error.

Because of the elision rules we could have written the signature for fun
like this: fn fun(s1: &str, ref2: &str).

2.10.2 Lifetime Bounds

Both types and lifetimes can be bound by other lifetimes. Let 'a, 'b and
'c be lifetime parameters, and T be any type. If I were to write 'a: 'b, it
means 'a is bound by the lifetime 'b, or 'a outlives 'b. More concretely 'a
has to be live for the entire duration of 'b, and possibly longer. A lifetime
can be bound by more than one lifetime as well. To express that 'a is bound
by both 'b and 'c, I could write 'a: 'b and 'a: 'c, or just 'a: 'b + 'c.

There is a difference in meaning when a type is bound by a lifetime,
compared to when a lifetime is bound by a lifetime. When a type T is
bound by a lifetime 'a it does not mean that a value of type T outlives
'a. The meaning of T: 'a is that any variable containing a value of type T
must be dropped before the end of 'a. The reference type &'a T is bound
by the lifetime 'a, since any variable holding a value of type &'a T cannot
outlive 'a. If a value of type type &'a T could outlive 'a, dereferencing
that value could mean accessing freed memory, or undefined behaviour. By
similar reasoning, we can see that any owned type is bound by the 'static
lifetime. As long as a value of an owned type is live, the memory for that
value cannot be invalidated.

2.10.3 Subtyping

In the previous section, we looked at lifetime bounds, but lifetimes and
types have subtyping [17] as well. For lifetimes, bounds and subtyping are
the same things. A lifetime parameter 'a is a subtype of 'b if 'a is bound
by 'b. Since the 'static lifetime last for the duration of an entire program
execution, it follows that the 'static lifetime is a subtype of every lifetime.

Lifetimes have some properties worth noting. A lifetime can have several
supertypes, that may or may not overlap. The subtype relation over lifetimes
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is reflexive, which means that 'a: 'a holds for every lifetime. It is also anti-
symmetric. If two lifetimes are a subtype of each other, they are the same
lifetime. Additionally, the subtype relation is transitive. If one lifetime
outlives another, and the second lifetime outlives a third, then the first
lifetime outlives the third. Because of these properties, lifetimes under the
subtype relation form a partially ordered set. This property will be used
later.

It may also be worth mentioning that lifetimes under the subtype relation
also form a lattice, but that is less important for the analysis we want to do
later. However, it is useful for doing the kind of lifetime analysis that the
Rust compiler does.

We have seen that lifetimes have subtyping, but types in Rust also have
subtyping relationships. Rust types don’t have subtypes in the sense that,
for example, Java has subtypes. We cannot define a type Cat, that is a
subtype of type Animal. Instead, the subtyping revolves around lifetimes,
so we can say that &'static Cat is a subtype of &'a Cat.

Intuitively, the way subtyping works is that anywhere we accept a certain
type, we also accept a subtype of that type. Say we have a function signature
like this:
fn fun2<'a>(s1: &'a str, s2: &'a str) -> &'a str. If Rust didn’t
have subtyping, this function would only accept two strings with the exact
same lifetime. This would essentially mean that s1 and s2 would need to be
the same reference, or they would both have to have the 'static lifetime.
In reality, the type of s1 and s2 must have a lifetime that is a subtype of
some lifetime 'a, and the return type must have a lifetime that is a subtype
of 'a. The concrete lifetime represented by the parameter 'a is chosen to
be the longest lifetime that satisfies these constraints. This means that the
returned value must live at least as long as the shortest living value of it’s
input parameters.

When looking at the signature of fun2, it might become more apparent
why a longer lifetime is a subtype of a shorter lifetime. If a function expects a
value that lives for a certain amount of time, and it happens to live longer,
this won’t lead to reading invalid data. However, if a function expects a
value that has the 'static lifetime, but we give it a value with a shorter
lifetime, this could lead to memory bugs down the line.

2.10.4 Variance

Variance is concept related to subtyping and type constructors. Since we
haven’t defined what a type constructor is, we should do that first. A type
constructor is a type-level function, that takes one or more parameters and
returns a type as output. Vec is a type constructor that when given a type
T produce the type Vec<T>, and & produce a type when given a lifetime
and a type as input. The variance of a type constructor affects the subtype
relation when the type constructor has been applied to its arguments.

Let F be an arbitrary type constructor and Sub be a subtype of type
Super.
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• F is covariant if F<Sub> is a subtype of F<Super>.

• F is contravariant if F<Super> is a subtype of F<Sub>.

• F is invariant if F does not have a subtype relation.

Different type constructors in Rust have different kinds of variance. Here
are a few of them:

'a T U
&'a T covariant covariant

&'a mut T covariant invariant
Vec<T> covariant
Cell<T> invariant

fn(T) -> U contravariant covariant

Table 2.9: Variance tableii

We see from the table that shared references are covariant, in both the
lifetime parameter and the type parameter, which is what we would expect.
Furthermore, we see that mutable references are covariant when it comes
to the lifetime parameter, but invariant when it comes to the type being
referenced. The reason for this may not be obvious, so to see why this must
be the case, let’s take a look at the function in Listing 2.10.

fn assign_str<'a, 'b>(
mut s1: &'a mut &'b str,
s2: &'a mut &'static str,

) {
let s3 = *s1;
s1 = s2; // This causes a compile error
*s1 = s3; // Not good

}

Listing 2.10: Illegal function

The problem with assign_str is that after the function has been called,
the value being referenced by s2 is now referencing a &str with a lifetime
that may live shorter than the 'static lifetime. This could lead to memory
corruption further down the line. Since mutable references are invariant
for the type being referenced, this error is caught at compile time. The
problematic line of this function is assigning s2 to s1. If I comment out this
line, the code compiles.

I will not go into detail about why the other type constructors have the
variance they have. However, I would like to draw some attention to the
fact that the generic types Vec<T> and Cell<T> have a different kind of
variance for the type parameter T, since Vec<T> and Cell<T> are both path

iiThe Variance table is heavily inspired by the table in the subtyping chapter in the
Rustonomicon [17].
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types. When it comes to path types, or types containing path types, we
cannot know their variance without knowing how they were implemented.
Later on, we will assume a generic type is invariant if we don’t know its
exact variance.

2.11 Macros

A macro in the context of programming languages is a function that
takes a sequence of symbols, and replaces them with another sequence of
symbols. The process of replacing the sequence with another is called a
macro expansion. The primary purpose of using macros in a program is to
transform a pattern into working code. Since macros produce code, they
are technically redundant, since every macro invocation can be rewritten by
hand and replaced with actual code. At least this is the case for languages
where macro expansion happens at compile time. However, macros can
allow for programming patterns that would be impractical without them.

In Rust, macros are used extensively, although we can get far with
Rust without ever defining a macro ourselves. They can be seen as an
extension of the language that lets us make abstractions that aren’t possible
to express with standard Rust. The first example of a macro that most new
programmers run into is the println!macro. This macro performs a similar
role as the printf function in C. The reason println! has to be a macro,
and cannot be a normal function is because it takes a variable number of
arguments, which is not supported by standard Rust. For example, we can
call println!("Hello, world!"), and println!("Hello, !", name).
In this case, we assume that the variable name contains a string value. It
can also do compile-time checks to see if the formatted string is correctly
defined, and that the macro call has the correct amount of variables. It auto
references variables as well, which normal functions don’t do.

There are other use cases for macros as well. For example, they can
reduce boilerplate code if we find ourselves writing the same code repeatedly,
but with tiny variations. If that cannot be generalized to a function, it can
most likely be written as a macro instead. Macros can also be used to make
domain-specific languages. There are several examples of this in the Rust
ecosystem. The library SQLx [16] exposes a macro that lets us do compile-
time verification on SQL code, and can auto-generate anonymous record
types that can be used in our own Rust code. Since the output of the macro
is Rust code, it would be possible to write the code by hand, but it would be
more inconvenient and error-prone than letting the macro handle it instead.

One downside of using macros, especially procedural macros, is that they
can significantly increase compile times for a program or library, even if the
final binary is fast. The reason is that the macro code responsible for the
macro expansion can be quite complex. The compiler has to run code for
every macro call in the code. The expanded code then has to be compiled
afterward. Both the code expansion and increased code length means the
compiler has to do more work.

As mentioned earlier, there are two types of macros, declarative macros,
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and procedural macros. Procedural macros can be divided further into three
kinds of macros: function-like macros, attribute macros and derive macros.
The reflect library only supports derive macros, so these are the macros
most relevant for this thesis. The reason that there is more than one kind
of macros is because they serve different purposes. Declarative macros are
most useful when we want to generate a simple expression or statement, and
procedural macros are useful when we need to run arbitrary Rust code or do
something more complex. The following sections will give a brief overview
of the different kinds of macros in Rust.

2.12 Declarative Macros

Declarative macros, sometimes known simply as macros, are a kind of macros
that uses pattern matching on Rust syntax. Match expressions in non-macro
code, matches on runtime values instead. All declarations of declarative
macros starts with macro_rules!, followed by the name of the macro, and
a series of macro rules surrounded by brackets. Each macro rule has a
matcher that matches some syntax, and a transcriber that describes how
the syntax gets expanded if there is a match. The matcher and transcriber
are separated by the => token.

In Listing 2.11 we see a possible implementation of the vec! macro. It
is a simple macro that lets us initialize a Vec<T> with some values. The
vec! macro has exactly one match arm, so any call to vec! where the
input doesn’t match the first matcher would result in a compile error. The
vec! macro implementation is taken from an older version of The Rust
Programming Language [10].

macro_rules! vec {
( $( $x:expr ),* ) => {

{
let mut temp_vec = Vec::new();
$(

temp_vec.push($x);
)*
temp_vec

}
};

}

Listing 2.11: A possible vec! macro implementation

In a matcher, the $ token is used to mark the beginning of a metavariable
or a repetition, while other tokens are matched literally. When a matcher
contains syntax on the form: $ name : fragment specifier, then $ name is a
metavariable, and the fragment specifier determines what kind of syntax
fragment gets bound to the metavariable. Some of the valid fragment
specifiers are: expr, stmt and pat, which represents a Rust expression,
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a statement, and a pattern respectively. In the matcher in Listing 2.11, the
metavariable $:x gets bound to a Rust expression.

A repetition comes in the form of a matcher surrounded by $(...),
followed by a repetition operator, with an optional separator token in
between. The repetition $( $x:expr ) in Listing 2.11 matches zero or more
expressions separated by commas. The repetition operators are *, + and ?,
where *matches zero or more repetitions, +matches one or more repetitions,
and ? means that the matcher is optional. The metavariables inside a
repetition must appear the same number of times in the transcriber as in the
matcher. The expression $( temp_vec.push($x); )* in the transcriber of
the vec! definition gets replaced by a sequence of temp_vec.push($x);,
where $x is replaced with every expression it was bound to. For example,
calling vec![1, 1 + 1, 1 + 1 + 1] expands to the output in Listing 2.12.

{
let mut temp_vec = Vec::new();
temp_vec.push(1);
temp_vec.push(1 + 1);
temp_vec.push(1 + 1 + 1);
temp_vec

}

Listing 2.12: vec! expansion

We can also make declarative macros without repeating patterns. Let us
make a macro is_ident!, defined in Listing 2.13, that checks if something is
an ident. Calling the main function gives us the output in Listing 2.14. As
demonstrated by this example, it is possible to call macros inside a macro,
since println! is a macro. A macro can even call itself recursively.

macro_rules! is_ident {
( $i:ident ) => {

println!("{} is an identifier", stringify!($i))
};
( $t:tt ) => {

println!("{} is not an identifier", stringify!($t))
}

}

fn main() {
is_ident!(v);
is_ident!(10);

}

Listing 2.13: is_ident! macro

22



v is an identifier
10 is not an identifier

Listing 2.14: is_ident! output

2.12.1 Hygiene

Another thing worth mentioning is that Rust macros are hygienic. This
means that every variable gets a syntax context based on where it is defined.
For two variables to be considered equal, they must have the same name and
syntax context.

macro_rules! doesnt_shadow {
() => {

{
// syntax context 1
let a = 0;

}
}

}

fn main() {
// syntax context 2
let a = 10;
doesnt_shadow!();
println!("{}", a);

}

Listing 2.15: Hygiene example

In the example in Listing 2.15, the variable a that is declared inside
the macro definition has a different syntax context than the one defined in
the main function. Calling doesnt_shadow! in main will not shadow the a
variable defined outside the macro definition, which means the program will
output 10.

There are more things to be said about declarative macros, but I won’t
go into the details here. For a more thorough introduction to declarative
macros, see the Rust reference section about macros by example [14], or the
macro section in the old Rust book [10], or The Little Book of Rust Macros
[8].

2.13 Procedural Macros

Procedural macros are different from declarative macros. While declarative
macros let us match on Rust syntax and do simple transformations,
procedural macros let us run arbitrary Rust code on a stream of tokens.
Because of this, procedural macros are useful when we have to do more
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complicated things. There are three kinds of procedural macros, which
serve different purposes. These are: function-like macros, derive macros,
and attribute macros. A drawback of using procedural macros is that they
may increase compilation times by a significant amount. Another drawback
is that procedural macros must be defined inside a crate that only exports
procedural macros. Declarative macros, on the other hand, can be defined
in any crate type.

2.13.1 Hygiene

Procedural macros are unhygienic at the moment, which means that
procedural macros work as if someone had just copied the macro’s output
and pasted it into the code. This means the possibility of name clashes of
existing items in the code. Therefore, the macro author must be extra careful
in avoiding conflicts. There is current work on improving the situation by
giving the macro author an option to let identifiers resolve as if they were
defined at the macro definition site, as well as other hygiene options. The
API is currently unstable, and does not work on stable Rust. See [5] to see
the current status of hygiene in procedural macros.

2.13.2 Function-like Macros

A function-like macro can be invoked in the same manner as a declarative
macro. Even though they look like declarative macros, function-like macros
can not be invoked in the expression and statement position in a Rust
program. Thus, macros like vec! can not be made as a procedural macro.
This may change in the future, however. As of now, there exists a crate called
proc-macro-hack [18] that lets us write an alternative type of procedural
macros that works in the expression position.

Listing 2.16 shows an example of how to define a function-like macro.
Declarations of function-like macros must be labeled with the attribute
#[proc_macro]. The input to the function is a TokenStream, which is the
input to the macro during a macro invocation. The output, which is also a
TokenStream, replaces the whole macro invocation in the code where it is
called. The example call in Listing 2.17 is thus replaced by struct Secret.

#[proc_macro]
pub fn my_function_like(_item: TokenStream) -> TokenStream {

// Ignore input, and output a secret struct
"struct Secret".parse().unwrap()

}

Listing 2.16: Example definition of a function-like macro

24



// Calling a function like macro on some input
my_function_like! {

let a = 1 + 1;
trait MyTrait;

}

Listing 2.17: Procedural macro calls

2.13.3 Attributes

Before we go on to look at the following two kinds of procedural macros,
it is important to understand attributes and their role in Rust. Attributes
contain meta-information about the program and its syntactical structures.
There are two kinds of attributes. Outer attributes attach to the thing
following the attribute and are written like this: #[...]. Inner attributes,
written like this: #![...], are bound to the item in which it was declared.

Some useful attributes are the test attribute. Writing #[test] directly
preceding a function will mark it as a test function. Executing the command
cargo test in the terminal will run all the test functions and output how
many succeeded or failed. Running the command cargo build, on the
other hand, will build the project, except for any function marked with the
test attribute. The derive attribute is used for calling derive macros. The
arguments we give to the derive macro decides which derive macros gets
called on the item the attribute is attached to. Both of these attributes are
predefined, but we can also define attributes by defining attribute macros.

2.13.4 Derive Macros

It is possible to generate functionality for a data structure in Rust by
using the derive attribute. The derive attribute can be attached
to a struct, enum, or union. The arguments we give to the derive
attribute decides what gets derived for that particular data structure.
Attaching #[derive(Clone)] to a struct called MyStruct will generate
an implementation of the Clone trait for MyStruct. Giving additional
arguments to the derive attribute, will generate additional code for
MyStruct.

It is possible to make custom inputs to the derive attribute by defining
derive macros. A derive macro takes a TokenStream of a data structure
as input, and produces a TokenStream as output. A derive macro cannot
replace the data structure given as its input, but only add additional code.

Listing 2.18 shows a derive macro where we define a new input to the
derive macro, called Trivial. Since we attach #[derive(Trivial)] to
the struct NumPair, the my_trival_derive function gets called with a
TokenStream representation of the NumPair struct as input. The produced
output is the TokenStream representation of struct Trivial, which gets
compiled into the code.
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#[proc_macro_derive(Trivial)]
pub fn my_trival_derive(_item: TokenStream) -> TokenStream {

// Ignore input, and output a trivial struct
"struct Trivial".parse().unwrap()

}
...
// Calling a derive macro on a struct
#[derive(Trivial)]
struct NumPair {

num1: i32,
num2: i32,

}

Listing 2.18: Example a derive macro

2.13.5 Attribute Macros

It is possible to define new attributes with attribute macros. These attributes
are not limited to just structs, enums and unions, but can be attached
to other items as well, such as functions. An attribute macro is defined
by attaching the proc_macro_attribute attribute to a function with two
TokenStream parameters. The name of the function becomes the name
of the new attribute. The first argument is a TokenStream of the inputs
to the new attribute. In Listing 2.20, this would be a TokenStream of
inputs, to, attribute. The second argument is a TokenStream of the
item the attribute is attached to. That would correspond to a TokenStream
of fn func(_i: i32) {} in Listing 2.20.

Unlike a derive macro, an attribute macro consumes its input, and
replaces it with its output. Attribute macros are therefore useful, if we
want to modify code in some way. The attribute macro defined in Listing
2.19 returns the input without doing anything with it. However, as the
comment suggests, we could redefine the macro to inject code into the item
it gets as input.

#[proc_macro_attribute]
pub fn my_attribute_macro(

_attr: TokenStream,
item: TokenStream,

) -> TokenStream {
// TODO: inject scary code into item
item

}

Listing 2.19: An attribute macro definition
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// Calling an Attribute macro on a function
#[my_attrbute_macro(inputs, to, attribute)]
fn func(_i: i32) {}

Listing 2.20: An attribute macro invocation

2.14 The Libraries syn and quote

The most common way of writing procedural macros today is by using the
libraries syn [20] and quote [19]. syn is a parsing library, and can parse a
TokenStream representing a Rust program, or a part of a program, into an
abstract syntax tree. syn comes with types that represent the whole abstract
syntax tree of a Rust file, and parsers for parsing a whole Rust file or parts
of it. Parsers are made by implementing the Parse trait for a type one
wants to parse, and this trait is implemented for most of the syntax nodes
of the Rust abstract syntax tree. There is also the Parser trait (which is
not the same as the Parse trait), which is useful when a type can be parsed
in different ways depending on the context. For example, the Attribute
type can either represent an outer attribute, written like #[...], or an inner
attribute, written like #![...]. Parsing either of them in the wrong context
would be a bug, even though they are represented by the same type. The
Parser trait instead let us choose the appropriate parsing function for a
given context.

It is also possible to create our own parsers for domain-specific languages
using these traits. This comes in handy when writing function-like macros,
and it is used by the reflect library to create the library! macro.

quote is a library for converting types back into a TokenStream. Since
all procedural macros eventually have to return a TokenStream, having a
library specifically made for this purpose can be useful. The library exports
a couple of things, but most importantly, it exports the macro quote! and
the trait ToTokens. The quote! macro works in a functionally similar way
to the right-hand side of the => token in a declarative macro. Listing 2.21
shows an example of how to use syn and quote to make a derive macro for
printing all the names of the fields in a struct.

There are some things to unpack here in this example. First of all, this
macro creates a PrintFields input to the derive attribute, which means
we can put #[derive(PrintFields)] above a struct to implement the
print_field_names method for that struct. The statement:
let input = parse_macro_input!(input as DeriveInput); creates a
new variable input, which is the result of parsing the TokenStream as
a DeriveInput type. The DeriveInput type is a special type that can
represent a struct, an enum or a union, which are the only legal inputs for
a derive macro. The field_names function returns an iterator over all the
names in a field, represented as strings. The quote! macro converts it’s
input to a proc_macro2::TokenStream which is more or less identical to
proc_macro::TokenStream, except that it can be used outside the context
of a procedural macro, which is not the case for the latter type. The
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line following the quote! invocation, output.into() is simply a call for
converting the output from proc_macro2::TokenStream to
proc_macro::TokenStream, so the output type becomes correct.

There are some other things to note about the quote! macro. The #var
syntax is analogous to the $var syntax in declarative macros. If the type
of the variable var implements ToTokens, then if #var appears inside a
quote! macro invocation, the #var will be replaced by the variable’s token
representation. In our example #ident will be replaced by the name of the
incoming struct, enum or union.

quote! also supports the #(...)* and #(...),* syntax where ”,” can
be any separator. This behaves almost identically to the $(...)*, or
$(...),* syntax in declarative macros. In Listing 2.21, the pattern
#(println!(#field_names);)* inside the quote! invocation, expands to
the repeated pattern inside of #(...), where #field_names is successively
replaced with every output of the field_names iterator. This works for any
kind of iterator where the output type implements ToTokens.

When calling #[derive(PrintFields)] in Listing 2.22, the output
from the macro, shown in Listing 2.23, gets pasted into the code.
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use proc_macro::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Data, DeriveInput, Fields};

#[proc_macro_derive(PrintFields)]
pub fn derive_print_fields(input: TokenStream) -> TokenStream {

let input = parse_macro_input!(input as DeriveInput);
let ident = input.ident;
let field_names = field_names(input.data);

let output = quote! {
impl #ident {

fn print_field_names(&self) {
#(println!(#field_names);)*

}
}

};
output.into()

}

fn field_names(data: Data) -> impl Iterator<Item = String> {
match data {

Data::Struct(data) => match data.fields {
Fields::Named(fields) => fields

.named

.into_iter()

.map(|field| field.ident.unwrap().to_string()),
_ => unimplemented!(),

},
_ => unimplemented!(),

}
}

Listing 2.21: Example of using syn and quote in a derive macro
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fn main() {
#[derive(PrintFields)]
struct Book {

pages: usize,
description: String,
text: String,

}

let book = Book {
pages: 0,
description: String::new(),
text: String::new(),

};

book.print_field_names();
}
// outputs:
// pages
// description
// text

Listing 2.22: Example of deriving PrintFields

impl Book {
fn print_field_names(&self) {

println!("pages");
println!("description");
println!("text");

}
}

Listing 2.23: PrintFields macro expansion example
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2.15 Reflection

Reflection [3] refers to techniques that a program can use for inspecting
and modifying its code. More concretely, reflection gives the program a
meta-level view of that program itself. The program code and structures
are represented as meta-objects, and the process of making these objects
available for the running program is called reification. The meta-objects
may represent classes, structs, functions, types, or other things that can be
represented in a program. These objects may be inspected, (also known
as introspection), or modified. Fields can be added or removed, and
function definitions may be changed. Reflection can either be structural or
behavioral. Structural reflection refers to inspecting or modifying structural
aspects, like adding additional fields to a struct, or changing a type-signature
in function. Behavioral reflection refers to modifying the language’s behavior
by, for example, modifying the semantics of function calls to always print
the values of its inputs before executing its function body.

Several languages have reflective capabilities of various kinds. Assembly
languages are an example of inherently reflective languages since they
interpret bits in any way they like and can modify its own code. Some higher-
level languages also have reflective capabilities, but to varying degrees.

Typical operations are being able to inspect and/or modify fields of an
unknown class or create new class or object instances during the program’s
runtime.

Another use case for reflection is updating functionality on a process
running at a remote location. A process on one machine could serialize code
and send it to a process on another machine. The receiving process could
deserialize this code during runtime, run it directly, or use it in some other
way or form. In this way, one program can inject functionality into another
program, without having to stop and recompile the program. This leads to
more flexibility, but also comes with downsides such as security risks, like
injecting malicious code, and potentially reduced performance.

2.15.1 Performance

In its most general form, reflection comes at some runtime cost. The runtime
system needs to keep track of meta-information about objects and classes,
and if fields have been added during runtime. There are ways of mitigating
these costs. One way is to restrict the reflective capabilities of the language.
If only introspection is allowed, then most, or all the type information may
be known at compile-time. Most classes can be compiled to efficient machine
code, even if the language has broader support for reflection. A compiler may
determine that only certain classes or parts of the program use reflection,
and will not have to generate meta-objects for all classes, but only for those
that may need them.
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2.15.2 Compile-time Reflection

For some use cases, it may be enough to only use reflection for things known
at compile time. In a statically typed language, the compiler has type
information of all the types and structures available in the source code
it is compiling. Therefore, it may be possible for the program to inspect
and modify its own structures before the program is compiled. When
the program is compiled, type information can be erased, and no meta-
objects needs to be available during runtime, since the reflection happens
as a preprocessing stage in the compilation. There are limitations to this
approach compared to runtime reflection, as it cannot modify or create
new types based on things that may only be known at runtime like user
input. On the other hand, it offers more flexibility than without reflection,
and an efficient implementation may not add any runtime cost, compared
to similarly handwritten code. It then boils down to what is important,
flexibility, or runtime performance.

2.15.3 Rust Macros and Reflection

Rust has some built-in capabilities for reflection, although it has fairly
limited functionality. There is a module named std::any, which exposes the
Any trait which is implemented by most Rust types, as well as the function
type_name. The function type_name tries to give a descriptive name for a
type, but it gives no guarantees that two distinct types have distinct names.
Therefore, it should only be used for diagnostic purposes. For types that
implement the Any trait, it is possible to see if something is a specific type,
as well as downcasting to a specific type during runtime. Other than that,
Rust has no other capabilities for reflection.

Even if Rust had better support for reflection, reflection and macros
fill slightly different niches. Reflection is most useful when we want to get
accurate information about types and their structures. A use case can be
modifying or adding fields to a type. It can also be used to compare the
types of different values and perform different actions depending on the type
of each value.

Macros can be used in similar situations as reflection, since both derive
macros and attribute macros let us inspect Rust code in a program, and
attribute macros even allows us to modify the code. However, macros have
some fundamental limitations over reflection. A macro can only see the
tokens it is given. Even though the tokens can be parsed to an accurate
representation of the code inside the program, some of the context is lost.
For example, if a macro receives the tokens of a struct, it can see all the
fields and their types, but it cannot know how those types are defined. It
doesn’t know the visibility of any of the types, or whether they are defined
in the current crate, or somewhere else. These things don’t always matter,
but they sometimes do.

What is lost in terms of accuracy can be gained in flexibility. Since
macros works on tokens, these tokens don’t have to represent Rust code, but
can represent almost any arbitrary domain-specific language. I say almost,
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because there are a few restrictions on what we can write inside a macro
invocation. For example, an open bracket must have a corresponding closing
bracket. Other than a few limitations, we can define any domain-specific
language we want. Another advantage is that macro expansion happens
at compile-time, and thus compile-time optimizations can be performed on
the generated code. This is only an advantage over runtime reflection, as
compile-time reflection already has the same advantage.
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Chapter 3

The reflect library

Derive macros accept Rust types, which may be generic. Calling a function
on a value with a generic type, may require that type to implement one
or several traits, which must be reflected in the macro output. Because
of this, the macro author usually has to treat the generic types with extra
care. Failing to add the correct constraints may lead to code that does
not compile. Adding too many constraints may likewise result in code that
doesn’t work. It is not always obvious what constraints to add, and for
which types, without detailed knowledge of the Rust language.

The goal of reflect is to make it easier to make derive macros. Making
a derive macro for generic types should be just as easy as making it for
non-generic types. A user of reflect should be able to treat every value as
if its type has been resolved to a concrete type. If the user is handling a
generic type, then reflect will generate the correct trait bounds and generic
constraints automatically.

The public API of reflect is designed to look like a reflection API. There
are methods for getting the type of a value and iterating over fields in a
struct. There are also plans for allowing the user to create new types.
Having an API that looks like reflection is just to make it easier to make
derive macros. It is not a goal in itself to have reflection. In fact, the
generated code from reflect does not use reflection at all.

In this chapter, we will first demonstrate how we can use reflect to make
a derive macro for the Hash trait. Following that, we will examine the
overarching architecture of reflect and some of its data structures. We will
look at how reflect deals with code generation, both for the library!macro,
(which will be introduced in the next section), and for the output of the
derive macro. Most importantly, when it comes to my own contributions,
we will examine how generics, traits, and lifetimes are dealt with in reflect.

3.1 Using reflect to Derive the Hash Trait

To get a better idea of how reflect works, it is easier if we first have a
look at a basic use case of the library. Imagine that we wanted to derive a
hash function for an arbitrary Rust type. Rust already exposes a trait called
Hash, for this purpose, which is used by the standard library HashMap among
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other things. The derive macro we are making should therefore implement
the Hash trait for that type. It should also make a new input to the derive
attribute called MyHash, so that we can write #[derive(MyHash)] directly
above a type we define ourselves. This will generate a Hash implementation
for that type. One thing I should mention is that we can already put
#[derive(Hash)] above a type to achieve the same functionality, so this is
just for demonstration purposes.

Before we begin implementing this trait using the reflect library, we
should first look at what such an implementation would look like. It
is not feasible to automatically implement a hash function for all types.
Sometimes it is better to write the hashing function by hand since we may
know something about the data type, which allows us to make a better
implementation than a generic one. In other cases, we don’t have enough
information about a type to generate a proper implementation. Because of
this, we make one assumption on the type we are implementing the Hash
trait for. This assumption is that every type of every field in the derive
macro input implements the Hash trait. We can then make our own hash
function by calling the hash function on every field of the input type in
sequential order.

Making assumptions like this is often necessary in Rust. If the input of
a macro does not meet these assumptions, the program will fail to compile,
so we don’t risk introducing undefined behavior to our program by making
a wrong assumption for a type. If our assumptions are correct, then our
macro implementation becomes easier than if we assumed nothing about
the type.

To start, we first need to define all the traits, types, and functions we
need in order to define the Hash trait. We can omit anything we don’t use,
but we need to include everything we do use. Listing 3.1 shows how we can
use the library! macro to define what we need.

library! {
extern crate std {

mod hash {
trait Hasher {}

trait Hash {
fn hash<H: Hasher>(&self, &mut H);

}
}

}
}

Listing 3.1: Define relevant traits

When it comes to implementing the Hash trait, we do not have to declare
much. All we need is the Hash trait itself, with its hash function, and the
Hasher trait. Since we won’t be using any of the methods in Hasher directly,
we don’t have to declare any of them, but we need to declare the trait, since
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it is used in the definition of the hash function.
The library! macro will generate useful modules, data structures, and

methods that we can use later. The library! macro generates calls to
public functions and methods in the reflect crate, with no other dependencies
other than the standard library. Therefore it is possible to write equivalent
code by hand, as the code being generated. This is rather tedious and
error-prone, so it is recommended to use library! macro.

When we make a derive macro, we start by defining a function that
takes a TokenStream and returns a TokenStream. We also need to declare
the input to the derive attribute, which in this case, is MyHash. So far,
everything is the same as described in chapter 2. We then call the derive
function, which is exposed by the reflect library. The derive function takes
two arguments. The first argument is a TokenStream representing the input
of a derive macro. The second argument is a callback function that describes
how to make the derive macro.

#[proc_macro_derive(MyHash)]
pub fn derive_my_hash(input: TokenStream) -> TokenStream {

derive(input, derive_hash)
}

Listing 3.2: Entry point of a derive macro for the Hash trait

In Listing 3.2 we have declared the entry point of the derive macro, and
named it derive_my_hash. The name of the function is not important,
just that the name is unique in that crate. We give a callback function
derive_hash to the derive function, which is defined in Listing 3.3.

The derive_hash function takes a parameter of type Execution.
This type is responsible for tracking which types and traits are being
implemented, and which functions are being called where, among other
things.

fn derive_hash(ex: Execution) {
let hash_trait = RUNTIME::std::hash::Hash;
ex.make_trait_impl(hash_trait, ex.target_type(), |block| {

let hash_fn = RUNTIME::std::hash::Hash::hash;
block.make_function(hash_fn, make_hash);

});
}

Listing 3.3: Function used inside derive

When we look at the contents of the derive_hash function, we can see
some of the things that the library! macro has generated for us. The
library! macro generates a hierarchy of modules that mirrors the module
hierarchy of the input to the macro. These modules are all contained in the
parent module called RUNTIME. We can access the Hash trait by accessing
RUNTIME::std::hash::Hash. Note that we are not actually accessing a
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real trait object, but rather an auto-generated type, representing a trait
that can be used by the reflect API.

The next thing that happens inside the derive_hash function is that
we call a method named make_trait_impl. This method is what lets us
implement traits. This method takes a value representing the trait we want
to implement. The second argument is a value representing the type we are
implementing the trait for. In this case, we are implementing the trait for
the input type of the derive macro. The last argument is a callback function
where we define how to implement all the trait functions. To implement the
Hash trait, we only need to implement the hash function.

Inside the callback function, we see the line:
block.make_function(hash_fn, make_hash);. The make_function
method let us define a function or method inside the impl block. The first
argument we supply is a value representing the function we want to define,
which is the hash function. The library! macro will have generated an
appropriate value representing this method, and can be accessed by writing
RUNTIME::std::hash::Hash::hash. The second argument is yet another
callback function which defines the content of the hash function. This
callback function can be seen in Listing 3.4.

fn make_hash(f: MakeFunction) -> Value {
let receiver = f.arg(0);
let hasher = f.arg(1);

match receiver.data() {
Data::Struct(receiver) => match receiver {

Struct::Unit(_receiver) => unimplemented!(),
Struct::Tuple(_receiver) => unimplemented!(),
Struct::Struct(receiver) => {

// Implementation below
}

},
Data::Enum(receiver) => receiver.match_variant(

|variant| match variant {
Variant::Unit(_variant) => unimplemented!(),
Variant::Tuple(_variant) => unimplemented!(),
Variant::Struct(_variant) => unimplemented!(),

}),
}

}

Listing 3.4: Implementation of the hash function

The make_hash function is what is used to generate the definition of
the hash function for any given type. In this example, I have chosen
only to generate code for structs with named fields, and ignored the other
types of input a derive macro might get, such as enums and other kinds of
structs. Thus, if we tried to use this macro on anything but a struct with
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named fields, the compilation would fail. At this point, the reflect library is
incomplete, and only structs are supported, so it is not possible to generate
code for enums and unions yet.

Inside the make_hash function, we access the two first arguments of the
function we are implementing by using the arg method. The receiver
is just the &self argument of the hash function, since we can’t name the
variable self, because it’s a keyword. After that, we match on the input
data, and make our implementation for structs with named fields. The
implementation shown in Listing 3.5 is pretty straight forward. We iterate
over all the fields in the struct, and invoke the hash function on all the
struct values. After that, we return the unit type, which is equivalent to not
returning a value.

let hash_fn = RUNTIME::std::hash::Hash::hash;

for field in receiver.fields() {
hash_fn.INVOKE(field.get_value(), hasher);

}
f.unit()

Listing 3.5: Implementation of the hash function for structs

This may have seemed like a lot, but we have now defined the complete
implementation of the Hash trait. To test our macro implementation, we can
try to derive the Hash trait for a custom struct called Generic, which we
have defined in Listing 3.6. After compiling the code, we get the generated
output in Listing 3.7.

#[derive(MyHash)]
struct Generic<T, U> {

name: String,
one: T,
two: U,

}

Listing 3.6: Deriving the Hash trait for a struct called Generic

When we look at the generated output, we can see that there are some
extra parameters and constraints that we didn’t define ourselves, but that
the reflect library was able to infer. Something slightly peculiar is that the
generated code has two lifetime-parameters that weren’t there in the original
definition. The hash function has also gotten a where clause, that wasn’t
there before either. Even so, this is still a valid implementation of the Hash
trait. Something else worth mentioning is that there is no actual reflection
in the generated code. It is just straight forward Rust code where the hash
function is called once for every field in the struct. The generated code is
functionally identical to what we would get if we had used #[derive(Hash)]
instead of #[derive(MyHash)]. However, there are some differences in how
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the generated code looks.

impl<__T0, __T1> ::std::hash::Hash for Generic<__T0, __T1>
where

__T0: ::std::hash::Hash,
__T1: ::std::hash::Hash,

{
fn hash<'__a1, '__a2, __T2>(

&'__a1 self,
__arg0: &'__a2 mut __T2

)
where

__T2: ::std::hash::Hasher,
{

let __v0 = self;
let __v1 = __arg0;
let __v2 = &__v0.name;
let __v3 = &__v0.one;
let __v4 = &__v0.two;
let _ = ::std::hash::Hash::hash(__v2, __v1);
let _ = ::std::hash::Hash::hash(__v3, __v1);
let _ = ::std::hash::Hash::hash(__v4, __v1);

}
}

Listing 3.7: The generated code after deriving the Hash trait

3.2 The reflect Architecture

The reflect code base consists of over 6000 lines of code, excluding comments
and documentation. As new features gets added, the internal structure of
the library is most likely going to change, as well as the public API. Still,
there are some architectural designs an algorithms that are likely to survive
in its current, or slightly modified form. I suspect some parts of the public
API will stay quite similar to what it looks like today as well. Because of
this we will examine the general architecture of the project, as well some
of the more stable parts of the API. It will be difficult to talk about the
design without going into the specific details, even the parts that are likely
to change, but I will try to keep things general where it I can.

When talking about the general architecture of the project, it is most
important to talk about the relationship between the library! macro on
the rest of the API, since a lot of the design revolves around this. The
library! macro is a function-like procedural macro and thus has to be
defined in a separate crate from the rest of the reflect code. The crate
where the library! macro is defined is called reflect-internal, while the rest
of the API is defined in the reflect crate. Since reflect exports the library!
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macro, and the user of the API may not care about what is defined where,
I will sometimes refer to the library! macro is a part if the reflect API.
Although from an architectural perspective, the library! macro and the
rest of the API is quite different, even though both crates are developed with
each other in mind.

One way I like to think about the relationship between the library!
macro and the API, is like a client server architecture, where the API is
the server, and the library! macro is the client. It’s far from a perfect
analogy, but it holds in some regards. Since the library! macro is defined
in a separate crate from the rest, it does not have access to any of the internal
data structures of reflect or any of its private functions or methods. Since
reflect exports the library! macro, it means that reflect-internal cannot
directly depend on the reflect crate at all, so it can’t call any of the public
functions or data structures either.

What the library! macro instead ends up doing, is generating calls to
the reflect API when the macro is expanded. The reason I like to compare it
to a client server architecture, is that none of the API calls can actually be
type checked when defining the library! macro. Instead, the calls to the
public API will only be checked after the macro expansion. This is similar
to a client server architecture, where the client sends a request to some API
on the server, but cannot check whether the API request was valid until
after the server responds.

This setup poses some challenges. It means that changing the reflect
API, usually means that the library! macro has to be adjusted as well.
That is of course true for any code that interacts with an API, but the
difficulty lies in the fact that the reflect-internal crate will continue to
compile, even when we make large changes to reflect API. It is easy to
forget to update all the relevant parts of the library! macro and avoid
breaking future code.

Because of this, testing is important. We do have a fair number of unit
tests to check for regressions of incorrect output or code that fails to compile.
When uploading a new commit on GitHub, we also take advantage of GitHub
workflows [6] to automatically build and run tests on three different versions
of the rustc compiler. Even though we test a fair bit, I still frequently find
bugs that haven’t been caught by the tests. That is not a critique of testing,
as they do prevent a lot of bugs, but just an observation that it is hard to
test for everything.

3.3 Types and Data Structures in reflect

Before we dive into the reflect API it would be enlightening to first talk
about some of the types and data structures. There are a handful of types
that are exposed to the user of the reflect API. Perhaps the most important
of these for the user is the Value type. The Value represents any value
that is available during runtime, be it a variable, the result of a function
invocation or something else. Even though each Value contains information
about what kind of value it is, the user of the API cannot inspect them
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directly. If a user wants to do something with a Value, they must instead
call methods that work with Values. There are some methods that only
works for a certain kinds of Valuess. If one of these methods are called
with an unsupported Value, the method will panic. One example is calling
the data method on a Value that does not represent a struct or an enum.

Since I mentioned the data method, we should probably look at the
Data type as well. The Data type represents the input to a derive macro,
and is defined like this:

pub enum Data<T> {
Struct(Struct<T>),
Enum(Enum<T>),

}

The Data type contains all the information about what kind of struct or
enum it is, what fields it has for structs, and what variants it has for enums.
For now, this type is generic over some type T, which would be either a
Value or a Type, depending on what kind of information we want out of it.
It is likely that these two types will be merged into one type in the future,
and the generic parameter could be dropped.

Also relevant to the Data type, is the Field type for structs. The Field
type contains the name or index for each field, as well as the Type or Value
of that field.

I’ve already mentioned the Type type a couple of times now, but it
is also a central type in reflect. It can represent a subset of different
Rust types, including reference types, like &'static str, path types, like
::std::vec::Vec<T>, tuple types, like (i32, i32) and more. It can also
represent inputs to the derive macro, like a struct or an enum. There are a
few things a user of the API can do with a type. They can get the name of
a type, they can construct types, and they can use types to define their own
function signatures. There are a variety of ways to construct a Type. the
Module type has a method for creating a path type, called get_path_type.
It works by parsing a &str, and using the module path as the root of the
path type. For example, if we have a Module representing the module path
::std::string, and we call the get_path_type with "String" as input,
we get a Type representing the type ::std::str::String.

It is also possible to create new types, by using existing types.
We can for example create a reference type by calling the reference
method on a Type. Calling reference on a type representing
the path type ::std::string::String will create the new type
&::std::string::String. Tuple types can also be constructed in a similar
manner by using existing Types.

There is also a type Function that is used for representing functions.
Each Function has a Signature with a list of parameters represented as a
Vec<Type>. A signature may also have generic parameters. Since a function
in Rust may be defined within an impl block or inside a trait definition, the
Function type also contains information about where it was defined. The
surrounding block of the function is stored in a type called a Parent. The
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Parent may also contain it’s own generic parameters and constraints that
are relevant for the Function.

3.3.1 Internal Types and Data Structures in reflect

We have have have looked at some data structures that are publicly available
for all users, but there are data structures in reflect, that are only used
internally. One such type is TypeNode, which is an enum representing the
different kinds of types in Rust. Type is actually just a simple wrapper
around a TypeNode, which is only visible inside the reflect crate. There is a
similar type called ValueNode that represents different kinds of Rust values.

The decision to keep these types only visible inside the crate, is to make
it possible to make changes to the internal representation of these types
without it being a breaking change for the user. This is important if we
want to make a small change or a bugfix, without changing the API. At the
moment, the reflect library is still quite immature, so changes are expected
to happen quite rapidly. However, this will be more important as the API
stabilizes.

Both TypeNode and ValueNode are directly tied to types the user
interacts with, but there are other data structures that represents things
that happen behind the scenes. For example, when we are defining a trait
impl or a method using the make_trait_impl or make_function methods,
we need a way of representing the creation of these things.

The way we represents incomplete definitions in reflect, is by using a
selection of data structures inside a module called wip, for work in progress.
The most important types here are MakeImpl and MakeFunction which are
publicly available, and WipImpl and WipFunction which are only internally
available. MakeImpl and MakeFunction holds a reference to a WipImpl and
WipFunction respectively, but have some associated methods that can be
called by the user of the API.

The WipImpl contains a Vec of WipFunctions called functions.
Whenever a WipFunction is created for a WipImpl, it is inserted into
the functions vector. The WipFunction contains information information
about all the functions or methods being invoked and values being created
inside of it, and the order in which it happens. This the basis for generating
the code for the function bodies that happens the end of the call to the
derive function.

Another set of types are the ones that represents generics. Representing
Rust generics is quite involved. There are many places where generics
can appear, and rules for how they can be defined. Generic parameters
can appear in an impl block, a trait definition or as a part of a function
definition. Generic parameters can have constraints associated with them,
but these constraints can appear in different places. They can appear where
the parameters were first introduced, or inside an optional where clause.
There are also some restrictions on what kind of constraints you are allowed
to make depending on where you write them. There are also rules on what
kind of constraints you can put on lifetime parameters vs type parameters.
All of these things and more need to be encoded in types.
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The way generics are represented in reflect is inspired by how it is
represented in syn, but differs in a few ways. syns representation of
generics, (and other syn types) contains span information, which basically
tells where different tokens and structures originated in the source code.
This information is not carried over in reflects representation of generics
(or types). One reason we do not keep this information is that it makes it
impossible to cache certain values between calls to a derive macro. I won’t
go into details why that is, but it has to do with how the rustc compiler
deals with span information. We do happen to cache some values tied to
the library! macro, so we cannot keep the span information in our types.

Another difference is how we represent generic parameters. In syn, the
generic parameters are stored as they appear in the code, with its textual
representation and span information. What we end up doing instead, is store
each generic parameter as a unique number which gets generated by a two
global counters, one for lifetime parameters, and one for type parameters.
If we had the struct in Listing 3.8 as input to our derive macro. The 'a
would be mapped to the value Liftetime(1)i, and the T would be mapped
to the value TypeParam(0).

struct Ref<'a, T>(&'a T)

Listing 3.8: Input struct

The reason we bother to do this mapping is to simplify reasoning
around generics. Say we have these two functions: fn fun1<T>(_: T) and
fn fun2<T>(_: T). The T parameter in fun1 is not the same parameter as
the T in fun2. By giving each function a unique mapping of parameters, it
makes it easy to disambiguate the two later on. Invoking a generic function
twice with different input types creates the same problem. We don’t want
to bind the same parameter to different types. To handle this, we create
new generic parameters each time a function is invoked, so each parameter
only gets bound to one type. There is one exception to this, however. If
we have a signature where the same parameter is repeated, the user of the
API can invoke the function with different input types, even though they
are supposed to be the same. Say we have a function called twice defined
like this: fn twice<T>(one: T, two: T). If a user of the API tried to
invoke it like this: twice(0, "hello"), T would be mapped to both i32
and &str. This isn’t much of an issue though, since the generated code
would just fail to compile.

Two other important types are the Execution and the Tracker types.
The Execution type is publicly visible, but there is no way for a user to
construct the type themselves. As the name suggests, the Exection type
contains information about a single execution of the derive function. Inside
the Execution is a reference to the input type of the derive function, and
a Tracker.

The Tracker is responsible for tracking all that happens during an

iLiftetime(0) is reserved to always mean the 'static lifetime
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execution. There is not much to say about the type itself other than it
contains a Vec of WipImpls, since impl blocks is all we can output at the
moment, but there is no reason why we can’t add other things to the Tracker
type as well.

3.4 The reflect API

The reflect API consists of the library! macro, the derive function and
some other functions and methods that are useful for making derive macros.
There are parts of the API that is intended to be used directly by a user
of the library, and parts that are intended to be used by the library!
macro. A user of the reflect library can use all of the public functions and
methods available, but some of the API is mostly intended to be used by
the generated code of the library! macro. Since the library! macro is
quite complex, we will take a closer look at it in a later section.

The most important function in reflect is the derive function, which
serves as the entry point for using the rest of the API. If a user of the
API does not call derive, no code will be generated, and thus the library
becomes rather useless. A slightly simplified version of the signature for the
derive function is shown in Listing 3.9.

pub fn derive(
input: TokenStream,
run: fn(Execution)

) -> TokenStream

Listing 3.9: derive signature

We already saw how we can use this function, but it may be helpful
to describe what happens under the hood. When the derive function is
called, it takes the TokenStream input and converts it into a Type. It
then wraps the Type value inside an Execution struct, together with an
instance of a Tracker. The callback function is then called on this newly
created Execution value. Finally the tracker is converted into a type called
Program, and then the content of the Program gets analysed and compiled
into Rust code.

Right now the Execution type only has a couple of methods. Most
notably is the make_trait_implmethod. The signature is written in Lisitng
3.10.

This is the method we used to implement the Hash trait in our example.
We see that the method takes two generic parameters. The TraitType
parameter must implement a trait called RuntimeTrait, while the SelfType
parameter must implement the RuntimeType trait. Neither of these traits
are not intended to be implemented by hand. When defining a trait using
the library! macro, the macro will expand to include a generated type
that implements the RuntimeTrait. We can therefore use the generated
type as input.
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pub fn make_trait_impl<TraitType, SelfType>(
self,
trait_type: TraitType,
self_type: SelfType,
run: fn(MakeImpl),

) where
TraitType: RuntimeTrait,
SelfType: RuntimeType,

Listing 3.10: make_trait_impl signature

For the self_type parameter we need a value that implements
RunimeType. It happens that Type already implements this trait. Usually,
the type we would like to make a trait implementation is the input type of
the derive function, and in order to access it we can call the target_type
method of the Execution type.

The last argument to make_trait_impl is a callback function that takes
a MakeImpl. The API user cannot construct this type directly. Instead a
MakeImpl struct is created inside the call to make_trait_impl. After the
callback function has been called on the newly created MakeImpl struct,
the MakeImpl struct is pushed into a Vec inside the Tracker inside the
Execution struct.

Although we do have a make_trait_impl method, we should eventually
add a make_impl and a make_function method as well. The make_impl
method should work almost the same as the make_trait_impl method,
except that instead of implementing a trait, it should just create an impl
block with methods instead. The make_function should just enable the
user of the API to make a standalone function. Some preliminary work has
already been done to make this happen, but there are still some design work
and implementing left to do.

The next method we shall look at is the make_function method for the
MakeImpl type. Not to be confused by the hypothetical make_function
method we would like to implement for the Execution type, mention in the
previous paragraph. We used the make_function method to implement the
hash function for the Hash trait. The signature for the function is written
in Listing 3.11.

pub fn make_function<F>(
&self,
f: F,
run: fn(MakeFunction) -> Value

) where
F: RuntimeFunction

Listing 3.11: make_function signature

There are two things we need here. First we need a value of some type
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that implements the RuntimeFunction trait. As with the previous runtime
traits we looked at, they are not intended to be manually implemented by
the user of the API. The Function type already implements this trait, so we
could make a Function manually, using some of the public methods located
in the function and signature modules. Alternatively we can use one
of the types the gets generated by the library! macro when we declare a
function or method there. When we implemented the Hash trait, we used a
generated type from the library! macro.

The last argument takes a callback function with a MakeFunction as the
input, and a Value as the output. The output Value represents the output
value of the function being made by the callback. When we implemented the
hash function earlier, we had to return the () value since the hash function
doesn’t have a return type. In Rust, returning () is the same as returning
nothing, so this is not an issue, and does in fact get removed in in generated
code.

When invoking the make_function method, it starts by creat-
ing a MakeFunction value based on the type that implements the
RuntimeFunction trait. The MakeFunction is then used as the input
for the callback. After the callback has finished, some state inside the
MakeFunction struct gets updated so we can know what the content of
the generated function is supposed to be. Finally the MakeFunction is
pushed onto a Vec inside the WipImpl inside the MakeImpl that called the
make_function method.

3.4.1 API Relevant for the library! Macro

We just looked at parts of the API that most users would be using directly,
but there is also a subset of the API that is mostly intended to be used by
the generated code from the library! macro. These are mostly methods
associated by with the Parent type, the Function type and the Signature
type. When we use reflect, we usually don’t have to manually make our own
Functions, but let the library! macro generate types that implement
the RuntimeFunction trait. To implement the RuntimeFunction trait,
we must implement its SELF method that returns a Function struct. The
library! macro can do this for us, but in order to do so, the reflect API
must provide functionality to create Function values.

The definition of the Function struct is shown in Listing 3.12.

pub struct Function {
pub(crate) parent: Option<Rc<Parent>>,
pub(crate) name: String,
pub(crate) sig: Signature,

}

Listing 3.12: Function struct definition

From this definition we see that the Functionmay have a Parent, which
means it may be contained within an impl block or a trait definition. It also
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has a name and a signature. In order to make a Function the API must
have some support for making Parent values and Signature values.

To make a function, we can use the get_function function, with the
signature
fn get_function(name: &str, mut sig: Signature) -> Function.
To set the Parent, we can use the set_parent method.

Since every Function needs a Signature, we will start by seeing how to
make one. The signature type is a little more involved than the Function
type. The definition is shown in Listing 3.13.

pub struct Signature {
pub(crate) generics: Generics,
pub(crate) receiver: Receiver,
pub(crate) inputs: Vec<Type>,
pub(crate) output: Type,

}

Listing 3.13: Signature struct definition

A function may contain generics. The receiver argument determines of
the function is a method or not, in other words whether the first argument
is self, &self, &mut self or a type argument. The rest of the input types
are stored in the inputs field, and the output field stores the output type.

A new Signature can be created by using the Signature::new
function, and there are methods to set the output, and add the input types
to the Signature. There are also methods for adding generic parameters
and constraints. At the moment, it matters which order things are added
to the Signature. Generic parameters must be inserted before the generic
constraints, or any types that contains generic parameters. This is due to
how generic parameters are represented in reflect, but this representation
may be changed in the future so that the order which things are added
doesn’t matter.

From this definition we see that the Functionmay have a Parent, which
means it may be contained within an impl block or a trait definition. It also
has a name and a signature. In order to make a Function the API must
have some support for making Parent values and Signature values.

To make a function, we can use the get_function function, with the
signature
fn get_function(name: &str, mut sig: Signature) -> Function.
To set the Parent, we can use the set_parent method.

Lastly, we need a way to create the Parent type. To make a Parent we
first create a ParentBuilder with the ParentBuilder::new() function.
We then need to set the generic parameters and constraints if it has
any. After that we can set the full path to the Parent including generic
arguments. If the parent represents a trait definition for a the trait
MyTrait<T>, inside the external crate my_crate, then the full path would be
::my_crate::MyTrait<T>. After all the required things have been added
to the ParentBuilder, it can be converted to a Parent.
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For the same reason as with the Signature type, it matters which order
things are added to the ParentBuilder, but this may change in the future
if the representation of generic parameters changes.

Now that we have seen the most important parts of the API, we can
look at how the library! macro works and how it generated code that a
user of reflect can take advantage of.

3.5 The library! Macro
We have seen one use of the library! macro when deriving the Hash trait,
but this was only a single example, and doesn’t explain all of what it can do.
In simple terms, the library! macro defines a domain specific language for
generating code that can be used together with the rest of the reflect API.
The specification for the domain specific language is unstable, but for now
the grammar can be defined approximately like the grammar in Listing 3.14.

The grammar might look a bit intimidating at first, but it is more
or less just a subset of the Rust grammar, with some minor changes.
One difference is that we only declare the type of the input parameters
for functions, but omit the variable names. Thus we may write:
fn swap<T>(&mut T, &mut T);, but not:
fn swap<T>(one: &mut T, two: &mut T);. The variable names are
omitted since we don’t need to know what they are called, and because
it is slightly shorter to write. When we implement functions in a trait, we
don’t have to choose the same variable names as the ones in the definition,
as long as the types match. In the Hash implementation, we generated the
variable name __arg0 in the function signature for hash, even though the
same variable is called state in the definition of the trait.

Another difference is that we only support declaring a function signature,
but not the function body, even in impl blocks. Declaring functions without
a body inside of an impl block is not allowed in normal Rust syntax.

An important omission in the library! grammar, that exists in the
Rust grammar, is the lack of associated types in traits. This stops us from
declaring a range of useful traits that we would like to declare. We also lack
proper support for the Self type, which further limits what traits we can
declare, as well as implement. This is not an oversight, but just the result
of not having had the time to implement these features.
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〈library〉 ::= 〈extern-crate〉*

〈extern-crate〉 ::= ‘extern crate’ 〈ident〉 ‘{’ 〈item〉* ‘}’

〈item〉 ::= 〈item-mod〉 | 〈item-type〉 | 〈item-impl〉 | 〈item-trait〉

〈item-mod〉 ::= ‘mod’ 〈ident〉 ‘{’ 〈item〉* ‘}’

〈item-type〉 ::= ‘type’ 〈ident〉 [ 〈generic-params〉 ] ‘;’

〈item-impl〉 ::= ‘impl’ [ 〈generic-params〉 ] 〈ident〉 [ 〈generic-args〉 ]
[ 〈where-clause〉 ] ‘{’ 〈function〉* ‘}’

〈trait-impl〉 ::= ‘trait’ 〈ident〉 [ 〈generic-params〉 ] [ 〈where-clause〉 ]
‘{’ 〈function〉* ‘}’

〈function〉 ::= ‘fn’ 〈ident〉 [ generic-params ] ‘(’ 〈function-args〉 ‘)’ ‘;’

〈function-args〉 ::= [ 〈type〉 (‘,’ 〈type〉)* [ ‘,’ ] ]

〈type〉 ::= 〈path〉 | 〈tuple〉 | 〈trait-object〉 | 〈reference〉

〈tuple〉 ::= ‘()’ | ‘(’ 〈type〉 ‘,’ ‘)’ | ‘(’ 〈type〉 (‘,’ 〈type〉)+ [ ‘,’ ] ‘)’

〈trait-object〉 ::=‘dyn’ 〈type〉 | ‘(’ ‘dyn’ 〈type-param-bounds〉 ‘)’

〈type-param-bounds〉 := 〈type-param-bound〉 (‘+’ 〈type-param-bound〉)*

〈type-param-bound〉 := 〈path〉 | 〈lifetime〉

〈reference〉 ::= ‘&’ [ 〈lifetime〉 ] [ ‘mut’ ] 〈type〉

〈path〉 ::= [ ‘::’ ] 〈ident〉 (‘::’ 〈ident〉)* [ [ ‘::’ ] 〈generic-args〉 ]

〈generic-params〉 ::= ‘<’ 〈generic-param〉 (‘,’ 〈generic-param〉)* [ ‘,’ ] ‘>’

〈generic-param〉 ::= 〈lifetime-def 〉 | 〈type-param〉

〈generic-args〉 ::= ‘<’ 〈generic-arg〉 (‘,’ 〈generic-arg〉)* [ ‘,’ ] ‘>’

〈generic-arg〉 ::= 〈lifetime〉 | 〈type〉

〈type-param〉 ::= 〈ident〉 [ ‘:’ 〈path〉 ]

〈lifetime-def 〉 ::= 〈lifetime〉 [ ‘:’ 〈lifetime〉 (‘+’ 〈lifetime〉)* ]

〈lifetime〉 ::= ‘'’〈ident〉

〈where-clause〉 ::= ‘where’ [ 〈where-predicate〉 (‘,’ 〈where-predicate〉)* [ ‘,’ ] ]

〈where-predicate〉 ::= 〈lifetime-def 〉 | 〈type〉 ‘:’ 〈type-param-bounds〉

Listing 3.14: library! grammar
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3.5.1 Parsing the library! Macro Input

Internally, the library! macro uses syn to help with parsing the macro
input. We use a combination of syn’s predefined parsers and datatypes, as
well as some custom parsers and datatypes. We use the Parse trait defined
in syn for most of the parsing, as well as some other parse functions where
the Parse trait becomes too limiting. The Parse trait has a function parse,
that accepts a single argument, which is a value of type ParseStream. This
is the type that gets parsed by the parsers defined in the syn library. There
is no public way to construct a ParseStream directly, so in order to parse
using the Parse trait we use the parse_macro_input! macro on the input
to our library! macro. The entry point to our the library! macro is
shown in Listing 3.15.

#[proc_macro]
pub fn library(input: TokenStream) -> TokenStream {

let input = parse_macro_input!(input as Input);
...

}

Listing 3.15: library! macro entry point

The Input inside the call to parse_macro_input! is the name of a
type we have defined in the reflect-internal crate, that contains the abstract
syntax tree of the parsed input. The parse_macro_input! converts the
input TokenStream into a ParseStream, and calls the parse function we
have implemented for the Input type. If the parsing succeeds, the macro
returns the abstract syntax tree of the input, otherwise, it generates a
compile error.

The actual parser for our Input type we have implemented is a fairly
straight-forward recursive descent parser [1]. We take advantage of the fact
that syn already comes with Parse implementations for many of the types
that we use, so we only need to implement parsers for the parts where our
domain specific language differs from Rust, or places where we want to use
custom datatypes. We can for example use syn’s Parse implementation
for the syn type Generics, but we still have to make our own parse
implementation for the Function type that we have defined internally in the
reflect-internal crate. Note that this datatype is different from the Function
type defined in the reflect crate.

Listing 3.16 shows the beginning of the Parse implementation for the
Function type. All the different calls to parse in that example comes from
Parse implementations defined in the syn crate. The rest of the Parse
implementation, not shown in Listing 3.16, uses a combination of parsers
defined in syn, and parsers defined in reflect-internal. Since we are taking
advantage of parsers defined in syn, it makes it easier to write and maintain
the parsing functions for the library! macro.

There are a few places where we don’t use the Parse trait, but instead
use custom functions. The reason for this is that the parse function in
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impl Parse for Function {
fn parse(input: ParseStream) -> Result<Self> {

// A parser for the fn token
input.parse::<Token![fn]>()?;

// A parser for an identifier
let name: Ident = input.parse()?;

// `has_generics` uses lookahead to see if the function
// has generic parameters
let mut generics = if has_generics(input) {

// A parser for generics
input.parse()?

} else {
Generics::default()

};
...

}
}

Listing 3.16: The beginning of Parse implementation for the Function type

the Parse trait only has a single parameter of type ParseStream. There
are times when we want to supply additional arguments to our parse func-
tions based on things that have already been parsed. For example, since
the library! macro allows us to write nested modules, it is useful for the
parsing function to know the parent modules and parent crate of the mod-
ule we are currently parsing, since we need this information during code
generation. For example, we a use a struct called ItemMod to store the
result of parsing a module. Instead of implementing the Parse trait for
ItemMod, we define a different parse method, with the following signature
fn parse(input: ParseStream, mod_path: &Path) -> Result<Self>.
The mod_path argument represents the path that is used to get the mod-
ule we are currently parsing. If we were currently parsing the module
inner in Listing 3.17, the mod_path argument would represent the path
::my_crate::outer.
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library! {
extern crate my_crate {

mod outer {
mod inner {

...
}

}
}

}

Listing 3.17: Modules in the library! macro

3.6 The library! Macro Code Generation

The library!macro generates code that has a similar structure to the input
of the macro, except that everything is contained within a module named
RUNTIME. If the input to the library! macro is the same as in Listing 3.17,
then the generated output will look something like the code in Listing 3.18.

mod RUNTIME {
...
mod my_crate {

...
mod outer {

...
mod inner {

...
}
...

}
...

}
}

Listing 3.18: Output from the library! macro

The benefit of this design is that we can access the inner val-
ues of the RUNTIME module the same way we would access mod-
ules in Rust. If we had declared a function called my_function
inside the module inner, we could access this function by writing
RUNTIME::my_crate::outer::inner::my_function. The my_function
that we access here would not actually be a function, but rather a gener-
ated type called my_function that implements the RuntimeFunction trait.
Since everything is defined within modules, it means that we can take ad-
vantage of the use keyword. If we write
use RUNTIME::my_crate::outer::inner;. We could then access
my_function like so: inner::my_function. This syntax is identical to how
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we would access a function inside a crate in Rust, except for the RUNTIME
prefix. Since the generated code can be accessed and used similarly to how
we can access and use any Rust code, it helps make the reflect easier to learn
and use.

In the following sections, we will take a look at how the library! macro
generates code, as well as what code gets generated. This will not be a
complete rundown of how everything works but rather an overview of the
overall design and ideas behind the generated code. For a complete example
of what gets generated, I have left the generated output from the library!
macro from the Hash implementation in Appendix A.

3.6.1 The library! Macro Code Generation Design

For the code generation, we take heavy advantage of the quote! macro from
the quote library to generate the module hierarchy for the RUNTIME module.
Listing 3.19 shows how quote! is used to generate the module hierarchy. I
have used ... as a placeholder for some code I have chosen to omit. The
keywords extern crate works the same way as the use keyword in this
example, and is a way to give an alias to the reflect crate to avoid name
collisions. The variable modules is an iterator over every module we want
to declare. The iterator uses the function declare_mod on every crate to
create a corresponding module. To expand the modules inside the RUNTIME
module we use #( #modules )* in the quote! macro invocation.

#[proc_macro]
pub fn library(input: TokenStream) -> TokenStream {

// Parse macro input
let input = parse_macro_input!(input as Input);

// Generate a module for every declared crate in the
// macro input
let modules = input.crates.iter().map(declare_mod);

// Make a `TokenStream` of the `RUNTIME` module using
// `quote!`
TokenStream::from(quote! {

mod RUNTIME {
extern crate reflect as _reflect;
...
#( #modules )*

}
})

}

Listing 3.19: RUNTIME module declaration

The content of the declare_mod function is shown in Listing 3.20. The
quote! invocation returns a TokenStream of the module with all its module
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items. The items iterator uses a function called declare_item to declare
each item. An item can be either a module, a type, an impl block, a trait, or
a macro declaration. Each kind of item has a separate function for declaring
that item. I will go over each function, except declare_macro, since I have
not had anything to do with that implementation. We will start with the
declare_type function.

// `TokenStream2` is an alias for `proc_macro2::TokenStream`
// which is the type that the `quote!` macro returns
fn declare_mod(module: &ItemMod) -> TokenStream2 {

let name = ...; // Name of the module
let items = ...; // Iterator over the module items

quote! {
pub mod #name {

extern crate reflect as _reflect;
...
struct __Indirect<T>(T);
#( #items )*

}
}

}

Listing 3.20: Module declaration

The declare_type function does not do much at the moment, but it is
still important for the library! macro to work. For every declared type in
a library! macro invocation, we create a new unit struct with the name
of that type, in a corresponding module to where the type was declared.
Listing 3.21 shows how this is done. Since we declare this type, we can refer
to it elsewhere in the generated output.

fn declare_type(name: &Ident) -> TokenStream2 {
quote! {

#[derive(Copy, Clone)]
#[allow(non_camel_case_types)]
pub struct #name;

}
}

Listing 3.21: Type declaration

Next, we will look at declare_trait and declare_impl. We can see
from Listing 3.22 and 3.23, that both functions follow a similar structure.
They both declare a parent which represents the impl block or trait
definition. We will get to the declare_parent functions shortly. After that
we create an iterator over all the functions inside the trait definition or impl
block. Both the parent, and function declarations gets expanded inside the
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quote! invocation in both functions. One difference between the functions
is that we implement RuntimeImpl for the parent in declare_impl, but
we implement RuntimeTrait for the parent in declare_trait. Both of
these traits are subtraits of the trait RuntimeParent, which we will get to
soon. Another difference is that declare_trait creates a unit struct with
same name as the trait, by using the declare_type function. If we wanted
to declare an impl block in a library! macro invocation, we first have to
declare the type of the impl block, in the same scope. See Listing 3.24 for
an example.

fn declare_impl(item: &ItemImpl, mod_path: &Path) -> TokenStream2 {
let parent = &item.segment.ident;
let declare_parent = declare_parent(...);
let functions = item

.functions

.iter()

.map(|f| declare_function(...));
...
quote! {

#declare_parent
impl _reflect::runtime::RuntimeImpl for #parent {}
#( #functions )*

}
}

Listing 3.22: impl block declaration

fn declare_trait(item: &ItemTrait, mod_path: &Path) -> TokenStream2 {
let d_type = declare_type(&item.ident);
let parent = &item.ident;
let declare_parent = declare_parent(...);
let functions = let functions = item

.functions

.iter()

.map(|f| declare_function(...));
...
quote! {

#d_type
#declare_parent
impl _reflect::runtime::RuntimeTrait for #parent {}
#( #functions )*

}
}

Listing 3.23: Trait declaration
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library! {
extern crate some_crate {

// We must declare SomeType in the same scope as
// the impl block. This declaration creates a call
// to `declare_type` during the macro expansion.
type SomeType;

impl SomeType {
fn some_function();

}

// We don't declare `type SomeTrait;` in the
// `library!` macro.
trait SomeTrait {}

}
}

Listing 3.24: Declare type before impl block
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To continue, we take a look at the declare_parent function. This
function is somewhat complicated, and the details are likely to change.
I will, therefore, only explain the function’s main design. The purpose
of declare_parent is to implement the RuntimeParent trait for a unit
struct that names a type or trait. For example, if we declared a trait called
SomeTrait inside a library! invocation, then the library! macro would
generate an implementation of the RuntimeParent trait for a generated unit
struct with the name SomeTrait.

fn declare_parent(...) -> TokenStream2 {
let set_parent_params = ...;
let set_parent_constraints = ...;
let parent = &parent_type.ident;
let parent_kind = ...;
let get_runtime_path = ...;

quote! {
impl _reflect::runtime::RuntimeParent for #parent {

fn SELF(self) -> ::std::rc::Rc<_reflect::Parent> {
thread_local! {

static PARENT: ::std::rc::Rc<_reflect::Parent> = {
... // See definition below

};
}
PARENT.with(::std::rc::Rc::clone)

}
}

}
}

// PARENT definition
let mut parent_builder =

_reflect::ParentBuilder::new(#parent_kind);
#set_parent_params
#set_parent_constraints
parent_builder.set_path(|param_map: &mut _reflect::SynParamMap|

#get_runtime_path);
::std::rc::Rc::new(parent_builder.into_parent())

Listing 3.25: Parent declaration

The RuntimeParent trait has a single method called SELF that returns
a value of type Rc<Parent>. The Rc<T> type is a reference-counted smart
pointer, and allows us to have multiple references to the same object. The
difference between Rc<T> and a reference type, is that the lifetime of a
reference type must be statically known at compile-time, while the object
pointed to by an Rc<T> will be dropped when all other Rc<T> references
have been dropped.
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Inside the SELF implementation I use a macro called thread_local! to
lazily initialize a global variable called PARENT of type Rc<Parent>. This
value gets initialized the first time SELF is called. The function returns an
Rc<Parent> that references the Parent in the global variable. The result
is that every call to SELF returns a reference to the same object, so we only
have to create the object once.

Inside the thread_local! is the definition on how to construct the
Parent object. I have omitted the details of this construction, but the
definition expands to various API calls that are relevant for the Parent type
and the ParentBuilder type. This includes adding generic parameters, if
they exist, and also adding generic constraints and trait bounds.

It is not just for efficiency reasons that I use a global variable in the SELF
function. A Parent object can contain generics, and generic parameters
parameters in reflect are based around two global counters. In short, if
the SELF function constructed a new Parent object for every call, not only
would it be slower, but it would create Parent objects with different generic
parameters for every call. Functions that are defined inside an impl block,
or a trait cannot refer to Parent objects with different generic parameters.
This design is fragile, and something I would like to redesign in the future.
Ideally, none of the generated functions in the library! macro should rely
on some global state.

Moving on from declare_parent, brings us to declare_function.
Some of the definition of declare_function is shown in Listing 3.26. The
overall layout of the quote! invocation is David Tolnay’s work, although
the use of a thread_local! was my idea. I use a thread_local! here for
the same reason as I did in declare_parent; for efficiency and correctness.
I want every call do RuntimeFunction::SELF to return a reference to the
same Function with the same generic parameters. declare_function also
generates an INVOKE method for every function, with the correct amount of
parameters for that function. We saw how to use the INVOKE method in the
Hash trait implementation.

There is more to say about the design and implementation of
declare_function, for example, the use of the __Indirect<T> type, and
why we generate three impl blocks inside of a function that will never be
called. The reader may feel free to try to puzzle this out themselves if they
like. There are also things to be said about how type-paths get expanded,
and how generic code is treated, and what code gets translated to which
API calls. In the interest of time, and not letting the thesis get too long, I
will not get into the details of how this works.
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fn declare_function(...) -> TokenStream2 {
let parent = ...; // The name of the parent
let name = ...; // The name of the function

// An iterator over the input variables and types of
// the function signature
let vars = ...;
let vars2 = ...; // A copy of the `vars` iterator
...
quote! {

impl __Indirect<#parent> {
#[allow(dead_code)]
fn #name() {

#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub struct #name;

impl _reflect::runtime::RuntimeFunction for #name {
fn SELF(self) -> ::std::rc::Rc<_reflect::Function> {

thread_local! {
static FUNCTION: ::std::rc::Rc<_reflect::Function> = {

let mut sig = _reflect::Signature::new();
let parent =

_reflect::runtime::RuntimeParent::SELF(#parent);
...

};
};
FUNCTION.with(::std::rc::Rc::clone)

}
}

impl #name {
pub fn INVOKE(

self,
#(

#vars: _reflect::Value,
)*

) -> _reflect::Value {
_reflect::runtime::RuntimeFunction::SELF(self)

.invoke(&[#(#vars2),*])
}

}

impl #parent {
#[allow(non_upper_case_globals)]
pub const #name: #name = #name;

}
}

}
}

}

Listing 3.26: Function declaration
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3.7 Generics in reflect

Since the input of a derive macro might contain generics, reflect have to
deal with generic types. Some of the types and functions that are declared
in a call to the library! macro may contain generics too, so reflect have
to deal with this as well. At the moment, reflect can only generate trait
implementations for a type. Both the type and traits may contain generics,
and implementing a trait for a type might mean we need to put constraints
on some of the generics.

Keeping this in mind, it is also the case that a user of the reflect library
can assume that every value he is working with has a concrete type. After all,
every type ends up having a concrete type during runtime. Still, the reflect
library needs to work with generics. Be it because the input type to the
derive macro has generic parameters, or because the trait being implemented
uses generics in some way. How can we reconcile this seeming contradiction?

The trick to making this work is to treat generic types in a special way
without exposing this to the API user. Since we are tracking every function
call, and the types of the values coming into each function, we also know
which types are generic. The types coming into a function must either have
a subtype relation to the parameter type, or be equal to the parameter
type. Say we have a type: Wrapper(T), where T is a generic parameter and
we want to implement some trait: ConsumeString, defined in Listing 3.27
below.

trait ConsumeString {
fn consume_string(self);

}

Listing 3.27: ConsumeString trait

Imagine we also have a function: fn string(s: String). We then
make the following trait implementation:

impl ??? ConsumeString for Wrapper<???>{
fn consume_string(self) {

string(self.0)
}

}

Listing 3.28: ConsumeString trait implementation

We know that Wrapper is generic over some type, we also know
that the function string only takes a value of type: String. The
trait implementation for Wrapper can therefore not be generic over any
type T, but will only work if the type inside the Wrapper has the type
String. The start of the impl block must therefore look like this:
impl ConsumeString for Wrapper<String>. One way to reason about
this is to assert that the generic type T must be equal to the type String.
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Since String is more concrete than T, we prefer to use it over T. This notion
of concreteness is used by the reflect library to decide what types to use in
the generated impl blocks.

There are some things to keep in mind. When we implement a trait
for some type, we can add constraints that bind to the trait or the type,
but not to the functions inside the trait. What I mean by that is if we are
implementing a trait: Trait<T> { fn fun<U>(...) where ... }, for a
type Type<S> {...}, we can add constraints to the parameters T and S,
but not U, since U is bound to a function, and not the trait. We can also make
T and S concrete types, but we can’t change the parameters and constraints
bound to fun in any meaningful way. We are allowed to reorder or rename
the parameters in trait functions, but we can’t add or remove anything that
changes the functions’ semantic meaning.

3.7.1 How to Determine the Most Concrete Type

In the previous trait implementation, we saw a simple example of how to
make a type more concrete. There we substituted one type for another.
Sometimes figuring out the most concrete type is not that easy, and in
general, it isn’t possible to know if two types can be made equal. The
problem is that we have limited information. The input to a derive macro
is just the tokens that make up the input type. If one of the parameters has
the type String, which String is that? Usually, it would be the same type
as std::string::String, but it doesn’t have to be. It could also be a type
alias for Vec<u8>. It may also be referring to a completely different string
type from a different library that happens to be in scope at the macro call
site. Without access to all the files that go into compiling a Rust library or
executable, we cannot know which types we are dealing with.

It is possible to read files from a macro call, but that incurs additional
overhead and complexity that are not desirable. In the worst case, we would
have to parse and deal with most of the Rust source code of a project, for
every macro invocation that uses the reflect library. Even then, there are
times where type inference is ambiguous. We are, therefore, better off with
a good heuristic.

One thing to note about the reflect library is that it is optimistic. It
assumes that the user of the API knows what he is doing, and if a user calls
a function that accepts a value of i32 with a value of type String, then as
far as reflect is concerned, these two types must be equal. We cannot prove
that the two types are different, since types can be aliased, neither can we
prove they are the same. If the user of the API is wrong, the generated code
will fail to compile, and if he was right, it compiles, and everyone is happy.

A selection of the heuristics we use are:

• If we call a function and either the type of the input, or the type of the
parameter it binds to is a path type, then these types must be equal.

• If two path types are equal, and they have the same number of
arguments, then the first argument of the first type is equal to the
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first argument of the second type, the second argument of the first
type is equal to the second argument of the second type, and so forth.

• If two path types are equal, but they have a different number of
arguments, no assumptions about the equality of the arguments are
made, but the path type with the fewest arguments is considered more
concrete.

There are more such heuristics being used, but they are omitted for
simplicity.

3.7.2 Dealing with Generic Constraints

There is an issue with generics that is separate from the issue of
concreteness. This issue has to do with generic constraints. There
are many examples in Rust where a function is generic over some type,
but the type has to fulfill some constraint. This usually comes in the
form of the generic type having to implement some trait, or live for
the duration of some lifetime. We could for example have a function:
fn pretty_print<T: Display>(input: &T){ ... },
or perhaps a function using dynamic dispatch:
fn dyn_pretty_print(&dyn Display){ ... }. Both of these functions
take a reference to some type implementing the Display trait. Where we
to call dyn_pretty_print with a value of type &T, the following constraint
would have to hold: T: Display. Depending on the origin of this &T type,
we may end up generating this constraint as part of the resulting impl block.

There are some complications, however. What if instead of a value
of type &T being the input to the function, it was a value of type
&Vec<T>. Should we generate the constraint: Vec<T>: Display, or perhaps
T: Display? The answer to this question is neither. The constraint
Vec<T>: Display must indeed hold, and generating this constraint would
not be problematic in the case where Vec<T> is the same type as the one in
the standard library. However, there is a danger in generating a constraint
where the left-hand side of the constraint contains a path type. The problem
is that the type in question could lead to a ”private type in public interface”
compile error. This error occurs when we try to implement a public trait for
a public type, but one of the constraints uses a private type. Since we don’t
know if Vec<T> is a private or public type, we don’t know if adding it to
a constraint would lead to a compile error or not. It could be that Vec<T>
already implements Display, so not adding the constraint would allow the
program to compile. It could also be the case that Vec<T> only implements
Display, if T implements Display, so adding the constraint may also have
the effect of allowing the program to compile. Either way, we don’t know
if adding the constraint will have a positive or negative effect, so we choose
not to add it.
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3.8 Lifetimes in reflect

We care about lifetimes in reflect because we need to infer the appropriate
lifetime bounds for the impl blocks we are generating. Since we know
the variance of different types and know some properties about lifetime
subtyping, we can infer some lifetime constraints. When implementing a
function by using reflect, the only thing that affects the lifetime constraints
of an impl block, for now, is invoking methods and functions.

One complication we have is that for path types, we do not know the
variance. We know that Vec is variant, and Cell is invariant, but in general,
we cannot know the variance of a path type, and thus we assume every path
type is invariant. This does put a slight limit on what we can infer, but
it is probably fine for most cases. We do know the variance of references,
though, so we may use this information to help with the inference.

When making an impl block for a type, we can only put constraints on
the lifetime parameters tied to the type. For example if we are making an
impl block for the struct Tuple as defined in Listing 3.29, then we need to
reason about how lifetime 'a and 'b relate to each other, and whether any
of them has to be the 'static lifetime. When figuring out the constraints
for 'a and 'b, we may have to reason about other lifetimes as well, but we
don’t end up using them in the impl block. When implementing a trait for
some type, we are not allowed to change the constraints of the functions
and methods we are implementing. However, we can add constraints to
the generic parameters of the type we are implementing the trait for, and
the generic parameters of the trait we are implementing, including lifetime
parameters.

struct Tuple<'a, 'b, T> {
num1: &'b T,
num2: &'a T,

}

Listing 3.29: Tuple struct

Sometimes when implementing a trait for a type, both the type and the
trait may have lifetime parameters. In this case, these lifetime parameters
may end up relating to each other. Maybe they have to be the same lifetime,
or one lifetime must be a subtype of the other, or maybe they must be the
same lifetime. We can infer these relationships by tracking which functions
get called inside a function definition, and the types of the values they are
called with. We also know the returned value of a function must have a
type that is a subtype of the function’s return type. Listing 3.30 shows an
example where we must figure out the relationship between the lifetime in
the trait AsRef and the lifetime in the type Ref.

If we try to implement the trait without putting any constraints on the
lifetime parameters, we end up with the compile error in Listing 3.31.

This may look a bit cryptic for someone new to error messages in Rust,
but the essential part to note is that the lifetime of self.0, which is 'b
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trait AsRef<'a, T> {
fn as_ref(self) -> &'a T;

}

struct Ref<'b, T>(&'b T);

impl<'a, 'b, T> AsRef<'a, T> for Ref<'b, T>
where

// ???
{

fn as_ref(self) -> &'a T {
self.0

}
}

Listing 3.30: AsRef impl

does not outlive the lifetime of the return type, which is 'a. So how can we
resolve this? We can see in the body of the as_ref method, that it returns
the value self.0 of type &'b T. To satisfy the subtyping rules &'b T must
be a subtype of &'a T, which is the function’s return type. The subtyping
rule for references means that 'b must be a subtype of 'a, and T must be
a subtype of itself. If we replace the // ??? with 'b: 'a in Listing 3.30,
then the program will compile.

An astute reader may now be thinking: why couldn’t we just have used
the same lifetime for both the trait and the type? If we had begun the impl
block with: impl<'a, T> AsRef<'a, T> for Ref<'a, T>, we wouldn’t
even have needed a where clause. The reader would be completely correct in
such an assertion. In this simple example, it wouldn’t have made a difference
in what we chose. In general, making a subtyping assertion is more flexible
than asserting that two lifetimes are equal. When we do a lifetime analysis
in reflect, we want to make the analysis as permissive as possible, so that the
trait implementations we make can be used in as many places as possible.
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error[E0312]: lifetime of reference outlives lifetime of
borrowed content...

--> src/lib.rs:12:9
|

12 | self.0
| ^^^^^^
|

note: ...the reference is valid for the lifetime `'a` as
defined on the impl at 7:6...

--> src/lib.rs:7:6
|

7 | impl<'a, 'b, T> AsRef<'a, T> for Ref<'b, T>
| ^^

note: ...but the borrowed content is only valid for the
lifetime `'b` as defined on the impl at 7:10

--> src/lib.rs:7:10
|

7 | impl<'a, 'b, T> AsRef<'a, T> for Ref<'b, T>
| ^^

Listing 3.31: Lifetime compile error

3.8.1 A More Complex Example

The previous example of a trait implementation was rather simple. It would,
therefore, be useful to look at something a bit more complicated. Listing
3.32 shows an example where we try to implement a trait called ToTuple,
which has a method that returns a tuple with two types with two different
lifetimes. However, this does not compile.

So what exactly goes wrong here? We can again use what we know about
subtyping in Rust. When we enter the body of to_tuple in the impl block,
the type of self.one is &'b T, and self.two has type &'a T. When calling
new_tuple, self.one is bound to the variable one, and self.two is bound
to the variable two in the function signature. Because of the subtyping
rules we know that &'b T must be a subtype of &'c T and &'a T must be
a subtype of &'d Tii. We now have the situation that the call to new_tuple
returns a value of type (&'c T, &'d T). For everything to typecheck
we must ensure that (&'c T, &'d T) is a subtype of (&'a T, &'b T).
In this case, it becomes as simple as checking if 'c is a subtype of 'a
and 'd is a subtype of 'b. Lets assume this is the case. Since 'c is a
subtype of 'a and 'b is a subtype of 'c. It must also be the case that
'b is a subtype of 'a, since subtyping is transitive. Likewise, since 'd is
a subtype of 'b and 'a is a subtype of 'd, then 'a must be a subtype
of 'b. When writing the missing requirements in the where clause like
this: where 'a: 'b, 'b: 'a, the program compiles. In this case we may

iiThe T in the new_tuple signature and T in self type are actually different type
parameters, but we ignore that now for simplicity.
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trait ToTuple<'a, 'b, T> {
fn to_tuple(self) -> (&'a T, &'b T);

}

struct Tuple<'a, 'b, T> {
one: &'b T,
two: &'a T,

}

fn new_tuple<'c, 'd, T>(one: &'c T, two: &'d T) -> (&'c T, &'d T) {
(one, two)

}

impl<'a, 'b, T> ToTuple<'a, 'b, T> for Tuple<'a, 'b, T>
where

// ???
{

fn to_tuple(self) -> (&'a T, &'b T) {
new_tuple(self.one, self.two)

}
}

Listing 3.32: ToTuple impl

simplify further, and observe that 'a and 'b must be the same lifetime, since
they are a subtype of each other. We can then replace the occurrences of 'b
with 'a in the impl. The start of the impl block ends up looking like this:
impl<'a, T> ToTuple<'a, 'a, T> for Tuple<'a, 'a, T>, and we can
remove the where clause.

3.8.2 A General Algorithm for Lifetime Inference

The algorithm for the lifetime inference used in reflect is based on the fact
that lifetimes form a partially ordered set under the subtype relation. Every
time a function gets called, the type of the input gets compared to the type
of the parameter it binds to. The subtype relationship with regards to
the lifetimes gets calculated according to the subtyping rules explained in
chapter 2.

As mentioned earlier, we only generate constraints for the lifetime
parameters that appear in the trait we are implementing or the type we
are implementing the trait for. The lifetime parameters that are tied to
function signatures are not interesting in themselves, but we still have to
keep them in mind. Say that 'a is a lifetime that is relevant for some trait
implementation. By calling some function, we infer that 'a is a subtype of
some other lifetime 'b. Further down the line, we infer that 'b is a subtype
of 'static. Because of transitivity, 'a is a subtype of 'static. Since
'static is a subtype of all lifetimes, 'a must be equal to 'static. Even
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though we can’t use 'b in any constraints, we still have to keep track of it
to deduce that 'a is the 'static lifetime.

After tracking all the function calls and deducing the subtype relation-
ship between the lifetime of the input values and the lifetimes of the input
signature, we have to make sure that the lifetimes we have tracked form a
partially ordered set. To do that, we need to find the transitive closure.
When finding the transitive closure, we use two N × N boolean matrices,
where N is the number of lifetimes we have tracked. One of the matrices is
used for storing the initial subtype graph, called sg, and the other matrix is
used to store the transitive closure, called tc. Every lifetime gets assigned
an index from 0 to N. Let index be a function that assigns an index to
a lifetime. If sg[index('a)][index('b)] == true then 'a is subtype of
'b. The algorithm in Listing 3.33 finds the transitive closure by using a
depth-first search starting from every lifetime. It also marks every lifetime
as a subtype of itself, and marks the 'static lifetime as the subtype of
every lifetime. The 'static lifetime is always given the index 0.

// sg.size is the number of lifetimes
for i in 0..sg.size {

// The static lifetime is a subtype to all lifetimes
sg[0][i] = true;

}

for i in 0..sg.size {
// Every type is a subtype of itself
dfs(&mut sg, &mut tc, i, i);

}

fn dfs(
sg: &mut BoolMatrix,
tc: &mut BoolMatrix,
subtype: usize,
supertype: usize,

) {
tc[subtype][supertype] = true;
for i in 0..sg.size {

// if i is a supertype of supertype then i is a
// supertype of subtype
if sg[supertype][i] && !tc[subtype][i]] {

dfs(sg, tc, subtype, i);
}

}
}

Listing 3.33: Transitive closure algorithm
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3.9 Code generation in reflect

Code generation is the last thing that happens after calling the derive
function. At this point the Execution callback function has been called,
the Tracker has finished tracking, and the necessary data structures have
been constructed. If either the trait we are implementing or the input type
has any generic parameters, we would have performed some type and trait
inferences as well. The last thing we need to do is to generate some code.
After all, if we leave out this step, everything else would have been for
nothing.

For the time being the code generation is fairly simple. One reason
for that is that all the control flow happens when we define each function.
The generated output is devoid of any loops or branching. All the looping
over fields and checking for properties gets done before compiling the output.
This will likely change in the future. When we implement support for enums,
we need to support some form of branching. It would also be beneficial to
make support for if statements and loops as well, as some things may not
be known at compile time. These features would have implications for the
code generation, as well as the generic inference.

The code generation does some simple optimisations, like dead code
elimination, and inlining of string literals. There is room to improve the
generated code beyond this, although it probably won’t have any effect on
the generated assembly from the Rust compiler as long as optimizations are
turned on.

3.10 The Memory Layout of reflect

The way data is generated and stored in reflect is motivated by having a
compact data layout and making data cheap to pass around. The library
also needs some data to persist for the entire call to the derive function.

When calling different functions in the reflect API, Values are created.
Calling invoke on a Function creates a Value, accessing a field in a data
structure creates a Value and taking a reference of a Value creates another
Value among other things. Since they are created often, and represents a
variety of different things, they should be cheap and convenient to use

When a Value is created, a ValueNode is created as well and stored in
a global vector. The Value only contains an index to this global vector.
There are two other global vectors as well. One that contains Invokes and
one that contains MacroInvokes. The user of the API does not interact
directly with these types, but will instead interact with Values.

The ValueNode type is where the actual value information is stored.
The ValueNode type is an enum that can be one of several different things.
It can be a string literal, a function or macro invocation, a variable binding,
and more. Some of the ValueNodes contain indexes to the global vectors.
A reference value will contain a reference to the vector of value nodes, and
a function invoke value will contain an index to the vector of invokes, which
again may contain indexes back to the vector of values. Letting the Value
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types only contain indexes to a vector, makes them cheap to copy and pass
around. The vectors gets lazily initialized when first accessed, and emptied
at the end of a call the derive function.

The biggest benefit of having a global storage, is that it simplifies the
API. We need to keep track of every Value that gets created, even those
that are immediately discarded by the user. If we didn’t store these values
globally, some sort of storage would have to be passed around for every
function that created a Value.

When I first started working in reflect, the library did not have a global
storage, but instead every Value kept a reference to a WipFunction, which
also contained a vector of ValueNodes. One problem we faced, was that
we didn’t have a way to invoke a function without any arguments, since
the invoke function needed access to a WipFunction in order to create a
new Value representing the function invocation. We discussed passing an
extra argument for the invoke function, but figured it would make the API
more awkward. We decided to create a persistent global storage instead of
having a WipFunction be a part of the Value type. The internal structure
of the library has changed quite a bit since then, and may still change in
the future, but we still store some data globally for the sake of making the
API easier to use.

70



Chapter 4

Future Work

The reflect crate is still a work in progress, and not usable for serious work.
To make it viable for use, there are a few areas that must be addressed, and
some areas that should be addressed, but are not essential. The areas that
need to be improved are:

• Better support for generics.

• Support for enums.

• Support for standalone functions.

• Support more types.

• A minimal stable API.

• An up to date documentation that covers the basic features.

• More thorough testing.

Some features would be nice to eventually have, which would expand on
the types of macros a user can make with the API. These things include:

• Support for C-style unions.

• The ability to create new structs.

• The ability to have branching behavior in the generated code. This
will be partially achieved when we add support for enums, but it would
be nice to be able to generate if-statements and loops as well.

• Support attribute macros.

In the sections to come, I will elaborate more on each list, and what the
different points entail, starting with features that need to be added for a
minimal viable product.

71



4.1 Improve Support for Generics
At the moment, reflect has some support for parsing and reasoning about
generics, but some features are missing. The most important feature that is
lacking is support for associated types in traits. We already support traits
with generic parameters, and associated types are more restrictive than type
parameters, so it should be doable to implement. It may still require some
amount of work. First of all, some changes to the internal data structures
in reflect has to be made to accommodate this feature. Second, we must
expand the public API of the reflect library so users can add associated
types to traits. Additionally, logic must be implemented to infer what the
associated type binds to. We also need to generate the associated type in
the output of the trait implementation. This is a rather easy step but still
has to be done. Lastly, we need to add support for parsing associated types
in the library! macro, as well as generating code to the new API bindings
in the reflect crate.

4.1.1 Support Fn Traits, and Higher-Rank Trait Bounds

Adding support for the Fn trait as well as the trait FnMut and FnOnce,
is not something I consider to be essential for a minimal viable product.
However, since it falls under the wider category of generics, I thought I
might mention it. The Fn traits are slightly different from other traits, as
they are automatically implemented for functions and closures. They are
syntactically and semantically different from other traits, and thus require
special handling. For one, they make implicit use of a feature called higher-
rank trait bounds. I won’t go into detail about this feature, but in short, it
let us express that a type must be valid for any lifetime and not tied to one
lifetime in particular.

These features are not something I have put much thought in, and not
something that I think will be added in the near future.

4.2 Adding Support for Enums
Having proper support for enums is something I would assume most people
would want from reflect and something I regard as essential if reflect is going
to be a useful library. The use of enums in Rust is quite pervasive, and
having derive macros that work for both enums and structs are common as
well. The API for accessing and dealing with enum variants has been mostly
laid out by David Tolnay, but we need internal data structures and logic for
generating code. Having support for enums, also means that we now have
branching code. This may, in turn, make the lifetime inference and type
inference slightly more complicated.

4.3 Adding Support for Standalone Functions
Having for standalone functions is something that would be useful for many
users of reflect. For the moment, a user of the API can only declare methods
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of functions inside impl blocks and trait definitions. This rules out any
functions that have been defined at the module level. Since standalone
functions are common in Rust, users of the API should be able to make use
of them.

4.4 Adding Support for More Types

Currently, the reflect crate does not have full support for all kinds of types
that are supported in Rust. One thing that is sorely lacking is support for
primitive types. When parsing the input of a derive macro, if the input
has parameters with primitive types, these types are parsed as path types.
Having primitive types represented as path types is not an issue, since
it doesn’t affect the code generation or type inference. However, we do
need special support for primitive types in the library! macro, since the
library! macro can’t tell the difference between primitive types, and types
declared in the current module. This leads to incorrect code generation
from the library! macro, which in turn leads to incorrect output from the
derive function.

4.5 Stabilizing parts of the API

For the time I have been working on reflect, I have made substantial internal
changes. These internal changes may not be immediately noticeable for the
library’s end-user since they don’t have to change anything in their code to
take advantage of them. At the same time, I have also made changes and
additions to the public API. These are the kinds of changes that can be
annoying for end-users, as they may have to update their codebase if they
want to use the latest features. It would, therefore, be nice to have a small
API that is well thought out, and that will likely not change much, if at all,
in future iterations of reflect.

4.6 Updating the Documentation

Having a capable library is not very useful if no one can figure out how
to use it. The public API should, therefore, be properly documented, so
new and existing users of reflect can quickly look up what the library offers
in functionality and how to use it. It may also be a good idea to better
document the internal parts of reflect. Even though the user may never
see it, having some explanation of internal data structures, functions, and
methods can be helpful for further development of reflect.

4.7 Improve Test Coverage

When I started working on reflect, there was precisely one test, if you
look past the implicit tests in the documentation. This test was made to
demonstrate how to implement the Debug trait for a simple struct, and to
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demonstrate that it reflect was able to generate correct code for this simple
example. I have since then added several other tests to test the new features
I have added. Even so, we don’t test for everything in reflect. Test coverage
can, therefore, be improved. Since there are additional features left to be
added, these features need to be tested as well.

4.8 Supporting C-style Unions

Even though they are not widely used derive macros accept unions as input.
Unions are like unions in C. Like enums, they can be one of several types.
Unlike enums, we cannot match on the union to check which variant it is.
Supporting unions would be nice for improving coverage, but it is not a big
priority.

4.9 Creating new structs

Another nice-to-have feature is the option to generate new structs and
instantiate them on the fly. In the README for reflect, David Tolnay
mentions a use case used by the serde_derive crate. It involves taking a
struct field and temporarily wrapping the reference to that field in a newly
generated struct. There are several challenges with this. In order for the
generated struct to work reliably, we need to deal with the following and
more:

• Lifetime parameters in the type we are wrapping.

• Type parameters in the type we are wrapping.

• Constraints associated with any of the parameters.

If we add support for making new structs in reflect, the user should not
have to deal with any of this stuff. The correct generic parameters and
constraints should be generated by the library automatically.

4.10 Supporting Branching Behaviour

The derive function in reflect can only generate code without branching,
at least not directly. Since the derive function can generate function
invocations, these functions may have branching behavior internally.
However, we cannot express branching directly. It would be beneficial if
we had the option to generate if statements and loops in the generated
code.

4.11 Supporting Attribute Macros

So far reflect only supports implementing derive macros. The library was
designed with derive macros in mind, so it is difficult to make it usable for
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other kinds of procedural macros. There is little sense in supporting function
like procedural macros, since they can accept arbitrary tokens, and not just
Rust code. However, it may make sense to support attribute macros, since
they only accept valid rust code.

Supporting attribute macros poses several challenges. One of the
challenges is that attribute macros can accept more than just structs, enums,
and unions, but can also accept functions and trait definitions, among other
things. This means that the reflect crate must be able to parse and handle
a wider variety of things. Another challenge is that derive macros adds to
the input it was given, while attribute macros replace the input. The reflect
crate works with the assumption that it is adding to some input, but this
would not hold for an attribute macros. If we wanted to support both kinds
of macros, we would need separate logic for dealing with each kind.

4.12 Closing Remarks
Even though reflect is not a finished project, I believe it can become a
valuable library for making certain kinds of procedural macros. It is unlikely
that reflect will replace the use of syn and quote, as these libraries give
more flexibility on handling the input, and precisely determining the output.
What reflect offers over these libraries is ease of use. With reflect, the user
don’t have to decide the naming of each variable, or the name of every
generic parameter. They don’t have to think about what trait bounds are
required, and for which types. The user only needs to think about what
the generated functions and methods should do, and what traits should be
implemented. The reflect library takes care of the rest.

Using reflect will always be more demanding in terms of compile-time
than using an equivalent optimized version that only relies on syn and quote.
When we know which trait we want to implement, and how the macro output
should look like, we only have to consider the relevant constraints for that
particular macro. reflect, on the other hand, must consider every type of
macro a user might want to make, without knowing the specifics. This leads
to more complex analysis that may be unnecessary for some macros, but
may be needed for others.

Whether or not reflect is the right tool for the job depends on the
requirements. If someone wants to control the exact output of the macro
they are making, they are better off with syn and quote. If they want the
macro expansion to be as efficient as possible, they should not use reflect
either. On the other hand, if compile time is not an issue, and they want to
make a macro quickly, then reflect might be a good choice.
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Appendix A

library! Macro Output for
the Hash Implementation

#[allow(non_snake_case)]
mod RUNTIME {

extern crate reflect as _reflect;
#[allow(dead_code, non_snake_case)]
pub fn MODULE() -> _reflect::Module {

_reflect::Module::root()
}
pub mod std {

extern crate reflect as _reflect;
#[allow(unused_imports)]
use self::_reflect::runtime::prelude::*;
#[allow(dead_code, non_snake_case)]
pub fn MODULE() -> _reflect::Module {

super::MODULE().get_module("std")
}
struct __Indirect<T>(T);
pub mod hash {

extern crate reflect as _reflect;
#[allow(unused_imports)]
use self::_reflect::runtime::prelude::*;
#[allow(dead_code, non_snake_case)]
pub fn MODULE() -> _reflect::Module {

super::MODULE().get_module("hash")
}
struct __Indirect<T>(T);

#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub struct Hasher;

impl _reflect::runtime::RuntimeParent for Hasher {
fn SELF(self) -> ::std::rc::Rc<_reflect::Parent> {

thread_local! {
static PARENT: ::std::rc::Rc<_reflect::Parent> = {

let mut parent_builder =
_reflect::ParentBuilder::new(_reflect::ParentKind::Trait);

parent_builder.set_path(|param_map: &mut _reflect::SynParamMap| {
MODULE().get_path("Hasher", param_map)

});
::std::rc::Rc::new(parent_builder.into_parent())
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}
}
PARENT.with(::std::rc::Rc::clone)

}
}
impl _reflect::runtime::RuntimeTrait for Hasher {}

#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub struct Hash;

impl _reflect::runtime::RuntimeParent for Hash {
fn SELF(self) -> ::std::rc::Rc<_reflect::Parent> {

thread_local! {
static PARENT: ::std::rc::Rc<_reflect::Parent> = {

let mut parent_builder =
_reflect::ParentBuilder::new(_reflect::ParentKind::Trait);

parent_builder.set_path(|param_map: &mut _reflect::SynParamMap| {
MODULE().get_path("Hash", param_map)

});
::std::rc::Rc::new(parent_builder.into_parent())

}
}
PARENT.with(::std::rc::Rc::clone)

}
}
impl _reflect::runtime::RuntimeTrait for Hash {}
impl __Indirect<Hash> {

#[allow(dead_code)]
fn hash() {

#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub struct hash;

impl _reflect::runtime::RuntimeFunction for hash {
fn SELF(self) -> ::std::rc::Rc<_reflect::Function> {

thread_local! {
static FUNCTION: ::std::rc::Rc<_reflect::Function> = {

let mut sig = _reflect::Signature::new();
let parent = _reflect::runtime::RuntimeParent::SELF(Hash);
sig.set_generic_params(&["H: ::std::hash::Hasher"]);
sig.set_self_by_reference();
sig.add_input(|param_map: &mut _reflect::SynParamMap| {

_reflect::Type::type_param_from_str("H", param_map)
.reference_mut()

});
let mut fun = _reflect::Function::get_function("hash", sig);
fun.set_parent(parent);
::std::rc::Rc::new(fun)

}
}
FUNCTION.with(::std::rc::Rc::clone)

}
}
impl hash {

pub fn INVOKE(
self,
v0: _reflect::Value,
v1: _reflect::Value,
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) -> _reflect::Value {
_reflect::runtime::RuntimeFunction::SELF(self).invoke(&[v0, v1])

}
}
impl Hash {

#[allow(non_upper_case_globals)]
pub const hash: hash = hash;

}
}

}
}

}
}
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