
Ain’t Graph Bad: Empathic Information
Dissemination for Autonomous

Peer-to-Peer Clustering

Utilising Empathic Clustering to Reduce
Disseminated Information

Thor M. K. Høgås (thor@roht.no)

Thesis submitted for the degree of
Master in Informatics: Programming and System Architecture

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2020

Ain’t Graph Bad: Empathic Information
Dissemination for Autonomous

Peer-to-Peer Clustering

Utilising Empathic Clustering to Reduce
Disseminated Information

Thor M. K. Høgås (thor@roht.no)

© 2020 Thor M. K. Høgås (thor@roht.no)

Ain’t Graph Bad: Empathic Information Dissemination for Autonomous Peer-to-Peer Clustering

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

As consumer Wi-Fi density continues to expand in line with the increase of wireless devices in
homes and urban settings, improving connectivity requires finding more innovative solutions to
the resulting challenges of distributed sensing within dynamic radio resource management. While
research within distributed and cooperative sensing has attempted to solve issues related to radio
spectrum scarcity, these solutions either have their own associated challenges in application or
target other environments. In order to solve these issues in residential settings we must have
sufficiently efficient and optimised communication and clustering mechanisms in order to perform
distributed channel allocation.

In this thesis, we utilise a distributed and autonomous minmax clustering algorithm together with
a push-based information dissemination approach. This combination has only previously existed
in an ongoing doctorate thesis.

For this clustering algorithm, we define two new pruning mechanisms, projective and sympathetic,
before using OMNeT++ to create different, discrete event-based simulation models. We then
compare these simulations and their results in order to evaluate their performance and suitability
for use in residential distributed channel allocation.

We find that a flooding approach with both pruning mechanisms is affordable for cluster sizes
of 100 nodes, and establish that these can be used in a distributed solution that maintains a
low degree of complexity. One of the pruning mechanisms successfully reduces the amount of
information disseminated for high-density topologies with a connectedness of 𝑝 > 15. Combining
self-pruning and sympathetic pruning reduced total traffic by approx. 50%, subsequently reducing
the total payload transferred from 1.4GB to 0.7GB. This allows for larger cooperative clusters
that remain within the upper bounds of the other mechanism, with a caveat of a minor complexity
trade-off.

Finally, we briefly examine possible future work for the project.

Preface

This thesis has been developed as part of the project EmpathicWiFi, and this thesis would not exist
if not for the assistance, work, discussions and meetings in the project.

Many thanks to my fellow academic-in-crime Nicolas Harlem Eide for his support, flexible Windows
solutions and pleasant murderous sunlight on rainy days.

To the project members of EmpathicWiFi. Thanks to Magnus Skjegstad for his on-point
communication expertise, attention to detail and suggestions for improving the results. His
knowledge in the area of gossiping has been a continual source of inspiration.

Thanks to Madeleine Rønning for her long video calls during a time in which physical meetings
were no longer feasible. Without her, this thesis would not be possible, either in content or in
quality.

Thanks to Torleiv Maseng, my supervisor and the father of GSM. His expertise and continual
encouragement have been fundamental to the progress of my work.

Lastly, I would like to thank my partner-in-crime Jess the Viking: First of Her Name, Stranger in a
Foreign Land, Uncompromising Remainer and Proud Gryffindor for the daily support, motivation
and necessary ass-kicking. Thank you.

— Thor Høgås,
Summer 2020

Contents

Abstract i

Preface iii

Contents v

I. Introduction & Background 1

1. Introduction 3
1.1. Background Motivation . 3

The EmpathicWiFi Project . 5
Enabling Efficient Clustering and Optimisations 6

1.2. Problem Statement . 6
Initial Questions . 7
Research Questions . 8

1.3. Outline . 10

2. Background Theory 11
2.1. The Basics of Radio Resource Management . 11

Centralised Radio Resource Management . 12
Distributed Radio Resource Management . 13
Cooperative and Empathic Radio Resource Management 14

2.2. Network Information Dissemination . 14
Dissemination Strategies . 15
Dissemination Mechanisms . 16

3. Related Work 21
3.1. Distributed and Cooperative Sensing . 21

Gossiping Updates for Efficient Spectrum Sensing 22
3.2. Former EmpathicWifi Work . 23

ResFi-based Archictecture . 24
Alternative Clustering Algorithm Requirements 26

3.3. Empathic Minmax Clustering . 26
Graph and Input Preparations . 27
Performing the Clustering . 28

II. Methodology 31

4. Strategy 33
4.1. Controlled Simulations . 33

Technological details and metrics . 34
Limitations . 36

4.2. Requirements for EmpathicWiFi . 37
State or Lack Thereof . 37
Integrity . 38
Dynamic Membership and Scope . 38
Performance . 40
Disturbance & Efficiency . 41
Connectivity . 42

4.3. Push-based Approach . 42
Controlled Flooding . 43
Other Approaches Considered . 44
Implementing Blind Flooding . 48
Implementing Staged & Empathic Flooding . 50
Suitability with ResFi . 52

5. Suggested Mechanisms 53
5.1. Terminology & Elements . 53

Neighbour Observations & Reports . 53
Transfer Layer Overhead . 55
Space and Complexity Consequences . 56

5.2. Useful vs. Useless Information . 57
Only Information Useful to Us . 57
Only Transmitting Information Useful to Them 58
The ”Usefuls“ . 59

5.3. Pruning & Reducing Outbound Traffic . 59
Projective Pruning . 60
Sympathetic Pruning . 60
Self-pruning . 61

5.4. Scale of Communication . 62
Amount of Bytes Transferred . 62
Number of Reports . 63

6. Simulation Models and Development 65
6.1. Overview of Models . 67
6.2. Common Implementation . 68

Variables and Signals . 68
Network Topologies . 68
Weights & Message Format . 70
Clustering Implementation . 71
Cut-Off Point or Termination Criteria . 73
Initial start-up . 74

6.3. Blind Flooding Model . 75
Simulation Features . 75
Pruning Messages by Time-to-Live . 76
Pruning forwarding upon certain clustering . 76
Resource Consumption . 76

6.4. Staged Flooding Model . 77
Simulation Features . 77
Pruning Reports Received Before . 77

Pruning Nodes Shared With Senders . 78
Resource Consumption . 78

6.5. Projective & Sympathetic Flooding . 79
Simulation Features . 79
Projective & Sympathetic Pruning . 79

III. Results & Conclusion 83

7. Results and Discussion 85
7.1. Blind & Staged Flooding . 85

Number of Reports Received . 85
Impact by Change of Alpha . 86
Impact by change of density . 87

7.2. Traffic & Pruning . 92
Traffic In 𝑛 = 2000 & 𝛼 = 100 . 92
Fewer Discovered Nodes is More . 92
Distribution of Nodes . 93
Distribution of Traffic . 95
Reducing Duplicate Transmissions . 98
Is It Too Much Traffic? . 99

7.3. Applicability & Thoughts . 101
Blind Flooding . 101
Staged Flooding . 101
Projective Pruning . 102
Sympathetic Pruning . 102
Self-pruning & Other Optimisations . 103

7.4. Threats to Validity . 104
Memory Requirements . 104

8. Conclusions and Future Work 107
8.1. Future Work . 107
8.2. Conclusions . 109

Index 111

Bibliography 112

List of Tables

6.1. Table overview of simulation features and behaviours. 67
6.2. Customisable parameters for models extending from Node 68
6.3. Available signals for models extending from Node 69
6.4. Simulation features in the staged flooding model 77
6.5. Simulation features in projective & sympathetic models 80

7.1. The mean, minimum and maximum of the th0 node in all five static topologies 96
7.2. 95% Percentile for Discovered Nodes . 98
7.3. 95% Percentile for Kilobytes Sent & Received . 99
7.4. Aggregate values for traffic and discovered nodes 100
7.5. Changes in Traffic & Number of Nodes for Self-pruning 100
7.6. Changes in Traffic & Number of Nodes for Empathic Pruning 101

List of Figures

1.1. Globally, around 2 billion Wi-Fi routers are located in apartments, multi-dwelling
units (MDUs) and offices that interfere with each other due to a lack of bandwidth
forcing them to share the same channel (blue piece). 5

1.2. EmpathicWiFi Project Objectives . 5

3.1. Simplified description of clustering algorithm by Rønning [10] 29

5.1. Pseudo-code for how projective pruning works . 61
5.2. Pseudo-code for how sympathetic pruning works . 62

6.1. Screenshots showing staged flooding model . 66
6.2. Distribution of the number of neighbours per node for range 70
6.3. Pseudo-code of the initial dissemination of neighbour reports upon start-up 75
6.4. Deterministic finite automata for the blind flooding model 77
6.5. Deterministic finite automata for the staged flooding model 79

7.1. Mean count of reports received for flooding . 86
7.2. Log effect on sent and received reports across models over alpha 89
7.3. Impact of network size on reports received for blind flooding 89
7.4. Impact of network size on reports received for staged flooding 90
7.5. Impact of network size on reports received for projective flooding 90
7.6. Time to Complete Clustering For Networks . 90
7.7. Log effect on sent and received reports across models per neighbour 91
7.8. Sent and received reports across empathic models over alpha 94
7.9. Distribution of Discovered Nodes and Reports . 95
7.11.Distribution of Uniquely Known Nodes . 96
7.12.Distribution of Discovered Nodes and Traffic . 97
7.14.Distribution of Received Reports . 98
7.15.Total Traffic by Pruning Variants . 99

Part I.

Introduction &
Background

Introduction 1.
1.1.Background Motivation 3

The EmpathicWiFi Project . . . 5
Enabling Efficient Clustering and
Optimisations 6

1.2.Problem Statement 6
Initial Questions 7
Research Questions 8

1.3.Outline 10

1.1. Background Motivation

Since their introduction in 2007, the IEEE 802.11 standards
for wireless network communication have been a global success.
New features have been continuously added, resulting in higher
rates and better services. However, these standards use the
ISM frequency bands, which are the most crowded radio bands
in the world, and are used daily by almost everyone with a
wireless device. Higher density access point (AP) installations
and continued urbanisation put the radio spectrum availability
under constant pressure.

Definition 1.1.1 (Access point)
Networking device that connects
wireless devices on a Wireless Local
Area Network (WLAN) to a wired
Local Area Network (LAN), and to
any connected Wide Area Network
(WAN), typically the Internet.

The number of wireless access networks
are increasing, increasing the number of connected Wi-Fi devices
as well as the traffic usage. According to Barnett, Jain, Andra et
al. [1], half (51%) of the global IP traffic in 2022 will be driven
by Wi-Fi. This would mean a final compound annual growth rate
of 18% for Wi-Fi-only devices and 53% for mobile devices in the
period 2017–2022.

This lack of sufficient radio resources is particularly evident in
higher density areas such as apartment blocks or multi-dwelling
units (MDUs), where there are more base stations (BSs) or
APs than there are available frequencies or channels [2]. In
South Korea, and likely other locations with high-density Wi-
Fi installations where people live in close proximity to one
another, this interference between Wi-Fi networks is a significant
problem [3]. The issue is further exacerbated by overlapping radio
transmissions, which may have a greater overlap due to APs with
a higher transmission effect than necessary.

This is often caused by consumers who want to increase their
wireless network range and think that they can achieve this by
increasing the AP transmission power, without considering the
strength of their mobile devices’ transmissions. The issue is made
worse by manufacturers catering to consumers’ requests, causing
neighbouring users more harm at no increased benefit to the
purchaser, or third-party firmware such as DD-WRT, OpenWRT,
or Tomato, that surface these configuration parameters.

Nodes attempt to mitigate frequency scarcity by scanning the
local area for neighbouring devices and activity to find the local
optimal channel, preferably one that is unused or the least used.

4 1. Introduction

If such a channel is not available, APs may traditionally utilise a
more dynamic approach such as least-congested channel search
(LCCS), where the AP moves if the traffic volume is greater than a
calculated threshold [4]. As with other local BS-based approaches,
LCCS is weak to hidden nodes [5]. APs must receive information
from either clients or other APs to optimise frequency assignment
for multiple users and WLANs.

While commercial APs limit their effect to meet the set regulatory
limitations, and seldom limit it beyond these requirements,
overlapping AP areas cannot be solved solely by further limitation.
The signal coverage of areas is heavily affected by building layouts
and construction materials, as well as other items and interference.
Even for an AP that can optimally cover its area with its signal
strength, its channel and air time is still likely to be shared with
other networks, as its coverage will extend beyond the particular
confines of the device owner’s apartment or building area and
into other inhabitants’ radio space.

Ideally, APs aim and users of a WLANs wish to entirely avoid
overlap on the same frequency. This is known as the frequency
assignment problem (FAP), and it is a problem reducible to
the graph colouring problem [6]. While there are 3–4 non-
overlapping channels in the 2.4GHz band in IEEE 802.11g-
2003 (also known as Wi-Fi 3) networks—depending on the local
regulatory constraints—this is too low to avoid collisions entirely
in an urban setting. Therefore, there are still advantages to be
had from optimising and reducing the collisions [2].

The 5GHz band in 802.11g initially provides 9 non-overlapping 20
MHz channels, with bonding provided by 802.11n and additional
channels provided by 802.11ac. These are expanded more in
later standards, providing upwards of 19 non-overlapping 20MHz
channels. However, the channels may be banded together in bulks
of 40MHz, 80MHz and 160MHz. Bonding reduces the number
to 10 non-overlapping 40MHz channels, or 5 non-overlapping
80MHz channels.

As devices support increased throughput and new radio spectrums,
usage does not decrease but increases until it reaches a bottleneck,
similar to the way that increasing capacity on transport road
networks allows for increased usage until capacity is back to a
premium. Furthermore, introducing mesh APs in IEEE 802.11s
(mesh networking) and repeaters may also increase the value
of the project as the radio spectrum becomes more crowded.
Therefore, it is our belief that this project is equally applicable
to and useful for networks utilising current technology, such as
the 5GHz band, as well as new wireless standards still under

1.1. Background Motivation 5

Figure 1.1.: Globally, around 2 bil-
lion Wi-Fi routers are located in
apartments, MDUs and offices that
interfere with each other due to a
lack of bandwidth forcing them to
share the same channel (blue piece).

We will demonstrate a completely
new architecture for Wi-Fi systems
which make them cooperate, rather
than compete. Cooperation is done
inside large clusters in which net-
works disturb each other. The finite
cluster size make the system scale
and make it possible for the micro-
processor in each AP, to run our sys-
tem. Our solution will result in better
services and less interruptions for all
Wi-Fi networks. It will enable more
traffic to be handled by the networks.

Figure 1.2.: The EmpathicWiFi
project objectives as described by
Maseng [2]

development, such as the 6GHz band, which was approved by the
FCC for Wi-Fi usage as recently as April 2020.

The EmpathicWiFi Project

Network equipment manufacturers and Internet Service Providers
(ISPs) have partial solutions for improving channel allocation [4],
[7]. However, as we discuss later, these either do not cooperate
across devices or do use a centralised architecture. The latest
IEEE 802.11ax standard has spatial frequency reuse and adaptive
power control built into the standard with LCCS, as introduced
earlier, which selects the channel with the least traffic [4]. This
is an unstable, individual-centric solution because it assumes
that the neighbors who may have their performance reduced
will do nothing to counteract it. As Zehl, Zubow and Wolisz [8]
state in ‘Practical Distributed Channel Assignment in Home Wi-Fi
Networks’:

The efficient management of radio resources in today’s
home or residential Wi-Fi networks is still an open
research question. Due to the chaotic and unplanned
deployment of APs and the fact that all APs are
managed individually by their owners, home Wi-Fi
networks suffer from performance degradation due
to contention and interference. [8]

Therefore, other solutions must be found that can work in tandem
with the already existing infrastructure and installed base, and
that will optimise throughput and decrease latency while targeting
a heterogeneous base of devices.

The EmpathicWiFi project aims to reduce avoidable frequency
overlap for clusters of access points [2]. It is both a research pro-
ject and a commercial venture, which is working to implement a
cooperative and distributed dynamic radio resource management
system that is empathic in terms of how the cluster members
cooperate.

To our knowledge, no practical method has yet been proposed
that is suited for cities or countries without the use of tailored in-
frastructure servers that are operated by a third-party. Therefore,
we have formulated the project objectives shown in fig. 1.2.

Definition 1.1.2 (Backhaul) A
secondary communication channel
established established in order to
reduce costs of communication. In
this context backhaul represents a
communication between two nodes
over WAN.

Empathic nodes establish backhaul connections to their neigh-
bouring APs, enabling direct communication via the Internet [2],
[9]. Subsequently, gathered wireless usage and interference in-
formation is shared with other devices, forming a distributed
cluster. Current tests have shown an improvement potential of

6 1. Introduction

1: See section 5.1 for more on neigh-
bour reports.

upwards of 20% in terms of wireless transmission performance
and packet loss [2].

Enabling Efficient Clustering and Optimisations

Definition 1.1.3 (Information dis-
semination) The systematic pro-
cess of ensuring those who need
information in order to make in-
formed decisions has the correct in-
formation made available to them
within the given time constraints.

The distributed clustering algorithm itself follows certain determ-
inistic information dissemination paths in the course of converging
towards results [10]. These paths and assumptions have been
made to support the goals of this master’s thesis, rather than
to evaluate the ideal method of information dissemination in a
cluster. Our motivation is to investigate how a model that utilises
a form of empathic clustering can work, and furthermore how we
can optimally acquire the information required for the clustering
algorithm from our neighbouring APs, as well as provide it to
them.

It is our belief that different approaches to information dissem-
ination will yield different performance results based on metrics
such as the total number of neighbour reports1 before converging,
the number of bytes transferred, and the time it takes to do this.
In addition, we presume that adopting an evaluated empathic ap-
proach to dissemination in our network will support participants
who are considering an actual implementation of the system in
end-user consumer hardware. Different dissemination yields dif-
ferent behaviours when combined with other neighbouring nodes
that are not empathic, known as rogues.Rogue nodes are not included in

the information dissemination sim-
ulations. Any rogue node observed
does not contribute to spreading in-
formation, but its information will be
spread.

For our purposes, rogues
are inconsequential; interference between rogue nodes and em-
pathic nodes are used in the process of calculating an optimal
channel allocation even though they are not a partition member.

This thesis aims to briefly introduce the reader to some of the
concepts and approaches related to radio resource management,
before delving into the practical challenges faced when the radio
spectrum usage is shared from and throughout its surrounding
access points. This establishes a background which we build upon
to describe the alternative methods of information dissemination
available.

1.2. Problem Statement

In order to further the implementation of EmpathicWiFi, we need
to evaluate the different approaches to information dissemination
for the purposes of clustering and, by extension, the channel
allocation algorithm.

It is our goal to establish which of our approaches to information
dissemination yield the best result within their limited scope,

1.2. Problem Statement 7

while fitting with the requirements of a hypothesised real-life
implementation. We wish to see how information dissemination
approaches coupled with the properties of the clustering algorithm
allow for improvements in transmission costs. However, there
are no hardware experiments in this thesis, and as we will delve
deeper into in part II, a defined approach for our simulations and
results.

Initial Questions

To begin with the author had the following questions:

Which form of information dissemination best suits
EmpathicWiFi?
Is there one particular system that is more suitable than
any others? Are there settings or environments in which
EmpathicWiFi is used that make a system more suitable for
certain dissemination approaches?

Is there a simple information dissemination approach that
works better for a simulated variant of EmpathicWiFi?
Does a flood-based approach work better than one that
utilises gossiping? How about an approach that incorperates
the two?

Are there possible benefits to using distributed hash tables
(DHTs) for information dissemination in EmpathicWifi?
Can DHTs be a suitable solution to both information
dissemination and communication between nodes in an
overlay network?

Can the clustering algorithm be exploited for gains in relat-
ively simple information dissemination approaches?
In other words, can the clustering mechanism be used in
the information dissemination approach to reduce the time
it takes to complete the clustering, the information dissem-
inated, or the amount of traffic?

How can simple information disseminantion work for
EmpathicWiFi?
Closely related to previous issue: how might simple ap-
proaches work for disseminantion of clustering data for its
requirements?

Can we simulate the clustering algorithm in a simulation
framework?
Which simulation frameworks are most relevant for this
type of simulation? Does it depend on what we want to
simulate? Indeed, we assume that to be the case.

8 1. Introduction

Research Questions

How effectively can flood-based information dissemination
be used in real-world scenarios for EmpathicWiFi clus-
tering per the metrics?
Considering the relevant metrics, what is the impact of
flood-based information dissemination for EmpathicWiFi in
a real-world implementation?

How effectively can a flood-delay based information dissem-
ination be used in real-world scenarios for Empathic-
WiFi clustering per the metrics?
Considering the relevant metrics, what is the impact
of a modified flood-based information dissemination for
EmpathicWiFi in a real-world implementation?

Can we prune information from forwarding when flooding
that is not relevant for our own clustering?
If a given node does not use received information to reach
its own clustering, can we ignore it?

Can we prune information from forwarding when it is not
relevant to a neighbouring node’s clustering?
If a neighbouring node does not need our received
information to reach a clustering, can we ignore it on their
behalf?

How much memory does it take us to reduce the number of
messages in the different dissemination approaches?
Each method has its own associated mechanism and
theoretical space complexity.

How much time complexity does it take us to reduce the
number of messages in the different dissemination ap-
proaches?
Each method has its own associated mechanism and associ-
ated time complexity for performing the steps required to
save on transmission costs. Are they worth it?

Hypotheses

1. The combination of backhaul communications and exploit-
ation of minmax clustering properties in the information
dissemination approach reduces the need to optimise for
flooding.

While the author believes that this is the case, to the
point that even inefficient information dissemination is still
sufficient to improve wireless connectivity for empathic

1.2. Problem Statement 9

nodes, we will not be able to confirm or reject this in this
thesis. However, any reduction to the metrics we wish to
optimise is a reduction in our optimisation needs, and may
thus confirm or reject the hypothesis.

2. We can spread information using flood-based dissemination
and perform clustering within the suggested interval of five
minutes.

3. We can spread information using a flood-delay based
dissemination and perform clustering within the suggested
interval of five minutes.

4. We can spread information using a combined flood-
delay and empathic dissemination approach that transmits
messages in intervals to all empathic neighbours and
performs clustering within the suggested interval of five
minutes.

5. It is not disruptive to the network to use flood-based
methods to spread information in networks if the cluster
size is 100 or less.

6. It is possible to reduce the number of reports with a flood-
based dissemination approach to that of a gossip-based
dissemination approach.

7. We can exploit the minmax clustering to further reduce
which pieces of information are candidates for dissemina-
tion, as well as to prune information.

8. We can exploit the minmax clustering to prune information
in a way which is compatible with a flood-based dissemina-
tion approach.

9. We can reduce the number of transmitted reports by more
than 5% within the 95% confidence interval by using
empathic dissemination rather than the baseline flood-based
dissemination approach.

10. An empathic dissemination approach will use more pro-
cessing time than a baseline flood-based dissemination ap-
proach.

11. An empathic dissemination approach will require more
memory than a baseline flood-based dissemination ap-
proach.

10 1. Introduction

1.3. Outline

Part I starts with chapter 2, where we introduce background
theory that helps us in our approach, including the field of radio
resource management.

In chapter 3, we contextualise the small body of related work, the
existing work on EmpathicWiFi, including an our understanding
of minmax clustering in section 3.3.

Part II starts with chapter 4, where we start to define the
strategy to our method, including our approach with regards
to technology, measurements of interest, and the simulation
framework we utilise. This includes our interpretation of
requirements for EmpathicWiFi in section 4.2, and our primary
choice of information dissemination in section 4.3, where
we outline the information dissemination approach and its
candidates.

In chapter 5, we build on the introduction to suggest specific
empathic terminology and associated empathic mechanisms that
we use in our work, alongwith rationalising its scale and behaviour
in theory.

In chapter 6 we elaborate on all of the simulation models
and their implementations, including common behaviour in
section 6.2. section 6.3 contains our first approach wherein we
elaborate blind flooding. We then examine the staged flooding
approach in section 6.4, before implementing two models utilising
our empathic mechanisms We then implement two models
utilising the empathic mechanisms to lower transmission costs in
section 6.5.

Part III is the final part, where we present the results with their
trade-offs as simulated, and discussed, in chapter 7.

We conclude the thesis in chapter 8 by summarise interesting
areas for future work and a timeline in section 8.1, and present
our conclusion in section 8.2.

Background Theory 2.
2.1.The Basics of Radio Resource Man-

agement 11
Centralised Radio Resource Man-
agement 12
Distributed Radio Resource Man-
agement 13
Cooperative and Empathic Radio
Resource Management 14

2.2.Network Information Dissemina-
tion 14
Dissemination Strategies . . . 15
Dissemination Mechanisms . 16

In this chapter we start by establishing the background material
of the thesis. This includes an introduction to the basics of radio
resource management.

2.1. The Basics of Radio Resource
Management

Radio transmissions on the same frequency are considered shared
mediums. As a physically shared medium, they are also a finite
resource. Efficiently managing these resources is an ongoing
research interest, and is referred to as radio resource management
(RRM). The term functions as an umbrella for both small and
large-scale applications [8], [9], its various approaches, and
spectrum sensing [11]–[13]. When the frequency spectrum’s
capacity is not utilised to its full potential, spectrum holes
occur, as a result of heterogeneous consumer devices limited to
independently utilising sub-optimal heuristics and algorithms.
Consequently, spectrum holes are radio areas left unused by
primary a current primary user or users [14, p. 201].

Cooperation between APs in known to result in better spectrum
utilisation [15], [16]. Simulations, analysis, plans and patents
on how to do this, have been published [7], [17]–[21]. This
work extends to improved measurement methods for allocating
channels to APs with three high-performing algorithms [22],
and experiments measuring traffic using a utility function with
multiple APs connected to a server [23]. Central channel
allocation schemes that include rogue APs have also been
proposed, where channel utilisation is estimated based on
received beacon signals [24].

Information from the clients are available from the AP when
using IEEE 802.11k. In the Wi-5 EU project [25], Radio Resource
Management was addressed and in particular AP selection and
Vertical Handover using local controller was dealt with. On 1 April
2020 the EU project Smart-WiFi started using artificial intelligence
to organize and optimize the World’s Wi-Fi networks [26]. All
the previous projects and articles agree on that coordination will
result in better performance, but not how to do it on a large scale
and certainly not how to do it without central coordination, even

12 2. Background Theory

1: Cognitive radio encompasses
more than what is described here.
However, while Mitola and Maguire
[29] describe cognitive radio as
something far more comprehensive,
for all intents and purposes cognitive
radio enables APs to perform radio
resource management (RRM).

2: An essential difference is whether
users within each wireless network
contribute to making the transmit-
power decisions. These capabilities
are already present, as modern APs
gather and utilise the interference
reports from connected clients to aid
in selecting channels. These days, the
clients’ reports are utilised regardless
of who performs the optimisation.

if 10 years ago, Chieochan, Hossain and Diamond [21] concluded
that a decentralized system should be used for large networks to
make them scale.

Cognitive radio The dynamic response to spectrum availability
by collecting, evaluating and controlling the radio usage is
referred to as cognitive radio [14], [27], [28].1 Cognitive
radio has two primary prioritisations: enabling highly reliable
communications as well as efficiently utilising the radio spectrum,
or theminimisation of spectrum holes. While the latter is important
for frequency management, it is an objective of EmpathicWiFi,
although it is a consequence of reducing interference.

Haykin [14] states that the three main responsibilities of cognitive
radio are: radio-scene analysis, channel state identification, and
transmit-power control and dynamic spectrum management.
These are performed individually and sub-optimally by consumer
access points. In the majority of consumer devices, such actions
are generally limited to detecting available channels and adapting
their transmission and reception parameters accordingly [30].

The majority of work on RRM is not relevant for this thesis. The
term and its sub-terms, however, are important for understanding
the problem area and are therefore described in this section.

Centralised Radio Resource Management

In enterprise settings and in academia, solutions for central
RRM already exist and have done so for a long time [31].
When available, it can provide the exact same optimisations as
distributed RRM [2].

As part of cognitive radio, centralised RRM exhibits the same
processing steps but with different architectural structures. RRM
is discussed in different contexts; Haykin [14, sec. 7] differentiates
between centralised and decentralised RRM, describing centralised
as an “access point controlled transmit-power” and decentralised
as “aided and controlled by primary transmitters themselves”.
While this distinction is useful when discussing the details of
cooperation among devices, this is not the focus of this thesis,
which uses a slightly different distinction: the difference between
centralised and decentralised lies in whether the APs with only
themselves and other APs are able to perform RRM.2

In contrast to a dynamic and distributed channel selection,
the centralised approach to radio resource management is
fundamentally one or multiple controllers being solely responsible
for parts of the cognitive radio steps [14]. In essence, a centralised

2.1. The Basics of Radio Resource Management 13

3: Technological advances in inter-
connectivity and communication has
not been thanks to a homogeneous
architecture, but rather through com-
peting solutions balancing offers of
interoperability with heterogeneous
solutions.

RRM will collect and analyse information across APs with a single
point wherein it gathers all the data, processes it and subsequently
updates the configuration of all devices.

The fundamental issue with centralised RRM for consumer usage
is that it requires homogeneous devices or control structures.
An ISP must supply both hardware and software to end-users,
and only customers with both, as well as ISPs with a central
controller, would be able to benefit from the RRM functionality.
The fundamental issue with centralised RRM for consumer usage
is that it requires homogeneous devices or control structures. An
ISP must supply both hardware and software to end-users, in
addition to providing a central controller service. Only those
customers using both the provided hardware and software would
be able to benefit from the RRM functionality. If generic versions of
the hardware and software are available, there might be multiple
competing solutions available on the market. Attempting to use
these would require the ISP to have the aforementioned central
controller, or in this case, multiple different controllers.3

The fragmentation of the devices further detracts from the
potential winnings of RRM.

Distributed Radio Resource Management

In Zehl, Zubow and Wolisz [8] ResFi is used to perform RRM,
with channel and effect strength optimisations on multiple devices
under homogeneous control. In a local setting within one housing
unit, the devices communicate with each other and exchange
channel information. When shared with other local devices, they
are able to optimise frequency selection. Communication between
nodes is based on each node within range of a probe request
replying with its contact data.

Once safe backhaul communcition has been established across the
APs, the load is reported by each individual access point, and as
such, little to no switching is done between master and monitor
mode. However, switching interfaces may result in a very brief
period of downtime [9]. While initially the connected devices
will be, and are described in Zehl, Zubow and Wolisz [8] as,
neighbouring devices, ResFi’s northbound interface can transmit
messages to neighbours N-hops away by broadcasting it through
the ResFi access point (AP).

For non-ResFi APs, each device reports a passive load as
determined by ResFi AP. The load is used equally by the algorithm,
regardless of whether it is directly or passively reported. It

14 2. Background Theory

attempts to cooperate with adjoining rogue networks, although it
is unable to adjust rogue APs’ channel selection or effect [8].

In illustrating how ResFi can be used in a limited residential
setting, Zehl, Zubow and Wolisz [8] refer to a simplified version
of the weighted colouring channel assignment algorithm Hsum,
although this has been adapted to deal with non-cooperative APs.
With Hsum, the learning phase uses the load of all neighbouring
APs. Communicating with the other devices is made possible by
the initial probing and scanning.

By utilising a part of the dynamic frequency selection (DFS)
functionality, ResFi is able to broadcast a Channel Switch
Announcement (CSA-IE), which allows for near simultaneous
channel changes by clients [8, sec. 11.9, 32]. With seamless
switch-over APs can execute channel allocation algorithms on-
demand, reacting to a significant increase of interference.

Cooperative and Empathic Radio Resource
Management

When cooperating with neighbours and other nearby devices,
devices may exhibit cooperative or empathic behaviour, rather
than compete for available space on the radio spectrum. The latter
of the terms is taken from the project description of Maseng [2].
When the cognitive radio process is used in an online, distributed
and cooperative manner, we suggest that this is referred to as
either cooperative or empathic RRM.

This definition of cooperative radio is arguably very similar to
that of cognitive radio, in that it is an “intelligent wireless com-
munication system that is aware of its surrounding environment”
[14, p. 201]. However, contrary to a later discussion on multiuser
cognitive radio in Haykin [14], cooperative and empathic RRM
does not treat the process as a non-cooperative game, and does
not optimise the solutions for rogue access points.

2.2. Network Information Dissemination

In this section we give an introduction to some of the elementary
information dissemination definitions, mechanisms and strategies.
As the field of information dissemination within computer science
is broad we limit this to the areas relevant for our work or our
discussions.

2.2. Network Information Dissemination 15

4: An example includes starting with
one strategy and over time changing
to a different strategy that better
suits information dissemination for
the later stages of the application or
use-case.

Dissemination Strategies

With a vast number of approaches to information dissemination
here follows a brief summary of the different approaches or
strategies that may be employed in dissemination mechanisms to
varying extents.

While strategies such as pull, push or synchronisation are generally
considered distinctly different, they are often combined to form
more advanced variants. When combined they may overlap
significantly in their functionality or in the mechanisms used.
Distinguishing between them is done by evaluating what the
node initiating the information communication does [33]. This
includes situations where behaviour can be a function of time
[34].4

Push-based A push-based approach is one where the node
initiating the transfer of information is the node also informing
another participating node, and therefore the disseminating
node in the exchange. Other nodes may not have requested
the information in question, nor indeed have any need for the
information. It may be old or irrelevant. While any approach
seeks to minimise useless transmissions, to push information is
particularly prone to redundant transfers.

Key to a push-based approach is that the node initiating the push
must be sufficiently likely to transfer information wanted by the
receiving nodes.

Fundamental examples of push-based approaches include broad-
casting and flooding, definitions 2.2.1 and 2.2.4, but also gossip-
ing in definition 2.2.7.

Pull-based The antithesis of a push-based approach is when
the node initiating the transfer of information is requesting
information from another node, rather than providing the
information to the other node. The other node participating
and responding to the request is the disseminating one. Thus the
node pulls the information from others, provided that the node
has the required information.

Key to a pull-based approach is that the node initiating the pull
of information is in a position to know which nodes to contact.
Additionally the initiating node is in a better position to choose
when to pull the information, how to choose who to ask, and
what information to request if applicable.

16 2. Background Theory

5: A multi-primary scheme, previ-
ously referred to as a multi-master
scheme, is one wherein multiple
database nodes are available for writ-
ing, unlike a primary-replica where
one node only works as a fallback
node.

6: The Address Resolution Protocol
is a link-layer protocol aiding with
looking up the MAC addresses of
devices on the same local network
by using broadcasting.

Fundamental examples of pull-based approaches include gossip-
ing with pulling definition 2.2.8.

Synchronisation Subsequently, in a synchronisation-based ap-
proach the both the initiating and participating nodes are po-
tentially disseminating and requesting. While there is still an
initiating node, as well as one or multiple participating nodes,
synchronisation is usually a type of set reconciliation problem.
Participating nodes first exchange information to determine what
they are missing, before transmitting the information between
each other. This is a process that may occur in multiple rounds,
such as seen in Skjegstad, Johnsen, Bloebaum et al. [35]. A simple
approach is to first transfer the values of all missing keys, then
transfer their respective values. Exchanging missing keys may be
simple, but it may be a low-complexity approach to solving the
problem with a trade-off for traffic.

Key to a synchronisation-approach is reducing the information
exchanged to the bare minimum required to reconcile the
differences.

A fundamental example of synchronisation in use is replication
between databases in a primary scheme.5 Pull- and push-based
gossiping in definition 2.2.9 is another kind of synchronisation
strategy.

Dissemination Mechanisms

This section outlines a few common and elementary mechanisms
or protocols for information disseminations.

Uncontrolled & Controlled Flooding

In the foundation of all flooding is broadcasting, commonly used
in local networks, such as all Ethernet-based local networks on
the link layer across the world.6

Definition 2.2.1 (Broadcasting) The act of sending a message
to all one-hop neighbours in a network.

At its core flooding is the application of repeated broadcasts
beyond a single network.

Definition 2.2.2 (Uncontrolled flooding) Indiscriminate for-
warding of messages to all neighbours sans sender without any
conditions.

2.2. Network Information Dissemination 17

This thesis does not delve any deeper
into uncontrolled flooding besides
stating that it exists, and that any
practical uses besides creating broad-
cast storms for the purposes of
EmpathicWiFi are non-existent.

In most cases when flooding is discussed almost all types of
flooding are controlled as in definition 2.2.3, even if they create
broadcast storms. While controlled flooding exists in many
shapes and forms, uncontrolled flooding is by its definition 2.2.2
very limited in behaviour. Controlled flood-based mechanisms
have a cut-off point, one that can theoretically guarantee that
the network will reach an end-state where the information is
disseminated for everyone.

Definition 2.2.3 (Controlled flooding) Forwarding of messages
to all neighbours sans sender with checks such as time-to-live or
pre-existing knowledge of the contents.

Even blind flooding, which tracks the packets it forwards in order
to prevent it from rebroadcasting multiple times, can contribute to
a temporary broadcast storm in dense graphs with high amounts
of data. Nonetheless it is an example of controlled flooding as it
does not forward packets indiscriminantly.

Definition 2.2.4 (Blind flooding) Retransmitting or forwarding
a message via broadcasting to all neighbouring nodes that have
not already received it from us [36, sec. 2], usually without
verifying their need for the information beforehand.

Definition 2.2.5 (Broadcast storm) A network storm causing
severe congestion and latency after a broadcast message results in
multiple other nodes also broadcasting, thus contributing to an
exponential growth in messages transferred.

A particular weakness of blind flooding is that it may still create a
temporary broadcast storm as it does not prevent overloading the
network.

There are many optimised flooding mechanisms such as multi-
point relay and neighbour aware adaptive power [36, s. 2]. These
are just two out of a wide range of options that must be explored
before implementing an information dissemination mechanism
for EmpathicWiFi. Optimised flooding mechanisms

prune information by a combination
of heuristics and algorithms in order
to reduce transmission costs.

We bring up pruning again at a
later point in chapter 5 and defini-
tion 5.3.1.

Gossip

An alternative to flooding, whether it is controlled and blind
or utilising pruning, is to use a gossip protocol as defined in
definition 2.2.6.

18 2. Background Theory

Definition 2.2.6 (Gossiping) Contacting one or multiple ran-
domly selected neighbouring nodes, in intervals, to receive or send
information [37].

However, gossip protocols in their many different variants are a
dime a dozen [31], [34], [37]–[39].The probabilistic choice of who to

forward information from in gossip
can be viewed as a probabilistic kind
of pruning.

The primary forms of gossip protocols come in the dissemination
strategies mentioned earlier. There is push gossiping, pull
gossiping, the combination push & and pull gossiping, and any
other variant that further specifies the behaviour of the gossip
mechanism.

Definition 2.2.7 (Push gossiping) Sending information or a
message to a randomly selected neighbouring node [37].

Definition 2.2.8 (Pull gossiping) Requesting information or a
message from a randomly selected neighbouring node [37].

The gossip strategies as mentioned in definitions 2.2.7 to 2.2.9
may vary from protocol to protocol, such as making the push or
pull mechanism eager or lazy, to name two [34].

Definition 2.2.9 (Push & pull gossiping) Exchanging informa-
tion or messages with a randomly selected neighbouring node if
either node is informed [37].

Gossip protocols also have different end stages. Messages may be
forwarded on the basis of using a limitedmodewherein a sequence
field is used to limit the maximum number of transmissions
a message receives. Similarly it may run in an unlimited
mode without any limit to how many times a message may be
retransmitted [34]. For the purposes of EmpathicWiFi a limited
mode seems suitable as we have a fixed number of potential
members from any given starting point: 𝛼, the maximum cluster
size. However, it would not be negative for nodes to retransmit
information to a previously unknown neighbour.

Perpetual gossiping is a type of gossiping where there is no end
state to the gossiping besides ensuring that every node is informed.
Its strength arguably lies in topologies with high degrees of
mobility, where neighbours are both coming and leaving, such
as Mobile Ad-Hoc Networks (MANETs). The original suggestion
recommends using it such that the amount of information gossiped
is kept under a constant threshold, while still ensuring the
eventual dissemination of all the messages [39]. The lack of
an end-state is to some extent problematic: once a node is
certain of its cluster any additional information is unnecessary

2.2. Network Information Dissemination 19

use of backhaul until the next interval for the channel allocation
algorithm (CAA).

Staged Flooding

Similar to flooding, yet heavily inspired by gossiping, the staged
flooding approach is a combination of two particular aspects.

The first part is a trade for latency with reduced commmunication
by instituting a flood delay between receiving new and useful
information and forwarding it to neighbours. This latency has
been referred to in literature as the latency-energy trade-off when
discussing flood delays in wireless transmissions, and the attempt
at optimising for latency while simultaneously optimising for
transmission costs are considered contradictory [40].

This is similar to how jitter-based techniques are used for
wireless transmissions as is done for flooding within MANETs
[41]. While jitter-based flooding is primarily used as a means
to avoid collisions on a shared medium, our utilisation of jitter—
or random flood-delay within an interval—attempts to reduce
the simultaneous use of backhaul between neighbours, as well
the total amount of data transferred as listen for longer before
disseminating information to other neighbours. When a node
utilising staged flooding receives a new message, it schedules
its next forwarding and choses the jitter by scheduling its next
dissemination update from within the shared interval by random
choice.

This was originally inspired by is the notion of applying intervals
and randomness as is done in gossiping [42]. However, it will
include any new information inbetween now and then, both for
forwarding and pruning. This builds on the assumption that more
information allows us to make better decisions if receiving more
information might change the outcome of what we forward to
other nodes.

The second part is that while flooding usually acts on a message-
to-message basis, the staged flooding works on the information
contained within, of which we define and discuss later in
section 5.1. We bundle up the information internally, and combine
information received for dissemination. Two neighbouring APs
that each send us the same copy of an information element allow
us to take the latest version, or the first if they are identical, and
only forward one of them.

As such we attempt to define staged flooding in definition 2.2.10.
We wish to emphasise that we do not believe this combination to
be original, but we must define it herein for us to use it later.

20 2. Background Theory

Definition 2.2.10 (Staged flooding) A flood-based dissemina-
tion mechanism wherein nodes delay forwarding of new informa-
tion by choosing randomly from within a given interval, similar
to jitter-based flooding [41]. All new information received in the
meanwhile, in the interval between first receipt and the scheduled
forwarding, is included in the scheduled forwarding subject to
pruning.

Related Work 3.
3.1.Distributed and Cooperative Sens-

ing 21
Gossiping Updates for Efficient
Spectrum Sensing 22

3.2.Former EmpathicWifi Work . 23
ResFi-based Archictecture . . 24
Alternative Clustering Algorithm
Requirements 26

3.3.Empathic Minmax Clustering 26
Graph and Input Preparations 27
Performing the Clustering . . 28

In this chapter we establish the set of related work that this thesis
builds on and is related to.

Note that the set of specifically related work is small. This is in
contrast to the amount of work within RRM and information
dissemination. These fields have an abundance of literature,
but these are not included here: rather, they are a part of the
background theory in chapter 2. One exception to this is the work
discussed in Distributed and Cooperative Sensing where we find
that the descriptions, technologies and terms overlap with the
goals of EmpathicWiFi.

We delve further into the work performed in one of the two master
theses completed in 2017 and 2018, which are both related to this
EmpathicWiFi project. The thesis by Nygårdshaug [43] suggests a
design for information sharing over ResFi, and is more central to
our work. Less related is Grønseth [44] as it looks at the channel
assignment aspect, not information dissemination. We will not
look closer at the latter, but there is ongoing work building on it
by Illavalagan [45].

Once completed, we look closer at the minmax clustering
algorithm for EmpathicWiFi in section 3.3. We look at our
suggested mechanisms for minmax clustering later in chapter 5,
after outlining our method approach in chapter 4.

3.1. Distributed and Cooperative Sensing

Yucek and Arslan [28] elaborate on several different areas within
spectrum sensing. One of those areas is cooperative sensing, and
a subset of it, namely distributed sensing. It is the intersection of
sharing information, yet making their own decisions on which
part of the spectrum they can use.

Empathic RRM falls under the definition umbrella of cooperative
sensing, and subsequently so is EmpathicWiFi. However, to be
more precise we can identify empathic RRM and EmpathicWiFi
as part of distributed sensing, which is a specific subpart of
cooperative sensing along with centralised sensing, as touched on
in section 2.1. This is because cooperative sensing is the solution
to problems that arise in spectrum due to noise uncertainty,

22 3. Related Work

1: Also referred to as the pilot chan-
nel.

2: Independence in the sense that
the decision is made locally without
aid or direction from other nodes.
Each node is dependant on the
information given by other nodes
but makes its own decision based
upon the information it receives.
A co-dependant relationship exists
between the nodes as cooperation
and information is required to make
better decisions for themselves and
the cluster as a whole.
3: ‘Gossiping Updates for Efficient
Spectrum Sensing’.

fading, and shadowing, as cooperative sensing is proven to
allow for much higher gains than only using local sensing [28,
p. 124]. A device in a low-density area may utilise local sensing
to improve connectivity, whereas several devices sharing their
sensory information autonomously allow for optimal connectivity
for entire clusters.

Challenges to cooperative sensing, especially distributed sensing,
are primarily communication challenges. Information dissemina-
tion is crucial for cooperative sensing to work. Without efficient
information propagation in distributed autonomous clusters, we
cannot utilise cooperative sensing in a positive way. A certain
balance between communication enough and as little as possible
is important, as information dissemination directly contributes to
the noise and frequency scarcity that cooperative sensing is util-
ised to minimise. When the number of devices involved increases
it becomes more challenging to maintain distributed solutions in
a way that keeps complexity low. This is our main area of interest
in the context of the thesis goals.

A part of information dissemination in cooperative sensing is
the control channel.1 Most control channel discussions are less
useful to EmpathicWiFi due to the assumption and invariant that
communication between APs is facilitated by internet or WAN
access. An exception could include discussions on how scanning
data is sent to the control leader in the time-division multiple
access (TDMA)-based protocol in [46], but the concerns are
primarily avoiding collisions on the control plane. That being said,
spacing communication sufficiently apart for us to not overload
WAN access bandwidth is important, and an aspect we take into
consideration in our information dissemination.

Unlike centralised sensing, wherein spectrum usage information is
still gathered from the nodes within the network but analysed and
made actionable by a central unit, distributed sensing involves
sharing the information amongst the empathic nodes while
making independent choices.2 This fits well with the defined
objectives of EmpathicWiFi.

Gossiping Updates for Efficient Spectrum Sensing

Yucek and Arslan [28, sec. 5B] describes and discusses both
wireless sensing and how to share sensory information without
using a lot of bandwidth. One approach introduced in the survey
focuses on efficient coordination between cognitive radios using
GUESS [47].3

3.2. Former EmpathicWifi Work 23

While we wish to accomplish the same, we do not wish to
utilise the radio spectrum — nor implement gossiping in this
work — for disseminating the spectrum sensing information.
Performing all communication over the same medium which we
are trying to free up resources for diminishes the already scare
radio airtime. In contrast, we wish to use and setup persistent
wired connections, a distinct sub-set of radio spectrum users (WAN
for MDU/high density unit (HDU)), where an alternative data
medium is available. Besides our initial setup we will be able to
exchange information without incurring radio penalties.

The choice of radio communication in [47] is due to all devices
being primarily wireless devices. All considerations that apply
to primarily wireless devices do not apply necessarily apply to
wired devices with radio capabilities. In particular, the lack of
alternative data mediums as mentioned above and movement
mobility, to mention two.

3.2. Former EmpathicWifi Work

Each part of the thesis builds on the earlier work of presented in
the thesis from Nygårdshaug [43]. Furthermore, the foundations
for the clustering algorithm are based on the ongoing dissertation
by Rønning [10].

The stark difference between this and earlier work such as
Nygårdshaug [43] is a focus on implementing a fully autonomous
system. In addition to the lack of any central controllers there
will not be any leaders or otherwise nodes that have any further
or extended roles in the network. These changes impact our
decisions, and it impacts what we may build on from earlier
work. The intention of creating a distributed system is twofold:
allowing the system to scale up with multiple users, and to
eliminate any requirement for permanent or third-party managed
infrastructure.

Rønning [10] makes it clear that nodes have different jobs in
different intervals. Ignoring when the intervals are, we can divide
the jobs of each individual node into multiple parts:

▶ Gathering radio measurements for interference and weight
calculations

▶ Fetching weights to decide its cluster membership
▶ Sharing weights to other nodes to let them decide cluster

membership

These jobs impact the requirements in section 4.2.

24 3. Related Work

ResFi-based Archictecture

Nygårdshaug [43] takes a different approach to clustering and
communication both in the choice of abstraction layer and its
assumptions or requirements.

As part of the process Nygårdshaug [43, p. 62] identifies three
problems that Raft, as well as the rest of the suggested abstract
architecture, can handle. The following three problems are in
part requirements stemming from

1. Direct contact between neighbouring access points
2. Underlying group communication protocol
3. The group state is synchronised across all members

The first two of these we discuss in ResFi Overlay Network
Application, whereas the third point is in Group Synchronisation
and Raft, which mentions more of how Raft works.

Group Synchronisation and Raft

As EmpathicWiFi is a distributed system in itself, it is important
to distinguish between distributed consensus as a term used
to describe what we wish to accomplish versus a means to
accomplishing it. This author considers distributed consensus
to generally mean a distributed system involving nodes where
leaders exist due to being chosen or required for the distributed
system to successfully achieve practical consensus in the system.

Nygårdshaug [43] provides group state synchronisation by using
the distributed consensus protocol Raft [48]. Considering its
origins, as well as its then current status in educational settings,
Raft was and is considered to be an easy to understand protocol.
The problem of consensus is central to EmpathicWiFi, but may
have varying degrees of importance. Distributed consensus is
here the goal of ensuring the same state is agreed upon by all the
members of a cluster or group.

Summarised, nodes in Raft have different relationships that
dictate its and other members behaviour. With all nodes starting
out in the same state, a follower starts an election for a leader
if no communication has been received from any a leader. The
details for how elections work, and the remaining details of Raft,
may be read in Ongaro and Ousterhout [48]. Surmise to say
that a group of Raft nodes will elect a leader of the group, which
will remain the leader until it times out, steps down or otherwise
becomes unavailable.

3.2. Former EmpathicWifi Work 25

ResFi Overlay Network Application

However, one consequence of using Raft is the underlying
assumption of an overlay network. The distributed consensus
given by Raft requires the nodes to directly communicate with
each other, across neighbours if necessary. For this to be functional
the hypotethised overlay network must be built on top of the
ResFi communication, which would be a new implementation.
Nygårdshaug [43] suggests this overlay network, but does not
specify any more how routing is dealt with. If the clustering
algorithm does not require or is not impacted by the lack
of the safety and fault guarantees in distributed consensus
then a different approach to information dissemination may be
used. Removing the need for an overlay network allows for
a more relaxed approach to distributed consensus, one where
the properties of termination, integrity and agreement are more
relaxed. The use of an overlay network must be decided based
on its positives and its negatives. Information dissemination can
be done without an overlay network.

This author interprets the necessity of a overlay network in this
decision as a consequence of using Raft to synchronise state
between nodes rather than a consequence of choosing minimum
cut as the optimal clustering algorithm [43, sec. 5.7.2]. We cannot
find that all nodes must be able to contact each other directly
in order for the mimimum cut algorithm to work, but the nodes
must indeed have access to all of the link weights in the network
[43, sec. 5.7.4]. This is unlike K-means clustering, which without
going into the details of how it works, is identified by Nygårdshaug
as ill-suited for a distributed environment due to its extensive
information requirements [43, sec. 5.6.4].

The minmax-clustering algorithm by Rønning [10] allows for
a fully distributed and autonumous process, wherein both the
clustering and group selection is done without any leader
election.

The change in clustering to an autonomous approach further
adjusts these assumptions for EmpathicWiFi, which will be
explained in section 4.2.

While the minmax-clustering provides the all the properties of dis-
tributed consensus in an environment without hostile agents,
it may currently only satisfy parts of distributed consensus.
Integrity—an area for future work and proofing—may be negat-
ively impacted by hostile agents, and may cascade to impact the
resulting agreement or lack thereof between nodes. Fortunately
a relaxed distributed consensus is acceptable; however, we do

26 3. Related Work

not confirm or reject the possibility of negative consequences of
hostile agents beyond a reduced optimisation effect.

With that, we suggest that a simpler information dissemination
approach is a better initial step for an EmpathicWiFi implementa-
tion. That as a solution may allow for iterative progress without
requiring the design or evaluation of a suitable overlay network.

Alternative Clustering Algorithm Requirements

The discussions and suggestions by Nygårdshaug [43] are in large
part based on the initial assumptions made for both clustering
and node communication and group state synchronisation.

As the clustering is explored in detail both in the thesis and in
Rønning [10], we wish to continue this research by evaluating
information dissemination in the context of the new CAA and its
differing assumptions or lack thereof.

Both Rønning [10] and Nygårdshaug [43] target diverse and
varied device landscapes. Nygårdshaug [43] refers to particularly
diverse and unpredictable landscapes of network devices, or
specifically APs, as a “chaotically deployed landscape” of network
devices. In this regard the goals are similar, and both approaches
wish. Another similarity is in the open question of the maximum
group sizes. Neither of the clustering algorithms nor the suggested
architecture around them define a maximum group size for the
clusters.

System Architecture or Lack Thereof

The abstract software architecture and protocol component
overview suggests the interplay between the suggested overlay
network, the distributed group creation protocol encapsulating
Raft, Resfi, and the routing component of the AP itself.

Communication within the system is limited to an abstract
description in its design, with the most concrete component being
ResFi as providing the north-bound API for communicating with
neighbouring APs.

3.3. Empathic minmax Clustering

This section goes through the high-level overview of how the
clustering algorithm and its implementation works, as well as the
different structures that may be used for it. All work discussed

3.3. Empathic Minmax Clustering 27

introduced here bases itself on the work of Rønning [10] unless
otherwise mentioned.

There are two different implementations of the clustering al-
grorithm. The first implementation is the reference implement-
ation used by Rønning [10]. It is implemented in Python and
works on an undirected graph. The second implementation is later
discussed in chapter 6, and while it works in a similar fashion
there are some minor differences. Unless otherwise specified we
refer to the initial reference implementation when we discuss how
it works in this Empathic Minmax Clustering.

While the following sections provide additional detail to its
mechanism, the key take-away is that the clustering has a
deterministic manner that follows the same path every time it
performs the clustering for a node 𝑉𝑠 ∈ 𝐺. Furthermore, provided
that the graph 𝐺 and the parameter 𝛼 is the same for all nodes,
every 𝑉𝑖 ∈ 𝑃𝑖 will derive the same partition 𝑃𝑖 [10].

Graph and Input Preparations

The minmax clustering as implemented works on a undirected
graph with multiple empathic nodes 𝑉 ∈ 𝐺. While it may be
represented as amatrix or in a different more data-dense structure,
it is implemented as a key-value structure consisting of all vertices
and their edges. Each edge has its own local structure identifying
its edges to other nodes, allowing for a bidirectional graph. Doing
so in the reference implementation viewed will however result
in incorrect clustering, as edges are assumed to have the same
weights for the purposes of the simulation or to already have been
pre-processed beforehand.

The information each node gathers and wants other nodes to
have access to is a graph of all the nodes nearby and a weighted
measure of each node’s interference to their neighbouring nodes.
Assuming the function generating the weights yield the same
for both itself and others observing the interference, this can be
interpreted as a bidirectional graph composed by the weighted
edges representing the interference between nodes.

Each of the nodes in the graph are unique: there is only one
node in the graph per node. We refer to the set of all unique
nodes in the graph, including ourselves, as the discovered nodes in
definition 3.3.1.

Definition 3.3.1 (Discovered Nodes) The uniquely discovered
nodes are a set consisting of the nodes that a given node discovers
through gathering information/reports (see definition 5.1.2)

28 3. Related Work

from its neighbours, regardless of the mechanism of information
dissemination employed.

The number of discovered nodes should be as close to 𝛼 + 1 as
possible in order to successfully confirm a partitioning.

Nodes are unlikely to have edges representing the same strength
of interference. This is because different APs are likely to
have varying signal strengths. Until a given node performing
clustering is able to calculate the agreed-upon weight between
two nodes, 𝑊(𝐴, 𝐵), it will have to settle with the weight seen
from node 𝐴, 𝑤(𝐴, 𝐵). The weight represented by𝑊(𝐴, 𝐵) could
be implemented as in eq. (3.1), but what is an ideal function for
smoothing out the values is not looked any further into in this
thesis.

𝑊(𝐴, 𝐵) = 𝑊(𝐵, 𝐴) = max(𝑤(𝐴, 𝐵), 𝑤(𝐵, 𝐴)) (3.1)

While 𝑊(𝐴, 𝐵) is unknown, the clustering will utilise 𝑤(𝐴, 𝐵) to
evaluate which nodes are members of its cluster.

Performing the Clustering

The clustering process as simplified in fig. 3.1 takes the graph 𝐺
as its input, along with an identifier of the seed node 𝑉𝑠, which
is the node we wish to perform the clustering from, working as
the start point in the graph. Once any internal initialisation is
complete there are in this author’s view particularly important
parts of the process useful to know.

It starts by seeing if there is an outgoing edge with a weight
higher than the current minimum weight threshold; the initial
minimum weight is unset or 0. It selects the heighest edge and
follows it. The process is continued until either it discoveres an
edge with a lower weight than the minimum or the number of
cluster candidates is higher than the maximum cluster size 𝛼. In
the event it found no higher edge candidates on its same journey,
the nodes are contracted one-by-one into the seed node. The
minmax-clustering process has now found a first, and perhaps,
temporary clustering.

If the process could not find further edge candidates and there is
still room for additional cluster members it repeats the process,
starting again from the seed node—now expanded—with all of
the edges of its new clustering members. This process is run until
the termination case where we either do not have any candidates
over the minimum weight or any further edge candidates will put
|𝑉 | over the cluster size 𝛼 threshold.

3.3. Empathic Minmax Clustering 29

Result: AP is part of a cluster.
Input : Initial seed vertex seed, and initial input graph

1 partition = ⟨⟩;
2 set initial minimum weight = 0;
3 repeat
4 update minimum weight to the maximum(edges);
5 if maximum(edges) > minimum weight then
6 repeat
7 breadth first search visiting nodes where minimum

weight is higher;
8 until visited nodes ≤ space left;
9 return graph;

10 if |visited nodes| + |partition| ≤ 𝛼 then
11 forall node ∈ visited nodes do
12 contract(node,partition);

13 until size(cluster members) ≥ 𝛼 or no more edges;
14 if seed node has remaining edges then
15 update node weight threshold;

Figure 3.1.: Simplified description
of clustering algorithm by Rønning
[10]

By prioritising the highest weighted edges of its current node it
prioritises clustering nodes together that have the highest amount
of interference between them.

This process requires the interference weights from the empathic
nodes for us to evaluate or calculate the cluster partitioning. It
does not, however, need a full or infinite graph of all connected
devices. Weights can be acquired from one node at the time as the
clustering continues, allowing for us to exploit a way to reduce
the memory requirements that the input graph has.

As a result of the process the reference implementation returns a
new graph where all other members of the cluster are contracted
or merged into the seed node. Exactly which additional functions
the clustering implementation provides, whether it is ease-of-
access to the members are in a standard container, or accessing
a generated list of other candidate cluster nodes, depend on the
use-case.

30 3. Related Work

Part II.

Methodology

1: The discrete event simulator
OMNeT++ is public-source, cross-
platform and available online both
as a tarball or as Docker containers.
It may be downloaded from https:
//www.omnetpp.org.

Strategy 4.
4.1.Controlled Simulations 33

Technological details and met-
rics 34
Limitations 36

4.2.Requirements for Empathic-
WiFi 37
State or Lack Thereof 37
Integrity 38
Dynamic Membership and
Scope 38
Performance 40
Disturbance & Efficiency . . . 41
Connectivity 42

4.3.Push-based Approach 42
Controlled Flooding 43
Other Approaches Considered 44
Implementing Blind Flooding 48
Implementing Staged & Empathic
Flooding 50
Suitability with ResFi 52

The thesis looks at how we may distribute our sensed information
among our soon-to-be cluster members, while minimising the
cost to nodes that are not empathic, as well as the cost to nodes
in our and other clusters. In order to answer which information
dissemination design is best for the purposes of EmpathicWiFi we
need to approach it from different sides.

In section 1.2 we have established multiple problems, as well as a
set of research questions we attempt to answer. By approaching
these with a primarily positivistic attitude, we attempt to discern
their relative qualities using the observable facts as seen in our
simulations.

In section 4.1 we outline how our method primarily relies on
controlled experiments. By developing a custom set of relatively
simple simulation models, we will then evaluate and discuss
in what way they are suitable for the purposes of information
dissemination for the project’s goals. These form the basis of our
results, which we evaluate by contrasting the resulting metrics
between the models.

However, we identify the rough requirements of the empathic
clustering algorithm in section 4.2. These represent our
interpretations of which situations EmpathicWiFi are tailored
to, as well as which aspects are most important.

Subsequently we introduce an information dissemination ap-
proach to implement in our controlled experiments in section 4.3.
By simulating the approach and its derivatives we will be able
to compare and evaluate the effect of empathic clustering on in-
formation dissemination. Our hypotheses are either rejected or
confirmed through the light statistical comparisons of the metrics
as provided.

4.1. Controlled Simulations

For our evaluations we need to write models using a form of
event simulator. One of many discrete event simulators used
for simulations of peer-to-peer applications is OMNeT++.1 It
is a versatile framework for building models and performing
deterministic simulations with them, ranging from evaluating

https://www.omnetpp.org
https://www.omnetpp.org

34 4. Strategy

2: See Veins https://veins.car2x.or
g/

software defined radio to vehicular road networks.2 A graphical
interface allows for stepwise confirmation and visualisation of the
models behaviour. A multitude of different event simulators are
used in academia [49]–[51], some of which are based on and
extend OMNeT++ in fundamental ways. INET is one that enables
simulations using TCP/IP, accurately expressing the overhead,
latency and behaviour aspects of its stack [51]. Castalia is
another one that adds the capability for simulating wireless sensor
networks as well, including radio interference [52]. An alternative
to these were ns-3, which is specifically a discrete network event
simulator with built-in support for the features that OMNeT++
needs extra packages to provide. In [51] a third alternative is
OverSim which simulates scenarios and allows for performance
evaluation of structured overlay networks in distributed hash
tables.

The extendability combined with its decent performance for
our data sizes make OMNeT++ our choice. Furthermore, its
continued development and support contributes to it as the choice
as opposed to more portable and application-based alternatives
such as OverSim [51].

Our work will attempt to simulate the events in the network in a
fully autonumous manner, wherein each node and its behaviour
is simulated individually in the system. This is different from
simulating a set of nodes with a shared data structure as in
Rønning [10]. Each node must make their own individual
assessment with the information gained and disseminated.

Furthermore, by utilising software tests together with the
framework it allows us to verify that our implementation works
according to our unit or integration tests.

Technological details and metrics

In this thesis we will create a model using only OMNeT++ without
any additional frameworks. It will be used for simulating the
core characteristics of the different designs for spreading the
information. While frameworks such as INET can add substantial
value by allowing us to identify and simulate the networking stack,
it is not required as the limitation on accuracy is made to focus on
the traits, rather than complete behaviour with TCP/IP or other
networking stacks. This is important in this use-case where all
communication happens over a stable and wired connection.

At no point will any wireless simulations be performed or other
wireless components taken into consideration.

https://veins.car2x.org/
https://veins.car2x.org/

4.1. Controlled Simulations 35

Similarly to a real-life scenario the member nodes will perform
information dissemination and clustering individually, but the im-
plementation details are discussed in further detail in chapter 6.

In evaluating and discussing the approaches for dissemination
across potentially infinite networks, from small ones with few
neighbours to densely packed urban networks that are almost
complete graphs, we must consider certain metrics to assess them.
Let us look at the primary and secondary metrics and how they
help us compare the designs.

The number of discovered nodes

The amount of information each empathic node has collected of
other empathic nodes throughout the simulation will be used
as part of the results. This allows us to highlight whether one
mechanism or another contributes to less disturbance on the
backhaul network, in addition to requiring less bandwidth from
users, as long as the inherit challenges of the dissemination
approach are considered.

The number of discovered nodes allows us to identify how much
optimising the dissemination approach must be performed, and
lets us answer if we are able to prune information in the process
that is not important a given node or its neighbours.

The amount of data transferred

While measuring the exact size of packages across the entire
network is not performed, we will use the number and size of
information elements to extrapolate payload sizes. By combining
this with the knowledge of TCP or UDP headers, we will
establish how much information can be transferred within single
transmissions.

The number of information elements transferred, combined with
the amount of useful information discovered, allow us to evaluate
how effective such the dissemination mechanisms are.

The metric directly establishes how our mechanisms affect
backhaul communication. This is particularly important in order
to see if users with residential data caps could be negatively
impacted by the use of EmpathicWiFi. A substantial amount of
data transferred beyond reasonable use could be cause for further
work and optimisation in that area.

36 4. Strategy

The time to converge

The primary motivator is the time it takes nodes to initially
converge and adapt to membership changes. Small graphs in
particular will be used to showcase the rudimentary behaviour
of the minmax graph clustering algorithm, similar to how they
are in the clustering and channel allocation algorithm (CCAA)
[10]. The proposed CCAA tentatively suggests primary intervals
of 5 minutes, with a possibility of longer or shorter intervals after
initial clustering.

The time convergence will take is linked to how the system dis-
seminates information. An information dissemination approach
which significantly reduces the convergence time allows for differ-
ent design decisions and priorities, but will typically with higher
simultaneous data usage.

We expect our modifications to the dissemination approach in
chapter 5 to affect convergence times, but hopefully without going
beyond intervals of five minutes.

Limitations

As we rely on a discrete event-based simulator without simulating
the network results our results cannot be guaranteed to be
realistic if actual protocols such as TCP or UDP were used. These
limitations do not prevent us from assessing the dissemination
behaviour, but they do prevent us from making statements of
network protocol compatibility in cases such as extreme blind
flooding.

Furthermore, we cannot test infinite networks. The constraints
on memory for this thesis prevent us from larger simulations, but
we believe simulations with 2000 nodes to be sufficient for us to
evaluate the data.

In addition, the simulation will not be able to take into account of
processing time the clustering process will require on embedded
devices, nor the exact it takes to transfer the information. The
latter is possible to implement, but we have not implemented this,
and rather set a very conservative delay that always takes 50ms
to transfer. This is extremely cautious for small packets in a local
network, and grows to be far too lenient as larger information is
disseminated. However, we will be able to gather the time in terms
of how the dissemination schedules or delays when forwarding
information with regards to hypotheses 2–4.

As we individually simulate each node in the network there is
an exponential growth of memory requirements as each node

4.2. Requirements for EmpathicWiFi 37

3: Currently, there are two intervals:
a primary and secondary interval.
The primary interval consists of per-
forming the entire process, including
measurement, stabilisation, group-
ing and channel/power allocation.
The secondary interval does not per-
form grouping but utilises measure-
ment and channel/power allocation
within the already existing group to
make required radio changes.

must maintain a copy of the graph. A network consisting of 2000
nodes, gathering 200 or more vertices in each of their graphs, is
more memory intensive than simulating values of 𝛼 = 100. This
is possible to either work around or to solve, although each come
with its own costs such as increased development or a removal
of data separation. The priorities have been to ensure that the
clustering implementation is accurate and behaving according to
the specification. Trading certainty and easily identifying issues
with the clustering and simulation for gains in simulation sizes is
a trade-off not worth pursuing.

Mitigation strategies include reducing the cluster size, eliminating
certain statistics from collection, or otherwise making implement-
ation optimisations. In practice we perform multiple executions
with the same random seeds and change the statistics that we
record.

4.2. Requirements for EmpathicWiFi

The following factors and requirements relate to the workings of
the CCAA. In this section we first provide a brief introduction to
the information requested by EmpathicWiFi within a given period.
Secondly, we discuss the requirements and prioritisations that an
information sharing system for an autonomous distributed RRM
presents.

State or Lack Thereof

The state required for the CAA is relatively minimal. Grouping
devices together within a cluster is done in intervals3 by each
member itself, in parallel with all other devices. In a weighted
graph, each AP and its neighbours are represented as nodes in the
graph, with weighted vertices connecting them. In a step-wise
gathering of edge values, each node will follow a min-max vertex
reduction process, wherein knowing the weight of all vertices
from a given node is critical. Each individual node is responsible
for calculating this value, and any node may require it.

As such, there is no need for persistent state present within the
cluster itself. This applies even if there are multiple different
intervals—with different degrees of responsiveness to updates—
used by the CCAA. Each node will keep track of the interval and
its membership internally, but this is not stateful: any node can
repeat the process from scratch and yield the same result provided
the same weights are present.

38 4. Strategy

Integrity

The integrity of interference information is essential to ensuring
that the performance of the CAA is constant, and not negatively
impacted as a result of tampering. For a cluster and a grouping
to be successful, it is dependent on replies based on actual
interference readings from nodes. The reliance on integrity
depends on the level of trust we require from our neighbours.
As we increase our dependency on cooperation between nodes
the level of trust required also increases.

We must either be able to trust information that nodes distribute
on behalf of others, or we must be able to communicate directly
with the nodes to gather their information in which case we may
compare the information with that of supposed neighbours.

However, while there are many different approaches to solving
integrity as seen in distributed consensus, it is not a requirement
that the dissemination methods in this thesis will attempt to meet
in their models. This in spite of possible consequences of rogue
information being an inability to form consistent clusters, and
subsequently an inability to perform CAA. The only factor in
integrity is the trustworthiness of our neighbouring APs coupled
with the integrity provided by the public key-exchange ResFi
performs.

Dynamic Membership and Scope

Initial membership and bootstrapping The initial setup of an
empathic cluster must be a process which any empathic node can
perform. This initial setup is often referred to as bootstrapping.
Specifically, it is bootstrapping when no pre-existing support
structures are a requirement for the process to complete. There
are no requirements for the bootstrapping process, at least not
in terms of time or performance. Whether bootstrapping is a
once-performed operation or a frequent action due to a stateless
design, is not given.

If the clustering process once-performed is otherwise stateless
and straightforward, then there is an argument to be made for
a stateless approach to bootstrapping too. It should not be a
requirement for the system to keep state across clusterings if
it does not require state within the intervals of the clustering
process.

The hypothesised information dissemination used in the doctorate
thesis suggests intervals, which creates specific requirements for

4.2. Requirements for EmpathicWiFi 39

sufficiently quick bootstrapping or the ability to join a cluster on-
demand dynamically. As part of the clustering process, there is a
prerequisite for information dissemination within the network.

If an overlay network is employed, it may allow for dynamic
memberships where nodes join on-demand. Alternatively, it
may frequently perform bootstrapping if the cost is not too high
compared to the alternative of employing flooding or gossiping.

However, both the information dissemination process and any
potential bootstrapping must be possible to perform in a
distributed manner. Preferably as autonomous as possible in order
to reduce the dependency on other nodes.

Regardless of the implementation, neighbouring nodes intercon-
nect, share topology information and perform individual parti-
tioning with the help of backhaul communication when there is
an empathic cluster. We define an empathic cluster as existing
when two empathically compatible devices are within transmis-
sion range of each other. An empathic clustering is the result
of a performed partitioning, performed by all nodes individually.
Whether this means that a member must join a pre-existing cluster
and propagate its state, or whether a member will only join a
cluster by taking part in its initial partitioning, is a decision to be
made later.

What to weigh when we decide an approach for bootstrapping is
something we discuss in section 4.3.

End-user involvement Any empathic clients cannot require
end-user involvement to be involved due to technical limitations.
Manufacturers may wish to allow end-user configuration of
an empathic client, but this can not be a requirement for the
functionality to work. There cannot be a requirement for any
manual configuration.

Mobility of wireless hardware End-user radio hardware rarely
changes. We believe this is trivial for consumer networks, and to
an extent also enterprise settings, although these do not have the
heterogenous challenges that residential WLANs do. Exceptions,
such as devices being provided and replaced by ISPs do occur and
increase mobility, but they are by and large insignificant compared
to the lack of physical mobility in APs. Another exception is the
addition of 802.11s mesh network APs provided to improve signal
coverage. The location of a new or otherwise replaced AP is by
and large the same unless significant infrastructure changes occur,
causing wired connectivity points to be physically moved.

40 4. Strategy

4: The numbers used in Rønning
[10] have values of 𝛼 where 100 ≤
𝛼 ≤ 200. Higher values of 𝛼 are
possible, but it is unknown which
cluster sizes yield the best balance.

In the context of dynamic membership, this means that any new
node neighbouring to an existing empathic cluster must be able
to gather the required information to join the network of its own
volition. Being within the mutual transmission range is the only
requirement for two empathic APs to cooperate.

However, the scope of an empathic cluster is not boundless.
Devices would in theory gain from cooperating with a more
significant number of nodes, but this has associated costs and
constraints. The primary constraint is the amount of memory
each AP can dedicate to a potential empathic client. Thus, there
must be a limit of the number of nodes any empathic client keeps
in memory.

The suggested specifications of EmpathicWiFi operate with a fixed
and finite cluster size 𝛼. Any given member of an empathic
clustering is only a member of one of a potentially infinite number
of subgraphs. Thus every node must have an invariant cut-off
point where information dissemination stops. Once topology
information goes beyond the threshold of a cluster, it loses all
value concerning the clustering algorithm.

Performance

Processing While of lower is importance, the implementation
must keep in mind that the required processing power should
remain low in order to support all types of embedded devices.
Consumer network devices are used in greatly varying climate
conditions and employ passive cooling. Depending on the internal
architecture, such as APs providing Quality-of-Service (QoS), an
application may be further constrained to time slices or budgets.
It is vital to consider performance as a general priority when
evaluating possible solutions against each other.

Memory An implementation must thus far deal with cluster
sizes in the low hundreds.4 Cluster sizes may range from in
the lower hundreds to higher numbers, but it is not known
for which values of 𝛼 the benefits CCAA are most helpful. A
reasonable maximum is the maximum number of APs within an
MDU or other geographical boundary, adjusted for the possible
growth over time of devices. In terms of peer-to-peer networks
or distributed systems, this is a relatively low number of member
nodes. Nonetheless, it is still essential to keep the memory
footprint low, especially as different embedded devices may have
tighter memory budgets for processes.

4.2. Requirements for EmpathicWiFi 41

For a node to perform more efficient information dissemination,
more information about the given topology is a requirement for
the nodes. Such topology information can be memory heavy for
larger sizes of 𝛼.

For an implementation to reduce the nodes’ number of duplicate
transmissions, more memory is required to track which transmis-
sions are already known for them to check before forwarding a
transmission. Keeping track of received messages is especially
memory heavy for connected graphs, in addition to increasing
the complexity of the information dissemination protocol and
implementation.

Working from the presumption that cluster sizes are—at the very
least initially—small, we may perform simulations to accurately
gauge whether spending time on reducing traffic to a minimum
or optimising for the efficiency of information sharing is ideal.

Disturbance & Efficiency

As a close relative to performance is the efficiency at which we
disseminate the information between nodes in the cluster, which
we refer to as communication efficiency. While keeping network
traffic at a minimum is relevant to our goals, it is unlikely to
be the bottleneck that users in a domestic network environment
will experience. Internet access in developed countries is, for
the most part, not rate-limited and allows us to communicate
across networks without incurring any further costs. As such, we
should utilise the backhaul connectivity to its maximum for us to
minimise the radio interference end-user devices experience due
to weak channel and spectrum distribution/usage.

While bandwidth over backhaul is of low concern, it is important
to avoid a situation wherein a substantial number of nodes
communicate simultaneously over backhaul. Simultaneous and
synchronised communication may adversely affect delay-sensitive
services not only for individual tenants in an apartment block,
but also networks in an MDU where Fibre to the Curb (FTTC)
provides a common bottleneck for cross-unit communication.

Fitting Within the Intervals

Time spent sharing information, and subsequently time spent
clustering, must be relatively predictable for values of 𝛼. Periodic
clustering with multiple intervals where different tasks are
performed is a part of the suggested workflow in Rønning [10].

42 4. Strategy

Devices must have a synchronised clock, as well as be able to
perform the tasks within each interval.

Consequences to overrunning in terms of time may lead to not
completing the CCAA and possibly having to wait until the next
period. If the issue persists a given node may be unable to join
any correct cluster.

Connectivity

The constraints of the project require that a working internet
connection is present. This is because communication is sent over
the internet after having established encrypted contact with ResFi
[9]. In turn, this means that we wish to utilise the cabled internet
connection as much as possible, as it is less crowded, is more
stable, and, most importantly, its use does not contribute to the
radio spectrum issue itself.

Communication need not go two ways, but there are two options:
nodes can either pull or push information. Pulling information
leans towards a solution based of DHT. Pushing information may
utilise overlay networks for routing, but will be more likely to
use gossiping or flooding.

While mobile broadband users are equally welcome, they are not
the primary target demographic for the solution. We suggest
that mobile broadband users are primarily 1. living in rural
areas where other options are unavailable, 2. visiting areas for
recreational activities, with lower data caps. The exception is
mobile broadband users in high-density areas where the data
usage is sufficiently high, thus noticing the negative effects of
lack of radio spectrum. Because of this they are not a weighted
requirement, but will benefit from any optimisations to the
amount of traffic sent and received.

4.3. Push-based Approach

In order to evaluate a dissemination approach for EmpathicWiFi
we must choose one. In this section we outline why we have
chosen a baseline form of flooding as a means to compare
to in Controlled Flooding, what the baseline approach when
implemented is in Implementing Blind Flooding, and why
we subsequently altered it with inspiration from gossiping in
Implementing Staged & Empathic Flooding.

The approaches are qualitatively compared for the requirements
we outlined in section 4.2 where they specifically differ.

4.3. Push-based Approach 43

Controlled Flooding

As a push-based approach to information dissemination, con-
trolled flooding as introduced in definition 2.2.3 provides us with
a simple mechanism for evaluation. Central to our approach will
be to apply mechanisms that attempt to the reduce the amount
of information disseminated. By later modifying and specifying a
different form of controlled flooding, inspired by gossiping, we
enable a comparison between two information dissemination ap-
proaches in the context of the properties that exist in the minmax
clustering algorithm. The two approaches allow us to compare
the results of information dissemination implemented without
empathic controls against implementations with empathic con-
trols. This establishes a foundation that can be used to examine
other information dissemination approaches and their interplay
with the algorithm’s properties.

See pages pages 16 to 18 for the
introduction to the dissemination
mechanisms in section 2.2.

Central to flooding is the notion that empathic APs learn from
the information they have received, potentially apply mechanisms
to reduce the information, and subsequently informs other
empathic APs in the network. Rather than nodes asking nodes
for information, the nodes themselves share their or others’
observations by pushing it outwards. Temporarily missing
information may surface at a later point, in which case it could
be cached until the node receives a new update superseding the
previous information.

Ways to do this include controlled flooding, blind flooding, or
staged flooding, wherein an initial node broadcasts its information
across all connected neighbours. The receiving nodes then repeat
that process until the cut-off or termination point (see section 6.2)
is reached.

Controlled, Yet Chaotic

Another motivation for using flooding to push information across
backhaul is that the work of Rønning [10] simulates a simple flood-
based mechanism. Our ability to compare results is restricted, but
it allows for a comparison of results post-publishing. Furthermore,
we can expand on the flood-based approach with modifications
as mentioned in Implementing Staged & Empathic Flooding and
chapter 5.

Cut-off & termination

For a simple flood-based information dissemination approach
to work there needs to be a base case where messages are no

44 4. Strategy

longer forwarded. Two base cases are present for a flooding to
be implementable without incurring loops.

1. Messages received are not broadcast back to its sender.

2. Broadcasting ceases once a cluster membership is certain.

The first case applies to all broadcasting implementations as a
means to avoid infinite recursion of duplicate information. It is
clear that two nodes 𝑉𝑖 and 𝑉𝑗 continually retransmitting the same
information is undesired, and this is an easy elimination.

The second case is specific to our minmax clustering. The
simulation proceeds until all nodes have validated that they are
certain about their cluster membership, at which point nodes
cease forwarding information. Provided that the information
received by a node is then broadcast to its neighbouring nodes
first, all the nodes will receive as much or more information than
required to validate its cluster membership.

There are further improvements within our grasp, but this is the
baseline cut-off & termination criteria which we build on.

Less is More

As mentioned in the previous section, the disseminating node in
a push-based approach is the node that initiates the transfer of
information. Central to a push-based approach is the notion that
the disseminating node is in the position of having information.
From there it follows that it is ideally the case that a node
spreading information also knows something about whether the
recipients are interested in the information.

If it is possible for an initiating node to be in a situation where
it is able to tell—to a degree—whether or not information may
be useful, then the amount of information transmitted can be
reduced. If only the nodes which receive information are in the
position where they can assess whether or not they need the it,
then that makes a push-based approach less ideal, and its benefits
such as speed may not be worth it. Our assumption is that minmax
clustering provides us with the former property.

Other Approaches Considered

In this section we make brief comparisons of the systematic
properties of the other dissemination approaches found in
Paganelli and Parlanti [53] and Zhang, Wen, Xie et al. [54], as

4.3. Push-based Approach 45

well as brief notes from Monnerat and Amorim [55], Kaashoek
and Karger [56] and Stoica, Morris, Liben-Nowell et al. [57].

We do not make thorough considerations of the different
approaches here, as our primary reason for choosing controlled
flooding is the combination of: low complexity, being featured
in related work, and easy to combine with our suggested
mechanisms in chapter 5.

Why Not Gossiping?

Gossip protocols are traditionally quick to forward information,
typically forwarding information to a number of neighbours
immediately. This can contribute to a state of synchronised
management traffic that could negatively affect delay-sensitive
services over WAN.

Wemay alleviate concerns of high-load synchronised management
traffic over backhaul by changing the mechanism. Utilising a
random duration of waiting from within a set interval, static or
dynamic, is a possible approach to spread out and reduce the
amount of messages sent. Furthermore, the usually bounded
nature of gossip protocols avoid exacerbating traffic usage in
dense networks. Modifying such an aspect of a gossip protocol
does not disqualify it as a gossip protocol, due to the relatively
relaxed requirements [42].

However, its strengths are not important to our application.
Mobility is not a strong requirement for EmpathicWiFi as target
users are primarily static, even if there are exceptions and
scenarios such as mobile broadband where EmpathicWiFi can
still be applied.

Why Not DHT or Overlay Networks?

While the author originally gravitated towards distributed hash
tables (DHTs), the implementation complexity placed DHTs
outside of the scope of possibilities in this thesis. Our research
questions point at other dissemination approaches as areas we
want to explore, but there is enough to evaluate with the chosen
flood-based approach.

A further detriment to DHTs as an alternative is that the many
different approaches have different goals and strengths. While
this is a positive trait for future work on the subject, it makes
it extra challenging to find or devise a DHT implementation
that suits our needs. Furthermore, known or large-scale DHT
implementations are focused around solutions such as file sharing

46 4. Strategy

5: Per Stoica, Morris, Liben-Nowell
et al. [57], finger tables are lookup
tables of fixed size that each node
has, maintaining information about
only (log 𝑛) nodes. Simply put, the
lookup entries make it easy to find
which successive nodes to contact
when looking up or trying to contact
a given node. The entries of the
table map to a ring of nodes wherein
each new row increases the distance
skipped in the ring by an exponent of
two. Thus when performing lookups
only 𝑂(log 𝑛) messages are required.

or high performance computing [58]–[60]. The size of the data
transferred in EmpathicWiFi does not exhibit similar properties to
that in large-scale peer-to-peer file sharing or file storage network;
minmax clustering requires a significantly smaller amount of size
to perform its task. This indicates that while a novel approach,
it is unlikely to give a return on the investment in complexity
without considerable upscaling of the problem.

Despite this, an initial hypothesis was that sharing neighbouring
contact details with new neighbours could be done with a
⟨key, value⟩ data structure in the form of a DHT, where keywould
be a unique identifier usable from the cluster graph, and value

would be an IP address and a port. While simplified, this allows
for a pull-based approach to dissemination and is a possible path
to explore with DHTs. The information disseminated allows us
to look other nodes up and can function as a type of overlay
network.

An overlay network in itself is not an approach to information
dissemination. Similarly, implementations of DHTs utilise overlay
networks, but the overlay networks are built on the information
contained within the DHT�itself. Using an overlay network
is possible together with flooding, as the overlay network
only provides a further network abstraction on top of the pre-
existing physical or logical network. Establishing the backhaul
communication with a neighbour is the first step of establishing
an overlay network if such an approach is wanted.

Overlay networks are often used for areas such as multicast over
unicast and quality-of-service [61], and establishing a dynamic
overlay network containing the entire cluster could allow for
routing information between empathic APs.

An example of a data structure that help implement overlay
networks, and that in one case is used to implement a DHT, is the
concept of finger tables in Chord by Stoica, Morris, Liben-Nowell
et al. [57, sec. 3.D].5

Why Not A Pull-based Approach?

While we believe that a pull-based approach will function best
with an overlay network or DHTs, as supported by the peer-to-peer
use-cases in various DHTs [54], we have not chosen it because
we first wish to evaluate a push-based approach.

In addition to the motivations for a push-based approach, we
believe that a pull-based approach cannot be implemented in a
simple way that does not yield excessive multi-hop queries for
information. However, until future work deals with the question

4.3. Push-based Approach 47

6: While statistics for Carrier-Grade
NAT are hard to come by, approxim-
ately 17% of all autonomous systems
employ it [62]. Either a solution in-
cluding NAT traversal support must
be present, or IPv6 is a requirement,
which too will limit usability with its
still relatively slow uptake.

7: Where any 𝑁
3 signature shares

will result in the same, bit-by-bit
identical signature.

we do not know if the properties of minmax clustering might
support a pull-based approach more than this author believes.

We believe the initial process of a pull-based approach would
involve every empathic node querying neighbours for their
neighbour reports. First when a given node has fetched
information from all its empathic neighbours is it able to proceed
with querying nodes two hops away. It then needs to repeat the
same process for all nodes two hops away, or request that set of
information from the node that is one hop away. While we think
nodes further down the chain will require fewer jumps due to
minmax clusetring being deterministic in the way it traverses a
graph, we suspect the overhead of successive pull-messages will
contribute to an overhead unless mechanisms are devised to avoid
it.

This is in addition to issues that must be dealt with when
establishing direct connections to other devices over WAN.6

Why Not Distributed Consensus?

Distributed consensus as a goal is laudable and a positive goal
for any EmpathicWiFi implementation. However, using a system
wherein elections must take place increases the complexity while
not offering high benefits for an issue where integrity, concurrency
issues and fault-tolerance have a low priority [63], [64].

For the initial introduction to distrib-
uted consensus in the context of our
related work, see section 3.2 for a
brief section on Raft as envisioned
used by Nygårdshaug [43].

Elected leaders are selected members seen in clusters with an
attached and centralised state, which other nodes will replace
should they be unresponsive or otherwise leave the group or
cluster. These elected leaders tend to perform additional tasks
due to their centralised state, which other nodes take advantage
of [48], [65]. Such is not the case for EmpathicWiFi; we priorities
autonomous nodes that distribute the workload without singeling
out specific nodes for additional work. If a node disappears and
fragments the network there is no damage done to EmpathicWiFi:
a disjointed empathic network does not interfere with each other,
as they cannot see each other, but rather reduces the problem
space and possibly also cluster sizes.

In comparison to Raft, the distributed consensus system PARSEC
is able to implement secure, distributed consensus without any
leaders [65]. By utilising Boneh-Lynn-Shacham private keys or
private key shares [65, p. 13],7 it is also able to deal with a loss
of 1/3 of all nodes.

Operating without leaders is an interesting property, as well as its
consistency within its gossip graph, which does contribute to it
being interesting as a basis for EmpathicWiFi. While ResFi allows

48 4. Strategy

8: As the information is old we
have presumably already forwarded
the information to our neighbouring
nodes.

secure communication between nodes, PARSEC also enables initial
trust to develop into trust for the entire system. PARSEC, along
with Hashgraph and others, are inspired by Blockchain technology
and have been referred to as potential replacements for them
[65].

However, the initial membership structure in PARSEC creates
challenges and limitations for us. The key exchange as mentioned
above requires the initial set of machines to be known a priori
[65, Appendix A]. Empathic nodes are never known ahead of
time, which excludes PARSEC as a candidate.

As such, both Raft as an established distributed consensus
implementation, and PARSEC as arguably more niche in its space,
are two solutions that do not fit well with the requirements we
have outlined for EmpathicWiFi — primarily with regards to
distributed or autonomous work, and membership bootstrapping
without user involvement or a priori knowledge.

Implementing Blind Flooding

Blind flooding is implemented based on our definition 2.2.4.

Firstly, blind flooding, while simple, can utilise information
from sources such as minmax clustering or knowledge of what
information it has and has not seen before. One difference
between flooding and primitive broadcasts is that by flooding
the network with information, each node only forwards that
information which was new to itself, rather than forwarding
already forwarded information.

Any old information is not propagated to its direct neighbours,
and thus not forwarded to nodes downstream. This creates an
effect similar to pruning in multicast, except that it is performed
by a received node rather than evaluating or expecting that
downstream nodes will inform us if they are interested in the
information.8

Then, in turn, the neighbouring nodes broadcast the same
message to their neighbours, except for the neighbour they
received the information from. While the number of messages
and reports sent quickly becomes exponential as the number of
nodes and edges increases, the implementation is rather simple
as we will later detail in section 6.3.

4.3. Push-based Approach 49

State or Lack Thereof

There is no state required in order to perform the dissemination
with blind flooding. The information is gathered until the process
completes, at which point it can be restarted without retaining
any of the previous information.

Dynamic Membership and Scope

There is no initial bootstrapping process required for blind
flooding to work.

Performance

Blind flooding allows us to forward any and all requests received
to all of our neighbours at a speed only limited by the network and
the devices processing power. The benefits to the speed are strong
when you consider its strength in networks with low mobility,
and that the use-case for EmpathicWiFi is tailored specifically to
networks with a strong enough concentration of APs for there to
be fixed broadband provided to the units [2].

Empathic nodes are highly likely to be available via backhaul. We
suggest that should nodes be unavailable in an an urban setting
there is a decent chance that the issue is affecting multiple people
in the area.

Depending on the location of the nearest ISP router and its setup,
it may be possible to communicate with other empathic nodes
within the same dwelling unit in a situation where the on-premise
equipment is autonomous and functional.

The memory required to perform blind flooding is none if we
exclude the state required to maintain and perform minmax
clustering. As nodes must remember the reports they have
received, in order to update their own graph of discovered nodes,
this state is useful and present regardless of the dissemination
approach.

Disturbance & Efficiency

A minimalist contender for simulating information dissemination
is what is considered the worst-case scenario in terms of traffic:
broadcasting a node’s observations to all neighbouring listeners,
upon which they all broadcast it too. It is a form of pushing the
information across the cluster as seen in section 4.3.

50 4. Strategy

As seen in definition 2.2.4, the act of forwarding messages is
usually performed immediately, creating a cascading effect as
the information ripples out through the network. The amount of
information does not have to be much for this to contribute to a
continuous and synchronised flooding of the cluster’s nodes, as
well as any other node in 𝛼 hops range, that negatively affect and
disturb other delay-sensitive services that utilise backhaul.

As the cluster sizes increase and connectivity 𝑝 > 2, the
level of traffic required would be exponential unless a new or
existing optimised flood-based approach is implemented. This
is a particular problem for flooding, unlike gossiping, as traffic
is forwarded to all our neighbours rather than a pre-defined
amount per round. This means that the duplicate amount of
information disseminated increases drastically as a product of
the graphs connectedness and our cluster size. Our choice of the
cluster size threshold 𝛼 directly impacts how much information
the empathic nodes need in order to validate their clustering, and
thus impacts how long flooding will continue and how many hops
the information will traverse.

We believe it is worthwhile to find an alternative, as we
hypothesise that the amount of traffic for desired values of 𝛼
make blind flooding untenable as a solution on its own, unless it
is limited to small values of 𝛼, e.g. 10–20.

Implementing Staged & Empathic Flooding

An alternative approach drawing considerable inspiration from
gossiping is a periodic flood-delay based mechanism with queues.
In this thesis we describe this as staged flooding, and it is defined
in definition 2.2.10.

Our motivation for choosing staged flooding as our modification to
blind flooding is because we wish to allow nodes the opportunity
to listen for longer periods before disseminating information
downstream.

State or Lack Thereof

The state required in order to perform the dissemination is not
different from that of blind flooding.

4.3. Push-based Approach 51

9: This information is later in-
troduced as neighbour reports in
chapter 5.

Dynamic Membership and Scope

Staged flooding does not affect the properties of dynamic
membership or scope compared to blind flooding.

However, adding empathic pruning mechanisms to staged flooding
should affect scope. The use of empathic pruning mechanisms
should result in less information being forwarded overall, when
compared with blind flooding that does not implement such
mechanisms.

Performance

Processing changes should not be impacted for staged flooding,
unlike the memory requirements which are slightly increased
compared to that of blind flooding.

In addition to the clustering information, we must also maintain
a queue of reports scheduled for our neighbours. This queue is
limited to the degree of the node in the network graph, or by
its number of neighbours, combined with the factor of reports
currently queued. The information itself is not duplicated, but we
must maintain queues of pointers or identifiers for the information
we wish to disseminate.9

Disturbance & Efficiency

By making a random choice for the delay within a set shared
interval, also known as jittering or delay-jitter [41], every time
we plan to disseminate information we can alleviate concerns of
disturbing delay-sensitive services over backhaul by negatively
contributing to a synchronised load on the network.

Furthermore, this allows us to listen longer for information, and
send fewer packets at the same time, but will contribute to larger
amounts of information being disseminated at the same time.

This should result in an increase in time it takes to converge
to a clustering. Increasing the time it takes is not necessarily
negative, but it is important that it does not increase by too much,
and that we can further adjust the interval in the event it causes
dissemination to take too much time.

52 4. Strategy

Suitability with ResFi

As Nygårdshaug [43] discusses in his work, the ResFi API
provides us with multiple functions which we can use to gather
neighbouring ResFi-enabled nodes, send messages to individual
nodes, send messages to all nodes, and a substantial number of
other RRM related functions.

We do not suggest using the built-in functionality for multi-hop
broadcasting in ResFi, as provided by the ResFi API! (API!). As
connectedness 𝑝 > 2 increases beyond 2 neighbours per node,
naïve blind flooding will contribute to an exponential increase in
traffic. More importantly, using the built-in multi-hop broadcast
functionality in ResFi prevents us from queuing and scheduling
updates, pruning information before forwarding it, or otherwise
changing the messages send over ResFi’s established backhaul
communication channel [9].

ResFi provides us with our empathic neighbours, and identifies all
neighbouring nodes in a unique manner by utilising IPv4. This can
lead to multiple issues, of which we mention a few in section 5.1,
but we are not evaluating or looking further into the consequences
or challenges with using IPv4 instead of IPv6, nor vice versa.

The one-hop broadcast functionality is, however, useful for trans-
mitting our initial information elements to neighbouring nodes.
As described by Nygårdshaug [43], ResFi will establish connec-
tions to our empathic neighbours within range. Subsequently
an implementation of blind or staged flooding will send its first
message containing its local topology and interference, and con-
tribute to the continued dissemination of information received
from its empathic neighbours.

We are — with one-hop transmissions to specific neighbours cov-
ering the required functionality for us to disseminate information
— unable to pinpoint aspects of ResFi that are incompatible with
blind og staged flooding as described in the previous sections.

1: A future modification and im-
provement to ResFi might be to swap
the identifier for an IPv6 address, but
this quadruples the space consumed
by the identifier if employed naively.

Suggested Mechanisms for
Empathic Dissemination 5.

5.1.Terminology & Elements . . . 53
Neighbour Observations & Re-
ports 53
Transfer Layer Overhead . . . 55
Space and Complexity Con-
sequences 56

5.2.Useful vs. Useless Information 57
Only Information Useful to Us 57
Only Transmitting Information
Useful to Them 58
The ”Usefuls“ 59

5.3.Pruning & Reducing Outbound
Traffic 59
Projective Pruning 60
Sympathetic Pruning 60
Self-pruning 61

5.4.Scale of Communication . . . 62
Amount of Bytes Transferred 62
Number of Reports 63

In this chapter we set the frame of how we utilise minmax
clustering based on the work introduced in sections 3.3, 4.2
and 4.3. We introduce the concepts of information elements we
will use, along with their sizes and structure without considering
how the specific information elements will be represented in
a simulation implementation. Our suggested mechanisms for
pruning, along with what we consider useful in the dissemination
process, are introduced along with their definitions and theory.

5.1. Terminology & Information Elements

The terms in this section are defined by us on the basis of much
verbal and written cooperation as part of the project, but not
taken from the written works of Rønning [10]. They are defined
here in order to support the descriptions of our experiments and
models.

Neighbour Observations & Reports

Definition 5.1.1 (Neighbour Observation) The neighbour
observation is a tuple NO of information made by a node 𝑉𝑖
observing a neighbouring node 𝑉𝑖,𝑗.

NO = ⟨identifier, interference weight⟩

It consists of a unique identifier and a weight that representes
the degree of interference 𝑉𝑖 experiences relative to its other
neighbouring APs.

For minmax clustering the neighbour observation represents one
directed edge in an input graph from 𝑉𝑖 to 𝑉𝑖,𝑗.

The size of a neighbour observation as seen in definition 5.1.1
depends on the identifier employed and the precision of the
interference weight. In order for us to evaluate the data
traffic when used with ResFi, which is our goal, we take the
identifier from ResFi and use the same unique identifier that
ResFi uses. The unique identifier used both in results and in
the API for identifying a node is a node’s IPv4 address [66,
framework/agent.py, l. 637].1

54 5. Suggested Mechanisms

2: The number of neighbours for
node 𝑉𝑖 is the number of outbound
edges 𝑉𝑖 has, and represents in graph
theory the degree of the vertex.

3: It is important in order to reduce
the memory overhead of simulating
2000 empathic nodes.

Remark 5.1.1 (IPv4 as Identifier) There are issues with using an
IPv4 address as an identifier, as briefly touched on in part I, including the
global shortage of available IPv4 addresses. The most important assumption
and requirement is that each node has a unique IPv4 address within the
network tying neighbouring devices together.

Any use of mobile broadband could invalidate this assumption due to its heavy
use of network address translation. Using IPv6 could be a requirement for any
implementation that wishes to be flexible in terms of users, and especially if
direct connectivity between nodes is required by the dissemination approach.

An IPv4 address consists of four parts, each representing an
unsigned numeral (or char) at 1 byte each for a total of 4 bytes
or 32 bits. The interference weight is 4 bytes for float numerals,
or 8 bytes for double numerals. This depends entirely on how
the interference is calculated, and as such floats provide sufficient
precision for our simulation purposes. As weights from both
nodes need to be taken into consideration we presume that the
measurement is an absolute numeral and not relative between
other nodes. Thus the size of one information element is 8 bytes,
as seen in eq. (5.1).

|⟨id,weight⟩|𝐵 = 4B + 4B = 8B (5.1)

In contrast to an observation, the size of a neighbour report in
definition 5.1.2 varies greatly and is in a network solely affected by
the number of neighbours a node has.2 This is specifically relevant
for urban settings. Areas with the highest levels of overlapping
and neighbouring APs are the most in need of empathic clustering,
and simultaneously the areas where the backhaul communication
costs will be the highest. Whether it is implemented as a set, a
map, a linked list or otherwise a different data structure is not
important for the results in the simulation.3

Definition 5.1.2 (Neighbour Report) A neighbour report is
a tuple consisting of an identifier and a set NR of neighbour
observations made by a node 𝑉𝑖 for all of its 𝑗 visible—non-
hidden—neighbours. It is constrained by the identifiers; there
cannot be more than one observation per identifier.

NR = ⟨identifier, observations⟩

For minmax clustering the neighbour report represents the set of
all directed edges from 𝑉𝑖 to 𝑉𝑖,1, 𝑉𝑖,2, … , 𝑉𝑖,𝑗.

The size of the neighbour report as seen in eqs. (5.2) and (5.3) is
the result of adding the constant identifier size with the factor of

5.1. Terminology & Elements 55

neighbours or edges it has.

N(𝑉𝑖) = { neighbour | neighbour of 𝑉𝑖} (5.2)

|NR|𝐵 = 4B + |NO|𝐵|N(𝑉𝑖)| = 4 B + 8B|N(𝑉𝑖)| (5.3)

A set or collection of neighbour reports is a map of neighbour
identifiers to neighbour reports. When disseminating reports they
may be sent individually, or they may batched up. The choice
largely depends on the information dissemination approach in
use.

There is no overhead to a set or collection of neighbour reports.
However, any transport layer will incur an overhead from fields
such as a sender identifier, time-to-live fields, or others.

Transfer Layer Overhead

The overhead of using TCP or UDP over IPv4 can be substantial.
Using Ethernet and communicating over IPv4 there is a total
combined header size of 58 bytes. Then there’s the difference
between UDP and TCP, adding respectively 8 or 20 bytes to the
header size. To keep transmission sizes within the maximum
transmission unit of 1500 for Ethernet, this allows for a theoretical
maximum payload size of 1472 or 1460 for UDP and TCP
respectively.

The size of a collection of reports sent over UDP is seen in eq. (5.4)
represented as bytes, where 𝑖 is the number of reports and 𝑗 is the
average number of neighbours per node. Likewise we see the size
for a collection of reports sent over TCP in eq. (5.5).

|{NR1, … ,NR𝑖}|UDP = 58 + 8⏟
UDP header size

+𝑖(4𝑗 + 4) (5.4)

|{NR1, … ,NR𝑖}|TCP = 58 + 20⏟
TCP header size

+𝑖(4𝑗 + 4) (5.5)

With collections the way described above we can fit 184 or 182
information elements in one UDP or TCP transmission respectively.
Any arguments for choosing TCP or UDP should not rest on the
overhead of the header, but rather the overhead of initialising
and maintaining connections, as well as dealing with connections
with such a relatively insignificant difference in overhead.

56 5. Suggested Mechanisms

Given an average neighbour density of 15 or 16 neighbours, it is
theoretically possible to transfer 11 reports in one packet whether
it uses TCP or UDP.

⎢
⎢
⎣

1472
8 ⌊11⌋ + 4

⎥
⎥
⎦
= 21 = ⎢

⎢
⎣

1460
8 ⌊11⌋ + 4

⎥
⎥
⎦

If the average neighbour density is 8 it is possible to transfer 21
reports. According to Zehl, Zubow, Döring et al. [9] messages are
signed, but no mention of any additional ResFi header overhead
is specified.

Space and Complexity Consequences

The amount of information a node must retain at a minimum
is the minimum for a directed graph representation of all
neighbour reports and their associated observations. If the
partition found is believed to be a certain result, challenges
of integrity notwithstanding, all other nodes not part of the
partition can be eliminated. In practice, depending on the
information dissemination approach, the amount of memory can
be substantial.

Remark 5.1.2 The amount of information the bidirectional
graph requires at a minimum is

𝑉 + 2𝐸

or in terms of neighbour reports and neighbour observations

4 B ⋅ |NR| + 2 ⋅ 4 B ⋅ |NO|

While the space complexity is linear, its actual memory usage will
depend on the exact implementation details. A node retaining 100
empathic neighbour reports with an average of 5 neighbours per
node occupies 1.4 kB. A three times as dense network increases
the space required to 3.4 kB. It follows that a node that learns of
500 neighbours with an average density of 15 must retain at a
minimum 17 kB of graph information.

Memory Requirements for Transmission Reduction

We have implemented three distinct information dissemination
approaches, all rather similar, yet different. One of their
differentiators is how, or whether they do at all, reduce the number
of duplicate messages.

5.2. Useful vs. Useless Information 57

EmpathicWiFi is unusual in that the topology of the network of its
nodes is the exact information it benefits from receiving. However,
once information of that topology has been received and sent once,
there is no point to retransmitting it to other nodes. In order to
avoid retransmitting the information the device can maintain a
record of what information has been sent to who, or, assuming a
static topology, all information received.

There are different constraints depending on the method used to
disseminate information.

A flood-based approach will not—normally—wait with retrans-
mitting the information until a later period or interval. Put in a
different way: it does not need to track who sent what, it merely
needs to check whether it knows of the information itself.

A staged flooding approach will need to either store the messages
for later sending, or store a record of what information is queued
for which nodes. The latter does not require much of additional
space beyond O(|𝑉 |) in a good implementation as it may store only
as many pointers as there are vertices with associated weights we
need to send out.

Analysing the space and complexity of the message passing in the
process is arguably the hardest, yet one of the most important
parts. These were two primitive approaches to reducing the
amount of memory it takes to keep track of what has been sent
and what will be sent. By checking if it already knows of the node
it may decide whether to forward the message or not.

5.2. Useful vs. Useless Information

Primary to utilising the clustering algorithm to reduce the amount
of information transmitted is attempting to reduce what we need
to forward. The question that begs answering is ‘What does a
node need?’

In order to do this we need to establish what is and is not useful.

Only Information Useful to Us

For a given node 𝑉𝑖 to perform a clustering, it must have the
weights of the nodes in its partition 𝑃𝑖. For the node to be certain
of the partitioning, it requires knowledge of 𝛼 + 1 nodes. However,
remember that 𝛼 is the maximum number of members in a cluster.
A neighbouring node 𝑉𝑗 in partition 𝑃𝑣 which has only one member,
will need the reports of nodes from 𝛼 jumps. Assume that the

58 5. Suggested Mechanisms

heighest edge max(𝑒) = 𝑢, 𝑣 ∈ 𝐸|𝑢 = 𝑉𝑗 ∧ 𝑣 = 𝑉𝑖 is between the
two vertices. Assuming that 𝑉𝑗 has all of the nodes required, these
jumps must be at least partially within the same partition of 𝑃𝑖.
Thus it follows that the set of nodes 𝑛 ∈ P(𝑉𝑖) may be required
by 𝑉𝑗. Assume that the heighest weighted edge is not between
the two vertices. If 𝑉𝑗 has fewer than 𝛼 nodes in N(𝑉𝑗) it may still
become the heighest weighted edge in the process of clustering.
Thus it follows that the set of nodes may still be required by
𝑉𝑗. From there we cannot remove any elements from our own
partition without effecting the partitioning of 𝑉𝑗.

However, can we remove other nodes that we have received?
Which nodes are useful? Assume that the information is
disseminated in a series of rounds with arbitrary periods of waiting.
The node 𝑉𝑖 receives new information 𝑉𝑥 for its graph 𝐺 and inserts
updates the graph. 𝑉𝑖 checks if the set of useful information for it
𝑈𝑖 = ∅ is empty. If it is empty, it performs a new clustering and
inserts all references to other nodes it does not have a report from
yet, as well as all nodes it believes to be current members of its
partition, into 𝑈𝑖. Subsequently it checks if 𝑉𝑥 ∈ 𝑈𝑖. If 𝑉𝑥 ∈ 𝑈𝑖 we
perform clustering again and insert any new missing references
into 𝑈𝑖. Regardless of the order of our information, the final set of
𝑈𝑖 must contain all possibly required nodes to have reports from
in order to reach the same conclusion as us. Any nodes not in 𝑈𝑖
can be eliminated when transmitted to 𝑉𝑗.

∀𝑣 ∈ 𝑈𝑖∄𝑣 ∉ 𝑈𝑗

While the node 𝑉𝑗 may border to |N(𝑉𝑗)| other clusters, we
cannot knowwhich information the other partitions would require
without performing the clustering on their behalf.

Only Transmitting Information Useful to Them

A simple extension of this approach is to skip making guesses of
what we know a node may need, and rather evaluate what it may
need on its behalf. For each 𝑉𝑖𝑗 ∈ N(𝑉𝑖) we perform clustering
and track which nodes are useful to their clustering process. We
then prune all nodes not useful to their clustering process from
our point of view.

The trade-off to this approach is that this requires us to perform
clustering for all |N(𝑉𝑖)| neighbouring nodes, and quite a few times
too. If all neighbouring are members of the same partition we may
have to update their list of useful nodes every time we receive new
information that is also useful to us. This can cause us to perform
clustering more by a factor of |N(𝑉𝑖)|) in the worst-case.

5.3. Pruning & Reducing Outbound Traffic 59

The extra processing time may yield less redundant information,
but at what cost compared to the cheaper alternative in the
previous section?

The ”Usefuls“

From the two preceeding sections we propose definition 5.2.1 as
a definition or criteria as what constitutes useful nodes in the eyes
of a node where clustering is being performed.

Definition 5.2.1 (Usefuls) The set of vertices for a given node
𝑉𝑖 that are 1. members of the partition 𝑃𝑖 for 𝑉𝑖, 2. members of
the set of verification nodes and 3. members of nodes missing that
impacted the clustering. Useful nodes may be calculated for any
node to determine its own usefuls, or the useful nodes for any and
all other 𝑉 ∈ 𝐺.

Point three is useful in the sense that it is information that may
directly impact the resulting clustering partition. However, it is
not essential to pushing information in chapter 6.

The size of the set of usefuls depends on the maximum cluster
size 𝛼 with a maximum size of

𝛼 + 1

5.3. Pruning & Reducing Outbound Traffic

Definition 5.3.1 (Pruning) The
act of removing, stopping or other-
wise causing a whole or part of a
stream of information to cease mov-
ing towards recipients.

Building on the discussion of useful information we establish and
define two approaches to pruning: one based on the work-in-
progress by Rønning [10], and the other an extension to that
approach developed here.

There are two fundamentially different kinds of pruning here. The
first two sections introduces different types of empathic pruning
per definition 5.3.2. Both of these build on the lessons learned
in section 5.2 regarding usefuls. The primary characteristic of
these types of pruning is that they make evaluations based on
the result of performing minmax clustering, and whether or not
the candidate for recipient needs the neighbour reports for its
clustering.

Definition 5.3.2 (Empathic Pruning) Pruning reports that are
not considered useful by being a member of a set of usefuls
(definition 5.2.1) from being forwarded to one, multiple or all
neighbours.

60 5. Suggested Mechanisms

The second type of pruning attempts to reduce duplicate
retransmissions. Unlike empathic pruning it does not eliminate
based on usability; pruning of the other kind is based on situations
where we can assume that a given neighbour should already have
received the information. This is a critical difference which will be
brought up in Results and Discussion.

Regardless of how information is pushed, any attempt at reducing
the information transferred must not eliminate information that
makes the confirmation of a node’s partition impossible. If such a
reduction occurs nodes may not confirm their cluster membership,
and be in a failure situation that may not be recoverable if by
induction other nodes in an entire subgraph miss their required
information. We argue that the initial focus needs to be an
implementation that works, followed by then reducing the amount
of information transferred. Once we reduce the amount of
information sufficiently we may proceed to balance our peak
bandwidth usage with the time constraints.

Introducing: Projective Pruning

As we see in definition 5.3.3 projective pruning uses its own set of
usefuls in order to determine what it forwards to neighbouring
nodes. Any reports received are pruned without taking the
destination node into consideration.The definition of projective suits with

some degree of overlap over geo-
metry and psychology. The reasoning
behind it stems from the key aspect
of its behaviour. By using what it be-
lieves is useful to itself it projects its
assumptions of what is useful onto
its recipients.

Definition 5.3.3 (Projective Pruning) Empathicly pruning
(definition 5.3.2) where the set of usefuls is the current forwarding
node’s set of useful nodes.

This makes an implementation of projective pruning easier, as
it can prune reports on a message-by-message basis, while
simultaneously suitable for a dissemination mechanism that
is staged or queues and schedules the act of forwarding
information.

See fig. 5.1 for pseudo-code for how projective pruning can
work.

Introducing: Sympathetic Pruning

By increasing the amount of work sympathetic pruning per
definition 5.3.4 hopes to further reduce the set of neighbour
reports that are forwarded to our neighbours. It attempts to do
this by calculating the set of usefuls for each neighbour, thus
performing minmax clustering for every one of them.

5.3. Pruning & Reducing Outbound Traffic 61

Data: Queue of neighbour reports to send
Result: Queue of reports where reports that should not be

forwarded have been removed
1 while reports are queued do
2 pop the next queued neighbour report;
3 if it is a member of our node’s set of usefuls then
4 keep the report in queue;
5 else
6 remove the report; Figure 5.1.: Pseudo-code for how

projective pruning works

4: Optimising the clustering process
by having nodes share sets of useful
nodes if they are members of the
same partition is a way to lower
the requirements of this pruning
mechanism.

Definition 5.3.4 (Sympathetic Pruning) An empathic pruning
mechanism (definition 5.3.2) in which where each neighbour has
its own set of usefuls as seen by the current forwarding node. Each
neighbouring node’s set of usefuls as calculated by the sender is
used for the empathic pruning.

Unfortunately no node can know
which information a neighbour has
beyond the information it has forwar-
ded to the node. We will not know,
and we will probably still get it more
wrong than right. However, we can
attempt to be sympathetic to what
the node wants.

Thus this pruning mechanism is sym-
pathetic, as it cannot truly know
what the node deems useful, but it
can make an attempt to put itself in
its shoes.

As the minmax clustering takes a network graph and a seed node
as input to the algorithm, we therefore replace our own node 𝑉𝑖
as the vertex node with each of our neighbours 𝑉𝑖,1, 𝑉𝑖,2, … , 𝑉𝑖,𝑗.
While fig. 5.2 shows the rough mechanism of how the pruning of
the reports works, it does not take into account any complexity
following from the combination of queuing reports or retaining
reports for nodes that have yet to announce that they are
empathic.

The strongest downside to sympathetic pruning is the increased
complexity. It is clear that we must perform clustering more than
for projective pruning, as a node must perform clustering for
itself, and subsequently also perform clustering for nodes that
are not members of its own set. There is an increase in the space
complexity because it must store multiple sets of useful nodes,
one per neighbour in a different cluster. 4

Self-pruning: Pruning Duplicates

In Lim and Kim [67] two approaches to reducing redundant
forwarding or broadcasting of information are suggested. One of
them is self-pruning, an easy-to-implement mechanism that allows
us to eliminate our neighbours that are also neighbours with those
neighbours sending us new information. By utilising self-pruning
we can reduce the dissemination cost. Unlike blind flooding,
where the number of recipients |𝑇 (𝑉𝑗)| would be |𝑁 (𝑉𝑗)| − 1, we
can for certain degrees of connectedness reduce it by 20%–50%
[67, fig. 6–7].

62 5. Suggested Mechanisms

Figure 5.2.: Pseudo-code for how
sympathetic pruning works

Data: Map of queues of reports to neighbours
Result: Queues for neighbours where reports that should not

be forwarded have been removed
1 foreach neighbour’s queue in queues per neighbour do
2 if neighbour’s set of usefuls is out of date then
3 update the set of usefuls by clustering on neighbour’s

behalf;
4 foreach report in queue do
5 pop the next queued neighbour report;
6 if it is a member of our neighbour’s set of usefuls then
7 continue;
8 else
9 remove the report;

Definition 5.3.5 (Self-pruning) The act of pruning reports from
forwarding if our forwarding targets are neighbours of both the
current forwarding node and the node which originally sent the
reports to the current forwarding node [67], [68].

Originally we wanted to implement
multiple types of pruning mechan-
isms that are unrelated to the min-
max clustering mechanism itself. The
combination of pruning mechanisms
such as dominant pruning and im-
proved self-pruning should be ex-
plored further.

There are other mechanisms that reduce the amount of traffic
sent by reducing the number of duplicate transmissions that
occur with high connectedness and to multiple paths to other
nodes “downstream”. Dominant pruning is one of them [67],
wherein the strategy change from reactively pruning recipients
and instead proactively designate which nodes will forward the
information [69]. There are also improvements made to the self-
pruning mechanism that show improvements without changing
the strategy from reactive to proactive [69].

5.4. Scale of Communication

With definitions 5.1.1 and 5.1.2 as background information we
can take a look at the potential scale of report sizes in terms of
size and number of reports.

Amount of Bytes Transferred

The first initial report for a node 𝑉𝑖 with |N(𝑉𝑖)| = 15 neighbours
has a size

|NR| + 15|NO| = 4 B + 15 ⋅ 8 B = 124 B

How much could be transferred from a node in a given cluster?
Given a vertex with 7 queued reports, each with an average

5.4. Scale of Communication 63

5: Links to other nodes traversing
larger distances of the network.

number of observations, the size of the reports would be

7
∑
𝑗=0

f𝑅(𝑉𝑗) = 15 ⋅ (4 B + f𝑂(15)) = 15 ⋅ 124 B = 0.85 kB

How about one forwarding of almost all the reports within the
cluster size 𝛼? If one node were to forward i.e. 100 reports, the
sum is a bit larger.

100
∑
𝑗=0

f𝑅(𝑉𝑗) = 100 ⋅ (4 B + f𝑂(100)) = 100 ⋅ 124 B = 12.1 kB

In the worst-case scenario a process with push-based dissemina-
tion it may be theoretically possible that a node will use 𝛼2 nodes.
In the case of staged flooding, this requires an unlikely permuta-
tion of worst-case jittering that comes into existance without any
cooperation. Such an event requires that all edge weights match
with the unfortunate order of the messages received such that the
clustering process evaluates 𝛼2 neighbour reports. We think this
is unlikely as the average number of neighbous, the degree in the
graph, may exhibit a great deal of variance.

Number of Reports

A caveat to keep in mind is that a graphs consisting of small-
world behaviour5, or indeed any case of two hops or more being
connected together and creating cycles, will exhibit duplicate
information transfer as a result of information taking multiple
different paths to the same destinations, unless it is optimised for.
A graph consisting of cycles separated by two-hops or more are
not detected, or in any way mitigated, by self-pruning.

There is no mechanism implemented to reduce duplicates for
nodes that are two hops away, although such a mechanism can
indeed be implemented in a real system. One mechanism for this
is to calculate the minimum-spanning tree, and to use this in
order to reduce the number of retransmissions, but this is not
implemented in this thesis and our simulations.

For an example relating to the number of reports, imagine a vertex
𝑉𝑖 with 15 edges. 14 of these edges go to vertex 𝑉𝑖,1, 𝑉𝑖,2, … , 𝑉𝑖,14.
None of the neighbours of those vertices are neighbours of 𝑉𝑖.

N(𝑉𝑖) ∩ {𝑉𝑗,𝑘|N(𝑉𝑗), 1 ≤ 𝑗 ≤ 14} = ∅

In such an event 𝑉𝑖 may forward upwards of 𝛼 reports to each
of the 14 nodes, and each of those nodes may forward the same
amount provided they are in the same partition 𝑃𝑖.

64 5. Suggested Mechanisms

The sum of sent reports from 𝑉𝑖 would in which case be

14 ⋅ 100 = 1400

and the sum of sent and received is

2 ⋅ 1400 = 2800

In other words, the number of reports sent, and subsequently the
amount of traffic, can increase very quickly when the density or
range increases.

This is not necessarily a realistic example in itself for 𝛼 = 100, but
can be altered to apply to any number around 𝛼, or even higher.
The total number of reports forwarded is likely to be even higher
over the duration of the simulation, as our sets of usefuls are likely
to contain nodes that in the end were not members of our or our
neighbours partition 𝑃𝑖. This will happen as we cannot guarantee
we will receive the correct information in order, thus calculating
temporary clusters which are to some extent incorrect.

We keep in mind that the order of the reports we receive combined
with the time of forwarding reports impacts the history of the
set of members in 𝑃𝑖 as calculated throughout the simulation
before the reports actually required for a node 𝑉𝑖 to reach 𝑃𝑖 with
“certainty”.

Simulation Models and
Development 6.

6.1.Overview of Models 67
6.2.Common Implementation . . 68

Variables and Signals 68
Network Topologies 68
Weights & Message Format . . 70
Clustering Implementation . . 71
Cut-Off Point or Termination Cri-
teria 73
Initial start-up 74

6.3.Blind Flooding Model 75
Simulation Features 75
Pruning Messages by Time-to-
Live 76
Pruning forwarding upon certain
clustering 76
Resource Consumption 76

6.4.Staged Flooding Model 77
Simulation Features 77
Pruning Reports Received Be-
fore 77
Pruning Nodes Shared With
Senders 78
Resource Consumption 78

6.5.Projective & Sympathetic Flood-
ing 79
Simulation Features 79
Projective & Sympathetic Prun-
ing 79

In this chapter we show how the simulation models are implemen-
ted, as well as which features they have. The limitations to our
simulation approach are outlined in section 4.1, after describing
our choice of simulation framework.

One way of visualising the experiments is shown in fig. 6.1. The
grid of images shows the same cropped section of the simulation
visualisation, taken throughout the simulation.

The goal of the C++ simulation implementation in OMNeT++ has
been to focus on simplicity, reusability, and general applicability
to minmax clustering. As such, the codebase has gradually
grown, with the early addition of unit tests using for the
clustering algorithmwith Catch2, as well as regression tests for the
simulations. The latter tests are implemented as a combination
of customised OMNeT++ fingerprint tests, and adverserial tests
that pinpoint any unintended changes to clustering results. A
Continuous Integration workflow for the source code repository
runs the fingerprint tests each time a new change is made, and
notifies of any errors.

Once an approach was chosen with a focus on iterative develop-
ment and incremental changes, it was subsequently challenging
to correctly prioritise the changes to make. The two approaches
have multiple aspects that can be altered. Therefore, we chose a
dynamic approach to adding and changing central behaviour for
the staged floodingmodel. The pruning mechanisms as implemen-
ted in this chapter are all implemented as classes implementing
the interface Pruner, which provides a set of hooks pruners must
implement the behaviour in.

At the time of publishing, the codebase contains 2650 lines of C++
source and 1032 lines of C++ headers. The source code repository
for the simulations is not (yet) published.

66 6. Simulation Models and Development

(a) 0% Progress (b) 9.1% Progress (c) 18.2% Progress

(d) 27.3% Progress (e) 36.4% Progress (f) 45.4% Progress

(g) 54.6% Progress (h) 63.6% Progress (i) 72.7% Progress

(j) 81.8% Progress (k) 90.9% Progress (l) 100% Progress

Figure 6.1.: A sequence of cropped screenshots showing an a view of the clustering progress in the staged flooding model
from section 6.3.

Visible are the range indicators, the weights between devices, as well each AP’s execution status. From the first to the last
frame we illustrate the gradual convergence to correct clusters, represented both by the colour of the AP, and the green
bulb upon completion.

6.1. Overview of Models 67

6.1. Overview of Models

As part of the project work a faithful
gossip model was partially developed.
Work remained in order to bring
it up to the requirements for using
projective or sympathetic pruning
when combining it with gossiping.

We can see an overview of the pruning approaches for the models
in table 6.1. Each row is one of the simulation model with their
primary configuration in use. While the flooding only comes
with one, both the standard gossip and empathic gossip model
come with a product of features. They may be changed on a per-
experiment basis, but doing so would not match the configuration
in which the experiments have been executed with and which is
discussed in chapter 7.

The simulations are divided into experiments, networks, models
with features and statistics. Each experiment is a combination
of different simulation variables, such as our cluster size 𝛼, or
the state of our pruning mechanisms. The different models
have different feature toggles and feature parameters, allowing
the simulation to represent several different model variants or
permutations. From these we get a matrix of executions, each
unique in its permutation of the available variables. A typical
experiment toggles more than one feature, thus changing the
behaviour of the model or the network. Each run generates a
set of outputs, ranging from already processed statistics, scalars,
timestamped vectors to simple counting. These executions are
performed with a certain number of replications, each of which
alters the seed to the deterministic random number generator.

An underlying assumption for all of the simulations is that there
is no divergent behaviour within the same experiment, such as
nodes with contradictory modus operandi. This is because any
empathic node plays by definition by the same cooperative and
empathic rules.

Model Type Queue Prune Self- Projective Sympathetic
Reports sent pruning Pruning Pruning

Blind Flooding Naive — — — — —
Staged Flooding Simple Yes Yes Yes — —
Projective Flooding Enhanced Yes Yes Yes Yes —
Sympathetic Flooding Enhanced Yes Yes Yes — Yes

Table 6.1.: Table overview of simula-
tion features and behaviours.

68 6. Simulation Models and Development

1: As mentioned earlier, a frame-
work for OMNeT++ that allows for
full simulations of the TCP/IP stack
and allows us to simulate our mod-
els with accurate depictions of band-
width, latency, et cetera.

6.2. Common Implementation

The different simulation variants are described in their respective
chapters, whereas the shared features, characteristics and
implementation specifics are detailed in this section. At a base
level all models in the simulation send a representation of its
known neighbours and their weights to other neighbouring
nodes.

The models have been created with a focus on maintaining
simplicity and understanding of how they work. In order to
do this, no other layers except for the basic cSimpleModule is
used to represent devices. The models used both the simple
model cSimpleModule for the purposes of modelling the scale
and complexity of solutions.

The cSimpleModule model is appropriate for focusing on space,
complexity and the logics of the solution. Compared to the full
networking stack available by utilising INET1 the simple module is
insufficient for us to look at issues such as network saturation, but
this is not necessary for our specific area of focus for simulating
the scale and complexity.

Variables and Signals

All simulation models inherit from a parent Node. The child nodes
regardless of their model respective implementation do support
the following table of features as seen in table 6.2.

The core Node implementation also emits certain signals irrespect-
ive of the model implementation, as can be seen in table 6.3.

Network Topologies

The simulation models use two different topologies. The first are
randomly generated mesh topologies described in the first section
below. The second is a set of five topologies generated by Rønning
[10], described in the second section.

The randomness in the simulation determines the order of events;
each node shares its information and lets its neighbours know

Table 6.2.: Customisable parameters
for models extending from Node

Feature Variable Values

Cluster size clusterSize 50..250

Clustering timeout timeout 360s

Number of nodes num 0..2000

6.2. Common Implementation 69

Table 6.3.: Available signals for models extending from Node

Feature Variable Values

Clustering complete clusterComplete Timestamps of completed clustering
Clustering timed out clusterTimedOut Timestamps of timed out clustering
Discovered nodes knownNodes Unique nodes discovered after useful

update
Node connections nodeConnections Count of direct neighbours
Reports received rxReport Received a report
Reports transmitted txReport Sent a report
Observations received rxSize Received an observation
Observations transmitted txSize Sent an observation

2: See the NED function uniform()

in OMNeT++ and the underlying
function.

3: The NED language is not optim-
ised for generating large topologies.
An alternative to making the topolo-
gies dynamically is to generate them
using a different tool and export
them as static topology definitions.

that it is empathic at a random point in time in the interval [0, 60].
Furthermore, the same randomness determines when the next
forwarding of received information will occur for staged flooding
models in the same interval [0, 60].

Random Mesh Topologies

The simulations are all based on a randomly generated mesh
topology. The topology is drawn on a 2D plane and each node is
given an X and Y coordinate that are drawn from the deterministic
pseuedo-random number generator.2

When the network is generated it creates one by one node. Each
node is connected to all nodes within its range. To determine
whether a node is in range of other nodes the range between each
node is calculated and verified.3 The mean number of connections
each node has for each value of the parameter used, range, is
illustrated in fig. 6.2. Where possible we will prefer to calculate
the average number of neighbours per value for range and show
that instead.

Static Mesh Topologies

The set of five topologies generated by Rønning [10] were used
in order to compare the results of the work in this thesis with
the simulations by Rønning [10]. They have a higher average
graph degree, or connectedness, with an average of 15 neighbours
per node. This should result in a graph where the redundant
transmissions that occur due to flood-based shortcomings, such as
the many paths to the same nodes, should be extra prominent.

The topologies do not exhibit small-world phenomenon, as they
are also generated by placing nodes on a two-dimensional plane
and collecting nodes within a given range.

70 6. Simulation Models and Development

Figure 6.2.: The graph shows the
mean number of connections each
node has for different values of the
parameter range.

The static mesh topologies were made with five distinct random
seeds. These random seeds were shared across all runs, e.g. using
the same seed for the 2nd replication of the 3rd and 4th topology.

Weights & Message Format

Weighted Edges

Weights, too, are drawn from a uniform random distribution,
and are independent of the location of a node. Each channel
connecting two nodes together consist of two weights. Upon
initialisation the weights on the channel end of the first node
to initialise is chosen as the weight for both ends. The same
topology is accessed by the neighbouring node which updates its
own internal representation of the weights to match that of the
simulation topology.

Each individual node generates its own representative weight
for each of its gates. As the nodes start up one of the two
available weights in the graph are chosen. Once chosen, the
weight is representative for the link between the two nodes.
Additionally, that weight is visible in the graphical visualisation of
the simulation, as in fig. 6.1.

6.2. Common Implementation 71

4: The addition of INET remains a
suggestion highly recommended in
order to perform accurate network
simulations. Examples include estab-
lishing if, and how, delay-sensitive
services may be impacted by back-
haul communications in the event of
synchronised information dissemina-
tion.

Messages and Message Format

Themessages used in the simulation are purposefully simple. Each
message inherits directly from the cPacket module and provides
exactly two fields, one of which has a variable length. This follows
from our earlier discussion in section 4.1 where we limit ourselves
to a simple message model in order to reduce implementation
time and efforts.4

O () = O (𝑛2) (6.1)

The first field is a time-to-live (TTL) field primarily used by the
flood model in section 6.3. While the other models may use it,
they both queue the information received for later without storing
a TTL field specific to that report. As such, the TTL is not helpful
for these specific models.

The second field is the collection of neighbour reports. The
simulation simplifies the identifiers of the models to either
unsigned shorts (16 bits) or to strings for ease of debugging.
Besides the identifier, the structure maps to the information
elements as described in eq. (5.2).

Clustering Implementation

The clustering implementation is a port of the original Python
clustering module used by Rønning [10]. Because OMNeT++ is
written in and for C++ [70], the clustering implementation has
been ported and subsequently rewritten from its original Python
implementation. The C++ version is changed from its original
implementation primarily in how functionality is implemented,
not in how the clustering itself is performed. The rewrite includes
a simpler breadth-first search, as well as support for returning a
list of partial nodes. These changes remain identical across the
varied methods of information dissemination.

We propose that the establishment of a cluster is performed
collectively and simultaneously with joining a cluster. While a
performance benchmark is not a part of this thesis, it is clear that
the C++ implementation performs clustering for values of 𝑎𝑙𝑝ℎ𝑎
so quickly as to be a cheap operation.

The first creation of an empathic cluster between two nodes
happens when two empathic nodes are within range of each
other and have exchange their first report. All models use a first
or initial one-hop report before any further improvements to the
dissemination begin. Whether a real-life implementation would

72 6. Simulation Models and Development

5: The interval in which nodes ex-
change neighbour reports and per-
form the clustering.

use ResFi to establish if a neighbouring node is an empathic one
before sending the first node is not of importance: even for high-
density networks the amount of information in the first report is
essential yet low with one AP’s direct neighbours.

Confirming Clustering

One of the changes in the C++ implementation of the minmax-
clustering compared to the original Python version is the inclusion
of partial nodes.

The clustering implementation, both the original Python version
and the C++ version, takes into consideration whether we know
a node or know of a node. Confirming that a partition is correct
is done by looking at partial nodes where we only know of them
due to a known node’s edge pointing to one. Partial nodes allow
us to see identify that a clustering could be different, but this is
unknowable until the node is upgraded to a known node.

The following describes the clustering process from the point of
view of a single empathic node.

1. Add ourselves as a known node.
2. Add our neighbourhood as partial nodes.
3. Process report from neighbouring node.

a) Convert partial node(s) to known node.
b) Add new neighbourhood of known node(s) as partial

node(s).

4. Perform clustering process.
5. Evaluate clustering results.

a) Repeat step 3 and 4 if there are partial results.
b) Finish process if there are no partial results.

Receiving Weights

The simulation sends a map of node to neighbour reports, where
each report consists of neighbour observations in the form of a
map of known neighbours and its weights to them. It represents
a single node in the graph with its weighted vertices. By
utilising every connected link for sending the message over the
cryptographically secure backhaul, we flood our neighbours with
the weight information. We refer to this as the weight message.
Every recipient checks if isNewWeightMessage(msg), and either
discards the message or updates its local weight cache in the
current interval5 before retransmitting the message to 𝑛 − 1
neighbours.

6.2. Common Implementation 73

6: The relation between this and the
set of useful information empathic
models forward is discussed in more
detail in section 5.2.

Cut-Off Point or Termination Criteria

Any dissemination approach utilising a type of push-based
dissemination approach needs a termination criteria for the
information being spread out.

The termination in our model assumes no information will
be or is lost in the network. Fault tolerance is thus not
taken into consideration. This is a limitation of our current
simulation, but can be improved on within OMNeT++ by
utilising unstable communication channels and devising counter-
mechanisms. A real-life implementation can take this into account
by implementing a mechanism in which nodes directly contact
each other to perform error or failure corrections.

Regardless of the cut-off methods employed, we can see that it is
clear from these sections that any node will not receive neighbour
reports from all the nodes in all the clusters reachable in the
network, so long as the node is not actually connected to all the
clusters in the network.

As discussed earlier in section 4.3, there are primary two methods
this can be utilised in our simulation environment, and a third
which should be 𝛼 and model specific. Our implementation
has support for the following three cut-off points or termination
criteria.

Time-to-live

It is presumed and recommended that any real-life case also uses
a time-to-live field to stop any messages from going more than
the maximum cluster size 𝛼 number of hops away from its origin.
The TTL is set to the value of 𝛼, thus limiting its number of hops
to a worst-case of 𝛼 − 1 unhelpful hops or 𝛼 helpful hops if the
node borders between two clusters.

Clustering Verified

The empathic cut-off point is when a node has been able to confirm
that it has no alternative possible partitions, by gathering the
observed information of minimum 𝛼 + 1 nodes and performing
the clustering process.6

An exception to this exists within staged flooding in section 6.4
when a node 𝑉𝑖 finds its cluster 𝑃𝑖 before a neighbouring node 𝑉𝑗
sends its initial neighbour report, as this means we must forward
the information that 𝑉𝑗 has thus far missed out on.

74 6. Simulation Models and Development

A useful message resulting in a confirmed empathic clustering
will be forwarded as usual, but any future messages are discarded
or not added to the queue of outbound reports. They can be
discarded because all useful information has already been used
to find the only possibly clustering.

To reiterate, the same applies in the sympathetic pruning model
in section 6.5, as it is not possible that a first node 𝑉𝑖, having
found its cluster 𝑃𝑖 with the information it has received, has not
also forwarded all information that would be useful for a node
further downstream.

Timeout

The last fallback is that each node in the simulation has a
maximum runtime. Timeouts are useful to prevent that a node
proceeds beyond the limitation of the round, but the timeout
implementation in the simulation model has only one purpose:
stopping once enough time has passed and admitting defeat.

Timing out may not be equally sufficient for a flood-based
implementation, however. In the best-case scenario a timeout for
a flood-based implementation needs different timeout values as
there is no timeout prevents the immediate cascade of information
from spreading uncontrollably should there be bugs in the
implementation of the blind flooding (definition 2.2.4).

Contrast that to the empathic implementation, or one based on
another approach. Whether there are fixed or random intervals,
a timeout value must be balanced with the amount of data yet-
unfinished nodes could forward or produce in a subgraph of the
network. It is important to balance the rate of dissemination with
what is considered a realistic timeout value, but this is a separate
evaluation that must be done on a per-𝛼 basis.

Alternatives

Amodel node could perform clustering for other nodes it knows of,
or check whether a neighbouring node is a member of the same
partition in the same round, and pause further dissemination
downstream until the neighbouring node is included.

Initial start-up

Once a node in any of the models initialises itself it schedules
a time for the initial report to be sent to adjacent nodes, as

6.3. Blind Flooding Model 75

Data: Immediate neighbours and measurement report
Result: All neighbours receive a copy of our measurement

report
1 determine startup time delay in [5, 60);
2 wait(startup time delay);
3 foreach neighbour in neighbours do
4 sendMessage(neighbour, weightCollection);
5 end

Figure 6.3.: Pseudo-code of the ini-
tial dissemination of neighbour re-
ports upon start-up

illustrated in fig. 6.3. Each node chooses a random time between
5 and 60 seconds after initialisation to send its inital report. This
reduces the number of simultaneously communicated nodes over
backhaul, while also staggering the communication for the non-
flooding based models.

When the scheduled event fires it proceeeds to send its neighbour
reports for its one-hop neighbours to all of its one-hop neighbours.
The adjacency list allows for each node to perform self-pruning,
which is relevant the staged flooding model in section 6.4 and its
derivatives in section 6.5.

6.3. Blind Flooding Model

Flooding is the fastest way to spread
information across all nodes in a
graph as it always takes the shortest
path. It also takes all the paths, which
is why it will also choose the shortest
paths.

The blind flooding model (definition 2.2.4) is a naïve model.
This is because the underlying approach is itself incredibly naïve,
sending everything to everyone until its time-to-live reaches zero.
Unfortunately, the simulation model has its limitations as well,
and does not represent how a network would react during an
actual broadcast storm. Figure 6.4 on page page 77 shows

a high-level overview of the process
within the blind flooding model.

Simulation Features

The simulation supports no additional features beyond the
common functionality.

Messages that node 𝑉𝑖 receives in the blind flooding model are—if
we receive a new neighbour report and thus discover a new node
in the graph (see definition 3.3.1)—immediately dispatched to
neighbouring nodes.

Reactiveness

Initial versions of the staged flooding allowed to simulate between
a reactive and non-reactive behaviour when receiving neighbour
reports. This was removed, as reactiveness is inherent in the

76 6. Simulation Models and Development

behaviour of the blind flooding mechanism. Reactiveness means
that we do not wait when we receive information, but we
immediately disseminate it to our neighbours if it passes through
our pruning or control mechanisms. This significantly reduces the
time it takes for information to disseminate in the given cluster,
but it also increases the total number of messages sent, along with
the simultaneous amount of information in the network at the
same time.

Pruning Messages by Time-to-Live

Blind flooding has by definition few means of limiting its possibly
infinite reach of its broadcasted messages. Due to its limited scope
it is also the most restricted and least performant model in the
simulation, despite the use of TTL.

The flooding model requires that a time-to-live (TTL) field is used
in the same way that TTL is used in the TCP/IP stack. Every
initial message contains a timeToLive field set to the value of
clusterSize. The TTL is decremented by one when a message
is received. If the TTL is now 0 the message is processed locally,
then discarded. If the TTL is higher than 0 the message is flooded
to all neighbours that are not 𝑉𝑡, the source node N(𝑉𝑖) − 𝑉𝑡.

Pruning forwarding upon certain clustering

In section 6.2 cut-off points, such as both time-to-live and certain
clustering, are discussed more in detail.

The flooding model discards all messages it receives once it
has validated its current clustering partition with 𝛼 + 1 reports
available.

Resource Consumption

The blind flooding model uses no sustained amount of memory for
its information dissemination approach beyond what the common
model and the clustering implementation does.

6.4. Staged Flooding Model 77

Measuring
neighboursstart Broadcast Listening

Initial
reports

Receive
new report

Receive old
reports

Send to non-sender
neighbours

All neighbours
broadcasted to Figure 6.4.: A high-level determin-

istic finite automata for the blind
flooding model.

Note that the steps “Send to non-
sender neighbours” include decre-
menting the time-to-live field in the
messages.

6.4. Staged Flooding Model

The staged flooding model is the foundation for the two enhanced
models in section 6.5. It shares the same common traits as
introduced in section 6.2, but adds additional behaviour. Figure 6.5 on page 79 shows a high-

level overview of the process within
the staged flooding model.

Simulation Features

Based on staged flooding as introduced in section 2.2, it
implements a model that supports self-pruning and the ability
for other pruning mechanisms to be dynamically added to the
simulation.

The implemented simulation supports the following features as
seen in table 6.4.

The functionality of the received pruning is elaborated upon in
section 6.4, and pruneType in section 6.4.

Feature Variable Values

Received Pruning pruneReceived Default: on
Self-pruning pruneSelf Default: on

Table 6.4.: Simulation features in
the staged flooding model

Pruning Reports Received Before

The received pruning provided by the simulation parameter
pruneReceived is a simple pruning mechanism that operates
when reports first arrive. As the mechanism is simple and
not related to any other mechanism, it does not have its own
introduction elsewhere.

If a collection of neighbour reports do not a new neighbour report,
allowing us to discover another node, the neighbour report is
dropped before reaching the queue of reports.

78 6. Simulation Models and Development

Pruning Nodes Shared With Senders

The parameter pruneSelf allows us to enable or disable self-
pruning (definition 5.3.5). It removes neighbour reports queued
for a neighbouring node if that node is also a neighbour of the
node that sent the neighbour reports to us.

Handling new information we receive Once a node 𝑉𝑖 receives
the report from adjacent node 𝑉𝑖,𝑡 it attempts to update its local
graph 𝐺. For each observation in the report a knowledge mapping
is added between the transmitter 𝑉𝑡 and the neighbours shared
with 𝑉𝑖. This constitutes the set of removed forwarding nodes 𝑅𝑖,𝑡
between 𝑉𝑖 and 𝑉𝑡.

𝑅𝑖,𝑡 = {𝑉𝑖,𝑗|𝑉𝑖,𝑗 ∈ N(𝑉𝑡) ∩ N(𝑉𝑖)}

Pruning reports when sending updates When our scheduled
update event occurs we walk through our set of currently queued
reports. The reports are filtered for each adjacent node 𝑉𝑖,0, … , 𝑉𝑖,𝑗
according to the map of reports that should be known for each of
our neighbours.

As such, no node receives any reports that we received from the
intersection of our neighbouring nodes N(𝑉𝑖) and the nodes 𝑉𝑡
neighbours N(𝑉𝑡) which sent the report—or reports—to us.

Resource Consumption

The self-pruning implementation is not necessarily optimal in
our simulation model. As the pruning of reports must be made
when new neighbour reports are received it must store which
neighbours are excluded from receiving which reports until the
scheduled forwarding or update time.

Thus the memory consumption in the event all neighbours are
shared is

|NR|𝑉𝑖 ⋅ |N(𝑉𝑖)|

It is the product of the number of received reports with the
number of neighbours. An alternative implementation could tie
the identifiers of each report received to the node that sent it, but
this results in the same space complexity.

6.5. Projective & Sympathetic Flooding 79

Measuring
neighboursstart Sending Listening Queueing

Initial
reports

Prune &
send reports

Report queue
is empty

Scheduled
update

Add new report
to queue

Schedule
update

Add new report
to queue

Receive old
reports

Figure 6.5.: A high-level deterministic finite automata of the staged flooding model.

The design is quite similar to the blind flooding model in section 6.3, but utilises as mentioned above a queue and a
scheduled update time. Note that the steps “Prune & send reports” involve executing all of the enabled pruners for the
queue of reports.

6.5. Projective & Sympathetic Flooding

This section describes two different models for the experiments
with the same core implementation underneath the hood, but with
different and crucial extensions to its dissemination mechanism.

The staged sympathetic flooding uses the core implementation of
staged flooding in section 6.4 together with an implementation
of sympathetic pruning as defined in definition 5.3.4. The high-level state machine in

fig. 6.5 in Staged FloodingModel rep-
resents these twomodels as well. The
differences are found within each of
the additional pruning mechanisms.

Despite the fact that these two models implement projective
and sympathetic pruning from definitions 5.3.3 and 5.3.4 with
the basis in the staged flooding model, the mechanisms can
be employed for approaches including push-based gossiping
(definition 2.2.7).

Simulation Features

The projective and sympathetic staged flooding models offer the
same simulation feature parameters as detailed in table 6.4 on
page 77. In addition the models implement the following feature
detailed in table 6.5.

Remark 6.5.1 (Values of pruneEmpathic) The values off, on,
and extended in table 6.5 respectively refer to staged flooding,
staged flooding with projective pruning, and staged flooding
with sympathetic pruning, but often shortened to the staged
flooding model, projective model and sympathetic model.

Projective & Sympathetic Pruning

Both the projective and sympathetic pruners implement a pruner
that we dynamically add to each node at the beginning of the

80 6. Simulation Models and Development

Table 6.5.: Showing the actual
OMNeT++ simulation parameters
and their respective values for the
two different models implementa-
tions.

One model cannot have both pro-
jective and sympathetic pruning en-
abled. The simulation parameter
pruneEmpathic allows to toggle
between off, on and extended.

Feature Variable Value per Model

Projective Sympathetic

Empathic Pruning pruneEmpathic on extended

7: See definition 5.2.1 for more on
the set of usefuls.

simulation.

In the pruning mechanisms they hook into the following points
in the simulation:

learnArrive() At arrival of a message that contains hitherto
unseen neighbour report

prune() When pruning a potential message of reports for a
specific neighbour

updateComplete() When a scheduled update has been com-
pleted and all reports have been sent to their destinations

The models also hook onto
simulationComplete() in order
to submit statistics for how many
unique nodes was accepted over
the course of the simulation, and
how many of those were superfluous
nodes.

Furthermore, both of the mechanisms take the order of events into
account when ensuring information is forwarded regardless of
when empathic neighbours come online with their initial report.

We make the assumption that we do not know which of our
neighbours are empathic nodes. While we would know in
ResFi, we do not know until we receive a report from them in
the simulation. More importantly we cannot perform minmax
clustering with their node as the seed node without receiving their
initial report. Thus we must queue potential reports even for
those nodes we have not received information from yet.

The overhead of storing reports for nodes even after having
scheduled an update is not considered problematic as it only
requires storing a map or list of pointers to the vertices in the
graph for each neighbour, or vice versa.

Projective Pruning

The implementation for projective pruning from definition 5.3.3
implements a pruner that 1. creates a queue for each queued
report received where neighbours are inserted, 2. creates a set
of useful nodes for our current node only, 3. updates the set of
usefuls when the clustering changes.7

6.5. Projective & Sympathetic Flooding 81

8: We believe multiple neighbours
might be in the same cluster if the
connectedness is high enough, as it
increases the chances that neighbour-
ing nodes are each other’s neigh-
bours as well.

Resource Consumption The list of useful information is a
map of sets mapping each queued report to a set of neighbour
candidates. Storing the set of usefuls locally can be replaced by
only retaining the set temporarily.

Sympathetic Pruning

The implementation for sympathetic pruning from definition 5.3.4
implements a pruner that 1. creates a queue for each queued
report received where neighbours are inserted, 2. creates a map
of neighbours identifiers to sets of useful nodes, 3. updates each
neighbour’s set of usefuls when a neighbour report from a useful
node is received.

This means that each neighbour has its own set of usefuls
calculated, which we the pruner uses in order to evaluate whether
to retain or delete a report from the neighbour’s queue.

Resource Consumption Compared to the projective pruner
there is a much higher amount of information retain in memory
throughout the simulation. This is because the map of useful
information is a map of each neighbour to their own set of usefuls,
although this can be reduced to a map of each neighbouring
cluster.8

However, the set of usefuls is replaced in its entirety for each
neighbour when we update it.

82 6. Simulation Models and Development

Part III.

Results & Conclusion

Results and Discussion 7.
7.1.Blind & Staged Flooding . . . 85

Number of Reports Received . 85
Impact by Change of Alpha . 86
Impact by change of density . 87

7.2.Traffic & Pruning 92
Traffic In 𝑛 = 2000 & 𝛼 = 100 92
Fewer Discovered Nodes is
More 92
Distribution of Nodes 93
Distribution of Traffic 95
Reducing Duplicate Transmis-
sions 98
Is It Too Much Traffic? 99

7.3.Applicability & Thoughts . . . 101
Blind Flooding 101
Staged Flooding 101
Projective Pruning 102
Sympathetic Pruning 102
Self-pruning & Other Optimisa-
tions 103

7.4.Threats to Validity 104
Memory Requirements 104

In this penultimate chapter we look closer at that which remains.
We introduce results from our dynamically generated mesh
topology in the first section where we primarily compare blind
and staged flooding without empathic pruning, before moving to
our results from the static topology used in Rønning [10] in the
subsequent sections.

7.1. Blind & Staged Flooding

First we wish to compare the differences in utilising the blind
and staged flooding. See fig. 7.1. We see that the number of
reports received increases for the blind flooding model despite
using TTL. As the number of reports received increases as the
network increases, we have an indication that blind flooding is
not tenable for use in EmpathicWiFi per our requirements, as this
result suggests that reports move further away than acceptable.

Number of Reports Received

See the number of reports received in figs. 7.1, 7.3 and 7.4 to
compare how the blind flooding and staged flooding differ as
the values of alpha and network density changes. Unlike the
blind flooding model which utilises the TTL field, staged flooding
without empathic pruning has no control mechanisms except for
discarding already known information.

First, in figs. 7.3 and 7.4 note how the number of reports received
are for the majority of results not affected by alpha, but instead
only impacted by the number of nodes. This supports the
theory that both blind and staged flooding cannot be used in its
simple form, unless it is enhanced with projective or sympathetic
pruning.

Both models are affected by the connectedness in the network, as
we assumed would be the case with a model based on flooding
and without an optimal flooding algorithm in place. Yet, the
number of received reports does not change significantly for the
larger values of alpha as we increase the network size without
increasing the density.

86 7. Results and Discussion

250 500 750 1000

Number of Nodes in Topology

103

104

R
ec

ei
ve

d
R

ep
o
rt

s
p

er
N

o
d

e

Received Neighbour Reports Across All Variables

Model
Blind Flooding Only

Staged Flooding Only

Projective & Self-Pruning

Sympathetic Pruning Only

Sympathetic & Self-Pruning

Projective Pruning Only

Figure 7.1.: The number of mean reports received per node across all variables, plotted logarithmically.

This includes simulations for 𝑎 = 25, 50, 75, 100, as well as multiple different values of neighbour density.

This is visible in fig. 7.2 in the first part of blind flooding. We can
see that number of reports increases from 𝛼 = 10 until 𝛼 = 20,
at which point it reaches a plateau. The small increase that is
there can be explained by the set of additional nodes that now,
rather than only having an edge inwards into the network, are
surrounded by new nodes in a larger network. In other words,
the increase in received reports can be attributed to all growth
of all nodes with a big increase in edges due to the increased
size. However, more work is required in order to prove that this
increase is only due to the increased connectedness of border
nodes. We will not categorically claim that this cannot be.

Impact by Change of Alpha

As shown in fig. 7.2 there are differences in how much the values
of 𝛼 impact the number of reports. We can observe that the blind
flooding model is not impacted by different cluster sizes after
𝛼 ≈> 20, despite ceasing communication once a cluster has been
reached.

Initially this was thought to be due to a lack of TTL, but the blind
flooding model in section 6.3 is implemented with TTL in each

7.1. Blind & Staged Flooding 87

message passed.

The broadcast messages in blind flooding are rebroadcast to other
nodes, and the next nodes, and so on, before they eventually
should cease. While the TTL field will stop broadcasting, it only
does so for sufficiently small values of 𝛼 and subsequently TTL.
It seems our generated topologies are too dense to prevent a
message from reaching all locations within 𝛼 jumps.

The behaviour for staged flooding is different. Each increase
of alpha results in a linear or near linear increase of received
reports across all nodes, as seen in the changes in the columns
with sufficiently high number of nodes in fig. 7.3 on 89.

The behaviour is consistent between blind and staged flooding
models, until they reach their max as we can see in fig. 7.2.

Clustering Times

Figure 7.6 show how the time spent clustering is primarily affected
by the cluster size 𝛼. Two other things are of particular note. First,
the time is not particularly impacted by the increase in 𝛼; judging
by the increase in time for convergence we could increase the
value to 200 and the primary differentiator would be the length
of the convergence for the higher values.

Secondly, the projective pruner seems to have a marginal mean
improvement over the sympathic pruner. This could be due to the
fact that it disseminates more information, thus also disseminating
more useful information at a earlier time. That being said, the
difference is hard to visualise here and we cannot claim that it is
significant.

It is important to emphasise that the graph only contains a mean
of the different empathic models, and that we have not included
a proper confidence interval for this graph.

Impact by change of density

The impact on the number of messages is particularly prevalent
when the range parameter is evaluated. This section uses a
specific set of mesh network topologies where the amount of
edges is |𝑉 | = 250 and the cluster size is 𝛼 = 50.

What causes the high number of reports? A caveat to any graphs
illustrating the growth in traffic is that the actual number of
reports also increase with the density. As the range or density
of nodes increases so does the number of values per node that

88 7. Results and Discussion

needs to be shared. Both the number of reports and the number
of transmissions are affected by the connectedness of the graph.

The fig. 7.7 shows the number of neighbour reports sent and
received relative to each node’s count of neighbours. This
illustrates how the relative amount of traffic increases with the
density, but it also shows how some approaches fare better than
others in such a scenario.

Firstly, we can see that the self-pruning variants fare better, but
watch out. Notice in fig. 7.7 that staged flooding alone with self-
pruning performs better to begin with for very sparse graphs. This
changes when the average neighbour density approaches four, at
which point projective pruning henceforth has a lower value of
received reports.

This highlights the one of the benefits of self-pruning for sparse
topologies where multiple paths to different nodes are less
prominent.

7.1. Blind & Staged Flooding 89

10 15 20 25 30 35 40 45 50
Maximum Cluster Size

101

102

N
um

be
ro

fR
ep

or
ts

Reports Sent & Received Rel. Neighbours for 𝑛 = 250, 𝑑 = 7.3

Model
Blind Flooding Only
Projective Pruning Only
Projective & Self-Pruning
Staged Flooding Only
Staged & Self-Pruning
Sympathetic Pruning Only
Sympathetic & Self-Pruning
name
Received Reports/Node
Sent Reports/Node

Figure 7.2.: Logarithmic graph over effect on the ratio of the total number of sent and received reports relative to value of
𝑎𝑙𝑝ℎ𝑎 for a fixed size of nodes 𝑛 = 250, and one set density.

The graph illustrates the growth in reports as we gradually increase the size of the clusters.

25 50 75 100

Values of Cluster Size Alpha

0

2500

5000

7500

10000

12500

15000

17500

N
um

be
ro

fR
ep

or
ts

Re
ce
iv
ed

Number of Reports Received for Blind Flooding Only

Nodes
250
500
750
1000

Figure 7.3.: Graph showing the im-
pact on the total number of received
reports for blind flooding only.

It indicates that the growth in reports
received is a consequence of network
size rather than cluster size. It also
highlights that when the cluster size
is sufficiently small and the network
large enough it is possible to see that
the TTL positively limits the number
of reports, as we see for the bar
where 𝛼 = 25 and the number of
nodes is 1000.

90 7. Results and Discussion

Figure 7.4.: Graph showing the im-
pact on the total number of received
reports for staged flooding only.

It shows that the lack of TTL makes
blind flooding much better in terms
of overall information transferred
when we do not use empathic prun-
ing, while also indicating that the
growth of reports is a consequence of
network size rather than cluster size.

25 50 75 100

Values of Cluster Size Alpha

0

10000

20000

30000

40000

50000

60000

N
um

be
ro

fR
ep

or
ts

Re
ce
iv
ed

Number of Reports Received for Staged Flooding Only

Nodes
250
500
750
1000

Figure 7.5.: Graph showing the im-
pact on the total number of received
reports for projective pruning only.

It indicates that the number of re-
ports is primarily a consequence of
cluster size, not network size.

25 50 75 100

Values of Cluster Size Alpha

0

500

1000

1500

2000

2500

N
um

be
ro

fR
ep

or
ts

Re
ce
iv
ed

Number of Reports Received for Projective Pruning Only

Nodes
250
500
750
1000

Figure 7.6.: Share of nodes that com-
pleted clustering over time categor-
ised by time and values of 𝛼

50 100 150 200 250 300 350 400
Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

of
N
od

es
Co

nv
er
ge

d

Model
Sympathetic Pruning Only
Projective Pruning Only
Sympathetic & Self-Pruning
Projective & Self-Pruning
Maximum Cluster Size
50
100

7.1. Blind & Staged Flooding 91

2 4 6 8 10 12 14 16
Average Number of Neighbours/Node

101

102

N
um

be
ro

fR
ep

or
ts

Log. Reports Sent and Received Rel. Neighbours for 𝑎 = 25 and 𝑛 = 250

Model
Blind Flooding Only
Projective Pruning Only
Projective & Self-Pruning
Staged Flooding Only
Staged & Self-Pruning
Sympathetic Pruning Only
Sympathetic & Self-Pruning
name
Received Reports/Node
Sent Reports/Node

Figure 7.7.: Logarithmic graph over effect on the ratio of the total number of sent and received reports relative to the
number of neighbours each node has.

The graph illustrates the growth in reports as the density of a network increases without increasing the complexity of the
algorithm while taking into account the increased observations by each empathic node.

92 7. Results and Discussion

7.2. Relationship Between Traffic & Pruning

There are two different kinds of traffic in the results. In our results
we cannot separate them, but we can point to them and explain
how it impacts the results differently for the different types of
pruning we have tested.

In order to explain the difference we will start with the key
takeaway in terms of traffic in the networks.

Traffic In 𝑛 = 2000 & 𝛼 = 100

Figure 7.15 is the key figure here. The bar figure highlights
that the largest reduction in traffic sent is by utilising sympathic
pruning and self-pruning in tandem. It shows that across the five
static topologies which we ran five times each with different seeds,
the total amount of traffic used in the network ranged between
approximately 700MB and 1400MB.

Firstly, we believe this is a significant difference in terms of overall
traffic between nodes in a simulation where all nodes still reach
their clustering, but transfer less.We do not compare the number of

reports in fig. 7.15 to an implement-
ation which only utilises staged flood-
ing. We will discuss the balance between projective and sympathetic

pruning later, but a clear takeaway is that reducing redundant
traffic is important.

Fewer Discovered Nodes is More

The first part of acknowledging the distinct difference in how
we send less information is by asking what contributes to more
information being sent. Neighbour reports are the key pieces of
information that nodes need. If we can reduce the number of
neighbour reports we pass from node to node, we reduce the total
traffic both in terms of reports and sum of bytes.

In table 7.4 we can see the effect of both fundamental projective
pruning (definition 5.3.3) and the sympathetic pruning (defin-
ition 5.3.4). By performing clustering on behalf of neighbours
in sympathetic pruning we further reduce the amount of traffic.
Sympathetic pruning alone yields an approx. 22% or 17% reduc-
tion in mean traffic depending on whether or not self-pruning is
enabled.

7.2. Traffic & Pruning 93

1: The density in the graph fur-
ther exacerbates the transmission
of redundant information as self-
pruning alone cannot eliminate two-
hop neighbours. The combination of
redundant and duplicate information
may lead to an increased difference
between the two models.

2: See definition 3.3.1

How Come The Big Difference?

Why is the difference between the two so noticeably significant? A
cluster of nodes will, as the cluster size increases, have more nodes
within the partition that border to a majority of cluster members
rather than other members. Any cluster member requires the
same set of information in order to validate, and as such we
should more often than not need the same information that our
neighbours need.

The answer might lie in the relationship between the maximum
cluster size 𝛼 and the connectedness of the graph. If the
connectedness in the graph is substantially high the majority
of neighbouring nodes may not be members of the same cluster.
Density of networks must, if this is the case, be considered when
establishing which value of 𝛼 to use.

An indication of this is present in fig. 7.8, where we can see
the increase in reports for the empathic models as we gradually
increment the values of 𝛼 from 10 to 50.

A caveat to remember is that the order of information received
impacts the results of the minmax clustering. It might be that
any additional transmissions of information that occur due to
projective pruning temporarily become part of the neighbouring
node’s cluster. Such an event could lead to multiple forwarded
reports that were never necessary to begin with.1

This underlines the importance of optimising the amount of
information we forward, as any redundant information may yield
multiples of duplicate traffic.

Distribution of Discovered Nodes

Let us examine fig. 7.9. The bivariate distribution per-node
of discovered nodes2 compared to the amount of payload-only
kilobytes sent and received per node for the 0th static topology
can tell us more.

Remark 7.2.1 (Colourmap distri-
bution) The bivariate distribution
in figs. 7.9 and 7.12 has two col-
ourmaps that each represent the
distributions of their respective
pruning mechanisms relative to
themselves.

This means that information such
as how narrow the histogram
for discovered nodes is across
the models must be evaluated in
fig. 7.11.

The Y-axis representing discovered nodes allows us to see the
distribution of nodes in the simulation with respect to how many
nodes they had discovered by the end of the simulation. While
𝛼 = 100 we can see the number of discovered nodes going above
300 and 400 for a share of sympathetic and projective nodes
respectively. The distribution on the Y-axis illustrates that the
amount of knowledge gained of the network goes far beyond
what is needed in order to confirm a cluster.

94 7. Results and Discussion

10 15 20 25 30 35 40 45 50
Maximum Cluster Size

10

20

30

40

50

N
um

be
ro

fR
ep

or
ts

Reports Sent & Received per Neighbour/Node for 𝑛 = 250 and Avg. Neighbours 7.3

Model
Projective Pruning Only
Projective & Self-Pruning
Sympathetic Pruning Only
Sympathetic & Self-Pruning
name
Received Reports/Node
Sent Reports/Node

Figure 7.8.: Graph showing the effect on the total number of sent and received reports relative to value of 𝑎𝑙𝑝ℎ𝑎 for a
fixed size of nodes 𝑛 = 250 with average neighbour density at 7, 3 for the empathic models.

The graph illustrates the growth in reports as we gradually increase the size of the clusters. The distance between the two
empathic pruning mechanisms grows gradually, becoming relatively larger to one another with the X-axis.

The addition of self-pruning in fig. 7.10b tightens both of the
distributions of unique nodes, making the overall illustration
thinner. This highlights that the number of unique nodes, although
we have already seen this, is not affected by self-pruning, but by
our own decisions of what information is useful to neighbours in
EmpathicWiFi.

We can see the same in fig. 7.12, but we will not discuss traffic
itself any more in this section.

2D Distribution

Lastly, we see that the distribution of known nodes for the different
categories in fig. 7.11. The distribution shows sympathetic
pruning contributing to a significant reduction in the total number
of uniquely discovered nodes across the duration of the simulation.
Its distribution, whether self-pruning is enabled or disabled, is
more similar to that of a normalised distribution. In contrast
to the projective pruning where we identify more of a long-tail
phenomenon for both variants of self-pruning.

7.2. Traffic & Pruning 95

0 2000 4000 6000 8000 10000
Reports Sent and Received

100

200

300

400

500

600

D
is
co
ve
re
d
N
od

es
|𝑃
|

Projective Pruning Sympathetic Pruning

(a) Self-pruning disabled

0 2000 4000 6000 8000 10000
Reports Sent and Received

100

200

300

400

500

D
is
co
ve
re
d
N
od

es
|𝑃
|

Projective Pruning Sympathetic Pruning

(b) Self-pruning enabled

Figure 7.9.: Distribution of Unique Nodes Discovered and Sum of Reports Sent & Received Per Node in 0th Topology.
In fig. 7.10a the bivariate distribution is illustrated for a simulation with self-pruning disabled, whereas self-pruning is
enabled in fig. 7.10b.

3: The same descriptions and conclu-
sions apply to figs. 7.13a and 7.13b,
as the sum of traffic is directly caused
by sending reports in the simulation.

4: In blue gradient.

5: Due to the probabilistic order of
events from the random intervals
some nodes will naturally send a
lot more than others, and some may
barely send anything.

It is largely in line with the earlier comparisons between known
nodes at the end of the simulation and the amount of traffic per
node. It seems that the 3𝛼 average that Rønning [10] establishes
with projective pruning is possible for us to replicate based on the
distribution in fig. 7.11.

Sympathetic pruning yields a ratio of 𝛼 to discovered nodes at
≈ 2𝛼.

Zero-nodes in Static Topologies

The aggregated values for how many discovered nodes the 0th

node has in the various static topologies are shown in table 7.1.
This is included as a comparison to the results in Rønning [10].

Distribution of Reports & Bytes Transferred

When discerning the difference that comes from enabling self-
pruning we must evaluate the differences between figs. 7.10a
and 7.10b.3

The X-axis representing the distribution of total number of reports
both received and sent shows us how much of a problem duplicate
transmissions are in the simulation. Without self-pruning enabled
we can see in fig. 7.10a that the core distribution of sympathetic
pruning4 seems to discover approx. 200 nodes, yet receives and
sends a total of slightly above 4000 reports.

If we assume that the standard deviation of the number of
neighbours per node is low, we can assume that each node roughly
transmits and sends equally much, as they are equally connected.5

96 7. Results and Discussion

0.000

0.002

0.004

0.006

0.008

0.010
Projective Pruning Only Projective & Self-Pruning

100 200 300 400 500
Discovered Nodes

0.000

0.002

0.004

0.006

0.008

0.010
Sympathetic Pruning Only

100 200 300 400 500
Discovered Nodes

Sympathetic & Self-Pruning

Figure 7.11.: Distribution of known nodes at the end of the simulation over all sets and all nodes

Table 7.1.: The mean, minimum and
maximum of the th0 node in all five
static topologies

value
mean min max

set experiment

0 self-pruning off, empathic extended 266 241 287
self-pruning off, empathic on 312 288 347
self-pruning on, empathic extended 264 246 286
self-pruning on, empathic on 302 285 323

1 self-pruning off, empathic extended 399 358 430
self-pruning off, empathic on 481 469 489
self-pruning on, empathic extended 403 362 445
self-pruning on, empathic on 487 470 500

2 self-pruning off, empathic extended 191 176 223
self-pruning off, empathic on 285 275 300
self-pruning on, empathic extended 197 178 231
self-pruning on, empathic on 309 292 323

3 self-pruning off, empathic extended 204 185 247
self-pruning off, empathic on 381 367 397
self-pruning on, empathic extended 193 179 210
self-pruning on, empathic on 378 364 390

4 self-pruning off, empathic extended 169 146 192
self-pruning off, empathic on 300 287 317
self-pruning on, empathic extended 165 147 189
self-pruning on, empathic on 310 297 327

7.2. Traffic & Pruning 97

0 200 400 600 800 1000 1200 1400 1600
Kilobytes Sent and Received

100

200

300

400

500

600

D
is
co
ve
re
d
N
od

es
|𝑃
|

Projective Pruning Sympathetic Pruning

(a) Self-pruning disabled

0 200 400 600 800 1000 1200 1400 1600
Kilobytes Sent and Received

100

200

300

400

500

D
is
co
ve
re
d
N
od

es
|𝑃
|

Projective Pruning Sympathetic Pruning

(b) Self-pruning enabled

Figure 7.12.: Distribution of Unique Nodes Discovered and Sum of Payload Traffic Sent & Received Per Node in 0th Topology.
In fig. 7.13a the bivariate distribution is illustrated for a simulation with self-pruning disabled, whereas self-pruning is
enabled in fig. 7.13b.

This results in a rate of duplicates of an order of magnitude with
10× the number of received reports to what a node needs.

Enabling self-pruning in fig. 7.10b significantly reduces the
number of duplicate transmissions by placing the core of
sympathetic pruning right above 2000 reports sent and received.
When we make the same assumption as above we have an
approximate rate of duplication at 5×.

The reduction in the median amount of traffic is almost at 50%
when we look at figs. 7.13a and 7.13b.

2D Distribution

It is difficult to discern the distribution for projective pruning,
except that it certainly has higher variance, so we turn to fig. 7.14
which shows the distribution of the sum of received reports
per node as a histogram. It is clear that enabling self-pruning
significantly tightens both the projective and sympathetic models,
moving the median for projective pruning with self-pruning
enabled to under 2000.

Our chaotic simulation with staged flooding and sympathetic
pruning yields a lower distribution of discovered nodes, as well as
gathering the amount of data transferred per node.

Here in table 7.2 we see that the 95% percentile for the number of
uniquely known nodes across all topologies is reduced from approx.
400 to 300 by utilising sympathetic pruning. This constitutes a
marked decrease for the vast majority of nodes in the topology,
with 3𝛼 as the highest value for the 95th percentile of sympathetic
pruning nodes.

98 7. Results and Discussion

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Projective Pruning Only Projective & Self-Pruning

0 2000 4000 6000 8000
Received Reports

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Sympathetic Pruning Only

0 2000 4000 6000 8000
Received Reports

Sympathetic & Self-Pruning

Figure 7.14.: Distribution of the number of received reports at the end of the simulation over all sets and all nodes

Table 7.2.: 95% Percentile for the
Discovered Nodes for All Topologies.

The number in the upper right corner
is the percentile as share of 1, 0.95.

0.95
experiment

Sympathetic Pruning Only 302.00
Sympathetic & Self-Pruning 300.21

6: A caveat for the self-pruner is
that it currently is too simple to
ensure that it never prunes content
it should not, but it does not seem to
pose a problem in sufficiently dense
topologies such as the 0th static
topology. By specifically validating
if the node sending the reports are
in the same cluster, it can avoid
eliminating reports where we cannot
know that they have sent it to the
neighbours. This should eliminate
the difference in number of unique
nodes for self-pruning configurations
at a small traffic increase cost.

Reducing Duplicate Transmissions

Figure 7.15 shows how self-pruning as defined in definition 5.3.5
helps reduce redundant information transfers, even when coupled
with the neighbours’ based empathic pruning. Note that the
difference in traffic is significantly lower when coupled with
sending all nodes that we consider to be useful.6

We see that the use of self-pruning contributes to approx. 36% or
40% reduction in the mean traffic per node in table 7.5, as well
as a multitude of other changes in tables 7.4 to 7.6.

A similar result is visible in table 7.3 where we see the 95th

percentile in terms of traffic for the projective and sympathetic
models, as well as self-pruning.

7.2. Traffic & Pruning 99

0.95
experiment

Projective Pruning Only 1166.092500
Projective & Self-Pruning 719.818750
Sympathetic Pruning Only 984.176602
Sympathetic & Self-Pruning 545.150391

Table 7.3.: 95% Percentile for Sum
Kilobytes Sent & Received Per Node
for All Topologies.

The number in the upper right corner
is the percentile as share of 1, 0.95.

0 1 2 3 4

Static Mesh Topologies

0

200

400

600

800

1000

1200

1400

To
ta
lT

ra
ffi
c
in

M
eg

ab
yt
es

Projective Pruning Only
Projective & Self-Pruning

Sympathetic Pruning Only
Sympathetic & Self-Pruning

Figure 7.15.: Total Traffic Sent/Received in Static Topologies for 𝑛 = 2000 and 𝑎 = 100 Per Pruning Mechanism

7: The average degree in a graph 𝐺
for a vertex 𝑉 is the average num-
ber of edges between vertices in the
graph. In other words, the average
degree is equal to the average num-
ber of neighbours each node has.

Is It Too Much Traffic?

If the amount of traffic seems high for the information elements in
question, we must take into consideration that the 2000 nodes in
the topologies have a high degree of connectedness. Additionally,
we suggest that the results we have fit with the discussion
in section 5.4, where we hypothesise possible communication
numbers for only a few nodes in a graph.

Based on the five topologies used, it seems that

avg (|N(𝑉𝑖)|) ≈ 15

Thus, the average degree or number of neighbours7 in the graph
is 15.

Note then that if the 14 example neighbours of 𝑉𝑖 were to forward
the same set to other members, say 11 or 12 other neighbours,
then that is another 100, or 200 in terms of transmitted and
received, added for every neighbour they forward it to.

Thus, we believe the numbers to be credible and understandable
when the effect of network density is taken into consideration.

100 7. Results and Discussion

Table 7.4.: The aggregate values for traffic in kilobytes and number of discovered unique nodes in 0th static topology

Discovered Nodes Traffic in Kilobytes
mean std min max mean std min max

Empathic Self

Projective Off 279,9 70,2 108,0 579,0 700,6 279,3 39,6 2548,0
On 280,1 70,1 119,0 574,0 448,6 167,3 43,9 1410,0

Sympathetic Off 219,9 48,9 100,0 460,0 583,0 233,4 30,8 2005,1
On 218,8 49,0 101,0 455,0 351,3 125,6 25,4 1220,2

Table 7.5.: The changes in traffic and number of nodes for self-pruning in 0th topology.

The table highlights the difference in percentage when going from self-pruning disabled to enabled.

Discovered Nodes Traffic in Kilobytes
mean std min max mean std min max

Empathic Self

Projective Off — — — — — — — —
On 0.1% -0.1% 10.2% -0.9% -36.0% -40.1% 10.9% -44.7%

Sympathetic Off — — — — — — — —
On -0.5% 0.1% 1.0% -1.1% -39.7% -46.2% -17.6% -39.1%

8: Use heuristics to reduce redund-
ancies of the flooding by exploiting
the node density and pruning inform-
ation from paths.

The high number of duplicate transmissions of reports over
multiple hops underscore the need for a further optimisation
of any flood-based approach, which exists regardless of further
optimisations to the set of information we need to forward to
neighbours.

As seen in the distribution of only received reports in fig. 7.14,
together with the distribution of uniquely known nodes in fig. 7.9,
the ratio of duplicated or redundant information is still quite high,
but this must be taken viewed within the context of long hops of
information.

Ways to avoid this include utilising reduced broadcast8 , but
this results in probabilistic flooding and adequate heuristics are
required in order to have a high enough probability. This requires
exploring how many devices that need to cooperate for the
effects of empathic clustering and distribution channel allocation
algorithms to have a significant enough positive effect on network
metrics.

7.3. Applicability & Thoughts 101

Table 7.6.: Changes in traffic and number of nodes for types of empathic pruning in 0th topology.

The table highlights the difference in percentage when going from projective pruning to sympathetic pruning.

Discovered Nodes Traffic in Kilobytes
mean std min max mean std min max

Self Empathic

Off Sympathetic — — — — — — — —
Projective 28.0% 43.1% 17.8% 26.2% 27.7% 33.2% 73.0% 15.6%

On Sympathetic — — — — — — — —
Projective 27.3% 43.4% 8.0% 25.9% 20.2% 19.7% 28.5% 27.1%

7.3. Applicability & Thoughts

In this section we briefly discuss the trade-offs between the various
models from our work.

Blind Flooding

Blind flooding easily uses the least amount of memory and is
arguably the least complex model of them all. Perhaps, however,
its triviality and its traffic consumption prevents us from seriously
considering it as an approach on its own. Broadcast storms are not
acceptable in order to disseminate information as it considerably
breaks with the requirement to not disturb the backhaul network
per section 4.2.

With that said, we have not shown or provided results that
highlight how blind flooding functions in an implementation
where projective and sympathetic pruning are employed. Existing
literature on the topic of the trade-off between latency and energy
highlight, such as in Cheng, Niu, Luo et al. [40], indicate that
our results would yield lower latency at the cost of an increase
in the number of duplicate transmissions, and subsequently a
decrease in efficiency. However, we have not tested this, and as
such we cannot say to what extent a blind flooding model using
projective or sympathetic pruning would be suitable or unsuitable
when taking data caps, bandwidth or otherwise disturbance to
the backhaul network into consideration.

Staged Flooding

The results from the earlier comparisons between blind and staged
flooding support that making the trade-off between latency and
communication costs can reduce network traffic consumption
substantially.

102 7. Results and Discussion

While we have discussed how our approaches work with regard
to the requirements in section 4.2, we have also confirmed that
nodes can gather in clusters from scratch.

Furthermore, we have shown that in staged flooding we can still
perform clustering within the given time intervals as shown in
fig. 7.6, despite increasing latency.

The results as presented indicate that we can perform clustering
in rather large networks without creating broadcast storms.
Subgraphs within networks will overlap and neighbour reports
will be transported beyond cluster boundaries, but not to a
significant or otherwise disruptive degree based on our dynamic
and static topology simulations.

The performance of staged flooding has not been closely evaluated,
but its primary requirement is sufficient memory or storage space
to retain the information we need in order to queue neighbour
reports and schedule them for later forwarding.

Projective Pruning

A particular flaw in the flood-based experiments is the reliance on
comparisons between blind and staged flooding without any form
of pruning based on minmax clustering information. Since the
introduction of minmax clustering in the EmpathicWiFi project
there does not, in this author’s opinion, seem to have been a
point at which projective pruning was not meant to be utilised —
regardless of its name or exact implementation.

Therefore, comparisons should be made primarily between
projective and sympathetic pruning, when not discussing the
interplay of projective pruning and staged flooding.

The trade-offs to projective pruning include the dissemination of
more information than required, primarily when ratio of edges to
cluster size 𝛼 increases.

The primary benefits to projective pruning include its ease of
implementation, especially when considering sets and information
elements required.

Sympathetic Pruning

The trade-offs to sympathetic pruning include a more
complicated—although not complex—implementation wherein
multiple sets, maps or lists are required to perform the pruning.

7.3. Applicability & Thoughts 103

The primary benefits to sympathetic pruning include its significant
reduction of forwarded information, contributing to reduced
traffic and memory requirements for nodes in terms of their
node knowledge, as well as reducing the issues from utilising
non-optimised flooding.

Self-pruning & Other Optimisations

The role of self-pruning in our results is to cast a shadow over
the duplicate transmissions in our results, such as in fig. 7.14.
There are many other protocols available that further reduce
the forwarding of duplicates, and any real-life implementation of
EmpathicWiFi owes to itself based on the results from self-pruning
alone to further investigate these alternatives.

Self-pruning, as introduced in the section where we find
definition 5.3.5, is of particular interest because it is a simple
mechanism built on a small amount of information. It fits with
our assumption that nodes must first forward their own neighbour
report to their neighbours before forwarding anything else.

Unfortunately self-pruning is, depending on the exact threshold
for per-node traffic costs, perhaps too simple. Other variants of
self-pruning, such as improved self-pruning increases complexity,
but does not increase the amount of information required to
reduce forwarding of nodes [69].

While implementation complexity may increase, we argue that this
is a price worth paying in order to make the use of EmpathicWiFi
less noticeable in a network. Especially if providing updated
releases of EmpathicWiFi is difficult, then more time must be
spent reducing excessive communication.

When all is said and done, it is worthwhile to take a moment to
reflect that 1400MB is not a lot when you divide it by 2000 per
interval. A rough average of 700 kB per node seems acceptable,
but we must take notice to also reduce the deviation between
nodes and minimise the values of those nodes that transfer the
most. Table 7.4 highlights that some nodes transfer more than
2MB per interval in order to perform the clustering without self-
pruning.

However, if you wish to perform the process from scratch, four
times a day for a month, then the amount per month is 1400MB ⋅
30 ⋅ 4 = 168GB for an average of 84MB per node/month. Self-
pruning with projective pruning reduces the total amount per
interval down to 897MB, which is 108GB for an average of 54MB
per node/month. The choice of dissemination mechanisms further

104 7. Results and Discussion

emphasise that there is a trade-off between cluster responsiveness
and sum of data transferred.

Self-pruning improves the network experience for nodes. And
while good, as long as the network is primarily transferring
topology information, the information that nodes need in order
to make better routing decisions, it is possible to optimise the
dissemination beyond our current results.

7.4. Threats to Validity

Herein follows a list of aspects of particular concern to us. These
may reduce the strength of our results and our conclusions.

1. The generated mesh topology uses a uniform random
number generator, and as such does not result in topologies
with a distribution more similar to that of the Poisson
distribution.

2. The simulation does not attempt to simulate multiple
clusterings occurring over a set period of time with fixed
intervals between them. Because of this there are no
evaluations of how only transmitting adjusted observations
can be taken into account and affect later clustering in
different ways.

3. The simulation makes an assumption for a undirected graph
when dealing with nodes that are 𝛼 + 1 hops away. A node
𝑣 is in some cases excluded from the clustering solely on the
basis of its neighbour 𝑢, without getting 𝑣’s neighbour report.
This is amendable in the C++ clustering implementation, but
is not fixed due to time constraints and that the difference
in results would be a marginal increase in sent nodes. The
relative differences and strengths should not change as a
consequence of this.

Memory Requirements

There are different times at which we are interested in the memory
usage, as well as the circumstances at which it occurs. Primarily
we are interested in the peak memory consumption. How much
we consume at a max is important in order to determine the
suitability of any of the models for implementation on embedded
devices, as the max consumption is the one while the device is
performing the clustering and needs to have all required data in
volatile memory rather than necessarily cached on disk.

7.4. Threats to Validity 105

9: We have attempted to prioritise
a combination of readability and
code cleanliness, resulting in code
with room for further optimisations.
These evaluations are solely based on
the author’s own subjective opinion
and assessment of the code within
this work.

With that said, the thesis does not attempt to evaluate a specific
implementation for a particular operating system for embedded
devices in use on APs. The exact memory requirements will
depend on the implementation language, platform and the
balance between performance and memory requirements. More
importantly, the memory requirements will depend on whether
an implementation is designed for memory scarcity or developer
convenience.9 Beyond the space complexity described for each of
the pruning mechanisms we do not further assess suitability in
terms of memory questions.

106 7. Results and Discussion

Conclusions and Future Work 8.
8.1.Future Work 107
8.2.Conclusions 109

This last chapter presents ideas for future work and concludes
this Master’s thesis.

8.1. Future Work

In chapter 3 we established that the amount of literature done
within this particular area of empathic RRM and distributed
sensing thus far is comparatively small when we look at the
amount of literature and work in the other fields, such as
information dissemination in MANETs.

The following are a few, select issues of interest, as we find it
challenging to limit the number of possible avenues that could be
explored in future work.

Multi-strategy dissemination This work only explored a push-
based dissemination approach in detail. How suitable is a
dissemination strategy consisting of both pushing and pulling? At
which point should a strategy change from pushing information
to pulling, and how is it affected by the cluster size 𝛼? Similar
work is done on this for other kinds of dissemination protocols
[34].

Allowing Multi-hop Communication The work presented
in this thesis is based on a process of repeated one-hop
communication, which converges towards having disseminated
the information.

Can the gathered unique nodes, if their information was coupled
with their public keys, be utilised to allow devices to directly
communicate with and push updated interference reports to nodes
whenmemberships change? Could the application of this allow for
small-world communication and reduce the amount of traffic?

While coupling this information with security keys introduces
a challenge of balancing the cost of additional space with the
benefit of jumping multiple hops, it seems like an possible avenue
to further reduce traffic should higher mobility or larger clusters
be a goal.

108 8. Conclusions and Future Work

Delivering software for embedded devices How can systems
tailored to residential users be efficiently and iteratively delivered
to embedded devices?

Modularity with respect to radio software components such
as hostapd on Linux, allowing third-party services to extend
and improve upon existing networking devices that end-users
own, is an issue that touches on both design and technology
interoperability.

Various approaches to development on embedded devices are
assumed to be highly heterogeneous and inconsistent, especially
for consumer-facing devices such as wireless routers or pure
APs. Wireless routers, although well-known and commonplace in
homes, are not established platforms for application development
by third-party developers. How can we distribute and deliver
software updates to a heterogeneous base of embedded devices?

Criteria to calculate interference for Any channel allocation
algorithm requires both short-term and long-term radio sensing
information. The slow-moving physical landscape of wireless
networks and devices need to be factored in when optimising
for channel selection. However, the slowly changing information
must be coupled with the immediate and reactive properties of
dynamic usage patterns. Modern networks and modern usage
patterns require a balance between the low activity times and
peak network usage.

Radio sensing is an issue of its own in academic literature,
with continued research and development being poured into
it [7], [12], [13], [28], [71], [72]. The physical limitations
or requirements of radio devices also come with balancing
challenges requiring careful design of sensing frequency coupled
with optimal performance for end-users on networks. Due
to throughput-intensive applications, this balance can have a
significant effect on the interference that can occur in overlapping
wireless networks. Parts of these considerations are further
examined by Eide [73].

How does a system like EmpathicWiFi calculate interference
values to neighbours, how often should it calculate interference,
and when should clusters react? Can a empathic cluster
dynamically mitigate in a fully distributed manner when network
usage changes?

8.2. Conclusions 109

8.2. Conclusions

The aim of this research was to identify and subsequently evaluate
a simple and effective information dissemination system, with
the purpose of sharing radio sensing data in primarily residential
networks and successfully performing autonomous clustering.

Based on both qualitative and quantitative analyses of dissemina-
tion mechanisms and strategies, we have selected and evaluated
a simple baseline flooding approach, and introduced a staged
flood-delay mechanism combined with two distinct variants of
minmax clustering-based pruning. In evaluating these different
approaches, we have implemented numerous simulation models
and gathered metrics from their execution.

By combining the clustering algorithm with an actively developed
simulation framework, we have laid the foundation for further
optimisation work, development and investigation. As part of our
work, an initial C++ implementation of the minmax clustering was
developed that may also contribute to future development of an
EmpathicWiFi agent system for embedded devices.

The simplicity of the push-based approach invites further
investigation by utilising other general flood-based optimisation
techniques that have been discussed in related literature. The
benefit of utilising and simulating results with self-pruning, a
small optimisation, is that it clearly demonstrates that further
optimisations should be evaluated. This is also supported by the
ratio of unique discovered nodes to transmitted neighbour reports,
which changes from projective pruning with self-pruning disabled
to self-pruning enabled.

Contrary to approaches that solely use blind flooding, our work
shows that it is possible to use a simple flooding mechanism with
queued forwarding, with both the existing and new empathic
pruning mechanisms for cluster sizes of at least 100 nodes.
The difference in traffic transmitted between blind and staged
flooding, supported by the latency and cost trade-off, indicates
that using staged flooding allows for a further increase in cluster
sizes if the metrics of blind flooding simulations were previously
defining the former thresholds.

For all metrics, our proposed dissemination and pruning mech-
anisms perform better than blind and staged flooding without
pruning, with the caveat of a varying trade-off in processing time,
space, and implementation complexity. Efficient, quick and robust
information dissemination is important for a heterogeneous dis-
tributed system, and is also possible to implement while focusing
on simplicity.

110 8. Conclusions and Future Work

Furthermore, we have shown that the sympathetic pruning is
an improvement to the projective alternative, as it successfully
reduces the amount of information disseminated for high-density
topologies with a connectedness of 𝑝 > 15, which far exceeds
our hypothesis. This allows for higher values of cluster sizes 𝛼
and subsequently, enables larger empathic clusters of distributed
channel allocation cooperation with a per-system and per-node
communication cost that can still remain within the upper
bounds of projective pruning. The combination of self-pruning
and sympathetic pruning yielded an almost 50% reduction in
the total number of neighbour reports disseminated across the
static simulation topologies, thereby reducing the total payload
transferred from 1.4GB to 0.7GB.

While we have achieved parts of our goals, unanswered questions
do remain. We have not clearly identified a single approach to
information dissemination, as many other approaches remain
applicable and theoretically suitable, even if at a higher cost
of complexity. Furthermore, the strength of our results can
be improved upon with larger simulations, an increase in
simulation iterations, TTL for staged flooding, and varying types
of topologies.

In conclusion, a simple and sufficiently efficient information
dissemination approach that is based on the combination of
a staged flooding approach and the properties of the minmax
clustering algorithm is feasible, applicable, and recommended for
the purposes of distributed sensing in residential networks, given
our defined requirements.

Index

AP access point . 3

BS base station . 3

TTL time-to-live . 71

QoS Quality-of-Service . 40

DHT distributed hash table . 7

MDU multi-dwelling unit . xi

HDU high density unit . 23

CAA channel allocation algorithm . 19

CCAA clustering and channel allocation algorithm . 36

LCCS least-congested channel search . 4

FAP frequency assignment problem . 4

RRM radio resource management . 11

ISP Internet Service Provider . 5

LAN Local Area Network . 3

WLAN Wireless Local Area Network . 3

WAN Wide Area Network . 3

MANET Mobile Ad-Hoc Network . 18

FTTC Fibre to the Curb . 41

TDMA time-division multiple access . 22

DFS dynamic frequency selection . 14

CSA-IE Channel Switch Announcement . 14

802.11g IEEE 802.11g-2003 (also known as Wi-Fi 3)

802.11n IEEE 802.11n-2009 (also known as Wi-Fi 4)

802.11ac IEEE 802.11ac-2013 (also known as Wi-Fi 5)

802.11s IEEE 802.11s (mesh networking)

Bibliography

[1] T. Barnett, S. Jain, U. Andra and T. Khurana, ‘Visual Networking Index (VNI) Global and Americas/EMEAR
Mobile Data Traffic Forecast, 2017–2022’, Cisco Systems Inc., Mar. 2019.

[2] T. Maseng, EmpathicWiFi, Mar. 2019.

[3] Korean Communications Commission. (18th Jan. 2011). ‘KCC prepares guidelines to minimize Wi-Fi
interference’, [Online]. Available: https ://eng .kcc .go .kr/user .do?mode=view&page=E04010000&d
c=E04010000&boardId=1058&cp=2&searchKey=ALL&searchVal=wi&boardSeq=30836 (visited on
29/06/2020).

[4] M. Achanta, ‘Method and apparatus for least congested channel scan for wireless access points’, U.S. Patent
20060072602A1, 6th Apr. 2006.

[5] A. Mishra, V. Brik, S. Banerjee, A. Srinivasan and W. Arbaugh, ‘Client-driven channel management for wireless
LANs’, ACM SIGMOBILE Mobile Computing and Communications Review, vol. 10, no. 4, pp. 8–10, 1st Oct. 2006,
issn: 1559-1662. doi: 10.1145/1215976.1215981.

[6] R. Dorne and Jin-Kao Hao, ‘An evolutionary approach for frequency assignment in cellular radio networks’, in
Proceedings of 1995 IEEE International Conference on Evolutionary Computation, vol. 2, Nov. 1995, 539–544
vol.2. doi: 10.1109/ICEC.1995.487441.

[7] A. Raschellà, M. Mackay, F. Bouhafs and B. I. Teigen, ‘Evaluation of Channel Assignment Algorithms in a Dense
Real World WLAN’, in 2019 4th International Conference on Computing, Communications and Security (ICCCS),
Oct. 2019, pp. 1–5. doi: 10.1109/CCCS.2019.8888082.

[8] S. Zehl, A. Zubow and A. Wolisz, ‘Practical distributed channel assignment in home Wi-Fi networks’, in 2017
IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE,
2017, pp. 1–4.

[9] S. Zehl, A. Zubow, M. Döring and A. Wolisz, ‘ResFi: A secure framework for self organized Radio Resource
Management in residential WiFi networks’, in 2016 IEEE 17th International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), IEEE, Jun. 2016, pp. 1–11. doi: 10.1109/WoWMoM.2016.7523
511.

[10] M. Rønning, ‘TBA: Distributed and Self-Reliant Channel Convergence’, PhD diss. University of Oslo, Institutt
for teknologisystemer, 2020.

[11] V. Rakovic, D. Denkovski, V. Atanasovski and L. Gavrilovska, ‘Radio resource management based on radio
environmental maps: Case of Smart-WiFi’, in 2016 23rd International Conference on Telecommunications (ICT),
May 2016, pp. 1–5. doi: 10.1109/ICT.2016.7500414.

[12] T. Vanhatupa, M. Hannikainen and T. D. Hamalainen, ‘Frequency management tool for multi-cell WLAN
performance optimization’, in 2005 14th IEEE Workshop on Local Metropolitan Area Networks, Sep. 2005, 6
pp.–6. doi: 10.1109/LANMAN.2005.1541512.

[13] S. Bi, J. Lyu, Z. Ding and R. Zhang, ‘Engineering Radio Maps for Wireless Resource Management’, IEEE Wireless
Communications, vol. 26, no. 2, pp. 133–141, Apr. 2019, issn: 1536-1284. doi: 10.1109/MWC.2019.1800146.

[14] S. Haykin, ‘Cognitive radio: Brain-empowered wireless communications’, IEEE Journal on Selected Areas in
Communications, vol. 23, no. 2, pp. 201–220, Feb. 2005, issn: 0733-8716. doi: 10.1109/JSAC.2004.839380.

[15] A. Mishra, S. Banerjee and W. Arbaugh, ‘Weighted coloring based channel assignment for WLANs’, ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 3, pp. 19–31, 1st Jul. 2005, issn:
1559-1662. doi: 10.1145/1094549.1094554.

[16] A. Baid and D. Raychaudhuri, ‘Understanding channel selection dynamics in dense Wi-Fi networks’, IEEE
Communications Magazine, vol. 53, no. 1, pp. 110–117, Jan. 2015, issn: 1558-1896. doi: 10.1109/MCOM.201
5.7010523.

[17] Y. Matsunaga and R. Katz, ‘Inter-domain radio resource management for wireless LANs’, in 2004 IEEE Wireless
Communications and Networking Conference (IEEE Cat. No.04TH8733), vol. 4, Mar. 2004, 2183–2188 Vol.4.
doi: 10.1109/WCNC.2004.1311426.

https://eng.kcc.go.kr/user.do?mode=view&page=E04010000&dc=E04010000&boardId=1058&cp=2&searchKey=ALL&searchVal=wi&boardSeq=30836
https://eng.kcc.go.kr/user.do?mode=view&page=E04010000&dc=E04010000&boardId=1058&cp=2&searchKey=ALL&searchVal=wi&boardSeq=30836
https://doi.org/10.1145/1215976.1215981
https://doi.org/10.1109/ICEC.1995.487441
https://doi.org/10.1109/CCCS.2019.8888082
https://doi.org/10.1109/WoWMoM.2016.7523511
https://doi.org/10.1109/WoWMoM.2016.7523511
https://doi.org/10.1109/ICT.2016.7500414
https://doi.org/10.1109/LANMAN.2005.1541512
https://doi.org/10.1109/MWC.2019.1800146
https://doi.org/10.1109/JSAC.2004.839380
https://doi.org/10.1145/1094549.1094554
https://doi.org/10.1109/MCOM.2015.7010523
https://doi.org/10.1109/MCOM.2015.7010523
https://doi.org/10.1109/WCNC.2004.1311426

[18] Z. NUSS, A. B. Ami and M. Grayson, ‘Self optimizing residential and community WiFi networks’, U.S. Patent
10231140B2, 12th Mar. 2019.

[19] H.-J. Chen, C.-P. Chuang, Y.-S. Wang, S.-W. Ting, H.-Y. Tu and C.-C. Teng, ‘Design and implementation of a
Cluster-based Channel Assignment in high density 802.11 WLANs’, in 2016 18th Asia-Pacific Network Operations
and Management Symposium (APNOMS), Oct. 2016, pp. 1–5. doi: 10.1109/APNOMS.2016.7737200.

[20] H. Balbi, N. Fernandes, F. Souza, R. Carrano, C. Albuquerque, D. Muchaluat-Saade and L. Magalhaes,
‘Centralized channel allocation algorithm for IEEE 802.11 networks’, in 2012 Global Information Infrastructure
and Networking Symposium (GIIS), Dec. 2012, pp. 1–7. doi: 10.1109/GIIS.2012.6466657.

[21] S. Chieochan, E. Hossain and J. Diamond, ‘Channel assignment schemes for infrastructure-based 802.11 WLANs:
A survey’, IEEE Communications Surveys Tutorials, vol. 12, no. 1, pp. 124–136, 2010, issn: 1553-877X. doi:
10.1109/SURV.2010.020110.00047.

[22] J. K. Chen, G. de Veciana and T. S. Rappaport, ‘Improved Measurement-Based Frequency Allocation Algorithms
for Wireless Networks’, in IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, Nov. 2007,
pp. 4790–4795. doi: 10.1109/GLOCOM.2007.909.

[23] B. A. H. S. Abeysekera, K. Ishihara, Y. Inoue and M. Mizoguchi, ‘Network-Controlled Channel Allocation Scheme
for IEEE 802.11 Wireless LANs: Experimental and Simulation Study’, in 2014 IEEE 79th Vehicular Technology
Conference (VTC Spring), May 2014, pp. 1–5. doi: 10.1109/VTCSpring.2014.7023003.

[24] T. H. Lim, W. S. Jeon and D. G. Jeong, ‘Centralized channel allocation scheme in densely deployed 802.11
wireless LANs’, in 2016 18th International Conference on Advanced Communication Technology (ICACT), Jan.
2016, pp. 249–253. doi: 10.1109/ICACT.2016.7423348.

[25] Liverpool JohN moores University. (4th Sep. 2017). ‘What to do With the Wi-Fi Wild West | Wi-5 Project |
H2020 | CORDIS | European Commission’, [Online]. Available: https://cordis.europa.eu/project/id/644262
(visited on 22/05/2020).

[26] L. J. M. University. (9th Mar. 2020). ‘SMART Wi-Fi : Management of the Wi-Fi Spectrum and Performance |
Smart-WiFi Project | H2020 | CORDIS | European Commission’, [Online]. Available: https://cordis.europa.eu
/project/id/947559 (visited on 22/05/2020).

[27] Y. Liang, Y. Zeng, E. Peh and A. T. Hoang, ‘Sensing-Throughput Tradeoff for Cognitive Radio Networks’, in 2007
IEEE International Conference on Communications, Jun. 2007, pp. 5330–5335. doi: 10.1109/ICC.2007.882.

[28] T. Yucek and H. Arslan, ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE
Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116–130, 2009, issn: 1553-877X. doi: 10.1109
/SURV.2009.090109.

[29] J. Mitola and G. Maguire, ‘Cognitive radio: Making software radios more personal’, IEEE Personal
Communications, vol. 6, no. 4, pp. 13–18, Aug. 1999, issn: 10709916. doi: 10.1109/98.788210.

[30] Y. Ma, G. Zhou and S. Wang, ‘WiFi Sensing with Channel State Information: A Survey’, ACM Comput. Surv.,
vol. 1, no. 1, p. 35, Jan. 2019.

[31] S. Miyamoto and S. Sampei, ‘Group-based centralized radio resource management strategies in wireless local
area networks’, in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Aug. 2014,
pp. 1–4. doi: 10.1109/URSIGASS.2014.6929305.

[32] ‘IEEE Standard for Information technology–Telecommunications and information exchange between systems
Local and metropolitan area networks–Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications’, IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012),
Dec. 2016. doi: 10.1109/IEEESTD.2016.7786995.

[33] S. Acharya, M. Franklin and S. Zdonik, ‘Balancing push and pull for data broadcast’, in Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’97, Tucson, Arizona,
USA: Association for Computing Machinery, 1st Jun. 1997, pp. 183–194, isbn: 978-0-89791-911-1. doi:
10.1145/253260.253293.

[34] J. Leitão, J. Pereira and L. Rodrigues, ‘Gossip-Based Broadcast’, in Handbook of Peer-to-Peer Networking, X. Shen,
H. Yu, J. Buford and M. Akon, Eds., Boston, MA: Springer US, 2010, pp. 831–860, isbn: 978-0-387-09751-0.
doi: 10.1007/978-0-387-09751-0_29.

[35] M. Skjegstad, F. T. Johnsen, T. H. Bloebaum and T. Maseng, ‘Mist: A Reliable and Delay-Tolerant
Publish/Subscribe Solution for Dynamic Networks’, in 2012 5th International Conference on New Technologies,
Mobility and Security (NTMS), May 2012, pp. 1–8. doi: 10.1109/NTMS.2012.6208757.

https://doi.org/10.1109/APNOMS.2016.7737200
https://doi.org/10.1109/GIIS.2012.6466657
https://doi.org/10.1109/SURV.2010.020110.00047
https://doi.org/10.1109/GLOCOM.2007.909
https://doi.org/10.1109/VTCSpring.2014.7023003
https://doi.org/10.1109/ICACT.2016.7423348
https://cordis.europa.eu/project/id/644262
https://cordis.europa.eu/project/id/947559
https://cordis.europa.eu/project/id/947559
https://doi.org/10.1109/ICC.2007.882
https://doi.org/10.1109/SURV.2009.090109
https://doi.org/10.1109/SURV.2009.090109
https://doi.org/10.1109/98.788210
https://doi.org/10.1109/URSIGASS.2014.6929305
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1145/253260.253293
https://doi.org/10.1007/978-0-387-09751-0_29
https://doi.org/10.1109/NTMS.2012.6208757

[36] J. Lipman, P. Boustead and J. Chicharo, ‘Localised Minimum Spanning Tree Flooding in Ad-Hoc Networks’,
in Advanced Wired and Wireless Networks, ser. Multimedia Systems and Applications Series, T. A. Wysocki,
A. Dadej and B. J. Wysocki, Eds., Boston, MA: Springer US, 2005, pp. 19–37, isbn: 978-0-387-22792-4. doi:
10.1007/0-387-22792-X_2.

[37] A. Saidi and M. Mohtashemi, ‘Minimum-cost First-Push-Then-Pull gossip algorithm’, in 2012 IEEE Wireless
Communications and Networking Conference (WCNC), Apr. 2012, pp. 2554–2559. doi: 10.1109/WCNC.2012.6
214229.

[38] R. Gupta, A. C. Maali and Y. N. Singh, ‘Adaptive Push-Then-Pull Gossip Algorithm for Scale-free Networks’,
22nd Oct. 2013. arXiv: 1310.5985 [cs].

[39] A. L. Liestman and D. Richards, ‘An introduction to perpetual gossiping’, in Algorithms and Computation, K. W.
Ng, P. Raghavan, N. V. Balasubramanian and F. Y. L. Chin, Eds., ser. Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer, 1993, pp. 259–266, isbn: 978-3-540-48233-8. doi: 10.1007/3-540-57568-5_256.

[40] L. Cheng, J. Niu, C. Luo, L. Shu, L. Kong, Z. Zhao and Y. Gu, ‘Towards minimum-delay and energy-efficient
flooding in low-duty-cycle wireless sensor networks’, Computer Networks, vol. 134, pp. 66–77, 7th Apr. 2018,
issn: 1389-1286. doi: 10.1016/j.comnet.2018.01.012.

[41] J. A. Cordero, P. Jacquet and E. Baccelli, ‘Impact of jitter-based techniques on flooding over wireless ad
hoc networks: Model and analysis’, in 2012 Proceedings IEEE INFOCOM, Mar. 2012, pp. 2059–2067. doi:
10.1109/INFCOM.2012.6195587.

[42] K. Birman, ‘The promise, and limitations, of gossip protocols’, ACM SIGOPS Operating Systems Review, vol. 41,
no. 5, pp. 8–13, 1st Oct. 2007, issn: 0163-5980. doi: 10.1145/1317379.1317382.

[43] H. J. F. Nygårdshaug, ‘Developing a Distributed Clustering Algorithm to Enable Self-managing Groups for
802.11 Access Points’, Masteroppgave, University of Oslo, Oslo, 2018.

[44] M. B. Grønseth, ‘Graph Coloring and Some Applications’, Norwegian University of Science and Technology,
Department of Mathematical Sciences, Jun. 2017, 65 pp.

[45] K. Illavalagan, ‘TBA: Distributed DSATUR for CAPS’, University of Oslo, 2020.

[46] P. Pawelczak, C. Guo, R. V. Prasad and R. Hekmat, ‘Cluster-based spectrum sensing architecture for opportunistic
spectrum access networks’, IRCTR-S-004-07 Report, 2007.

[47] N. Ahmed, D. Hadaller and S. Keshav, ‘GUESS: Gossiping updates for efficient spectrum sensing’, in Proceedings
of the 1st International Workshop on Decentralized Resource Sharing in Mobile Computing and Networking -
MobiShare ’06, Los Angeles, California: ACM Press, 2006, p. 12, isbn: 978-1-59593-558-8. doi: 10.1145/1161
252.1161256.

[48] D. Ongaro and J. Ousterhout, ‘In Search of an Understandable Consensus Algorithm’, presented at the USENIX
Annual Technical Conference, 2014, pp. 305–319, isbn: 978-1-931971-10-2.

[49] I. Minakov, R. Passerone, A. Rizzardi and S. Sicari, ‘A Comparative Study of Recent Wireless Sensor Network
Simulators’, ACM Trans. Sen. Netw., vol. 12, no. 3, 20:1–20:39, Jul. 2016, issn: 1550-4859. doi: 10.1145/290
3144.

[50] S. Surati, D. C. Jinwala and S. Garg, ‘A survey of simulators for P2P overlay networks with a case study of the
P2P tree overlay using an event-driven simulator’, Engineering Science and Technology, an International Journal,
vol. 20, no. 2, pp. 705–720, 1st Apr. 2017, issn: 2215-0986. doi: 10.1016/j.jestch.2016.12.010.

[51] R. Ruslan, A. Shaqirra Mohd Zailani, N. Hidayah Mohd Zukri, N. Khairani Kamarudin, S. J. Elias and R. B.
Ahmad, ‘Routing performance of structured overlay in Distributed Hash Tables (DHT) for P2P’, Bulletin of
Electrical Engineering and Informatics, vol. 8, no. 2, pp. 389–395, 1st Mar. 2019, issn: 2302-9285, 2089-3191.
doi: 10.11591/eei.v8i2.1449.

[52] K. A. Ngo, T. T. Huynh and D. T. Huynh, ‘Simulation Wireless Sensor Networks in Castalia’, in Proceedings of
the 2018 International Conference on Intelligent Information Technology, (Ha Noi, Viet Nam), ser. ICIIT 2018,
New York, NY, USA: ACM, 2018, pp. 39–44, isbn: 978-1-4503-6378-5. doi: 10.1145/3193063.3193066.

[53] F. Paganelli and D. Parlanti. (2012). ‘A DHT-Based Discovery Service for the Internet of Things’, [Online].
Available: https://www.hindawi.com/journals/jcnc/2012/107041/ (visited on 22/06/2019).

[54] H. Zhang, Y. Wen, H. Xie and N. Yu, Distributed Hash Table: Theory, Platforms and Applications, ser. SpringerBriefs
in Computer Science. New York: Springer-Verlag, 2013, isbn: 978-1-4614-9007-4.

https://doi.org/10.1007/0-387-22792-X_2
https://doi.org/10.1109/WCNC.2012.6214229
https://doi.org/10.1109/WCNC.2012.6214229
https://arxiv.org/abs/1310.5985
https://doi.org/10.1007/3-540-57568-5_256
https://doi.org/10.1016/j.comnet.2018.01.012
https://doi.org/10.1109/INFCOM.2012.6195587
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1161252.1161256
https://doi.org/10.1145/1161252.1161256
https://doi.org/10.1145/2903144
https://doi.org/10.1145/2903144
https://doi.org/10.1016/j.jestch.2016.12.010
https://doi.org/10.11591/eei.v8i2.1449
https://doi.org/10.1145/3193063.3193066
https://www.hindawi.com/journals/jcnc/2012/107041/

[55] L. Monnerat and C. L. Amorim, ‘An effective single-hop distributed hash table with high lookup performance
and low traffic overhead’, Concurrency and Computation: Practice and Experience, vol. 27, no. 7, pp. 1767–1788,
2015, issn: 1532-0634. doi: 10.1002/cpe.3342.

[56] M. F. Kaashoek and D. R. Karger, ‘Koorde: A Simple Degree-Optimal Distributed Hash Table’, in Peer-to-Peer
Systems II, M. F. Kaashoek and I. Stoica, Eds., red. by G. Goos, J. Hartmanis and J. van Leeuwen, vol. 2735,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 98–107, isbn: 978-3-540-45172-3. doi: 10.1007/97
8-3-540-45172-3_9.

[57] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H. Balakrishnan, ‘Chord:
A Scalable Peer-to-peer Lookup Protocol for Internet Applications’, IEEE/ACM Trans. Netw., vol. 11, no. 1,
pp. 17–32, Feb. 2003, issn: 1063-6692. doi: 10.1109/TNET.2002.808407.

[58] Storj Labs, Inc., Storj: A Decentralized Cloud Storage Framework, 31st Oct. 2018.

[59] P. Maymounkov and D. Mazières, ‘Kademlia: A Peer-to-Peer Information System Based on the XOR Metric’, in
Peer-to-Peer Systems, P. Druschel, F. Kaashoek and A. Rowstron, Eds., red. by G. Goos, J. Hartmanis and J. van
Leeuwen, vol. 2429, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 53–65, isbn: 978-3-540-45748-0.
doi: 10.1007/3-540-45748-8_5.

[60] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang and I. Raicu, ‘ZHT: A Light-Weight
Reliable Persistent Dynamic Scalable Zero-Hop Distributed Hash Table’, in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, Cambridge, MA, USA: IEEE, May 2013, pp. 775–787, isbn:
978-1-4673-6066-1. doi: 10.1109/IPDPS.2013.110.

[61] J. Gozdecki, A. Jajszczyk and R. Stankiewicz, ‘Quality of service terminology in IP networks’, IEEE
Communications Magazine, vol. 41, no. 3, pp. 153–159, Mar. 2003, issn: 0163-6804. doi: 10.1109/MCOM.20
03.1186560.

[62] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush, A. Feldmann, C. Kreibich, N. Weaver and
V. Paxson, ‘A Multi-perspective Analysis of Carrier-Grade NAT Deployment’, Proceedings of the 2016 ACM on
Internet Measurement Conference - IMC ’16, pp. 215–229, 2016. doi: 10.1145/2987443.2987474. arXiv:
1605.05606.

[63] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson and A. Trehan, ‘On the Complexity of Universal Leader
Election’, Journal of the ACM, vol. 62, no. 1, 7:1–7:27, 2nd Mar. 2015, issn: 0004-5411. doi: 10.1145/2699440.

[64] M. Brooker, Leader election in distributed systems, 2019.

[65] P. Chevalier, B. Kaminski, F. Hutchison, Q. Ma, S. Sharma, A. Fackler and W. J. Buchanan, ‘Protocol for
Asynchronous, Reliable, Secure and Efficient Consensus (PARSEC) Version 2.0’, 26th Jul. 2019. arXiv: 1907.11
445 [cs].

[66] S. Zehl, ResFi Python Implementation, in collab. with A. Zubow, M. Döring and A. Wolisz, version dce45e89,
Nov. 2016.

[67] H. Lim and C. Kim, ‘Flooding in wireless ad hoc networks’, Computer Communications, vol. 24, no. 3, pp. 353–
363, 15th Feb. 2001, issn: 0140-3664. doi: 10.1016/S0140-3664(00)00233-4.

[68] H. Lim and C. Kim, ‘Multicast tree construction and flooding in wireless ad hoc networks’, in Proceedings
of the 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ser. MSWIM ’00, Boston, Massachusetts, USA: Association for Computing Machinery, 11th Aug. 2000, pp. 61–68,
isbn: 978-1-58113-304-2. doi: 10.1145/346855.346865.

[69] R. Rab, S. A. D. Sagar, N. Sakib, A. Haque, M. Islam and A. Rahman, ‘Improved Self-Pruning for Broadcasting
in Ad Hoc Wireless Networks’, Wireless Sensor Network, vol. 9, no. 2, pp. 73–86, 2 21st Feb. 2017. doi:
10.4236/wsn.2017.92004.

[70] OpenSim Ltd. (Jan. 2020). ‘OMNeT++ Simulation Manual’, [Online]. Available: https://doc.omnetpp.org/om
netpp/manual/ (visited on 05/06/2020).

[71] O. Sallent, J. Perez-Romero, R. Ferrus and R. Agusti, ‘On Radio Access Network Slicing from a Radio Resource
Management Perspective’, IEEE Wireless Communications, vol. 24, no. 5, pp. 166–174, Oct. 2017, issn: 1536-
1284. doi: 10.1109/MWC.2017.1600220WC.

[72] Y. Gu, W. Saad, M. Bennis, M. Debbah and Z. Han, ‘Matching theory for future wireless networks: Fundamentals
and applications’, IEEE Communications Magazine, vol. 53, no. 5, pp. 52–59, May 2015, issn: 0163-6804. doi:
10.1109/MCOM.2015.7105641.

[73] N. H. Eide, ‘TBA: Radio Sensing for Autonomous Dynamic Distributed Radio Resource Management’, University
of Oslo, 2020.

https://doi.org/10.1002/cpe.3342
https://doi.org/10.1007/978-3-540-45172-3_9
https://doi.org/10.1007/978-3-540-45172-3_9
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1109/IPDPS.2013.110
https://doi.org/10.1109/MCOM.2003.1186560
https://doi.org/10.1109/MCOM.2003.1186560
https://doi.org/10.1145/2987443.2987474
https://arxiv.org/abs/1605.05606
https://doi.org/10.1145/2699440
https://arxiv.org/abs/1907.11445
https://arxiv.org/abs/1907.11445
https://doi.org/10.1016/S0140-3664(00)00233-4
https://doi.org/10.1145/346855.346865
https://doi.org/10.4236/wsn.2017.92004
https://doc.omnetpp.org/omnetpp/manual/
https://doc.omnetpp.org/omnetpp/manual/
https://doi.org/10.1109/MWC.2017.1600220WC
https://doi.org/10.1109/MCOM.2015.7105641

	Abstract
	Preface
	Contents
	I Introduction & Background
	1 Introduction
	1.1 Background Motivation
	The EmpathicWiFi Project
	Enabling Efficient Clustering and Optimisations

	1.2 Problem Statement
	Initial Questions
	Research Questions

	1.3 Outline

	2 Background Theory
	2.1 The Basics of Radio Resource Management
	Centralised Radio Resource Management
	Distributed Radio Resource Management
	Cooperative and Empathic Radio Resource Management

	2.2 Network Information Dissemination
	Dissemination Strategies
	Dissemination Mechanisms

	3 Related Work
	3.1 Distributed and Cooperative Sensing
	Gossiping Updates for Efficient Spectrum Sensing

	3.2 Former EmpathicWifi Work
	ResFi-based Archictecture
	Alternative Clustering Algorithm Requirements

	3.3 Empathic Minmax Clustering
	Graph and Input Preparations
	Performing the Clustering

	II Methodology
	4 Strategy
	4.1 Controlled Simulations
	Technological details and metrics
	Limitations

	4.2 Requirements for EmpathicWiFi
	State or Lack Thereof
	Integrity
	Dynamic Membership and Scope
	Performance
	Disturbance & Efficiency
	Connectivity

	4.3 Push-based Approach
	Controlled Flooding
	Other Approaches Considered
	Implementing Blind Flooding
	Implementing Staged & Empathic Flooding
	Suitability with ResFi

	5 Suggested Mechanisms
	5.1 Terminology & Elements
	Neighbour Observations & Reports
	Transfer Layer Overhead
	Space and Complexity Consequences

	5.2 Useful vs. Useless Information
	Only Information Useful to Us
	Only Transmitting Information Useful to Them
	The ''Usefuls``

	5.3 Pruning & Reducing Outbound Traffic
	Projective Pruning
	Sympathetic Pruning
	Self-pruning

	5.4 Scale of Communication
	Amount of Bytes Transferred
	Number of Reports

	6 Simulation Models and Development
	6.1 Overview of Models
	6.2 Common Implementation
	Variables and Signals
	Network Topologies
	Weights & Message Format
	Clustering Implementation
	Cut-Off Point or Termination Criteria
	Initial start-up

	6.3 Blind Flooding Model
	Simulation Features
	Pruning Messages by Time-to-Live
	Pruning forwarding upon certain clustering
	Resource Consumption

	6.4 Staged Flooding Model
	Simulation Features
	Pruning Reports Received Before
	Pruning Nodes Shared With Senders
	Resource Consumption

	6.5 Projective & Sympathetic Flooding
	Simulation Features
	Projective & Sympathetic Pruning

	III Results & Conclusion
	7 Results and Discussion
	7.1 Blind & Staged Flooding
	Number of Reports Received
	Impact by Change of Alpha
	Impact by change of density

	7.2 Traffic & Pruning
	Traffic In n=2000 & a=100
	Fewer Discovered Nodes is More
	Distribution of Nodes
	Distribution of Traffic
	Reducing Duplicate Transmissions
	Is It Too Much Traffic?

	7.3 Applicability & Thoughts
	Blind Flooding
	Staged Flooding
	Projective Pruning
	Sympathetic Pruning
	Self-pruning & Other Optimisations

	7.4 Threats to Validity
	Memory Requirements

	8 Conclusions and Future Work
	8.1 Future Work
	8.2 Conclusions

	Index
	Bibliography

