
Managing dependencies in agile DevOps

A case study of coordination

Emilie Mæhlum

Thesis submitted for the degree of

Master in Informatics: Programming and System Architecture

60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Managing dependencies in agile
DevOps

A case study of coordination

Emilie Mæhlum

c© 2020 Emilie Mæhlum

Managing dependencies in agile DevOps

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Background: Coordination is a crucial aspect of agile software development.
Managing dependencies is important for efficient coordination. Understanding what
activities and artifacts manages different dependencies can help companies
coordinate better and choose the mechanisms best suited for their coordination
needs.
Aim: This thesis aims to investigate how an agile DevOps is managing
dependencies to achieve effective coordination. This is examined by identifying
dependencies and coordination mechanisms for managing these dependencies.
Additionally, the aim is also to investigate which barriers for managing
dependencies can be found in an agile DevOps context.
Method: A qualitative case study was conducted. Data were collected by
conducting 9 interviews, observing 32 workdays, and observing 49 meetings.
Additionally, various documents and chat logs were collected.
Results: The results revealed 38 coordination mechanisms and 95 pairs of
dependencies present in the development team. These coordination mechanisms
manage knowledge dependencies, process dependencies, and resource dependencies.
Also, working remotely, role clarity, planning, and estimation, and implementing
changes in the software development process was identified as barriers to managing
dependencies.
Conclusion: It is possible to use a dependency taxonomy to identify coordination
mechanisms and dependencies in an agile DevOps company. The most crucial
coordination mechanisms found in the company included the Zendesk planning
meeting, the daily stand-up, ad hoc conversations, the sprint planning meeting, and
communication tools because they managed four or more dependencies.

i

ii

Acknowledgements

Writing this master thesis has been a challenging, yet rewarding experience. Com-
pleting this thesis would not have been possible if it wasn’t for a number of people.
Firstly, I am incredibly thankful to my supervisor Viktoria Stray for her invaluable
guidance, extensive knowledge and tremendous support and enthusiasm. Further-
more, I am extremely grateful to all the participants of this study, for welcoming me
into their company and including me in their activities and workplace as one of their
own. Without the openness, this study would not have been possible. I would like to
thank all my fellow students and the employees of the research group Programming
and Software Engineering for valuable discussions, distractions and help.

I would like to thank family and friends for unparalleled support and encour-
agement throughout the process. A special thanks to my great friend Kristine for
making every day at the university fun. I would also like to thank my boyfriend
Ivar for all the patience, love and support. Lastly, I am especially and immensely
thankful to my grandmother for the endless encouragement she has given me.

Emilie Mæhlum
July, 2020

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 2
1.2 Research Area and Questions . 2
1.3 Approach . 3
1.4 Chapter Overview . 3

2 Background 4

2.1 Software Development Methodologies 4
2.1.1 Agile Software Development 4
2.1.2 Lean Software Development 5
2.1.3 Scrum . 5
2.1.4 Kanban . 9

2.2 Coordination . 9
2.2.1 Theories on coordination mechanisms 10
2.2.2 Coordination strategy . 10
2.2.3 Dependency taxonomy . 12

2.3 Teams . 14
2.3.1 Team or Working Group . 14
2.3.2 Autonomous teams . 14

2.4 Technical Debt . 16
2.5 Startups . 16

v

2.6 DevOps . 17
2.6.1 BizDevOps . 18

3 Research Method 20

3.1 Qualitative Research . 20
3.1.1 Case study . 21

3.2 Data Collection . 22
3.2.1 Observation . 24
3.2.2 Interviews . 25

3.3 Data Analysis . 27
3.4 Validity and reliability . 29

3.4.1 Validity . 29
3.4.2 Reliability . 30

4 Research Context 31

4.1 Organization . 31
4.2 Team . 32

4.2.1 Team members . 33
4.2.2 Seating . 34
4.2.3 Tools . 36
4.2.4 Processes . 38

5 Results 40

5.1 Using the taxonomy to identify coordination
mechanisms and dependencies . 42

5.2 Dependencies and Coordination Mechanisms 44
5.3 Knowledge dependency . 49

5.3.1 Expertise . 50
5.3.2 Requirement . 51
5.3.3 Task Allocation . 52
5.3.4 Historical . 54

vi

5.4 Process dependency . 55
5.4.1 Activity . 55
5.4.2 Business process . 56

5.5 Resource dependency . 58
5.5.1 Entity . 58
5.5.2 Technical . 59

5.6 Barriers for managing dependencies 60
5.6.1 Role clarity . 60
5.6.2 Working remotely . 61
5.6.3 Integrating the data analyst 62
5.6.4 Planning and estimation . 62
5.6.5 Implementing changes in the software development process . . 64

6 Discussion 66

6.1 Dependencies and their associated practices 66
6.1.1 Knowledge dependency . 67
6.1.2 Process dependency . 72
6.1.3 Resource dependency . 74
6.1.4 My findings compared to other studies 75

6.2 Barriers for managing dependencies 77
6.3 Implications for theory . 81
6.4 Implications for practice . 81
6.5 Limitations . 83

7 Conclusion and further work 85

7.1 Future work . 86

References 87

Appendices 92

vii

List of Figures

2.1 The different phases of DevOps (Harlann, 2017) 18
2.2 The different phases of BizDevOps (Fitzgerald & Stol, 2017) 19

3.1 An example of how data was coded 28

4.1 The company room . 36

5.1 An overview of the frequency of dependencies 42
5.2 An overview over the coordination mechanisms present in a Sprint . . 56

viii

List of Tables

2.1 Definitions of coordination strategy components (Strode, Huff, Hope,
& Link, 2012) . 11

2.2 A description of the eight dependency types (Strode, 2016) 13
2.3 Difference between working groups and teams 15

3.1 An overview of my approach to data collection principles 22
3.2 Timeline of data collection . 23
3.3 An overview of data collection from September 2018 to March 2020 . 24
3.4 An overview of work days observed 25
3.5 An overview of meetings observed . 26
3.6 An overview of second round of interviews 27

4.1 A working group vs. a team . 33
4.2 The different roles in the team and their area of responsibilities . . . 35

5.1 A description of the eight dependency types (Strode, 2016) 41
5.2 Identified coordination mechanisms in the development team 43
5.3 Agile practices found to address three or more dependencies 44
5.4 Dependencies and coordination mechanisms identified in the develop-

ment team . 46
5.5 The selected coordination mechanisms that will be described 47
5.6 Frequency of the regular events . 48

ix

5.7 Coordination mechanisms managing the knowledge dependency . . . 49
5.8 Coordination mechanisms managing the process dependency 55
5.9 Coordination mechanisms managing the resource dependency 58

6.1 Comparison of coordination mechanisms which addresses three or more
dependencies . 75

6.2 The functions of a Scrummaster in my study, Bass, 2014 and Dingsøyr,
Moe, and Seim, 2018 . 79

x

1 | Introduction

Coordination is a crucial, yet challenging area of agile software development. Malone
and Crowston, 1994 defines coordination as "the managing of dependencies between
activities". Managing dependencies within companies is important for efficient coor-
dination. Dependencies can be managed well, poorly or not at all, but when managed
well, it suggests that the right coordination mechanisms are present (Strode, 2016).

Agile development methods and DevOps require adaptation during implementa-
tion to meet the needs of a constantly changing software development environment
(Hemon, Fitzgerald, Lyonnet, & Rowe, 2020), which makes the management depen-
dencies a continuous effort. Understanding how to manage dependencies in agile
projects may help product leaders, managers, and developers to create better agile
behaviors and more successful projects by choosing appropriate coordination prac-
tices from the large number of agile practices that exist (Stray, Moe, & Aasheim,
2019). However, few studies have focused on managing dependencies in an agile
DevOps context.

This thesis seeks to bridge the gap in research by studying dependency manage-
ment and coordination mechanisms in an agile DevOps company, as well as examining
barriers for efficient coordination.

1

1.1 Motivation

The main motivation for this thesis came from the fact that I was interested and
fascinated by the company I have chosen to study. I thought their product was im-
pressive and refreshing, but I was also interested in their use of technology and how
they work. I was curious about how they coordinate, especially because the company
was located in multiple locations.

1.2 Research Area and Questions

The research area of this thesis is coordination in an agile DevOps company. Malone
and Crowston, 1994 define coordination as “the managing of dependencies between
activities.” The process of coordination will be studied by examining the coordina-
tion mechanisms within the company.

There are a variety of coordination mechanisms, such as meetings, roles, and
tools. Many of the coordination mechanisms are related to the software development
methodology, such as daily stand-up, sprint planning meetings, and backlog groom-
ing, this leading to parts of the agile software development practices being examined.

The research questions are:
RQ1: How are dependencies managed in an agile DevOps company?
RQ2: What are barriers for managing dependencies in an agile DevOps company?

2

1.3 Approach

A case study was conducted to answer the research questions through the use of
relevant theories. The data used in this study consists mainly of observation and
interviews, and the data were analyzed in a qualitative data analysis tool called
NVivo. This analysis tool helped structure the data collected into manageable data
sets, which was analyzed analyzed and used to answer the research questions.

1.4 Chapter Overview

Chapter 2: Background gives a brief introduction to agile software development
methodologies, coordination, teams, technical debt and startups.

Chapter 3: Research Method outlines the research method, research design, data
collection and validity of the study.

Chapter 4: Research Context presents an overview over the setting where the
data collection took place.

Chapter 5: Results presents the results found in relation to the theory presented
in Chapter 2.2.

Chapter 6: Discussion contains discussion of the results in relation to the research
questions and findings from other research.

Chapter 7: Conclusion and future work presents the conclusion to the research
questions and propose what future work could focus on.

3

2 | Background

This chapter will present the background and theory relevant to this thesis. Here I
will give an introduction to the relevant software development methodologies, as the
methodology affects the coordination by providing ceremonies and various areas for
coordination. Second, theories on coordination are presented. Then, a theoretical
background about teams is presented together with a theory on team classification.
Lastly, an introduction to Technical debt, Start-ups, and DevOps are presented as
they are relevant for the research context.

2.1 Software Development Methodologies

2.1.1 Agile Software Development

Agile software development represents a new approach for planning and managing
projects by focusing on flexibility, complexity, change, and uniqueness, rather than
up-front plans and strict plan-based control (Nerur & Balijepally, 2007). Agile values
and principles, as presented in the Agile Manifesto, are:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

4

• Responding to change over following a plan

2.1.2 Lean Software Development

Lean, or Lean thinking, is adapted from Toyota’s Lean manufacturing. Its main
focus is on creating value for the customer, eliminating waste, optimizing value
streams, empowering people, and continuously improving (Ebert, Abrahamsson, &
Oza, 2012). Lean is "all about getting the right things to the right place at the right
time the first time while minimizing waste and being open to change" (Raman, 1998,
p. 1). Poppendieck and Poppendieck, 2003 presents the seven principles of Lean as
the following:

1. Eliminating waste

2. Amplifying learning

3. Decide as late as possible

4. Deliver as fast as possible

5. Empower the team

6. Build integrity in

7. See the whole

2.1.3 Scrum

Scrum is an agile and iterative approach for developing products and services (Lar-
man & Vodde, 2008; Rubin, 2012). It structures development in time-boxes called
Sprints, where each Sprint is 1 to 4 weeks (Larman & Vodde, 2008). Sprints have a
fixed duration with a specific start date and an end date. A Sprint works as a devel-
opment cycle. It is not a standardized process, but a framework for organizing and
managing work where the key structural components should be the Scrum values,

5

principles, and practices (Rubin, 2012). One important principle is to "inspect and
adapt". This is done by taking a short step of development and examine both the
resulting product and the current practices, and based on this adapting the product
goals and processes (Larman & Vodde, 2008).

Scrum practices involves the following roles, activities and artifacts (Rubin, 2012,
p. 14):

• Roles: Development Team, Scrum Master and Product Owner

• Activities: Sprint, Sprint Planning, Daily Scrum, Sprint Review, Sprint Ret-
rospective and Product Backlog grooming

• Artifacts: Product Backlog, Sprint Backlog, Increment

The Scrum Team The Scrum team is made up by the three roles in Scrum:
the development team, the scrum master, and the product owner. This team typ-
ically consists of 5-9 people. Scrum Teams are self-organizing and cross-functional,
meaning that they are autonomous and have all the skills and knowledge needed to
complete the tasks (Larman & Vodde, 2008; Schwaber & Sutherland, 2017).

Scrum Master The Scrum Master is responsible for facilitating Scrum in the
development project. In other words, the responsibility of the Scrum Master is to
help everyone understand and follow the process of Scrum. The Scrum Master is
not a project leader and does not have any authority over the team, but is a servant
leader of the team and protects them from outside interference. The Scrum Master
can not be the same person as the Product Owner, but can be a person from the
Development Team (Larman & Vodde, 2008).

Product Owner The Product Owner is responsible for maximizing the value of
the product resulting from the work of the Development Team (Schwaber & Suther-
land, 2017, p.6). The Product Owner acts as a link between the Scrum Team and

6

the stakeholders. The Product Owner must understand the needs and priorities of
the stakeholders, the customers, and the users to represent them in the development
and ensure that the right product is developed (Rubin, 2012). This can include
identifying product features, translating these into a list of tasks, choosing the tasks
for the next Sprint, and continually re-prioritizing and refining the list (Larman &
Vodde, 2008). In Scrum, only one person is serving as the Product Owner (Larman
& Vodde, 2008; Rubin, 2012).

Development Team The Development Team is responsible for developing and
delivering an increment of "done" product at the end of a sprint (Schwaber & Suther-
land, 2017, p.7). The Development Team is the only one who can deliver such an
increment of "Done" product. The Team is cross-functional and has all the expertise
needed to deliver an increment at the end of each sprint (Larman & Vodde, 2008).
Development Teams are also self-organizing and manage their work in the way they
see fit.

Sprint In Scrum, work is performed in time-boxed iterations called Sprints.
Sprints are of the same length throughout the development process and include
Scrum activities such as Sprint Planning, Daily Scrum, Sprint Review, Sprint Ret-
rospective, and the development (Schwaber & Sutherland, 2017). Each sprint has a
specific goal of what is to be built and delivered as an increment. When a Sprint
ends, a new Sprint starts immediately.

Sprint Planning Each Sprint starts with a Sprint Planning meeting to what
plan tasks need to be done and what the goal of the Sprint is. The Team chooses
tasks from the Product Backlog to complete by the end of the Sprint (Larman &
Vodde, 2008). The selected Product Backlog items and the plan for how to develop
and deliver these items make up the Sprint Backlog (Schwaber & Sutherland, 2017).

7

Daily Scrum The Daily Scrum is a 15-minute meeting held every day. The
meeting should be held at the same time and place every time. According to Suther-
land and Schwaber (2017, p. 12) the Daily Scrum "improve communications, elimi-
nate other meetings, identify impediments to development for removal, highlight and
promote quick decision-making and improve the Development Team’s level of knowl-
edge". Participants in Daily Scrums traditionally answer a variant of the following
questions (Stray, Moe, & Sjøberg, 2020):

• What did I do yesterday?

• What are you planning to do until the next meeting?

• Are there any impediments that prevent you from making progress?

A study of 15 software teams in five countries conducted by Stray et al., 2020 sug-
gests that these meetings should mainly focus on solving problems and planning,
rather than reporting on what one did yesterday.

Sprint Review At the end of each Sprint, there is a Sprint Review where the
Scrum Team and other relevant stakeholders review the Sprint (Larman & Vodde,
2008). In this meeting, the goal to inspect the increment and adapt the Product
Backlog if needed (Schwaber & Sutherland, 2017).

Sprint Retrospective While the Sprint Review involves inspect and adapt re-
garding the product, the Sprint Retrospective involves inspect and adapt regarding
the process (Schwaber & Sutherland, 2017). This meeting is held after the Sprint
Review and the goal is to evaluate the process and identify what went well and what
could have been done better (Schwaber & Sutherland, 2017, p. 14).

Product Backlog The Product Backlog is a sorted list of all the tasks that
need to be done to complete the product. The Product Backlog provides a shared
understanding of what tasks should be done and in what order (Rubin, 2012). The

8

Product Owner is responsible for the Product Backlog, including its contents and
ordering (Schwaber & Sutherland, 2017, p. 15).

Product Backlog Grooming Product Backlog Grooming involves reviewing
the Product Backlog. This can include creating and adding details to items, esti-
mating, or prioritizing. The grooming of the Product Backlog is a continuous effort
led by the Product Owner with the participation of some or all team members (Ru-
bin, 2012).

2.1.4 Kanban

Kanban is an agile approach for development that is based on Lean principles. The
principles of Lean and the principles of Kanban are largely overlapping. The five
principles of Kanban is as follows (Ahmad, Markkula, & Oivo, 2013):

1. Visualise the workflow

2. Limit work in progress

3. Measure and manage flow

4. Make process policies explicit

5. Improve collaboratively

Different from Scrum, Kanban is a task-oriented process. One of the central
elements of Kanban is the Kanban board, a tool for visualizing the workflow. Using
a board to visualize tasks "makes it clearer for developers to understand the overall
direction of work, and helps them to manage the flow" (Ahmad et al., 2013).

2.2 Coordination

There are several definitions of coordination from a variety of different fields, such as
organizational theory, economics, and computer science. Ven, Delbecq, and Koenig,

9

1976, p. 322 define coordination as "integrating or linking together different parts of
an organization to accomplish a collective set of tasks". Malone and Crowston, 1994,
p. 90 introduced the following definition: "Coordination is managing dependencies
between activities".

2.2.1 Theories on coordination mechanisms

Coordination can be achieved through coordination mechanisms. There are multiple
theories on coordination mechanisms. Ven et al., 1976 identifies three categories of
coordination mechanisms; impersonal, personal, and group. Mintzberg, 1979 defines
six coordination mechanisms; mutual adjustment, direct supervision, standardiza-
tion of work processes, standardization of outputs, standardization of skills, and
standardization of norms. Jarzabkowski, Lê, and Feldman, 2012 introduces the term
of coordinating mechanisms instead of coordination mechanisms because of it is dy-
namic nature. Coordinating mechanisms are defined as "dynamic social practices
that are under continuous construction" (Jarzabkowski et al., 2012, p. 907).

2.2.2 Coordination strategy

Strode, Huff, Hope, and Link, 2012 defines coordination strategy as a group of coordi-
nation mechanisms that manage dependencies in a situation. The strategy has three
components: synchronization, structure, and boundary spanning. Synchronization
can be achieved through synchronization activities and synchronization artifacts pro-
duced during those activities. Structure is about the arrangement of, and relations
between, the parts of something complex. Proximity, availability, and substitutabil-
ity are all categories of coordination mechanisms with structural qualities. Lastly, the
third component of coordination strategy, boundary spanning, occurs when someone
within the project must interact with other organizations, or other business units,

10

outside of the project to achieve project goals. There are three coordination mech-
anisms to boundary spanning: boundary spanning activities, boundary spanning
artifacts, and coordinator roles.

Strategy compo-
nent

Coordination
mechanism

Definition

Synchronization Synchronisation
activity

Activities that bring all of the team members
together at the same time and place that pro-
mote a common understanding of the task,
process, and or expertise of the other team
members.

Synchronisation
artifact

An artifact generated during synchronization
activities. The nature of the artifact may be
visible to the whole team at a glance or largely
invisible but available. An artifact can be
physical or virtual, temporary, or permanent.

Structure
Proximity This is the physical closeness of individual

team members. Adjacent desks provide the
highest level of proximity.

Availability Team members are continually present and
able to respond to requests for assistance or
information.

Substitutability Team members can perform the work of an-
other to maintain time schedules.

Boundary spanning
Boundary span-
ning activity

Activities (team or individual) performed to
elicit assistance or information from some unit
or organization external to the project.

Boundary span-
ning artifact

An artifact produced to enable coordination
beyond the team and project boundaries. The
nature of the artifact may be visible to the
whole team at a glance or largely invisible but
available. An artifact can be physical or vir-
tual, temporary, or permanent.

Coordinator
role

A role taken by a project team member specif-
ically to support interaction with people who
are not part of the project team but who pro-
vide resources or information to the project.

Table 2.1: Definitions of coordination strategy components (Strode, Huff, Hope, &
Link, 2012)

11

2.2.3 Dependency taxonomy

A dependency occurs when the progress of one action relies upon the timely output
of a previous action or on the presence of a specific thing, where a thing can be an ar-
tifact, a person, or a piece of information (Crowston & Osborn, 2000). Dependencies
in a project can be managed well, poorly, or not at all (Strode, 2016). Understanding
dependencies and understanding which dependencies are addressed by a particular
practice can help practitioners to select the appropriate practice to achieve effective
project coordination (Strode, 2016).

A taxonomy by Strode, 2016 was developed to organize knowledge about depen-
dencies. This taxonomy is built on the theory of coordination, coordination mecha-
nisms, and dependencies by Strode et al., 2012. This taxonomy consists of knowledge
dependencies, process dependencies, and resource dependencies. Knowledge depen-
dencies include requirement, historical, expertise, and task allocation dependencies.
Process dependencies include activity and business process dependencies. Resource
dependencies include entity and technical dependencies.

12

Dependency Description

Expertise
Technical information or task information is known
by only a particular person or group and this has
the potential to affect project progress.

Requirement

Requirements are a critical input to software development
because they define the basic functions and qualities the
software should possess. Domain knowledge (in form of
a requirement) is not known and must be located or
identified, and this has the potential to affect project
progress.

Task

allocation

Seeing how tasks are allocated can provide useful
information because each individual might at times
need to know the relationship of their task to other’s.
Who is doing what, and when, is not known and this
affects, or has the potential to affect, project progress.

Knowledge

dependency

Historical
Knowledge about past decisions is needed and this
affects, or has the potential to affect, project progress.

Activity
An activity cannot proceed until another activity is
complete and this affects, or has the potential to
affect, project progress.

Process

dependency
Business

process

An existing business process causes activities to be
carried out in a certain order and this affects, or has
the potential to affect, project progress.

Entity
A resource (person, place, or thing) is not available
and this affects, or has the potential to affect, project
progress.

Resource

depenendecy Technical

A technical aspect of development affect progress,
such as when one software component must interact
with another software component and its presence or
absence affects, or has the potential to affect, project
progress.

Table 2.2: A description of the eight dependency types (Strode, 2016)

13

2.3 Teams

2.3.1 Team or Working Group

A group with a common goal is not necessarily a team. "Despite what we call
them, not all ’teams’ are teams. Some so-called teams are simply groups masquerad-
ing as teams because in today’s world it’s important to be on something called a
team" (Parker, 2003, p. 1). Katzenbach and Smith, 2005, p. 165 define teams as
a "small number of people with complementary skills who are committed to a com-
mon purpose, set of performance goals, and approach for which they hold themselves
mutually accountable". A team requires both individual and mutual accountability
(Katzenbach & Smith, 2005). A working group, on the other hand, value individual
accountability and goals. This implies that the members of the working group do
not take responsibility for results other than their own (Katzenbach & Smith, 2005,
p. 164).

Katzenbach and Smith, 2005 also suggest a way to tell the difference between a
working group and a team (see Table 2.3).

2.3.2 Autonomous teams

Autonomous teams, also known as self-organizing teams or empowered teams, are
teams with a high degree of autonomy and independence. Autonomy can occur at
different levels (Moe, Dingsøyr, & Dybå, 2008):

• External autonomy refers to the influence of the organization, like manage-
ment or other individuals outside the team, on the team’s activities (Moe et al.,
2008).

• Internal autonomy refers to the degree to which all team members jointly

14

Working Group Team

Strong, clearly focused leader Shared leadership roles

Individual accountability Individual and mutual account-
ability

The group’s purpose is the same as
the broader organizational mission

Specific team purpose that the
team itself delivers

Individual work products Collective work products

Runs efficient meetings Encourages open-ended discussion
and active problem-solving meet-
ings

Measures its effectively indirectly
by its influence on others (such as
financial performance of business)

Measures performance directly by
assessing collective work products

Discusses, decides, and delegates Discusses, decides, and does real
work together

Table 2.3: Difference between working groups and teams

share decision authority, rather than a centralized decision structure where
one person makes all the decisions. A group may have considerable freedom
to decide what group tasks to perform or how to carry it out, but individual
members of the group may have very little control over their jobs (Moe et al.,
2008).

• Individual autonomy refers to the amount of freedom and discretion an
individual has in carrying out the assigned task. High autonomy is described
as individuals who have few rules or procedure constraints, high control over
rules and procedures, and high control over the nature and pace of work (Moe
et al., 2008).

15

2.4 Technical Debt

The notion of technical debt focuses on the trade-offs between quality, time, and cost
(Lim, Taksande, & Seaman, 2012). Avgeriou, Kruchten, Ozkaya, and Seaman, 2016
describes technical debt as "delayed tasks and immature artifacts that constitute
a ’debt’ because they incur extra costs in the future in the form of the increased
cost of change during evolution and maintenance". Avgeriou et al., 2016 also states
that technical debt can be understood as "making technical compromises that are
expedient in the short term, but that creates a technical context that increases
complexity and cost in the long term." Another way to understand technical debt
is as a way to distinguish the gap between the current state of a system and some
“ideal” state of a system. This gap includes items that are typically tracked in a
software project, such as known defects and unimplemented features (Brown et al.,
2010). Brown et al., 2010 identifies the following properties of technical debt:

• Visibility

• Value

• Present value

• Debt accretion

• Environment

• Origin of debt

• Impact of debt

2.5 Startups

Giardino, Paternoster, Unterkalmsteiner, Gorschek, and Abrahamsson, 2016 defines
software startup as "those organizations focused on the creation of high-tech and

16

innovative products, with little or no operating history, aiming to aggressively grow
their business in highly scalable markets.". Giardino et al., 2016 also states that
"being a startup is usually a temporary state, where a maturing working history and
market domain knowledge leads to the analysis of current working practices, thereby
decreasing conditions of extreme uncertainty".

Sutton, 2000 identifies four characteristics that are typical for startups:

• Youth and immaturity Startups are new or relatively young companies with
very little accumulated history.

• Limited resources Startups have limited resources. These resources can be
economical, human, or physical. The first resources invested in a company
are usually focused on getting the product out, promoting the product, and
building strategic alliances.

• Multiple influences In the early stages of companies, they might be par-
ticularly sensitive to influences from various sources like investors, customers,
competitors, and partners.

• Dynamic technologies and markets Software startups usually develop tech-
nologically innovative products and require cutting-edge development tools and
techniques.

2.6 DevOps

DevOps is a concept focuses on the relationship between development and operations,
and how software is managed. "it is two core principles emphasize collaboration be-
tween software development and operations, and the use of agile principles to manage
deployment environments and their configurations" (Lwakatare et al., 2016). The
four main dimensions of DevOps are collaboration, automation, measurement, and
monitoring (Lwakatare, Kuvaja, & Oivo, 2015). it is a relatively young phenomenon

17

in the world of software practitioners, and it is implemented "to shorten feedback
loops and the development cycle through collaboration, automation, and frequent
software releases" (Lwakatare et al., 2016). Figure 2.1 shows the concepts of collab-
oration and the flow in DevOps.

Figure 2.1: The different phases of DevOps (Harlann, 2017)

DevOps practices affect developers throughout the software development life cycle
and rely heavily on tools of various kinds, such as tools for container management,
continuous integration, orchestration, monitoring, deployment, and testing (Zhu,
Bass, & Champlin-Scharff, 2016).

2.6.1 BizDevOps

Similarly to DevOps, BizDev tries to connect business and development to create
continuous planning and integration between the two. Fitzgerald and Stol, 2017
outlines the purpose of BizDev as "The age-old disconnect between the business

18

strategy and technical development components is recognized in the BizDev concept
which seeks to tighten this integration". Also, the role of the Product Owner is used
for the connection between business strategy and development by the agile methods,
but this is not necessarily sufficient (Fitzgerald & Stol, 2017). Furthermore, as an
extension of BizDev, Gruhn and Schäfer, 2015 describes BizDevOps as "Business,
Development and Operations work together in software development and operations,
creating a consistent responsibility from business over development to operations".
The concept of BizDevOps is shown in Figure 2.2.

Figure 2.2: The different phases of BizDevOps (Fitzgerald & Stol, 2017)

19

3 | Research Method

This chapter will outline the method used in this study and why it was chosen, as
well as details about the research design. First, the research method is presented.
Then details on the data collection and data analysis are introduced. Lastly, the
concerns regarding reliability and validity are presented.

3.1 Qualitative Research

Research can either be quantitative, qualitative, or multi-strategy (Creswell, 2018;
Robson, 2011). ”Research approaches are plans and the procedures for research that
span the steps from broad assumption to detailed methods of data collection, analysis
and interpretation” (Creswell, 2018, p. 3). The selection of research methods should
be based upon the research problem, the researcher’s personal experiences, and the
audiences for the study (Creswell, 2018).

Quantitative research is an approach for "testing objective theories by examining
the relations between variables" (Creswell, 2018, p. 4). Quantitative research calls
for a fixed pre-specification before collecting data. The data are almost always in the
form of numbers, and typical data collection methods can be surveys or experiments.

Qualitative research is an approach for "exploring and understanding the mean-
ing of individuals or groups in the context of a social or human problem" (Creswell,
2018, p. 4). Quantitative methods rely on heavily text and image data (Creswell,

20

2018). A good qualitative research design generally utilizes multiple qualitative data
collection techniques, such as interviews, observation, or collection documentation
(Creswell, 2018; Robson, 2011). Creswell, 2018 describe the general characteristics
of qualitative research as a natural setting, researcher as a key instrument, multi-
ple sources of data, inductive and deductive data analysis, participants’ meanings,
emergent design, reflexivity, and holistic account.

Multi-strategy research uses a combination of qualitative and quantitative ap-
proaches in the same project. It resides somewhere in between qualitative and quan-
titative approaches (Creswell, 2018; Robson, 2011).

For this study, a qualitative research approach was chosen. Qualitative research
methods "focus on discovering and understanding the experiences, perspectives, and
thoughts of participants - that is, qualitative research explores the meaning, purpose
or reality" (Harwell, 2011). As the research questions of this study involves examin-
ing how real world individuals interact with one another in their natural setting, a
qualitative research approach seem to be the best fit for this study.

3.1.1 Case study

A case study is a common qualitative approach to research. "The essence of a case
study, the central tendency among all types of case study, is that it tries to illuminate
a decision or a set of decisions: why they were taken, how they were implemented,
and with what result"(Schramm (1971), cited in Yin, 2014, p. 15). A case study is
a good method for investigating a phenomenon in depth and within its real-world
context (Yin, 2014).

21

3.2 Data Collection

The results and conclusion presented in this thesis are based upon data collected
through observation, chat logs, and semi-structured interviews. Yin, 2014 presents
a set of data collection principles: (1) use multiple sources of evidence, (2) create a
case study database, (3) maintain the chain of evidence, and (4) exercise care when
using data from electronic sources, such as chat logs (Yin, 2014).

Principle My approach

Use multiple sources of evidence The data was collected through
interviews, observation, and chat
logs from Slack.

Create a case study database I kept all the collected data in
a data analysis tool to build my
database.

Maintain the chain of evidence I kept all my raw data with time
and place to track them easily.

Exercise care when using data
from electronic sources

A healthy dose of skepticism was
used when collecting data from
electronic sources, trying to keep
everything to the context it was
meant. If possible, they were
cross-checked using other sources
to assess their validity.

Table 3.1: An overview of my approach to data collection principles

The data was collected in a five-month period, from September 2018 toMarch

2020. I conducted two rounds of data collection. The first data collection was from
September 2018 to April 2019. The goal of this data collection was mainly to get
to know the company and how they work. This data collection includes 3 interviews

22

with the CTO and 1 interview with a developer (4 in total), as well as 1
days of observation in their storage location. The main data collection period
stretched from November 2019 to March 2020. Throughout this period, I observed a
total of 31 work days, 49 meetings, and conducted 5 interviews with members
of the team and other relevant individuals. Table 3.2 show a timeline over the data
collection.

5. September 2018 · · · · · ·• First meeting with the company.

10. September 2018 · · · · · ·• Second meeting with the company.

17. October 2018 · · · · · ·• Third meeting with the company.

20. February 2019 · · · · · ·• Fourth meeting with the company.

1. April 2019 · · · · · ·• Fifth meeting with the company.

Week 43 2019 · · · · · ·• Meeting about observation.

4. November 2019 · · · · · ·• First day of observation.

Nov 2019 - Feb 2020 · · · · · ·• Period of observation (31 days).

Nov 2019 - Feb 2020 · · · · · ·• Access to Slack.

Jan 2019 - Feb 2020 · · · · · ·• Interview period.

Table 3.2: Timeline of data collection

23

Method Number Details

Days of observation in work
space

32 Study and understand the
team in a natural environ-
ment. Observe processes and
work flows. Conversations
with team members.

Observation of meetings 49 Study and understand the
team in a natural environ-
ment. Observe how meetings
are conducted and how the
team acts and interacts.

Interviews 9 Interviews with members of
the development team.

Table 3.3: An overview of data collection from September 2018 to March 2020

3.2.1 Observation

Throughout this study, a lot of the data collected was through the use of partic-
ipant observations. Participant observation can be understood as "a method in
which a researcher takes part in the daily activities, rituals, interactions and events
of a group of people as one of the means of learning the explicit and tactic aspects of
their life routines and their culture" (Musante & DeWalt, 2010, p. 1). Participant
observation "puts you where the action is and lets you collect data" (Musante &
DeWalt, 2010, p. 2). A participant-observer has two purposes, to engage in activi-
ties appropriate to the situation and to observe the activities, people, and physical
aspects of the situation (Spradley, 2016, p. 54). Participant observation differs from
direct observation where the researcher does not interact with the subjects (Yin,
2014).

24

Through the period of this study, I observed the team in a total of 31 workdays
and 49 meetings. I participated as a member of the tech team and did actual
programming tasks, attended meetings and workshops, and joined the team for lunch.
I was also invited to social events, such as the Christmas party. This gave me insight
into how the company was structured, the different work processes in the company,
the projects, and how they were executed and the work environment.

Month Number of days

October 2018 1

November 2019 12

December 2019 5

January 2020 8

February 2020 6

Total 32

Table 3.4: An overview of work days observed

3.2.2 Interviews

Yin, 2014, p. 113 states that "Interviews are an essential source of case study evi-
dence because most case studies are about human affairs or actions". Interviews can
be either structured, semi-structured, or unstructured (Cohn, Sim, & Lee, 2009).

In this study, I conducted 9 interviews in two rounds. The first round was done
from September 2018 to April 2019 and included 4 interviews, 3 with the CTO of
the company, and 1 with a developer from the development team. The second round
of interviews was from January 2020 to February 2020 and included 5 interviews.
These interviews were mainly with the tech team or people working closely with the
tech team. The main goal was to attain insight into the team’s work processes, how
they coordinate and prioritize tasks, how they communicate, and how they perceive

25

Type of meeting Number of meetings

Company-wide Status Meeting 11

Daily Stand-up 19

Zendesk Planning Meeting 2

Sprint Planning 2

Backlog Grooming 1

Workshop 1

Various Tech Team Meetings 6

Various Company-wide Meetings 2

Various Project-related Meetings 2

Other 3

Total 49

Table 3.5: An overview of meetings observed

this themselves. It was important for me to see things from their perspective instead
of mine, as I do through observations.

The interviews varied from 28 to 55 minutes with an average of 39,8 minutes.
They were recorded with a tape recorder with the consent of the people interviewed.
This was to provide a more accurate rendition of the interview. All interviews were
then transcribed and the data was stored in the case study database. The interviews
conducted were semi-structured and covered topics like teams and teamwork, work
processes, and communication and coordination in the company. An interview guide
was used to keep some structure and direction to the interviews.

26

Role Gender Time at com-

pany

When Duration

Data Analyst Female 4 months January 2020 43min

Developer Male 1,5 years January 2020 28min

UX/UI Designer Male Almost 2 years January 2020 55min

Developer Male 1,5 years February 2020 37min

Developer Male 2 years February 2020 36min

Table 3.6: An overview of second round of interviews

3.3 Data Analysis

Before presenting and discussing the results, the raw data were analyzed. The data
were grouped into different groups; interviews, workplace observations and meeting
observations. My analysis built on theories presented in Chapter 2 on agile software
development, coordination and teams. The taxonomy proposed by Strode, 2016 was
used to aid me in getting a thorough overview of the field of dependencies and coor-
dination mechanisms. The results in Chapter 5 are therefore organized according to
the taxonomy.

Furthermore, all of the data sources were uploaded into a program called NVivo1,
which is qualitative data analysis software. Descriptive coding was chosen as the cod-
ing technique which aims at summarising the topic of the selection as a word or short
phrase Saldaña, 2016. This coding style is appropriate for all qualitative studies, but
as it is useful for beginning qualitative researchers learning how to code data as well
as studies with a wide variety of data forms Saldaña, 2016, p. 88. This is also the
reason why this technique was chosen for this study.

I created a list of codes before the observations, as Miles and Huberman, 1994,
1NVivo is a registered trademark of QSR International, www.qsrinternational.com

27

p. 58 recommends. During the study I revisited the codes, changing, deleting and
adding codes as something new emerged or a code did not apply. Throughout the
process, I kept a structure in the codes based on the main themes in the background
and the dependency taxonomy by Strode, 2016. I organized my data and analyzed
them based on the different coordination mechanisms and dependencies, as well as
other relevant topics. I started by identifying the different coordination mechanisms,
then identifying the associated category and lastly identifying the fitting dependen-
cies. Figure 3.1 shows an example of how data were coded.

Figure 3.1: An example of how data was coded

28

3.4 Validity and reliability

(Yin, 2014, p. 45) presents four test for judging the quality of research design;
construct validity, internal validity, external validity and reliability. The validity of a
study is concerned with "the trustworthiness of the results, to what extent the results
are true and not biased by the researchers’ subjective point of view" (Runeson &
Höst, 2009).

3.4.1 Validity

Construct validity refers to "identifying correct operational measures for the con-
cept being studied" (Yin, 2014, p. 46). To increase construct validity in case studies,
Yin, 2014 proposes to: use multiple sources of evidence, establish a chain of evidence
and have the draft case study report reviewed by key informants. The first two points
were used when collecting data, mentioned in chapter 3.2.

Internal validity refers to "seeking to establish a causal relationship, whereby
certain conditions are believed to lead to other conditions, as distinguished from
spurious relationships" (Yin, 2014, p. 46). This is mainly relevant for explanatory
or casual studies, not for descriptive or exploratory studies. Since this case study is
not explanatory, assessing internal validity is not relevant.

External validity refers to "defining the domain to which a study’s findings
can be generalized" (Yin, 2014, p. 46). Runeson and Höst, 2009 also states that
this aspect of validity is concerned with to what extent the findings in a study are of
relevance to other people outside the investigated case. In case of studies, Yin, 2014
suggests that the use of appropriate theory or theoretical propositions as a way to
increase external validity.

29

3.4.2 Reliability

The reliability of a study is concerned with "demonstrating that the operations of
a study - such as its data collection procedures - can be repeated, with the same
result" (Yin, 2014, p. 46). The goal of reliability is to minimize errors and biases in
a study (Yin, 2014, p. 49). Using a case study protocol and developing a case study
database are tactics to increase reliability.

30

4 | Research Context

This chapter will present the research context the case study was conducted in. The
organization, including the team and the work environment, is presented.

4.1 Organization

The organization investigated in this thesis is a start-up company. The company was
founded in late 2016 and has around 20 employees in total. They mainly develop
and maintain a service for renting out items, but also have a location to display their
inventory where customers can see the products before renting.

The company is divided into management, operations, finance and development.
They are located in two different locations, where the development division is seated
in an office location, and management and operations are located mainly at the stor-
age location. This does vary a lot and people move locations as they see fit. In the
office location, where I mainly did my observations, there was usually 5-10 people on
a daily basis.

This company was chosen for this research because of the interesting research
context. The company is a fast-paced start-up working from multiple locations prac-
ticing DevOps. The company was very open to participating in this study and let
me take part in all of their activities as if I was an employee.

31

4.2 Team

The team observed in this study was mainly the development team, consisting of 6
members: 4 developers, 1 designer and 1 data analyst. If necessary, other people as-
sisted the development team in different projects depending on the goal of the project.

The team’s task is mainly to develop and maintain the company’s online service.
This includes making designing, developing and testing new functionality, maintain-
ing the system and making sure everything is working as it should at all times.

The team does not have a specific team lead for the team, but rather project
leads specific to projects. They also include the role of Scrum Master, which the
developers take turns in being. There is also a Product owner of each project, but
this person is a person outside the development team.

It is important to decide if the observed team is a working group or a team. To
answer this, I will be using the proposed theory by Katzenbach and Smith, 2005
presented in Chapter 2. Table 4.1 presents what characteristics the observed team
displayed.

The observed team matches some characteristics of both a working group and a
team, although the team characteristics were dominant. The team had shared leader-
ship roles. The team would contribute to the broader organizational mission through
their specific team purpose that the team itself delivered. The team had both in-
dividual work products and collective work products. They encouraged open-ended
discussions and active problem-solving meetings through daily stand-ups, Zendesk
meetings, project meetings and pair programming. They also ran efficient meetings.

32

Working group Team

Strong, clearly focused leader Shared leadership roles X

Individual accountability Individual and mutual account-
ability

X

The group’s purpose is the same
as the broader organizational
mission

X Specific team purpose that the
team itself delivers

X

Individual work products X Collective work products X

Runs efficient meetings X Encourages open-ended discus-
sion and active problem-solving
meetings

X

Measures its effectively indi-
rectly by its influence on others
(such as financial performance of
business)

Measures performance directly
by assessing collective work
products

X

Discusses, decides, and delegate Discusses, decides, and does real
work together

X

Total 3 7

Table 4.1: A working group vs. a team

The team discussed, decided and did real work together. Based on this, I would
argue that the observed team can be classified as a team instead of a working group.

4.2.1 Team members

As a small team with a lot to do, their way of working was to "pitch in wherever they
can". The team always focused on finishing projects and even though people have
specific roles, this does not mean that they did not do things outside their area of

33

responsibility. In the period of observation, the designer also did a lot of marketing,
and the developers also helped at the storage.

The developers shared a set of responsibilities, but some had specific responsi-
bilities. Also, there were some tasks the developers take turns in doing, such as
being Scrum Master, releasing new versions and participate in the Zendesk Planning
Meetings. The main responsibility of the developers was to finish projects with ev-
erything that includes. A detailed overview of the team member’s responsibilities
can be found in table 4.2.

4.2.2 Seating

The office location is in a big co-working space in Oslo. The company rents a room
with 6 desks and chairs where the team usually sits. The room also has a little round
table and two chairs. There are a lot of other places in the building where everyone
who rents space in the building can sit and work if they want.

The designer, the data analyst and one of the developers have fixed seats in the
company room where they usually always sit when in the office, but for the other
three developers, the seating varies a lot. Where people sit also depends on how
many people from the company are working from the office location that day. The
rule is mainly "first come, first served", but people rarely occupy the seats where
the designer, the developer and the data analyst sits. If the company room is full,
people usually choose to sit on the same floor as the company room or in the lunch
area.

When observing, I usually sat on one of the desks in the middle. If the company
room was full, I sat right outside the company room. Figure 4.1 displays the com-
pany room in the co-working space.

34

Role Description
Data analyst Responsible for collecting data from various

sources, performing data cleaning and analy-
sis. Does the preparation of reports to support
other departments of the company. Has the
main responsibility for the company’s Google
Analytics account setup and administration.

UX/UI Designer Responsible for the user interface and the user
experience. This includes providing support to
resolve user workflow problems, develop pro-
totypes for design ideas, design user inter-
face and communicate design ideas to inter-
nal teams and key stakeholders. Through the
period of observation, the designer was also
responsible for sending out e-mails with mar-
keting material to subscribers twice a week.

Full-stack developer
and CTO

Responsible for developing the service. This
includes writing and testing code, releasing
updates and maintenance of the service. Has
a lot of managing responsibilities.

Full-stack developer 2 Responsible for developing the service. This
includes writing and testing code, releasing
updates and maintenance of the service. Has
the main responsibility for managing their e-
mail service and managing users of the online
service.

Full-stack developer 3 Responsible for developing the service. This
includes writing and testing code, releasing
updates and maintenance of the service.

Full-stack developer 4 Responsible for developing the service. This
includes writing and testing code, releasing
updates and maintenance of the service. Has
the main responsibility for the system archi-
tecture and DevOps.

Table 4.2: The different roles in the team and their area of responsibilities

35

Figure 4.1: The company room

4.2.3 Tools

Zendesk1 The company uses a customer support ticket system called Zendesk. Both
customers and employees can add tickets to Zendesk. All issues, including ones from
employees in the company, need to go through Zendesk. This is to have an overview
of all issues in one place, to have "one source of truth", instead of having someone
requesting something in an e-mail or someone asking for a change on Slack. To file
requests to the development team, one has to submit it to Zendesk. Examples of
requests can be to fix bugs, add discount codes, updating the design on the web page

1https://www.zendesk.com/

36

or requesting bigger updates.

Azure DevOps2 is a service platform that provides an end-to-end DevOps
toolchain for developing and deploying software. This includes Azure Boards for
planning and tracking tasks, issues and projects. It also includes Azure Repos,
which provides private git repos. At the start of the observation period, the develop-
ment team used GitHub, but after about a month of observation, they switched to
Azure DevOps because of GitHub’s lack of functionality, mainly capacity planning
and estimation of work. Azure DevOps also includes tools for continuous integra-
tion, monitoring and continuous deployment (Azure Pipelines). The monitoring was
connected to Slack to get notifications about the status of the system. Other tools
were also integrated into Azure DevOps, such as Travis CI for continuous integration.

Slack3 is an online chat tool that allows organizations to create their own chat
rooms with multiple sub-chats. Slack is the main tool of communication in the com-
pany. The company had a channel for everyone in the company, used to provide
company-wide information. The developers had to channels regarding tech-related
talk.

Google Meet4 is a service for conducting video meetings. This was used for
many of the company’s meetings, such as the weekly company-wide status meeting
and the daily stand-up. Since the company was located in multiple locations, this
was a necessary tool to have their company meetings.

2https://azure.microsoft.com/nb-no/services/devops/
3Slack is a registered trademark of Slack Technologies, www.slack.com
4https://meet.google.com/

37

4.2.4 Processes

The development team follows a lean process, a light-weight version of Scrum. This
was customized to fit their needs, and they involve the Scrum activities they find
valuable. The following events happened regularly.

Weekly Company-Wide Status Meeting Once a week, every Monday, there
was a company-wide status meeting. This was used to align all the departments in
the company and update each other on the work that has been done in the previous
week, and what is coming up this week. Since the company works from two different
locations, the meeting was held with Google Meet and the CEO was sharing her
screen with a presentation. All the departments filled in their work in the presenta-
tion before the meeting. The different departments took turns to present their work.
This meeting usually took 15-30 minutes depending on how much had happened the
last week.

Zendesk Planning Meeting This meeting was before the start of a new Sprint,
about every two weeks, usually on Fridays. In this meeting, someone from the de-
velopment team (usually developers) and someone from the other departments came
together to look through the issues on Zendesk and decide what should be included
in the development team’s sprint.

Sprint Planning Every two weeks, the developers had a Sprint Planning meet-
ing to plan the upcoming sprint. This usually involved breaking tasks apart, deciding
who does what and agreeing upon time estimates for the tasks. It also involved ca-
pacity planning to see how much capacity there were for the next two weeks to come.

Backlog Grooming The Backlog Grooming was usually once every two weeks
but was sometimes done more often if it is necessary. In these meetings, the devel-
oper team usually changed the priority of tasks, added tasks, broke issues into more

38

tasks, or removed tasks.

Daily Stand-up Meeting Every day, the developers had a daily stand-up. In
this meeting, they gave a brief answer to the questions: 1) What did you do yester-
day? 2) What are you going to do today? 3) Is there anything blocking you? This
was usually done in person in the office, and if someone is working from home, they
called in. If it was hard to do the stand up in person, the stand up was sometimes
done in writing on Slack.

39

5 | Results

In chapter 5, the research context was described with an overview of the company,
the departments, the roles in the development team and their work process. In this
chapter, what was found through analysis of the data collected will be presented.
This chapter will describe the different dependencies and their associated practices
as coordination mechanisms by using a taxonomy proposed by Strode (2016). The
focus will be on describing the different coordination mechanisms and dependencies.

Strode (2016) divided dependencies into three main categories; knowledge de-

pendency, process dependency and resource dependency. Knowledge depen-
dency is divided into expertise, requirement, task allocation and historical depen-
dencies. Process dependency is split into activity and business process dependencies.
Lastly, resource dependency is divided into entity and technical dependencies. Strode
et al. (2012) divided coordination mechanism into eight main strategy components;
synchronization activity, synchronization artifact, boundary spanning ac-

tivity, boundary spanning artifact, availability, proximity, substitutability
and coordinator role.

40

Dependency Description

Expertise
Technical information or task information is known
by only a particular person or group and this has
the potential to affect project progress.

Requirement

Requirements are a critical input to software development
because they define the basic functions and qualities the
software should possess. Domain knowledge (in form of
a requirement) is not known and must be located or
identified, and this has the potential to affect project
progress.

Task

allocation

Seeing how tasks are allocated can provide useful
information because each individual might at times
need to know the relationship of their task to other’s.
Who is doing what, and when, is not known and this
affects, or has the potential to affect, project progress.

Knowledge

dependency

Historical
Knowledge about past decisions is needed and this
affects, or has the potential to affect, project progress.

Activity
An activity cannot proceed until another activity is
complete and this affects, or has the potential to
affect, project progress.

Process

dependency
Business

process

An existing business process causes activities to be
carried out in a certain order and this affects, or has
the potential to affect, project progress.

Entity
A resource (person, place, or thing) is not available
and this affects, or has the potential to affect, project
progress.

Resource

depenendecy Technical

A technical aspect of development affect progress,
such as when one software component must interact
with another software component and its presence or
absence affects, or has the potential to affect, project
progress.

Table 5.1: A description of the eight dependency types (Strode, 2016)

41

5.1 Using the taxonomy to identify coordination

mechanisms and dependencies

Table 5.2 shows that 95 pairs of dependencies was found in total with 38 different
coordination mechanisms. Many of the practices are multipurpose and address more
that a single dependency. Out of the 95 pairs of dependency pairs, 67 can be cate-
gorised as knowledge dependency, 14 can be categorised as process dependency and
14 can be categorised as resource dependency. Figure 5.1 shows the frequencies of
the three main dependencies.

Figure 5.1: An overview of the frequency of dependencies

42

Dependency
Knowledge Process ResourceCoordination mechanisms (38)

E
xpertise

R
equirem

ent

Task
allocation

H
istorical

A
ctivity

B
usiness

process

E
ntity

Techical

Total

Sprint (2 weeks) X X X 3
Daily stand-up X X X X X 5
Company-wide status meeting X X 2
Ad hoc conversation X X X X X 5
Workshop X X 2
Retrospective X X 2
Sprint planning meeting X X X X 4
Backlog grooming X X 2
Zendesk planning meeting X X X X X X 6
Company meeting X X 2
Weekly design meeting X 1
Project meeting X X X 3
One on one meeting X X X X 4
Meeting with digital marketing agency X 1
Pair programming X 1
Software release X 1
Cross-team talk X X X X X 5
Continuous build and test X 1
Status meeting with supervisor X X X 3
Backlog X X X 3
Burndown chart X X 2
Wallboard X X 2
Project management tool (Azure Devops) X X 2
Wiki for development information X X 2
Task X X X 3
Work area X X X 3
Source code control X X 2
Documentation X X 2
List of prioritized tickets (Zendesk) X X 2
Communication tools (Slack, mail) X X X X 4
Pull request checklist X X 2
Test suite X 1
Full-time team X 1
Redundant skill X 1
Project lead X X 2
Product owner X X 2
Scrum master X X X 3
UX/UI Designer X X X 3

24 21 15 7 8 6 4 10Total pairs of dependency 67 14 14 95

Table 5.2: Identified coordination mechanisms in the development team

43

Practice Total of dependencies Best matched dependency

Zendesk planning meeting 6 Process dependency

Daily stand-up 5 Knowledge dependency

Ad hoc conversation 5 Knowledge dependency

Cross-team talk 5 Knowledge dependency

One on one meeting 4 Knowledge dependency

Sprint planning meeting 4 Knowledge dependency

Communication tools 4 Resource dependency

Status meeting with supervisor 3 Knowledge dependency

Project meeting 3 Knowledge dependency

Backlog 3 Knowledge dependency

Task 3 Process dependency

Work area 3 Knowledge dependency

Scrum master 3 Process dependency

Sprint 3 Process dependency

UX/UI Designer 3 Knowledge dependency

Table 5.3: Agile practices found to address three or more dependencies

5.2 Dependencies and Coordination Mechanisms

To find the practices that promote a smooth workflow, Table 5.3 shows the practices
that were found to address three or more dependencies and therefore helps to ensure
a smooth workflow in the project. These practices are matched to the best-fitted
dependencies.

Table 5.4 shows both dependencies and coordination mechanisms to illustrate
how coordination mechanisms address dependencies. The coordination mechanisms
are also mapped to the strategy component to follow the taxonomy. The 38 identified
practices are listed to strategy components and mapped to the dependencies they
manage. A practice can address more than a single dependency.

44

The coordination mechanisms presented in Table 5.5 are presented in more depth
in section 6.3, 6.4 and 6.5. These mechanisms are selected because of the substantial
data collection on them and because they are of good use to the team. The coordi-
nation mechanisms that address more than one dependency is presented within their
best-matched dependency.

Table 5.6 shows the frequency of the different regular meetings working as coor-
dination mechanisms.

45

Dependency
Knowledge Process Resource

E
xpertise

R
equirem

ent

Task
allocation

H
istorical

A
ctivity

B
usiness

process

E
ntity

Technical

Daily stand-up
Company-wide status meetings
Status meeting with supervisor
Workshop
Sprint
Retrospective
Zendesk planning meeting
Backlog grooming
Sprint planning meeting
Company meeting
One on one meeting
Pair programming
Cross-team talk
Continuous build and test
Software release
Weekly design meeting

Syncronization
activities

Project meeting
Backlog
Burndown chart
Wallboard
Project management tool
Wiki
Documentation
List of prioritized tickets
Pull request checklist
Task
Communication tools

Syncronization
artifact

Source code control
Ad hoc conversationsBondary spanning

activities Meeting with digital marketing agency
Boundary spanning
artifacts Test suite

Availability Full-time team
Proximity Work area
Substitutability Redundant skill

Project lead
Product owner
Scrum master

C
oord

in
ation

M
ech

an
ism

s

Coordinator role

UX/UI Designer

Table 5.4: Dependencies and coordination mechanisms identified in the development
team

46

Dependency Coordination Mechanisms

Knowledge dependency

Expertise

Cross-team talk
Workshop
Wallboard
Work area

Requirement
Ad hoc conversations
Designer
Backlog grooming

Task allocation

Daily stand-up meeting
Sprint planning meeting
Company-wide status meeting

Historical
Documentation
Source code control

Process dependency
Activity Sprint
Business process Zendesk planning meeting

Resource dependency
Entity Communication tools
Technical Software release

Table 5.5: The selected coordination mechanisms that will be described

47

Coordination mechanism Frequency

Daily stand-up Daily

Company-wide status meetings Weekly

Status meeting with supervisor Weekly

Workshop Every other week

Retrospective Rare

Zendesk planning meeting Every other week

Backlog grooming Every other week

Sprint planning meeting Every other week

Project meeting Every other week

Weekly design meeting Weekly

Table 5.6: Frequency of the regular events

48

5.3 Knowledge dependency

The company had many coordination mechanisms regarding knowledge dependen-
cies. I found that 35 out of 38 could be categorized as a knowledge dependency. In
table 5.7 all of the coordination mechanisms managing the knowledge dependencies
are presented.

Expertise (24) Requirement (21) Task allocation (15) Historical (7)

Daily stand-up Workshop Daily stand-up Retrospective
Company-wide status meeting Sprint Company-wide status meeting Cross-team talk
Status meeting with supervisor Zendesk planning meeting Status meeting with supervisor Documentation
Workshop Backlog grooming Zendesk planning meeting Pull request checklist
Retrospective Sprint planning meeting Sprint planning meeting Source code control
Backlog grooming One on one meeting Company meeting Ad hoc conversations
Sprint planning meeting Cross-team talk Project meeting Work area
Company meeting Project meeting Backlog
One on one meeting Backlog Burndown chart
Pair programming Project management tool Project management tool
Cross-team talk Wallboard List of prioritized tickets
Weekly design meeting Wiki Task
Wallboard Documentation Communication tools
Wiki List of prioritized tickets Scrum master
Communication tools Task Ad hoc conversations
Ad hoc conversations Ad hoc conversations
Meeting with digital
marketing agency

Project lead

Full-time team Product owner
Redundant skill Scrum master
Work area UX/UI designer
Scrum master Work area
Project lead
UX/UI designer
Product owner

Table 5.7: Coordination mechanisms managing the knowledge dependency

49

5.3.1 Expertise

Cross-team talk

The work area made it easy for different departments to talk to each other. There
was often people from the different departments in the company’s workroom. This
led to cross-team talks, often happening multiple times a day. Often, task informa-
tion was known by people outside the development team and cross-team talk helped
the development team gain the knowledge needed to solve their tasks. These types of
conversations often helped to manage expertise dependencies, but also requirement
dependencies, historical dependencies, business process dependencies, and entity de-
pendencies.

Workshop

The developers held workshops or "tech talks" about different topics related to soft-
ware development. This usually involved one developer presenting the topic for the
other developers and having some kind of related practical tasks. The main goal
of the workshop was to share knowledge among the team members. In the period
of observation, a developer held a workshop about a layout system called CSS Grid
where he held a short presentation about the topic and demonstrated it’s function-
ality. This was something that could be relevant to the project.

Wallboard

Wallboards were placed in all meeting rooms and company rooms. These wallboards
were often used to demonstrate some concept or discuss solutions and ideas to both
people in the development team as well as people from other departments.

Work area

The development team often sat in the office space with people from other depart-
ments. The work area facilitated coordination through easy access to both team
members and people from other departments. The area enabled frequent discussions

50

and conversations about tasks, requirements and possible solutions. Right outside
the office space were meeting rooms available and more open work areas which con-
tributed to informal and unscheduled meetings. The work area included wallboard
which was frequently used.

5.3.2 Requirement

Ad hoc conversations

Ad hoc conversation happened frequently, often several times a day, in the work
area and other places in the building where the team members were located. The
work area made it easy for the team members to have conversations, ask each other
questions or have informal discussions. These conversations helped the team make
quick decisions, discuss tasks and requirements with the relevant people, and get a
good sense of what the other people were working on. Ad hoc conversations were
most often observed in the company’s workroom, but also sometimes other places in
the building, depending on where people were sitting.

Designer

The designer usually sat in the company’s workroom. This made it easy for the
developers to show their work to the designer to check if it fit the requirements or
ask questions related to the tasks at hand. On some projects, the designer acted as
the project owner. In the interview with the designer, it became clear that he does a
lot of coordination for the team and spent a lot of time gathering information from
the other departments.

The designer stated that: I would say I work with almost everybody at [com-
pany], maybe not daily, but collecting information comes not from the team I just
mentioned [development team], but also from the showroom, so going there a couple
of times monthly is very important because I need to know what the customers are

51

saying.

Backlog grooming

On one of the days of observation, three members of the development team had an
ad hoc backlog grooming session to understand the requirement of the project better
and break it down into smaller tasks. In this session, there were also assigned people
to different tasks and someone responsible for the different issues getting done in the
course of the sprint.

5.3.3 Task Allocation

Daily stand-up meeting

The daily stand-up was important for managing task allocation dependencies and
expertise dependencies. The developers in the team had their stand up at 10:15 every
morning. The reason for having it at 10:15 was because everyone had usually come
in to work at this time. The meeting was usually carried out in their office space
next to their seats. If someone was not at the office yet, they called in on Google
Meet on someone’s computer. The meeting started with someone stating what they
did yesterday, what they are going to do today, and if something was blocking them.
If any of the developers had met any obstacles, other team members contributed
with valuable input on how to solve their problems or who to talk to to get it done.
The discussion usually ended up with coordinating tasks and deciding who should
be involved.

A developer stated that: “I mean, at first I didn’t really like it, but it gives you
a good idea of what the team as a whole is working towards, and it’s good to know
what the other people are working on in case what you are working on might affect
their work, so you can collaborate and come up with some solution.”

52

Some of the problems brought up in the daily stand-ups were also tackled in later
meetings if they didn’t have any clear or good solution at the time. After everyone
in the team had answered all three questions, they also provided information which
could be relevant for the others, like the outcome of a meeting or a change in the
agenda.

One of the developers stated that this meeting could be more focused on problem-
solving and that: "I feel like it can be improved in that sense for us because it just
feels like you’re reporting and it’s not meant to be for that.

Sprint planning meeting

The sprint planning meeting occurred every two weeks. This usually happened at
10:15 on Mondays and all the developers have set aside 1 hour for it (the duration
varies). The purpose of this meeting was to plan the upcoming Sprint. In this meet-
ing, the developers started by taking a look at the tasks from the last sprint to see
if there were any unfinished tasks. Unfinished tasks from the last week, tasks from
the product backlog and tasks from the Zendesk meeting was then broken apart into
smaller pieces. They also included technical debt if they had the capacity. The de-
velopers then coordinated who did what and made time estimations for each of the
tasks. They tried to write down the information needed on each task, and if some
information was missing, they discussed who to talk to to get the information needed
to finish the task.

Company-wide status meeting

Every Monday at 12:00 the whole company had a weekly status meeting. These
meetings typically lasted 15 to 30 minutes. All employees in the company partici-
pated in these meetings. All the departments updated the rest of the company on
what they did the last week and what they were going to do in the upcoming weeks.
Every department head, and sometimes different project leaders, gave a brief update

53

on what the department was working on and who was involved in what.

One developer stated that: "We have these weekly company-wide meetings where
we hear from all the different departments and know what’s going on. That’s really
helpful because you feel more motivated when you see that everything is in place for
us to work together and get to a certain goal."

5.3.4 Historical

Documentation

The company kept a Google Drive for all the documents in the company. This in-
cluded all presentations, plans, project descriptions, and so on. All employees had
access to this and this made it easy for the employees to look back at the documen-
tation of earlier projects or plans to gain knowledge about past decisions.

Source code control

The developers used Git as a source code control system (version control). Based on
my observations, this made it a lot easier to collaborate on code and track changes
done to the code. If the developers wondered about something done in the past, it
was easy to find it in earlier versions of the code.

54

5.4 Process dependency

I found that 11 out of 38 coordination mechanisms could be categorized as process
dependency. In table 5.8 all of the coordination mechanisms managing the process
dependencies are shown.

Activity (8) Business process (6)

Daily stand-up Sprint
Status meeting with supervisor Zendesk planning meeting
Sprint One on one meeting
Sprint planning meeting Cross-team talk
One on one meeting Project meeting
Backlog UX/UI designer
Burndown chart
Communication tools

Table 5.8: Coordination mechanisms managing the process dependency

5.4.1 Activity

Sprint

The sprints in the development team were conducted over two weeks. Before the
sprint even started, one or more representatives from the development team had
been at the Zendesk planning meeting to align the upcoming tasks and projects with
the relevant departments. At the start of a Sprint, the developers conducted Sprint
planning meetings. The team conducted backlog grooming when they felt the need
to refine tasks and requirements. Retrospectives were conducted whenever the team
felt the need to reflect upon their process. At the end of the sprint, a new software re-
lease was done and the company was updated on the progress done the last to weeks.

55

Figure 5.2: An overview over the coordination mechanisms present in a Sprint

5.4.2 Business process

Zendesk planning meeting

This meeting was usually held on Fridays at 11:00 every two weeks, before the be-
ginning of a new Sprint. In this meeting, representatives from the development team
and the other departments in the company met to prioritize and choose tasks for the
upcoming sprint. This included looking through the list of tickets (can be bugs, is-
sues, new functionality) on Zendesk and picking out a few for the development team
to tackle. The tasks chosen in the Zendesk meeting was usually tasks wanted done
by other departments (such as discount codes) or bugs issued by customers using the
website. This meeting helped align the development team’s plans with the plans of
the other departments.

56

The designer stated that: "Zendesk has helped us a lot with the process. It’s the
one place and everyone has to create issues with the site no matter what, and they
put it in there and then we go through it. I think that has been really good for us that
on Fridays we always go through this list, we close tickets, we open tickets and then
we pick the new ones for the next week."

57

5.5 Resource dependency

I found that 11 out of 38 coordination mechanisms could be categorized as managing
resource dependencies. In table 5.9 all of the coordination mechanisms managing the
resource dependencies are presented.

Entity (4) Technical (10)

Daily stand-up Daily stand-up
Zendesk planning meeting Zendesk planning meeting
Cross-team talk Sprint planning meeting
Communication tools Continuous build and test

Software release
Pull request checklist
Communication tools
Source code control
Ad hoc conversation
Test suite

Table 5.9: Coordination mechanisms managing the resource dependency

5.5.1 Entity

Communication tools

The team made use of several communication tools, such as Skype, Google Meet
and e-mail. Slack was used for communications with different parts of the company
through channels. Slack was used to inform others about issues, new releases and
other work-related tasks. Since the employees often worked from different places,
Slack was frequently used to contact people. They sometimes also sent each other
messages on Slack when they are in the same room instead of interrupting each other

58

in person. It was also used for more social reasons, such as inviting others to lunch
or inform about social events.

One of the developers stated that: "It’s a little special because the company is in
two different locations, but we take full advantage of Slack so it is easy to contact
people."

Another developer stated that: " I usually communicate via Slack because I’m
not going to run around trying to find people. If it’s urgent, I will track them down,
but it’s usually always on Slack. Its easier to just write them if I need something and
then I have it documented somewhere."

Google Meet was used to have video or audio conversations. This happened every
Monday in the Company-wide status meetings since the employees sat in different
locations and sometimes also in other meetings.

5.5.2 Technical

Software release

The developers took turns in doing the software release. When doing a software
release, the designated person from the development team had to follow a checklist
to make sure the new changes were ready to be released. When a new release had
been done, they made an update to the tech team in the tech team channel on Slack
and an update to everyone in the company on their company-wide Slack channel.

59

5.6 Barriers for managing dependencies

In the period of the data collection, a few barriers were identified. A lot of the things
in the company, such as roles, teams, and processes felt very fluid and not "set in
stone". This could sometimes contribute to issues due to things being unclear, con-
fusing and uncertain.

5.6.1 Role clarity

A barrier within the company was the role clarity. As a small company, all employees
had to pitch in wherever needed. This meant that sometimes people had to help in
the storage location if someone were ill or do other things which were not usually
their responsibility.

For some of the employees, their role or the role of others was not clear. A few
felt like they did not know what to do or what they were responsible for. When I
asked the data scientist what her role at the company was, her reply was: "I would
like to know. At least a little bit more precisely, but in general I’m supposed to help
with the data. Whatever that implies.".

The roles of product owner, scrum master and project lead were also not very
clear. Everyone had some understanding of what it implied, but it was still not clear
what the specific tasks and responsibilities of the roles were. What the tasks of the
different roles were depended on who had the role.

60

5.6.2 Working remotely

From time to time, usually once or twice every week, people worked from other loca-
tions than the company’s locations. Some thought this was very helpful to the team
and made it easier to focus on getting tasks done. A developer stated that: "I try
to work from home, work remotely, at least one time a week. I think that is really
good because if you’re in a position where you feel like you need to finish a lot of
work, then being in a different environment or just being by yourself sometimes, you
can just hammer through and just finish what you want. I mean, sometimes, when
you’re at the office, there might be like some small spontaneous meeting or a small
discussion and these can be a distraction. So yeah, I think its good for each of us to
try to do that at least one time a week or so".

Other people on the team meant that the company was not ready for remote
work yet and that it would be better if everyone was in the same location. One
of the developers stated that: "I don’t think the company is ready for remote work
because we are a small team that needs to move fast. We need to be aligned with each
other fast. I have seen companies that actually are working on for example a legacy
application that has to be maintained and it’s very possible that someone is working
from Brazil and is maintaining a part of the application, but here is not like that,
so it’s always frustrating when people are working remotely. It’s harder to get people
together and they need to call in and there is always a lot of extra work."

The designer had some experience with remote work and stated that: "I do think
that working remotely is fine, but I don’t usually do it myself. I think it’s better to be
focused at work and then go home and be offline. I did work remote full-time during
my last year of university with my last job and that was intense because you never
see the people. That is one of the main reasons I wanted to work here and work in
smaller teams again because I needed a break from that kind of remote work. If you’re
not careful I think it can be kind of demotivating because you’re not around people

61

that can help with ideas more efficiently. I would say remote work is totally normal
and sometimes even helpful to focus without interruptions."

5.6.3 Integrating the data analyst

One of the challenges in the company was efficiently integrating the data analyst. The
data analyst had little experience with the work when she got hired and since she was
the only one working with the data, it was hard for her to get the needed guidance
and help. The data analyst stated that: "There is literally nobody I can ask. And I
know if I was working in a company that actually deals with those things or there is a
bigger team and there would be somebody with more experienced that I could ask. If I
want to actually ask somebody with competence, that would be a consulting company
and that’s like 1600 NOK per hour, so if I want to ask a question, that is gonna
cost." This made it hard for the data analyst to work effectively because she had to
deal with most of her issues on her own. If there had been anyone with more experi-
ence in her field, it would have been easy for her to ask questions or discuss solutions.

5.6.4 Planning and estimation

Early in the observation period, in a chat with a member of the operations depart-
ment, a need for better planning and estimations from the development team was
wished upon. It was hard for other departments to understand what the develop-
ment was going to do in the near future and how much time it was going to take.
This would be nice to understand in order to know when other departments could
expect their requests to be fulfilled by the development team.

The designer stated that: "It’s always very difficult to predict timelines with the
developers. Some project takes longer, some projects take less time, so you just never
know. Also, some people are more developed in how they can predict, others are not. "

62

The designer’s work often depended on the work of the developers. The designer
stated that: "It sometimes frustrating for me because that [the developer’s work]
would also mean how much time I have to work on something they need at a certain
time, but if they are working on another project and that makes their current project
longer, then that means that I actually had more time and then I feel like I should not
have gone so fast and I would have been able to think about ideas and spent more time
on choosing an idea. If you have more time, you can do more research. Also, if I’m
working on the next design project and the developers are two projects behind, that
is not really a good way of working either, because things change and the company
too, in that amount of time that those projects could be implemented. It’s not always
easy, but we are getting better with the process."

To make it easier for the developers to know exactly how much time they had to
work on actual development tasks, the development team introduced "meeting-free
days". This involved that they could only be called into meetings on Mondays or
Fridays. Meetings could happen other days, but these needed to be of a high pri-
ority. Having Tuesday, Wednesday and Thursday to just focus on work helped the
team to finish their tasks and be able to focus on a task for a longer period without
distractions.

The designer stated that: "We try to do meetings on Monday and Friday. Mon-
days and Fridays are meeting days and the rest of the week is focused on getting work
done. It’s easier to just think more clearly when you know which days you have to get
things done and it’s easier to prioritize. It also allows more organic conversations
on Tuesday to Thursday if one needs to check-in or something. So yeah, I would say
it makes things easier."

A developer stated that: "You can just call me to meetings on Monday or Friday

63

because I need dedicated time to focus on stuff."

This seemed to make a great impact on the developer’s focus and made it easier
for them to know how much work they could take on in a given week because they
knew how many working days they had dedicated to actual work (and not scheduled
meetings).

Problems related to planning and estimation also got a bit better due to the im-
plementation of light-weight Scrum. This made it easier for everyone to know what
was supposed to be done in the upcoming two weeks. Also, the tasks had a time
estimate attached to them, making it easier to get an overview of how the time would
be spent.

5.6.5 Implementing changes in the software development pro-

cess

Through the interviews and the period of observation, it became very clear that
the development team valued their freedom to work however they wanted and from
wherever they wanted. One thing I noticed in my period of observation, was that it
was hard to change processes and standards or implement new processes and stan-
dards. When someone purposed to change something, everyone was open to listening
to the proposition, but the person who suggested the change had to have a really
good reason for the change. Suggestions for changes in processes often needed a
lot of discussions and it was hard work getting everyone on board with it because
everyone had to agree with it. At one point, in a meeting about the development
team’s processes, one of the developers stated that: "Our processes are all over the
place! We need a process and it’s better with an OK process than no process at all."

One of the developers also stated that: "I think, like having all the bright people

64

with sometimes very different opinions, it can be difficult to find common ground.
Everyone has their view on how things should be done and it can be difficult to have
a space to agree on something and move forward on this. So we need more listening
and collaboration to make sure that happens. I think maybe we. . . it’s an asset that
we have this creativity and freedom and being able to do what we think is right, but at
the same time putting some structures to it... It feels like a lot of resistance whenever
there is a new process or a new standardization or adopting something a little more
rigid - there is a lot of push back. So, I think this is good, but it makes it challenging
to set up processes."

This also got a little better when agreeing to stick to light-weight Scrum for at
least a few months to give it a chance and see if it could be useful to the team.

65

6 | Discussion

This section will discuss the results presented in Chapter 5. First, the results and
relevant theory will be used to discuss the research questions. Then, implications for
practice and theory will be discussed, followed by the limitations of this study.

6.1 Dependencies and their associated practices

The developers sometimes had to wait for information from particular employees or
departments to finish their work. Sometimes they had to wait for a specific activity
to be done or wait for domain knowledge to do their tasks.

This section will discuss the following research question:
RQ1: How are dependencies managed in an agile DevOps company?

My case study provides evidence for all eight types of dependencies, including
expertise, task allocation, requirement, historical, activity, business process, entity
and technical dependencies. These dependencies were identified using the depen-
dency taxonomy by Strode (2016). My findings show that the aggregated category
of knowledge dependencies accounts for 70,5% of all dependencies, whilst both pro-
cess dependencies and resource dependencies account for 14,7% each. This is relevant
because it indicates that addressing knowledge dependencies should have a vital im-
pact on coordination in agile DevOps companies. The findings also show that 15

66

multi-purpose practices are addressing three or more dependencies.

The company had both scheduled meetings, such as the scrum ceremonies and
the company-wide status meeting, and unscheduled meetings, such as ad hoc con-
versations, to manage dependencies within the company. The scheduled meetings
usually happen Monday or Friday due to the developer’s need for time to focus on
their work tasks Tuesdays, Wednesdays, and Thursdays. Moe, Dingsøyr, and Rol-
land, 2018 recommend to identify the important scheduled meetings early as having
enough scheduled meetings is important to develop a common understanding of do-
main knowledge. Berntzen, Moe, and Stray, 2019 found that a focus on achieving
high-quality communication changes coordination over time and that unscheduled
coordination enables high-quality coordination. Eisenbart, Garbuio, Mascia, and
Morandi, 2016 found that scheduled meetings with a pre-distributed agenda led to
more personal conflict, while unscheduled meetings led to unbiased discussions of
task-related conflicts.

The team needed two types of planning meetings, the Zendesk planning meeting,
and the Sprint planning meeting. The Sprint planning managed dependencies within
the team, while the Zendesk planning meeting handled dependencies from outside
the team. It is also a difference in what kind of dependencies they managed.

6.1.1 Knowledge dependency

The results presented in the previous chapter showed that 70,5% of the practices
identified act as coordination mechanisms for knowledge dependencies. Some of the
most important knowledge dependency managing coordination mechanisms includes
the daily stand-up, the company-wide status meeting, the sprint planning meeting
and ad hoc conversations. All of these coordination mechanisms manage 2 or more
knowledge dependencies. Ad hoc conversations manage all of the 4 knowledge de-

67

pendencies, making it one of the crucial coordination mechanisms.

Daily stand-up

The goal of the daily stand-up was to gain insight into the team members’ tasks
and tackle any obstacles in the way of making progress. The stand-up was vital for
managing task allocation dependencies and expertise dependencies.

A study done by Stray et al., 2020 where data was collected over 8 years in-
cluding interviews with 60 project members with roles at all levels in 15 different
teams shows that it is difficult to implement stand-ups in a way that benefit the
whole team. One of the main problems found in this study was that the information
shared in the daily stand-up was not perceived as relevant, particularly due to the
diversity in roles, tasks and seniority. In my study, this was not a problem, because
most of the time, only the developers took part in the daily stand-up. They were
often working on a small number of tasks and many of the tasks were connected in
some way, so the information given in the stand-up was almost always relevant for
most of the participants.

Another problem with the daily stand-up is that managers or Scrum Masters use
the meeting primarily to receive status information. Out of the time spent on the
Three Scrum Questions in this study, 66% was spent on the "Have Done" question
(Stray et al., 2020). In my study, the developers sometimes felt that they just re-
ported what they were working on (this meaning the "Have Done" and "Will Do"
questions). They also expressed that problem-focused communication was the most
important part of the daily stand-up because it helped them identify and solve prob-
lems and make decisions more effectively. Stray et al., 2020 suggests to stop asking
"What did you do yesterday?". This is to reduce time spent on status reporting
and self-justification, focus on future work and spend time discussing and solving
problems as well as making quick decisions.

68

In my study, the team held their meetings at 10:15 every day. Sometimes team
members had not yet arrived at the office, trying to call into the meeting whilst on
the bus or in traffic, making it hard for the rest of the team to hear what they were
saying. This often ended in that the meeting was delayed by 10-15 minutes. The
timing of the meeting did often disturbed the focus of the team and sometimes the
meeting was held off until someone was done with a task. Stray et al., 2020 suggests
finding the least disruptive time to hold the stand-up. A suggestion is to have the
meeting before lunch to decrease the number of distractions.

Company-wide status meeting

The weekly company-wide status meeting made sure all employees knew what was
going on in the company. It was really important for managing expertise and task
allocation dependencies.

Sprint planning meeting

The goal of the Sprint planning meeting was to break issues down to smaller tasks
and delegate them to the team. This meeting also included estimating time on each
task, discuss requirements and talk about who to get in touch with if more informa-
tion was needed. The meeting lasted for about an hour.

Abrahamsson, Salo, Ronkainen, and Warsta, 2002 recommend that the Sprint
planning meeting should be a two-phase meeting organized by the Scrum master.
Abrahamsson et al., 2002 suggests that in the first phase of the meeting, the cus-
tomers, users, management, Product Owner and Scrum Team participate to decide
upon the goals and the functionality of the next Sprint. The second phase of the
meeting should be held by the Scrum Master and the Scrum Team focusing on how
the product increment is implemented during the Sprint. Stray, Moe, and Aasheim,
2019 found that in their study, the two phases had the opposite order. First, 60 min-

69

utes with pre-planning was conducted to plan unfinished tasks from the last Sprint
and plan new tasks for the upcoming Sprint. After this pre-planning, a 60-minute
Sprint planning was held where the goal was to agree on the tasks list suggested in
the pre-planning. This differs from what I found in my study.

In my study, the Zendesk meetings acted as a pre-planning meeting for the upcom-
ing Sprint, but it did not involve the whole team. It usually involved representatives
from other departments such as operations, finance or marketing. The Sprint plan-
ning was held after the Zendesk meeting only involving the developers. This is more
similar to what Abrahamsson et al., 2002 suggests, except for that the pre-planning
(the Zendesk meeting) and the actual Sprint planning were two different meetings
on two different days.

Ad hoc conversations

Ad hoc conversations managed all of the four knowledge dependencies. Ad hoc con-
versations happened daily and took place everywhere, especially where the team
where located. The work area made it easy for the team members and employees
from other departments of the company to have quick discussions. Ad hoc conversa-
tions often happed within the development team, but also often with people outside
of the team. The developers often had discussions about standards and how to solve
problems, but also a lot of conversations with the designer about requirements. The
casual communication about unclear tasks or requirements often leads to unsched-
uled meetings.

In a study done by Stray, 2018 on planned and unplanned meetings in large-scale
projects, it was found that the employees spent more time in ad hoc conversations
and unscheduled meetings than they did in scheduled meetings. The study also sug-
gests that ad hoc conversations provide an important venue for coordination as the
discussion in unscheduled meetings and ad hoc conversations may be more focused

70

and lead to more effective decision making than discussions in scheduled meetings.
This is also true for my study.

71

6.1.2 Process dependency

The results presented in the previous chapter showed that 14,7% of the practices
identified act as coordination mechanisms for managing process dependencies. Both
the Zendesk planning meeting and the Sprint manages both activity and business
process dependencies.

Sprint

The development team had a Sprint period of two weeks. When I first started the
observations, the Sprints for the development team was only a week due to all other
departments having one-week sprints. This caused a lot of frustration amongst the
developers because it was not enough to complete projects. Two weeks fit the devel-
opment team better and made it easier to take on more tasks or even finish projects.
It did, however, make it more complicated to coordinate with the other departments
because the other departments didn’t a clear plan for more than one week. Also, the
Zendesk meeting used to be once a week when the development team had weekly
sprints, but after changing to two-week periods, the Zendesk meeting only happened
every other week. This meant that the other departments had to plan more precisely
to get their requests done in time.

The Sprint period worked as a coordination mechanism managing both activity
dependencies and business process dependencies. This is because a Sprint is the
main period for completing activities before other activities and business process can
proceed.

Zendesk planning meeting

Then Zendesk planning meeting worked as a pre-planning meeting for the upcom-
ing sprint and was the most important meeting to allocate tasks and requirements
based on the requests from other departments. It also helped align the develop-
ment team’s work with the work of other departments. In these meetings, it was

72

easy for the other departments to voice their needs, and inform the development
team about upcoming events. In these meetings, the Zendesk tickets issued by the
other departments were prioritized so the development team knew what needed to
be done first. An example of a task that was allocated in this meeting was a discount
code for the participants of an upcoming event that the marketing team was going to.

73

6.1.3 Resource dependency

The results presented in the previous chapter showed that 14,7% of the practices
were classified as coordination mechanisms managing the resource dependencies. The
daily stand-up, the Zendesk planning meeting, and communication tools all manage
both entity and technical dependencies.

Communication tools

Communication tools such as Slack, e-mail and Google Meet were frequently used
to coordinate and collaborate. Communication tools contributed to managing entity
dependencies by being able to reach out to people who were not present. As the
company was distributed, it was crucial to be able to connect with people in other
locations.

A study done by Stray, Moe, and Noroozi, 2019 on the use of Slack in virtual ag-
ile teams showed that positive aspects of using the tool were increased transparency,
team awareness, and informal communication. Slack also facilitates problem-focused
communication which is essential for agile teams. In my study, a lot of informal
communication happened on Slack. It was also used to discuss problems and make
decisions.

Communication tools managed entity and technical dependencies, but also knowl-
edge dependencies and process dependencies, making conversation tools a crucial
coordination mechanism in the company.

74

6.1.4 My findings compared to other studies

Table 6.1 shows a comparison of the coordination mechanisms addressing three or
more dependencies in my study, in a study done by Stray, Moe, and Aasheim, 2019
and in a study done by Strode, 2016. Both my study and the study done by Stray,
Moe, and Aasheim, 2019 includes daily stand-up, sprint planning meeting, commu-
nication tools, ad hoc conversations and work area. Stray, Moe, and Aasheim, 2019
also found that Scrum of Scrum meetings and team leader meetings addressed three
or more dependencies. These meetings were not present in my study, but in the study
done by Stray, Moe, and Aasheim, 2019 due to the study being done in an large-
scale context. My study and the study done by Strode, 2016 also has some common
coordination mechanisms, such as cross-team talk, sprints, iteration planning session
(or sprint planning meeting) and backlog.

My study Stray et al. (2019) Strode (2016)

Zendesk planning meeting
Daily stand-up
Ad hoc conversation
Cross-team talk
One on one meeting
Sprint planning meeting
Communication tools
Status meeting with supervisor
Project meeting
Backlog
Task
Work area
Scrum master
Sprint
UX/UI Designer

Scrum of Scrum meeting
Team leader meeting
Daily stand-up
Sprint planning meeting
Ad hoc conversations
Communication tools
Project management tools
Kanban board
Open work area

Cross-team talk
Informal face-to-face negotiation
with external parties
Sprints of 1 to 2 weeks
Wallboard displaying current
stories, tasks, and task assignment
User stories
A co-located team
Iteration planning session
Story breakdown sessions
A product backlog
A done checklist
Working software at the
end of each sprint
A single priority team

Table 6.1: Comparison of coordination mechanisms which addresses three or more
dependencies

75

Change over time

Jarzabkowski et al., 2012 argued that coordinating mechanisms do not appear as
ready-to-use techniques but are formed as actors go about the process of coordinating.
Furthermore, coordinating mechanisms are not stable entities but emerge through
their use in ongoing interactions (Jarzabkowski et al., 2012). This is consistent with
the findings in this study. Many of the coordination mechanisms in this study change
under the period of observation. At the point of observation start, none of the Scrum-
related activities were a part of the team’s practices. Also, some of the practices were
changed and improved for example through the retrospective.

76

6.2 Barriers for managing dependencies

This section answering and discuss the second research question:
RQ2: What are barriers for managing dependencies in an agile DevOps company?

There were some barriers to managing dependencies in the company which now
will be discussed. Barriers such as having to work remotely, lack of role clarity, in-
tegrating the data analyst, planning and estimation, and implementing changes in
the software development process. All of these barriers made it harder to manage
dependencies.

Working remotely

Working remotely made managing several dependencies harder due to people not
being physically at the work location. This could sometimes make it hard managing
dependencies, especially if the person working remotely were not available through
communication tools.

Role clarity

When the roles are ambiguous it could be hard to locate who knows what or who
does what. Some of the employees have tasks that are outside of what they would
regard as their responsibilities. This made them stressed and frustrated, not know-
ing what could be expected of them. The data analyst clearly stated that she did
not know what was her responsibilities and not. She knew she was responsible for
helping the data but was not sure what that implied.

The product owner is responsible for maximizing the value of the product result-
ing from the work of the development team (Schwaber & Sutherland, 2017, p.6).
Berntzen et al., 2019 states that a core responsibility of the product owner is to com-
municate business needs to the development team. In their study, they found that

77

coordination varies depending on the context of the product owner. In my study, I
found that the role of the product owner was unclear and did not have a set of de-
fined tasks and responsibilities. The product owner participated in project meetings
to communicate business needs and project requirements but did not participate in
sprint planning, backlog grooming or daily stand-ups. Rubin, 2012 states that the
product owner should act as a link between the Scrum Team and the stakeholder.
Hence, the product owner must understand the needs and priorities of the stakehold-
ers, the customers, and the users to represent them in the development and ensure
that the right product is developed. To represent the stakeholders and users, I would
argue that it would be beneficial if the product owner was more involved in choosing
tasks for the Sprint and continually re-prioritizing and refining the list (Larman &
Vodde, 2008).

In my study, the role of Scrum Master had more defined tasks and responsibilities
than what the product owner had. The role of Scrum Master rotated between the
developers, so what the Scrum Master did depended on who was the Scrum Master at
the time. The Scrum Master always facilitated the Sprint planning and shielded the
team from outside interference. The Scrum Master was also responsible for making
sure that they followed the process of Scrum. This includes facilitating the stand-
up, but in practice, whoever remembered the meeting where the one making sure
it happened. Table 6.2 shows the findings from my study compared to the findings
from a study by Bass, 2014 and a study by Dingsøyr, Moe, and Seim, 2018.

Integrating the data analyst role

Another challenge in the team was to integrate the data analyst which is closely re-
lated to role clarity. The team got a data analyst in October of 2019, so they did not
know how to incorporate her to the team in an efficient way. Before, data analysis
and other data-related tasks were done by the developers, but because they did not
have the time for it, the company decided to hire a data analyst. Since neither the

78

This study Bass, 2014 Dingsøyr, Moe, and Seim, 2018

Stand-up facilitator
Process anchor
Sprint planner
Developer
Impediment remover

Process anchor
Stand-up facilitator
Impediment remover
Sprint planner
Scrum of Scrum facilitator
Integration anchor

Stand-up facilitator
Iteration planner
Demonstration facilitator
Retrospective facilitator

Table 6.2: The functions of a Scrum master in my study, Bass, 2014 and Dingsøyr,
Moe, and Seim, 2018

data analyst nor the team knew what her role was exactly, it made it hard to know
how to utilize this role in a good way.

A study done by Hukkelberg and Berntzen, 2019 identified a set of challenges
related to integrating data science roles in agile autonomous teams. Hukkelberg and
Berntzen, 2019 found that misconceptions about the data scientist role lead to wrong
expectations about what a team wants the data scientist to solve, preventing the re-
alization of the full value of having this role on the team. This fits well with what
I found in my study. The role of the data analyst was unclear to most of the team
and the other departments, making it hard to know what the data analyst could
solve. This made it hard to utilize the value of this role. Another challenge related
to integrating data science roles can be to enable collaboration and knowledge shar-
ing (Hukkelberg & Berntzen, 2019). For data science roles to grow and learn, it is
important to use the time working with other people in data science roles. The only
data-related role in the company I studied was the data analyst. It was difficult for
her to grow in her role at the high pace that was needed because there was no-one
there for her to ask if she met any obstacles. From time to time, the developers could
help with the technical aspect, but not the data analyst part of her work. In the
interviews, she voiced a need for people in the same role to talk to, ask questions,

79

and discuss problems with.

To integrate the data analyst, both the team and company must understand
the role of a data analyst and what a data analyst can and should contribute with
(Hukkelberg & Berntzen, 2019). This also makes it easier for the data analyst to
know what her role in the team is and what the others can expect of her. It would
also be good for the data analyst to have someone to collaborate and share knowledge
with, so I would suggest looking into other data-related roles, such as data scientist
or data engineer to support her. This depends on the needs of the company, but it
can at least be worth looking into to make the most of the data the company collects.

Planning and estimation

Planning and estimation are important for managing task allocation dependencies,
activity dependencies, and business process dependencies. A problem in the com-
pany was the lack of clearly expressing how long the developers thought a project or
a task would take. This made it hard for the designer to know how long he had to do
his tasks. It also made it hard for the operations department to plan when projects
should be done in the future as some activities and business processes could not be
carried out without the finished work of the developers or the development team.

Implementing changes in the software development process

The team often resisted implementing changes in the software development pro-
cess. This could make it harder to manage dependencies because coordination needs
change over time. If one does not add, change or remove coordination mechanisms
based upon the needs of the team, it can be hard to manage dependencies well be-
cause the coordination mechanisms in the team may not be fitted to the need of the
team.

80

6.3 Implications for theory

The dependency taxonomy by Strode (2016) was used in this study to identify de-
pendencies and coordination mechanisms. I found that this taxonomy worked well
in my case. It was a valuable help to identify the different dependencies in the com-
pany. I also felt that the different dependencies described by Strode fit well with my
results and there were no dependencies that I identified that did not fit the descrip-
tion of one of the dependencies identified in the taxonomy. The taxonomy was also
applicable when identifying coordination mechanisms. The taxonomy also made it
possible to match coordination mechanisms to the best fit strategy components and
dependencies.

6.4 Implications for practice

Firstly, companies should continuously evaluate their coordination needs. The need
for coordination changes over time, just as companies and projects change over time.
When teams introduce new coordination mechanisms or change existing ones, it is
important to consider which dependencies should be managed. I would suggest pri-
oritizing coordination mechanisms managing a high number of dependencies.

A great strength of the company, in this case, was their frequent use of commu-
nication tools. Since the company was located in two different locations and a lot of
people often worked from home, cafes or other countries, this helped the team get
the information they needed to do their tasks. Also, the development team often
messaged each other on Slack instead of talking to each other face to face to not
disturb people when they were focusing on something. This helped to keep focus
and answer whenever the person had time for it.

81

An interesting finding in this study was the need for two different planning meet-
ings. This was done because the development team did not only need to plan their
sprints, but they needed to align with business outside of their own team, such as
marketing, finance or operations. I would argue that it is important to have planning
meetings that do not only involve the development team but the stakeholders outside
of the team as well.

Lastly, I would also suggest making sure everyone in the team have the same
understanding of what it means to have the role of Scrum Master, Product Owner,
and Project Lead. It is important that these roles are clear and that people taking
on these roles know what they are supposed to do and what responsibilities they have.

82

6.5 Limitations

The limitations of this study include those common to qualitative case study research
in general and those specific to this study.

Case study

Choosing a different case in a different context might have led to other different co-
ordination mechanisms and dependencies being identified.

Development team’s point of view

This study mainly observed coordination from the development team’s point of view.
The observations were done mainly in the office space where the development team
sat and not in the storage area where the business part of the company was located.
The result of this study could have been different if I had spent more time observing
and interviewing the business department in the company.

Taxonomy by Strode (2016)

The dependency taxonomy by Strode (2016) was used to identify dependencies and
coordination mechanisms in this study. The results presented by Strode (2016) are
based on three different cases. The cases varied in complexity and the projects had
different degrees of involvement of the customer. Moreover, the results by Strode
(2016) are based upon interviews with the team members, while in my study the
results are based upon interviews and extensive observations. Therefore, it is impor-
tant to keep in mind the difference in scale and type when comparing my study to
Strode (2016).

Coordination over time

Since "coordination mechanisms are dynamic social practices that are under contin-
uous construction” (Jarzabkowski et al., 2012) it is evident that the results could be

83

different if the data was collected at a different point in time. Therefore, it could
have been interesting to do more observation of the team over a longer period.

Other frameworks

There are other frameworks that could have been chosen, such as the theory pro-
posed by Van De Ven et al. (1976). If a different framework had been used, the
results and discussion could have been different.

Construct validity

As mentioned in Chapter 3.2 on data collection I followed the principles presented
by Yin, 2014. I used multiple sources of evidence in the form of interviews, obser-
vations, documentation, and chat logs. This helps ensure the validity of the research.

External validity

The use of a theory is a way to increase the external validity of a study. The depen-
dency taxonomy for agile software development projects by Strode (2016) was used
in this study.

Reliability

To increase the reliability of the study, I created a case study database and main-
tained a chain of evidence, as mentioned in Chapter 3.2.

84

7 | Conclusion and further work

In this thesis, I have presented a case study of an agile DevOps company. I have
presented a theoretical background on the relevant topics to understand the company
and its processes. Also, I presented the research methods used, the research context
and results from the study. Lastly, the results were discussed in light of relevant
research. This chapter will provide a conclusion of the study and suggestions for
future work.

The first research question aimed at understanding how dependencies were man-
aged in an agile DevOps company. I found a total of 38 practices acting as coordina-
tion mechanisms. A total of 15 coordination mechanisms addressing three or more
dependencies were identified. The most crucial coordination mechanisms included
Zendesk planning meeting, the daily stand-up, ad hoc conversations, sprint planning
meeting and communication tools. All of these mechanisms addressed four or more
dependencies and happened regularly. They also managed dependencies across the
different categories of dependencies.

The second question aimed to identify and discuss barriers for managing depen-
dencies efficiently in an agile DevOps context. The company were facing challenges
related to working remotely, role clarity, planning and estimation, and implementing
changes in the software development process.

85

7.1 Future work

Several topics could be interesting to research further.

The need for coordination and coordination mechanisms change over time. There-
fore, it could be interesting to study how they change over a longer period. It could
also be interesting to study how and why new coordination mechanisms are intro-
duced.

As communication tools were one of the most crucial coordination mechanisms
in this study. This helped the team make quick decisions, discuss topics and solve
problems. It could be interesting to analyze chat logs to get a better understanding
of what dependencies are managed by communication tools and how.

In this study, some of the coordinator roles were unclear. Therefore, it could be
interesting to study coordinator roles such as Product Owner, Scrum Master and
Project lead to understand how these roles act as coordination mechanisms, which
dependencies they manage and how they manage these dependencies.

Lastly, the development team in this study had dedicated days for meetings. It
could be interesting to research this topic further to understand the benefits and
challenges of this practice, and how this affects the coordination in the team.

86

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software de-
velopment methods: Review and analysis. Proc. Espoo 2002, 3–107.

Ahmad, M. O., Markkula, J., & Oivo, M. (2013). Kanban in software development:
A systematic literature review, 9–16. doi:10.1109/SEAA.2013.28

Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (2016). Managing Technical
Debt in Software Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports,
6 (4), 110–138. doi:10.4230/DagRep.6.4.110

Bass, J. M. (2014). Scrum master activities: Process tailoring in large enterprise
projects. In 2014 ieee 9th international conference on global software engineer-
ing (pp. 6–15). IEEE.

Berntzen, M., Moe, N., & Stray, V. (2019). The product owner in large-scale agile: An
empirical study through the lens of relational coordination theory. (pp. 121–
136). doi:10.1007/978-3-030-19034-7_8

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., . . . Zazworka, N.
(2010). Managing technical debt in software-reliant systems. In Proceedings of
the fse/sdp workshop on future of software engineering research (pp. 47–52).
FoSER ’10. ACM.

Cohn, M., Sim, S., & Lee, C. (2009). What counts as software process? negotiating
the boundary of software work through artifacts and conversation. Computer
Supported Cooperative Work, 18, 401–443. doi:10.1007/s10606-009-9100-4

87

https://dx.doi.org/10.1109/SEAA.2013.28
https://dx.doi.org/10.4230/DagRep.6.4.110
https://dx.doi.org/10.1007/978-3-030-19034-7_8
https://dx.doi.org/10.1007/s10606-009-9100-4

Creswell, J. W. (2018). Research design : Qualitative, quantitative mixed methods
approaches. Los Angeles, California: Sage.

Crowston, K., & Osborn, C. (2000). A coordination theory approach to process de-
scription and redesign. Former Departments, Centers, Institutes and Projects.

Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating knowledge work in
multiteam programs: Findings from a large-scale agile development program.
Project Management Journal, 49 (6), 64–77.

Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE
Software, 29 (5), 22–25.

Eisenbart, B., Garbuio, M., Mascia, D., & Morandi, F. (2016). Does scheduling mat-
ter? when unscheduled decision making results in more effective meetings. Jour-
nal of Strategy and Management, 9, 15–38. doi:10.1108/JSMA-03-2014-0017

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123, 176–189. doi:https://doi.
org/10.1016/j.jss.2015.06.063

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., & Abrahamsson,
P. (2016). Software development in startup companies: The greenfield startup
model. IEEE Transactions on Software Engineering, 42 (6), 585–604.

Gruhn, V., & Schäfer, C. (2015). Bizdevops: Because devops is not the end of the
story. In H. Fujita & G. Guizzi (Eds.), Intelligent software methodologies, tools
and techniques (pp. 388–398). Cham: Springer International Publishing.

Harlann, I. (2017). Devops is a culture, not a role! Retrieved from https://medium.
com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0

Harwell, M. R. (2011). Research design in qualitative/quantitative/mixed methods.
In C. F. C. R. C. Serlin (Ed.), The sage handbook for research in education:
Pursuing ideas as the keystone of exemplary inquiry (Chap. 10, pp. 147–164).
doi:10.4135/9781483351377

Hemon, A., Fitzgerald, B., Lyonnet, B., & Rowe, F. (2020). Innovative practices for
knowledge sharing in large-scale devops. IEEE Software, 37 (3), 30–37.

88

https://dx.doi.org/10.1108/JSMA-03-2014-0017
https://dx.doi.org/https://doi.org/10.1016/j.jss.2015.06.063
https://dx.doi.org/https://doi.org/10.1016/j.jss.2015.06.063
https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0
https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0
https://dx.doi.org/10.4135/9781483351377

Hukkelberg, I., & Berntzen, M. (2019). Exploring the challenges of integrating data
science roles in agile autonomous teams. In R. Hoda (Ed.), Agile processes
in software engineering and extreme programming – workshops (pp. 37–45).
Cham: Springer International Publishing.

Jarzabkowski, P. A., Lê, J. K., & Feldman, M. S. (2012). Toward a theory of coor-
dinating: Creating coordinating mechanisms in practice. Organization Science,
23 (4), 907–927. doi:10.1287/orsc.1110.0693

Katzenbach, J. R., & Smith, D. K. (2005). The discipline of teams. Harvard Business
Review, 83 (7/8), 162–171.

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and
organizational tools for large-scale scrum. Addison-Wesley Professional.

Lim, E., Taksande, N., & Seaman, C. (2012). A balancing act: What software prac-
titioners have to say about technical debt. IEEE Software, 29 (6), 22–27.

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J.,
& Oivo, M. (2016). Towards devops in the embedded systems domain: Why
is it so hard? In 2016 49th hawaii international conference on system sciences
(hicss) (Vol. 2016-, pp. 5437–5446). IEEE.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015). Dimensions of devops. In C. Lasse-
nius, T. Dingsøyr, & M. Paasivaara (Eds.), Agile processes in software engi-
neering and extreme programming (pp. 212–217). Springer International Pub-
lishing.

Malone, T., & Crowston, K. (1994). The interdisciplinary study of coordination.
ACM Computing Surveys (CSUR), 26 (1), 87–119.

Miles, M., & Huberman, A. (1994). Qualitative data analysis: An expanded source-
book. Thousand Oaks, Calif: Sage.

Mintzberg, H. (1979). The structuring of organizations : A synthesis of the research.
Englewood Cliffs, N.J: Prentice-Hall.

89

https://dx.doi.org/10.1287/orsc.1110.0693

Moe, N. B., Dingsøyr, T., & Dybå, T. (2008). Understanding self-organizing teams
in agile software development. In 19th australian conference on software engi-
neering (aswec 2008) (pp. 76–85). IEEE.

Moe, N. B., Dingsøyr, T., & Rolland, K. (2018). To schedule or not to schedule? an
investigation of meetings as an inter-team coordination mechanism in large-
scale agile software development. 6, 45–59. doi:10.12821/ijispm060303

Musante, K., & DeWalt, B. (2010). Participant observation: A guide for fieldwork-
ers. AltaMira Press. Retrieved from https : / /books . google . no/books ? id=
ymJJUkR7s3UC

Nerur, S., & Balijepally, V. (2007). Theoretical reflections on agile development
methodologies - the traditional goal of optimization and control is making way
for learning and innovation. Communications Of The Acm, 50 (3), 79–83.

Parker, G. (2003). Cross-functional teams; working with allies, enemies, and other
strangers. Wiley.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit. Agile software development series. Addison-Wesley.

Raman, S. (1998). Lean software development: Is it feasible? In 17th dasc. aiaa/ieee/sae.
digital avionics systems conference. proceedings (cat. no.98ch36267) (Vol. 1,
C13/1–C13/8 vol.1). IEEE.

Robson, C. (2011). Real world research : A resource for users of social research
methods in applied settings. Chichester: Wiley.

Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile
process. Addison-Wesley Professional.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14 (2), 131–
164.

Saldaña, J. (2016). The coding manual for qualitative researchers. London: Sage.

90

https://dx.doi.org/10.12821/ijispm060303
https://books.google.no/books?id=ymJJUkR7s3UC
https://books.google.no/books?id=ymJJUkR7s3UC

Schwaber, K., & Sutherland, J. (2017). The scrum guide. the definitive guide to
scrum: The rules of the game. Retrieved from https://www.scrumguides.org/
docs/scrumguide/v2017/2017-Scrum-Guide-US.pd

Spradley, J. (2016). Participant observation. Holt, Rinehart and Winston. Retrieved
from https://books.google.no/books?id=q7DlCwAAQBAJ

Stray, V. (2018). Planned and unplanned meetings in large-scale projects. (pp. 1–5).
doi:10.1145/3234152.3234178

Stray, V., Moe, B. N., & Aasheim, A. (2019). Dependency management in large-
scale agile: A case study of devops teams. In Proceedings of the 52nd hawaii
international conference on system sciences.

Stray, V., Moe, N. B., & Noroozi, M. (2019). Slack me if you can! using enterprise so-
cial networking tools in virtual agile teams. In 2019 acm/ieee 14th international
conference on global software engineering (icgse) (pp. 111–121).

Stray, V., Moe, N. B., & Sjøberg, D. (2020). Daily stand-up meetings: Start breaking
the rules. IEEE Software, 37 (3), 70–77.

Strode, D. (2016). A dependency taxonomy for agile software development projects.
Information Systems Frontiers, 18 (1), 23–46.

Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located
agile software development projects. The Journal of Systems Software, 85 (6),
1222–1238.

Sutton, J., Stanley M. (2000). The role of process in a software start-up. IEEE
Software, 17 (4), 33.

Ven, A. H. V. D., Delbecq, A. L., & Koenig, R. (1976). Determinants of coordination
modes within organizations. American Sociological Review, 41 (2), 322–338.

Yin, R. K. (2014). Case study research : Design and methods. Los Angeles, Calif:
SAGE.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). Devops and its practices. IEEE
Software, 33 (3), 32–34.

91

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pd
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pd
https://books.google.no/books?id=q7DlCwAAQBAJ
https://dx.doi.org/10.1145/3234152.3234178

Appendices

A Observation protocol

92

B Interview guide

Interview Guide

Introduction

● Present myself and say a little about the project
● Thank the person for participating
● Confirm confidentiality and anonymity
● Ask for permission to record the interview

General

● How long have you been working for this company?
● What role do you have? What are your tasks and responsibilities?
● What in general are you working on now?

Team

● Who do you consider a part of your team?
● Do you have an overview of what the other team members are doing?
● Do you feel like you (and your team) have a common goal?
● Do you collaborate with other team members? How and on what typically? Is it useful?

Processes

● How are tasks chosen and prioritized?
○ Who decides and how?

● Could you talk me through the process from you get a task until its finished?
● Do you (and your team) track or have an overview of the tasks you are working on? How?

○ If yes - is it useful?
○ Is there any prioritization of the tasks?

● Do you have any regular events? (Ex. weekly meetings, daily meetings, weekly deployment)
○ How do you feel about these events? Are they useful?

● Is there anything about the processes in the team that could be better? Do you have any thoughts
on how?

● Has anything about this process changed over the time you have worked here?

Coordination

● How are problems that emerge in the project solved?
● Who do you talk to in order to solve your tasks?
● What do you normally need to clarify with others?
● How easy is it to continue on others’ work?
● What do you spend a lot of time on? And not?
● How much time do you spend in meetings, and on [development tasks/design-related tasks]? How

do you feel about this?
● How often are meetings moved or canceled? What are usually the reasons for canceling or moving

a meeting?
● How do you coordinate with your team or people outside your team?
● How do you feel about the flow of information, both in your team and in the company?
● How often are you working from the office and how often are you working from home? What do

you prefer (if you prefer one over the other and what situations)? Why?

Closing
● What is the best thing about working here?
● What is the worst or most frustrating thing about your job?
● How is working here different from other jobs you have had?
● Is there anything you would like to add that we did not discuss?
● Thank you for participating!

93

	Introduction
	Motivation
	Research Area and Questions
	Approach
	Chapter Overview

	Background
	Software Development Methodologies
	Agile Software Development
	Lean Software Development
	Scrum
	Kanban

	Coordination
	Theories on coordination mechanisms
	Coordination strategy
	Dependency taxonomy

	Teams
	Team or Working Group
	Autonomous teams

	Technical Debt
	Startups
	DevOps
	BizDevOps

	Research Method
	Qualitative Research
	Case study

	Data Collection
	Observation
	Interviews

	Data Analysis
	Validity and reliability
	Validity
	Reliability

	Research Context
	Organization
	Team
	Team members
	Seating
	Tools
	Processes

	Results
	Using the taxonomy to identify coordination mechanisms and dependencies
	Dependencies and Coordination Mechanisms
	Knowledge dependency
	Expertise
	Requirement
	Task Allocation
	Historical

	Process dependency
	Activity
	Business process

	Resource dependency
	Entity
	Technical

	Barriers for managing dependencies
	Role clarity
	Working remotely
	Integrating the data analyst
	Planning and estimation
	Implementing changes in the software development process

	Discussion
	Dependencies and their associated practices
	Knowledge dependency
	Process dependency
	Resource dependency
	My findings compared to other studies

	Barriers for managing dependencies
	Implications for theory
	Implications for practice
	Limitations

	Conclusion and further work
	Future work

	References
	Appendices

