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Abstract

Designing a gait controller for a morphology changing robot is a challenging
problem due to the high degree of freedom. In 2013, Risi showed that
by learning the relation between morphology and controller, it is possible
to evolve a neural network-based controller that can walk on different
morphologies.

This thesis aims to implement Risi’s flexible controller for a robot platform
that features a morphology changing physical robot, Dynamic Robot for
Embodied Testing: DyRET, developed at the University of Oslo. Also,
it compares which of the evolutionary algorithms (EA) would be the
best fit for the task - among behavior diversity, fitness-based and multi-
objective EA (MOEA), and combinations of different behavior descriptors
for behavior diversity EA.

In particular, this thesis implements a flexible controller based on
Hypercube-based NeuroEvolution of Augmented Topologies, designed to
learn the relation between the morphology and the controller based on the
previous work. The controller is evolved by Novelty search, fitness, and
MOEA, combining both. Three behavior descriptors are implemented -
max-min amplitude, duty factor, and the last position. The experiments
are conducted on the simulation environment provided by DyRET.

The results show that it is possible to evolve a stable controller that
can walk on various morphology for DyRET platform while not all the
evolved controllers learned the relationship between the controller and the
morphology. Also, the comparison of EA’s revealed that fitness-based EA
could produce controllers that are as good as the behavior diversity EA
and MOEA for the given constraints. The experiment also indicates that
combining all three behavior descriptors can generate most fit controllers
while not statistically significant when comparing the walking distance.
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Chapter 1

Introduction

In 2016, one of the best human players in the ancient board game of Go was
defeated by Deepmind’s AI, AlphaGo[48]. The game of Go was previously
thought of as undefeatable by AI by many due to the complexity and long-
term planning attribute of the game. By combining deep neural networks
with reinforcement learning, this achievement marked a milestone in terms
of AI research[42].

Does it mean that we have come up with an algorithm to think and act like
us? Although the recent accomplishment in deep learning has provided a
miraculous advance in many fields - from medical image analysis to playing
games, these so-called artificial intelligence algorithms can only do one
thing, for which they are designed. An AI system - sophisticated enough
to defeat the best human player in 2000 years old game, does not have a
common sense of a dog. The smooth-talking virtual personal assistants,
such as Siri or Alexa, are essentially an extended interface that automates
and integrates some trivial tasks.

Nearly 30 years ago, Randall D. Beer wrote that "intelligence exhibited
by so far current AI systems is extremely narrow and brittle" as a
critic to the classical AI methodology - which models intelligence as
"manipulation of symbolic representation of the world"[1]. Despite the
years of advance in the field, the statement holds somewhat true. Beer
goes on and suggests an alternate view, Intelligence as adaptive behavior.
He argues that the ability of autonomous agents - which can dynamically
adjust its behavior repertoire in its interaction with its environment -
is the essence of intelligence. Along with the argument, he conducts
a computational neuroethological experiment building an artificial insect
based on inspirations from biological neural architectures.

Evolved in millions of years, the human brain is the most sophisticated and
complex system known so far. If it is the function of our brain which we
are trying to replicate, why don’t we start looking at its simplest form and
question ourselves whether we could replicate that? Neurologist Daniel
Wolpert explains that the purpose of the brain is to move around[50].
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Provided by an example of sea squirt - a sea creature which floats and swims
around controlled by its elementary brain in early stage, then consumes
its own brain when it settles in one place - the augment seems to be
very convincing. If it were appropriate to define a primary brain as a
mere network with a handful of neurons designed to move around with
a purpose, evolving such a system could perhaps reveal the least sign of
intelligence - adaptive behavior.

Although it has not gained as much of attention as deep learning - where
deep and complex artificial neural network is trained by backpropagation,
there is an alternative approach to AI, known as Neuroevolution (NE)[46].
NE makes use of an evolutionary algorithm to evolve neural networks,
drawing inspiration from nature’s process of evolution. While some of the
earlier approaches have evolved weight of fixed topology neural networks
traditional evolutionary algorithm such as genetic algorithm, one of the ex-
ceptional successes within the field of NE is NeuroEvolution of Augmenting
Topologies(NEAT)[47], which evolves artificial neural networks in terms
of both of its topology and connection weights. Besides the evolving the
neural network itself, NE also introduces indirect encoding - presenting
genome as a neural network, instead of directly encoding the property of
network into the genome. Hypercube-based NEAT(HyperNEAT) utilizes
Compositional Pattern Producing Network(CPPN), which abstracts gen-
omic information into a pattern generating network, evolved by NEAT[44].
In HyperNEAT the CPPN is used to encode the information of the sub-
strate - a template of neural network with geometric information. Other
remarkable success also includes Quality Diversity(QD) algorithms - such
as Novelty Search(NS)[22], and Multi-dimensional Archive of Phenotypic
elites(MAP-Elites)[28]. These algorithms promote the search of unique
and novel behaviors, that may not have been able to discover by an ob-
jective optimization - where only fitness of the solution is considered for
the evolution process.

Legged robots have been a fascinating subject for many researchers and
engineers due to its difficulty in designing, which stems from a high degree
of freedom in the movement. While there are commercially available legged
robots1 that are versatile and agile, most of the state-of-the-art legged
robots are in a way or another hand designed by engineers. Nonetheless,
as Beer states “Animals are evolved, not designed”[2]. NE has been tested
and utilized extensively in the field of Evolutionary Robotics(ER), where
the evolutionary approach is taken for confronting problems of designing
a robot’s sensory system, morphology, and control at the same time.
Although researches in ER do not always revolve around the connectionist
approach - using a neural network as its basic form of the evolved agent,
there have been studies that use ideas from NE such as NEAT, HyperNEAT,
and QD to evolve controller or morphology for legged robots[51, 22, 39, 18,
7, 21, 31].

One of the interesting accomplishment from ER is the work done by

1https://www.bostondynamics.com/spot
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Risi[39], where he presents a novel idea of evolving a flexible gait controller
using HyperNEAT - which evolved CPPN that encodes the information of
the morphology of the robot alongside the neural controller. His work
presents that it is indeed possible to evolve a gait controller that is flexible,
i.e., can adapt to different morphologies, different leg lengths in this case.

This thesis will focus on evolving a flexible neural network-based controller
for a quadruped inspired by Risi’s work. DyRET: Dynamic Robot for
Embodied Testing, is a robotic platform that features various morphology
with adjustable leg length developed at University of Oslo by Nygaard et
al.[34]. As DyRET is designed to test various ideas on controller and
morphology; this would make an ideal platform to test Risi’s flexible
controller. Although it has already been shown to be possible, it is
interesting to implement it on the DyRET platform for the following points:

• To reconfirm Risi’s work.

• To investigate a better way of evolving the gait controller.

• To realize the flexible controller in a physical robot.

Even though the most interesting aspect of testing Risi’s work on DyRET
would be testing it on the physical robot, the primary focus in this thesis
will be on a simulated environment. However this work will pave a way
to realize the main idea - neural network-based flexible controller on a
physical robot.

1.1 Research Questions

Implementing Risi’s flexible neural gait controller on DyRET platform
poses some challenges. The algorithms that are used in the original work
should be implemented upon the correct understanding of each. While
there will be some readily available packages for the task, such as NEAT
and HyperNEAT, considering the uniqueness of the original work, many of
its components - such as the multi-layered substrate and its corresponding
CPPN should be implemented by the author.

In addition to implementing the original work on the DyRET platform, this
thesis can also experiment on various evaluation methods and variations
to see if there is any particular method that can accelerate the search
process or improve performance of the evolved controller. The original
work utilizes only novelty search as its reward mechanism coupled with a
behavior descriptor which describes the trajectory of the robot.

With the considerations given above, the research questions for this thesis
are outlined as the following;

• Is it possible to evolve a neural network-based flexible
gait controller for DyRET? First and foremost, the goal of this
thesis is to confirm whether Risi’s flexible neural controller can be
implemented on the simulated DyRET platform. Static controllers
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and flexible controllers will be evolved and compared with their
interpolated leg configuration.

• Which selection pressure works best? - diversity vs. fitness
vs. both The choice of evaluation in Risi’s work is by novelty
search. While it has been suggested that quality diversity works better
when the search landscape of performance-oriented approach can
be deceptive[22, 27], it would be interesting to confirm it and see
any exception can be drawn from a particular implementation as this
thesis. For this task, this thesis will look into comparing performance
between novelty search, fitness only, and multi-objective evaluation
combining both diversity and objective optimization.

• Which behavior descriptor works best for evolving a
gait controller for DyRET? Risi only implements a behavior
descriptor, a trajectory of robot movement. It would be interesting
to see how other types of behavior descriptors would perform and
compare combinations between them. For this purpose, this thesis
suggests three different behavior descriptor - Max-min amplitude of
joint output, duty factor, and the last position.

1.2 Contributions to the Research Community

Even though this thesis is not submitted to conveying any new idea in the
research field, there are a few points that this thesis will contribute to the
community.

First of all, this thesis will pave a way of implementing flexible neural con-
troller for the DyRET platform. DyRET has been tested with various con-
troller scheme such as high-level inverse-kinematics based position con-
troller[35], and low-level gait controller parameterized to describe continu-
ous first-order spline that presents a series of angle for each joints[29],
and a network of oscillators as central pattern generator(CPG)[32]. Imple-
mentation of neural network-based gait controller will expand the catalog
of DyRET’s controller scheme.

Although Risi[39] has confirmed and demonstrated a successful result in
his work, it has not been implemented into other platforms. This thesis will
make it the first example.

Lastly, this thesis compares different methods to evolve a flexible neural
gait controller - such as a different combination of behavior descriptors and
different evaluation systems. By doing so, this thesis will be able to present
alternative approaches and their results.
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Chapter 2

Background

In this chapter, the theories behind evolving a gait controller is introduced.
First, Neuroevolution is introduced, including an artificial neural net-
work, a simple overview of evolutionary algorithms, behavioral diversity al-
gorithms, and evolving neural networks. Then the second section provides
a general overview of legged robot controllers with a focus on biologically
inspired methods. In the end, previous works on the flexible gait controller
are introduced.

2.1 Neuroevolution

2.1.1 Artificial Neural Network

As we are trying to model intelligence, it is only natural to start looking
at the brain and its element, the neuron. In terms of functionality, a
biological neuron consists of dendrites - where it takes input from the
synapses and axon where electric signals are passed over to the dendrites
of other neurons. The neuron fires a pulse signal down the axon if a
certain threshold is reached by membrane potential from input synapses.
Several factors describe the neuron’s behavior, such as chemical reactions
in synapses and electrochemical properties during the firing, to name a few.
In other words, precise modeling of a biological neuron is complex.

In 1943, McCulloch and Pitt came up with a simplified mathematical model
of neuron mainly focusing on the all-or-none principle[26]. The basic
formulation of the mathematical model follows as such;

h =
m∑

i=0
wi xi (2.1)

h denotes membrane potential level of an artificial neuron with m connec-
ted and, with a weight of w for i th synapses. x denotes the output of i
th neuron. Then based on an activation function with its input as h, the
neuron fires or doesn’t fire. So it’s a binary device.
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Input Output

Figure 2.1: An ANN with hidden layer and input, output layer. The circles
presents neuron and the arrows presents connectivity and its assosiated
weights. Two input nodes and two output nodes with three hidden nodes
are shown.

Perceptron is a mere collection of those McCulloch-Pitt neurons structured
in layers, also known as a feed-forward neural network(FFNN). It has been
proven that such a neural network with as little as a single hidden layer can
approximate any function given that a sufficient number of hidden units
are available, and activation is continuous and not constant[15]. The most
basic and common form of the FFNN is fully-connected or dense layers
where all the neuron at one layer is connected to each of the next and the
previous layer(See figure 2.1). Computation in such a network happens
iteratively by layer and in parallel by neurons on the same layer. While
McCulloch and Pitt neuron model utilizes step function as its activation
function, multi-layered perceptron requires activation function that can
be differentiated when the chosen learning method is backpropagation.
Therefore, the sigmoid function is often used as the activation function,
but other functions such as tanh, relu functions are also common. The deep
learning also employes such a network with some derivation - convolutional
network, recurrent network, etc. - with deep structure.

The learning or training of an FFNN happens via adjusting its synaptic
weights. The most common method used at the moment is backpropaga-
tion[25]. In the training process, the output is calculated for a given in-
put, which we have some idea of how the result should be. In a supervised
learning setup, it can the answer/solution for the given input. From the
output from the network and the correct solution, an error term is calcu-
lated. This error term can be used to evaluate the fitness of the network
in training, or it is used to update the weights via chain rule. As the term
backpropagation suggests, it propagates backward from the output layer
adjusting weights of each connection based on derivates of the activation
function of each layer. Backpropagation has shown itself to be useful to
train a neural network with some optimization tricks, but it requires a lot
of data and computation resources. Another method includes the evolu-
tionary algorithm. A population of random initial weights goes through
iteration of evolution by mutation/cross-over and parent/survivor selec-
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tion. For an FFNN, fixed topology ANN can be evolved via the evolutionary
algorithm[49, 12, 1, 4]. More details of evolutionary algorithms will be dis-
cussed later in the chapter.

Continuous-Time Recurrent Neural Network

Continuous-Time Recurrent Neural Network (CTRNN), often referred as
dynamical neural networks is a subset of ANN which models behavior of
biological neurons with ordinary differential equation. The state equation
of i th neuron is expressed as follows:

τi
d yi

d t
=−yi +

N∑
j=1

w j iσ j (y j )+ Ii (t ) (2.2)

Where y is the state of the neuron, sometimes interpreted as an average of
membrane potential of the neuron; σ j is the activation function, usually
a sigmoid, given as σy (ξ) = 1

1+eθ j −ξ , with θ as a bias that controls firing

threshold; τi is time constant, which decides reactiveness of a neuron; wi j

is synaptic weight between neuron i and j ; Ii (t ) is an external input to the
neuron. For hidden or output neurons, this term will simply be zero.

CTRNN is a choice of modeling an artificial neural model for; first, its
simplicity; second, it can be interpreted neuro-biologically with synaptic
nonlinearities; third, they are known as universal approximator of smooth
dynamics[2]. Also, CTRNN is dynamical in the sense that the state of the
network changes temporarily varying over time. These properties make
CTRNN an ideal candidate when modeling a nervous system such as a
biologically inspired controller for a legged robot.

The inherent difference between CTRNN and FFNN is that CTRNN is
dynamic, all the node in the network outputs a value continuously in each
timestep, where as FFNN does not have temporal property associated with
it. Unless it is implemented in a particular way that it interacts in real-
time, FFNN is nevertheless a non-temporal function. Although it is possible
to train CTRNN with backpropagation[13], the usual choice of a learning
algorithm is EA, such as NEAT, HyperNEAT, and GA[1, 22, 39].

2.1.2 Evolutionary Algorithm

An evolutionary algorithm(EA) is a genre of computational algorithm in-
spired by biological evolution, survival of the fittest - Darwinism and ge-
netic representation of phenomena. It can be considered as an optimization
algorithm as it searches for an optimal solution in the multi-dimensional
search landscape.

The process of a conventional EA follows as such. First, a population of the
solution is initiated, either based on prior information on the problem or
random basis. This population then undergoes an iterative evolution cycle.
A new generation of the population is generated by a cross-over between
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two parent solutions or a mutation of a chosen solution in a stochastic
manner. Now, the new set of the population goes under a selection scheme
based on a fitness measure. The selection scheme can be focused on
preserving diversity - which may help to find the global optima, or elitism
which may result in faster convergence. The survivors are now the new
initial population, which goes through the same cycle until the termination
condition is met when a particular objective is achieved, i.e., good enough
solution.

Based on variations of genotype representation, and evolution processes,
there are commonly known EA methods available[11]. One of the first
EA introduced is the genetic algorithm(GA), which had undergone vari-
ous transformations and has established its canonical, simple genetic al-
gorithm(SGA). In SGA, the genotype is represented in a list of binary val-
ues. It can either be understood as a list of logical true or false for specific
criteria or a number presented in binary. The population of such bit strings
undergoes a parent selection by fitness proportional roulette wheel, then
recombination by 1-point cross over and stochastic bit-flip mutation creat-
ing a new generation. The SGA is notoriously simplest EA approach, but
effective when binary representation is suitable, and also provides a bench-
mark score when a new EA is tested. Evolutionary strategy(ES) is another
popular EA method, characterized by real-valued genotype representation
with discrete/intermediate recombination, gaussian perturbating mutation
with self-adaptive parameter tuning, and deterministic survivor selection.
Other commonly used EA include genetic programming(GP) with genotype
represented with a tree structure.

Multi-Objective Evolutionary Algorithm

The EAs introduced above search a solution to a given problem by
optimizing a single objective - fitness function. However, it is not
uncommon to face a problem that two or more, often conflicting, objectives
should be satisfied in order to solve it. The easiest solution to this is
scalarization, which aggregates the multiple objectives with some weighting
into a single fitness score. This approach has a number of drawbacks, such
as 1. required priori for setting weights, and 2.necessity to adjust the weight
to different sets of problems[11].

Multi-Objective EA(MOEA) addresses such issues by the concept of dom-
inance. A dominant solution is, for an example, for given two solutions and
two objectives, the solution that is better in both objectives or at least as
good as the other in one objective and better than the other object. This
can be extended to multiple objectives; in this case, the dominant solution
should have at least one objective higher than others, given that other ob-
jectives are equal. When a population of such solutions is present, the dom-
inant solutions form a line on the cluster’s outer edge. This line is called
pareto-front.

While there are a number of MOEA available, it is worth looking into
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one of the most popular MOEA, Nondominated Sorting Genetic Algorithm
II(NSGA-II)[10]. NSGA-II starts off by identifying Pareto-front in the
population; then, the Pareto-front is incrementally excluded from the
population. The excluded Pareto-fronts are grouped - the first Pareto-front
identified will be the best solutions for the current population. NSGA-II
introduces crowding distance metric defined by an average side length of
cuboid formed from the two nearest neighbors in the same front. Then
half of the population is used as survivors to generate the new population
while keeping the parents. The survivors are incrementally chosen from
the Pareto-fronts, and if the last Pareto-front group has to be divided,
the crowding distance metric is used to determine which individuals are
included. The figure 2.2 provides a graphical presentation of the survival
selection process.

Figure 2.2: NSGA-II survivor selection procedure. P_t indicate survivor
from last generation, C_t the child generated from P_t. Pareto-front groups
are noted by Pf1,2,3.

2.1.3 Behavioral Diversity

The conventional EAs, which focus on optimizing an objective, has its
pitfalls. The EA’s search algorithm may end up stuck around a mediocre
solution, a local optima in the fitness landscape. A better solution might
be hidden behind a small bump in the fitness landscape. Consider a robot
designed to find an escape route in a labyrinth. The robot may only try
to go straight to the goal, If the absolute distance towards the goal is the
only fitness measure. This condition will only create solutions that will go
directly to the goal, although the optimal route goes away from the goal.

The solution to the illustrated problem is diversification. However,
diversifying the genotype might create solutions that eventually does same
thing in terms of its behavior - e.g., an EA designed to evolve a walking gait
of a robot could have potentially many numbers of solutions that results
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in the robot falling immediately. The research community has suggested
different methods to tackle this problem.

Novelty Search

Lehman and Stanley[22] suggested Novelty Search which sets aside the
objective function completely and only embracing the behavioral novelty of
genomes. Novelty Search replaces the fitness function in EA with a novelty
metric, measuring how unique the behavior of an individual. This creates
pressure to search for a new behavior in EA, making the algorithm possible
to search for various solutions.

In order to measure the uniqueness of the behavior of each genome,
Novelty Search in its simplest form utilizes k-nearest neighbor(kNN)
algorithm, separating the population into k groups of genomes with respect
to their behavioral distance. The novelty metric ρ(x) is then calculated by
taking average distance to the k-nearest neighbors, expressed as;

ρ(x) = 1

k

k∑
i=0

d(x,µi ) (2.3)

Where d denotes distance function between the behavior feature vector
of i th nearest neighboring genome µi with respect to the target genome
x. The number of nearest neighbors, k is defined empirically. The
calculation of novelty metrics should take account of the current population
and the archive of novel genomes. Taking consideration of only the
current population may end up circulating around the behavioral feature
landscape.

Based on the novelty metric value ρ(x), the high scoring novel genomes,
exceeding the predefined threshold ρmi n , are added into its permanent
archive. ρmi n is adjusted along with the generations if multiple genomes are
added in one generation; it can be increased and lowered if none is added
in the given number of generations. Measuring novelty metrics should
be done within the problem domain. The behavioral features need to be
identified and quantified to fit the application.

The authors of the Novelty Search has shown that it outperforms ordinary
objective-based EAs in deceptive applications such as maze search robot
controller and bipedal walker problem. Both experiments are done with
NEAT algorithm and CTRNN for the bipedal problem.

Mouret[27] has shown that Novelty Search combining fitness with novelty
metrics into Pareto-based MOEA can perform better than the simple
Novelty Search. This approach is a global competition in a sense that the
evolution process optimizes for a single objective, fitness while diversifying
solutions in the behavior space. Lehman and Stanley[23] demonstrated
that Novelty Search paired with local competition (NSLC) can perform
better than the global competition in terms of preserving the diversity,
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although at the cost of the absolute performance. It was shown by letting
genomes only compete locally within a niche-space, defined by the nearest
neighbors of the novelty metrics.

MAP-Elites

Another well-known approach is Multi-dimensional Archive of Phenotypic
Elites(MAP-Elites), introduced by Mouret and Clune[28]. MAP-Elites
works on discretized cells in the behavior feature space. Each cell contains
one solution and evolves by randomly performing cross-over or mutation
of cells and replacing the solution in the cell if the new one has a higher
fitness. MAP-Elites effectively illuminates fitness potential in the behavior
feature space and reveals relationships between the dimensions of interest
and performance.

2.1.4 Evolving Artificial Neural Networks

A human brain, featuring roughly one hundred billion neurons and as many
as a thousand trillion synaptic connections, is a result of many iterations
of evolution. When we think of it, our first approach to replicate anything
remotely resembles the behavior of a living creature would be precisely that
of an evolutionary process and underlying structure of neural architecture.
Previously, basic methods inspired by nature were introduced, ANN, and
EA. Now, the primary focus is to present methods which attempt to evolve
an ANN.

One of the popular attempts of applying EA was to evolve the weight of
fixed topology FFNN via GA, as an alternative to the backpropagation.
This method has shown itself to be valid in the reinforced learning setup
for playing Atari games evolving deep neural networks[49]. NEAT is a
method which showed promising result by employing direct encoding and
speciation to track the ancestry and keep the divergence of the population.
HyperNEAT is introduced several years later, introducing an indirect
encoding scheme, CPPN. The HyperNEAT starts with a substrate, a two-
dimensional mapping of a neural network with a coordinate system. The
coordinates of each neuron and the connections are used as input for CPPN,
and the output is the weight of the connection for the given synapse. The
CPPN itself is evolved by NEAT. Although the ANN evolved by HyperNEAT
has a fixed topology, there have been other variants introduced, one of
which including Evolvable-Substrate HyperNEAT(ES-HyperNEAT).

NeuroEvolution of Augmenting Topologies

NEAT has been introduced by [47]. It evolves an ANN by updating its
weights and by expanding its topologies through an evolutionary process.
Prior to NEAT, there were various NE methods known as topology and
weight evolving artificial neural networks(TWEANN), besides evolving only
weights on the fixed topology of a neural network. It was one of first that
showed the promising result on evolving both topologies and weights at
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the same time - especially on pole balancing benchmarking jests[47]. Pole
balancing task had been traditionally known benchmark in the literature.

Genetic Encoding

In terms of representation, NEAT chooses a direct encoding for its
genetic encoding scheme. Genomes in NEAT is composed of two genes,
which are node genes and connectivity genes. Node genes list all the
nodes(neurons), which can be connected and specifies the types of the
node, input, output, hidden, or bias node. The connectivity gene includes
a list of connections from the input node to the output node, weight
of the connection, innovation number, and enable bit. The enable bit
shows whether it is connected or not, disabled if there is a hidden node
in between. The innovation number presents unique innovation, let it be a
new node or connection within a generation. It is chronically incremented
at the appearance. The use of the innovation number marks every gene’s
historical origin throughout the evolution process.

4
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Figure 2.3: NEAT representation of phenotype and genotype

Mutation

NEAT evolves both weights and topology by mutation. The weights are
mutated just like other NE systems, perturbation. In mutation of the
topology, NEAT can either add a new connection between existing nodes
or add a new node, dividing the current connection in half. Adding a
new connection assigns a random weight. Adding a new node required
more complication, where it needs to add an extra connection. In order
to minimize the consequence of the new structure, which reduces fitness
in most cases, the incoming connection is assigned a weight of 1, and
the outgoing connection is assigned the same weight as the previous
connection.

Cross-over

The genes of two networks can be lined out with corresponding connection
with innovation number. Since each unique mutation in a generation is
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given an innovation number by keeping the list of the innovation of the
generation, the system knows the historical origin of each gene, and how
genes can be matched.

In the cross over, the two parent genes are line up by their matching gene
- those with the same innovation number. The genes not shared by the
two parents are called either disjoint or excess, based on whether they are
within the boundary of the gene, disjoint, or the outside of the boundary.
The offspring will randomly choose at all of the matching genes from each
parent while including all the excess and the disjoint from the more fit
parent. In the case of equal fitness, excesses and disjoints are inherited
randomly between parents.

Speciation

Mutation in both weight and topology, followed by the cross over with
innovation numbers, makes it possible to grow the population in diverse
topologies. However, new structures are likely to get decreased fitness
initially, which may lead to early extinction. NEAT implements speciation
to protect the new structures by letting the niche individuals compete with
each other.

The number of excesses measures the similarity and disjoint between two
genes. the compatibility distance δ is expressed by the following equation

δ= c1E

N
+ c2D

N
+ c3W (2.4)

Where E and D, number of disjoints and excesses, N number of genes in
the larger genome, W , the average of weight differences of matching genes.
The coefficients c1, c2 and c3 are used to adjust the importance of the three
factors, used as the parameters for NEAT.

An ordered list of species is maintained based on a compatibility threshold.
At each generation, each genome is sequentially put into their species.
Species are represented by a randomly chosen genome inside the species
from the previous generation. For a given genome, there could be multiple
species that fit under the threshold; in this case, the first species will hold
that genome. If matching species are not found, it creates its own species.

NEAT uses explicit fitness sharing, where all the niche genome shares the
same fitness. According to the distance between other species, the fitness of
the species is adjusted to give a penalty to a species with a large population,

f ′
i =

fi∑n
j=1 sh(δ(i , j ))

(2.5)

Where δ(i , j ) is the distance between two networks and the sharing
function, sh() defined as
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sh(δ(i , j )) =
{

0, for δ(i , j ) > δt

1, for δ(i , j ) ≤ δt
(2.6)

Here δt is the predefined threshold value.

Since the denominator of the equation 2.5 will increase as the species has a
larger population; it will get a larger penalty and get eliminated, resulting
in balancing population distribution between the species.

The number of offspring for each species is proportional to the f ′
i , allowing

species with better fitness producing more offsprings. The species with the
lowest fitness is eliminated.

Initialization

NEAT initiates its population with a uniform distribution of minimalistic
network consisting of only input nodes and output nodes. New architec-
tures are generated throughout each generation, and speciation undergoes.
This minimalistic approach ensures the search-space with fewer dimen-
sions.

Hypercube-based NeuroEvolution of Augmenting Topologies

When it comes to comparing our attempt with an actual human brain, not
only that ANN has much fewer neurons in orders of magnitudes, but also
much less organization, and regularity. This implies that there is something
missing in the methods mentioned so far. In DNA, massive structures are
represented compactly; the repeated structure is presented by a single set
of reused genes, in mapping from genotype to phenotype. Brain is often
organized according to the geometry of the physical world as in an example
of symmetry found in shape and location of ears, retinotopic map, and
the corresponding eyes. Neurons located nearby in the brain are used to
process the related information since more the distance means more the
effort to maintain connectivity.

The ANN architectures and NE methods introduced so far ignore the
structure in general. In a simple FFNN, the order of input neurons is
something irrelevant to the learning algorithms, such as backpropagation
or genetic algorithms. Although the convolutional neural network is
capable of capturing spatial features from the given data, the location of
the neurons remains abstract.

Stanley et al. suggested HyperNEAT addressing the problems by exploiting
geometry and indirect encoding[45]. It employs connective CPPN, which is
capable of presenting connectivity patterns as functions of cartesian space.
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Compositional Pattern Producing Networks

Inspired by studies of developmental encoding in biology, CPPN tries to
reproduce how extensive structural information is encoded into few genes
by presenting repetitive patterns in Cartesian space.

CPPN produces a spatial pattern by composing essential functions. Stanley
has shown that composed simple canonical functions can produce complex
regularities and symmetries[44]. It can be interpreted such that these
simple functions represent symmetry - gaussian, or division of discrete
segments like fingers - sinusoid.

Functional wise, CPPN represents an indirect encoding of ANN. However,
in terms of its structures, the two are comparable, the only difference
being that ANN uses sigmoid in general, and CPPN includes many others.
Because of this property, NEAT can be easily extended to evolve a CPPN.
Instead of assigning a sigmoid function to hidden nodes, as in the vanilla
NEAT cases, a random activation function can be assigned when a new
node is created by mutation.

HyperNEAT

Instead of generating a spatial pattern, which takes an input of a 2d
coordinate and outputs an intensity of that point, HyperNEAT uses
connective CPPN which takes a coordinate of two nodes and outputs a
weight for that connection(See figure 2.4). Thus producing connectivity
patterns. The geometrical topology of the neurons is called a substrate.
In vanilla HyperNEAT, the substrate is given a priori designed to fit the
characteristic of the problem. Stanley has shown that the connective CPPN
could easily generate important connectivity regularities such as symmetry,
imperfect symmetry, repetition[45].

The capability of taking geometry into account when generating a con-
nectivity pattern implies that the substrate can be configured to represent
the location of sensors and motors in a robot model. Also by feeding 3d
coordinates as an input to CPPN, connectivity pattern of a 3d substrate can
be generated similar to the geometric regularity found in the brains.

Having an explicit function that generates a pattern of connections also
means that an evolved CPPN can take a new node and connection without
re-evolving the network and the behavior of that will fall into the generality
of the rest of network. It also implies that it is possible to increase the
resolution of the substrate, without further evolution, although it may
display some artifacts that was not discovered before.

The evolutionary process in HyperNEAT will start with choosing an
appropriate substrate for the problem. Then a population of CPPN is
initiated with a minimal structure and random weight. The same iteration
as NEAT evolution is done, only that fitness is measured by computing the
substrate as a regular feed-forward network for evaluating the output.
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Figure 2.4: Weight of a connection between neuron 1 and 2 is queried by
CPPN

Adaptive ES-HyperNEAT

There has been various approaches and derivations of HyperNEAT
over the years, including adaptive, HyperNEAT, HyperNEAT-LEO, ES-
HyperNEAT, HybrID, and HyperGP[9]. In this section, basic concepts on
adaptive Evolvable-Substrate HyperNEAT is introduced which is capable
of evolving more biologically plausible artificial neural network.

While NEAT could evolve the topology of the network using direct
encoding, the HyperNEAT required a predefined substrate. Although
HyperNEAT is designed to exploit the geometry, such as the location of
sensors and motors as input and output nodes, it is not trivial to decide
the locations of the hidden nodes. Risi et al. introduced a method called
Evolvable-Substrate HyperNEAT, which could deduce the location of a new
hidden node from CPPN, thereby evolving the substrate of HyperNEAT at
the same time[38].

The insight behind the method is that CPPN takes in a 4d vector as an
input(for 2d substrate), the location of the two nodes, and the intensity
output of the network express the connectivity of the network, giving out
the weight of that specific connection. Since the domain of the CPPN is
continuous, any point in the output space is a possible connection in the
substrate. Thus by sampling the CPPN with a specific interval, the area
of interest, where CPPN outputs high intensity, can be found. This, in
other words, maps the density of the connectivity information. Useful
connectivity information is found by quadtree search by focusing on the
variance of the density map, considering that a uniform gradient won’t
provide a meaningful connection. ES-HyperNEAT starts with searching
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for a possible connection from the input node by iteratively querying the
possible connections until the output node is reached.

Another perspective is the adaptivity of an ANN. A plastic neural network
is an ANN with variable weights opposed to the usual fixed weight ANN.
These networks have shown to be more effective at solving problems than
the fixed ANNs. By embedding Hebbian learning rule into the HyperNEAT,
adaptive HyperNEAT can evolve a plastic neural network[40]. The CPPN
incorporates Hebbian learning parameters as one of the outputs in the
adaptive HyperNEAT.

By combining these two methods, Risi[38] has proposed adaptive
Evolvable-Substrate HyperNEAT, which is capable of learning in a lifetime
by plasticity and evolve substrate of the network from implicit information
given by the CPPN. This unified approach gives the possibility to evolve
more brain-like ANN by its indirect encoding with CPPN, plasticity with
Hebbian learning at the same time evolving the substrate of the ANN itself.

2.2 Locomotive Controllers

Legged robots are more versatile than wheeled robots. It is capable of
maneuvering through rough terrains and narrow alleys where wheeled
vehicles or drones can’t access. The development of a legged robot
system poses more challenges than conventional wheeled ones. The most
conventional approach is to develop a hand-crafted controller. One of
the challenges is to coordinate a high degree of freedom, which makes
locomotion possible. A simple insect-like quadruped will require at least
8 to 12 degrees of freedom, considering 2-3 motors on each leg. All of
these motors need to work on harmony in order to make it walk, or even
to let it stand. Another problem is that the developer needs to spend
a considerably long time programing each and every maneuver, such as
walking straight, turning, stopping, and so on. Even after all of these have
been accomplished, the developed controller is confined to that specific
morphology, with no chance of transferring the controller to the other body.
Many attempts have been made to address those problems listed, an effort
to develop an adaptive locomotion controller. However, most of the state-
of-the-art legged robots are built in a traditional way.

2.2.1 The State of Art

The modular controller design is the most popular approach in designing
a legged robot system, demonstrated by state-of-the-art systems such as
[20]. In this approach, the system is broken down into smaller decoupled
submodules. Each module is built on a certain template dynamics or
some heuristic values. The template-dynamics-based control module
approximates the next foot position. From the estimated foot positions,
the next module calculates a trajectory. The last module moves the leg,
following the trajectory with a proportional-integral-derivative controller.
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Despite the state-of-the-art performance, this method inherits all the
problems and challenges mentioned above.

Another promising approach is trajectory optimization. The control
scheme is divided into planning and tracking. A trajectory is planned and
optimized using rigid-body dynamics and numerical optimization. The
tracking module makes sure that the trajectory is followed. Although this
approach features a more automated way to develop a system, the current
optimization techniques are not capable of managing such a complex
model. In practice, approximation or a partial optimization is used.

Most recently, a data-driven method, based on reinforcement learning, has
been shown to be sufficient for designing locomotive controllers. In these
methods, a deep neural network is trained to form a control policy from
a large set of data created by trial and error. Most of the related work
has been focused on the simulated environment, but Hwangbo et al. have
successfully implemented a trained RL agent on a physical system[16].

2.2.2 Biologically Inspired Methods

Consider a control scheme of a four-legged mammal. You can easily
imagine hundreds of muscles coordinating themselves perfectly to generate
a gait, or whatever they are up to for the moment - running, crawling,
or resting. However, it may seem apparent that the brain itself does not
actively control each and every single muscle. Instead, small neural circuits
are found both in vertebrates and invertebrates, which directly governs
signals controlling each muscle. These small neural networks are known as
Central Pattern Generator(CPG), which are capable of generating rhythmic
patterns without rhythmic signal input.

There were two approaches to how CPGs work, one relying solely on its
sensory feedback and the latter, centrally generated patterns [5]. Now
there is clear evidence that the rhythmic patterns are generated centrally,
but the importance of sensory feedback has been demonstrated via various
experiments(decerebrated cat, lamprey), showing that there is a tight
coupling between them. One of the experiments showed a decerebrated
cat on a treadmill managed to keep its walking gait, even freely changing
to running gait depending on the speed of the treadmill[41]. In this case,
keeping the gait steady has been mainly guided by its sensory feedback.

In the light of the gait transition, it has been shown that a very simple
signal from the central nervous system can easily control the change of the
gait. Electric stimulation in the brain stem can initiate rhythmic pattern
generation. Simply changing the intensity of the signal can cause a gait
change, in case of a cat, from walking to galloping, for a salamander, from
walking to swimming[17].

From findings and description of the general principle of CPG, one can
easily imagine a low-level controller scheme for a robot which requires
complex and sophisticated movement. Modeling characteristics and
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behavior of CPG will benefit designing a locomotive controller for a legged
robot.

Several different approaches have been made in an effort to model and
implement the CPG in robotics. One of the popular approaches is
the mathematical modeling of CPG with a set of coupled differential
equations[17, 43]. An oscillator node, a differential equation, is placed
on each joint with a set of parameters such as phase, amplitude. These
parameters are then tuned either by hand based on prior experiments[17]
or optimized by an algorithm[43]. These oscillator nodes form a network
with weighted connections between them. Ijspeert has managed to
implement this CPG approach to re-enact gait transition of salamander,
from walking to swimming in an actual robot[17, 8]. Another CPG approach
that puts emphasis on the importance of sensory feedback is Tegotae
introduced by [37]. Tegotae utilizes sensory feedback for stable interlimb
coordination.

Another popular approach is the connectionist models. These models
usually incorporate a small network of a simplified neuron model such as
leaky-integrator neurons, otherwise known as a continuous-time recurrent
neural network(CTRNN). The parameters for the network are usually
evolved by genetic algorithms. From the early ’90s. Randal Beer and his
colleagues have been extensively studying the implementation of CTRNN[1,
4] and analysis of its dynamical property[3, 6].

More recently, CPG was implemented in conjunction with CPPN which
showed in a significant result in combination with Lamarckian evolu-
tion[19, 18]. In this method, CPG is implemented as two differential oscil-
lators with feedback connections to each other. Then each CPG is mapped
on a 2D substrate, which describes the morphology of the robot. The co-
ordinates of the CPGs are fed into CPPN and produce weights after iteration
of evolutions.

2.3 Previous Works

2.3.1 DyRET

DyRET: Dynamic Robot for Embodied Testing, is a robotic platform which
features a quadruped with self-modifying morphology - meaning that the
robot can change its morphology mechanically at the runtime. DyRET is
developed at University of Oslo by Nygaard et al.[34] with a goal of bridging
the reality gap - brought by a substantial difference between a simulation
environment and the physical robot. The applications that DyRET is
aiming for are automatic design, environment adaptation, automatic
evaluation, and meta-studies[34]. Also, DyRET has been utilized in some
experiments such as evolving fast and stable gaits in physical robot[33],
adapting morphology and control to hardware limitations by evolving in
real-world[36], Tegotae style feedback loop for robust locomotion using
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CPG[32], and evolving gaits by combining incremental evolution and MAP-
elites[29].

As being a platform that provides a physical robot with dynamic mor-
phology, one of the main focuses on DyRET is to investigate the control-
morphology problem. So far, the control systems that DyRET has been
tested are

• A high-level inverse-kinematics based position controller, which
calculates the trajectory of leg movement for given landing feet
position[35],

• A low-level gait controller parameterized with amplitude, phase, duty
cycle, offset, and gait period for each joint that describes a continuous
first-order spline presenting destination angle for each joints[29].

• A network of oscillators as CPG coupled with feedback loop described
by Tagotae[32].

2.3.2 Flexible Controllers

Evolving a gait controller that can be utilized in various morphologies is a
challenge, as dynamics of gait changes with the change of the morphology.
The longer legs on a robot would result in a higher center of gravity
that the controller should deal with either by lowering the center with
different gait or changing dynamics of movement - e.g., a larger swing of
a leg. However, in nature, it seems that there is an intriguing relationship
between morphology and control as seen by an example given by [24] - a
new born foal that can walk almost immediately after birth. The approach
should rather be that instead of learning to walk for a given morphology,
the relationship should be learned[39].

Besides the adaptive CPG-based control system by [24], which introduced
a distributed oscillator system called Adaptive Ring Rules that can adapt
its parameters to the change of morphology by matching sensory feedback
of the previous morphology, in the field of ER, Risi’s work[39] of evolving
a single instance of gait controller for various morphologies is unique;
although there have been studies in ER that evolves the morphology and
the controller at the same time[21, 19, 18].

The flexible gait controller introduced by Risi[39] learns the relationship
between the morphology and the controller by utilizing a CPPN as a func-
tion that takes the morphology as input and outputs a corresponding con-
troller for that particular morphology. The suggested method implements
HyperNEAT with a multi-module substrate, which is composed of submod-
ules that controls each leg with inter-modular connections between specific
nodes on each submodule. The CPPN takes in the input of a pair of 4D
coordinates for connections between each node and the leg length input L.
Then the output from the CPPN completes the substrate, which is expressed
as CTRNN. The controller is evolved by novelty search with the trajectory
of the robot as the behavior descriptor for measuring the distance between
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individuals. The experiment compares performance between the static con-
troller and the flexible controller, where both controllers are evolved while
evaluating three different leg length configurations. Risi reports that the
flexible controller outperformed in the evaluation of interpolated morpho-
logies that have not been seen during the learning. Also, Risi provides
an analysis of how the evolved flexible controller learned the relationship
between the morphology and the control by showing a correlation between
L input variation on the output of each joint.
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Chapter 3

Implementing a Flexible
Neural Controller

Risi[39] has shown that it is possible to evolve a flexible controller which
can adapt to different length of legs with HyperNEAT and a special CPPN
which takes leg length as an input. As DyRET is a robot platform which is
designed to change its leg length for different environments, implementing
Risi’s HyperNEAT on DyRET’s platform can be interesting to confirm Risi’s
method and further investigate improvements and pitfalls of implementing
it on an existing system. Furthermore, Risi implements only Novelty
Search as its learning method for his experiments. As covered in the
previous chapter, there are vast possible learning methods available within
the boundary of EA, such as traditional fitness only evaluation, or MOEA
combining multiple objectives. Also, implementing a behavior diversity
based EA will require attention while choosing which behavior to look at
and which one would be worthwhile to measure.

To test the research questions given in Chapter 1, an experiment environ-
ment is implemented using various tools that are openly available. In this
chapter, details of implementing flexible neural controllers are described
on each component of the final system, both from readily available pack-
ages and own implementations.

3.1 Overview

Figure 3.1 shows the overall flow of the final design to evolve a flexible
neural controller. A population of genomes is initialized at the beginning.
Each genome, CPPN in this case, generates weights, bias and time
constants for the pre-defined substrate with CTRNN properties based
on Beer[1, 4]. The generated CTRNN interacts with the simulation
environment, which is set up with OpenAI’s Gym environment, specifically
implemented for DyRET[30]. For each iteration of the simulation time
steps, the reward is calculated. The reward summarizes the status of
the robot, whether the robot is moving or not, has fallen or not, etc.
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Figure 3.1: Overview of the system. Substrates query the CPPNs with the
coordinates of nodes and leg length L, and CPPN returns weight, W, time
constants, T, and bias, B for each connection.

The rewards in each iteration are accumulated as the fitness of the
genome. At the same time, behavior descriptors are collected for each
genome, which is evaluated by Novelty Search calculating novelty metrics,
average distance of defined behavior descriptor to k-nearest neighbors.
Outstanding genomes with higher novelty metrics than the threshold
distance are collected in Novelty Archive. With the fitness and novelty
metrics together, pareto-front is formed, and a new population is generated
by NEAT’s reproduction algorithm - mutation, cross over, and speciation.
As the Novelty Archive is initialized, the population and the archive is
merged when measuring novelty metrics.

3.2 Simulation Environment

The simulation environment is realized in an OpenAI Gym environment
specifically for DyRET[30]1 The physics engine of this simulation envir-
onment utilizes pyBullet2 which can simulate collision detection, soft and
rigid body dynamics.
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Figure 3.2: View of the simulation environment

3.2.1 Environment

The simulation environment comes with a various ready-made environ-
ment to test - walking and standing with pre-defined reward function. In
this thesis, only the walking environment is used with its default reward
function. The reward function will evaluate the robot based on whether the
robot is standing upright, y-axis velocity, deviance velocity over a threshold,
and a norm difference of force applied in each joint. The details of this re-
ward function are discussed in section 3.4.2 on fitness function. Besides
the default reward function, the environment which the robot is interacting
with is flat surface as seen on figure 3.2.

3.2.2 Robot Interface

The DyRET- OpenAI Gym environment provides an interface to control the
action of the robot under evaluation and an environment where the robot
can interact. The robot is controlled by specifying the destination angle of
each revolute joint and destination length of each prismatic joints in each
time step. The default time step for the physics engine simulator pyBullet
is set as 1/240 second.

In each simulation time step, new joint values are put into a velocity motor
with some friction associated with it by specifying maximum force. All
the revolute joints are set with maximum velocity, and maximum force
value. However, prismatic joints are set without maximum force value, and

1https://github.uio.no/jorgehn/gym-dyret. At the time of writing, this Gym environ-
ment is not published for the wide public but only to those who have affiliation with Uni-
versity of Oslo.

2https://pybullet.org/wordpress/
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unrealistically high maximum velocity value so that testing each leg length
configuration can be done without delay.

(a) Front (b) Side

(c) Fully extracted prismatic
joints

Figure 3.3: In the subfigure (a) and (b), full range of the joints angle are
noted on the right side of legs, and angle a, b and c which notes the angle
of the default pose. The subfigure (c) shows fully extracted prismatic joints
with the same default pose.

Figure 3.3a and 3.3b shows the default pose used in the experiments. The
full range of angles is shown with the zero points in the middle. Each
revolute joints can rotate from -90 to 90 degrees with zero angle indicated
in the middle of the half-circle. The input values for controlling the robot
range from [−π/2,π/2]. The prismatic joints take an input range of [0,45] for
the upper leg and [0,100] for the lower leg. The figure 3.3c shows DyRET
setup with maximum input value for prismatic joints.

3.3 Controller

The controller scheme implemented in this thesis is based on Risi’s work
[39], which is evolved by HyperNEAT with the multi-layered substrate as
its topology with the characteristics of CTRNN. The figure 3.4 illustrates the
flow of the controller scheme. The substrate of the CTRNN network in the
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Figure 3.4: Controller scheme. The input from sinusoid and output of
CTRNN are illustrated with dotted arrows. Each layers - modularized
substrate controls each leg segment layed out geometrically.

middle takes input values from a sinusoidal wave. Then each leg module
substrate outputs each destination angle value. The coordinates of each leg
module correspond to the geometrical position of each leg. Simply put, the
upper left module for the front left leg, the lower-left module for the back
left leg, and vice versa. The coordinates of the output nodes in each leg
module also correspond to which joint they output - the innermost nodes
for the uppermost joint and the outermost nodes for the lowermost joints.
For the details on the substrate, refer to section 3.4.1.

3.3.1 Neural Controller

CTRNN is implemented by uzilizing CTRNN node provided in neat-python
package 3. This package implements CTRNN by the following equation.

τi
d yi

d t
=−yi + fi

(
βi +

∑
j∈Ai

wi j y j
)

(3.1)

where τi is the time constant of i-th neuron, yi is the membrane potential
of neuron i , fi the activation function of neuron i , βi the bias, Ai set
of connected input neurons to neuron i , and wi j the connection weights
between neuron j and i . The CPPN for each genome provides wi j , τi and
βi for each node and connections. The activation function, fi is sigmoid
function and Ai is defined by the substrate.

This differential equation is computed using the forward Euler method
given as;

3https://neat-python.readthedocs.io/
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yi (t +∆t ) = yi (t )+∆t
d yi

d t
(3.2)

Where ∆t is the time step specified when the network is instantiated. The
time step value is empirically set as 5/240 s, which is five times larger then
the time step of the physics simulator.

Note that the equation 3.1 implemented in this package is slightly different
than the equation 2.2 introduced in the chapter 2, section 2.1.1, where
the aggregation and weight multiplication happens after applying the
activation function to the output of the connected neuron. Despite
this difference, the principal concept of CTRNN holds in both equations
- continuity, recurrence, and, consequently, the dynamic property of
CTRNN.

3.3.2 Input and Output

While Risi’s[39] implementation uses the current state of hip joint angle
as input to the network - effectively making it a closed-loop controller, the
input for CTRNN used in this thesis is a sinusoidal wave. The rationale
behind this convention is having a potential extendability towards evolving
an agent that can drive the evolved controllers. The input sinusoid is given
by

Input = sin(i /freq ·π) (3.3)

Where i is each time step in the simulator, defined as 1/240s, freq is a
parameter, empirically defined as 32. This gives frequency of ω = 2π

2·240·32 ,
which equals f = 15.360 kHz. Adjusting this frequency usually results in
the change of the output frequency. Furthermore, the sinusoidal wave is
multiplied with -1 to the input for both front right and back right leg. This
constraint helps to evolve a stable quadruped trot gait.

The network’s output is constrained with the direction of each swing and
the stable standing position as a null point. Since the activation function
for each node is the sigmoid function, the output range is confined to [0,1].
Then the output values are adjusted to its null position, as noted as angle a,
b and c by the figure 3.3a and 3.3b. The directional constraints multiply -1
for specific joints so that they only revolute further from their null position.
These constraints help in search of stable gait. Figure 3.5 shows each joint
output after constraints plotted against a timescale.

3.4 Implementing Evolutionary Algorithm

3.4.1 HyperNEAT

HyperNEAT is implemented based on the NEAT algorithm from neat-
python package. While keeping the default NEAT evolution process
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Figure 3.5: Example of joint output from CTRNN after applying the
constraints. Naming conventions for each output are fl for front left, fr for
front right, br for back right, and bl for back left. Joint 0 is the hip joint, 1
for the middle joint, and 2 for the lower most joint.

provided in the package, all the NEAT genome is now considered as CPPN,
and it generates weights, time constants, and bias of the substrate.

The substrate is inspired by Risi[39], a modularized substrate where each
module controls each leg. The result is a four-dimensional substrate. The
geometric positions of each neuron are described by the 4D coordinates.
The first two coordinates (xm, ym) denote the position of the leg-module,
and two following coordinates (x, y) represent the position of each neuron
in the leg-module. Besides inter-modular connections and intra-layer
connections, i.e., hidden node to hidden node connection, all connections
are one-directional, going from the input layer to the output layer. See
figure 3.6 for the layout of the substrate.

Two sets of the four-dimensional coordinates, along with the leg length
configuration, L are used as input for CPPN, see figure 3.7. The CPPN
outputs connection weights, W , between the neurons, time constants, T ,
and biases, B . By convention, when querying CPPN for T and B , only the
first set of four-dimensional coordinates are provided as input for CPPN
while keeping the rest of the coordinate as zeros. This is due to the fact that
the weights are described as connections and the time constants and biases
are the properties of each individual neuron. The activation functions
for CPPN nodes are gaussian, sinusoid, absolute and sigmoid, randomly
chosen during the mutation stage of the NEAT algorithm while the default
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Figure 3.6: The Substrate design. Blue node indicates input nodes, green
for hidden and yellow for output. Weights between connections and time
constants, bias for each node are queried from CPPN.

Figure 3.7: The CPPN features 9 inputs, 2 sets of 4d coordinates and leg
configuration, L. 3 outputs are W, weights, T, time constants and B, bias.
The hidden layers are evolved by NEAT, adding node and connection with
random activation function.

activation function is sigmoid.

3.4.2 Fitness Function

The fitness function is designed to consider both the stability and mobility
of the robot. In general, the genome will score higher fitness if the robot
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stands upright as much as possible at the same time moving along the
y-axis and moves the furthest away from the starting point of the robot.
The fitness function f (g ) for a genome g used in this thesis is given as the
following;

f (g ) =
I−1∑
i=0

(100 ·Hi +Ui +Vy i +Vd i +∆τi ) (3.4)

+105 · ||p(x,y)(I )||−105 ·Penalty (3.5)

The first terms, eq.3.4 are pre-defined in the DyRET - OpenAI Gym
environment, accumulated through I timesteps for each i-th iteration, and
defined as following;

• H : If the robot is healthy or not, based on the center height z and roll,
R and pitch P

H =
{

1, if z > 0.75 and |R| < 0.7 and |P | < 0.7

−1, otherwise
(3.6)

This term describes whether the robot is in a fallen state, or in
low position which is not desired as the quadruped gait for DyRET
requires the mass center of the robot to be sufficiently high.

• U : How upright the robot is standing from roll R and pitch P . 0 if the
robot stands upright.

U =−(R2 +P 2) (3.7)

This gives credit for stable gaits.

• Vy : Velocity reward as high linear velocity along the y-axis is desired.

• Vd : Deviance reward that discounts for motion deviating from the
current velocity as constant velocity is desired. It is given by

Vd =
{
−|Vy −V ay | if V ay ≥ 0.3

0, otherwise
(3.8)

Where V ay is an accumulate velocity to calculate deviance, given by

V ay i =Vy ·d t +V ay i−1 · (1−d t ) (3.9)

d t is the default simulator timestep at 1/240 s.

• ∆τi : Norm of applied torque difference between the previous
timestep τ0 and the current torque τ for each joint j , given as

∆τ=−1 ·
√ ∑

al l j
(τ j −τ0 j )2 (3.10)

This term discounts for unwanted jitters in the movement.
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The second terms of the fitness function, eq.3.5 is a bonus added at the
end of the simulation, based on absolute distance traveled from the starting
position and penalty given for being unstable or not moving. The details are
given as;

• p(x,y)(I ) : The final position of the robot

• Penalty : True if the Healthy reward, H has been negative or has
not been moving for 100 timesteps. Whether the robot is moving is
evaluated by checking the norm difference of each joint output value
from the previous values.

The most decisive factor that would create pressure in the optimization
process is the healthy point H throughout the simulation due to the weight
given as 100, and the second terms, whether the robot has been moving,
and if so how far it has moved from the start. With these factors, EA
will give enough pressure for each genome to create a controller that is
constantly moving, trying to get away from the starting point as far as
possible while trying to keep stable gaits.

3.4.3 Novelty Search

The core concept of Novelty Search is to replace the fitness with Novelty
Metrics, giving a higher score to a genome that is unique in terms of its
behavior. The first step in implementing Novelty Search is to introduce a
method to measure the behavioral distance between genomes and replace
it with the existing fitness function. Then the EA should be modified for
Novelty Search by fitting the population’s behavior into kNN classifier,
which will measer the distance between each other. The genomes with high
novelty metrics will be permanently archived and used to compare with the
population along the evolutionary process.

Behavior descriptors

The first step is to define the behavior descriptors, which would be
significant to distinguish between genomes. Three behavior descriptors are
defined - Max-min amplitude of each joint, duty factor, and the last position
of the robot.

Max-Min amplitude of each joint

This descriptor measures difference between the maximum and the min-
imum amplitude of each joint. This is useful when differentiating between
robots that move more lively - in a sense that it fully utilizes the range of
each revolute joint angles and the others, which moves more quiet using
least of energy. For each joint, the maximum output and the minimum out-
put is recorded. In the end, the difference between the two values is used.
This results in a (1×12) vector.
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Duty factor

Duty factor is a percentage of the total cycle when a given foot is on the
ground. This descriptor is useful to distinguish between different gaits -
such as trotting gaits, running, bounding gaits, and so on. To measure
it, first, the history of each foot touching the ground is recorded in each
simulation time step. This would result in a 2-D array with a size of 4
times a number of simulation iterations. Yet, for simplicity, the four values
- whether the feet are touching the ground or not, are encoded into binary.
That is, if all four feet are on the ground, the value for that time step will be
15 - since 11112 = 15. The recorded data for this descriptor is a 1-D vector
with the length as the number of evaluation time iteration.

Last position

This is the last position of the robot at the end of the simulation run.
The descriptor such as this one will give certain pressure to explore more
once the moving genomes are populated in its population pool. It is the
same behavior descriptor as the one which was introduced when Lehman
and Stanley suggested Novelty Search[22] on their maze navigator robot
experiment. The recorded value is simply (x, y) coordinate of the robot at
the end of the evaluation.

Behavior Descriptor Data type

Max-Min Ampl. (1×12) vector
Duty Factor (1×num_iter) vector
Last Pos. (1×2) vector

Table 3.1: Summary of data types for each behavior descriptors. The vari-
able num_iter corresponds to the number of time steps in the simulation.

Novelty Metrics

With the behavior descriptors defined above, Novelty metrics can be
measured. However, since each of the behavior descriptors is expressed
by a vector (See table 3.1), it need to be converted into a scalar value
to distinguish between the descriptors and their effects - making them
into a compact set of features. In this thesis, the norm of each vector is
calculated to present a scalar value for each behavior descriptor, except the
last position. The reasoning behind this is that the last position descriptor
will end up only showing the absolute distance - which would limit the
diversity of it, but for other two descriptors with much longer vector length,
it is still possible to differentiate the behaviors to a certain degree, despite
the losing some of the finer details in the information.

The consequence of this simplification for each behavior descriptor can be
summarized as the following.
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• For Max-min amplitude descriptor, the smaller value would corres-
pond to the behaviors with more limited movements, and on the other
side of the scalar, the robot with the most active joints movements.

• For Duty factor descriptor, the highest value possible is one which
corresponds to behaviors that don’t lift its foot at all - either not
moving at all or gliding around by exploiting the physics engine. The
smallest possible value is 0, which corresponds to a flying robot,
which is not possible.

• For last position descriptor, it is not affected as it is not converted to
a scalar value.

These simplified behavior descriptors are now four features that kNN
classifier can be fitted on. It is also possible to use these features in any
combination to see the effect of each behavior descriptor.

Once k-nearest neighbor classifier is fitted with the behavior descriptors
of each genome, novelty metrics is simply measured by averaging the
distance of kNN groups(see equation 3.11). For kNN classifier, scikit-learn4

machine learning package is utilized. The chosen kNN classifier uses the
’Ball Tree’ algorithm, which is a tree-based algorithm, faster compared to
a brute force method and better at handling of higher dimension than the
’K-Dimensional Tree’ algorithm. The rest of the parameters for the kNN
classifier is default besides the size of k.

ρ(x) = 1

k

k∑
i=0

d(x,µi )−10 ·Penalty (3.11)

In addition to the novelty metrics measured with the behavior descriptors,
it also evaluates if the robot is moving or not by adding negative rewards.
In particular it is done by adding −10 · Penalty, which is introduced in
section 3.4.2. This convention promotes behaviors that are actually moving
around.

Novelty Archive

Novelty search without an archive can end up circulating similar solutions
from newly generated individuals in each generation. Novelty archive is
implemented to benefit the behavioral diversity from the Novelty search
fully.

Following Mouret[27], a genome is added to the novelty archive if the
novelty metric to that genome is higher than a threshold, ρmi n . If there
are more than four genomes archived in the same generation, ρmi n is
multiplied by 1.05, increasing the barrier to limit the similar genomes being
added. Contrarily, ρmi n is decreased by multiplying with 0.95 if there are
no new genomes are added for the duration of four generations.

4https://scikit-learn.org/stable/
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The size of the novelty archive is also one thing to consider. As the size of
the archive grows; the computation cost of the evaluation will also increase.
The kNN classifier will take most of the computation time as the size grows,
specifically for the chosen ’Ball Tree’ method, computational complexity
is O[D log(N )] for D dimension(number of features)5. To prevent the
computation growing logarithmically, the size of the archive is limited as
the same size of the population. It is done by sorting all the genomes in the
archive by its novelty metrics or fitness. Then leave out the ones that fall out
of the limit. If the fitness of the genome is used, then this will create some
pressure for evolving more fit genomes - based on the fitness function.

3.4.4 Multi-Objective Evolutionary Algorithm

The implementation of the Multi-Object Evolutionary Algorithm is done at
its simplest form, utilizing only the Pareto-front with the elitist approach.
It is realized by implementing Pareto-front selection at the end of the
evaluation of each generation before the reproduction. The fitness and
novelty metrics of each genome are the two objectives defined. Compared
to NSLC by Lehman and Stanley[23], this formation can be interpreted
as Novelty Search with global competition inspired by Mouret[27]. While
this approach imposes less pressure than NSLC in the search process, the
choice is based on [23], which showed that it performs better in terms of
the absolute fitness.

Once all genomes are evaluated with their fitness and novelty metrics,
Pareto-front is formed containing both the current population and the
novelty archive. Then the Pareto-front groups are included by their
dominance rank until the number of genomes is larger than half of the
population. The result is that the number of parent genomes is always
slightly larger than the one fold of the population. Once the parent genomes
are chosen, they go through random cross-over and mutation defined by the
default NEAT algorithm.

5https://scikit-learn.org/stable/modules/neighbors.html#classification
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Chapter 4

Experiments and Results

4.1 Overview

Experiments are designed to answer the corresponding research questions
given in chapter 1.

First, the effect of behavior descriptors is evaluated. In total, three behavior
descriptors are implemented - max-min amplitude of joint movements,
duty factor, and last position of the robot. The seven possible combinations
are evolved by MOEA, and their performances are compared. This
comparison will give some direction on which combination of the behavior
descriptor is best suited for other experiments.

Second, it is tested how the different evaluation schemes affect the result
in the performance of the evolved controllers. While the implemented
system employs MOEA with fitness and novelty search as its default
evaluation scheme, the original method suggested by Risi uses only Novelty
Search. The comparison between novelty search, only fitness, and MOEA
is examined.

At last, it should be confirmed that the method introduced in the previous
chapter can indeed generate walking gaits on DyRET platform. It should
also be confirmed that Risi’s method[39] can be reproduced, such that the
method can generate the flexible walking gait for various lengths of legs.
The static controller and the flexible controller are evolved by MOEA, and
the performances are compared.

General Experiments Setup

Ahead of running the experiments, there are few more technical details that
need to be defined and implemented. It includes how the leg configuration
should be defined, what is testing criteria - i.e., how to define which of the
evolved controller performs better than the other. Also, a description of the
computation will be given.
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Parameters

There are a couple of different parts regarding the parameters used in these
experiments. First, it is NEAT parameters. NEAT is used to evolve CPPN,
and it is the primary evolutionary algorithm in the experiments. Also, the
evolved controllers need to interact with the simulation environment that
requires matching parameter setup as the CTRNN needs the time step to
calculate its output on the continuous time scale. Besides, novelty search
and MOEA have their own parameters that need to be defined. Many of the
parameters regarding EA are inspired by Risi[39] to reproduce the results
from his work.

NEAT/CPPN Parameters The table A.1 in the appendix provides the
overview all the paramater setup needed by the neat-python package to
run the NEAT algorithm. The important parameters worth mentioning are
the following;

• Population size 300

• The default activation function is sigmoid with 0.5 chance of mutation
probability to gaussian, sinus and absolute value.

• Bias are randomized from N (0,1) in a range of [−1,1] with a muation
rate 0.6.

• Weight are randomized from N (0,1) in a range of [−5,5] with a
mutation rate 0.6

• Node add/delete probability is 0.1.

• Connection add/delete probability is 0.2.

• Neural networks are feedforward network initialized as fully-
connected neural network.

• Size of elite population is 150.

CTRNN Parameters CTRNN is generated by neat-python package and
comes with a set of parameters that need to be set up in accordance with
the simulator’s time step which is set at 1/240 s.

• time_step parameter for neat-python CTRNN is set same as the
simulator at 1/240

• advance_time parameter for neat-python CTRNN - which decides
how much time to advance before returning output, is empirically set
for 5/240.

• Time constant queried by CPPN has a range of [0.1,2].

• Bias queried by CPPN has a range of [-3,3].

• Weights queried by CPPN have a range of [-5,5].
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• Activation function is sigmoid.

Novelty Search Parameters For Novelty Search, there are only a
couple of parameters that can be adjusted in the simplest form. These
parameters are

• k-value from kNN, which determines the number of the nearest
neighbors.

• ρmi n , a threshold to be added to the novelty archive.

• Size of the novelty archive. While this is not strictly following the
original algorithm by limiting the size of the novelty archive, it is set
for 300 to limit the computation time increasing uncontrollably.

These parameters affect the behavioral diversity, and these are the only
parameters that are altered through the experiments conducted in the
following sections.

Leg Configuration

The method suggested by the previous work[39] uses a single value for the
leg configuration input value, L for CPPN when building the substrate. The
experiment by Risi is tested on a simulation environment with a quadruped,
which has a uniform length for the femur(upper leg) and the tibia(lower
leg). However, DyRET has different leg lengths for the femur and tibia and
also comes in a different range of lengths that can be extended. In addition,
DyRET can change the length of each leg segment as it needs to.

While it would be interesting to evolve a flexible controller that can adapt to
any given leg length on each leg, this work simplifies the leg configuration
of DyRET. It is done by introducing a convention, where L, the leg
configuration input for CPPN is zero when the legs are compressed to their
minimum and two when extended to their maximum. Then everything else
in-between is interpolated linearly between [0,2].

The experiments are done with three leg configurations 1. Fully com-
pressed, 2. At half length, 3. Fully extended. During the evaluation pro-
cess, the fitness is averaged among the three performance. As for beha-
vior descriptors that are collected during the three evaluation, the max-min
amplitude and the last position are averaged, and duty factor is simply ap-
pended after each other. For the interpolated performance evaluation, 13
leg configurations are used, interpolated in 13 iterations between [0,2].

Performance Evaluation

Despite the fact that the fitness function is designed to evaluate the
performance of the controllers, there are few factors that can result in
delusions, when determining the actual performance of the controller.
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First of all, the implemented fitness function(see Eq.3.4) increases iterat-
ively as the simulation runs, yet the traveled distance bonus term has a
fixed weight. The consequence of this is that the balance between these
two factors depend on how long the simulation will last. In other words,
if the first term of the fitness function, Eq.3.4 provides good enough sta-
bility and accumulates reward that is large enough, then the second terms,
Eq.3.5, which consists of a bonus for moving far, may not be significant
compare to the accumulated rewards of the first terms. Also, another pos-
sibility is the EA exploiting the physics engine. As was pointed out in literat-
ure in EA(e.g., [11]), it is an inherent problem to EAs and in ER particular.
In some of the experiments conducted in this thesis, there have been few
cases where the evolved controller was capable of gliding around the sur-
face without lifting any of its feet. On an additional note, the controllers
evolved without using fitness function will need an alternative to measure
its performance.

Therefore, the traveled distance is measured for the span of the simulation.
It is measured by following the center of the robot in x, and y plane, (x, y),
and calculating the deviation from the previous coordinates. To filter out
jitters in the movement, it is only sampled every 0.5 seconds, and it is
measured by meter [m]. This way, it measures the trajectory of traveled
distance since the beginning of the evaluation. This will not, however,
prevent or be able to filter out the controllers that are evolved to exploit
the physics engine.

When comparing performance from two or more experiments Mann-
Whitney U-Test(MWU) is used. MWU is a non-parametric test that is used
for null hypothesis testing. It is useful when data samples are small, and
the distribution of the data is assumed to be the same. In addition, when
there are multiple statistical tests are performed on the same data, p-values
are corrected with Holm-Benferroni method[14].

While MWU works well with small sample data, it still needs a sufficient
size of a data sample. To balance out with the cost of computation of
creating data - fully-evolved controllers, in this case, eight of the same
experiment are evaluated in parallel. In the case of comparing two
experiment results with eight data samples, MWU can give a p-value down
to 0.0002, which is sufficient to confirm the difference between the two
data set. To compare the performance using MWU, the best performance
genomes are used from each evolution of eight parallel runs. MWU is
provided by Python package Pingouin.1

Parallel Computation

Evolving a controller through hundreds of generations over a population
consisting of hundreds of controllers poses a challenge in terms of compu-
tational cost. However, EAs are particularly suited for parallel computation
as each genome can be evaluated separately. In the experiments, two parts

1https://pingouin-stats.org/index.html
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can be explicitly parallelized. The first is the evaluation of each genome
- fitness evaluation and collecting behavior descriptors. Each controller is
evaluated in a separate instance of the simulation environment. The second
phase is when measuring novelty metrics. Once kNN is fitted with the new
behavior descriptors, the novelty metrics calculation - averaging the dis-
tance of k-nearest neighbors for each genome, can be parallelized with a
handle to the kNN classifier.

While there exists a vast possibility of implementing parallelism such as
MPI, OpenMP, the experiments are implemented with the multiprocessing
package provided by python2. Multiprocessing is process-based parallelism
- which means that each process has its own memory space, and the
processes are confined to a single instance of an operative system. Even
though the computation is confined only to a single system, the benefit
is the simplicity of implementation. Since the system has access to
the population - each genome containing behavior descriptors and kNN
instance, the communication between processes does not need to be
considered like it would with MPI implementation. The system used for the
experiments provides 40 cores at 2.5 MHz. Running a standard evolution
- MOEA with population size 300 for 600 generations and 200 simulation
time steps each, takes about 9 hours wall-clock time utilizing all 40 cores
without hyperthreading technology.

4.2 Behavior Descriptors

This experiment is designed to test the behavior descriptors introduced in
section 3.4.3. The focus points in the experiment are to see if there are
any descriptor or a particular combination of them that results in better
performance and faster convergence in the evolution.

4.2.1 Setup

In this experiment, the three behavior descriptors - Max-min amplitude,
duty factor and last position, are compared in every combination by
evolving flexible controller. They are seven possible combinations - All,
Ampl&Duty, Ampl&Pos, Duty&Pos, and each of descriptors by themselves.
The chosen EA for this experiment is MOEA with default parameters
described in the previous section 4.1 except for kNN parameter which is
set for k = 5 and ρmi n = 0.3.

4.2.2 Results

The resulting evaluation of the experiment is summarized on the table 4.1.
Both the mean best fitness of at the end of the run and the performance
evaluation measuring the traveled distance are presented. At a glance, the

2https://docs.python.org/3/library/multiprocessing.html
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Mean Best Fitness Distance Travelled

All
µ= 9.5e5
σ= 1.3e5

µ= 6.61
σ= 2.14

Ampl&Duty
µ= 7.3e5
σ= 2.1e5

µ= 5.48
σ= 1.65

Ampl&Pos
µ= 7.9e5
σ= 0.5e5

µ= 6.47
σ= 1.23

Duty&Pos
µ= 8.3e5
σ= 1.0e5

µ= 8.18
σ= 3.78

Ampl
µ= 7.1e5
σ= 1.4e5

µ= 6.53
σ= 0.85

Duty
µ= 7.4e5
σ= 0.3e5

µ= 5.62
σ= 1.42

Pos
µ= 9.0e5
σ= 2.1e5

µ= 5.52
σ= 2.04

Table 4.1: Behavior descriptor experiment result, showing mean and
standard deviation that are not depicted in the boxplot 4.1
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Figure 4.1: Fitness comparison of behavior descriptor comparision

case All and Pos performed best in terms of fitness, and Duty&Pos could
walk furthest by 8.18 meters on average followed by All and Ampl only runs.

The differences in the best fitness for each case are shown in figure 4.1. As
expected, utilizing all the descriptors resulted highest in terms of fitness,
while using only the last position performed as good as using all despite the
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wide deviation in the resulting fitness.

Pairwise MWU test in the table A.4 shows a contradictory result for
corrected p-values than the boxplot 4.1. All the statistically significant
comparisons (p < 0.05) are not significant longer after correction. This
is due to the relatively small size of the data and the large number of
comparisons. However, in this section, the uncorrected p-values will be
discussed as the goal of this experiment is to spot the tendency among the
behavior descriptors with small evaluations.

The uncorrected p-values in table A.4 shows the same result as reading the
boxplot - the case All is significantly better than all other cases except for
the case Pos, the last position descriptor. Also, When Pos is paired with
Ampl or Duty, they have higher fitness than Ampl, and Duty is paired.
Ampl paired with Pos has higher fitness than Duty alone. At the same time,
the last position descriptor is not significantly different from any other
combination.
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Figure 4.2: Distance traveled comparison of behavior descriptor compari-
sion

While the fitness result above showed a statistically significant difference in
terms of uncorrected p-values between the combinations, the performance
evaluation does not show a clear distinction in the boxplot in figure 4.2.
Note that the outlier in Duty&Pos, which walked over 16 meters, is an
example of a controller exploiting the simulator by gliding around the
surface. This particular genome caused the Duty&Pos case to be evaluated
highest in mean in the table 4.1.
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The pairwise MWU test given by the table A.5 reveals that Duty paired with
Pos performs significantly better (p < 0.05) compared to Ampl&Duty and
Duty alone. Although most of the differences are not significantly different,
it generally follows the fitness comparison from the figure 4.1.
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Figure 4.3: Mean best fitness for each behavior descriptor during evolution

One of the interesting things to check while comparing the behavior
descriptors is to see how they compare in terms of convergence throughout
the evolution. Figure 4.3 shows the mean best fitness of each case plotted
against generation progression. There are some subtle differences can be
spotted - i.e., Ampl and Duty lag behind at the early stage of the evolution.
However overall progress looks very similar, starting to converge around
the 200th generation.

4.2.3 Analysis

While the result of the experiment showed not much of significant
differences in terms of performance, it revealed some properties of the
behavior descriptors.

One of the interesting discoveries in this experiment would be the property
of the last position descriptor. Although it comes with high variations, the
last position descriptor itself was capable of creating a controller with high
fitness. The reason behind this can perhaps be explained by the fact that
the position information itself is embedded into the fitness function(see
the second term of equation 3.5 in chapter 3). Besides, the novelty metrics
on the last position will give a higher score as it is further away from the
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MOEA Novelty Only Fitness Only

Distance Travelled
µ= 8.66
σ= 1.56

µ= 9.70
σ= 1.09

µ= 11.37
σ= 2.38

Table 4.2: EA comparison performance results, showing the mean and the
standard deviation

majority of trivial solutions around the start point - the controllers end
up not moving at all. As the MOEA tries to maximize both fitness and
the novelty metrics, the result will favor higher fitness although not given
explicitly - therefore higher deviance than other cases.

The conclusion drawn from this experiment is that while it is not statistic-
ally significant in every case, including all three behavior descriptor would
be best to create a controller that performs best among all the possible com-
bination of the descriptors.

4.3 Fitness vs Novelty vs MOEA

The purpose of this experiment is to determine if any of the EA schemes fit
the best to evolve a gait controller for a morphology changing robot such as
DyRET. The three different EA is implemented and tested by evolving eight
runs.

4.3.1 Setup

In principle, these experiments also test evolving flexible controllers. While
it will not be tested rigorously with the interpolation performance, the
controllers will be evaluated for the three default leg configurations.

Fitness only experiment is done with the default fitness function from
section 3.4.2. Other parameters are the same as it was introduced in the
general setup section 4.1. The novelty search experiment uses only novelty
metrics and the novelty archive as its evaluation mechanism through the
generation. The parameters specific to novelty search are k = 15 for kNN
classifier, and ρmi n = 0.8, increased from the previous behavior descriptor
experiment. These runs are then compared with MOEA experiment, where
the controllers are evolved using both fitness function and novelty metrics
as their multi-objective to maximize with the same parameter setup.

4.3.2 Results

Table 4.2 summarizes the result on each run. The best genomes from
novelty only run could walk for 9.70 m on average with standard deviation
of 1.09. This is slightly more than the best mean performance of MOEA
at 8.66 m. The fitness only run was able to generate the best walking
genomes. On average, the best genomes could walk for 11.37 m, with the
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best one as far as 14 meters. Despite the differences in the mean of the best
performances in each case, the MWU has shown to be not significant. See
table A.2 for the result of the pairwise MWU test between the data. Figure
4.4 shows the distribution of the resulting data with a boxplot. Besides the
performance of each EA schemes, it would be interesting to look at how the
search process of each EA unfolded since the differences between each EA
are based on how they optimize in their search.
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Figure 4.4: Comparing distance travelled by each EAs

Figure 4.5 summarizes the behavioral diversity of each EA found during
the evolution of all eight runs. The behavior descriptors are expressed as
a scalar value on each axis. This follows the description given in chapter
3 section 3.4.3, besides the last position descriptor calculated with the
absolute value instead of 2D coordinates. The color values in the pixels
indicate the average fitness of the genomes that fit in the bins. As the
behavior descriptors are initially expressed in vectors, this presentation
does have its pitfall where the same scalar value could potentially be
different behavior. However, this plot can still show the degree of
searching, and it is possible to observe where reasonable solutions are
located in the behavioral search space.

While the meaningful differences were not found in terms of the perform-
ance of the best genomes, it is possible to see the slight differences in the
found solutions in the behavioral search space. The figure 4.5a especially
shows the differences in illuminated search space. The novelty search only
case managed to try out the most different solutions and fitness only case
tried out least compared to the other two. This is an expected result as the
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(c) Last position vs Max-min amplitude

Figure 4.5: All solution for each EA scheme are plotted in 2D histogram
with the average fitness in each bin as its scalar value in color. Each
behavior descriptors are converted into scalar value by taking norm of the
behavior descriptor vector.

novelty search only encourages novel behaviors where fitness-based EA will
only search around what has been proven to work. However, if the last pos-
ition behavior descriptor is involved, they show a somewhat similar pattern
besides MOEA when compared against duty factor at the figure 4.5b.
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The supplementary video material3 attached to this thesis shows the
gaits evolved by each EA. See 00:05~00:25 for MOEA, 00:45~01:05 for
Novelty search only, and 1:05~1:25 for fitness only evaluation. Novelty
search only and fitness only shows gaits on its shortest leg length, the
one that has been used in learning, while MOEA shows an unseen leg
configuration in learning. Although they show variety of gaits walking in
different directions, the gaits evolved by the fitness only appear to be more
monotonous compared to the gaits evolved by MOEA and Novelty Search
only. However the best controllers - in terms of walking distance for given
10 seconds were both from the fitness only evaluation, walking up to 14
meters each.

4.3.3 Analysis

The first thing to be mentioned is that increasing the k value to 15 from
5 and the ρmi n to 0.8 from 0.3 compared to the previous experiment
seems to result in better performance although statistically not significant
- comparing ’All’ behavior descriptor run against MOEA run(p ≈ 0.052).

One of the most intriguing aspects of the result in this experiment is that
the fitness only evolution actually managed to produce the best controllers
although it is not statistically significant compared to other EAs. Fitness-
based EA has been criticized in the context of evolutionary robotics when
evolving gait controllers due to the tendency of being stuck around local
optima of the search space[22]. This is especially true when a high degree
of freedom is concerned, such as this experiment.

In the previous experiment at section 4.2, it was pointed out that the last
position descriptor is, in fact, redundant with the bonus term in the fitness
function, and that the last position descriptor was alone capable of creating
high fitness, although not necessarily the highest performing one. With this
in mind, a suspicion arose that the second term of the fitness function(eq
3.5) which gives reward for the last position as the absolute distance from
the origin is responsible for the fitness only evolution being competent
against behavioral diversity EA.

To clear out the suspicion, an additional experiment is conducted, this time
without the last position reward in the fitness function. Also, novelty search
is tested again since the implemented novelty search takes use of the fitness
in the process of limiting the population size of the novelty archive(See
section 3.4.3 in the chapter 3).

Figure 4.6 shows the result of the additional experiment without the last
position reward in the fitness function in the fitness only run, and the
novelty search only run. The boxplot clearly indicates that the fitness
only run without the position reward performs significantly worse than
other experiments. As for the novelty search only run without the position
reward, it performed similarly with other EAs.

3https://youtu.be/a9M2IFrUjG8
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Figure 4.6: Performance comparison between EAs including runs without
the last position reward in the fitness.

While it may seem evident that adding the position reward is enough to
make fitness-based EA as competent as the other EAs, in this case, there
are a couple of things to be considered. The first thing is the constraints
for the controller scheme, which are designed to favor specific gaits. The
default stable gait of DyRET is enforced as the null points for all of the
joints, with the specific direction associated (see section 3.3 for the details).
These constraints limit the search landscape, thereby making it easy for EA
to discover suitable solutions. In addition to the limited search landscape,
it can also be argued that the designed fitness function puts not enough
pressure without the positional reward, as other terms are more focused on
the stability of the robot and the moving velocity.

4.4 Static Controller and Flexible Controller

In this experiment, static and flexible controllers are evolved by MOEA
scheme and compared. It reproduces the previous work by Risi[39] and
will confirm that the same method can be applied to the DyRET platform.

4.4.1 Setup

Besides the general setup described in the previous section 4.1, the
difference between the static controller setup and the flexible controller
setup is the input for the CPPN. Instead of implementing new CPPN scheme
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for static controller, the input for the leg configuration, L is zeroed for the
static controller experiment. By setting L as zero, the CPPN is a FFNN with
eight inputs for the two 4D coordinates and three outputs.

Both the static controllers and the flexible controllers are evaluated in the
three different leg lengths - fully compressed, in half, and fully extended,
as noted in the section 4.1. The controllers are evolved by MOEA with all
three behavior descriptors. The k value for kNN classifier is set for 15, and
ρmi n , the threshold for adding genome to the novelty archive is set for 0.8.

4.4.2 Results

Static Flexible

Training Performance
µ= 8.47
σ= 1.72

µ= 8.66
σ= 1.56

Interpolation Performance
µ= 8.86
σ= 1.90

µ= 8.02
σ= 2.03

Average number of solutions out of 13 runs 12.875 12.875

Table 4.3: Static & flexible controller performance evaluation results.
Training performance and interpolation performance denote the furthest
distance travelled in each of eight evaluations. The average solutions
represent average number of solutions that didn’t fall during the evaluation
time of 10 seconds.

Both experiments were capable of generating walking gaits. Table 4.3
summarizes the results. For the trained three leg configurations, The best
static controllers in each evolution could walk for 8.47 meters on average,
with a standard deviation of 1.72, while the best flexible controllers could
walk for 8.66 meters on average with a standard deviation of 1.56. All of the
best flexible controllers were able to walk in the three trained configuration
while one of the best static controllers failed in one leg configuration.

While the best flexible controllers have a slightly higher average, the
MWU test has shown that the difference between the two groups is not
significant(p ≈ 0.79). See figure 4.7 for boxplot indicating distribution of
the data.

Perhaps the more interesting results from these evolved controllers would
be how they perform on the interpolated leg configurations, which were
not seen in their training. Surprisingly, both controllers could walk as
well as they did on the trained leg configurations. The mean of best static
controllers could walk 8.86 meters slightly more than evaluated on the
trained three leg configurations with a standard deviation of 1.90. As for
the best flexible controllers, the mean decreased a little at 8.02 meters with
a standard deviation of 2.03, while the best controller could walk a little
further at around 11 meters compared to 10.5 meters when evaluated on the
trained leg configurations. As figure 4.8 indicates, the difference between
the two groups are not significant at p ≈ 0.37.
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Figure 4.7: Performance evaluation on the trained 3 leg configurations.
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Figure 4.8: Performance evaluation for 13 interpolated leg configuration.

Both of the evolved static controllers and the flexible controllers managed
to walk for a given 10 seconds without falling, 7 best controllers out of 8
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Figure 4.9: Walking gait sequence. The first frame from the top left to the
last frame on the bottom right.

runs. Even the ones that did not manage to walk all leg configurations
solved 12 out of 13.

The supplementary video material4 compares the static and the flexible
controllers in the leg configuration that has not been seen during the
learning. One of the static controller fails for this specific leg configuration.
The biggest difference between the gaits of the static controller and the
flexible controller is that the static controller are more diverse in a way
that they move forward. While most of the flexible controllers are trot-
like as seen on figure 4.9, the gaits of static controller varies and more
dynamic - one can spot a gait walking side ways and one of the gait shows
characteristic of a galloping gait. Also, the gaits of the static controllers tend
to be less symmetrical in terms of their movement.

4.4.3 Analysis

This experiment has shown a somewhat conflicting result than the previous
work done by Risi[39], which has demonstrated that evolving a flexible
controller using the same methodology as this experiment performed better
than the static controllers in the interpolated performance.

One of the first things that could be looked into is how the evolved
controllers makes use of the leg length configuration input L and how the
output of the controllers are affected by the change of the L. Examining
each of evolved flexible controller revealed that three genomes used its L
value to modulate the output of each joint, out of eight best from each run
in the flexible experiment.

Figure 4.10 shows the evolved CPPNs from the flexible controller experi-
ment. The first subfigure 4.10a is one of the three controllers that actu-
ally evolved to modulate the L for different leg configurations. The input L
is directly connected to the bias B , which results in the modulated output
of each joint based on the leg length. In this case, the weight associated
with this connection, L to B , is positive weight indicating higher biases as

4https://youtu.be/a9M2IFrUjG8
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L increases. The higher biases for each neuron will result in higher output
value for each joint. This makes sense as the longer legs would need lar-
ger swing for better stability. On the contrary, figure 4.10b shows a CPPN
which does not utilize L at all. The consequence is that the CTRNN queried
by the CPPN is precisely the same for different leg configuration - regard-
ing weights, time constants, and biases. Resulting movements created by
these controllers are the same. Both of the CPPNs can generate controllers
that are capable of walking for the given evaluation time and 13 different
interpolated leg lengths.
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(a) Evolved CPPN utilizing L input.
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(b) Evolved CPPN without utilzing L input.

Figure 4.10: Example of evolved CPPNs. The gray boxes are input nodes
and blue circles are output nodes. The color of arrows indicates red for
negative weight and green for positive weight.
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One thing to note here is that it is perfectly normal for NEAT to mutate
the connection gene and disables it during evolution. At the initialization
phase, all the genomes are fully-connected from the input nodes to the
output nodes with randomized weights. Considering this, perhaps looking
into the trend of L’s usage would be in order.
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Figure 4.11: Number of genomes with valid connection from L input node.
Vertical lines indicates standard deviation.

The figure 4.11 illustrates the trend of L usage for three different EA scheme
plotted along with the generation with the mean number of CPPNs that has
a valid connection to the L input node with the standard deviation noted
with vertical errorbars along with the mean. Each of the EA is evolved for
the flexible controller, and have been compared in detail in the section 4.3.

Although the experiments are designed to evolve a flexible controller -
evaluating three different leg length configuration to promote usage of
L value, the overall trend observed from figure 4.11 is that there is an
increasing number of genomes that are mutated to ignore the L input.
While MOEA run had the highest number of genomes that used L input
at around 220 in the end, the other two EAs were fairly low at around 150
genomes. It should be also considered here that having a valid L input node
connection does not always mean that the output is modulated by the given
leg length.

Another thing that should be considered is the direction of the robot is
not considered to be a decisive factor during the evaluation. Although the
fitness function does encourage to move the robot along y-axis in positive
direction, this factor is much smaller than the traveled distance bonus
in the second term. The consequence is that as long as the stable and
moving gait can be generated, the controller does not need to adjust itself to
move in the same direction for different leg length configurations. In other
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words, static controllers move along different trajectories for different leg
lengths due to the difference in the location of center of mass and dynamics.
Hence a static controller, which does not alternate its direction, can be
favored by selection process. This analysis also provides explanation for
the more diverse and dynamic gaits of the static controllers shown in the
supplementary video5.

Furthermore, an additional contributing factor to the unexpected perform-
ance of the static controller, is the difference between DyRET and the simu-
lated quadruped from [39] in terms of the physical properties; DyRET does
not almost has a payload. Besides the minimal mechanics for the move-
ments, DyRET is practically a skeleton. Yet, the simulated quadruped from
Risi has a huge torso with a density of 1.0 kilograms per cubic meter. This
factor makes it harder for DyRET to fall in comparison.

This extended analysis of the evolved CPPNs have shown that while
there are solutions that use L node - modulating the output based on
its morphology, it is not always necessary to find a gait controller that
can be used on different leg length configurations. Nevertheless, as it
was analyzed in the previous experiment in the section 4.3, the current
implementation of evolving flexible HyperNEAT controller relies heavily
on the constraints on the controller scheme. The limited search space
introduced by the constraints made it possible for the static controller
evolution to find good solutions that does not need modulation for different
morphology for DyRET. However, it should be noted that the gaits of the
static controllers shown in the supplementary video are less conventional
for a typical quadruped walking gait - such as non-symmetrical movement
patterns.

5https://youtu.be/a9M2IFrUjG8
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Chapter 5

Conclusion

5.1 Discussion

5.1.1 Summarizing the Results

In the previous chapter, it was provided with the results and analysis of
the implementation of evolving a flexible gait controller, which bases on
neuroevolution approach suggested by Risi[39]. The implementation was
simulated on the DyRET platform, which can adjust its own leg lengths.

The first experiment compared the effect of behavior descriptors in terms of
the fitness and the performance, measured by the traveled distance for the
given 10 seconds. Combining all behavior descriptors together could give
the highest fitness while the last position descriptor was able to produce
controllers with high fitnesses with high deviation. However, comparing
the performance did not show a statistically significant difference between
the combinations of the descriptors while the best performing controller
was evolved by combining all. Although it was expected that combining
all descriptors worked the best, the last position descriptor’s property
came as a surprise. The analysis was that the last position descriptor was
implicitly embedded in the fitness function, giving a bonus to the deviated
last location. This resulted in amplifying the effect of the MOEA counting
on both fitness and novelty metrics.

Different EA evaluation schemes were compared in the second experiment.
Flexible gait controllers were evolved by fitness only evaluation, Novelty
Search only evaluation, and the MOEA, combining both. Although it was
expected that the fitness only evaluation would perform worst, the mean
best performance of the result has shown otherwise by the fitness only
evaluation generating the best performing controllers. Yet, the differences
between the mean best performance of each EA evaluation scheme were not
statistically significant. Suspecting that the positional bonus term in the
fitness function may have generated enough pressure in the search process,
additional experiments were conducted without the positional bonus in
the fitness function. The results have shown that the positional bonus
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term indeed was responsible for the unexpected result. The given analysis
pointed out that the heavy constraints applied in the controller scheme have
limited the search space, hence contributing to a better chance of finding a
suitable solution by the fitness only evaluation.

The last experiment compared the static controller and the flexible control-
ler by reproducing the previous work done by Risi[39]. Both controllers
were evolved by MOEA. The static controller was evolved without using
the L input in CPPN, which was designed to utilize the leg length config-
uration. While it was expected to see better performance on the flexible
controller, the result on the interpolated leg length evaluation has shown
that there was no statistical difference between them besides the quality
of gaits shown by the supplementary video. Upon analyzing the evolved
CPPNs, it was revealed that there is a trend of an increasing number of
CPPNs that are mutated to ignore the L, leg configuration input. Although
the solutions exist that alter its movement based on the leg length config-
uration, for given constraints and the simulation environment, they were
not favored compared to the static controllers. Hence the static controller
evolution performed as well as the flexible controllers.

5.1.2 Back to the Research Questions

The experiments have demonstrated some unexpected results and revealed
some interesting property of the implementation, regarding the behavior
descriptors, the EA schemes, and usage trend of L, leg configuration input
node.

Addressing back to the proposed research questions in chapter 1;

• Is it possible to evolve a neural network-based flexible gait
controller for DyRET? Although it may be arguable to call it a
flexible controller, in a sense that the controller adapts to the various
morphology, the implemented EA was able to find solutions that are
stable and able to move in various leg lengths, despite the varying
performance based on the EA scheme. Besides, it has been observed
that solutions exist that are adaptive to its leg lengths, modulating
the joint movement based on the leg configuration given by an input
to the CPPN, which encodes the CTRNN.

• Which selection pressure works best? - diversity vs. fitness
vs. both The second experiment compared diversity-based EA,
Novelty Search and fitness only evaluation, and MOEA combining
both of them. While the result was that there is no statistically
significant difference between them, the fitness only evaluation had
the highest mean best performance.

• Which behavior descriptor works best for evolving a gait
controller for DyRET? The first experiment concluded that com-
bining all three behavior descriptor - max-min amplitude, duty factor,
and last position, works best when the fitness function is concerned.

58



In terms of the performance, combining all had the highest mean al-
though not statistically significant.

5.1.3 Limitations

Despite the fact that the implementation successfully evolved gait control-
ler, be it static or flexible; there are a couple of points that should be men-
tioned.

First of all, the usage of heavy constraints is a limiting factor in terms of
searching for novel behaviors. Although these constraints accelerate the
search process of finding suitable gaits, there exist many other gaits that
could not have been expressed due to the constraints. The introduced
constraints force the search process to circulate around the default pose of
DyRET and limit free joint movement, especially when the lower joints are
concerned. Also, the heavy constraint usage may have led to some of the
unexpected results, such as the high performance of the static controller
for the interpolated leg configurations, and the fitness only evaluation.
Without the constraints, however, the implementation would have required
a lot more empirical testing to find a parameter setup that would be able to
find a walking gait.

The open-loop system applied to the control scheme doesn’t bring out the
full potential of CTRNN and HyperNEAT. The implemented controller has
an open-loop control system, where the input is a constant sinusoid signal.
This can be seen as a simple CPG like system, where a lower level small
neural network that controls muscle contraction is driven by a higher-order
agent. This leaves an opportunity to evolve an agent that could control the
evolved controller later on. However, sensory feedback is an important
aspect of CPG, as mentioned in chapter 2, section 2.2.2. In addition, It
has been shown that a simple neural network itself can be evolved to be
a standalone agent, such as maze pathfinder robot experiment in [22],
[27], a cockroach-like AI agent evolved by [1], and as gait controller with
a closed feedback loop system in [39]. This suggests that implementing a
control scheme with a sensory feedback could have revealed more diverse
behaviors and results which perhaps can adapt to different surfaces or
landscapes.

The two points mentioned above reveals another limitation, that the com-
bination of the open-loop control scheme and the uniform leg configura-
tion, i.e., same leg length for each leg limits the full potential of DyRET’s
platform which can change its leg length segment during operation.

The last to be mentioned is that the overall implementation and the
experiment design did not consider the application on the physical robot.
One of the most interesting perspectives of implementing Risi’s work[39]
into the existing robot platform DyRET would be actually seeing how it is
going to work on a physical robot. Nonetheless, during the implementation
and experiment, this aspect was not considered. Bridging the reality gap
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from the current simulation implementation to deploying it on the real
robot would be another challenge.

5.2 Conclusion

In this thesis, a flexible neural gait controller is evolved for the robot
platform DyRET. The implementation is based on Risi’s work[39], which
utilizes HyperNEAT with a special CPPN configuration that takes the
input for a leg length configuration. Although it is only realized in a
simulated environment, the result has shown that stable gaits can be
generated on the leg length configurations that have not been seen during
the evolution. Also, the result has revealed that the implemented method is
able to discover gait controllers that can perform well on the untrained leg
configurations while, in fact, being static controller - i.e., does not modulate
for different leg lengths. The result also demonstrated that heavy usages of
constraints could lead to unexpected results, e.g., objective optimization
can work as good as quality diversity.

Compared to the deep/reinforcement learning, NE has gained less atten-
tion in the field of AI recently. Unfortunately, the motivation that evolving
a simple neural network like how brain would have evolved could perhaps
reveal adaptive behavior did not get tested in this work. However, the result
suggests that within the context of ER, for a simple low-level gait controller,
NE approach can be viable. The implementation also suggests that a neural
network-based gait controller can be realized on the DyRET platform.

5.3 Future Work

Although the results demonstrated some success, it has been only touching
the surface of the problem - flexible, self-adapting gait controller for a given
morphology. Within the framework of HyperNEAT/CPPN, there are vast
possibilities for the current work to be improved and developed further. A
few suggestion are provided that could be realized to improve the current
work and other research possibilities.

Promoting L input usage. It has been observed that the number of
genomes that utilizes L input decreases as the evolutionary process goes
further. The given analysis was that the heavy constraints result in the
search process favoring gaits that are simple - i.e., outputting the same
movement for different leg configuration, hence stable controllers that are
stable in different leg lengths. In order to evolve true flexible controllers
that modulate on different morphologies, it should be possible to introduce
constraints into the evaluation process - e.g., giving a penalty for those
who don’t use the L input node. One of the things that can be address in
this suggested work is that whether the flexible morphology controller is
necessary for DyRET platform. By enforcing the usage of L input, it would
be possible to further analyze whether the observed trend of diminishing L
usage was a natural result.
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Closed-loop control system. In the discussion, it was pointed out
that closed-loop controller with sensory feedback could lead to the more
dynamic behavior of the robot, along with the fact that the current control
system - similar to CPG, can indeed benefit from sensory feedback, as well.
One could imagine a simple feedback loop from the foot sensor to the input
node of the corresponding node with a dedicated weight which could be
evolved by CPPN.

Evolving an adaptive agent that operates the evolved gait control-
ler. The current implementation only provides a low-level gait controller
in a form of a CPG. As there is a pool of capable controllers available now,
one can further design an agent network that can actually drive the evolved
gait controller. This future project could be used to test ideas on the ad-
aptive agents that can interact with the environment and further evolve the
controller.

Realize in the physical robot. Since we have seen that some solutions
can perform well, the implementation can be extended further so that the
evaluation can happen on the physical robot itself, as DyRET is designed
for. In this case, incremental evolution should be considered as starting
from a random controller would take a too long time to get to actual stable
gaits and possible complications on the hardware.
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Appendix

Tables

Table A.1: NEAT/CPPN Parameters

NEAT

fitness_criterion max
fitness_threshold 0
no_fitness_termination TRUE
pop_size 300
reset_on_extinction FALSE

Node activation options

activation_default sigmoid
activation_mutate_rate 0.5
activation_options gauss sin abs sigmoid

Node aggregation options

aggregation_default sum
aggregation_mutate_rate 0
aggregation_options sum

Node bias options

bias_init_mean 0
bias_init_stdev 1
bias_max_value 1
bias_min_value -1
bias_mutate_power 0.5
bias_mutate_rate 0.6
bias_replace_rate 0.1

Genome compatibility options

compatibility_disjoint_coefficient 1
compatibility_weight_coefficient 0.5

Connection add/remove rates

conn_add_prob 0.2
conn_delete_prob 0.2
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Connection enable options

enabled_default TRUE
enabled_mutate_rate 0.25
feed_forward TRUE
initial_connection full

Node add/remove rates

node_add_prob 0.1
node_delete_prob 0.1

Connection weight options

weight_init_mean 0
weight_init_stdev 1
weight_max_value 5
weight_min_value -5
weight_mutate_power 0.5
weight_mutate_rate 0.6
weight_replace_rate 0.1

Species

compatibility_threshold 3

Stagnation

species_fitness_func max
max_stagnation 180
species_elitism 90

Reproduction

elitism 150
survival_threshold 0.2

Table A.2: Pairwise MWU test result comparing EAs. The highlighted row
indicates p < 0.05 for uncorrected p-value.

A B U-val Tail p-unc p-corr p-adjust

MOEA Fitness Only 9.0 two-sided 0.018129 0.054387 holm
MOEA Novelty Only 16.0 two-sided 0.103562 0.207124 holm
Fitness Only Novelty Only 43.0 two-sided 0.270149 0.270149 holm
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A B U-val Tail p-unc p-corr p-adjust

MOEA Fitness Only 13.0 two-sided 0.052030 0.312178 holm
MOEA Fit Only no pos 64.0 two-sided 0.000939 0.009391 holm
MOEA Novelty Only 18.0 two-sided 0.156254 0.781270 holm
MOEA NS Only no pos 25.0 two-sided 0.494837 0.989673 holm
Fitness Only Fit Only no pos 64.0 two-sided 0.000939 0.009391 holm
Fitness Only Novelty Only 43.0 two-sided 0.270149 0.810446 holm
Fitness Only NS Only no pos 46.0 two-sided 0.156254 0.781270 holm
Fit Only no pos Novelty Only 0.0 two-sided 0.000939 0.009391 holm
Fit Only no pos NS Only no pos 0.0 two-sided 0.000939 0.009391 holm
Novelty Only NS Only no pos 35.0 two-sided 0.792896 0.989673 holm

Table A.3: Pairwise MWU test result EA comprison with no position runs.
The highlighted row indicates p < 0.05 for uncorrected p-value.

A B U-val Tail p-unc p-corr p-adjust

All Ampl&Duty 55.0 two-sided 0.018129 0.326322 holm
All Ampl&Pos 56.0 two-sided 0.013587 0.258158 holm
All Duty&Pos 52.0 two-sided 0.040569 0.608533 holm
All Ampl 60.0 two-sided 0.003876 0.081397 holm
All Duty 60.0 two-sided 0.003876 0.081397 holm
All Pos 36.0 two-sided 0.713191 1.000000 holm
Ampl&Duty Ampl&Pos 12.0 two-sided 0.040569 0.608533 holm
Ampl&Duty Duty&Pos 11.0 two-sided 0.031324 0.501186 holm
Ampl&Duty Ampl 25.0 two-sided 0.494837 1.000000 holm
Ampl&Duty Duty 17.0 two-sided 0.127808 1.000000 holm
Ampl&Duty Pos 16.0 two-sided 0.103562 1.000000 holm
Ampl&Pos Duty&Pos 27.0 two-sided 0.636502 1.000000 holm
Ampl&Pos Ampl 44.0 two-sided 0.227147 1.000000 holm
Ampl&Pos Duty 54.0 two-sided 0.023949 0.407127 holm
Ampl&Pos Pos 25.0 two-sided 0.494837 1.000000 holm
Duty&Pos Ampl 50.0 two-sided 0.066082 0.859065 holm
Duty&Pos Duty 46.0 two-sided 0.156254 1.000000 holm
Duty&Pos Pos 28.0 two-sided 0.713191 1.000000 holm
Ampl Duty 34.0 two-sided 0.874826 1.000000 holm
Ampl Pos 17.0 two-sided 0.127808 1.000000 holm
Duty Pos 23.0 two-sided 0.372029 1.000000 holm

Table A.4: Pairwise MWU test result for Behavior descriptor comparison -
fitness. The highlighted row indicates p < 0.05 for uncorrected p-value.
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A B U-val Tail p-unc p-corr p-adjust

All Ampl&Duty 37.0 two-sided 0.325271 1.000000 holm
All Ampl&Pos 29.0 two-sided 0.792896 1.000000 holm
All Duty&Pos 21.0 two-sided 0.270149 1.000000 holm
All Ampl 26.0 two-sided 0.563524 1.000000 holm
All Duty 33.0 two-sided 0.958122 1.000000 holm
All Pos 35.0 two-sided 0.792896 1.000000 holm
Ampl&Duty Ampl&Pos 16.0 two-sided 0.183233 1.000000 holm
Ampl&Duty Duty&Pos 10.0 two-sided 0.042844 0.856872 holm
Ampl&Duty Ampl 12.0 two-sided 0.072849 1.000000 holm
Ampl&Duty Duty 20.0 two-sided 0.385418 1.000000 holm
Ampl&Duty Pos 25.0 two-sided 0.772337 1.000000 holm
Ampl&Pos Duty&Pos 26.0 two-sided 0.563524 1.000000 holm
Ampl&Pos Ampl 30.0 two-sided 0.874826 1.000000 holm
Ampl&Pos Duty 40.0 two-sided 0.430897 1.000000 holm
Ampl&Pos Pos 39.0 two-sided 0.494837 1.000000 holm
Duty&Pos Ampl 43.0 two-sided 0.270149 1.000000 holm
Duty&Pos Duty 54.0 two-sided 0.023949 0.502922 holm
Duty&Pos Pos 47.0 two-sided 0.127808 1.000000 holm
Ampl Duty 44.0 two-sided 0.227147 1.000000 holm
Ampl Pos 41.0 two-sided 0.372029 1.000000 holm
Duty Pos 33.0 two-sided 0.958122 1.000000 holm

Table A.5: Pairwise MWU test result for Behavior descriptor comparison
- performance The highlighted row indicates p < 0.05 for uncorrected p-
value.

Supplementary Video

The supplementary video is attached to DUO, see ’supplementary_video.mp4’.
And it can also be played on YouTube via link : https://youtu.be/a9M2IFrUjG8
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