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Abstract

Designing robots by hand is often both costly and time consuming. In order
to create robots automatically, without the need for human intervention, it
is necessary to optimise both the behaviour and the body design of the
robot. However, when co-optimising the morphology and controller of a
locomoting agent the morphology tends to converge prematurely, reaching
a local optimum. Approaches such as explicit protection of morphological
innovation have been used to reduce this problem, but it might also be
possible to increase the exploration of morphologies using a more indirect
approach.

We explore how changing the environment the agent locomotes
in affects the convergence of morphologies. Inspired by POET, an
algorithm which evolves environments open-endedly, we create POET-M,
an expansion of POET which includes evolution of morphologies. We
compare the morphological change and diversity of agents evolving in
a static environment, a curriculum of hand crafted environments, and in
POET-M.

We show that the agents experience increased morphological change
in response to environmental change, and that agents evolving in an
open-ended environment exhibit larger morphological diversity in the
population than agents evolving in a static flat environment or a hand
crafted curriculum of environments. POET-M proved capable of creating
a curricula of environments which encouraged both diversity and quality
in the population. This might suggest that the open-endedly evolving
environments in POET-M act as stepping stones for the agents, enabling
the morphology to escape local optima and continue evolving past the early
stages of the evolution.
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Chapter 1

Introduction

1.1 Motivation

When creating a robot’s morphology it is common to mimic the body
structure of creatures found in nature. Bipedal robots inspired by humans
[1], [2], quadruped dog-like robots [3] and hexapedal robots similar to
insects [4] are examples of such bioinspired robots. It is also possible to
take inspiration, not from the animals directly, but from the evolutionary
process that created them.

In 1994 Karl Sims published a study, "Evolving Virtual Creatures"
[5], which showed virtual creatures evolving in an artificial world with
simulated physics. In this artificial evolution the creatures evolved both
their bodies and their behaviours simultaneously, and solved various tasks
such as walking, swimming and competing against each other. Inspired
by Sims’ work many researchers took interest in creating robots that can
evolve both their morphology and controller at the same time [6]–[10], and
the field of co-evolution of robot morphology and controller emerged.

An ambitious goal in robotics is to create robots that find good body
designs, produce themselves and learn to solve arbitrary tasks, without the
need for human intervention. Reaching this goal would remove the costly
design process of creating body designs by hand, and the designs reached
could potentially enable the robots to reach higher performance than what
is possible with human made designs. Lipson et al. [11] attempted to
create a system that produces robots with as little human assistance as
possible. Their algorithm evolve a robot’s morphology and controller, and
automatically 3D-print the robot. The only thing a human needs to do is
to snap motors in place, in slots in the 3D-printed body, and the robots
are ready to locomote. However, these robots have many limitations, and
we are far from reaching the goal of automatic design. There are many
challenges yet to be solved in this field. Finding efficient designs, and
creating a diversity of useful and robust behaviours, is a difficult task.

Although computing power has increased significantly since Karl Sims’
study was published, the morphological complexity of evolved agents
has not increased as much as could be expected [12]. Deficiencies in the
morphology encodings [13], deficiencies in the diversity maintenance of
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search algorithms [14], and that the environments used are not complex
enough to encourage complex morphologies [15], have been suggested
as sources for this problem. In 2012 Cheney et al.[7] proposed their
theory on why it was so difficult to make further progress. When
co-evolving morphology and controller, the morphology would often
converge prematurely. Cheney et al. proposed that this is due to an effect
called embodied cognition.

Embodied cognition is a theory stating that how a creature behaves is
influenced heavily by their body. The body can be seen as an interface
between the controller and the environment, and if the body changes, even
just a little, it is as if the interface between body and controller has been
scrambled. The controller adapts to its specific morphology, and when
the morphology changes, the controller will have to re-adapt before it can
manage to locomote with the new body.

Cheney et al. [8] continued their research, and studied how explicitly
protecting individuals, that had just experienced morphological change,
affected the evolution of the morphologies. They showed that when giving
the controllers time to adapt to their new bodies, the new morphologies
would overtake the old ones, and the algorithm would continue to explore
new morphologies.

Several algorithms that reduce the problem of embodied cognition,
without explicitly protecting novel morphologies, have also been pro-
posed. One such algorithm is ALPS [9], where mating is only allowed
between candidates that have experienced approximately the same num-
ber of earlier reproduction steps. This restriction divides the population
into layers based on their age, and lowers the selection pressure on young
candidates. Jelisavcic et al. [10], also take a more indirect approach to pro-
tecting new morphologies. In their work all controllers adapt to their mor-
phologies, before being evaluated, through lamarckian evolution. Lehman
et al. [14] do not allow the controllers time to adapt to their morphologies,
but rather increase morphological diversity by optimising for morpholo-
gical novelty in addition to performance with a multi objective evolution-
ary algorithm.

In traditional evolutionary algorithms it is common to optimise for
better performance, but this approach can easily lead the algorithm to
converge to a local optima prematurely. One way to increase the chance
of finding good optima is to increase diversity in the population, with
methods such as fitness sharing [16], [17], speciation [18], crowding [19]
or novelty search [20].

In the field of open-endedness, the focus is not to move towards
solutions with better performance, but to create novel and interesting
solutions [21], often by optimising for diversity instead of performance.
Counterintuitively, searching for novelty alone can sometimes find better
solutions than what can be found by optimising directly for performance,
as demonstrated by Lehman et al. [20].

Inspired by minimal criterion co-evolution [22], Wang et al. invented
POET [23]. In POET environments evolve open-endedly, while agents
are optimised to locomote within them. A minimal criterion ensures that
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the environments are appropriately difficult for the agents, increasing in
complexity as the agents learn to walk more efficiently. Wang et al. show
that the many environments are used as stepping stones, enabling the
agents to learn new skills, and escape local optima.

We create POET-M, where agent morphologies are co-evolved with
their controllers. We use this to explore whether the stepping stone
environments, that enabled agent controllers to escape local optima in
POET, will also enable agent morphologies to escape local optima in POET-
M.

1.2 Research Questions

When co-evolving morphology and controller of a locomoting agent, the
morphology tends to converge to a local optima prematurely. Our hypo-
thesis is: "When co-evolving the morphology and controller of locomoting
agents, evolving the agents in open-endedly evolving environments can
prevent premature convergence of morphologies." From this hypothesis we
create three research questions which we attempt to answer:

• How does changes in environments affect the morphological devel-
opment of locomoting agents?

• What impact does increasing the difficulty of the environments, as
the agent solves them, have on the morphological development of
locomoting agents?

• How effective is POET-M in maintaining both quality and morpholo-
gical diversity in a population, compared to populations evolved in a
static environment or a hand crafted curriculum?

We perform one experiment for each of the three research questions.

1.3 Contributions

Our main contribution is showing that agents that are evolved in envir-
onments which are evolving open-endedly with POET-M, maintain larger
morphological diversity in the population, compared to agents evolved in
static environments, and in hand crafted curricula of environments. This
may suggest that open-ended evolution of the environments decreases the
problem of premature convergence of morphology in embodied agents.

1.4 Thesis structure

This thesis consists of five chapters: 1. Introduction, 2. Background, 3.
Implementation, 4. Experiments and Results and 5. Conclusion and Future
Work.
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The background chapter presents relevant research and related work.
We focus on four fields: Evolutionary algorithms, Evolutionary robotics,
Neuroevolution and Open-endedness. We also describe the POET [23]
algorithm, which our algorithm builds upon.

The implementation chapter describes the environment we use to test
our algorithm, Bipedal Walker Hardcore, the evolutionary algorithm we
use to evolve agents and environments, POET-M, and the hand crafted
curricula of environments used in some of the experiments.

The experiments and results chapter presents three experiments, each
tied to one of our three research questions presented in section 1.2, and the
results and findings of each experiment.

The conclusion chapter summarises what we have done, and discusses
possible future work.

4



Chapter 2

Background

2.1 Evolutionary algorithms

Evolutionary algorithms [24] are a type of meta heuristic search algorithm
inspired by evolution found in nature. Solutions to a problem is found
through trial and error, and information about previously tested solutions
is used to decide which new solutions to test.

There are several variations of evolutionary algorithms. We focus on
the genetic algorithm, which we use in our experiments, but we will also
briefly look at evolutionary strategies, which is used by Wang et al. in
POET [23]. A large challenge in evolutionary algorithms is the balance
between searching for new solutions and exploiting good solution that
have already been found. In section 2.1.3 we look at techniques to achieve
this balance.

2.1.1 Genetic algorithms

The genetic algorithm [25] is a branch of evolutionary algorithms where
solutions are represented as genomes, similarly to how DNA encodes
creatures in nature. Animals and plants have evolved, from simple cells to
complex beings, through reproduction and mutation. Similarly, in the genetic
algorithm, a population of potential solutions is created, and the search is
performed by creating new combinations of the previous individuals’ gen-
omes, and applying small random changes to them. Both in nature and in
genetic algorithms there are not enough resources to keep all individuals
alive. In nature, and often in genetic algorithms, the best performing indi-
viduals are more likely to survive and reproduce. This creates a selection
pressure that drives the population as a whole towards better solutions.

The flow of a genetic algorithm can be described by these steps:

1. Create initial candidate solutions.

2. Evaluate the candidates with a fitness function, to rank their perform-
ance.
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3. Choose which candidates get to become parents and reproduce.

4. Recombine the parents to create new solutions, the children.

5. Mutate the children.

6. Choose which candidates will survive, and proceed to the next
generation.

7. Repeat step 2 - 5 until a termination condition is met.

The steps above will be described in detail below.

Creating the candidates

The most common way to create the initial candidates is by drawing
random samples from the search space. They can be drawn from a uniform
distribution, or from another distribution of choice. Another way to choose
the initial candidates is by spreading them out over the search space to
cover area. This can for example be done by dividing the search space into
a grid, and drawing one sample from each square.

The fitness function

The fitness function evaluates how well a candidate solution performs a
task, and gives the candidate a fitness score based on how well it did.
The candidates behaviour is often evaluated by simulating it in a task
environment. If the task of the evolution is to create gaits for a robot, a
fitness function could be how far the robot moves within a time frame. For
evolution that optimises the shape of an antenna the fitness function could
be the strength of the emitted signal. The fitness function has to be designed
specifically for the problem that is being solved. When all individuals
in the population have been evaluated by the fitness function and given
a score, the fitness score can by used to easily compare the individuals’
performance.

Choosing the parents

When all the individuals in the population have been assigned a fitness
value by the fitness function, a subset of the population is chosen to
become parents. Parts of the parents’ genomes will be passed on to the
new individuals that are created in the recombination phase. A common
parent selection mechanisms is to choose the parents randomly, either with
equal probability to choose each individual, or with a probability decided
by their fitness. Another common parent selection mechanism is to hold
tournaments, in which a set number of individuals are chosen at random,
and the best among them becomes a parent.

6



Recombination

In the recombination phase children are created. The children’s genomes
are created as combinations of the genomes of two or more parents. Some
common recombination operators are uniform crossover, k-point crossover,
and partially mapped crossover. In uniform crossover each value in the
genome is chosen from a random parent. In k-point crossover the genomes
are divided into sections, and each section is chosen from a random parent.
Partially mapped crossover can be used if you need individuals with non-
repeating values.

Mutation

In the mutation phase the children that have been created in the recombin-
ation phase are modified. Through mutations, values that did not appear
in any of the population’s initial genomes can be explored. Common muta-
tion operators involve randomly replacing or modifying values, or switch-
ing the positions of two or more values within the genome.

Survivor selection

When the children have been created the individuals that survive and
move on to the next generation are chosen. Two common selection
schemes is to either select only the children, or select the individuals with
highest fitness. Selecting only the children will increase exploration of new
solutions, while selecting the individuals with highest fitness will increase
exploitation of the good candidates.

2.1.2 Evolutionary strategies

Evolutionary strategies [26] were first developed to solve real-valued
optimisation problems, such as design problems. The general evolutionary
strategy has a population of parameter vectors, and a fitness function
measuring their performance. The flow of the algorithm is similar to
the genetic algorithm with parents creating offspring, and selection of
survivors for the next generation.

When creating children in the general evolutionary strategy all indi-
viduals are chosen as parents, and each of them creates one child through
asexual reproduction. An individual is mutated to create a child by adding
an offset, containing Gaussian noise, to the parameter vector. After all indi-
viduals have reproduced the population size has doubled. The half of the
population with highest fitness is chosen as survivors for the next genera-
tion.

CMA-ES

Some variations of evolutionary strategies do not evolve a population
directly, such as Covariance Matrix Adaption - Evolutionary Strategy [27],
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CMA-ES. Rather, it evolves a distribution from which candidate solutions
are sampled.

For each generation the algorithm draws several candidates from the
distribution. The mean of the distribution is then recalculated, and a new
distribution is created. The new mean is calculated as a weighted average
of the candidates, where each candidate is given weight equal to its fitness.
A normal distribution is often used.

2.1.3 Exploration vs. exploitation

When using evolutionary algorithms to search a solution space it is
important to consider the balance between creating novel solutions that
explore new ways of solving the problem, and converging toward better
solutions to improve the fitness of the candidates. With too much focus
on creating the best solution, the algorithm will quickly converge to a local
optima. With too much focus on exploration the candidates will take too
much time to reach the peaks of the search space while exploring useless
candidates. A balance between the two is difficult to achieve, especially in
a rugged search space, where the algorithms can easily be deceived by a
local optima. In this section we look at some techniques besides increasing
mutation, that can be used to increase the exploration of candidates.

Niching

In evolutionary algorithms the whole population tends to converge
towards a single solution, as the algorithm converges towards an optima.
In niching the population is divided in some way, and candidates can
only recombine with candidates from the same division. This causes the
groups of candidates to collect on different peaks, and the algorithm can
find multiple solutions in one run, as illustrated in figure 2.1.

Reaching more than one peak can lead to better performance. When a
larger number of peaks are explored, the algorithm’s chance of finding the
global optima increases.

The population can be divided into groups in different ways. One
method can be to simply separate the population into smaller sub
populations, and evolve them separately. Individuals can sometimes be
moved between the niches, to share information, which is called island
hopping.

Crowding

There are also more indirect approaches that encourages the populations to
form niches on its own. An example of such an approach is crowding [19].

When using crowding in an evolutionary algorithm, children have
to compete against the already existing candidates for a spot in the
population. Each child only competes with one other candidate. To choose
the candidate that the child will compete against, w candidates are drawn
randomly from the population. From the w candidates, the child competes
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Figure 2.1: In the left picture all candidates collect at one peak. In the right
picture the candidates are separated into groups that can collect at different
peaks, as in niching.

against the candidate that is the most similar to itself. This causes fit
candidates to only increase selection pressure for similar candidates, which
causes the population to naturally crowd at different peaks.

Fitness sharing

Another method to decrease selection pressure and encourage population
diversity is fitness sharing [17], where an individual’s fitness is degraded
through a sharing function. The theory behind this is that individuals in
nature have to compete for resources with other similar individuals, while
very different individuals find resources in different places. The sharing
function in fitness sharing decreases an individual’s fitness based on how
many similar candidates are found in the population, creating an effect
where the similar candidates get lower fitness due to having to share their
resources with many others.

2.2 Neuroevolution

Artificial neural networks have been used to approximate solutions to
various problems for a long time. A common way to find the network
weights is through backpropagation [28]. Neuroevolution is the process
of searching for optimal weights or topology of a neural network with
evolutionary algorithms [29], and is an alternative to gradient descent
based approaches when optimizing neural networks.

Neuroevolution can be effective when dealing with a complex search
space due to its ability to explore a wide variety of solutions. Some
common neuroevolution algorithms are conventional neuroevolution,
NEAT and HyperNEAT.
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2.2.1 Conventional neuroevolution

Conventional neuroevolution [30] is a simple form of neuroevolution. The
algorithm searches for network weights while the topology remains fixed.
Common evolutionary algorithm operators such as crossover, mutation
and speciation are applied.

2.2.2 NEAT

NeuroEvolution of Augmenting Topologies [31], NEAT, is an extension of
common neuroevolution to include the evolution of network topologies.
The evolved topologies start simple, and gradually become more complex
as new weights and nodes are added through mutations.

To make crossover between different topologies possible the genes are
tracked with innovation numbers. Each time a new node or weight is
created it is given a unique number. This number is inherited along with
the weight in the recombination phase. When recombining the parents the
genes from the parents are separated into two categories. The first category
is the genes that exist in all parents. A gene exists in all parents if a gene
with the same innovation number exists in all parents. The value of a
weight can be different for all the parents, even if it has the same innovation
number. For this category of shared weights the value of each weight is
inherited from a random parent. The second category is the genes that do
not exist in all parents. From this category only the genes from the most fit
parent are inherited.

2.2.3 HyperNEAT

HyperNEAT [32] does not evolve neural networks directly, but evolves
Compositional Pattern-Producing Networks [33], CPPNs, which encode
neural networks. The CPPN uses a combination of functions to approx-
imate the values of the network, and is evolved with NEAT. The CPPN
takes the positions of two nodes as input, and outputs the weight between
them. Because the CPPN knows the positions of the nodes in the network
it is said to be able to take geometric relations into account.

2.3 Evolutionary robotics

Evolutionary robotics is the method of applying evolutionary algorithms to
automatically generate the morphology or controller for robotic systems.
In evolution of robot morphology the whole shape of the robot can be
evolved, such as in soft robots [34] or modular robots [35]. However, it
is also possible to only evolve small parts of the morphology, such as the
length of the robots legs [3], [6], [36], [37], or the placements of the robots
sensors [38], [39].

A common problem when evolving both morphologies and controllers
for robots at the same time is premature convergence of morphologies
[7]. Section 2.3.1 will present research on difficulties in co-evolution of
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morphology and controller, while section 2.3.2 will present research on
how to overcome these challenges. Section 2.3.3 looks at research on
environmental effects on robot morphologies.

2.3.1 Difficulties in co-evolution of robot morphologies and
controller

Cheney et al. [7] suggest that there is a fundamental problem in co-evolving
robot morphology and controller, causing premature convergence of
morphologies. They hypothesise that changing the morphology scrambles
the interface between the controller and the body, due to robots being
embodied agents. This embodiment would create an effect where control
optimization on an existing morphology should be more effective than
morphological optimisation on a fixed controller.

To test this they conduct an experiment where they co-evolve the
controller and morphology of robots. They freeze either the morphology
or the controller at various points in the training, and continue training
the other part. They observe that freezing the controller early has a bigger
negative impact on final fitness than freezing the morphology early, and
conclude that this supports their hypothesis. They suggest that when co-
evolving morphologies and controllers it is necessary to protect candidates
after a morphological change so that the controller gets a chance to adapt
to it’s new body.

2.3.2 Methods in co-evolution of robot morphologies and con-
troller

Scalable co-optimization of morphology and control in embodied ma-
chines

Cheney et al. [8] continue their work on co-evolution of morphology
and controller, and present a technique they call morphological innovation
protection. Because robot controllers and morphologies are co-dependant
a robot’s fitness drops if either of them is changed while not allowing
the other time to adapt to the changes. Protecting individuals that
have recently experienced a big change, through keeping them in the
population even if they are performing poorly, allows the morphologies
and controllers to adapt to each other. When allowed time to adapt, an
individual which experienced large changes can potentially reach a higher
fitness than the individuals which did not experience large changes.

In morphological innovation protection innovation is protected by
tracking the age of each individual. An individuals age is the number of
generations that has passed since an individual last experienced a large
change. An individual will only be removed from the population if
there exists an individual that has both higher fitness and lower age than
it. Selection pressure is reduced for candidates that recently experienced
large morphological change, as they only compete with candidates that
are younger than themselves. Their results show that when using
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morphological innovation protection the robots are more diverse, and
reach higher performance than when innovation is not protected.

To test whether protecting innovations in the controller has the same
effect on the training as protecting morphologies, they compare the two
approaches. They find that the algorithm performs significantly better
when morphologies are protected, compared to when controllers are
protected. This result show an asymmetry in the difficulty of evolving
morphologies and controllers, and supports the theory of embodied
cognition in robots.

Reinforcement Learning for Improving Agent Design

Ha et al. [6] evolve agents locomoting in the bipedal walker and ant
environments found in OpenAI Gym [40]. They evolve both the controller
and the morphology of the agents. The agents are optimised with the policy
gradient algorithm REINFORCE [41]. They show that the agents achieve
higher fitness, and solve the environment faster, when allowed to change
their morphology in both the bipedal walker and the ant environment.

They also evolve the agents while using a modified fitness function,
which gives the agents extra reward for having smaller legs. The agents
learn to walk efficiently even with tiny legs. The agents evolved larger
legs for difficult environments than they did for easy environments,
finding the smallest legs that were still capable of tackling the challenging
environments.

Lamarckian Evolution of Simulated Modular Robots

Jelisavcic et al. [10] co-evolve the morphology and controller of modular
robots. In addition to the change the robots experience through reproduc-
tion, they can optimise their control algorithm as they are being evaluated.
This on-line optimisation is called lifetime learning.

Jelisavcic et al. look at the difference between baldwinian and
lamarckian evolution, and perform one experiment for each of the two
evolution schemes. In the first experiment, where baldwinian evolution
is used, the child candidates inherit the weights that their parent had
before undergoing lifetime learning. In the second experiment, which
uses lamarckian evolution, the children inherit the resulting parent weights
from after the lifetime learning.

Jelisavcic et al. observe that in most cases the robots evolved with
lamarckian evolution performed better than the robots evolved with
baldwinian evolution, especially in the earlier generations of the training.
If they let the experiments run for many generations the baldwinian robots
tended to catch up to and eventually surpass the lamarckian robots. They
therefore conclude that lamarckian evolution is only better than baldwinian
evolution if low computational cost is a requirement.

The robots evolved with baldwinian evolution covered more of the
morphology search space compared to the robots evolved with lamarckian
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evolution, suggesting that exploration of morphologies is larger when
using baldwinian evolution.

ALPS: the Age-Layered Population Structure for reducing the problem
of premature convergence

Hornby et al. [9] propose using an age-layered population to slow down
convergence in evolutionary algorithms. The population is divided into
layers, where all candidates in a layer has the same age. The first layer
contains new randomly initialised agents with age 0. After reproduction
the age of a child is set to the age of its oldest parent plus one. Thus the age
describes not the age of the individual, but the age of the genetic material it
contains. Candidates can only mate with other candidates that are in their
own layer or in a neighbouring layer.

This layering reduces selection pressure on young candidates, as they
only compete with candidates of similar age. The selection pressure
increases through the layers, and the elitist selection scheme ensures high
selection pressure in the oldest layers. As young candidates discover new
and better optima, than those found by the older population, they move up
the layers until they replace the old candidates.

Hornby et al. compared their algorithm to a traditional evolutionary
algorithm, a multi-start evolutionary algorithm, and two evolutionary
algorithms with diversity maintenance schemes. They found that ALPS
produced better solutions than all of them, with higher reliability.

2.3.3 Environmental effects on robot morphology

Environmental influence on the evolution of morphological complexity
in machines

Biological creatures have increased tremendously in complexity over
time, from single cells to giant organisms. However the reason for the
increased complexity is still unknown. Auerbach et al. [15] explore how
environmental complexity affects the morphological complexity of evolved
agents. They evolve the morphology of their agents as three dimensional
meshes. The genetic encoding produces regular patterns, which tends to
produce symmetric phenotypes.

The environments in which the agents evolve are flat, high friction
surfaces, which contain varying amounts of low friction "ice" blocks.
Within one environment the frequency of the ice blocks is constant. A
cost for morphological complexity was included in the fitness function,
encouraging the agents to evolve the least complex form that was capable
of solving the environment. When this cost was introduced the agents
locomoting in complex environments evolved more complex forms than
the agents locomoting in simple environments.
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Effects of environmental conditions on evolved robot morphologies and
behavior

Miras et al. [42] evolve morphologies and controllers for modular
robots, and try to observe how changes in the environments affects the
robot morphologies and gaits. The robots are evolved in one of three
environments: a flat surface, a surface with small poles or a tilted surface.
They observe that the robots evolve mostly rowing gaits for the tilted plain,
and rolling gaits for the other two environments. The robots evolved in the
tilted plains tend to be small with several limbs, while the robots evolved in
the two other environments tend to evolve larger robots with fewer limbs.

2.4 Open-endedness

In nature a large variety of creatures exist, and continually evolve, creating
new diverse creatures. The creatures behave and survive in very different
ways, each species evolving to become efficient within their niche.

Evolutionary algorithms do not manage to create a diversity similar
to the one found in nature, and usually converge to find a single
solution to a problem. Inspired by the diversity in nature researchers
have sought to create algorithms that create a large variety of solutions,
continually creating new interesting ways to solve a problem. This type
of algorithm, generating new innovative solutions, are often called open-
ended algorithms.

2.4.1 Novelty search

Evolutionary algorithms are usually optimized for a predefined objective,
but rewarding solutions that have come the closest to the objective, can
often cause the algorithm to be deceived by a local optima. This kind of
local optima, can be illustrated in a labyrinth, such as the one shown in
figure 2.2. A simple path going straight forward will lead the agent very
close to the goal, but this path is deceptive as there is a wall blocking the
path to the exit of the labyrinth. To solve the labyrinth, a complex path, that
might lead away from the goal at times, will have to be chosen.

Lehman et al. [20] propose an algorithm, novelty search, that does not
optimise for higher fitness. Rather, it searches for solutions that are as
different as possible from previously found solutions, by optimizing for
novelty in the behaviour space. To calculate the novelty of a solution it is
compared to an archive of all previously explored solutions.

They showed that by searching for novelty alone, the deceptive
labyrinth can be solved more efficiently than by regular evolutionary
search. Their algorithm also managed to solve complex labyrinths where
regular evolution did not reach a solution at all. A disadvantage to
novelty search is that it can be difficult to create a method for comparing
solutions based on novelty. It can be difficult to evaluate how different two
behaviours are, and comparing the genomes that create the behaviours is
not always sufficient, as many genomes can lead to similar behaviours.
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Figure 2.2: A labyrinth. A local optima can easily deceive the algorithm
solving this labyrinth, as going along the red line can yield a very high
fitness.

2.4.2 Quality-diversity search

Novelty search with local competition

Novelty Search with Local Competition [14], NSLC, is a multi objective
algorithm that optimises for both novelty and performance. In problems
with many incompetent solutions, such as robot morphology optimisation,
searching for novelty alone can fail due to spending too much time
exploring the large amount of incompetent variations. In these cases,
optimising for both novelty and quality, at the same time, can help reach
good solutions quicker.

NSLC has two fitness functions, one measuring performance, and one
measuring novelty. A pareto-front with candidates that balance the trade
off between novelty and quality differently is created. The novelty of an
individual is measured similarly to how it is measured in the Novelty
Search algorithm, by comparing it to an archive of all previous solutions.
By including novelty as a separate objective, selection pressure is reduced
on individuals with innovative solutions, while the individuals in well
explored sections of the search space will need to rely on performance to
survive.

Although adding novelty as a multi objective will increase the diversity
of explored solutions, while still optimising for performance, it does not
create a wide range of interesting behaviours. To evolve a diversity
of different behaviours at the same time, Lehman et al. divide the
population into niches, by only comparing an individuals performance to
the performance of similar individuals. This reduces the selection pressure
within niches where the performance potential is low.
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MAP-elites

Multidimensional Archive of Phenotypic elites [43], MAP-elites, is an
illumination algorithm, which attempts to visualise regions of high and
low fitness in a search space.

The search space of a problem is often high-dimensional, so to visualise
it the user chooses a set of features to be explored. For optimisation of robot
morphologies the features could be the height and weight of the robot. A
low-dimensional map of the features is created and divided into a grid
of cells. The algorithm then searches for the best performing individual
within each cell. This results in a map that visualises the fitness potential
for different combinations of the features, and shows what areas of the
feature space are the most interesting.

Mouret et al. compared their algorithm to random sampling of the
search space, a regular evolutionary algorithm and NSLC. The algorithms
were tested in three problem domains, evolution of neural networks, soft
robots, and robot arm control. They showed that MAP-elites tended
to perform better than all the comparison algorithms in all the problem
domains, both with regard to final fitness, and with regard to exploration
and illumination of the search space.

2.4.3 Minimal criterion co-evolution

Both Novelty search and NSLC require a novelty measure, and an archive
containing all previously explored solutions. Novelty measures can be
difficult to create, and archives can become very large as many behaviours
are explored. In 2017 Brant et al. proposed minimal criterion co-evolution
[22], a new type of open-ended evolution that does not have these two
weaknesses.

Minimal criterion co-evolution co-evolves two interacting populations.
Each of the two populations have a minimal criterion, and individuals that
do not meet their population’s criterion are not allowed to reproduce. In
their experiments, Brant et al. test their algorithm by evolving mazes and
maze-solvers. The minimal criterion for the mazes is that at least one of the
maze-solvers have to be capable of solving the maze. The minimal criterion
for the maze-solvers is that they have to be able to solve at least one of the
mazes. To ensure that the all the mazes do not become variations of the
same maze the population is divided into species based on similarity of the
genomes. The parents that get to reproduce are chosen proportionally from
all species.

This co-evolution evolves two diverse populations of problems and
their solutions. The problems and solutions get more complex as the
generations pass, thus generating endless interesting problems and their
solutions.
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2.5 POET: Paired Open-Ended Trailblazer

The Paired Open-Ended Trailblazer, POET, is an open-ended algorithm
created by Wang et al. [23]. We build upon their work, and create
a modified version of this algorithm, POET-M, which we use in our
experiments. This section will describe the original POET, while our
version POET-M is described in section 3.3, in the implementation chapter.

POET has a population of pairs, where each pair consists of one
environment and one agent. The agents are optimized within their paired
environment, and the environments are evolved with an open-ended
algorithm optimizing for novelty. Wang et al. take experience from
minimal criterion co-evolution, subjecting the environments to a minimal
criterion that has to be fulfilled in order to be allowed to reproduce, and a
minimal criterion to be allowed into the population. The minimal criterion
regulates how difficult the environment is for the paired agent, and is
checked by seeing if the agents fitness is within a range set by the user.
The environments are pushed to increase in complexity as the agents get
better at solving them. As the environments increase in complexity, the
agents learn increasingly complex behaviours.

Wang et al. tested their algorithm in the OpenAI bipedal walker
environment, and observed that the agents used the environments as
stepping stones to learn behaviours and gaits they would otherwise not
find. The pairs share their knowledge helping each other escape local
optima.
The main execution loop of POET, shown in figure 2.3, has three main steps:

• Creating environments

• Optimizing agents

• Transfering agents between environments

Each of the three steps will now be described in detail.

2.5.1 Creating environments

When POET is initialised one initial pair is created. The pair consists
of a very simple environment, and an agent chosen randomly from the
agent search space. The agent is optimised within the first environment
until it reaches the minimal criterion for reproduction. After the first
pair has reached the minimal criterion, new environments are created at
regular intervals decided by the parameters transfer_generation and
create_generation, as seen in figure 2.3.

When new environments are created, all the pairs are checked against
the minimal criterion for reproduction. The environments from the pairs
that satisfy the criterion are marked as eligible to reproduce. If there are
no eligible environments the creation of environments is skipped, and the
evolution proceeds to the next generation.
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Figure 2.3: The main loop of the POET algorithm. Transfer of candidates
is attempted every transfer_generation generations, and creation of en-
vironments is attempted every create_generation*transfer_generation
generations.

To create a child, one of the eligible environments is selected at random
and mutated. The number of children created is decided by a parameter
set by the user. To choose agents for the children, all agents that exist in
the population are tested in the child environments. The agent that has the
highest fitness in the child environment is chosen, and copied to the child
to create a pair. The child pairs are then checked against a second minimal
criterion, the minimal criterion of difficulty. This minimal criterion has an
upper and lower boundary for agent fitness, and ensures the environment
is not too difficult or too easy for its agent. The children that do not meet
this minimal criterion are removed.

After this process we are left with a list of children that all meet the
minimal criterion of difficulty. These children are sorted by environment
novelty. The novelty of the environment is found by comparing it to an
archive of all environments that have existed in the run. The novelty
measure is the euclidean distance to the five nearest neighbours in the
archive. If a child environment already exists in the archive, it is removed
from the list of child pairs.

The most novel of the child pairs is added to the population until
the maximum number of children that can be added each generation is
reached, or until there are no more children left to add. The maximum
number of children that can be added is controlled by a parameter set by
the user. The POET population has a maximum population size. When this
limit is reached the oldest pair is removed.
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2.5.2 Optimising the agents

Wang et al. use evolutionary strategies to optimise their agents. Their
algorithm is based on an algorithm used by Salimans et al. [44], which
has been shown to be effective on reinforcement learning problems.

The algorithm optimises a parameter vector θ, which contains the
parameters to a distribution. In each step of the evolutionary strategy a
direction in which to move the distribution is found, and an offset is added
to the parameter vector based on this direction. The direction is found
by using the distribution to sample policies, calculating the fitness of the
policies, and creating a rank-normalised weighed sum of the policies based
on their fitness. The distribution used is an isotropic multivariate Gaussian.

2.5.3 Transferring agents between environments

In the transfer step all agents are cross tested in all environments. If any
of the agents performs better in an environment than the environment’s
paired agent, the paired agent is removed, and is replaced by a copy of the
agent that performs best.

There are two types of transfer, direct and proposal transfer. In direct
transfer the agents are tested directly in the other pairs’ environments,
while in proposal transfer the agents are trained for five generations in
the other pairs’ environments before they are tested. Transferring of
agents allows skills learned in one environment to be used in another
environment, and in this way, the pairs trade experiences.
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Chapter 3

Implementation

We co-evolve the morphology and controller of agents locomoting in the
OpenAI Bipedal Walker Hardcore environment. The locomoting agents
walk through courses, and the courses change, either through a curriculum,
or through being evolved open-endedly with POET-M.

The first section of this chapter, section 3.1, describes a modified version
of Bipedal Walker Hardcore. This environment has been modified both by
us and by Wang et al. [23]. Section 3.2 describes the genetic algorithm used
to evolve the locomoting agents. In section 3.3 we present a novel version
of POET [23], POET with evolution of Morphologies, POET-M. Section 3.4
describes four curricula of bipedal walker courses, which we use in our
experiments.

3.1 Bipedal Walker Hardcore v2

We use a modified version of the Bipedal Walker Hardcore environment
to test our algorithm. We choose this environment because it is the
environment Wang et al. use in their experiments with POET. Bipedal
Walker Hardcore is a 2d environment from the OpenAI framework, in
which a bipedal agent attempts to walk through a course, and reach a flag
situated at the end. The course has various obstacles which the agent has
to navigate past.

The version of the environment that we use was first modified by Wang
et al.. They added the option to control the size, and thus the difficulty,
of the obstacles that appear in the course. We have also modified the
environment, adding the option to control the size of the bipedal agent’s
legs.

Due to its two dimensional nature the bipedal walker environment is
not very computationally intensive, and therefore serve as a good initial
test platform for new ideas. Figure 3.1 shows an example of an agent
walking through a course in the Bipedal Walker Hardcore environment.
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Figure 3.1: The Bipedal Walker Hardcore environment.

3.1.1 The bipedal agent

The bipedal walker agent has two legs and a head, and uses lidar
measurements to observe its environment. The head has constant size and
weight. The legs consist of two segments each, with one knee joint, and
one joint connecting the leg to the hull. In the original environment the
size of the legs is constant, however, after our modifications the size of the
legs is controlled by eight parameters, described in section 3.2.2. The leg
sizes are decided at environment initialisation, so to change the leg sizes
the environment must be re-initialised.

Agent constraints

If the agent is allowed to evolve the most efficient leg sizes without any
constraints a natural and simple solution would be to create legs with the
same length as the course, and simply fall forward to the far end of the
course. Ha et al. [6] demonstrated that this happened with their agents
when they did not apply any restrictions. To avoid such solutions we
apply the same leg size restraints as Ha et al. did in their study, which
is ±75% from the original environment’s leg sizes. The original, minimum
and maximum sizes for the leg segments are in table 3.1.
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Leg part Original Size Minimum Size Maximum Size
Top segment width 8.0 2.0 14.0
Top segment height 34.0 8.5 59.5
Bottom segment width 6.4 1.6 11.2
Bottom segment height 34.0 8.5 59.5

Table 3.1: Original, minimum and maximum sizes for the bipedal walker
agent’s leg segments, the values are equal for the two legs.

3.1.2 The environments

The bipedal walker agent locomotes though 2d courses. The courses are
filled with four types of obstacles: uneven terrain, stumps, pits and stairs.
In the original version of Bipedal Walker Hardcore the size of the obstacles
was constant, but after the modifications done by Wang et al. the obstacles
are controlled by seven parameters:

• Stump height and width

• Pit gap width

• Stair height, width and step

• Roughness (The terrain curvature)

Some parameters consist of two numbers. These numbers define
a range from which the size of the obstacle is drawn uniformly. As
with the leg sizes described in section 3.1.1, the size of the environment
features are set at environment initialisation. The environment features are
spread randomly throughout the course, and are randomised each time
the environment is reset and the agents starts walking from the beginning
again. The placement and frequency of the features can not be controlled
directly, but a random seed can be used to generate the same course
multiple times.

Environment Constraints

To ensure the environment feature sizes do not become so small that they
are almost non existent, or so large that is is not physically possible for the
agents to move past them, we constrain the sizes to the minimums and
maximums shown in table 3.2.

3.1.3 Inputs and outputs of the simulation

There are four inputs to and 24 outputs from the bipedal walker simulation.
The values for the inputs and outputs are decided once per time frame. The
four input parameters control the torque applied to each of the four leg
joints of the bipedal walker agent. The 24 outputs describe the following
information about the environment state:
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Obstacle Type Minimum Value Maximum Value
Stump height [0.1, 0.4] [5.0, 5.0]
Stump width [1.0, 2.0] [1.0, 2.0]
Pit gap width [0.1, 0.8] [10.0, 10.0]
Stair height [0.1, 0.4] [5.0, 5.0]
Stair width [1.0, 2.0] [1.0, 2.0]
Stair step 1 9
Roughness 0.0 10.0

Table 3.2: The minimum and maximum values we use for the bipedal
walker environment parameters.

• The angle, angular velocity, horizontal speed and vertical speed of
the head.

• The position and angular speed of the leg joints.

• Whether each leg is in contact with the ground.

• 10 lidar rangefinder measurements.

3.1.4 Reward

The simulation is run until one of three termination conditions are met.
The termination conditions are the agents head touching the ground, the
agent reaching the flag at the end of the course or the simulation reaching
a maximum number of allowed frames. We have set this maximum to 1000
frames in our experiments.

At the end of each time frame the agent gets a reward. The agent gets
a positive reward proportional to how far it reached horizontally along the
course within the time frame. It also gets a negative reward proportional
to the torque that was applied to the joints. If the simulation ends due to
the agents head touching the ground, it receives a negative reward of -100.
This means that the agent that is the most torque efficient per unit moved
horizontally gets the highest reward.

3.2 Evolution of controllers and morphologies

This section describes the genetic algorithm we use to co-evolve controllers
and morphologies. The algorithm keeps a population of 192 individuals,
where each individual consists of a neural network and a morphology.
The neural network and morphology controls the behaviour and body of a
bipedal walker agent.

3.2.1 The Neural network

The neural network has an input layer with 24 nodes, two hidden layers
with 40 nodes each, and an output layer with four nodes. This gives a
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total of 2720 weights. The activation function used is the identity function.
This network structure has been used in two other studies that also evolved
agents locomoting in the bipedal walker hardcore environment [6][23]. The
inputs to the network are the 24 environment state values. The four outputs
from the network control the torque applied to the leg joints. See section
3.1.3 for more details about the environment interface. The neural network
weights are initialised to random values, drawn uniformly between -1 and
1. Mutations can never increase the weights above 30, or decrease them
below -30.

3.2.2 The Morphology

The morphology is a vector of eight floats. Each float controls one of the
eight agent parameters defined in section 3.1.1, and thus each float controls
either the length or the width of one of the agent’s four leg segments.
The minimum and maximum values for the floats are shown in table 3.1.
The floats are initialised to random numbers between its minimum and
maximum values.

3.2.3 Genetic algorithm

The Main Loop

Figure 3.2 shows the flow of the genetic algorithm. After initialisation the
fitnesses of the individuals are calculated by evaluating them in the bipedal
walker environment. Parents are then selected based on the fitness, and are
recombined to create new candidates. The new candidates go through two
stages of mutation, first some values are replaced, and then some values are
modified. When the children have been mutated they are evaluated to find
their fitness. Crowding is used to select survivors. After survivors have
been selected the next generation begins, and the fitness of the candidates
is re-evaluated. It is important to re-evaluate the fitness of the candidates at
the beginning of each generation, as the environment the agent locomotes
in may have changed, drastically impacting the fitness of the candidates.

The fitness function

To evaluate the fitness of a candidate it is tested in the bipedal walker
environment. The candidate receives reward from the simulation as
described in section 3.1.4. The fitness is the sum of the accumulated reward
from all time steps.

The reward a candidate gets, when evaluated, varies a lot based on
how the features are distributed in the environment. The candidate can
be lucky or unlucky with the placement of features. This can make the
fitness function very unstable. To make the fitness function more stable,
the candidates are evaluated four times, and their fitness is calculated as
the mean of the fitness it received in the four runs.
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Figure 3.2: Genetic algorithm training loop

Parent selection

The parents are selected by tournament. Five candidates are chosen at
random from the population, and compete with their fitness to become
a parent. This is repeated until 192 parents have been chosen. The same
candidate can be chosen as a parent multiple times. The parents are then
separated into 96 pairs, and the two parents from each pair is recombined
to create two children.

Recombination

The parents are recombined using uniform crossover. For each neural
network weight, or morphology size, the parent contributing the value is
chosen at random, with equal probability between the two parents. The
first child gets the chosen values, and the second child gets the remaining
values.

Mutation

The children are mutated using two types of mutation: replacement and
modification. In replacement mutation, neural network weights, and
morphology values, are chosen with a probability of 0.0075. The chosen
values are replaced with new values. The new values are determined in
the same way as initial weights and morphology values are determined
when the agent is initialised, as described in section 3.2.1.

In modification mutation, neural network weights, and morphology
values, are chosen with a probability of 0.075. An offset is added to the
chosen weights and values. The offset is a random float drawn uniformly
from (-x, x). For the neural network weights x is 0.2. For the morphology
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values x is 16% of the difference between the minimum and maximum
values for the size of the respective leg segment, see table 3.1.

Survivor selection

To create niches of different solutions in the population, and to slow down
convergence, deterministic crowding is used when selecting survivors for
the next generation.

Instead of selecting survivors, the children have to compete with
the older population in tournaments to replace them in the surviving
population. For each child a certain number of candidates w are chosen
at random from the old population. In our case w is 20. All the chosen
candidates are compared with the child to find the one that is the most
similar. The most similar candidate then competes with the child. If the
child has higher fitness it replaces the candidate in the population, and the
old candidate is discarded. If the child has lower fitness than the candidate
the candidate keeps its place, and the child is discarded.

The difference between two individuals is the L1-norm of the individu-
als’ morphologies. We compare only the morphologies, and not the neural
networks, to encourage the niches in the population to explore different
morphologies.

3.3 POET-M: POET with evolution of Morphologies

POET with evolution of Morphologies, POET-M, is very similar to POET,
which is described in section 2.5. Therefore we only describe our additions
to the algorithm. Sections 3.3.1, 3.3.2 and 3.3.3 correspond to the main steps
in POET, environment creation, evolution of agents and transfer of agents
between environments. These three sections describe the changes we have
made to each step. Section 3.3.4 describes how the POET-M algorithm is
applied to the bipedal walker environment.

3.3.1 Environment creation

POET has high computational cost, so to reduce this we create fewer
environment children in the environment creation step. Wang et al. created
512 new potential environments in their POET runs, which all have to be
simulated with all agents in the population to find their fitness. In POET-M
the amount of environment children created is decided by the maximum
population size, which in our case is 20.

This change might lead to less diversity in the environment population,
as the likelihood of finding a very novel environment increases when more
environments are checked.

3.3.2 Agent evolution

In POET an evolutionary strategy algorithm was used to optimise the
agents, as described in section 2.5.2. In POET-M we use the genetic
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algorithm presented in section 3.2. Our genetic algorithm co-evolves the
morphology and controllers of the agents, while the original POET only
evolved the agent controllers.

3.3.3 Transfer of agents between environments

In the original POET algorithm there are two types of transfer, direct
and proposal transfer, which are described in section 2.5.3. To reduce
computation cost we only use direct transfer in POET-M. This may lead
to fewer transfers, and thus less exchange of information between pairs.
However, we observed that even with direct transfer only, transfers
happened frequently.

3.3.4 Applying POET-M to the Bipedal Walker environment

There are a few parameters that exist in both POET and POET-M, which
need to be set when applying the algorithms to an environment. These are
the values we use for those parameters:

• Transfer frequency: 5. Transfer is attempted every fifth generation.

• Environment creation frequency: 40. New environments are created
every 40th generation.

• Mutation criterion: 200. The minimal agent fitness for a paired
environment to be eligible for reproduction.

• Selection criterion: 50-300. The minimum and maximum fitness of an
agent for a child pair to be allowed to enter the population.

• Child pairs: 20. The number of child pairs created in the environment
creation step.

• Children admitted: 2. The maximum number of child pairs that can
be admitted to the population each time environments are created.

• Maximum population size: 20. The maximum numbers of pairs in
the population.

We also need to decide how to mutate the environments. How we
mutate the bipedal walker environments is described below.

Environment mutation

In the environment genome there are seven parameters controlling the
environment features, as described in section 3.1.2. Five of the parameters
can be mutated: the height of stumps, the width of pits, the height of stairs,
the number of steps in a stair, and the roughness of the terrain. Each
of the five parameters has a probability of 0.2 to be mutated. The first
time a parameter is chosen for mutation it is initialised to its minimum
value. After that, when a parameter is mutated, a mutation step is either
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added to or subtracted from it. The minimum values, maximum values
and mutation steps for the parameters can be found in table 3.3.4.

When one of the stump or stair parameters are initialised, the other
parameters describing the same feature will also be initialised to their
minimum value, as the features cannot exists without all their parameters
being initialised.

Obstacle Type Minimum Value Mutation Step Maximum Value
Stump height [0.1, 0.4] 0.2 [5.0, 5.0]
Stump width [1.0, 2.0] - -
Pit gap width [0.1, 0.8] 0.4 [10.0, 10.0]
Stair height [0.1, 0.4] 0.2 [5.0, 5.0]
Stair width [1.0, 2.0] - -
Stair steps 1 1 9
Roughness uniform(0.0, 0.6) uniform(0.0, 0.6) 10.0

Table 3.3: The minimum values, mutation steps and maximum values for
the environment parameters in POET-M. Stump width and stair width are
never mutated.

3.4 Environment curricula

3.4.1 Simple static environment

This curriculum consists of one environment that never changes. The
environment is the simplest environment that can be created in Bipedal
Walker Hardcore, and is the same environment as the one created when
initialising POET-M. The environment is a completely flat course, with no
features. The parameters for this environment is shown in table 3.4.

Feature Env. 1
Stump height [0, 0]
Stump width [0, 0]
Pit gap [0, 0]
Stair height [0, 0]
Stair width [0, 0]
Stair steps 0
Roughness 0

Table 3.4: Parameters for the static environment

3.4.2 Two environment curriculum

This curriculum consists of two static environments. The first environment
is a completely flat course, with no features, while the second environment
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has small stumps. The environment is changed from the first to the second
environment in generation 500. The parameters for the two environments
are shown in table 3.5.

Feature Env. 1 Env. 2
Stump height [0, 0] [0.1, 0.5]
Stump width [0, 0] [1.0, 2.0]
Pit gap width [0, 0] [0, 0]
Stair height [0, 0] [0, 0]
Stair width [0, 0] [0, 0]
Stair steps 0 0
Roughness 0 0

Table 3.5: Parameters for the two environment curriculum

3.4.3 Round robin curriculum

This curriculum has five environments. The first environment is flat, while
the four other environments each have one of the four possible obstacles.
The active environment changes every five generations, moving through
the list of environments from environment one to environment five. When
the sequence has finished it repeats from the first environment. The
parameters for the five environments are in table 3.6.

Feature Env. 1 Env. 2 Env. 3 Env. 4 Env. 5
Stump height [0, 0] [0, 0] [0, 0] [0.2, 1.0] [0, 0]
Stump width [0, 0] [0, 0] [0, 0] [1.0, 2.0] [0, 0]
Pit gap width [0, 0] [0.2, 1.0] [0, 0] [0, 0] [0, 0]
Stair height [0, 0] [0, 0] [0, 0] [0, 0] [0.2, 1.0]
Stair width [0, 0] [0, 0] [0, 0] [0, 0] [1.0, 2.0]
Stair steps 0 0 0 0 3
Roughness 0 0 0.6 0 0

Table 3.6: Parameters for the five environments in the round robin
curriculum

3.4.4 Round robin incremental curriculum

This environment is quite similar to the round robin curriculum described
in section 3.4.3. In the beginning of this curriculum the environment
parameters are as shown in table 3.6, and the environments are switched
between as described in section 3.4.3. The only difference is that, in this
curriculum, every time the agent reaches a fitness of 150 or greater in one of
the environments, that environment increases in difficulty. The difficulty is
increased by adding a mutation step to one of the parameters that describes
the obstacle the environment contains. The mutation steps for each of
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the four obstacle types are shown in table 3.7. The stair environment has
two possible parameters to mutate, stair height and stair steps, which are
mutated every other time.

Environment Feature Mutation step
Env. 2 Pit gap width [0.2, 0.2]
Env. 3 Roughness 0.6
Env. 4 Stump height [0.2, 0.2]
Env. 5 Stair height [0.2, 0.2]

Stair steps 1

Table 3.7: Mutation steps for each of the four types of obstacles present in
the environments found in the round robin incremental curriculum
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Chapter 4

Experiments and Results

This chapter describes our experiments and presents our results and
analysis. The first section, section 4.1, explains the methods we use to
analyse our results. Section 4.2 describes the baseline we compare our
results to. The last three sections, 4.3, 4.4 and 4.5, presents our three
experiments and their results. Each of the three experiments corresponds
to one of the three research goals from section 1.2.

• Experiment 1: To look for correlations between changes in envir-
onments and changes in morphology, the morphological change of
two agents is compared. One of the agents experience environmental
change, while the other does not.

• Experiment 2: The effects of increasingly challenging environments
on morphological change are explored. Two curricula are compared.
One of them has increasingly difficult environments, while the other
does not.

• Experiment 3: We evaluate how evolving agents with POET-M affects
their diversity and fitness.

4.1 Analysis methods

4.1.1 Morphological distance

We want to measure how much the morphology changes over generations.
Because the values in the morphology genotype correspond directly to
lengths and widths in the phenotype, we can measure change in the
genotype and use it to represent change in the phenotype. In all our
experiments we record the morphology every five generations. We call
this period of five generations an epoch. The morphological change,
for an epoch, is measured as the euclidean distance from the average of
the morphologies registered in the current epoch, to the average of the
morphologies registered in the previous epoch. The morphological change
is calculated through the following two steps:

First we find the average of all the morphologies in each epoch. We call
the average morphology in epoch i Xi. Xi can be written as:
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Xi =
p

∑
n=1

xin

p
(4.1)

Where xin is a morphology genome, n is the genome’s placement in the
population, i is the epoch, and p is the population size. The second step is to
calculate the euclidean distance between Xi, and Xi−1, for every epoch. The
formula for the morphological change, M, in epoch i, can then be written
as:

Mi =

√
g

∑
m=1

(Xim − X(i−1)m)2 (4.2)

Where g is the length of a morphology genome.
M only takes into account the change from the previous epoch. To

observe how the morphology changes on a larger time scale, we calculate
the average euclidean distance, from X in the current epoch, to X in each
of the previous 20 epochs. We call this M20:

M20
i =

1
20

20

∑
j=1

√
g

∑
m=1

(Xim − X(i−j)m)2 (4.3)

4.1.2 Population diversity

Similarly to Samuelsen et al. [45] we define the diversity of an individual
x to be the average distance from x to all other individuals in the
population. We use euclidean distance as the distance measure between
two individuals. The diversity of a population, X, is the average diversity
of all individuals in the population. We call the diversity of a population
X, DX:

DX =
p

∑
n=1

∑
p
q=1

√
(xn − xq)2

p2 (4.4)

Where p is the population size, and xn and xq are the morphology
genomes of individual number n and q in the population.

4.1.3 Morphological feature maps

Inspired by Miras et al. [46] we define seven morphological descriptors,
which are used to estimate how much of the morphology space has been
explored:

• Length: The total length of the four leg segments.

• Width: The total width of the four leg segments.

• Area: The total area of the four leg segments.
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• L/R: Left/right proportion. Length of the left leg divided by the
length of the right leg.

• UDL: Upper/lower left leg proportion. Length of the upper leg
segment, divided by the length of the lower leg segment, for the left
leg.

• UDR: Upper/lower right leg proportion. Length of the upper leg
segment, divided by the length of the lower leg segment, for the right
leg.

• W/L: Width/length proportion. The total width divided by the total
length.

We calculate the morphological descriptors for all morphologies, in all
epochs, and plot two of the morphological descriptors against each other,
in a feature map. Every morphology is represented as a circle in a 2D
map. A circle’s placement in the map is decided by the morphological
descriptors, and its color is decided by what generation the morphology
occurred in. The density plots show how many different combinations of
the two descriptors have been explored by the algorithm, and in which
generations they were explored.

4.1.4 Quality-diversity feature maps

The quality-diversity feature maps are created by plotting two of the
morphological descriptors described in section 4.1.3, against each other, in
a 2D map. The quality-diversity map is divided into a 20 by 20 grid of
squares. All morphologies that were explored in the run are placed into
their respective square in the grid. The color of a square shows the fitness
of the best performing individual within the square.

4.2 Baseline algorithm

To create a baseline we run the genetic algorithm described in section 3.2 on
agents locomoting in the static, flat environment, which is the curriculum
described in section 3.4.1. The agents were evolved for 1000 generations,
and the morphologies and fitness are recorded at the end of every epoch,
which is five generations long. We perform five runs with different random
seeds.

4.2.1 Results

The morphological change, M20, from the baseline runs, is shown in
figure 4.1. We can see that the morphology changes a lot in the first 200
generations, but the change gradually decreases and is very low from
generation 500 and out. The baseline reached a fitness of almost 200 as
can be seen in figure 4.2.
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Figure 4.1: The morphological change M20, described in section 4.1.1, for
the baseline agent. The blue line shows the mean of five runs, and the
coloured area shows the standard deviation.

Figure 4.4 shows several of the density plots for the baseline agent.
The morphologies tend to collect around small areas in the feature space.
The early morphologies, seen as purple circles, are quite spread out, while
the last morphologies, seen as yellow circles are much more dense. The
morphologies in the middle of the run, seen as green circles, are largely
hidden behind the yellow sections, meaning that the search found the
morphologies in the dense yellow sections of the feature space before
reaching the halfway point of the run.

In figure 4.3 we can see how the agent’s top performing individual’s
morphology changes over time in the first run of the baseline algorithm.
The density plot of width and length for the same run can be seen in the
top left corner of figure 4.4. Both the morphologies and the density plot
shows that the agent evolves long thin legs over time. Four of the five
baseline runs converged to this basin of attraction.

4.2.2 Analysis

As expected the baseline algorithm seems to converge to a morphology
quite quickly. The morphological distance between generations is low in
the second half of the runs in figure 4.1, and in most of the density plots
shown in figure 4.4 the morphologies seem to collect in small areas.

36



0 200 400 600 800 1000
Generations

50

0

50

100

150

200

Fi
tn

es
s

Static_max

Figure 4.2: The fitness of the top performing individual from each
generation for the baseline runs. The graph is the average of five runs,
and the coloured area shows the standard deviation.

Figure 4.3: The morphology of the individual with the highest fitness
for the baseline, captured every 40 generations. In the latter half of the
evolution (the bottom row), the morphologies are nearly identical, all
having long and thin legs.
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Figure 4.4: Morphological feature maps, as described in section 4.1.3, for
three different runs of the baseline.
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4.3 Experiment 1: Correlation between environmental
and morphological change

In this experiment we want to find out how changes in environments affect
the morphological development of locomoting agents, which is the first
research goal described in section 1.2. We run the genetic algorithm, de-
scribed in section 3.2, for 1000 generations, in the environment curriculum
described in section 3.4.2. In this curriculum the environment is changed
halfway through the evolution. We do five runs with different random
seeds. The morphologies are recorded once every five generations. We
expect to see changes in the morphology as a reaction to change in the en-
vironment.

4.3.1 Results

Figure 4.5 shows M20 for the runs performed in the first experiment. A
spike in morphological change can be seen after generation 500, where the
environment changes.
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Figure 4.5: The morphological change M20 for the baseline (blue), and
the two environment curriculum (orange), where the environment changes
at generation 500. The dashed red line marks the generation where the
environment changes. Both graphs are an average of five runs, and the
coloured areas show the standard deviation.
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4.3.2 Analysis

We can clearly see a spike in the graph in figure 4.5 right after the envir-
onmental change happened, which means that the agents experienced in-
creased morphological change as a reaction to the change in environment.
One possible explanation for the increase in morphological change is that
the agents adapt their morphology to fit the new challenges it meets in the
new environment.

Another possible explanation is that selection pressure could be
reduced. When the candidates are evaluated in a new environment they
are likely to experience a reduction in fitness, an they have not yet learned
to tackle the challenges found in the new environment. This drop in
fitness is likely to have a larger impact on high fitness candidates, as
the low fitness candidates might not even reach far enough through the
course to encounter the new challenges. When the high fitness candidates
experience a larger drop in fitness than the low fitness candidates, the
selection pressure for the low fitness candidates can be reduced. This
reduction in selection pressure could potentially encourage the algorithm
to explore in different directions than before the environmental change, as
the low fitness candidates are more likely to reproduce than before.

This increase in morphological change when the environments change
suggests that it is possible to use environmental change to increase
morphological diversity in a population.

4.4 Experiment 2: The effects of increasing challenges
on morphological change

Our second goal is to find out what impact increasing the difficulty of the
environments, as the agent solves them, has on the morphological devel-
opment of locomoting agents. We create two hand crafted curricula. The
first curriculum, round robin, changes between five static environments,
and is described in section 3.4.3. The second curriculum, round robin in-
cremental, changes between five environments, similarly to the first cur-
riculum, but the difficulty of the environments increase as the agents gets
better at them. The second curriculum is described in section 3.4.4. Each of
the agents are evolved for 1000 generations, and we perform five runs with
different random seeds. The morphology and fitness are recorded every
five generations.

If appropriate difficulty is necessary to prevent premature morpholo-
gical convergence, the morphology of the agents in the non-incremental
environment should converge, while the agents in the incremental environ-
ment should continue to experience morphological change. If appropriate
difficulty is not necessary, then the environments changing back and forth,
in the round robin curriculum, should be enough for continued morpholo-
gical exploration.
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4.4.1 Results

Figure 4.6 shows M20, and the morphological diversity in the resulting pop-
ulation, for the baseline, the agent evolved in the round robin curriculum
and the agent evolved in the round robin incremental curriculum. Both the
agents evolved in the round robin curriculum and the agents evolved in
the round robin incremental curriculum have higher morphological change
than the baseline agents. However, they do not have higher morpholo-
gical diversity in the population, despite the higher morphological change
throughout the run.

The fitness for the baseline, round robin and round robin incremental
agents is shown in figure 4.7. Both of the curricula agents have lower fitness
than the baseline agent. When looking at the fitness for the agents evolved
in the two types of round robin curricula, it is important to note that
the environment they are evaluated in changes along with the curricula’s
change in environments. Both of the round robin curricula use the flat
baseline environment every 5th epoch. Therefore the tops of the spikes
in their fitness graphs, which are the point where the agents are evaluated
in the flat environment, are the points that are representative for the agents’
fitness.

Looking at the morphological feature maps in figure 4.8 we can see
that the sections of covered feature space is larger for the two types of
round robin agents, than for the baseline agent, especially in the length
width maps. The round robin and round robin incremental curricula have
explored quite similar sections of the feature space, the sections explored by
round robin incremental slightly larger. Figure 4.9 shows quality-diversity
feature maps, where we can see that the baseline agent has found more
yellow high fitness solutions, than the two types of round robin agents.

4.4.2 Analysis

Our expectations for this experiment was for the increasing difficulty in
the round robin incremental curriculum to cause increased morphological
exploration. However, the results for the round robin curriculum and
the round robin incremental curriculum are very similar, both with
regard to fitness and to morphological change. The morphological and
quality-diversity feature maps are also quite similar, with the round
robin incremental agents exploring slightly larger areas. Our results
do not indicate any direct connection between increasing difficulty and
morphological change. However, our results do not exclude the possibility
of a connection.

The agents in the two round robin curricula have lower fitness than
the baseline, with the gap up to the baseline fitness increasing gradually.
The higher baseline fitness might be due to the baseline being able to focus
all its resources towards optimising directly for the flat environment. In
contrast to this the round robin agents spend resources adapting to other
environments as well.

The agents from the two round robin curricula do not increase much in
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fitness at all after 400 generations. This might indicate that optimising for
gaits in the environments that are not flat is detrimental to the search for a
quick gait in the flat environment. The agents may have to slow down in
order to overcome the obstacles in the other environments, which can lead
them to slow down in the flat environment as well.

The round robin curricula had both lower diversity and lower fitness,
in the flat environment, compared to the baseline. It is difficult to hand
craft curricula that are balanced enough to encourage both diversity and
quality, as the stepping stones that lead to greater diversity and quality
are usually not intuitive. Intuitively, gradually increasing the difficulty of
environments may seem like a well suited curriculum. However this is not
necessarily the curriculum that causes the most effective learning.
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Figure 4.6: Top: The morphological change M20 for the agents evolved
in the round robin curriculum (orange) and the round robin incremental
curriculum (green). The baseline is included for comparison (blue). The
graphs are averages of five runs, and the coloured areas show the standard
deviation. Bottom: Diversity of the resulting populations at the end
of the runs, for the baseline (Static), round robin (RR) and round robin
incremental (RRI). The population diversity is measured as described in
section 4.1.2.
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Figure 4.7: Top: Fitness of the best individual in the population for
the baseline (blue), round robin curriculum (orange) and round robin
incremental curriculum (green). The graphs are averages over five runs,
and the coloured areas show standard deviation. The spikes in the RR and
RRI fitness graphs are due to the changing environments. The tops of the
spikes are the agents’ fitness in the flat environment used for the baseline.
Bottom: Fitness of the best individuals from resulting populations at the
end of the runs, for the baseline (Static), round robin (RR) and round robin
incremental (RRI). The fitness is recorded in generation 980, to ensure that
all agents are evaluated in the same flat environment. In generation 1000
the RRI curriculum agents are training in a non-flat environment.
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Figure 4.8: Morphological feature maps, as described in section 4.1.3, for
the baseline (Static), the round robin curriculum (RR) and the round robin
incremental curriculum (RRI).
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Figure 4.9: Quality-diversity feature maps, as described in section 4.1.4, for
the baseline (Static), the round robin curriculum (RR) and the round robin
incremental curriculum (RRI).
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4.5 Experiment 3: Using POET-M to create a cur-
riculum of challenges

In the third experiment we want to find out how effective POET-M is
in maintaining both quality and morphological diversity in a population,
compared to populations evolved in a static environment or a hand crafted
curriculum. The POET-M algorithm, described in section 3.3, is run for
up to 2000 generations. The POET-M agents evolve in many different
environments in parallel, with agents jumping back and forth between
them, but we follow the agents evolving in a flat environment, which is
the first environment created by POET-M. The morphology and fitness, of
all individuals in the population, is recorded every five generations, and
five runs with different random seeds are performed.

Because POET-M evolves agents in parallel, in different environments,
it uses a lot of computational power. The baseline and round robin
incremental agents, which POET-M is compared to in this experiment, are
run for 2000 generations. To achieve a fair comparison between POET-
M and the curricula agents, POET-M is stopped when it reaches the same
number of agent evaluations as the curricula agents use, even if it has not
reached generation 2000.

If poet is effective in maintaining both morphological diversity and
quality at the same time, we expect to see large sections of solutions with
high fitness in the quality-diversity feature maps.

4.5.1 Results

Figure 4.10 shows M20, and diversity of the resulting populations at the end
of the runs, for the baseline, round robin incremental and POET-M. POET-
M has high morphological distance throughout the run, similar to that of
round robin incremental. However, POET-M has a lot more diversity in
the resulting population compared to the other two runs. Fitness for the
same runs is shown in figure 4.11. POET-M reaches a similar fitness as
the baseline, which is significantly higher than the fitness of round robin
incremental.

Figure 4.12 shows the morphological feature maps for the POET-M,
round robin incremental and baseline runs. The baseline and round
robin incremental populations start out in one area, shown in purple, and
gradually moves towards a different area towards the end of the run,
shown in yellow. In contrast to this, the purple sections in the POET-M
feature maps are almost entirely covered by the yellow sections, meaning
that POET-M is still exploring the same features in the end of run as those
that were explored in the beginning.

If we look at the quality-diversity feature maps in figure 4.13, we see
that the baseline and POET-M both find high fitness solutions, while round
robin incremental finds low fitness solutions. In the width length maps
POET-M’s high fitness solutions are more spread out across the feature
space compared to the baseline.
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Figure 4.14 shows the morphology of the top performing individual
of a POET-M run, sampled once every 40 generations, for the first 880
generations of the run. When comparing it to the baseline we can see
that the best morphology is replaced many times in generation 440-880
for POET-M, while the baseline keeps the same morphology during these
generations.

4.5.2 Analysis

The POET-M agents have higher morphological change than the baseline
agents, similar to the morphological change seen in the round robin
incremental agents. In addition to this the POET-M agents have almost
as high fitness as the baseline agents. While the environmental change in
the round robin curriculum prevents the agents from reaching high fitness,
the curriculum created by POET-M enables the agents to have both high
morphological change and high fitness at the same time.

POET-M has significantly more morphological diversity in the resulting
population than both the baseline and the round robin incremental
curriculum. The curriculum created by POET-M managed to increase the
population diversity, and not just the morphological change.

We can also see signs of high morphological diversity for POET-M
in the morphological feature maps. POET-M explores approximately the
same areas of the morphological feature space in the beginning and end
of the evolution, suggesting that morphologies that are not easy to exploit
are not removed from the population. Morphologies that are not easy to
exploit are kept by POET-M even if the algorithm does not quickly find
a good controller for it. From the feature maps it looks like the baseline
and round robin incremental agents discard morphologies that do not
have a good controller quite quickly, leading to the large purple sections
in the morphological feature maps. This might create a bias towards
morphologies that are easy to exploit, potentially causing the search to get
stuck in a local optimum.

The quality-diversity maps, especially the width length maps, show
that POET-M finds high fitness solutions for a larger amount of feature
combinations than the baseline. This is likely due to the larger diversity
in the POET-M population. These findings show that it is possible to use
POET-M to create curricula that increases the morphological diversity of
the population while still maintaining quality.

POET-M increases in fitness somewhat slower than the baseline agent
in the last half of the runs. We believe that this is because POET-M uses a lot
of its resources to search in other environments, while the baseline uses all
of its resources in the flat environment. This causes the agent to converge
more slowly to the good solutions for the flat environment, causing the
slightly lower fitness. If the algorithms were run longer POET-M might
surpass the baseline in fitness, by continuing to find better solutions after
the baseline converges.
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Figure 4.10: Top: The morphological change M20 for the agents evolved
in POET-M (orange), the round robin incremental curriculum (green), and
the baseline (blue). The graphs are averages of five runs, and the coloured
areas show the standard deviation. Bottom: Diversity of the resulting
populations at the end of the runs, for the baseline (Static), round robin
incremental (RRI) and POET-M. The population diversity is measured as
described in section 4.1.2.
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Figure 4.11: Top: Fitness of the top performing individual for the agents
evolved in POET-M (orange), the round robin incremental curriculum
(green), and the baseline (blue). The graphs are averages over five runs,
and the coloured areas show standard deviation. Bottom: Fitness of the
best individuals from resulting populations at the end of the runs, for the
baseline (Static), round robin incremental (RRI) and POET-M.

50



Figure 4.12: Morphological feature maps, as described in section 4.1.3, for
the baseline (Static), the round robin incremental curriculum (RRI) and
POET-M.
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Figure 4.13: Quality-diversity feature maps, as described in section 4.1.3,
for the baseline (Static), the round robin incremental curriculum (RRI) and
POET-M.

Figure 4.14: The top performing morphology captured every 40 genera-
tions. Top: The morphologies from the baseline. Bottom: The morpholo-
gies from POET-M.
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Chapter 5

Conclusion and Future Work

5.1 Discussion

5.1.1 Computational budget

Both experiment 2 and experiment 3 could have benefited greatly from
more time and a larger computational budget. POET-M was run on Sigma2,
UNINETT’s supercomputer, on 40-cpu nodes. The POET-M runs spent
up to two weeks to reach 1000 generations, depending on how many
environments were created. Because the POET-M runs took so long to
complete, we were only able to perform five runs of each type. The statistics
would have been more accurate if we had been able to perform more than
five runs.

If we had more time we could also run both POET-M and the runs
from the other experiments for longer. Only one of the POET-M runs had
reached maximum environment population size when it terminated. As
POET-M’s population size increases the agents have more environments
to transfer between. Reaching a higher environment population size might
have enabled POET-M to create even better environments, as it would have
more environments to choose from. It would also have been interesting to
see whether the POET-M agents’ fitness would have continued to increase
beyond the fitness of the baseline, after the baseline converged.

Another interesting way to spend more time could have been to test
other types of curricula in experiment 2, to get more insight into what
kind of curricula is beneficial when attempting to increase diversity and
quality in the population. By running the round robin and round robin
incremental curricula agents for longer it may become easier to see any
potential differences between these curricula.

5.1.2 Poet dynamics

In our experiments evolving agents with POET-M seems to increase the
population’s morphological diversity. However, as the curricula the
agents experience is different for each run of POET-M, it is difficult to
know what the source of the increased morphological diversity is. An
interesting experiment that could be performed in order to find out more
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about what causes the diversity could be to evolve an agent in the same
sequence of environments that a POET-M agent experienced. This would
not necessarily create the same effect, as the most effective curricula
may be different based on what random perturbations happens to the
morphologies and controllers in the mutation steps.

We believe the diversity in the POET-M agents may come from a bias
towards robust agents. When POET-M transfers agents, the agents are
copied, and the transferred agent is thus duplicated. Agents that are more
robust to environmental changes are more likely to be transferred, as they
drop less in fitness when they are introduced to a new environment. Agents
that have a diverse population may be more robust to environmental
changes, as having a diversity of different solution makes it more likely
one of the solutions will not drop as much in fitness when the environment
changes. Because of this the selection of agents to be transferred can cause
a selection pressure favouring agents with diverse populations.

5.2 Conclusion

In this thesis we explored the possibility of using environmental change
to encourage morphological diversity in a population when co-evolving
the morphology and controller of locomoting agents. When evolving
controller and morphology at the same time, premature convergence of
the morphology is a common problem, and increasing the morphological
diversity in a population is likely to slow down the convergence.

We performed three experiments each pertaining to one of the follow-
ing research questions:

• How does changes in environments affect the morphological devel-
opment of locomoting agents?

• What impact does increasing the difficulty of the environments, as
the agent solves them, have on the morphological development of
locomoting agents?

• How effective is POET-M in maintaining both quality and morpholo-
gical diversity in a population, compared to populations evolved in a
static environment or a hand crafted curriculum?

In the first experiment we found that changing the environment
greatly affected the morphological development of the agents. The agents
experienced increased morphological change as a reaction to the changes
in the environment. We conclude that this morphological change could
be caused by the candidates adapting their morphology to the new
environment. However, another plausible explanation for the increased
exploration of morphologies is lower selection pressure. When the high
fitness candidates are introduced to a new environment their fitness drops
for a while until they adapt to the changes. This can allow previously
dominated candidates to reproduce and spread their genetic material.
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In the second experiment we tested two curricula one with and
one without increasing difficulty, expecting the increasing difficulty of
environments to induce increased morphological change. However, we
found no indication of a direct connection between increasing difficulty
and morphological change.

In the third experiment we attempted to use our modified version of
POET, POET-M, to automatically create a curriculum of environments.
Wang et al. [23] showed that POET could enable agent controllers to escape
local optima, and we expected this effect to also help morphologies escape
local optima. We found that evolving the agents with POET-M increased
the morphological diversity of the agents, and encouraged the agents
to find high fitness solutions for a diversity of different morphological
features. Diversity can help slow down convergence, enabling the search
to explore multiple peaks in the search space, rather than stopping after
converging to the top candidate on one peak.

It is very difficult to create a perfect environment curriculum by
hand, and the curricula in experiment 2 were not capable of increasing
the morphological diversity of the population, instead proving to be
detrimental to the agent fitness. POET-M finds a curriculum automatically
by searching curricula space with a novelty search algorithm, removing
the need to search for a good curriculum by hand. Our results show that
curricula created automatically with algorithms such as POET-M are quite
good at maintaining the balance between diversity and quality.

5.3 Future Work

There are several interesting directions to explore in future work. Running
POET-M until it reaches the most difficult environments takes a long time.
If we had a larger computational budget we would have liked to run the
algorithms for longer to see whether POET-M surpasses the baseline in
fitness if given enough time, and also to see which morphologies POET-
M would eventually converge to. We would also have liked to test the
algorithms on other platforms, such as a on a three dimensional walker, or
on modular robots.

In experiment 2 we did not find a connection between morphological
change and curricula with increasing difficulty. An interesting path of
research might be to test other curricula, and explore in depth what types
of curricula encourage diversity and quality.

Another interesting direction could be to explore methods for automat-
ically creating curricula without the time consuming processes used by
POET-M. Perhaps information about the population such as diversity or
morphological change could be used to predict which environments will
be good stepping stones, and which should be abandoned.
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