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Abstract

In nested case-control and case-cohort studies of time-to-events, covariate
information is collected for all individuals in the sampled cohort. Often
information on some of the covariates are easily available for the entire cohort
while some can only be collected for a limited amount of individuals; those in the
sampled cohort. Multiple imputation, an algorithm for handling missing data,
can be used to impute (“fill inn”) covariate values, that have not been collected
for individuals in the remaining part of the cohort, a small to moderately number
of times. Then, Cox regression estimates from each imputed dataset (cohort)
can be combined according to Rubin’s rules. Multiple imputation used in this
setting has previously been shown to give more efficient inferences by utilising
more of the available information outside the sampled cohorts. However, in
studies with very large cohorts, multiple imputation for the entire cohort might
be very demanding or even infeasible.

In this thesis, existing methods for multiple imputation of missing values
(by chance) in sampled cohort studies, in their original and an adapted form,
are used to impute values in a superset of the sampled cohort. Imputing
values missing by design in the superset motivates estimating the regression
coefficients with nested case-control or case-cohort estimators. The results from
simple simulations experiments show good performance with respect to bias and
efficiency. For very large cohorts, the number of controls in a nested case-control
superset or the size of the subcohort in a case-cohort superset, determines the
size of the part of the cohort that is to be imputed, and superset imputation
therefore looks like a promising method when imputation of the entire cohort is
not possible.
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CHAPTER 1

Introduction

The time it takes to occurrences of events is of interest in many applications, e.g.
medicine, econometrics, biology, social sciences. To estimate the relationship
between the time-to-event and relevant covariates, Cox (proportional hazards)
regression is much used. For Cox regression, at each time of an event, the
covariates of the individual who experiences the event is compared to the
covariates of the other individuals who are still under observation (i.e. at risk) in
the cohort. In large cohorts studies the event of interest might only happen to
a small proportion of the individuals and the collection of covariate information
for all individuals in the cohort might be impossible or very demanding.

Sampled cohorts studies offer a solution to this by comparing the covariates
of the individuals who experience the event to a sample of the individuals at
risk in the cohort. Then covariate information is only needed for those who
experience the event and the sampled controls. Nested case-control studies
and case-cohort studies are two well researched and widely applied approaches
to sampled cohort studies. The nested case-control and case-cohort sampling
designs were proposed by Thomas and Prentice respectively. The
methods differ in the way controls are selected and how the sampled cohorts are
analysed, but in their classical form both use simple random sampling without
replacement.

The classical methods for analysing data from sampled cohort studies, only
use covariate information for the cases and the controls. However, often some
covariates values are easily available for all individuals in a cohort while others
are more expensive in the sense that they require more resources to obtain, and
these expensive covariates are only collected for the sampled cohort. Different
methods have been considered to enable more efficient analyses of nested case-
control and case-cohort data by using more of the information from the full
cohort. Extensions of the classical sampled cohort designs to use stratified
sampling have been studied for nested case-control samples by Langholz and
Borgan and for case-cohort samples by Borgan, Langholz, et al. (2000)).
Stratified sampling allows the use of additional information available in the
cohort to obtain a more efficient sample of controls. Borgan and Samuelsen
give a review of these sampled cohort methods.

Two other methods are inverse probability weighted (IPW) estimators,
where the weights are based on information from the full cohort, examined by
(Steer and Samuelsen (2013)) for nested case-control studies, and full likelihood
inference for the missing data that use the Expectation-Maximization algorithm
in nested case-control (Scheike and Juul ) and case-cohort samples (Scheike
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1. Introduction

and Martinussen ) The former approach was shown in simulations to
work well compared to the traditional nested case-control estimator in some
situations with estimates closer to the full cohort. While the latter approach was
shown to give gains in efficiency when the hazard ratios and disease incidence
were high.

Another approach, the one that will be considered in this thesis, is the
method of multiple imputation. Multiple imputation developed out of the paper
on missing data by Rubin . Missing data in statistical analyses has since
received increased attention as a potential source of bias and in studies where
data are missing by design. A general overview of statistical analysis with
missing data is given by Little and Rubin and an overview of multiple
imputation by Carpenter and Kenward . Furthermore, development of
the versatile full conditional specification (FCS) method of multiple imputation
and the mice software package by Buuren and Groothuis-Oudshoorn has
made multiple imputation popular in applications as an algorithm to handle
missing data.

Imputation of missing covariates for time-to-event data in Cox regression has
been examined by White and Royston who came up with an approximate
imputation model, and Bartlett et al. (2015]) have further extended the FCS
algorithm to be compatible with a wider range of imputation models, including
an alternative to approximate imputation for Cox regression models.

In sampled cohort settings, multiple imputation, can be used to impute
(“fill in”) values of expensive covariates not collected in the sampled cohort
using outcome and covariate information that is available for all individuals
in the cohort. Multiple imputation of the full cohort with sampled cohort
data was considered by Keogh and White and was further developed for
imputing missing values in nested case-control and case-cohort studies (Keogh,
Seaman, et al. ). Simulations have shown good performance of multiple
imputation for the full cohort. For an overview of multiple imputation for
sampled cohort data and the aforementioned alternatives see Keogh .

However, when the study cohorts are very large, multiple imputation
of missing values for the entire cohort might be challenging or infeasible.
Additionally, when the event of interest is rare, imputing values for an excessive
amount of controls per case might be unnecessary. A middle way between the
classical sampled cohort study and sampled cohort studies with imputation of
the full cohort is to consider imputation in only a subset of the cohort. The idea
is that values of expensive covariates only need to be collected in the sampled
cohort, while more easily obtainable covariates can be collected for a larger part
of the cohort, but not necessarily for all individuals. Then multiple imputation
can be performed for a subset of the cohort and the imputed dataset can be
analysed effectively. This middle way is what we will consider in this thesis.

Thus, the aim of this thesis will be to investigate methods for multiple
imputation for Cox regression with sampled cohort data that only use a subset
of the cohort for imputation. In order to do this, sampled cohorts of nested case-
control and case-cohort studies will be the starting point. The two prominent
multiple imputations algorithms for Cox regression, approximate imputation and
rejection sampling, will used for imputation. Methods for multiple imputation
of only a subset of the cohort will be investigated in 4 simulation settings. The
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methods will be compared with the classical nested-case control and case-cohort
estimators, and imputation of the full cohort.

The rest of the thesis is organised as follows. In the background
knowledge on time-to-event analysis, Cox regression, nested case-control and
case-cohort sampling designs will be presented. The methods will be illustrated
on a dataset of from a study of the effect of serum-free-light-chain blood
measurements on mortality. Then describes the problem of missing
data in statistical studies and the method of multiple imputation. The
general full conditional speficication (FCS) and substantive model compatible
FCS multiple imputation algorithms will be described. In addition a short
overview of how multiple imputation may be performed with non-linear terms,
interactions and auxiliary variables will be given. goes through
multiple imputation for Cox regression with cohort and sampled cohort data.
The methods will be illustrated on the same real-world dataset as in
In we investigate how multiple imputation with only a part of the
full cohort can be performed. To examine and compare the methods we will
use simulations experiments, and the results will be reported. Finishing off, in
we summarise and discuss of the results of the thesis and potential
further studies. Two appendices will include histograms of selected estimates
from the simulations (Appendix A]) and selected code from the simulation

experiments (Appendix B).







CHAPTER 2

Cox regression for cohort and
case-control data

This chapter introduces the time-to-event analysis framework, Cox regression
and cohort studies. Moreover, the two classical case-control sampling designs,
the nested case-control sampling and the case-cohort sampling are described.
The presentation of the theory in this chapter is primarily based on the textbook
by Aalen, Borgan, and Gjessing and the overview chapter by Borgan

and Samuelsen (2016).

2.1 Time-to-event analysis

Time-to-event (or survival) analysis is the study of time to events. On
a convenient time scale, the interval from a defined starting point to the
observation of an event of interest is called the failure (or survival) time. If an
event of interest is not observed then the time from the start to the end of the
observation period is called a censored failure time.

Two important concepts for analysing time-to-event data are the survival
function and the hazard rate. Let T" be a random variable, continuous on [0, c0),
that represents the time to an event of interest. Then the survival function

S(t) = P(T > t) (2.1)

describes the probability that the failure time is larger than ¢. The hazard rate
can be defined as
. 1
h(t) = Alir_r}O AtP(T E[t,t+At) | T >1). (2.2)
Thus the hazard rate multiplied by a small time interval, h(t)At, can be thought
of as the probability that an event will be observed within At given that it has
not yet been observed just before time ¢.

In a study of time-to-event data there will nearly always be censoring. It
can be caused if the event has still not happened at the last time recorded.
This can happen if an individual is withdrawn/lost from the study or the end
of the study period is reached. Imagining a timeline starting from the left and
going to the right, we call this right censoring. An assumption that will be
important is that of independent censoring, stating that the processes governing

the censoring and the failure times should be independent. More details can be
found in Section 2.2.8 in Aalen, Borgan, and Gjessing (2008]).



2. Cox regression for cohort and case-control data

Often failure times and censored failure times are denoted by ¢ and an
observed-event indicator § is recorded. For a study of a cohort of n individuals
a survival data set consist of

{(ti,éi),i: 1,...,77,}. (23)

Two important non-parametric estimators for censored survival data are
the Nelson-Aalen estimator and the Kaplan-Meier estimator. They provide
estimates for the cumulative hazard rate and the survival function respectively.
Let R(t) denote the risk set at time ¢, that is the set of individuals entered in
the study for whom the event or censoring has not yet occured just before time
t, and let |R(¢)| be the number of individuals in this risk set. The Nelson-Aalen
estimator for the cumulative hazard H(t) = fot h(s)ds is defined as

10 =3 iy 2

ti<t

with increments at the observed event times. The Kaplan-Meier estimator for
the survival function is given by

St =] {1 — IR(zt)} (2.5)

t <t

and it reduces to one minus the empirical distribution function in the absence
of censoring.

2.2 Cox regression

To analyse possibly censored survival data in a regression setting, where
a vector of covariates values x; is also recorded for each individual i, the
relation between the covariates and the hazard rate can be described by Cox’
semiparametric model

hi(t) = h(t | @) = ho(t) exp(B'a:), (2.6)

where the non-parametric ho(t) is an unknown baseline hazard rate correspond-
ing to the situation when all covariates are zero and 8 = (f1,...,0p) is a
vector of unknown parameters. Although the methods in this chapter have
been extended to deal with time-varying covariates we will in this thesis only
consider covariates that are fixed with respect to the time. Considering the
hazard rate ratio of a unit increase in covariate j, while keeping all the other
covariates fixed,

exp(Bo + Prar + -+ Bi(z; +1) + -+ Bpay)
exp(Bo + Prz1 + -+ + Bz + -+ + Bpap)

= exp(f3;) (2.7)

shows that a unit increase in covariate j implies multiplying the hazard rate
by efi. We will refer to e’ as the relative risk for covariate (or exposure) x;.
A relative risk equal to one means that the risk of event is unaffected by the
covariate, while a relative risk larger than one means that the risk is increased
and vice versa.
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2.2. Cox regression

The canonical estimator for the coefficient vector of effects 8 is the maximizer
of Cox’ partial likelihood,

L(8) — exp(B'x;)
) g doker(ty) Xp(B'Tr)’

(2.8)

where & = {i : §; = 1} is the set of observed (uncensored) survival times and ;
is the covariate vector of individual ¢ with failure time ¢;. In the denominator
R(t;) denotes the risk set at time ¢; which are all individuals in the cohort still
under observation just before time ¢;. We see that the unknown baseline hazard
rate ho(t) is not used.

It was shown by Andersen and Gill that this maximizer, B,
is distributed as an ordinary maximum likelihood estimator, i.e. normally
distributed around the true value of 8 where the inverse of the information
matrix,

9?log L(B)
apos -’
evaluated at B can be used as an estimate of the covariance matrix. Because
the partial likelihood have the usual likelihood properties we may apply the
standard likelihood-based hypothesis tests; the likelihood ratio test, the Wald
test or the score test.

In order to compare with the case-control sampling designs we will elaborate
a bit on this. The maximizer of is also the solution to the score equation
U(B) = 0. The score function of Cox’ partial likelihood, U () = m%g(ﬂ), can
be written as

1(8) = (2.9)

UB) = {z:i—z(B,t:)}. (2.10)

€€

The summand compares the covariate vector of individual ¢ who has failure
time t; with the weighted mean

T N ZkER(ti) exp(B'zy)xy
m(ﬂ? tz) - Zken(ti) exp(ﬂ/wk) (211)

at that time. The weighted mean is the average covariate vector of all individuals
in the cohort at risk, weighted with their relative risks. We will return to this
weighted mean for case-cohort studies.

A quick review of the statistics for the likelihood based tests and a discussion
on assumptions for Cox model follows as they will be used in the example below.
As stated we may apply the standard likelihood-based tests in order to test the
null hypothesis 8 = B¢ for a known By. The likelihood ratio test statistic

Xir = 2{log L(B) — log L(Bo)}, (2.12)
the Wald test statistic
Xiv = (B = Bo)'1(B)(B — Bo) (2.13)
and the score test statistic
Xéc = U(Bo)'1(Bo) ""U(Bo) (2.14)



2. Cox regression for cohort and case-control data

are approximately chi-squared distributed with p degrees of freedom under the
null hypothesis. The three tests can be generalized for composite hypotheses,
and are equivalent asymptotically.

Considering model checking, the two essential assumptions of Cox’ model,

h(tlx;)/h(t|xr) = exp {B’'(x; — xx)} for individuals i and k, and
log h(t|x;) = B'x; + log ho(t)

imply that hazard rates are proportional, i.e. that the hazard rate ratio does not
change with time. Also, as we saw a special case of in , that covariates have
log-linear effect on the hazard rate. These assumptions are in some cases too
strict and should be examined. One way to do this is to estimate the cumulative
hazard for different values of the covariates and check for proportionality. Some
other methods will be briefly mentioned in the below example.

In the discussion of Cox’ 1972 paper, Breslow came up with the following
estimator for the cumulative baseline hazard, Hy(t) = fot ho(u)du,

Hy(t) = 0 (2.15)

ti<t ZkeR(ti) eXp(,é’a:k) .

For fixed covariates the cumulative hazard for an individual with covariates a
can be estimated by A . .
H(t|xo) = Ho(t) exp(B'xo). (2.16)

In addition to providing cumulative hazards plots, the Breslow estimator
is an important building block in further development of Cox model and
semiparametric inference with censored data.

The survival package for the statistical software R includes the function
coxph for fitting Cox’ regression model and the usual likelihood based tests for
regression are implemented. It also handles defining splines for covariates to
check log-linearity and offers functionality for checking the proportional hazards
assumption (with e.g. cox.zph). For the programming language Python, there
exists a library called lifelines which is dedicated for survival analysis. In
addition statsmodel has support for Cox regression, and for the machine
learning oriented there is a package that is called sci-kit survival. For the
methods relevant in this thesis R has the most extensive support and we will
use the survival package to apply Cox regression on a real data set in the
following example.



2.2. Cox regression

Example

To illustrate Cox regression for a full cohort, and later for case-control and
case-cohort designs, we will study the relationship between blood measurements
of non-clonal serum immunoglobulin free light chains (FLCs) and the survival
times of people dying from neoplasms (e.g. cancer). The survival or failure time
is the period from the blood measurement was made until death from neoplasm.
People dying from other causes, in addition to those still alive at the end of
the study, will have censored failure times. This dataset is from a cohort of
residents in Olmsted County, Minnesota studied by Dispenzieri et al.
and the data is available in the survival package.

There are two measurements for FLC, A and x, where ) is the one most
strongly associated with an increased hazard. We will consider only A as a
covariate in the Cox model while controlling for the potential confounders
gender and age at entry to the study. In later examples, x will be be used as a
surrogate for A\. The FLC measurements will both be converted to a logarithmic
scale with base 2.

The full cohort for this example are measurements on n = 5486 individuals,
out of which d = 305 deaths due to neoplasms are observed corresponding to
5-6%. The genders are roughly evenly distributed with 2861 females and 2625
males. The distributions of age when measurements were taken and the FLC
measurement are illustrated in the two leftmost panels in

age log,(A) Cummulative baseline hazard

0.04 0.06

L I
0.4 0.6 0.8

I I
4e-04 8e-04

0.02
I

0.2
I

0.00
L
00
L
}
0e+00
.

T T T T
50 55 60 65 70 -4 -2 0 2 4 0 1000 3000 5000

years mg/dL time (days)

Figure 2.1: Left and centre: Estimated densities of age and log,(\) using
Gaussian kernels. Right: Estimated cumulative baseline hazard

The result of fitting Cox regression model with the covariates age, sex
and log,(A) are shown in All covariates have a significant effect
on the survival time at a significance level of 0.05. The p-values for the null
hypothesis of log,(A) having no effect on survival time is < 0.0001. A unit
increase in log,(A), which corresponds to a doubling in A, implies a relative risk
of efles20 = 1.712 with a 95% confidence interval [1.419,2.065]. This shows
that elevated FLC levels for log,(\) are clearly associated with higher death
rates. The same goes for being male and having a higher age at entry to the
study. The rightmost panel of shows that the cumulative baseline
hazard is approximately linear which means that the baseline hazard rate is
approximately constant.

To test dependency on time the function cox.zph adds for each covariate j
in turn a time dependent term pz;g(t) to the model and tests the parameter
p’s deviation from zero with a score-test. Choosing g(t) as both the identity

9



2. Cox regression for cohort and case-control data

Table 2.1: Table of regression coefficients for full cohort

coef  exp(coef) se(coef) z p
age 0.066 1.068 0.010  6.485 <0.001
sexM 0.250 1.284 0.115 2.170  0.030

loglambda  0.538 1.712 0.096  5.618 <0.001

function and the logarithm indicated that the proportional hazards assumption
for log,(A) does not hold (p < 0.01). Therefore the estimated effect of logy(A)
should be interpreted as an average effect over time. The log-linear effects
assumption, which is examined by fitting splines for both continuous covariates
and testing the non-linear effects, seem to hold (p > 0.35) for log,(\). O

We note that with relatively few cases, the excess of controls in the risk set
may not be worth the additional estimation information compared to the cost
of collecting the measurements. For example, some biological material might
require extensive amount of work to collect and can only be used once. Also
summing over the risk set in the denominator of can be a costly operation
when the cohort is of substantial size. The two cohort sampling techniques,
nested case-control and case-cohort design utilise the idea of reducing the risk set
with random sampling while hopefully retaining sufficiently effective estimates
of the effects of the covariates.

2.3 Nested case-control sampling

In a nested case control study m — 1 controls are sampled independently for
each case i € £ without replacement from those at risk in the full cohort at the
time of failure for the case (at ¢;). Each case i is compared with a sampled risk
set R(t;) of size m consisting of the case and the m — 1 controls. Note here
that a control for an individual ¢ with failure time ¢; is a not a case at that
time, but may later be a case itself. Meaning that the the term control used for
survival data is more subtle than the traditional use where a control is simply
not a case. Thus a nested case-control sample consists of the union of sampled
risk sets R(t;) for i € £. For a full cohort of size n with d observed failures the
number of unique individuals in a nested case-control sample is less than d x m
since the controls may be sampled in different risk sets and because cases can
be sampled as controls for other cases.

In the simplest situation nested case-control sampling is done randomly
without replacement. It can be shown that a partial likelihood for Cox’
proportional hazards model, can be written

exp(B'z;)

P 812 E& Yher() XP(B'mR) (217)

Under weak regularity conditions,

Vi (Buee = B) = N (0. 3,0, (218)

where R
Bree = argmaXﬁanc(IB)~ (219)

10



2.3. Nested case-control sampling

Also it can be proven that n’lImc(Bmc) is a consistent estimator for X,,..,
meaning that the information matrix evaluated at Bncc can be used to estimate
the covariance matrix of the nested case control estimator.

The relative efficiency of Bmc compared to the full cohort estimator B is the
ratio of the inverse of their respective variances. For the situation where there
is only one covariate with true parameter equal to zero, the relative efficiency
has been shown to be =1 (Goldstein and Langholz [1992). In models with
more parameters or when the effects are non-zero the relative efficiency may be
lower.

Nested case-control analysis can be done with the coxph command in R using
the d case-control sets as separate strata. Alternatively, one may manipulate
the entry and exit times such that only the case and its controls are at risk at
the case’s failure time, which might be computationally faster.

Example cont.

Letting the number of controls for each case be 2 (m = 3) the results from one
nested case-control sample are compared with the results from the full cohort

in [lTable 2.2

Table 2.2: Estimated regression coeffiecient full cohort and nested case-control
sampling for m = 3

coef  exp(coef) se(coef) v p

Full cohort

age 0.066 1.068 0.010 6.485 <0.001

sexM 0.250 1.284 0.115 2.170  0.030

loglambda  0.538 1.712 0.096 5.618 <0.001
Nested case-control

age 0.062 1.063 0.013 4.827 <0.001

sexM 0.198 1.219 0.143 1.383  0.167

loglambda  0.477 1.611 0.129 3.705 <0.001

The nested case-control estimate for log, () is somewhat smaller than the
estimate using the full cohort. A 95% CI for the relative risk is [1.252, 2.072]. We
also see that the estimated coefficient for age is very similar to the estimate for
the full cohort while being male is not found to be significantly associated with
an increased hazard using only the nested case-control sample. The standard
errors for the nested case-control estimates are as expected larger than for the
full cohort.

The relative efficiency of the nested case-control estimator for log,(\)
compared to the full cohort estimator, i.e. the square of the full cohort standard
error divided by the square of the nested case-control standard error, is equal to
0.553. For m = 3 the total number of unique individuals included in the nested
case control study is less than 915 (867) compared to the original 5486. In
this sampled cohort, an approximately 35% loss in relative efficiency for sexM
obscures the significance (p < 0.05) found in the full cohort analysis.

To illustrate the variability of the nested case-control analysis, 1000 nested
case-control samplings with two controls per case were performed.

11



2. Cox regression for cohort and case-control data

coeff. est. log,(A) SE coeff. log,(A)

250
|

150
|

50

50
|

o - o
I T T T T 1 I T T T T T T 1
02 03 04 05 06 07 0.110 0.120 0.130  0.140

Figure 2.2: Histograms of nested case-control estimated coefficient and standard
error for log,(\)

shows the distribution of the estimates for log,(\) along with their standard
errors. The mean of the estimates for log,(\) is 0.478, which is lower than
for the full cohort, but not far off. The mean standard error is 0.126. A 95%
interval estimated from the 2.5 and 97.5 percentiles of the distribution of the
1000 simulated estimates is [0.337,0.619] for log,(A\) and [0.116,0.136] for the
standard error. [J

2.4 Case-cohort design

Under a classic case-cohort study design a subcohort C of size m is sampled
randomly from the full cohort. For each failure time ¢; the individuals in the
subcohort, along with one or more cases not occurring in the subcohort, at
risk make up the case-cohort risk set S(¢;). As a result the number of unique
individuals contained in the subcohort in addition to all cases from the full
cohort is at most d + m, depending on how many of the cases that occur in the
subcohort. Several estimation procedures for case-cohort samples have been
proposed. We will consider the original case-cohort estimator by Prentice
and inverse probability weighted estimators.

Prentice’s estimator

Prentice’s original estimator for the vector of effects, denoted ,3P7 is the
maximizer of

o) = [ =220

. (2.20)
ice ks xp(B'zr)

12



2.4. Case-cohort design

Here the risk set is defined as S(t;) = C(t;) U {i}, i.e. the individuals at risk
in the subcohort at time t;, denoted C(¢;), added with the case with observed
failure at that time (if it was not already sampled in the subcohort). When the
subcohort is randomly sampled without replacement it can be shown that

vn (BP — ,8) =4I N0, 27! + 1%’2—%2—1) (2.21)

where p = % is the proportion of the full cohort that is sampled in the subcohort
and A is the limit in probability of the covariance matrix of individual score
contributions. The practical consequence is as n increases Bp is approximately
normally distributed with expectation 3. As for the covariance matrix one may
use n 11 p(B p) to estimate 3 where Ip is the information matrix obtained from
(2.20). Further, A can be estimated by (Borgan, Langholz, et al.

o 1
A=— ' ,
-~ > 2.7, (2.22)
ke
where

RPN exp(Bhx

Z =Y {an —anBr.t) | p(Br A’j) . (2.23)

ic€ > kesty) eXP(BpTr) 7

Here the weighted mean is

. Ykesr) EP(Bpay)my
Zi(Bp,ti) = - )
ZkeS(ti) exp(Bpek)

(2.24)

Thus the uncertainty due to subsampling of the full cohort is expressed in the
additional variance term.

Inverse probability weighted estimators

A weakness of Prentice’s estimator is that it does not appear to use all the
information available on the cases (for whom we have collected data). In
the risk sets, only the case with survival time t; is added to the subcohort.
Thus we may be ignoring information of the other cases at risk at ¢; who
are not included in the subcohort. The idea of inverse probability weighted
(IPW) estimators is to include all cases at risk as controls in the risk set
S(ti) =C(t;) U{k : 6, = 1,t;, > t;} and to use inverse probability weighting to
correct for possible bias. The weighted pseudo-likelihood

exp(B’x;)
> okes() eXP(B'Tr)wk

Lw(B) = H

€€

(2.25)

was originally proposed by Kalbfleisch and Lawless . The weights are
w, = 1 for cases and wy = i for non failures. The p.’s should be the
appropriate inclusion probabilities. Letting the inclusion probabilities for non-
failures equal the number of non-failures in the subcohort over the number of
non-failures in the full cohort we obtain the estimator BW of Lin and Ying
. They also showed how to estimate the variance with small modifications
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2. Cox regression for cohort and case-control data

to the procedure for the Prentice estimator described above. It can be shown
that the variance of ,QW is smaller than of ,@ p in theory but this will often not
matter much in practice.

Both methods can be fitted using the cch function in the survival package
with the method argument specified as either “Prentice” or “LinYing”.

Example cont.

In order to compare with nested case-control sampling, the size of the subcohort
is chosen to be m = 593, slightly less than 610, see Langholz and Thomas
for details. The fitted values for the Prentice and IPW case-cohort
estimators are reported in We note that the standard errors for the

Table 2.3: Estimated regression coeflicients full cohort and one case-cohort
sampling for m = 593

coef  exp(coef) se(coef) z p
Full cohort
age 0.066 1.068 0.010 6.485 <0.001
sexM 0.250 1.284 0.115 2.170  0.030

loglambda  0.538 1.712 0.096 5.618 <0.001
Prentice estimator

age 0.066 1.069 0.013  5.113 <0.001
sexM 0.334 1.397 0.147 2273  0.023
loglambda  0.498 1.645 0.125  3.984 <0.001

IPW estimator
age 0.068 1.070 0.013 5.261 <0.001

sexM 0.342 1.407 0.146  2.343  0.019
loglambda  0.468 1.598 0.120 3.914 <0.001

IPW estimator are slightly lower than for the original (non-robust) Prentice
estimator. For both case-cohort methods age and log, () are found to be highly
significant (p < 0.001) and for sexM both p-values are larger than 0.05.

The variability across 1000 case-cohort samples for the IPW estimator is
shown in The mean value across the simulations of the Prentice
estimate for logy(\) is 0.550 and the mean standard error is 0.133. For the
IPW estimator they are 0.547 and 0.127 respectively which shows that both
case-cohort methods give similar estimates. The mean coefficient estimates
and standard errors are higher than the nested case-control results. The
95% intervals for the estimated effect of log,(A\) and the standard error are
[0.393,0.721] and [0.117,0.138] for the IPW estimator. The width of the intervals
and the histograms indicate more sampling variability for the case-cohort study
compared with the nested case-control study. [

As we have seen for both nested case-control and case-cohort studies the
results with relatively few number of controls are not far from those from the

full cohort. Although, the standard errors are increased and the estimates more
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2.4. Case-cohort design

variable. Multiple imputation could offer an improvement to this by making use
of hypothetically easily available information on the individuals not sampled in
the nested case-control or case-cohort study. We could then treat values that
are not collected on the individuals outside the sampled cohort as missing data.

coeff. est. log,(A) SE coeff. log,(A)
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| |

200 300
| |

100
|
150
|

50
|

. AL

I T T T T T 1 I T T T 1
03 04 05 06 07 08 09 0.11 0.12 0.13 0.14 0.15

Figure 2.3: Histogram of estimated coefficients and standard errors for log,(\)
using the IPW estimator.
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CHAPTER 3

Multiple Imputation

This chapter describes the method of multiple imputation (MI) for handling
missing data. First we take a look at the problem of missing data in general
and the MI algorithm as a way to handle missing data. Then we will consider
some of the theory behind multiple imputation. Finally, the broadly applicable
method of full conditional specification and substantive model compatible full
conditional specification for imputation will be presented. The main sources for
this chapter are the textbooks by Little and Rubin @ and Carpenter and
Kenward (2012)), and the article by by Bartlett et al. (2015).

3.1 Missing data and multiple imputation

The concept of missing data describes the situation when data intended to be
collected have not been done so. A variable is missing if no value has been
recorded for it. This could be due to a wide variety of reasons, however, one
assumes that the value of the variable would have been possible to observe.
Missing data arises across almost all applications, e.g. patients lost to follow up,
failure in measurement equipment or inconclusive measurements, non-response
in surveys, misplacement of data. Although historically the problem of missing
data was heavily ignored, many methods and a growing literature now exist
for handling partially observed data. The methods range from the most basic
complete-case analysis (deleting all individuals for which data is missing on one
or more variables), weighted complete-case analysis, mean-imputation (imputing
missing values of a variable with the mean of its observed values), to likelihood
based methods, Bayesian iterative simulation methods and multiple imputation.
The proper way to handle missing data will depend on the reasons for why
data is missing, the analysis one wishes to perform and the resources available.
If there are systematic differences between the values that are missing and
the values that are observed, then this handling is non-trivial. For example
consider a univariate complete-case analysis of the mean of n survival times
for an event of interest, T1,..., T, for which only D (< n) events have been
observed. Discarding the censored survival times and computing the mean value
of the observed survival times gives an estimate that is biased downwards.
The general idea of imputation is to use information available in the observed
data to fill in the values of the missing data. With more than one variable the
idea is to use inferred relationships between the variables from observed data, and
then for an individual with missing data, use the observed variables to impute
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3. Multiple Imputation

the missing ones. If the assumptions and inferred relationship are correct then
imputation avoids throwing away information, making estimates more efficient.
On the other hand, treating imputed values equally as the observed values,
in effect as if they were known, can give invalid (anti-conservative) inferences.
Thus more advanced methods are often necessary such that imputation correctly
propagates the uncertainty due to missingness and the uncertainty in the models
or methods used for imputation. Multiple imputation is seen as a good trade-off
between ease of use (available software packages, required modelling) and robust,
efficient estimates with the right amount of uncertainty.

A note on Bayesian statistics

Multiple imputation can be seen as an approximation to a full Bayesian analysis
of incomplete data, and it is derived in a Bayesian setting. In Bayesian statistics
the posterior distribution of a parameter (vector/matrix) 6 given a vector or
matrix of observed data vy is calculated by

f0)f(y|6)
fly) 7

where f(y | 0) is the data distribution and f(0) is a prior distribution expressing
our belief about the parameter before the data is seen. When f(y | 0) is regarded
as a function of 0 for fixed y it is called a likelihood function. The primary
task of any Bayesian application is to develop the model f(y,0) = f(0)f(y | 6)
and perform the computations to summarize f(6 | y) (Gelman et al. [2013)).

To predict unobserved values g stemming from the same data generating
process (or data distribution), we can use the posterior predictive distribution
of g given the observed data y which can be written

fOy) = (3.1)

f@y) = /9 f(516.4)7(6 | y)db. (3.2)

The posterior predictive distribution is an average of the conditional distributions
for g over the posterior distribution of 8. It is called predictive because it is
the distribution of an observable quantity.

Missing data mechanisms

A framework for analysis of partially observed data was laid out by Rubin
(1976). Consider covariates and outcome variables Y1, ...,Y), referred to as just
variables (or items) intended to be collected for n individuals in a sample. Let
the complete data matrix y be the n X p matrix of values for these variables.
Now suppose that some of the values (intended to be collected) are not observed.
The complete data matrix y can then be partitioned into the observed data
denoted yo, and the missing data denoted yj;.

Further let the variable R; be a response indicator for Y; such that if a value
for Y; on an individual is observed then R; = 1 and if the value is missing then
R;j=0for j=1,...,p. We let the matrix = of binary values be the response
indicator matrix for the complete data matrix where the indicator value 7;;
correspond the element (i,5) of y. Then 7 gives the partitioning of y.

By sorting the rows and columns in y a useful missigness pattern for the
entire matrix may be found. For example r;; = 1Vj #koni=1,...,m
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3.1. Missing data and multiple imputation

and r;; = 1Vjoni=m+1,...,n describe a univariate missingness pattern
for variable k, i.e. values are only missing on Y for some (n — m) of the
n individuals. We say that Y} is partially observed (or partially missing)
in the sample. Another pattern, monotone missingness is when, if data is
missing on variable Y;; it is also missing on variables Y j11,...,Y;, for all 7.
This can simplify methods for imputation. In applications there will often be
several missingness patterns describing different partitions of the individuals.
However, one or a few missingness patterns will typically dominate, and it is
the assumptions about the missingness mechanisms governing these that are
important for the study.

Missingness mechanisms describe the relationship between the missingness
pattern and the values in the data matrix. Let the parameters of the missingness
mechanism be w. Then the general expression for the missingness mechanism is

f(’f' ‘ yM7yO,w)' (33)

The three main assumptions on the mechanism governing the missingness are
missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR). Missing completely at random is the assumption
that data are missing independently of their underlying values. The MCAR
assumption can expressed as

fr [ yaryo,w) = f(r|w) (3.4)

A weaker assumption is that of MAR, which states that

f(r|yM7yOaw):f<T|y07w)7 (3.5)

the probability of values being missing do not depend on the values of the
missing variables when conditioned on the observed values. We note that
contrary to what it sounds like, the data is not unconditionally missing at
random (like MCAR). They are instead assumed missing at random given the
observed values.

To give an example of MCAR and MAR, consider blood pressure
measurements taken by a physician where some values are missing. Suppose
the physician is more likely to record the blood pressure for older people than
for younger. If blood pressure generally increases with age, then the blood
pressure is by itself not missing completely at random because it is more likely
to be missing for lower values. When conditioning on age, which is available
for all individuals, the probability that blood pressure measurement is missing
for e.g. a 30 year old may be higher than for an 80 year old, but it does no
longer depend of the value of the blood pressure. Therefore blood pressure is
MAR given age. The assumption of MAR tends to be more reasonable as more
observed variables can be conditioned on.

When neither MAR nor MCAR hold, data is said to be missing not at
random (MNAR). Methods for analysis under MNAR exists. However, these
situations require more modelling assumptions and that the consequences of
the model for the missingness mechanism be carried throughout the analysis.
They will not be considered in this thesis.
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3. Multiple Imputation

Ignorable missingness

When inferences from an analysis ignoring the missing data mechanism are
equivalent to those from the full analysis including the missing data mechanism
then the missingness is said to be ignorable. The parameters of interest in the
analysis are usually (implied by) those for the distribution of the complete data
f(y | ) and the parameters w of the missingness mechanism are of no interest.
The posterior distribution for the parameters given the observed quantities yo
and r is

f(0,w |yo,r)o<f(0,w)f(yo77'| 07""’)' (36)

For inference based on likelihood ratios MAR is a sufficient condition for
ignorable missingness. For Bayesian inference, an additional requirement is that
the parameters are apriori independent, i.e. f(0,w) = f(0)f(w). In practice
MAR is the important condition. Under ignorable missingness the posterior
predictive distribution of the missing values does not depend on the response
indicator matrix , i.e.

fym [ yo,r) = flym | yo)- (3.7)

This implies
fylyo.r=1)=f(y|yo,m=0) (3.8)

showing that the posterior predictive distribution of the data can be estimated
from observed data and that the estimated distribution can be used to impute
the missing data. Ignorable missingness will be assumed for the methods in this
thesis. See chapter 6 in Little and Rubin and chapter 2 in Van Buuren
for more details on ignorable missingness and its implications.

Multiple Imputation

The multiple imputation algorithm imputes (fills in) missing values using an
imputation model and fits a model of interest for analysis, the analysis model,
on imputed datasets a moderate number of times. The results from each fit are
combined to give the final estimates. shows the steps in multiple
imputation for three imputations.

Incomplete dataset Combined results

Imputed datasets Analysis results

Figure 3.1: Multiple imputation
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3.1. Missing data and multiple imputation

Let yps be the matrix of missing data , let yo be the matrix of observed values
and let r be the matrix of response indicators for variables Y = (Y7,...,Y})
across n individuals. The algorithm for multiple imputation is as follows

Algorithm 1 Multiple imputation for missing data

1: Impute values gy; of the missing data yy; for £k = 1,..., K, giving K
“complete” (imputed) datasets y®) = (1%, yo).

2: Fit the analysis model to each of the K “complete” datasets.

3: Combine the results using Rubin’s rules.

In the imputation step (1), missing values, gy; are drawn from the posterior
predictive distribution of the missing values given the observed data and observed
response indicators, which under MAR is,

ﬂwﬂyaMZﬂmﬂwﬁZwaMWamﬂﬂyww~ (3.9)

In general, to impute values we can

Draw the parameters from their posterior distribution given the observed
data 6%) ~ £(6 | yo)

For the missing values draw g ~ f(yur | yo,0")

where f(yun | yo,0) is the conditional data distribution implied by the joint
data (imputation) model f(y|@). For each imputation k a new set of parameters
0 is first drawn from the the calculated posterior before the missing values
are imputed, making y( ) a draw from its posterior predictive distribution.

In (2) each imputed dataset is treated as if no data were missing and
the analy31s model is fitted (e.g. with maximum hkehhood) giving parameter
estimates ,Bk, and their estimated covariance matrix Vk for each of the K
imputations.

Lastly (3) we use Rubin’s rules (Rubin to combine these into the MI

estimate
. 1 &
Bur = Ve Z Bk (3.10)
k=1
and the estimated total variance
N ~ 1 .
Vur=W + (1+K> B, (3.11)

where the within imputation variance and the between imputation variance are
respectively given by

R

The number of imputations is generally quite moderate, e.g. K =5 or K = 10,
but some authors have suggested that more imputations should be used, up to
the lower hundreds.

<>

% i (ﬁk - BMI) (Bk - BMI)/- (3.12)

k=1
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3. Multiple Imputation

Bayesian justification and inference for mutiple imputation

Suppose we are interested in the posterior distribution of the parameters of an
analysis model 8 but are missing some data. The posterior distribution of the
parameters B given the observed data yo can be written

f(Blyo) = f(B,ymlyo)dyn = F(Blyar,yo) f(ymlyo)dyar. (3.13)

Ym Ym

To simulate values from f(8 | yo) one can draw gas ~ f(yar | yo) and then
draw B8 ~ f(B | Ym,yo). When one or both of these distributions are not
straightforward to draw from, iterative methods may be needed, e.g. Gibbs
sampling. For each draw the iterative sequence needs to converge, and this
convergence should be assessed for each sequence. Inference for the observed
data posterior of the parameters requires a vast amount of draws, and this
can be quite demanding. However, in some situations the posterior mean and
variance are enough to describe the posterior distribution. Under regularity
conditions, the posterior mean can be written as

E[,B|yo] = Ef(yM lyo) [Ef(ﬁ\yM,yo) [Bﬂﬂ (3'14)

and the variance as

Var(ﬂ|y0) = Ef(yM|yo) [Varf(ﬂ\nyyo) (,3)]
+ Var gy, yo) (B Blyavo) [B])- (3.15)

As the sample size grows to infinity the complete data posterior will typically
approach a multivariate normal distribution

fBlya,yo) = N(B,J ) (3.16)

and does not depend on any reasonably prior for the parameters (see discussion
in chapter 2 Carpenter and Kenward ) The mean, B, is the vector of
maximum likelihood estimates and the covariance matrix is the inverse of the
information matrix J. Thus the complete data posterior mean and variance
can be estimated using the ML estimates when the missing data are imputed.

To approximate the outer expectation we can use Monte Carlo estimation
to approximate the integral over the the missing values. By first drawing
g](@) for k =1,..., K from the posterior predictive distribution f(yas | yo) and
then estimating the inner expectation and variance using the ML estimators,
one obtains

E[Blyo] = (3.17)

i Mw
7~
<
S
=
Q
N—
Q>

K
Var(Blyo) ~ ! Z VarL (271(\];),3/0> (3.18)

LS (Bu (5890) - 8) (Bure (88)w0) - B)'
(3.19)
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3.1. Missing data and multiple imputation

Comparing with Rubin’s rules we can note the similarity except for the
extra % between imputation variance term, correcting for when the number of
imputations is small, included in Rubin’s rules.

The MI method relies on that the posterior is asymptotically multivariate
normal with a mean and covariance matrix given by likelihood based estimates
and their inverse information matrix. It is therefore suggested for logistic
regression that one should use the log-odds scale and that a logarithmic scale
be used for hazard ratios .

MI is an approximation to the full Bayesian analysis with fewer number
of draws due to combining estimates and uncertainty with Rubin’s rules and
utilizing the speed of ML estimates for computing complete data posterior means
and variances. In practice one can ignore that multiple imputation is essentially
a Bayesian method, by assuming non-informative priors for parameters.

When the imputations are Bayesian, i.e. the missing values are imputed from
their posterior predictive distribution given the observed values, uncertainty
about the parameters of the imputation model are propagated correctly. This
is achieved by drawing the parameters of the imputation model %) from their
posterior distribution before the missing values are drawn from f(yar | yo,0®).
For a discussion of the frequentist properties of MI see section 2.5 of Carpenter

and Kenward (2012) and Rubin (1987).

Congenial and uncongenial models

However, for the uncertainty about the parameters of the analysis to be valid
using multiple imputation the imputation and analysis model are required
to be congenial. The imputation model and the analysis model are said to
be congenial when they correspond. Carpenter and Kenward give the
following explanation of congeniality between imputation and analysis model.
Assume MAR and suppose we obtain K imputed data sets from a Bayesian
posterior predictive distribution f(yar | yo), fit our analysis model to each
and combine the results for inference using Rubin’s rules. Separate to this
assume that there exists a full Bayesian procedure for obtaining the posterior
of B (the parameters of the analysis model) such that if - in addition - we
were to use this full Bayesian procedure to impute the missing data, then
the imputation distribution would be the same as the posterior predictive
distribution f(yas | yo) used for the multiple imputations. Meng (1994)) give a
more detailed and extensive definition of congeniality.

When the imputation model (or the imputation model implied by the
imputation method) do not align with the analysis model, the models are said
to be uncongenial. Uncongeniality tend to result in conservative inferences
and can in special cases lead to invalid inferences. Especially inference in the
tails can be more sensitive to this. For example, if there is an interaction
or non-linear term present in the data, but the imputation model does not
include this, then the interaction or non-linear effect will be weakened in the
analysis model. On the other hand, an imputation model can be richer than
the analysis model when, e.g. it includes additional variables. These auxilliary
variables in the imputation model are used to impute missing values, but are
not included in the analysis model themselves. Nested within an imputation
model that is richer than the analysis model there can be an imputation model
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3. Multiple Imputation

that is congenial with the analysis model. Multiple imputation using a richer
imputation model tend to give more efficient estimates than anticipated.

3.2 More on imputing missing values: Imputation using
full condition specification (FCS)

It can be challenging to come up with a multivariate distribution that provides
a good fit to the data. Often it is easier to specify a conditional distribution for
each variable given all the others. This is the idea behind the full conditional
specification (FCS) using chained equations approach for imputation. It uses a
method similar to a Gibbs sampler.

From here on we will distinguish between response variable(s) and covariates
as defined by an analysis model. Let Xi,..., X, be partially observed
covariates, let Z be a vector of fully observed covariates and let Y be a fully
observed response variable with respect to the analysis model with distribution
f(y | x, z,1), where the goal of the analysis is to draw inferences regarding its
parameters.

Further, for j = 1,...,q, let ;0 and x; ) be the vectors of observed
and missing values on X; across the n individuals, and define the matrices
xy = (@17, .., &gm) and o = (1,0, ...,%4,0). Let z and y be the matrix
and vector of observed values on the fully observed covariates and response
across the n individuals.

For the partially observed covariates j = 1,...,q, specify a conditional
density

flzjle—j,2,9,05), (3.20)

where z_; is the vector x_; = (x1,...,2j_1,Zj41,...,%4), and a prior f(6;)

for its parameter (vector) 6;. For the tth iteration of the algorithm let
w§t> = (xj0, wg?\/[) be the vector of all observations across n individuals for

covariate X; with the current vector of imputed missing values a:(tgw In addition,

7,
(f;rl) be the matrix of currently imputed and observed values on all partially

. . t+1 t+1) t+1) (¢ (t
observed covariates except Xj, i.e. asz ) = (wg e ,m§71 ), j+)1’ c, Ty )).

Note that the most current values on each covariate are used.
The FCS algorithm generates a sequence of draws w;fj\_/[l) forj=1,...,q
from their conditional posterior predictive distributions given the observed data

and the current values of the imputed missing data. When the sequence has
(t+1)
M

let x

converged, a generated set of missing values is approximately a draw
from the (joint) posterior predictive distribution of the missing data given the
observed data, i.e. from f(xu | o, 2,y).

In the situation where individuals are independent, for each individual with
a missing value on X; a scalar 2 s drawn from the univariate conditional
specified model using the observed or current imputed values of covariates

X1,y Xj—1,Xj41, ..., X for the individual and the current given value 9§t+1),

w2 zy,000), (3.21)

At (assumed) convergence, the last imputed values of the missing data and the
observed values make up one imputed data set.
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3.3. Substantive model compatible (FCS) imputation

Algorithm 2 Full Conditional Specification/Chained Equations imputation

1. Create inital imputations of the missing values :1:501)\4, o (0) by an

approximate method, e.g. by replacing the missing values on each covarlate
by randomly drawing from the observed values of the same covariate.

2. For t =0,1,... draw from the following distributions (up to constants of
proportionality)

0\~ f(00) f(zr0 | 2TV, 20y, 00)

2~ flanar |25, 2y 60Y)

08t ~ £(02) f (oo | 25V, 2,y,05)

2~ F@aar |2 2. 08")

0y ~ F(0) f(zg0 | 2., 2,y,6,)

t+1 t+1 t+1
20D~ flagar | 2T 2y, 007

For this to be equivalent to a Gibbs sampler, we would have drawn each 0;
from its posterior distribution also given the most recent values of the missing
data, i.e. Qj(-tﬂ) ~ f(0,)f(z;0, :Eg?u | :):gtﬂ), .. ,acg-tjll), wg-l)l, ol :E((f), z,y.0;).
In addition, the specified conditional distributions must correspond to
a joint distribution f(z1,...,2q | 2,y,60) where it’s parameters 6 (and prior)
have the appropriate relation to the 6;s (and their priors). As mentioned, when
these conditions are satisfied the sequence converges to the posterior predictive
distribution of the missing data given the observed.

In practice this rarely holds and it is unknown what distribution the sequence
may converge to, but empirical studies and simulations have shown that multiple
imputation using FCS still can perform quite well. The multiple imputation
full conditional specification (chained equations) algorithm is implemented in
the package mice (Buuren and Groothuis-Oudshoorn in R. More details
and applications can be found in the textbook by Van Buuren (2018).

3.3 Substantive model compatible (FCS) imputation

Substantive model compatible full conditional specification (SMC-FCS) is an
expansion of the FCS algorithm that seeks to ensure compatibility between the
analysis (substantive) model and the imputation model (assuming that the
analysis model is correctly specified). Two conditional models are incompatible
if there exists no joint distribution for which the conditionals (for the relevant
variables) equal these conditional models. Incompatible analysis and imputation
models can lead to biased estimates of the parameters in the analysis model.
Compatibility is similar and related to the concept of congeniality (see Bartlett
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et al. for more details on this). The SMC-FCS algorithm ensures
compatibility by indirectly specifying an imputation model while taking account
of the analysis model. Since the implied imputation model is generally non-
standard, imputations are made using rejection sampling.

For a partially observed covariate X; we have that

f(JTj I x_j,z,y) X f(y ‘ xvz)f('rj | x—jvz) (3'22)

where the vector z_; is defined as in the previous section and = = (z;, z_;).
To implicitly specify an imputation model for the missing data on the
partially observed covariate, for each X; using the above, we specify a model
f(z; | x—;, 2, ¢;) and a non-informative prior f(¢;). For given values of the ¢
and ¢; the missing values for X; can be imputed from the density proportional
to

fla,z,0) f(xy |2y, 2,0;) (3.23)

The implied imputation model depends on the both ¢; and .

) he the vector of current imputed values and

J
. e t+1
observed values on covariate X; across n individuals and now let alr,'gf )

be the matrix of currently imputed and observed values on all partially
observed covariates except Xj, i.e. e — (m(tH), . 7:c§-t_+11), ;?_1, ceey :c((f)).

1

Assuming independent priors for the parameters such that f(¢;,¢) = f(¢;)f(¢)

the posterior f(¢;, | wgt), a:(_t;rl)

FoF@)fy |2 2z 0) f@ |2 2, 0)). (3.24)

In the (¢ + 1)th iteration of the SMC-FCS algorithm one draws (up to
constants of proportionality)

WO )y |2 2, 2 0) (325
¢§t+1) - f(¢j)f(m§t) | ngl)’z’ng) (3.26

and then imputes the missing values of X; from the density proportional to
(3.23). Comparing with the FCS algorithm, we note that we condition on wgtgw
(t+1)

Similarly as before, let @

,z,y) is proportional to

)
)

in addition to x;0,x_; ", 2, and y as in a standard Gibbs sampler. However,
Bartlett et al. posit that this might require more iterations before the
chain reach convergence. In the chain, imputed missing values of X; can be
generated using rejection sampling.

Rejection sampling is an indirect way of simulating draws from a desired
distribution called a target distribution. The idea is to draw values from a
simpler distribution, denoted a proposal distribution, that can take on the same
values as the target distribution, and then to accept the draws under a certain
condition.

To sample from the specified density f(z; | z—;,z, ¢;) (that is easy to
sample from) is a proposal density . Typically this will be a normal distribution
for continuous X; and a logistic model for binary X;. Then one must find an
upper bound, ¢(y, z_j, z,), for the ratio of the target density to the proposal
density which does not depend on X;. Here the ratio of the target to the
proposal density is proportional to

fyla,z,9) f(x) | 24,2, ¢5)
f(zj | z—j,2,05)

= [y |z z9) (3.27)
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3.4. Imputing with non-linear terms, interactions and auxiliary variables

To simulate a value from the density proportional to (3.23) we can then draw

a proposal value z} from f(z; | z—j, 2, gf)§t+1)) and value u from a standard

uniform distribution (on (0,1)) and accept the proposed value if

L < T lag ey 200D
o C(yax—jvzyw(t_‘—ll'j))

(3.28)

If the the proposed draw is rejected new values x7 and u are repeatedly sampled
until the condition given by the inequality is satisfied.
The smf-fcs package in R offers imputation for SMC-FCS.

3.4 Imputing with non-linear terms, interactions and
auxiliary variables

In the standard FCS algorithm only main effects are modelled. Very often
non-linear effects or interaction effects are of interest to the analyst. When
missing values are imputed with a model with only main effects, the imputation is
uncongenial or incompatible with analysis models with non-linear and interaction
effects. In these situations the non-linear effect or interaction effect is attenuated.
There exists modifications to that can e.g. impute with an interaction, but this
methods have generally shown bias toward the null for the interaction effect.
On the other hand substantive model compatible FCS where the non-linear or
interaction term is included in the substantive/analysis model has been shown
to be unbiased in many simulation settings, and is generally preferred when
non-linear or interaction effects are believed to be present.

One of the biased methods for handling interaction (or non-linear) effects
with FCS is the “impute, then transform” method. It imputes the missing data
without the interaction and then derives and adds the interaction term after the
missing values have been imputed. Another, modification which have shown
to give better results is the method of “passive imputation”. This methods
imputes with the derived variable which is updated in after each iteration. The
derived variable, e.g. the interaction, can then be used to impute missing values
for variables other than the two included in the interaction. With only one
variable partially observed imputation with an interaction term, which includes
the partially observed variable, is equivalent for the two modifications. For an
overview and more details on this see Van Buuren . The mice package
in R offers functionality for imputation with non-linear and interaction terms.

Auxiliary variables are fully observed variables related to the partially
observed variables, but not of interest in the analysis model. If these are
available to the imputer then they can be included in the imputation model
for the partially observed variable(s). This has been shown to give more
effective estimates. For FCS the auxiliary variable can simply be included as a
covariate in the linear or logistic regression models used for imputations. In
SMC FCS (rejection sampling) the auxiliary variable can be included in both
the the analysis model and the proposal distribution. The auxiliary variable
is in some situations a surrogate for a partially observed variable, i.e. if the
partially observed variable was fully observed and included in the analysis
model, then the surrogate variable would have no effect on the outcome. The
SMF FCS algorithm can incoropate this assumption by only including the
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3. Multiple Imputation

auxiliary variable in the proposal distribution. However, since this is a stronger
assumption, we will only use the former rejection sampling with an auxilliary
variable procedure.

In the next chapter we are going to return to the analysis of time-to-event
data and look at multiple imputation for Cox regression models.

28



CHAPTER 4

Multiple imputation in Cox
regression for cohort and
sampled cohort data

In this chapter we will consider multiple imputation for cohort data with missing
covariates in Cox regression, and for sampled cohort data in nested case-control
and case-cohort studies. Adapted versions of approximate imputation and
rejection sampling for survival data will be presented and illustrated on the
example for the full cohort. Then an overview of current approaches for using
multiple imputation for sampled cohort data and the empirical results from
simulation studies will be given. The approaches for multiply imputing data with
approximate imputation and rejection sampling for sampled cohort data will be
elaborated in this setting. Finally, the methods will also here be exemplified.
Approximate imputation for Cox regression was developed by White and
Royston . Keogh and White investigated approximate imputation
for sampled cohort data. Substantive model compatible FCS using rejection
sampling for Cox regression was proposed in Bartlett et al. and has been
further examined for sampled cohorts in Keogh, Seaman, et al. .

4.1 Ml for Cox missing covariates regression

This section covers multiple imputation for survival data, and more specifically
how multiple imputation may be used when the analysis model is a Cox
proportional hazards model. Survival data can be seen as a special case of
missing data, where we know the range of the values of the missing data. If the
event is not observed then the survival time must be larger than the censoring
time. However, in many applications the survival time and censoring status are
easily available, and the following will focus on imputation for covariates.

We will assume that only a single covariate X is partially observed while
a set of covariates denoted by the vector Z and the survival/censoring time
and the censoring status represented by the two component vector Y = (T, A)
are assumed fully observed as before. Assuming that the censoring mechanism
is random/non-informative (each individual has a censoring time that is
independent of their survival time) and that the censoring time distribution is
independent of X given Z we have under Cox model that the joint distribution
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4. Multiple imputation in Cox regression for cohort and sampled cohort data

of T and A is

ft, 6]z, 2) x {ho(t)eﬁﬁ“w/z}5 exp {—Ho(t)eﬁ’?""y/z} (4.1)

for the parameters given by the scalar § and vector . Our goal is to impute
missing values for X from its conditional distribution given the other covariates,
the survival/censoring time and the censoring indicator. Using Bayes theorem
gives that the conditional distribution for X given values z, ¢t and ¢ is

flz|z,t,0) < f(t,0]x,z2)f(x]2). (4.2)

The proportionality constant here does not depend on = so we can combine it
with the proportionality constant in (4.1]) into a constant C(z,t,6) and take
the logarithm of (4.2)) to obtain

log f(x | 2,t,0) =log f(x|z) +log f(t,0 | x,z) + log C(z,t,0) (4.3)

+log C(z,t,9).

We see that the conditional distribution f(x | z,¢,9) is non-standard. In order
to draw values for X from this non-standard distribution, we will consider using
an approrimate imputation model and using rejection sampling.

Approximate imputation

White and Royston show how an approximation of f(x | z,t,d) can yield

an imputation model for binary or continuous X by including z, § and H (t) as

linear predictors. Here H (t) is obtained by the Nelson-Aalen estimator .
To impute values for binary X we assume a logistic model

logit{ P(X =11 2,£,6)} = no +n}z + nad + ns H (t) (4.4)

where logit(p) = log& is the log-odds for probability p. This model
is fitted using the currently imputed data set. The resulting estimates
and their corresponding covariance matrix can be used as the mean vector
7 = (fo,N1,M2,73)" and covariance matrix Var(7) of a multivariate normal
distribution to create independent draws n*) for k =1,..., K. Then for each
individual with missing X, an imputed X(¥) can be drawn from the Bernoulli
distribution with probability

exp (" + 0z + 5+ 0l A (1))

P(X®) =121t0) = (4.5)

Lexp (n8 + 0™z + 08?6 + 0l A (1))

giving the kth set of imputed values.

This corresponds to a step of the FCS MI algorithm in section with
q = 1. We fit the model to the current imputed dataset and draw the
parameters n from their posterior distribution, for which we assume a vague
prior and that this posterior is approximately multivariate normal. Then we
update the missing values from the conditional distribution given the observed
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4.1. Ml for Cox missing covariates regression

values and the drawn parameter values n(*) using the approximate model for
f(@]z,t,6,m).

To see why the approximation is reasonable White and Royston (2009)
consider a logistic model for the binary X given z

logit{ P(X = 1] 2)} = (o + (1. (4.6)

With f(z | z) given by and by inserting for X = 1 and X = 0 in (4.3)),
illustrated by a slightly non-standard use of notation, it can be seen that we
obtain the imputation model

logit{ P(X =1|2,t,0)} =log f(x =1]2,t,0) —log f(x =0 2,t,0) (4.7)
=Co+ G+ 80+ (1—€) e "Ho(t)

where the terms that do not depend on z are cancelled. This model is non-
standard due to the e7'# term. However with no z it corresponds exactly to a
logistic regression with a coeflicient for the rightmost term representing (1 —ef )
For a single categorical z, the model is exactly a logistic regression of x
on z, §, Hy(t) and the interaction between z and Hy(t).

For other situations there are no exact results, but one may approximate
e’ e E , where Z is the sample mean (vector) of z, or by a more accurate
approximation €7* ~ e7?{1++/(z—2)}, for small Var(y'z). The first
approximation suggests imputing x with a logistic regression on z, § and
Hy(t), while the second approximation suggests imputing z with a logistic
regression on z, §, Hy(t) and the interaction between z and Ho(t).

Furthermore, the simulations of White and Royston show that models
using the Nelson-Aalen estimator to estimate the cumulative baseline hazard
and no interaction terms, performed just as well as more advanced models with
interactions and the Breslow estimator for Hy(t). This was also the situation
for a normal missing variable.

The imputation model when assuming X | z ~ N(¢g + ¢'z,0x,7) is

X =no +nyz+ 120 + 0z H(t) + e, (4.8)

where € ~ N(0,02). Similarly as for a binary variable, the model is fitted
to the complete observations and obtaining estimates for the parameters 7,
their estimated covariance matrix V' = Var(7) and the estimated residual
variance 62. Then drawing agk) = G/ (Nobs — J)/g where ngps is the number
of individuals with X observed, J is the length of 7} and g is drawn from
chi-squared distribution with degrees of freedom equal to nyps — J. Afterwards
draw a vector of independent standard normals u to obtain n®) = 7+ Uék)u’ %8
where V2 is the Cholesky decomposition of the matrix V. Lastly ¢*) is drawn
from a mean-zero normal distribution with variance 062 (k). With the set of
drawn parameters, the missing values of X are imputed from . Again see
White and Royston for a similar argument as the one given for logistic
regression.

FCS with an approximate imputation model can easily be performed with
the mice package after precomputing the Nelson-Aalen estimate.
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4. Multiple imputation in Cox regression for cohort and sampled cohort data

Imputation using rejection sampling

To impute missing values according to f(z | z,t,0), Keogh (2018) summarize
the SMC-FCS rejection sampling method of Bartlett et al. (2015) into the
following algorithm. For imputation k =1... K:

Algorithm 3 Rejection sampling
Repeat steps 1 — 6 until convergence

1. For the parameters ¥y = (3,7) of the analysis model , draw values
B*) | 4 from a joint normal distribution with mean (B ,4) and covariance
matrix V, where the estimates 3, 4 and covariance matrix V are obtained
from fitting the Cox model to the current “completed” (imputed) dataset.

In the first iteration, appropriate initial values for the missing values
should be used.

2. Obtain an estimate of the cummulative baseline hazard H(()k)(t) by the
Breslow estimator (2.15) evaluated at the parameter values 5(), v(*) and
the current imputed values of X.

3. Estimate the parameters ¢ of the model (e.g. normal or logistic regression)
for the proposal distribution f(x | z) and their covariance matrix using
the current “completed” dataset. Then draw values of the parameters
from their estimated joint posterior distribution.

4. For each indvidual with missing X , draw a potential value z* from the
proposal distribution given the parameters drawn in the previous step.

5. Draw a single standard uniform v and accept the potential imputed value
¥ if
exp (—H (0)e? T )it g =0
HP () exp (1+ 5Bz +909z = HP (1) w0 '=) it 5 = 1
(4.9)

u <

6. Repeat steps 4 and 5 until a value z* is accepted for each individual for
whom it is missing, giving an updated set of missing values.

At convergence this gives the kth imputed dataset with missing values drawn
from their posterior predictive distribution.

For survival data with response (t,d) the ratio of target to proposal, cfr.

(3.27)), is proportional to

f@t,0]z,2,9)f(x]z,)

f(@]z,0)
For the following argument let a censoring time be denoted C' and a failure
time be denoted T', such that the observed time is 7' = min(C,T). Under the

assumption that T is independent of C' given X, Z and that C' is independent
of X given Z, the joint distribution for an individual with censored time is

= f(t,0 | x,2,¢) (4.10)

JT=t5=0]2,2¢) = f(T>1,C=t]x,2,9) (4.11)
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4.2. Example for the full cohort

= P>t 2,5 9)f(C =t]2)
< f(C=t]2).
Thus the unkown censoring time distribution f(C' =t | z) is an upper bound of
the ratio of target to proposal. For Cox model, dividing by this upper bound
gives
f(I'=t0=0]|z271)
f(C=112)

=P(T >t|x,2,1) (4.12)
= exp (—Hék) (t)eﬁ(k)w-i-"f('“)'Z)

which result in the expression in step 5 for 6 = 0. A similiar, although somewhat
more complicated argument gives the expression for § = 1 (Bartlett et al.|2015)).
The R package smc-fcs implements rejection sampling for Cox models.

4.2 Example for the full cohort

To illustrate multiple imputation for cohort data we will again consider the
survival times for people dying from neoplasms (as introduced in .
We let log, A be partially observed and all the other covariates and the response
variables be fully observed. Define the missingness mechanism for log, A as

0.8 ift<t50,0=0
f(?“,\:0|t,(5): 0.3 ift>t5,0=0 |, (413)

0 else

where t50 is the median follow-up time. Now log, A is MAR given (¢,d). This
means that the probability of a value for logy A being missing is higher for non-
events with shorter censoring times than for individuals with longer censoring
times, and overall that non-events have missing values while individuals who
experience the event do not. This could be plausible if the capacity for measuring
log, A is limited and cases are prioritised, such that for individuals newly entered
into the study (which would have short censored times at the time of the analysis)
the measurements are less likely to have been obtained.

Let 2 denote the partially observed log, A and let z denote the fully observed
covariates age and sex. We then have that

flr=1]z2,1t0)
fr=1]x,2)

Since the missingness mechanism depends on the response variables, the
complete observation analysis will generally be biased.

Applying the missingness mechanism on our cohort yields 2713 missing
values such that the percentage of missing values on log, A is roughly 50%.
First an analysis using just the 2773 complete observations is performed. Then
missing values of log, A will be imputed K = 5 times with the approximate
imputation model in FCS with maximum 100 iterations and with rejection
sampling in SMC-FCS using 100 iterations. For the latter log, A given the other
covariates will be assumed normally distributed. Then the models are fitted
and the results combined with Rubin’s rules.

0w zr=1) =

f(t,6 ], 2). (4.14)
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4. Multiple imputation in Cox regression for cohort and sampled cohort data

Table 4.1: Estimated regression coefficients for full cohort, complete observations
and multiple imputation using approximate imputation and rejection sampling
for K = 5. Multiple imputation is performed with and without an auxiliary
variable.

coef  exp(coef) se(coef) z p

Full cohort

age 0.066 1.068 0.010  6.485 <0.001
sexM 0.250 1.284 0.115  2.170  0.030
loglambda  0.538 1.712 0.096  5.618 <0.001

Complete observations

age 0.062 1.064 0.010  6.100 <0.001
sexM 0.264 1.303 0.115 2.293  0.022
loglambda  0.614 1.848 0.098  6.296 <0.001

Approximate imputation

age 0.067 1.069 0.010  6.560 <0.001
sexM 0.256 1.291 0.116 2.213  0.027
loglambda  0.523 1.687 0.099 5.256  <0.001

Rejection sampling
age 0.067 1.069 0.010  6.532 <0.001
sexM 0.259 1.296 0.116  2.240 0.025
loglambda  0.572 1.772 0.100  5.734 <0.001

Approximate imputation auxilliary

age 0.066 1.069 0.010  6.499 <0.001
sexM 0.249 1.283 0.116  2.153  0.031
loglambda  0.522 1.686 0.103 5.081 <0.001

Rejection sampling auxilliary
age 0.067 1.069 0.010  6.569 <0.001
sexM 0.252 1.287 0.116  2.180  0.029
loglambda  0.525 1.691 0.099  5.280 <0.001

Results are shown in We see that the complete observations
analysis yields a markedly higher effect for log, A. The standard errors do not
indicate that information on about 50% of the individuals have been discarded,
which is likely because none of the cases are missing. Approximate imputation
reduces the overestimated effect of log, A from the complete observations analysis.
Compared to the full cohort analysis, the estimate is slightly lower. The standard
errors for the fully observed variables are very nearly the same as for the full
cohort analysis while there is an additional uncertainty in the standard error
for logy A\. Rejection sampling give fairly similar results for age and sex as for
the full cohort and approximate imputation. The estimate for log, A is closer to
the full cohort than the complete cases, but is for this partially observed cohort
further away than approximate imputation.

To illustrate the use of an auxiliary variable for imputation we will include
logy < in the imputation model. The auxiliary variable log, x is, as mentioned

34



4.2. Example for the full cohort

in the example in another FLC measurement and it is moderately
correlated with log, A. The analysis model will still only include age, sex and
log, A (although for rejection sampling the imputation model will be compatible
with an analysis model with log, x included). The correlation between the two
FLC measurements is 0.68. The coeflicient estimate and standard error for
log, k are both lower (0.464 and 0.087 ) than for log, A if it were to replace it
in the full cohort analysis. The estimates for age would be unchanged while
the effect for being male would be slightly higher (0.227) with log, x in the
model instead of the original log, A. When both log, A and log, x are in the
full cohort analysis model their estimates are both attenuated to 0.330 and
0.252 respectively. Applying approximate imputation and rejection sampling
on the same partially observed single cohort with log, x as an auxiliary variable
give the results in the lower part of Using an auxiliary variable
that is predictive of log, A give results that are much more similar for the two
methods. The estimate for log, A is considerably reduced for rejection sampling
and slightly reduced for approximate imputation.

Repeating 1000 simulations of r according to and analysing the
resulting data sets with complete observations, approximate imputation
sampling and rejection sampling give the results in the upper part of
The relative differences between the methods are similar to the results in
We note that there is still indication of bias (compared to the full
cohort) for the estimated effects using the complete observations, and that there
now is less bias for the estimated effect of log, A from rejection sampling than
from approximate imputation.

For imputation with an auxiliary variable both methods yield lower estimated
effect for log, A than the full cohort. There is little difference between
approximate imputation with and without an auxiliary variable except for
slightly more efficient estimates. Rejection sampling without an auxiliary
variable overestimates the effect while the effect is underestimated when the
auxiliary variable is included. The underestimation might be because log, x
still seem to be associated with the hazard rate when log, A is in the model,
i.e. it is not a proper surrogate variable for log, A. Note, however, that the full
cohort estimate is included in the 95% intervals for all imputation methods. [J
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4. Multiple imputation in Cox regression for cohort and sampled cohort data

Table 4.2: Estimated regression coeflicients of 1000 runs for multiple imputation
by approximate imputation and rejection sampling for K = 5, and for complete
observations analysis.

coef  95% interval se(coef) 95% interval rel.efficiency

Full cohort

age 0.066 - 0.010 - 1
sexM 0.250 - 0.115 - 1
loglambda  0.538 - 0.096 - 1
Complete observations
age 0.059 [0.055, 0.064] 0.010 [0.010, 0.010] 0.993
sexM 0.274  [0.226, 0.322] 0.115 [0.115, 0.116] 0.999
loglambda  0.583  [0.532, 0.636] 0.097 [0.093, 0.100] 0.981
Approximate imputation
age 0.067 [0.065, 0.068] 0.010 [0.010, 0.010] 0.993
sexM 0.252  [0.236, 0.268] 0.116 [0.115, 0.116] 0.993
loglambda  0.506 [0.447, 0.567] 0.101 [0.096, 0.110] 0.893
Rejection sampling
age 0.066  [0.065, 0.068] 0.010 [0.010, 0.010] 0.992
sexM 0.249  [0.233, 0.264] 0.116 [0.115, 0.117] 0.992
loglambda  0.551 [0.495, 0.604] 0.101 [0.095, 0.109] 0.905
Approximate imputation auxilliary
age 0.067 [0.066, 0.068] 0.010 [0.010, 0.010] 0.995
sexM 0.252  [0.240, 0.263] 0.116 [0.115, 0.116] 0.996
loglambda  0.507  [0.464, 0.551] 0.101 [0.097, 0.106] 0.902
Rejection sampling auxilliary
age 0.067 [0.066, 0.068] 0.010 [0.010, 0.010] 0.995
sexM 0.251  [0.239, 0.263] 0.116 [0.115, 0.116] 0.996
loglambda  0.507  [0.468, 0.548] 0.101 [0.097, 0.107] 0.902

4.3 Overview of multiple imputation for sampled cohort
data

For nested case-control and case-cohort studies follow-up times and event
indicators are assumed to be observed for the full cohort. Measurements on
all relevant covariates for each individual in the nested case-control sample
or the case-control sample are collected. One covariate (or more) intended
to be collected can be expensive in the sense that obtaining its measurement
demands extensive resources which is motivating the need for a sampled cohort
study because it is unfeasible to collect for everyone. Meanwhile there will
often be information available for all individuals in the full cohort on easily
observed covariates such as age, gender and in some situations a surrogate for
an expensive covariate. The expensive variable is then missing by design in the
full cohort. Multiple imputation is a promising approach for utilising more of
the information available to the analyst.
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Multiple imputation using approximate imputation and rejection sampling
was investigated by Keogh and White for sampled cohort data. They
assumed one continuous expensive covariate missing by design on all individuals
in the full cohort not sampled in the nested case-control or case-cohort sample.
All follow-up times, event indicators and other covariates or a surrogate were
assumed completely observed in the full cohort. Missing values for the expensive
covariate were then multiply imputed for full cohort analyses where the results
were combined according to Rubin’s rules. Compared with the traditional nested
case-control and case-cohort analysis multiple imputation was in simulation
studies found to result in gains in efficiency, particularly for the covariates
observed in the full cohort and when the number of controls in a nested case-
control study was small or the case-cohort subcohort was small compared
to the full cohort. Of the two methods, approximate imputation was found
to give biased estimates for the parameters for large effect sizes and in the
presence of an interaction term between the missing expensive covariate and
a fully observed covariate in the cohort. This is not unexpected because the
approximate imputation model without an interaction term does not contain
a nested imputation model that is congenial with an analysis model with the
interaction term. The same applies to the situation with non-linear terms of
the missing covariate. Rejection sampling gave no apparent biases.

Multiple imputation is a way to make use of the full cohort data available.
An advantage with multiple imputation is that handling of data missing by
chance, i.e. not by design, can easily be incorporated into the anaysis. Keogh,
Seaman, et al. investigated MI with data missing by design on one
expensive covariate X7 only observed in the sampled cohort and data missing
by chance (10% and 50% missingness) on a cheap covariate X5 observed for
the full cohort where the probability of being missing was dependent on a
binary fully observed confounder Z, the censoring status and their interaction.
Their results showed that MI handles missing data well in nested case-control
and case-cohort studies when the imputation model is approximately correctly
specified. Relative to a complete observation analysis MI gives bias correction
and gains in efficiency. They also considered an intermediate approach where
they imputed for the full cohort but only used the sampled cohort for fitting
analysis models. This was shown to be more robust to misspecification of
imputation model.

Also for values of the cheap covariate missing by chance in the sampled cohort
they considered imputing only in the sampled cohort and fitting the analysis
model with the traditional nested case-control and case-cohort estimators on
the “complete” sampled cohort. This approach was found to reduce bias and
give gains in efficiency compared to the complete observation sampled cohort
analysis.

From the mentioned studies MI can be expected to give gains in efficiency
over standard sampled cohort analysis when information on the full cohort is
available. When data is missing by chance MI can give bias correction and gain
in efficiency compared to a complete observation analysis. However, it comes
at a price of potential bias if imputation model is misspecified. The effect of
misspecification may be non-negligible when a large fraction of missing data is
imputed as it is if data for the full cohort is imputed.
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4.4 Full cohort multiple imputation for nested case-control
and case-cohort samples

The sampled cohort in a nested case-control study consists of all cases and, for
each case, a small number of controls m — 1 that are sampled from the risk
set at the each case’s failure time. The nested case-cohort sample is sampled
according to observed event indicator ¢ and follow-up time . We again assume
that data is missing only on an expensive variable = for those individuals not
sampled in the nested case-control study. The missingness mechanism, which
is by design, means that if 6 = 1 then « is not missing, but if § = 0 then =z is
missing depending on the follow-up time. For example, an individual that is
censored early (such that it is not at risk at most of the observed event times)
will be less likely to be included in the sampled cohort than an individual that
is censored later. We know that = is MAR given ¢ and ¢.

Both approximate imputation and rejection sampling can be directly applied
to nested case-control data. The Nelson-Aalen estimate, which incorporates ¢
in the approximate model can be estimated from the full cohort information
on t and J. In the rejection sampling algorithm proposed values are drawn
from f(z | z,¢*+1)). Estimation of the parameters of this distribution using
the nested case-control sample can for the early iterations be biased which
leads to potentially many rejected draws. This might affect the time, but the
draws we end at up with at convergence are still approximately from the target
distribution.

The case-cohort sample consists of the sampled subcohort C and of all
cases in the cohort. Missing values x outside the case-cohort sample are MAR
given 6. Compared to the nested case-control sample, another difference is
that the subcohort C is a random sample from the full cohort which we will
consider further in the next chapter. Both multiple imputation algorithms may
be applied directly in the same way as for nested case-control samples when
imputing the full cohort.

4.5 Example sampled cohort

The sampled cohorts in this section have the same setup as in chapter 2. Nested
case-control sampling is performed with 2 controls (m = 3) and case-cohort
sampling with a subcohort size of 593 randomly sampled individuals from the
full cohort. The percentage of individuals with missing log, A value is about 84%.
The same setup as the previous example with 100 iterations and 5 imputations
is used. Approximate imputation and rejection sampling without and with an
auxiliary variable are performed.

In we see the results of mutiply imputing the full cohort from
the same single nested case-control sample as in the example of
Without an auxiliary variable both imputation methods yield estimates closer
to the full cohort than the traditional nested case-control estimate and with
smaller standard errors. The estimates for log, A are both downward biased
compared to the full cohort estimate. With an auxiliary variable both methods
give results close to the full cohort with the estimate of log, A from approximate
imputation lower and the estimate from rejection sampling higher than the full
cohort estimate.
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Table 4.3: Nested case-control sampling with 2 controls (m = 3): Estimated
regression coefficients for full cohort, complete observations and multiple
imputation using approximate imputation and rejection sampling for K = 5.

coef  exp(coef) se(coef) v p

Full cohort
age 0.066 1.068 0.010 6.485 <0.001
sexM 0.250 1.284 0.115 2.170  0.030
loglambda  0.538 1.712 0.096 5.618 <0.001
Traditional nested case-control
age 0.062 1.063 0.013 4.827 <0.001
sexM 0.198 1.219 0.143 1.383  0.167
loglambda  0.477 1.611 0.129 3.705 <0.001
Approximate imputation
age 0.065 1.068 0.010 6.306 <0.001
sexM 0.253 1.288 0.118 2.147  0.032
loglambda  0.508 1.661 0.130 3.904 0.001

Rejection sampling

age 0.068 1.070 0.010 6.639 <0.001
sexM 0.265 1.304 0.117 2271 0.023
loglambda  0.509 1.663 0.150  3.380  0.001
Approximate imputation auxilliary
age 0.066 1.069 0.010  6.419 <0.001
sexM 0.267 1.306 0.117  2.290  0.022
loglambda 0.514 1.672 0.114  4.516 <0.001
Rejection sampling auxilliary
age 0.067 1.070 0.010  6.594 <0.001
sexM 0.253 1.288 0.117 2162 0.031

loglambda  0.552 1.737 0.121 4.562 <0.001

The results of multiply imputing the full cohort from 1000 nested case-
control samples are shown in table The estimated log hazard ratios
for log, A are closer to zero than the traditional nested-case control estimate
for imputation without an auxiliary variable, but the mean standard error
and width of the 95% intervals reduced. Estimation for the fully observed
variables are more efficient and very similar to the full cohort estimates. With
an auxiliary variable the estimated coefficient for log, A is closer to the full
cohort and the relative efficiency increased for both methods.

For the case-cohort sample from the multiple imputation results
are presented in[Table 4.5] With this sample the complete observations analysis
estimates for log, A are even lower than for the nested case-control sample. All
imputation estimates for log, A are lower than the estimate from the full cohort,
but the two with an auxiliary variables in the imputation model are lifted closer
to the full cohort estimate. Will will see below that compared to the averaged
results over 1000 repetitions the results from this single case-cohort is somewhat
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4. Multiple imputation in Cox regression for cohort and sampled cohort data

Table 4.4: Nested case-control sampling with 2 controls (m = 3): Estimated
regression coefficients of 1000 runs for multiple imputation by approximate
imputation and rejection sampling for K = 5, and for complete observations
analysis.

coef 95 % interval se(coef) 95% interval efficiency

Full cohort
age 0.066 - 0.010 - 1
sexM 0.250 - 0.115 - 1
loglambda  0.538 - 0.096 - 1
Traditional nested case-control
age 0.064 [0.049, 0.081] 0.013 [0.012, 0.014] 0.615
sexM 0.226  [0.061, 0.403] 0.148 [0.142, 0.153] 0.607

loglambda  0.478 [0.337, 0.617] 0.126 [0.116, 0.136] 0.577
Approximate imputation
age 0.066 [0.063, 0.069] 0.010 [0.010, 0.011] 0.960

sexM 0.249 [0.213,0.281]  0.118  [0.116, 0.122]  0.962
loglambda  0.454  [0.328, 0.575]  0.116  [0.093, 0.154]  0.667

Rejection sampling
age 0.066 [0.063, 0.069] 0.010 [0.010, 0.011] 0.958

sexM 0.251 [0.212, 0.283] 0.118 [0.116, 0.122] 0.961
loglambda  0.470 [0.336, 0.594] 0.117 [0.093, 0.157] 0.660

Approximate imputation auxilliary
age 0.067 [0.064, 0.069] 0.010 [0.010, 0.010] 0.979

sexM 0.248 [0.218, 0.276] 0.117 [0.115, 0.119] 0.978
loglambda  0.488 [0.393, 0.592] 0.109 [0.094, 0.133] 0.767

Rejection sampling auxilliary
age 0.067 [0.064, 0.069] 0.010 [0.010, 0.011] 0.979

sexM 0.248 [0.217, 0.276] 0.117 [0.115, 0.119] 0.978
loglambda  0.494 [0.391, 0.595] 0.109 [0.094, 0.135] 0.760

from the mean, but it illustrates the variability of the methods.

The results for many case-cohort samples given in follow the same
pattern. The imputation methods give estimates for the partially observed
logy A that are downward biased, but less so when imputing with an auxiliary
variable. On the other hand, the estimated relative efficiency is higher with
imputation. The reason for the downward bias could be due to convergence
issues, the low number of imputations (5) or a degree of model misspecification.

This illustrates the danger of imputing a large percentage of missing values
in real world settings. Still the gain in efficiency, especially for the fully observed
variables, is clear, and with a good auxiliary variable the potential bias of the
partially observed variable might be acceptable. [

In the next chapter we will examine these methods further using simulations
studies and investigate the possibility of imputing only a part of the full cohort.
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Table 4.5: Case-cohort sampling with a subcohort of size m = 593: Estimated
regression coefficients for full cohort, complete observations and multiple
imputation using approximate imputation and rejection sampling for K = 5.
Multiple imputation is performed with and without an auxiliary variable.

coef  exp(coef) se(coef) zZ p
Full cohort
age 0.066 1.068 0.010  6.485 <0.001
sexM 0.250 1.284 0.115 2.170  0.030

loglambda  0.538 1.712 0.096  5.618 <0.001
Traditional case-cohort (IPW)

age 0.068 1.070 0.013  5.261 <0.000
sexM 0.342 1.407 0.146 2343  0.019
loglambda  0.468 1.598 0.120  3.914 <0.001

Approximate imputation

age 0.069 1.071 0.010  6.555 <0.001
sexM 0.259 1.296 0.118  2.198  0.028
loglambda  0.405 1.499 0.091 4438 <0.001
Rejection sampling
age 0.068 1.070 0.010  6.574 <0.001
sexM 0.264 1.302 0.116  2.268  0.023
loglambda  0.335 1.398 0.104  3.223  0.001
Approximate imputation auxilliary
age 0.068 1.070 0.010  6.590 <0.001
sexM 0.243 1.275 0.118  2.053  0.040
loglambda  0.412 1.511 0.106  3.904 <0.001
Rejection sampling auxilliary
age 0.067 1.070 0.010  6.593 <0.001
sexM 0.249 1.283 0.116  2.146  0.032

loglambda  0.384 1.468 0.107  3.605 <0.001
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Table 4.6: Case-cohort sampling: Estimated regression coefficients of 1000 runs
for multiple imputation by approximate imputation and rejection sampling for
K =5.

coef 95 % interval se(coef) 95% interval efficiency

Full cohort

age 0.066 - 0.010 - 1

sexM 0.250 - 0.115 - 1

loglambda  0.538 - 0.096 - 1
Traditional case-cohort (IPW)

age 0.067 [0.052, 0.083]  0.013  [0.012, 0.013] 0.633

sexM 0.248 [0.075, 0.424] 0.147 [0.145, 0.149] 0.617

loglambda  0.547 [0.393, 0.721] 0.127  [0.117, 0.138] 0.567
Approximate imputation

age 0.066  [0.063, 0.069] 0.010 [0.010, 0.011] 0.960
sexM 0.249 [0.212, 0.285] 0.118 [0.116, 0.122] 0.961
loglambda  0.454  [0.327, 0.595] 0.115 [0.092, 0.150] 0.683

Rejection sampling
age 0.067 [0.064, 0.069] 0.010 [0.010, 0.011] 0.963

sexM 0.257 [0.219, 0.288] 0.117 [0.115, 0.121] 0.967
loglambda  0.410 [0.276, 0.548] 0.115 [0.092, 0.156] 0.675

Approximate imputation auxilliary
age 0.066  [0.064, 0.069] 0.010 [0.010, 0.010] 0.978
sexM 0.247 [0.217, 0.274] 0.117 [0.115, 0.119] 0.977
loglambda  0.502  [0.405, 0.605] 0.108 [0.092, 0.133] 0.777
Rejection sampling auxilliary
age 0.066 [0.064, 0.069] 0.010 [0.010, 0.010] 0.979

sexM 0.248 [0.218,0.276]  0.117  [0.116,0.119]  0.976
loglambda  0.496  [0.396, 0.601]  0.108  [0.093,0.135]  0.775
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CHAPTER 5

Imputing only a subset of the full
cohort and simulation studies

In this chapter multiple imputation in a subset of the full cohort will be explored.
The multiple imputation methods for missing data (by chance) in sampled cohort
studies of Keogh, Seaman, et al. will here be applied in a new setting
where data will be missing by design in a superset of the sampled cohort. We
will denote this superset method A. This setting addresses how to use multiple
imputation with only a subset of the full cohort when it can be very large.
The sampled cohort MI methods will be slightly adapted and considered in
a previously unexamined setting (superset method B). The methods will be
examined with simulation studies and compared to the classical sampled cohort
methods and the full cohort MI methods for nested case-control and case-cohort
samples . The simulation setup is guided by Morris, White, and
Crowther .

5.1 Imputing only a subset of the full cohort

In typical nested case-control and case-cohort studies a small fraction of the full
cohort is included in the sampled cohort. The starting point for the investigation
of the methods described in this chapter will be sampled cohorts for either
nested-case control or case-cohort studies. With sampled cohorts it is meant
both the cases and the sampled controls. In the sampled cohorts all values are
observed while expensive covariate values are missing in the remaining part of
the full cohort.

In the previous chapter we used the fully observed variables in the sampled
cohort and the fully observed cheap covariates values in the remaining part of the
full cohort to gain imputed datasets of the full cohort. However, as mentioned
there, when imputing a large fraction of missing data, multiple imputation is
less robust to misspecification of the imputation model. Therefore the gain in
efficiency might come at the expense of stronger modelling assumptions. For
very large cohorts multiple imputation of many variables, where each imputation
requires a sequence of iterations to reach convergence, the computational demand
of imputing for the full cohort might be prohibitively large. Also, information
on an excessive amount of non-cases might be superfluous. These are arguments
for imputing missing values in only a part of the full cohort.

The most straightforward approach is then to impute missing values in a
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5. Imputing only a subset of the full cohort and simulation studies

random subset of the full cohort, e.g. for 25%, 50% or 75% of the full cohort.
The imputed dataset (the sampled cohort study and the imputed missing values
for the subset of the full cohort) can then be analysed with Cox model as in
full cohort imputation. However, this might introduce bias into the parameter
estimates because the imputed dataset is not a representative subsample of the
full cohort.

5.2 Superset multiple imputation

Instead of imputing the full cohort, we here propose to impute a superset of
the sampled cohort. The idea is that the imputed datasets, which then are
supersets of the sampled cohort, can be analysed effectively with a sampled
cohort estimator. This will be called superset nested case-control (multiple)
imputation and superset case-cohort imputation since we will impute missing
values such that we obtain supersets of the nested case-case control or case-cohort
sample. The situation is illustrated by

When obtaining the sampled cohort and the superset we must make sure
that the superset is indeed a superset of the sampled cohort. For a nested
case-control sample with one control we could first draw a nested case-control
superset of e.g. three controls per case and then draw one control from each
of the three to make up the nested case-control sample. Or one could first
draw one control per case and then draw two additional controls from the
corresponding risk sets with the first control removed. In this simple scheme,
both ways should be equivalent. For a case-cohort sample with a subcohort of
750 individuals one could first draw a superset with a subcohort of say 1750
individuals and then draw the intended subcohort of 750 from those, or first
draw 750 and then draw an additional 1000 from the full cohort with the 750
removed. Since the subcohort in case-cohort studies can be decided in advance
the latter might be preferred.

With the same covariates and missingness pattern as in chapter 4 we wish to
impute values for X from its conditional distribution given the outcome and the
other covariates. Since the superset (or any nested case-control or case-cohort
sample) is sampled with respect to the § and ¢ the missing values (by design)
for X are MAR, and f(z | t,0,2,s = 1,0), where s = 1 is an indicator for being
in the superset, is equal to f(z | ¢,0,2,0) . (More specifically we have that
0 = 0 here as well).

Superset imputation method A

Keogh, Seaman, et al. developed methods for imputing values missing by
chance in sampled cohort studies. The methods for imputing missing values only
in the sampled cohort immediately adapts to supersets (larger sampled cohorts).
For approximate imputation the Nelson-Aalen estimator, H (t), in or ,
can be fitted using the times and censoring status for all individuals in the full
cohort.

For rejection sampling with nested case-control supersets, the classical
nested case-control estimator, the maximiser of , is used to obtain the
substantive/analysis model parameters in step 1 of the rejection sampling
algorithm . These drawn parameters, 3ncc, are then used in
a modified step 2 to obtain the cumulative baseline hazard estimate. The
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5.2. Superset multiple imputation

Full cohort

Superset of sampled cohort

Sampled cohort

Figure 5.1: Illustration of superset imputation

cumulative baseline hazard in the full cohort can be estimated with the Breslow
type estimator of Langholz and Borgan (1997). For a nested case-control
superset it can be written

nce (Sz
H (t) = Z IR(t )]

t; <t kER (ts) exp(ﬂncc 2Tk + Bncc 21”1,k + ﬂncc 29%2 k)
(5.1)
where R, (t;) is the nested case-control superset risk set at event time t;, |R(t;)|
is the number at risk in the full cohort at t; and ms — 1 is the number of
controls in the superset. Since f(x | z,s = 1) will tend to differ from f(z | 2)
only the non-events can be used to estimate f(z | z) (assuming rare events).
Then, in step 5 the estimate of the substantive model parameters, Bncc, and the
cumulative baseline hazard, H Jee(t), are used to reject/accept proposed values.
For case-cohort supersets the substantive model parameters, Bcch, can be
obtained with Prentice’s estimator, the maximiser of -, which is more in
accordance with the following cumulative baseline hazard estimator, H, s (1),
than the IPW estimator:

HM () = _ i . . (5.2)

ti<t Zkegg(ti) exp(ﬁcch,rxk + ﬂCCh,Zl 21k + ﬂCCh¢Z2Z27k)m

Here ﬁ is the inverse superset subcohort sampling fraction. To estimate

f(z | z) only the subcohort can be used (since the subcohort is a random sample
of the full cohort). Then, in the acceptance/rejection step, we use Bcch and
HSeM(2).

Finally, for both superset designs with approximate imputation or rejection
sampling, each imputed superset is analysed with its appropriate sampled cohort
estimator, the classical nested case-control or the Prentice estimator, and the
results are combined according to Rubin’s rules.
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5. Imputing only a subset of the full cohort and simulation studies

These methods will be referred to as Superset A methods and are just the
methods of Keogh, Seaman, et al. applied in the superset sampling design
setting. The aim is to estimate the imputation model for X, f(z | ¢,0,z,0),
using more available information in the remaining part of the full cohort without
imputing for the full cohort. This is achieved by estimating the cumulative
hazard of the full cohort (population), or the cumulative baseline hazard and
the substantive model parameters of the full cohort (population). The superset
A methods are effective in that they use information on time and censoring
status for all individuals in the remaining full cohort for approximate imputation
(Nelson-Aalen estimate) and for rejection sampling with nested case-control
samples (size of full cohort risk sets). Rejection sampling for case-cohort uses
the sampling fraction.

In R these methods are implemented as smcfcs.nestedcc and
smcfcs.casecohort in the smcfcs package. Also note that Keogh, Sea-
man, et al. mentions another way of estimating f(x | z) and there exists
a more IPW-like estimator for the full cohort cumulative hazard (see section
17.9 of Borgan and Samuelsen (2016)).

Superset imputation method B

A more naive approach is to consider imputing X from its distribution in the
superset f(x | t,0,z,s = 1,0) using estimates of the cumulative hazard, or the
cumulative baseline hazard and the parameters in the substantive model, of
the superset. For approximate imputation this implies fitting the Nelson-Aalen
estimate to all individuals in the superset (for whom time and outcome status
are available). There will be some tied event times, but with about the same
number of events this will be rare as the cohort size increase.

For rejection sampling it means estimating f(z | z,s = 1) and accepting
proposed values with a probability that is compatible with the analysis model
f(t,8 | x,z,4,5 =1). The analysis model influences rejection sampling through
its estimated parameters and the cumulative baseline hazard estimate. Treating
the superset as "a full cohort" or "a study population" means that the cumulative
baseline hazard should be estimated for the superset, and the [ estimates of
the substantive model could be just the Cox model estimates for the currently
imputed superset. That is, the B estimates are obtained from maximising the
full Cox likelihood (2.8)) and the cumulative baseline hazard estimated with the
Breslow estimator where the risk sets R(t;) are the individuals at risk in
the superset instead of the full cohort. There will be some tied events, which
will be handled with the Efron approach (see documation of smcfcs package).

These will be the Superset B methods. After imputing the supersets, the
nested case-control or IPW case-cohort estimators are fitted and the results
combined according to Rubin’s rules. It is unclear whether this naive approach
will give unbiased or efficient estimates. Two questions are whether the Cox
model which we use in rejection sampling is compatible with the sampled cohort
estimators and whether it is sufficient to impute missing values of X using
only the information available in the subcohort (except for the total number of
individuals in the full cohort).

We will see how the superset imputation methods perform in the simulations
below.
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5.3. Simulation setup

5.3 Simulation setup

The main aim of the simulation study is to compare full cohort imputation using
either a nested case-control sample or a case cohort sample with the superset
imputation techniques described in the previous sections. The methods will
be compared to each other in a setting where it would be convenient to use
multiple imputation. The estimates of interest are the log hazard ratios in Cox
regression model and their standard errors.

Furthermore, we will consider one setup where the partially observed
covariate is not related to the other covariates used for imputation. Then
a setting will be examined using an auxiliary variable for imputation. Lastly, a
setting with an interaction term will be explored, mainly in order to see how
approximate imputation and rejection sampling differ.

The settings will be simple to better be able to gain an insight into the
operating characteristics in basic situations. Additionally, the simulation settings
are motivated by the FLC example and the studies referenced in the overview
section for sampled cohort methods of chapter 4. The parameters of interest
are as mentioned the log hazard ratios of Cox proportional model and their
standard errors. Some covariates are fully observed and one covariate is deemed
expensive and is only observed in the sampled cohort.

We will generate nops data points from the following data generating
mechanism. Further the simulations will be repeated ny;,, = 1000 times.
This is in order to reduce the Monte Carlo standard errors resulting from a
limited number of simulations. The number of imputations will be K = 10 which
is within the commonly recommended range. The data generating mechanism
is

7y ~ Bernoulli(p., )
Zy ~ N(ptzy,1)
X ~ N(ag +byz1 + cp22,1)
V = X + 1 where n ~ N(0,07) such that corr(X,V) = 0.8(0.79).
The event times will be generated according to a hazard rate
h(t |z, z) = Art™ " exp(Ba + B2, 21 + Bz 22 + Praz122) (5.3)

by drawing ng;, standard uniform variables and transforming them according
to

=

Te = (—i IOg(U) exp(ﬁmx + le z1 + ,32222 + ﬁ122’122)> . (54)

The resulting times will follow a Weibull distribution.

The event times T,’s will be generated with scale parameter A\, = 4.0 x 10~7
and shape parameter 7. = 4. The dropout times 7.’s will be generated from a
Weibull distribution with parameters A, = 2 x 107 and 7, = 4, and assumed
independent of X, Z; and Zs. The maximum follow-up time will be 15 years.
Thus the observed follow-up times are T' = min(T, T, 15) with corresponding
event indicator D. The parameters are chosen such that the proportion of
individuals who experience the event is about 5% and the proportion that drops
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5. Imputing only a subset of the full cohort and simulation studies

out is 62% and the remaining 33% are administratively censored at maximum
follow-up time. The sampled cohorts will be approximately 10% of the full
cohort (corresponding to 1 control per case).

An overview of the simulation experiments is given in the list below.

1. The standard setting will be imputation for a full cohort of size nps = 5000
and imputation for supersets of size 20% and 40% of the full cohort. The
effect size for the binary variable will be equal to 8,, = 1 and the
effect sizes for the continuous variables 8, = 1 and ., = 0.5. The
data will be imputed without a surrogate variable V', and generated
and analysed without interaction, i.e. S12 = 0 between X and Z;. Let
a; =0, by = ¢, =0.25 and let p,, = 0 such that cor(X, Z;) ~ 0.12 and
cor(X, Zy) ~ 0.24. Note that the sampled cohort size, about 10% of the
cohort, will not be changed. (i-ii)

2. The no correlation setting will be imputation when X is not correlated
with the other covariates, i.e. by = ¢y = 0. Here A, = 5.5 x 10~7 such
that the proportion of events is still around 5%. (iii)

3. The auxiliary setting will be imputation with a surrogate variable V' with
the same parameters (and the same simulated and sampled cohorts) as in
the standard setting (i). Rejection sampling will be performed with V' in
the substantive model, i.e. imputing with a richer imputation model. (iv)

4. The interaction setting will be imputation with an interaction in the
true data generating mechanism and analysis model, 515 = 0.5. Here
we set A\, = 2.5 x 1077, The impute, then transform/passive imputation
(Section 3.4)) will be used for approximate imputation. (v)

Cohorts will be sampled of roughly comparable size for nested case-control
and case-cohort studies. The same sampled cohorts will be used for the
traditional methods, the MI full cohort and the MI superset methods. The
estimators are the traditional nested case-control estimator and the case-
cohort IPW estimator. For full cohort the Cox model will be fitted. For
superset imputation the nested case-control and the case-cohort estimator will
be examined. Both approximate imputation and rejection sampling (SMC
imputation) will be done throughout.

A

The measures of performance will be the bias E[5] — 8, the empirical

standard error Var(B) estimated by \/  — e (Bl — B)2 where j is

Nsim—1

the mean estimate for 3, the model standard error E\/\/fa\r(ﬁ) estimated by

nslm S \/\//a\r(ﬁi) , and 95% confidence interval obtained by assuming a
normal distribution. The relative efficiency of the parameter estimate compared
to the traditional nested case-control or case-cohort estimator, and to the full
cohort estimator will also be given. Also the mean squared error E[(3 — 3)]2
estimated by ﬁ o (B — 3)% which can be decomposed into a squared bias
term and a variance term offers some insight on the bias-variance trade-off,
interesting particularly with respect to prediction. Although as Morris, White,
and Crowther note that for biased methods the MSE tend to vary more
with the sample size n,ps than the bias or standard errors alone. The maximum

simulation error or Monte Carlo standard error estimates will also be reported.
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5.4 Simulation results

Generated data

In the standard and auxiliary settings, (i) and (iv), the ng;, = 1000 generated
cohorts have a mean number of events of 261.5 (5.2% of the cohort) and the
correlations between the covariates have a mean across the generated cohorts
as given in [Table 5.1] . We see that the two covariates z; and zo are mildly
correlated with z and not correlated with each other, while the surrogate
variable is moderately to strongly correlated with x.

Table 5.1: Average correlation between the covariates across simulated cohorts

x z1 Z9 v

z 1.00 0.12 024 0.79
z 012 1.00 0.00 0.10
zz  0.24 0.00 1.00 0.19
v 079 0.10 0.19 1.00

From one of the generated cohorts a histograms of the event times, the
dropout times and the follow-up times for all individuals in the cohort are
shown in the These show the similar Weibull shapes of the event
and dropout times, and the spike of administrative censoring at the end of
maximum follow-up time.
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Figure 5.2: Histograms of times

Simulation results for nested case-control samples

For the standard setup (i), nsi» = 1000 simulations gave the results in
The maximum estimated Monte Carlo standard error for the estimates are for
bias < 0.01, empirical standard error < 0.01, mean squared error < 0.01 and
coverage < 0.02. The results are rounded to 3 significant figures.

The classical Cox regression for the full generated cohort of n,,s = 5000
individuals gives effectively unbiased estimates. We see that the empirical
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5. Imputing only a subset of the full cohort and simulation studies

standard errors are very close to the model standard errors, and that the 95%
confidence intervals are close to nominal. For the classical nested case-control
estimator for a nested case-control sample with one control per case (m = 2)
we obtain approximately unbiased estimates, except for 5, which show a little
upward bias (0.027), and the standard errors are roughly doubled, leading to
a relative efficiency compared to the full cohort estimate of 0.19 for 3,, 0.28
for 8., and 0.23 for f,,. The model and empirical standard errors are closely
similar and the coverage is also close to nominal.

Approximate imputation of the full cohort seem to slightly underestimate
the parameters of the larger effect sizes, 3, = 1 and 3,, = 1, while the estimate
for the continuous weaker [3,, is close to unbiased. The superset imputation
methods give less bias than imputing the full cohort and are close to unbiased
for all effects. Both superset methods give very similar results (the methods
differ only in how the cumulative hazard has been estimated). The standard
errors are larger than when imputing the full cohort, but lower than for the
classical nested case-control estimator. The relative efficiencies for 3, 5.,, 3z,
are 0.27,0.48,0.40. Compared to imputing the full cohort there is especially
less efficiency for the parameters of the fully observed variables (Z; and Zs),
but there is also less efficiency for the partially observed variable X. This is
expected since we only impute covariate values in a superset of about 20% of
the individuals. Nonetheless, the MSE estimates for X and Z, with superset
imputation are not far from those of the full cohort imputation.

Rejection sampling for the full cohort is approximately unbiased and results
in smaller MSE’s than approximate imputation of the full cohort. The coverage
is close to nominal. With rejection sampling there is more difference between the
superset methods. Method A has a non-negligible bias of 0.159, overestimating
B, and has undercoverage for [,. Superset method B seem to slightly
underestimate (§,. The relative efficiencies for ., 5.,, 5., are 0.30,0.50,0.42
with method B. Of the superset methods, method B with rejection sampling
has the least MSE.

Histograms of the estimated effects of X from the standard setting (i)
are shown in They are fairly normally distributed and show
no unreasonably extreme outliers. Though, note that the histograms for the
classical nested case-control and superset method A with rejection sampling
show a few very high values.

For situation (ii), when the superset is increased from 3 controls per case
to 7 controls, the relative efficiencies are markedly increased as we can see in
The relative efficiencies for approximate imputation superset method
A and B increase to about 0.37,0.63 and 0.56, and for rejection sampling
superset method B to about 0.41,0.64 and 0.56. A nested case-control superset
with 7 controls consists here of about 40% of the full cohort, compared to
about 20% with 3 controls. The relative efficiencies, of superset method A and
B for approximate imputation and superset method B for rejection sampling,
compared to the full cohort imputation methods are increased from about
63-64% to 87-88% for 3., from 65-68% to 85-88% for /3., and from 57-58% to
77-78% for f.,. The difference between Z; and Zs might be due to difference
between the true effect sizes or the difference between imputing a binary and
continuos variable.

For (3, the approximate imputation superset methods A and B, and rejection
sampling B, show a overall less bias and smaller standard errors with more
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5.4. Simulation results

controls, but there is now an indication of undercoverage. Examining the
histograms for 3, in we see no clear difference between the
distributions with an increased number of controls.

Imputing the superset with rejection sampling method A is increasedly
biased with a larger superset. This method was previously considered in a
different setting, for missingness by chance in the subcohort (values missing for
both cases and non-cases), with a larger cohort size and for binary variables,
and there are possible modifications to it that might make it perform better
here (see Keogh, Seaman, et al. (2018)).

The difference in the full cohort imputation estimates here with respect
to those using 3 controls is just due to the stochastic variability of the
imputation algorithms, e.g. drawing parameters and missing values (and
resulting convergence), since they have been applied on the exact same cohorts
with the same sampled cohorts.
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Table 5.2: Nested case-control (i): standard setup of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

Ba
Bz
Bz,

Ba
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
B
Bz,

Standard

Approximate imputation

Rejection sampling

Full cohort NCC  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.001 0.027 -0.037 0.013 0.013 -0.001 0.159 -0.030
0.000 0.017 -0.030 0.002 0.001 0.000 0.027 0.010
0.000 0.015 -0.018 0.003 0.002 0.001 0.002 0.012
0.066 0.153 0.104 0.127 0.127 0.097 0.130 0.121
0.145 0.274 0.169 0.209 0.209 0.170 0.219 0.206
0.065 0.138 0.077 0.103 0.102 0.077 0.107 0.101
0.064 0.154 0.102 0.125 0.125 0.099 0.142 0.112
0.148 0.277 0.164 0.206 0.204 0.171 0.223 0.202
0.066 0.141 0.075 0.100 0.100 0.078 0.108 0.098

1 0.191 0.427 0.275 0.274 0.477 0.261 0.301
1 0.284 0.742 0.485 0.485 0.733 0.442 0.497
1 0.226 0.717 0.406 0.406 0.722 0.371 0.416
0.004 0.024 0.012 0.016 0.016 0.010 0.045 0.013
0.022 0.077 0.028 0.042 0.042 0.029 0.050 0.041
0.004 0.020 0.006 0.010 0.010 0.006 0.012 0.010
0.964 0.955 0.923 0.945 0.953 0.954 0.787 0.946
0.948 0.948 0.957 0.960 0.963 0.947 0.952 0.960
0.947 0.943 0.946 0.952 0.957 0.942 0.949 0.955
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Table 5.3: Nested case-control (ii): Standard with larger superset of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
Bz
Bz,

Ba
Bz
Bz,
Ba
Bz
Bz,

Standard 7 controls

Approximate imputation

Rejection sampling

Full cohort NCC  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.001 0.027 -0.036 0.005 0.005 0.000 0.336 -0.018
0.000 0.017 -0.029 -0.008 -0.008 0.000 0.063 0.006
0.000 0.015 -0.019 -0.001 -0.001 0.000 0.005 0.008
0.066 0.153 0.104 0.110 0.109 0.098 0.112 0.104
0.145 0.274 0.169 0.183 0.183 0.171 0.200 0.182
0.065 0.138 0.077 0.087 0.087 0.077 0.096 0.087
0.064 0.154 0.102 0.119 0.120 0.099 0.137 0.107
0.148 0.277 0.164 0.185 0.186 0.171 0.232 0.186
0.066 0.141 0.074 0.088 0.088 0.078 0.108 0.088

1 0.191 0.421 0.369 0.370 0.471 0.350 0.409
1 0.284 0.739 0.632 0.631 0.727 0.529 0.638
1 0.226 0.723 0.557 0.558 0.722 0.466 0.562
0.004 0.024 0.012 0.014 0.014 0.010 0.132 0.012
0.022 0.077 0.028 0.034 0.035 0.029 0.058 0.035
0.004 0.020 0.006 0.008 0.008 0.006 0.012 0.008
0.964 0.955 0.937 0.936 0.922 0.951 0.179 0.937
0.948 0.948 0.953 0.951 0.946 0.949 0.901 0.947
0.947 0.943 0.944 0.948 0.949 0.945 0.914 0.948
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5. Imputing only a subset of the full cohort and simulation studies

The results of imputing X with no correlation between X and the other
covariates are given in As expected we see that the methods are
close to unbiased. However, there are slightly more efficient estimates and
smaller MSE’s here than for the imputation methods in the standard setting.
Although the generated cohorts are not the same, this is perhaps unexpected
for B, especially. This could illustrate that in this simple simulation setting
with only values of X missing, only for controls, it is mainly the time and
censoring information through the estimated cumulative hazard, or cumulative
baseline hazard, that is important to obtain the gains in efficiency seen in the
standard setting, when imputing missing values of X for the MI algorithm. We
remember that in the standard setting the correlation between X and the other
covariates is mild, 0.21 and 0.24 for Z; and Zs respectively. Next we will see
what happens when imputation is performed with an auxiliary variable that is
more strongly correlated with X.

The results of auxiliary variable imputation for the same sampled cohorts
as in the standard case with 3 controls are displayed in Using an
auxiliary variable that is a true surrogate of X for imputation give reduction
of bias and gains in efficiency compared to both the standard setting (i) and
the no correlation setting (iii). The gain is most substantial for full cohort
imputation as there is a fully observed auxiliary covariate for all individuals in
the entire cohort, that we make use of.

For the superset methods there is also a clear gain in efficiency and this
is expected to increase with a larger superset. We note rejection sampling
superset method A is now considerably less biased with an auxiliary variable
and that method B is approximately unbiased. Overall, this suggests that when
an auxiliary variable is available it should strongly be considered used. However,
as we noted in when the auxiliary variable is not a true surrogate
of X, i.e. the response is independent of the auxiliary variable when the other
variables in the analysis model are included, there could be some bias in the
parameter estimates. In situations where it is unclear whether the auxiliary
variable is a surrogate or not, superset imputation might be safer than full
cohort imputation.
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Table 5.4: Nested case-control (iii): X not correlated with Z; and Z5 of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
Bz
Bz,

Ba
Bz
Bz,
Ba
Bz
Bz,

No correlation

Approximate imputation

Rejection sampling

Full cohort NCC  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.005 0.034 -0.025 0.017 0.016 0.008 0.165 -0.018
0.009 0.019 -0.019 0.006 0.004 0.004 0.058 0.002
0.000 0.008 -0.015 0.004 0.003 0.000 0.029 0.003
0.065 0.143 0.102 0.120 0.120 0.097 0.124 0.116
0.136 0.251 0.162 0.195 0.194 0.163 0.205 0.192
0.062 0.125 0.075 0.095 0.095 0.074 0.100 0.094
0.068 0.147 0.103 0.122 0.121 0.104 0.138 0.110
0.139 0.255 0.162 0.195 0.196 0.166 0.218 0.193
0.064 0.126 0.072 0.093 0.092 0.074 0.104 0.091

1 0.211 0.431 0.299 0.298 0.466 0.282 0.320
1 0.300 0.719 0.496 0.497 0.711 0.449 0.509
1 0.254 0.707 0.435 0.436 0.711 0.393 0.445
0.005 0.023 0.011 0.015 0.015 0.011 0.046 0.012
0.019 0.065 0.027 0.038 0.038 0.027 0.051 0.037
0.004 0.016 0.005 0.009 0.009 0.005 0.012 0.008
0.933 0.948 0.923 0.943 0.946 0.921 0.735 0.945
0.954 0.953 0.940 0.949 0.951 0.939 0.928 0.952
0.945 0.953 0.950 0.960 0.961 0.954 0.940 0.959
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Table 5.5: Nested case-control (iv): Auxilliary variable of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

Auxilliary variable imputation

Ba
Bz
Bz,

Ba
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
B
Bz,

Approximate imputation

Rejection sampling

Full cohort NCC  Full cohort Superset (A) Superset (B) Full cohort  Superset (A) superset (B)
0.001 0.027 -0.027 0.011 0.010 0.000 0.097 -0.006
0.000 0.017 -0.019 0.002 0.002 -0.001 0.012 0.007
0.000 0.015 -0.01 0.003 0.003 0.001 0.001 0.007
0.066 0.153 0.088 0.117 0.116 0.087 0.122 0.114
0.145 0.274 0.156 0.202 0.202 0.156 0.207 0.201
0.065 0.138 0.071 0.100 0.100 0.071 0.102 0.099
0.064 0.154 0.084 0.116 0.117 0.087 0.133 0.109
0.148 0.277 0.155 0.198 0.198 0.158 0.207 0.197
0.066 0.141 0.071 0.098 0.098 0.073 0.102 0.098

1 0.191 0.572 0.323 0.324 0.590 0.298 0.336
1 0.284 0.859 0.515 0.516 0.860 0.490 0.520
1 0.226 0.842 0.429 0.430 0.849 0.410 0.434
0.004 0.024 0.008 0.013 0.014 0.008 0.027 0.012
0.022 0.077 0.024 0.039 0.039 0.025 0.043 0.039
0.004 0.020 0.005 0.010 0.010 0.005 0.010 0.010
0.964 0.955 0.952 0.957 0.958 0.943 0.876 0.956
0.948 0.948 0.945 0.953 0.952 0.944 0.947 0.953
0.947 0.943 0.945 0.963 0.959 0.938 0.955 0.963
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5.4. Simulation results

For the last setting, the more complex situation when there is an interaction
term between X and Z, the results are reported in As expected
approximate imputation clearly attenuates the interaction effect, resulting in
bias for the other covariate effects as well. The attenuation is less dramatic
when only imputing the superset compared to the full cohort imputation. For
rejection sampling the missing values are imputed compatible with an analysis
model including the interaction term. Full cohort rejection sampling show
nearly unbiased results and overall very good performance here. The superset
B rejection sampling methods perform best of the superset methods, but we
see that it displays some signs of bias, particularly in underestimating the
interaction effect. Now, the superset A give nearly unbiased estimates for the
interaction effect while the bias for 3, is about the same as in the standard
setting.

In situations with interaction effects (and this has also been shown for
non-linear terms in more general settings) approximate imputation give biased
results while rejection sampling is preferred. Here the bias in the superset
B method is overall less than the classical nested case-control estimates,
has considerably more efficient estimates and comparable overall coverage.
Therefore, in situations where full cohort information is not possible, the
superset method B, and possibly a modification of superset method A (to make
use of more of the full cohort information), seem to offer real improvement over
the classical nested case-control estimator from these limited simulations.
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Table 5.6: Nested case-control (v): Interaction term of 1000 simulations.

Bias

ModelSE

EmpSE

RelEft

MSE

Cov

Ba
B
Bz,
/szl

Ba
B
Bz,
/83321

Ba
B
Bz,
/63321

Ba
B
Bz,
Bz

Ba
B
Bz,
Bz

B
B
Bz,
Bz

Interaction term

Approximate imputation

Rejection sampling

Full cohort NCC  Full cohort  Superset (A) Superset (B) Full cohort Superset (A) superset (B)
-0.003 0.064 0.186 0.130 0.130 0.015 0.159 0.009
0.016 0.053 0.239 0.084 0.083 0.022 0.035 0.025
0.003 0.021 -0.022 0.012 0.012 0.006 0.007 0.026
0.006 -0.01 -0.371 -0.154 -0.152 -0.018 0.050 -0.053
0.158 0.304 0.197 0.252 0.252 0.198 0.261 0.245
0.275 0.446 0.287 0.350 0.350 0.284 0.358 0.348
0.066 0.166 0.084 0.120 0.121 0.082 0.128 0.118
0.177 0.376 0.213 0.304 0.304 0.219 0.317 0.299
0.165 0.317 0.178 0.234 0.231 0.205 0.270 0.233
0.281 0.484 0.275 0.349 0.348 0.292 0.366 0.353
0.065 0.175 0.08 0.121 0.120 0.084 0.136 0.118
0.184 0.393 0.148 0.247 0.245 0.227 0.320 0.276

1 0.290 0.662 0.410 0.411 0.658 0.384 0.433
1 0.393 0.922 0.624 0.624 0.944 0.599 0.631
1 0.162 0.621 0.303 0.301 0.662 0.267 0.313
1 0.230 0.708 0.348 0.348 0.671 0.320 0.360
0.027 0.105 0.066 0.071 0.070 0.042 0.098 0.054
0.079 0.236 0.133 0.128 0.128 0.086 0.135 0.125
0.004 0.031 0.007 0.015 0.015 0.007 0.018 0.015
0.034 0.155 0.159 0.085 0.083 0.052 0.105 0.079
0.937 0.951 0.869 0.962 0.963 0.945 0.944 0.962
0.941 0.942 0.915 0.954 0.955 0.938 0.947 0.951
0.955 0.951 0.962 0.952 0.955 0.939 0.951 0.955
0.942 0.946 0.61 0.979 0.976 0.939 0.953 0.975
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5.4. Simulation results

Simulation results for case-cohort samples

In the standard setup (i) the results for case-cohort are similar to nested case-
control and shown in The maximum Monte Carlo standard error
is less than 0.01 (except for the coverage estimate in the interaction setting
(v) where it is 0.016). The traditional case-cohort IPW estimator slightly
underestimates the standard errors leading to some undercoverage. Both full
cohort imputation methods are approximately unbiased and have good coverage.
Approximate imputation gives slightly more bias and undercumulative baseline
of the effects. For approximate imputation the superset methods are again
very similar to each other. For 3, the model standard errors are higher than
for the classic IPW estimator while the empirical standard errors are lower,
closer to the full cohort imputation, leading to the relative efficiency being
estimated lower than the classical IPW estimator. For rejection sampling the
superset method A here shows only a very slight upward bias. Although the
empirical standard error is larger than the model error and there is a clear
undercoverage for 3,, but also the traditional case-cohort estimator suffers from
this here, and it is reduced with imputation. We remember that superset A
method for rejection sampling uses the Prentice estimator instead of the IPW
estimator. The superset B method for rejection sampling show little bias and
some overcoverage. All superset methods show less MSE than the classical IPW
estimator, except superset A for rejection sampling.

Increasing the superset with an additional 1000 controls give the results
of setup (ii) in The approximate imputation superset methods
are slightly more biased, but have more correct standard errors than the
standard setting. The MSE’s are slightly reduced with a larger superset, and
the coverage improved. With rejection sampling the superset methods also
show less biased and more correct standard errors except superset A for 3, for
whom the model standard error is increasedly underestimated. Since this is
present in the classical case-cohort estimates as well, which has asymptotically
unbiased variance estimates, this could be due to the finite sample size (a larger
sample size ngps will affect the superset A methods). In addition, the difference
between the superset methods for rejection sampling could be partially due
to the difference between the robust standard error estimates of Prentice’s
estimator and the standard error estimates of the IPW estimator.
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Table 5.7: Case-cohort (i): standard setup of 1000 simulations. Results rounded to 3 significant figures

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

Standard

Full cohort CCH

Full cohort

Approximate imputation

Superset (A)

Superset (B)

Full cohort

Rejection sampling

Superset (A) superset (B)

Ba 0.001 0.034
B, 0.000 0.011
B., 0.000 0.021

B 0.066 0.127
8., 0.145 0.264
B., 0.065 0.130

By 0.064 0.143
B., 0.148 0.288
B, 0.066 0.142

Ba 1 0.278
B, 1 0.304
Bz, 1 0.256
B 0.004 0.022

8., 0.022 0.083
B., 0.004 0.021

Ba 0.964 0.903
Ba, 0.948 0.919
B., 0.947 0.915

-0.033
-0.038
-0.024

0.108
0.171
0.078

0.101
0.166
0.075

0.399
0.726
0.701

0.011
0.029
0.006

0.934
0.945
0.948

-0.007
-0.019
-0.011

0.137
0.219
0.109

0.108
0.200
0.098

0.241
0.441
0.360

0.012
0.040
0.010

0.982
0.962
0.967

-0.008
-0.019
-0.011

0.137
0.220
0.109

0.107
0.198
0.097

0.240
0.440
0.360

0.011
0.040
0.010

0.986
0.966
0.971

-0.002
0.000
0.000

0.100
0.171
0.077

0.098
0.173
0.077

0.457
0.729
0.716

0.010
0.030
0.006

0.941
0.946
0.955

0.023
0.008
0.009

0.143
0.233
0.117

0.165
0.232
0.118

0.223
0.395
0.316

0.028
0.054
0.014

0.912
0.963
0.958

-0.010
0.023
0.019

0.122
0.216
0.104

0.103
0.204
0.098

0.299
0.455
0.393

0.011
0.042
0.010

0.972
0.961
0.959
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Table 5.8: Case-cohort (ii): Standard with larger superset of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

Standard subcohort size of 1750

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
Bz
Bz,

Ba
Bz
Bz,
Ba
Bz
Bz,

Approximate imputation

Rejection sampling

Full cohort CCH  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.001 0.034 -0.034 -0.024 -0.025 -0.002 0.018 -0.007
0.000 0.011 -0.038 -0.031 -0.032 0.001 0.006 0.018
0.000 0.021 -0.025 -0.018 -0.017 0.000 0.006 0.014
0.066 0.127 0.108 0.121 0.120 0.099 0.122 0.108
0.145 0.264 0.170 0.189 0.190 0.172 0.200 0.189
0.065 0.130 0.078 0.092 0.092 0.078 0.096 0.088
0.064 0.143 0.101 0.101 0.101 0.097 0.155 0.096
0.148 0.288 0.168 0.179 0.178 0.172 0.205 0.184
0.066 0.142 0.074 0.084 0.083 0.078 0.096 0.085

1 0.278 0.400 0.309 0.314 0.461 0.307 0.385
1 0.304 0.732 0.591 0.589 0.720 0.535 0.592
1 0.256 0.708 0.510 0.511 0.713 0.469 0.547
0.004 0.022 0.011 0.011 0.011 0.010 0.024 0.009
0.022 0.083 0.030 0.033 0.033 0.030 0.042 0.034
0.004 0.021 0.006 0.007 0.007 0.006 0.009 0.008
0.964 0.903 0.944 0.973 0.976 0.946 0.869 0.966
0.948 0.919 0.942 0.959 0.964 0.945 0.942 0.955
0.947 0.915 0.957 0.957 0.965 0.949 0.953 0.957
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5. Imputing only a subset of the full cohort and simulation studies

show the results for situation (iii). Without correlation between
X and the other covariates the classical case-cohort IPW estimator clearly
underestimates the standard error of .. For imputation of the full cohort or
the superset, with approximate imputation methods A and B and rejection
sampling method B, the results are similar to the standard situation. Superset
method A with rejection sampling here markedly underestimates the association
of X on the relative risk, and overestimates the standard error as before.
Although the MSE of the fully observed covariates are, as the other methods,
lower than without imputation.

Imputing using an auxilliary variable give gains in efficiency for 3., and also
for 5., and 3., . The confidence interval of the superset methods
are less conservative and closer to nominal. Compared with the increased
subcohort size (ii), the MSE estimates are smaller with an increased superset
than with an auxiliary variable, also for 3.

With an interaction term we see from [Table 5.11] the classical estimator
slightly overestimates (3, and f3,,, and slightly underestimates f3,.,. Approx-
imate imputation clearly underestimates the interaction effect with a bias of
—0.392 when imputing the full cohort and —0.273 and —0.276 when imputing
the supersets. The estimates for the individual effects that are part of the inter-
action are clearly overestimated. The bias is less for the approximate superset
methods than approximate full cohort imputation, but are still non-negligible.
Imputing the superset with rejection sampling give very similar results between
method A and B. Method B has more bias for the interaction than method A.
The MSE is slightly lower for method B for all effects than method A.
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Table 5.9: Case-cohort (iii): X not correlated with Z; and Z5 of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
Bz
Bz,

Ba
Bz
Bz,
Ba
Bz
Bz,

No correlation

Approximate imputation

Rejection sampling

Full cohort CCH  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.005 0.044 -0.024 -0.001 -0.002 0.005 -0.202 0.002
0.009 0.035 -0.026 -0.003 -0.004 0.008 -0.062 0.029
0.000 0.018 -0.017 -0.008 -0.009 0.001 -0.035 0.010
0.065 0.125 0.107 0.134 0.133 0.100 0.140 0.120
0.136 0.250 0.164 0.210 0.210 0.165 0.208 0.205
0.062 0.122 0.075 0.104 0.104 0.075 0.106 0.099
0.068 0.147 0.106 0.113 0.113 0.105 0.114 0.108
0.139 0.272 0.159 0.188 0.189 0.163 0.185 0.194
0.064 0.140 0.072 0.091 0.090 0.075 0.096 0.094

1 0.277 0.395 0.247 0.250 0.439 0.234 0.300
1 0.299 0.706 0.430 0.430 0.697 0.441 0.448
1 0.267 0.696 0.365 0.364 0.698 0.355 0.399
0.005 0.024 0.012 0.013 0.013 0.011 0.054 0.012
0.019 0.075 0.026 0.035 0.036 0.027 0.038 0.038
0.004 0.020 0.005 0.008 0.008 0.006 0.010 0.009
0.933 0.868 0.939 0.972 0.972 0.931 0.662 0.969
0.954 0.919 0.948 0.967 0.969 0.958 0.956 0.966
0.945 0.902 0.954 0.972 0.969 0.952 0.953 0.963
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Table 5.10: Case-cohort (iv): Auxiliary variable of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

Auxiliary variable imputation

Ba
Bz
Bz,

Ba
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

B
Bz
Bz,

Ba
B
Bz,

Approximate imputation

Rejection sampling

Full cohort CCH  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
0.001 0.034 -0.026 -0.005 -0.006 -0.001 0.021 0.010
0.000 0.011 -0.020 -0.008 -0.007 0.002 0.004 0.015
0.000 0.021 -0.013 -0.003 -0.003 0.000 0.006 0.010
0.066 0.127 0.090 0.121 0.121 0.088 0.132 0.114
0.145 0.264 0.157 0.206 0.206 0.157 0.217 0.204
0.065 0.130 0.071 0.101 0.102 0.071 0.110 0.099
0.064 0.143 0.088 0.103 0.102 0.089 0.145 0.102
0.148 0.288 0.154 0.197 0.198 0.157 0.218 0.200
0.066 0.142 0.071 0.097 0.097 0.072 0.113 0.097

1 0.278 0.548 0.306 0.305 0.576 0.259 0.341
1 0.304 0.854 0.497 0.496 0.853 0.451 0.505
1 0.256 0.836 0.416 0.415 0.842 0.360 0.433
0.004 0.022 0.008 0.011 0.011 0.008 0.022 0.010
0.022 0.083 0.024 0.039 0.039 0.025 0.048 0.040
0.004 0.021 0.005 0.009 0.009 0.005 0.013 0.009
0.964 0.903 0.947 0.971 0.970 0.941 0.930 0.971
0.948 0.919 0.950 0.955 0.954 0.944 0.954 0.953
0.947 0.915 0.936 0.952 0.955 0.945 0.936 0.952
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Table 5.11: Case-cohort (v): Interaction term of 1000 simulations.

Bias

ModelSE

EmpSE

RelEff

MSE

Cov

B
Bz
Bz
ﬁa:zl

B
Bz
Bz,
Ba;zl

Ba
Bz
Bz,
Ba;zl

Ba
Bz
Bz,
6wz1

Ba
Bz
Bz,
szl

Ba
Bz
Bz,
szl

Interaction term

Approximate imputation

Rejection sampling

Full cohort CCH  Full cohort Superset (A) Superset (B) Full cohort Superset (A) superset (B)
-0.003 0.076 0.218 0.178 0.176 0.009 0.066 0.045
0.016 0.054 0.238 0.174 0.175 0.022 0.033 0.046
0.003 0.017 -0.036 -0.018 -0.017 0.003 0.008 0.034
0.006 -0.039 -0.392 -0.273 -0.276 -0.010 -0.021 -0.074
0.158 0.244 0.198 0.237 0.238 0.202 0.270 0.240
0.275 0.374 0.286 0.348 0.348 0.283 0.370 0.338
0.066 0.135 0.086 0.129 0.129 0.083 0.138 0.116
0.177 0.281 0.214 0.297 0.297 0.223 0.325 0.281
0.165 0.296 0.181 0.214 0.215 0.207 0.287 0.238
0.281 0.404 0.277 0.315 0.319 0.293 0.376 0.340
0.065 0.153 0.079 0.101 0.102 0.083 0.146 0.103
0.184 0.334 0.146 0.201 0.205 0.230 0.348 0.265

1 0.442 0.657 0.467 0.466 0.636 0.401 0.456
1 0.547 0.927 0.632 0.632 0.944 0.577 0.668
1 0.249 0.604 0.270 0.271 0.638 0.235 0.325
1 0.414 0.702 0.371 0.368 0.651 0.324 0.410
0.027 0.093 0.080 0.077 0.077 0.043 0.087 0.059
0.079 0.166 0.133 0.13 0.132 0.086 0.142 0.117
0.004 0.024 0.007 0.011 0.011 0.007 0.021 0.012
0.034 0.113 0.175 0.115 0.118 0.053 0.121 0.076
0.937 0.877 0.831 0.929 0.926 0.939 0.941 0.946
0.941 0.935 0.913 0.959 0.960 0.937 0.953 0.951
0.955 0.892 0.949 0.986 0.980 0.952 0.944 0.954
0.942 0.892 0.562 0.947 0.940 0.934 0.945 0.959
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5. Imputing only a subset of the full cohort and simulation studies

Overall, multiple imputation when the fully observed sampled cohort is a case-
cohort sample give results that resemble those from when the sampled cohort is
a nested case-control sample. Full cohort imputation is the most comparable,
since the superset methods use their respective sampled cohort estimators. In
the standard situation MSE for 3., 8., and [3,, using approximate imputation
of the full cohort from a nested case-control sample are 0.012, 0.028, 0.006. For
case-cohort the MSE estimates are 0.011, 0.029 and 0.006. For both sampled
cohorts the effects are a bit underestimated with approximate imputation. The
standard errors are slightly overestimated for nested case-control and slightly
more overestimated for case-cohort. For imputation using rejection sampling
for the full cohort, the MSE’s are 0.010, 0.029, 0.006 for nested case-control
and 0.010, 0.030, 0.006 for case-cohort samples. There is a slight overcoverage
for 8, for nested-case-control and a slight undercoverage for case-cohort. In
the standard case, imputing the full cohort evens out any differences between
the sampled cohorts and the imputation results are very similar. Full cohort
imputation give similar results also when there is no correlation and when an
auxiliary variable is being used. With an interaction the MSE estimates are
also similar, being 0.042,0.086, 0.007, 0.052 for nested case-control and 0.043,
0.086, 0.007, 0.053 for case-cohort, both using rejection sampling. The results in
the different settings are very similar for both sampling designs and it does not
seem to matter whether the controls are matched on time or sampled randomly
in the subcohort when the full cohort is imputed.

Comparing the superset methods we see for approximate imputation in the
standard case (i) that for both nested case-control supersets and case-cohort
superset the estimates are approximately unbiased. The standard errors for
nested case-control are smaller and more correct than for case-cohort. Therefore,
the relative efficiencies are higher and the confidence interval closer to nominal
for nested case-control superset than the case-cohort superset. The same holds
for rejection sampling superset B. For the superset A method using rejection
sampling the nested case-control sample give a bias in the estimate for 5, of
0.162 while the case-cohort superset A estimates are close to unbiased, but
have some undercoverage for §,. For the situation where the superset consists
of 7 controls or a subcohort of 1750 individuals the bias and undercoverage is
further increased.

With no correlation the superset A method using rejection sampling
overestimates the effect of 3, for the nested case-control superset, while it for
the case-cohort superset clearly underestimates the effect. While for imputation
with an auxiliary variable the nested case-control estimate is less biased and the
case-cohort estimate close to unbiased. It is unclear what the explanation for
the biased estimates of superset method A with rejection sampling is. Perhaps
in certain settings, finite sample bias in the sampled cohort estimators is
propagated and increased through the rejection sampling algorithm since they
are used in the both the cumulative baseline hazard and the substantive model
compatible acceptance probability. There could also be an issue with estimating
the population cumulative baseline hazard using the Breslow type estimators
(5.1) and . In the nested case-control design, the superset A method gave
biased estimates for 5, in all situations, while in the case-cohort design the bias
was greatest in the no correlation setting, where the imputations were made
mostly based on the time and censoring information.

Lastly, for imputation with an interaction using rejection sampling the
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5.4. Simulation results

MSE estimates are 0.112, 0.134, 0.018, 0.106 for method A nested case-control
superset and 0.087, 0.142, 0.021, 0.121 for the case-cohort superset. For both
sampling methods the effects for X and Z; are overestimated, and this is most
clear for the nested case-control sampling. For method B the MSE estimates for
the nested case-control superset are 0.054, 0.119, 0.015, 0.079 and for the case-
cohort superset they are 0.059, 0.117, 0.012, 0.076. Both superset B results using
rejection sampling show a little undercumulative baseline of the interaction effect
with a bias of —0.07. This can be a sign of uncongeniality for superset method
B, but needs further investigation. Despite this sign of weakness, superset
method B for rejection sampling seems to show the best performance, of the
alternatives to full cohort imputation, overall in the simulation experiments.
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CHAPTER 6

Discussion and further work

In this thesis multiple imputation for sampled cohort data with Cox regression
has been investigated. More specifically, we have looked at how multiple
imputation for a only subset of the cohort can be performed. Two methods
for multiple imputation in a superset of the nested case-control or case-cohort
sample, superset method A and superset method B, have been considered.
The results of carried out simulation experiments show improved performance
compared to the classical methods of nested case-control and case-cohort
sampling. The superset methods (except method A using rejection sampling
for nested case-control supersets) show very little bias in the standard setting
and with a clear gain in efficiency, especially for the variables fully observed
in the superset/cohort. Compared to imputation of the full cohort, there is
slightly less bias with approximate superset imputation and slightly more bias
with superset imputation using rejection sampling (method B), but the main
difference when only the superset is imputed is loss in efficiency.

When the superset sizes are increased, there is a further clear gain in efficiency.
For superset method B with rejection sampling the small bias in the setting with
smallest superset size is further decreased. For the approximate imputation
methods the tendency seen in the full cohort imputation to underestimate larger
effects is slightly increased with increased superset size. In the setting with
an auxiliary variable (surrogate of X) the performance is also improved when
only imputing the superset, although less than the improvement when imputing
the entire cohort. All superset methods (except method A with rejection
sampling) are very close to unbiased and are more efficient when imputing with
the auxiliary variable. Also when imputing with no correlation between the
partially observed variable and the other covariates there is gain in efficiency with
the superset methods compared to the classical sampled cohort analysis. For the
estimated effect of X this is mainly with the nested case-control supersets. For
the simulation experiment with an interaction term, approximate imputation
for the superset and approximate imputation for the full cohort are both clearly
biased. As seen in other studies, approximate imputation underestimates the
interaction effect. In this setting rejection sampling imputation (method B)
of only the superset give some downward bias compared to imputing the full
cohort for the interaction effect, but overall less bias and lower MSE’s than the
classical sampled cohort estimators.

In all, imputing only a superset of the sampled cohort (except with method
A using rejection sampling) give good performance with little absolute bias
and clear gains in efficiency compared to the classical nested case-control
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6. Discussion and further work

and case-cohort methods in simple settings. In the more advanced setting
with an interaction term the approximate imputation superset methods show
non-negligible bias (as do full cohort approximate imputation), and rejection
sampling superset method B show some bias compared to imputing the entire
cohort with rejection sampling.

There are a number of things that would have been of interest to explore
further, but for which there was not enough time in work on this thesis. First
of all the systematic bias of superset method A using rejection sampling was
somewhat unexpected since this method arguably has a stronger theoretical
basis than the more naive superset B method. Some modifications to method
A are mentioned in Keogh, Seaman, et al. . This and possibly other
modifications would be of interest investigate. Furthermore, it requires more
study to determine if the small downward bias of superset method B using
rejection sampling for the interaction term is a result of uncongeniality between
the imputation model (implied by the Cox regression estimates in the superset)
and the sampled cohort analysis model.

To be fair, the superset imputation results should have been compared to
nested case-control and case-cohort studies that also utilise more of the cohort
information. Stratified sampling is one way that it is natural to investigate
further, and how multiple imputation perform in comparison with stratified
sampled cohort studies. Because the imputed supersets are treated as if they
were sampled cohorts (of a larger size) when fitting the analysis models, it
should be possible to modify these methods using developed work from stratified
sampling. Then multiple imputation could possibly also be improved with
stratified sampling. One could have considered stratified sampling for both the
sampled cohort and the superset, or simple random sampling for the sampled
cohort and stratified sampling for the superset.

Another limitation of this thesis is that only one cohort size was investigated.
Since superset imputation is a solution to using multiple imputation when it is
not possible to multiply impute for the entire cohort it should be investigated for
larger cohort sizes, say for a couple of million individuals. Computationally the
superset methods are very scalable to larger cohort sizes. Especially superset
method B can easily be applied on very large cohorts as the computational
demand and the amount of individuals for which covariate information needs
to collected is decided by the number of controls or the subcohort size of the
superset. Superset method A is also believed to be scalable as computing the
estimates of the cumulative hazard or baseline cumulative hazard is in generally
much faster than the iterative imputation algorithms. Superset method A uses
more of the full cohort information and it is likely that it will be more affected
performance-wise with larger cohorts than superset method B.

In addition, only one sampled cohort size was consider, about 10% of the
cohort, and only two superset sizes, about 20% and 30% of the full cohort.
The results showed that increasing the superset gave better performance, but
to get a sense of how performance changes with different constellations of
sampled cohort, superset and cohort sizes more simulation experiments are
needed. Although, results from studies on the behaviour of classical nested
case-control and case-cohort estimators under different sampled cohort and full
cohort sizes could likely give some guidance for the superset methods. The
methods are most relevant in the situation with rare events in large cohort, but
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the sensitivity of the performance with respect to incidence rate could also be
explored.

In the design of simulations studies, what parts of the parameter space
and what settings to explore is not obvious. The simulations in this thesis
have been guided by previous research on related methods and from the
running FLC example considered throughout. Previous studies of multiple
imputation in the full cohort and alternative methods like the likelihood and
IPW approaches have shown performance varying with e.g. weak and strong
effect sizes. Here two moderate/strong and one weaker effect size were only
considered in the same data-generating mechanism. More complex settings,
e.g. with more variables, and settings with closer resemblance to real studies
would be of interest to consider. An advantage of multiple imputation is the
natural incorporated handling of missing values (by chance, not by design)
that is common in applications, but missingness by chance in addition to the
missingness by design was not investigated here. It is possible that superset
method A would perform better in more complex settings and with missingness
arising by chance (but MAR). Another, aspect is model misspecification, e.g. of
the proportionality of Cox regression model or of imputation model. Further, it
remains to get some insight into what situations the superset method would
be preferable to existing, comparable methods. Still the superset method
did overall show better performance compared to the classic sampled cohort
methods. Ultimately to be used in applications, further study of the operating
characteristics of the superset imputation methods are needed. Simulation
settings for investigating the methods with regard to application should then
be tailored to the problem at hand. With this in mind, and with respect to
reproducibility, the code for the simulation study carried out will be available
at https://github.com/a-njos/simulations_master_thesis.

In summary, this thesis, though much based on the work Keogh, Seaman, et
al. , presents and investigates an original way of using multiple imputation
for Cox regression with sampled cohorts where imputation is only done for part
of the cohort. Much research has been done on nested case-control and case-
cohort sampling designs (Thomas , Prentice , Langholz and Borgan
, Borgan, Langholz, et al. (2000), Borgan and Samuelsen and the
superset design attempts to make use of this work. Two superset methods
have been considered for nested case-control and for case-cohort supersets, and
have been compared to full cohort analysis, full cohort imputation and classical
sampled cohort methods. Based on the simulation experiments performed,
multiple imputation of a superset of the sampled cohort seems like a promising
alternative to existing methods for analysing time to occurrences of rare events
in large cohorts.
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APPENDIX A

Histograms of simulation
estimates

This appendix includes histograms of the estimates for 5, from the standard
setting (i-ii), and the estimates of 5, and (.., from the interaction setting(v).
The scale in the histograms is the same for standard setting (i) and (ii) for both
designs. In the interaction setting (v) the scale for 3, are the same for both
designs and the scale for ., are the same for both designs.
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A. Histograms of simulation estimates
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A. Histograms of simulation estimates
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A. Histograms of simulation estimates
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A. Histograms of simulation estimates

full cohort cch
o o
o o
z 2 &
(%2} (%2}
j j
& ©° & ©°
— —
] ]
°© I T T T T T 1 °© I T T T T T 1
-05 00 05 1.0 15 20 25 -05 00 05 1.0 15 20 25
B B
approximate full cohort rejection sampling full cohort
o o
o o
o o
2 o 2 o
%) %)
c c
& ° & °
i i
] a ]
© [ T T T T T 1 © [ T T T T T 1
-05 00 05 1.0 15 20 25 -05 00 05 1.0 15 20 25
B B
approximate superset A rejection sampling superset A
o o
o o
2 & 2 <
(%2} (%2}
c c
& ©° & ©°
— —
] ]
°© I T T T T T 1 °© I T T T T T 1
-05 00 05 1.0 15 20 25 -05 00 05 1.0 15 20 25
B B
approximate superset B rejection sampling superset B
o o
o o
2 < z
2 2
c c
& ° & °
i i
] ]
© [ T T T T T 1 © [ T T T T T 1
-05 00 05 1.0 15 20 25 -05 00 05 1.0 15 20 25
B B
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APPENDIX B

R code

This appendix includes selected R code for the simulations experiments. The
first script generates and samples nested case-control and case-cohort samples
and supersets. The second script analyses the nested case-control data and
the third script analyses the case-cohort data in the standard setting. The
simulations have been run in R version 3.6.0 (2019-04-26) — “Planting of a Tree”
(Copyright (C) 2019 The R Foundation for Statistical Computing), on platform:
x86_ 64-apple-darwinl5.6.0 (64-bit), and with version 2.44-1.1 of the survival
package, version 1.40 of the smcfcs, version 2.4 of the mitools and version
3.6.0 of mice.

sim_setup = "standard" # "standard","aux","int","nocorr"
sim_idx =1

filepath = paste@("simulations/",sim_setup[sim_idx],"/")

nsim = 1000

F o memmmc- e cccccacccaaoacacooo

# Set parameter values, etc

n = 5000 # cohort size

close.time=15 # Maximum follow-up time

beta.x=1 # log hazard ratio for X

beta.zl=1 # log hazard ratio for binary Z1

beta.z2=0.5 # log hazard ratio for continous Z2

beta_int = ifelse(sim_setup[sim_idx]=="int",0.5,0) # interaction X and Z1

beta_x_drop =0 # log hazard ratio for X
beta_z1l drop =0 # log hazard ratio for Z1
beta_z2_drop =0 # log hazard ratio for Z2

p-z1 = 0.5 # Bernoulli probability for Z1

mu_z2 = 0 # mean for normal Z2
ax =0 # constant for X

b_x=0.25 # influence of Z1 on X
c_x=0.25 # influence of Z2 on X

if(sim_setup[sim_idx]=="nocorr"){
b_x=0
c_x=0

}
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eta_v = 0.8 # Gaussian standard deviation for auxiliary
lambda=NA # Weibull baseline scale for event of interest
if(sim_setup[sim_idx]=="standard"){

lambda=0.00000040
}else if(sim_setup[sim_idx]=="int"){

lambda=0.00000025
}else if(sim_setup[sim_idx]=="nocorr"){

lambda=0.00000055
}
kappa = 4 # Weibull baseline shape
lambda_drop = 0.00002 # Weibull baseline scale dropout time
kappa_drop=4 # Weibull baseline shape for droput time

# starting data generating process
set.seed(123)
for(j in seq(1l,nsim)){
# Generate id numbers
id=seq(1,n)

# Generate covariates
zl=rbinom(n,1,p_z1)
z2=rnorm(n,mu_z2,1)
x=rnorm(n,a_x +b_x*zl+c_x*z2,1)
vV = X + rnorm(n,0,eta_v)

# Generate potential event times
u=runif(n,0,1)
t.event=(-log(u)*(1/lambda) *
exp(-(beta.x*x+beta.zl*xz1l+
beta.z2xz2+x*z1lxbeta_int)) )"~ (1/kappa)

# Generate potential drop-out time
u=runif(n,0,1)
t.drop=(-log(u)*(1/lambda_drop)*
exp(-(beta_x_drop*x+beta_zl drop*zl+
beta_z2_drop*z2)))~(1/kappa_drop)

# Generate time for event or drop out
t=pmin(t.event,t.drop,close.time)
cause=1lx(t==t.event)+2*(t==t.drop)+3x*(t==close.time)
# 1: event, 2: drop out, 3: administrative censoring
d=ifelse(cause==1,1,0)

# the full-cohort data with no missingness
cohort=data.frame(id,t,d,x,z1,z2,v, cause)
saveRDS (cohort, file=pasteO(filepath, "cohort",j,".rds"))

# Generate nested-case-control superset sample
n.controls.super = 3 # number of controls per case
n.controls.super.ext = 7
n.controls.ncc = 1
ncc.super.ext = NULL
ncc.super=NULL
ncc=NULL
no.sample=0
for (i in which(cohort$d==1))
{
# Select control(s) for nested case-control
possible.controls=which(cohort$t>=cohort$t[i])
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if (length(possible.controls)>=n.controls.super.ext){
controls.super.ext=sample(possible.controls,n.controls.super.ext)
controls.super=sample(controls.super.ext,n.controls.super)
controls.ncc=sample(controls.super,n.controls.ncc)
ncc.super.ext=rbind(ncc.super.ext,cohort[i,])
ncc.super.ext=rbind(ncc.super.ext,cohort[controls.super.ext,])
ncc.super=rbind(ncc.super,cohort[i,])
ncc.super=rbind(ncc.super,cohort[controls.super,])
ncc=rbind(ncc,cohort[i,])
ncc=rbind(ncc, cohort[controls.ncc,])
no.sample=no.sample+1}

ncc.super.ext$setno=rep(l:no.sample,each=n.controls.super.ext+1)
ncc.super.ext$case=rep(c(1l,rep(0,n.controls.super.ext)),no.sample)
ncc.super$setno=rep(l:no.sample,each=n.controls.super+1l)
ncc.super$case=rep(c(1l,rep(0,n.controls.super)),no.sample)
ncc$setno=rep(l:no.sample,each=n.controls.ncc+1)
ncc$case=rep(c(1l,rep(0,n.controls.ncc)),no.sample)

# generate indicator of being in the nested case-control sample
cohort.ncc = cohort
cohort.ncc$in.ncc <- cohort.ncc$id%in%sncc$id

cohort.super = ncc.super
cohort.super$in.ncc<-cohort.super$id%insncc$id

cohort.super.ext = ncc.super.ext
cohort.super.ext$in.ncc<-cohort.super.ext$id%sin%sncc$id

# make x missing in those outside the nested case-control sample
cohort.ncc$x<-ifelse(cohort.ncc$id%in%sncc$id, cohort.ncc$x,NA)
cohort.super$x<-ifelse(cohort.super$id%in%sncc$id, cohort.super$x,NA)
cohort.super.ext$x<-ifelse(cohort.super.ext$id%in%ncc$id,
cohort.super.ext$x,NA)

# save NCC data sets
# NCC sample
saveRDS(ncc, file=paste@(filepath, "ncc",j,".rds"))

# NCC within full cohort
saveRDS(cohort.ncc, file=paste@(filepath, "cohort.ncc",j,".rds"))

# NCC within superset ncc
saveRDS(cohort.super, file=pasteO(filepath, "cohort.super.ncc",j,".rds"))

# NCC within superset extended ncc
saveRDS (cohort.super.ext,
file=paste0O(filepath, "cohort.super.ext.ncc",j,".rds"))

2
# GENERATE CASE-COHORT DATA
2
cohort.caco=cohort

H oo e e
# Generate subcohort

n.subco=250

cohort.caco$subco<-c(rep(1l,n.subco),rep(0,n-n.subco))

n.subco.super = 750

cohort.caco$subco.super <- c(rep(1l,n.subco.super),rep(0,n-n.subco.super))

87



B. R code

n.subco.super.ext = 1750
cohort.caco$subco.super.ext <- c(rep(1l,n.subco.super.ext),
rep(0,n-n.subco.super.ext))

#make x1 missing in those outside the case-cohort sample
cohort.caco$x<-ifelse(cohort.caco$subco==1|cohort.caco$d==1,
cohort.caco$x,NA)

# Generate data-set which is just the case-cohort substudy
caco=cohort.caco[cohort.caco$subco==1]|cohort.caco$d==1, ]

# Generate data-set which is the case-cohort supersets
cohort.super.caco=cohort.caco[cohort.caco$subco.super==1|
cohort.caco$d==1, ]

cohort.super.ext.caco=cohort.caco[cohort.caco$subco.super.ext==1|
cohort.caco$d==1, ]

cohort.super.caco$entertime=ifelse(cohort.super.caco$d==1 &
cohort.super.caco$subco.super==0,
cohort.super.caco$t-0.001,0)

cohort.super.ext.caco$entertime=ifelse(cohort.super.ext.caco$d==1&

cohort.super.ext.caco$subco.super.ext==0,
cohort.super.ext.caco$t-0.001,0)

# save case-cohort data sets
saveRDS(caco, file=paste@(filepath,"caco",j,".rds"))
saveRDS(cohort.caco, file=pasteO(filepath, "cohort.caco",j,".rds"))

saveRDS (cohort.super.caco,
file=pasteO(filepath, "cohort.super.caco",j,".rds"))

saveRDS (cohort.super.ext.caco,
file=pasteO(filepath, "cohort.super.ext.caco",j,".rds"))
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# Analyse ncc data

# Code based on https://github.com/ruthkeogh/MI-CC by Ruth H.Keogh
# packages --------------o-ooo--

library(survival)

library(mice)

library(smcfcs)

library(mitools)

# setup ------------oo

setup= "standard"
filepath=pasteO("simulations/",setup,"/")

nimp= 10

n.it = 100

npara=3

nsim= 1000

nmethods = 8

res_mat = matrix(NA,nrow=nsim,ncol=2*xnparaxnmethods)

# standard formulas
formula_full = "Surv(t,d)~x+z1+z2"

formula_ncc = "Surv(t,case)~x+z1+z2+strata(setno)"
sm_formula_full = "Surv(t,d)~x+z1+z2"
sm_formula_ncc = "Surv(t,case)~x+z1+z2+strata(setno)"

predictors_aprx = c("z1","z2","d","chaz")
predictors_rs = c("z1","z2")

# Run analyses

set.seed(1001)
for(j in seq(1l,nsim)){

# cox analysis using full cohort data

# # load data set

cohort = readRDS(file=paste0(filepath,"cohort",j,".rds"))
model=coxph(as.formula(formula_full),bdata=cohort)
res_full = c(model$coefficients,sqrt(diag(model$var)))

#

# traditional analysis using nested case-control sample
#:

# load data set
ncc = readRDS(file=paste@(filepath,"ncc",j,".rds"))

# fit the model
model = coxph(as.formula(formula_ncc),data=ncc)
res_ncc = c(model$coefficients,sqrt(diag(model$var)))

#.

# MI-approx: full-cohort approach

cohort.ncc= readRDS(file=paste0d(filepath,"cohort.ncc",j,".rds"))

# Compute Nelson-Aalen estimate of the cumulative hazard
cohort.ncc$chaz=nelsonaalen(cohort.ncc,t,d)

# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames (pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names(cohort.ncc)
pred.mat["x",predictors_aprx]=1
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# method of imputation for x1
method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")1="norm"

# perform the imputation

imp<-mice(cohort.ncc, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
maxit = n.it, diagnostics = FALSE, printFlag = F)

# Fit the analysis model in each imputed data set
models<-with(imp, coxph(as.formula(formula_full)))

# Combine estimates across the imputed data sets using Rubin’s Rules
summary_aprx = summary(pool(models))
res_aprx = c(summary_aprx[,"estimate"],summary_aprx[,"std.error"])

##:

#MI-SMC: full-cohort approach

cohort.ncc= readRDS(file=pasteO(filepath, "cohort.ncc",j,".rds"))

# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames(pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names(cohort.ncc)

pred.mat["x",predictors_rs]=1

# method of imputation for x1
method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")]="norm"

# perform the imputation

imp <- smcfcs(cohort.ncc, smtype="coxph", smformula=sm_formula_full,
method=method.vec,predictorMatrix=pred.mat,m = nimp,
numit =n.it, rjlimit = 10000,noisy=F)

# obtain estimates from imputed data sets and combine using Rubin’s Rules
impobj <- imputationList(imp$impDatasets)

models <- with(impobj, coxph(as.formula(formula_full)))

coef = MIcombine(models)$coefficients

se = sqrt(diag(MIcombine(models)$variance))

res_rej = c(coef,se)

#:

#MI-approx: superset A ncc
#:

cohort.ncc= readRDS(file=pasteO(filepath, "cohort.super.ncc",j,".rds"))

# Nelson-Aalen estimate of the cumulative hazard for full cohort
cohort$chaz=nelsonaalen(cohort,t,d)

#add cumulative hazard into superset ncc data
cohort.merge<-cohort[,c("id","chaz")]
cohort.ncc<-merge(cohort.ncc,cohort.merge,by.x="id")

# predictor matrix for the imputation models for x1 (not incl. outcome)
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames (pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names (cohort.ncc)

pred.mat["x",predictors_aprx]=1

# method of imputation for x1

90



method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")]="norm"

# perform the imputation

imp<-mice(cohort.ncc, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
maxit = n.it, diagnostics = FALSE, printFlag = F)

# Fit the analysis model in each imputed data set
models<-with(imp, coxph(as.formula(formula_ncc)))

# Combine estimates across the imputed data sets using Rubin’s Rules
summary_aprx = summary(pool(models))
res_aprx_sup = c(summary_aprx[,"estimate"],summary_aprx[,"std.error"])

#:

# MI-approx: (naive) Superset B ncc
#:

cohort.ncc= readRDS(file=pasteO(filepath,"cohort.super.ncc",j,".rds"))

# Nelson-Aalen estimate of the cumulative hazard for the superset ncc
cohort.ncc$chaz = nelsonaalen(cohort.ncc,t,d)

# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames(pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names (cohort.ncc)
pred.mat["x",predictors_aprx]=1

#method of imputation for x1
method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")1="norm"

#perform the imputation

imp<-mice(cohort.ncc, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
maxit = n.it, diagnostics = FALSE, printFlag = F)

# Fit the analysis model in each imputed data set
models<-with(imp, coxph(as.formula(formula_ncc)))

# Combine estimates across the imputed data sets using Rubin’s Rules
summary_aprx = summary(pool(models))

res_aprx_sup_nai = c(summary_aprx[,"estimate"],summary_aprx[,"std.error"])

#:

#MI-SMC: superset A ncc

#

cohort.ncc= readRDS(file=pasteO(filepath, "cohort.super.ncc",j,".rds"))

# Compute number at risk at each event time using the full cohort data
nrisk.fit<-survfit(Surv(t,d)~1,data=cohort)
ord.t.dl<-order(cohort$t[cohort$d==1])

# number at risk at each unique event time
numrisk<-summary(nrisk.fit,censored=F)$n.risk

# add numbers at risk time into the nested case-control data set
cohort.ncc$numrisk<-NA
cohort.ncc$numrisk[cohort.ncc$case==1][ord.t.d1]<-numrisk

# assign number at to every individual in each set
cohort.ncc$numrisk<-ave(cohort.ncc$numrisk, cohort.ncc$setno,
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FUN = function(x) sum(x, na.rm=T))

#predictor matrix which determines the imputation models for x
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames (pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names (cohort.ncc)

pred.mat["x",predictors_rs]=1

#method of imputation for x1
method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")1="norm"

#perform the imputation

imp<-smcfcs.nestedcc(cohort.ncc,smformula=sm_formula_ncc,
set="setno",event="d",nrisk="numrisk",
method=method.vec, predictorMatrix=pred.mat,
m=nimp,numit=n.it, rjlimit=1000,n0isy=F)

# obtain estimates and combine using Rubin’s Rules
impobj <- imputationList(imp$impDatasets)

models <- with(impobj, coxph(as.formula(formula_ncc)))
coef = MIcombine(models)$coefficients

se = sqrt(diag(MIcombine(models)$variance))
res_rej_sup = c(coef,se)

# MI-SMC: (NAIVE) superset B ncc
#:
cohort.ncc= readRDS(file=pasteO(filepath, "cohort.super.ncc",j,".rds"))
# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.ncc)[2],ncol=dim(cohort.ncc)[2])
colnames (pred.mat)=names(cohort.ncc)

rownames (pred.mat)=names(cohort.ncc)

pred.mat["x",predictors_rs]=1

# method of imputation for x1
method.vec=rep("",dim(cohort.ncc)[2])
method.vec[which(colnames(cohort.ncc)=="x")]="norm"

# perform the imputation

imp <- smcfcs(cohort.ncc, smtype="coxph", smformula=sm_formula_full,
method=method.vec,predictorMatrix=pred.mat,m =nimp,
numit = n.it, rjlimit = 10000,noisy=F)

# obtain estimates from imputed data sets and combine using Rubin’s Rules
impobj <- imputationList(imp$impDatasets)

models <- with(impobj, coxph(as.formula(formula_ncc)))

coef = MIcombine(models)$coefficients

se = sqrt(diag(MIcombine(models)$variance))

res_rej_sup_nai = c(coef,se)

# Add results from simulation j
res_mat[j,] = c(res_full,res_ncc,res_aprx,res_aprx_sup,res_aprx_sup_nai,
res_rej,res_rej_sup,res_rej_sup_nai)

# Performance measurements

#.

true_parameters = matrix(c(1,1,0.5),nrow=3)
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par_idx = c()

se_idx = c()

for(k in seq(0,nmethods-1)){
par_idx= c(par_idx,seq(1l,npara)+2*nparaxk)
se_idx = c(se_idx,seq(l+npara,2x*npara)+2*xnpara*k)

}

parameters = res_mat[,par_idx]

parameter_se = res_mat[,se_idx]

# Bias

para_mean = apply(parameters,2,mean)

mean_mat = matrix(para_mean,nrow=nsim,ncol=nparaxnmethods,byrow=T)

bias = apply(parameters,2,mean)-rep(true_parameters,nmethods)

bias_mat = matrix(bias,nrow=npara,ncol=nmethods,byrow=F)

# Model SE

model_se = apply(parameter_se,2,mean)

model_se_mat = matrix(model_se,nrow=npara,ncol=nmethods,byrow=F)

# Empirical se

emp_se = sqrt((1/(nsim-1))*apply((parameters-mean_mat)”"2,2,sum))

emp_se_mat = matrix(emp_se,nrow=npara,ncol=nmethods,byrow=F)

# MSE

mse = apply((parameters-matrix(true_parameters,ncol=nmethods*npara,

nrow=nsim,byrow=T))"2,2,mean)

mse_mat = matrix(mse,nrow=npara,ncol=nmethods,byrow=F)

# 95 percent coverage

lower = parameters -1.96+parameter_se

higher = parameters +1.96x*parameter_se

in_int = matrix(true_parameters,ncol=nmethods*npara,nrow=nsim,byrow = T) >=
lower & matrix(true_parameters,ncol=nmethods*npara,nrow=nsim,byrow = T) <=
higher

cover_mat = matrix(apply(in_int,2,mean),nrow=npara,ncol=nmethods,byrow=F)

# relative efficience (compared to full cohort)

rel_eff= apply(matrix(parameter_se[,seq(1l,npara)l,nrow=nsim,
ncol=nmethods*npara)”2/parameter_se”2,2,mean)

rel_eff = matrix(rel_eff,nrow=npara,ncol=nmethods,byrow=F)

### table of results
tab_res = rbind(bias_mat,model_se_mat,emp_se_mat,rel_eff,mse_mat,cover_mat)
tab_res2 = cbind(c("Bias","","","ModelSE","","", "EmpSE","","",
"RelEff", "™, ", "MSE","","", "Cov","",""),
matrix(rep(c(" $\\beta_x$"," $\\beta_{z_1}$","
$\\beta_{z_2}$"),6)),
round(tab_res,3))
print(tab_res2)
# Monte Carlo SE of estimates:
mc_bias = sqrt((1l/(nsimx(nsim-1)))=*apply((parameters-matrix(true_parameters,
ncol=nmethodsx*npara,
nrow=nsim,byrow=T))"2,2,sum))
mc_bias_mat = matrix(mc_bias,nrow=npara,ncol=nmethods,byrow=F)
mc_emp_se = (1/sqrt(2*(nsim-1)))*emp_se_mat
mc_mse = sqrt(apply(((parameters-matrix(true_parameters,ncol=nmethods*npara,
nrow=nsim, byrow=T))"2
-matrix(mse_mat,ncol=nmethods+*npara,
nrow=nsim,byrow=T))"2,2,sum)/(nsim*(nsim-1)))
mc_cover = sqrt((cover_mat*x(1l-cover_mat))/nsim)
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# Analyse case-cohort data

# Code based on https://github.com/ruthkeogh/MI-CC by Ruth H.Keogh
# packages --------------oooo-
library(survival)

library(mice)

library(smcfcs)

library(mitools)

# setup -----------------------

setup = "standard"
filepath=paste®("simulations/",setup,"/")
nimp=10

n.it = 100

npara=3

nsim=1000

nmethods = 8

res_mat = matrix(NA,nrow=nsim,ncol=2xnparaxnmethods)
# interaction formulas

formula = "Surv(t,d)~x+z1+z2"

sm_formula = "Surv(t,d)~x+z1+z2"
sm_formula_caco = "Surv(entertime,t,d)~x+z1+z2"
predictors_aprx = c("z1","z2","d","chaz")
predictors_rs = c("z1","z2")

#.

# Run analyses

set.seed(1001)
for(j in seq(1l,nsim)){
#:

# cox analysis using full cohort data

# load data set

cohort = readRDS(file=paste0(filepath,"cohort",j,".rds"))
model=coxph(as.formula(formula),data=cohort)

res_full = c(model$coefficients,sqrt(diag(model$var)))

# size of full cohort

n = dim(cohort)[1]

#.

# traditional case-control analysis

# load data set
caco= readRDS(file=paste@(filepath,"caco",j,".rds"))
# fit the model
model=cch(as.formula(formula), data=caco,
subcoh=~subco, id=~id, method="LinYing", cohort.size=n)
res_caco = c(model$coefficients,sqrt(diag(model$var)))

# MI-approx: full-cohort approach

cohort.caco= readRDS(file=pasteO(filepath,"cohort.caco",j,".rds"))

# Compute Nelson-Aalen estimate of the cumulative hazard

cohort.caco$chaz=nelsonaalen(cohort.caco,t,d)

# predictor matrix which determines the imputation models for x1

pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])

colnames (pred.mat)=names (cohort.caco)

rownames (pred.mat)=names (cohort.caco)

pred.mat["x",predictors_aprx]=1

# method of imputation for x1

method.vec=rep("",dim(cohort.caco)[2])

method.vec[which(colnames(cohort.caco)=="x")]="norm"

# perform the imputation

imp<-mice(cohort.caco, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
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maxit = n.it, diagnostics = FALSE, printFlag = F)
# Fit the analysis model in each imputed data set
models<-with(imp, coxph(as.formula(formula)))
# Combine estimates across the imputed data sets using Rubin’s Rules
summary_aprx = summary(pool(models))
res_aprx = c(summary_aprx[,"estimate"],summary_aprx[,"std.error"])
#:

# MI-SMC: full-cohort approach

#:

cohort.caco= readRDS(file=pasteO(filepath,"cohort.caco",j,".rds"))

#predictor matrix which determines the imputation models for x1

pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])

colnames (pred.mat)=names(cohort.caco)

rownames (pred.mat)=names (cohort.caco)

pred.mat["x",predictors_rs]=1

# method of imputation for x1

method.vec=rep("",dim(cohort.caco)[2])

method.vec[which(colnames(cohort.caco)=="x")]="norm"

# perform the imputation

imp <- smcfcs(cohort.caco, smtype="coxph", smformula=sm_formula,
method=method.vec,predictorMatrix=pred.mat,m = nimp,
numit = n.it, rjlimit = 10000,noisy=F)

# estimates from imputed data sets and combine using Rubin’s Rules

impobj <- imputationList(imp$impDatasets)

models <- with(impobj, coxph(as.formula(formula)))

coef = MIcombine(models)$coefficients

se = sqrt(diag(MIcombine(models)$variance))

res_rej = c(coef,se)

# MI-approx: superset A cch

cohort.caco=readRDS(file=paste0d(filepath, "cohort.super.caco",j,".rds"))
# Compute Nelson-Aalen estimate of the cumulative hazard for full cohort
cohort$chaz=nelsonaalen(cohort,t,d)
# add cumulative hazard into ncc data
cohort.merge<-cohort[,c("id","chaz")]
cohort.caco<-merge(cohort.caco,cohort.merge,by.x="1id")
# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])
colnames (pred.mat)=names(cohort.caco)
rownames (pred.mat)=names (cohort.caco)
pred.mat["x",predictors_aprx]=1
# method of imputation for x1
method.vec=rep("",dim(cohort.caco)[2])
method.vec[which(colnames(cohort.caco)=="x")]1="norm"
#perform the imputation
imp<-mice(cohort.caco, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
maxit = n.it, diagnostics = FALSE, printFlag = F)

# Fit the analysis model in each imputed data set
models <- vector("list", nimp)
for (k in 1l:nimp){

model=cch(as.formula(formula),data=complete(imp,k),

subcoh=~subco.super, id=~id, method="LinYing", cohort.size=n)

models[[k]] = model
}
# Combine estimates across the imputed data sets using Rubin’s Rules
res_aprx_sup=c(MIcombine(models)$coef,

sqrt(diag(MIcombine(models)$variance)))
#:

#MI-approx: (naive) superset B cch
#:




B. R code

cohort.caco=readRDS(file=pasteO(filepath, "cohort.super.caco",j,".rds"))
# Compute Nelson-Aalen estimate of the cumulative hazard for superset
cohort.caco$chaz = nelsonaalen(cohort.caco,t,d)
# predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])
colnames (pred.mat)=names (cohort.caco)
rownames (pred.mat)=names (cohort.caco)
pred.mat["x",predictors_aprx]=1
# method of imputation for x1
method.vec=rep("",dim(cohort.caco)[2])
method.vec[which(colnames(cohort.caco)=="x")]1="norm"
#perform the imputation
imp<-mice(cohort.caco, m = nimp, method = method.vec,
predictorMatrix = pred.mat,
maxit = n.it, diagnostics = FALSE, printFlag = F)
# Fit the analysis model in each imputed data set
models <- vector("list", nimp)
for (k in 1:nimp){
model=cch(as.formula(formula),data=complete(imp, k), subcoh=~subco.super,
id=~id, method="LinYing", cohort.size=n)
models[[k]] = model
}
# Combine estimates across imputed data sets using Rubin’s Rules
res_aprx_sup_nai=c(MIcombine(models)$coef,
sqrt(diag(MIcombine(models)$variance)))
#MI-SMC: superset A cch
#:
cohort.caco=readRDS(file=pasteO(filepath, "cohort.super.caco",j,".rds"))
# predictor matrix imputation models for x1 (not incl. outcomes)
pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])
colnames (pred.mat)=names(cohort.caco)
rownames (pred.mat)=names(cohort.caco)
pred.mat["x",predictors_rs]=1
# method of imputation for x1
method.vec=rep("",dim(cohort.caco)[2])
method.vec[which(colnames(cohort.caco)=="x")]1="norm"
# sampling fraction
my.sampfrac = sum(cohort.caco$subco.super==1)/n
# perform the imputation
imp <- smcfcs.casecohort(cohort.caco,smformula=sm_formula_caco,
sampfrac=my.sampfrac,in.subco="subco.super",
method=method.vec,predictorMatrix=pred.mat,
m=nimp,numit=100, rjl1imit=10000,no0isy=FALSE)
# estimates from imputed data sets and combine using Rubin’s Rules
impobj <- imputationList(imp$impDatasets)
models <- with(impobj,
coxph(as.formula(pasteO(sm_formula_caco,"+cluster(id)"))))
coef = MIcombine(models)$coefficients
se = sqrt(diag(MIcombine(models)$variance))
res_rej_sup = c(coef,se)

#MI-SMC: superset B cch

cohort.caco=readRDS(file=paste0d(filepath, "cohort.super.caco",j,".rds"))
#predictor matrix which determines the imputation models for x1
pred.mat=matrix(0,nrow=dim(cohort.caco)[2],ncol=dim(cohort.caco)[2])
colnames (pred.mat)=names (cohort.caco)

rownames (pred.mat)=names (cohort.caco)

pred.mat["x",predictors_rs]=1

#method of imputation for x1

method.vec=rep("",dim(cohort.caco)[2])
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method.vec[which(colnames(cohort.caco)=="x")]="norm"
#perform the imputation
imp <- smcfcs(cohort.caco, smtype="coxph", smformula=sm_formula,
method=method.vec,predictorMatrix=pred.mat,m = nimp,
numit = n.it, rjlimit = 10000,noisy=F)
# Fit the analysis model in each imputed data set
models <- vector("list", nimp)
for (k in 1l:nimp){
model=cch(as.formula(formula),data=imp$impDatasets[[k]],
subcoh=~subco.super,id=~id, method="LinYing", cohort.size=n)
models[[k]] = model
}
# Combine estimates across the imputed data sets using Rubin’s Rules
res_rej_sup_nai=c(MIcombine(models)$coef,
sqrt(diag(MIcombine(models)$variance)))

# Add results from simulation j
res_mat[j,] = c(res_full,res_caco,res_aprx,
res_aprx_sup,res_aprx_sup_nai,
res_rej,res_rej_sup,res_rej_sup_nai)
} #======== END FOR LOOP ==========
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