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Abstract

We study correlation energy in periodic Divide-Expand-Consolidate local second-
order Møller-Plesset theory. For the computation of correlation energy, we
implement an amplitude solver for non-orthogonal virtual orbitals in periodic
systems. We further test the convergence of the correlation energy with an
increased number of virtual orbitals when non-orthogonal projected atomic or-
bitals and virtual Wannier functions are used to span the excitation spaces.
For the calculation of long-range correlation energies, we develop and imple-
ment a method based on smoothed cubic spline interpolation to automatically
determine the significant contributions to the pair correlation energy. Finally,
we look at the non-smoothness of potential energy surfaces generated by local
correlation methods caused by the cutoffs in the orbital spaces and long-range
correlation calculations. In relation to this, we apply the pair cutoff algorithm
to the generation of a one-dimensional potential energy surface for LiH.
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Chapter 1

Introduction

Solid matter constitutes the phase of most stuff that we interact with in everyday
life. Crystalline solids, or simply crystals, are solids that are characterized
by a periodically repeating pattern of atoms at a microscopic level. Crystals
constitute an important class of solids, and includes common materials such
as salts, rocks, metals and ice. From a chemistry perspective, solid matter is
important for example in the field of heterogeneous catalysis, where reaction
typically happens after an adsorption of a reactant to the surface of a solid.
The theoretical description of the solid matter is therefore of great importance.

It has been known since the 1920s that quantum mechanics is crucial in the
physical description and understanding of matter. Due to the conceived com-
pleteness of the description of non-relativistic quantum mechanics, the famed
physicist Paul Dirac claimed already in 1929 that "The underlying physical laws
necessary for the mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble"
[1]. Much effort has since been made in developing methods and approxima-
tions that makes it computationally feasible to calculate properties of matter
with sufficient accuracy.

For several decades, density functional theory (DFT) has been dominating
method for the computation of energies, geometries and other physical and
chemical properties of solids. The reason for this dominance has been a favor-
able trade-off between the accuracy and required computational resources. But
the standard formulations of DFT struggles with handling dispersion interac-
tions correctly. In addition, there is no known way to systematically improve
the accuracy of DFT calculations.

Today, coupled cluster (CC) theory is generally regarded as the most success-
ful method in calculations on small to medium sized molecular systems. The
success stems in part from the systematic improvement in the schemes cou-
pled cluster singles and doubles excitations (CCSD), coupled cluster singles,
doubles and perturbative triples excitations (CCSD(T)) coupled cluster singles,
doubles and triples excitations (CCSDT) and so on. On systems where a single
Slater determinant is a reasonable approximation to the ground state wave func-
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tions, the main issue with traditional CC implementations is the steep scaling
wall in calculations with increased system size. CC calculations or calculations
with other post-Hartree-Fock methods usually follows a canonical Hartree-Fock
calculation, in which the methods second-order Møller-Plesset (MP2), CCSD
and CCSD(T) and CCSDT formally scales as N5, N6, N7 and N8 respectively,
where N is the number of particles. The scaling walls stems from the delocalized
molecular orbitals (MOs), hiding the proper locality of the electron correlation.

Localized molecular orbitals may be obtained by utilizing the degrees of freedom
present in the choice of MOs obtained in Hartree-Fock calculations. The result-
ing sparsity in the two-particle integral matrices, and consequently the sparsity
in the excitation amplitude tensor, may then be utilized to obtain post-Hartree-
Fock correlation methods that (ideally) scales linearly in the computational cost
with the system size.

After the pioneering work of Pulay [2], many attempts at implementations ap-
proaching linear scaling has been made for molecular systems. Implementations
for periodic systems are fewer, and there are still significant limitations on the
systems that can be calculated with high accuracy. The Cryscor program [3]
represents a notable implementation for periodic systems. Also, the Cluster-
in-Molecule algorithm has been implemented for periodic systems [4]. Rebolini
et al. [5] implemented the Divide-Expand-Consolidate (DEC) algorithm for
periodic systems under the name extended DEC (XDEC), which is the imple-
mentation used in this thesis.

In the DEC algorithm, the system is partitioned into fragments, which are local
sets of orbitals for which the MP2 or CC equations are solved independently of
each other. The correlation energy can be expressed as a sum of the correlation
energy on each fragment, and pairs of fragments.

To achieve linear scaling, the virtual excitation space for the occupied orbitals
of each fragment is limited to a subset of spatially close orbitals. Thereafter,
the sum over pair energies is truncated. The latter approximation may be
justified since the pair energies decay approximately as R−6 with distance R, in
accordance with the London dispersion force.

Given the two main approximations just mentioned, we are left with two major
tasks. The first is to properly select the excitation space for each occupied
orbital or subset of orbitals, and the second task is to choose which pairs to
calculate such that both the error and computational time is simultaneously
minimized.

For the problem with local virtual excitation spaces, it has been shown that that
much smaller excitation spaces are needed if projected atomic orbitals (PAOs)
are used instead of virtual Wannier functions in the Cryscor implementation [6].
In order to gain further insights, we implement the non-canonical MP2 equations
with non-orthogonal virtual orbitals in an implementation of XDEC that retains
the translational symmetry of the systems. We further test the convergence of
fragment energies with the number of PAOs and virtual Wannier functions in
the virtual excitation spaces.

The error caused by pair cutoff can be made insignificant if a very large cutoff
distance is chosen, but this comes at the cost of a potentially large increase
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in computation time. This is especially problematic in 3D systems where the
number of pairs increases cubically with the distance, causing a steep increase in
the number of pair calculation with increase in the pair cutoff distance. Rebolini
et al. [5] proposed using smoothed spline interpolation to estimate the pair
energies, and choose a cutoff based on that. In this thesis, this method is
atomized so that a cutoff may be chosen by the program. Furthermore, we
expand the method to include sorting of pairs, so as to better estimate the energy
of the non-calculated pairs, and to determine what pairs will have significant
contributions.

Finally, we investigate the non-smooth behaviour of potential energy surfaces
(PESs) generated with local correlation methods, and we apply the automatic
pair cutoff determination in the generation of a 1D PES for 3D LiH where the
lattice parameter is varied.
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Chapter 2

Theoretical Background

In this chapter, the quantum mechanical foundation for the methods studied in
this project is laid out. Sections 2.1 to 2.4 is mainly underlying theory, while
sections 2.5 to 2.8 will be more specifically about the concepts and methods
utilized, developed or implemented in this work.

In section 2.1 the basic principles of quantum theory is presented, while sec-
tion 2.2 addresses some important principles and concepts for describing many-
electron systems. Section 2.3 addresses the electron correlation problem specif-
ically. Definitions of local orbitals which is crucial for the local correlation
methods studied in this work is presented in section 2.4, and the local correla-
tion methods, with specific emphasis on the XDEC algorithm is presented and
discussed in section 2.5. Aspects of the non-canonical MP2 equations in periodic
systems, along with the MP2 equation for non-orthogonal virtual orbitals that
are implemented in this work, is presented in section 2.6. Section 2.7 discusses
aspects of the pair energy decay, and based on test calculation, the principles of
the pair cutoff algorithm developed and implemented in this work is outlined.
Finally, in section 2.8, some problematic features of local correlation methods
in relation with generating potential energy surfaces are discussed.

2.1 Quantum mechanics
2.1.1 Principles and Dirac notation
We will state the general principles of quantum mechanics, along with a brief
introduction to Dirac notation. Except for the Dirac notation, this section will
loosely follow Steven Weinbergs Lectures on Quantum Mechanics [7]

We begin with the first postulate of quantum mechanics, which states that
physical states can be represented by vectors in Hilbert space. We will represent
such a state vector by a ket, |α〉, where whatever inside the ket, in this case α,
are simply labels for the state. The inner product of two states |α〉 and |β〉 is
written 〈α|β〉. A Hilbert space is taken to be a inner product space of finite
or infinite dimensionality. In the latter case, there must exist an infinite set of
linearly independent orthogonal vectors |i〉 such that for any state vector |Ψ〉,
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the condition 〈ΨN |ΨN 〉 → 0 for N → ∞ may by satisfied for |ΨN 〉 = |Ψ〉 −∑N
i=1 ci |i〉. Formally, any vector can then be expressed as a linear combination

of orthogonal basis vectors

|Ψ〉 =
∑
i

Ci |i〉 (2.1)

where an expression for the coefficient Ci may be obtained by taking the inner
product with |i〉

Ci = 〈i|Ψ〉
〈i|i〉

(2.2)

The expansion in equation (2.1) then reads

|Ψ〉 =
∑
i

〈i|Ψ〉
〈i|i〉

|i〉 (2.3)

We will often assume that the orthogonal basis vectors are normalized to one,
meaning that 〈i|j〉 = δi,j . In that case, the normalization condition for a state
vector is

〈Ψ|Ψ〉 =
∑
ij

〈Ψ|i〉 〈Ψ|j〉 〈i|j〉 =
∑
ij

〈Ψ|i〉 〈Ψ|j〉 δi,j =
∑
i

|〈i|Ψ〉|2 =
∑
i

|Ci|2 = 1

(2.4)

The complete set of orthogonal basis vectors may not be denumerable, but
rather form a set labeled by some continuous variable ξ. In this case, we may
begin by assuming that ξ forms a discrete set such that for a density of ξ values
ρ(ξ), ρ(ξ)dξ is a large number. By normalizing the orthogonal set such that

〈ξ′|ξ〉 = ρ(ξ)δξ′,ξ (2.5)

any state vector |Ψ〉 can be expanded as

|Ψ〉 =
∑
ξ

〈ξ|Ψ〉
ρ(ξ) |ξ〉 (2.6)

This is simply the same expansion as in equation (2.3). Assuming that the
interval dξ is so small that ρ(ξ) is constant within the interval, we may replace
the sum by an integral according to

∑
ξ

f(ξ)→
∫
f(ξ)ρ(ξ)dξ (2.7)
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This results in the integral expansion of the state vector in terms of the contin-
uous set of basis vectors

|Ψ〉 =
∫
〈ξ|Ψ〉 |ξ〉 dξ (2.8)

The inner product of two continuum states is now

〈Ψ|Ψ′〉 =
∫
〈ξ|Ψ〉∗ 〈ξ|Ψ′〉 dξ (2.9)

from which the normalization condition

〈Ψ|Ψ〉 =
∫
|〈ξ|Ψ〉|2 dξ = 1 (2.10)

follows. The general statistical interpretation of quantum mechanics holds that
the probability that a measurement on a system initially in state |Ψ〉 will give
a result corresponding to state |Φi〉, is given by

P (Ψ→ Φi) = |〈Φi|Ψ〉|2

〈Φi|Φi〉 〈Ψ|Ψ〉
(2.11)

For normalized vectors, this reduces to

P (Ψ→ Φi) = |〈Φi|Ψ〉|2 (2.12)

For continuum states, the corresponding interpretation is

P (Ψ→ Φξ) = |〈ξ|Ψ〉|2 dξ (2.13)

Another postulate of quantum mechanics is that observables are represented by
Hermitian operators, and that a state has a definite value α for an observable
represented by a Hermitian operator A if and only if the state is an eigenstate
of A

A |Ψ〉 = α |Ψ〉 (2.14)

In this context, a definite value means that a measurement will yield the same
value α every time the measurement is carried out on a system described by the
state |Ψ〉. Hermitian operators are assumed to have a complete set of orthogonal
eigenvectors. The expectation value of an observable is defined as the sum of
the observable value weighed by the probability of measuring it in accordance
with equation (2.12)

〈A〉Ψ =
∑
i

αi |〈i|Ψ〉|2 =
∑
i

〈Ψ|A |i〉 〈i|Ψ〉 = 〈Ψ|A |Ψ〉 (2.15)
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In this expression, we have assumed that |i〉 are eigenvectors of A. Quantum
states are generally time dependent, and when no measurements are performed,
the time evolution is determined by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.16)

where Ĥ is the Hamiltonian operator, representing the energy of the system.

2.1.2 Wave mechanics
In practice, we often represent quantum states by continuous functions of spatial
variables known as wave functions. With the formalism described in the previous
chapter, the (spin-0) wave function representation of a state vector |Ψ〉 may be
defined as Ψ(r) = 〈r|Ψ〉. The wave function is thus the continuous expansion
coefficients in the continuous set of eigenkets of the position operator. We
will generally assume that quantum states are represented by wave functions,
possibly also dependent on a set of spin coordinates.

The Born interpretation of the wave function states that the squared modulus
of the wave function gives a probability density for where to find a particle in
space. This is a special case of the general statistical interpretation given in
equation (2.13), where the positions in space is used as the continuous variable.

The position representation of operators may be obtained by the replacement
rules

x̂→ x

p̂→ −i~∇x
(2.17)

From this, we can construct other operators. For example, the kinetic energy of
a particle with mass m is defined as K = p2/2m, so the position representation
of the kinetic energy operator is

K̂ = P̂ 2

2m → −
~2

2m∇
2 (2.18)

We may then construct the Schrödinger equation in the position representation
with a purely position dependent potential as

− ~2

2m∇
2ψ(r, t) + V (r)ψ(r, t) = i~

∂

∂t
ψ(r, t) (2.19)

For a time-independent Hamiltonian, this equation separates in space and time
coordinates. To see this, we assume a wave function on the form ψ(r, t) =
ψ(r)φ(t). Putting this into equation (2.19) and dividing by ψ(r)φ(t) gives

− ~2

2m
1

ψ(r)∇
2ψ(r) + 1

ψ(r)V (r)ψ(r) = i~
1
φ(t)

∂

∂t
φ(t) (2.20)
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Since the two sides of the equation depends on different variables but are (obvi-
ously) always equal, they must both equal the same constant. This constant is
simply the eigenvalue of the Hamiltonian operator, and is therefore the energy.
We then get the two equations

− ~2

2m∇
2ψ(r) + V (r)ψ(r) = Eψ(r) (2.21)

i~
∂

∂t
φ(t) = Eφ(t) (2.22)

The latter equation have solutions on the form

φ(t) = exp(iEt/~) (2.23)

The former equation is called the time-independent Schrödinger equation, even
though it is really just the eigenvalue equation for the Hamiltonian operator.

2.2 The many-particle problem
Exact solutions to the Schrödinger equation are few, and limited only to sys-
tems of one, or in special cases, two particles. For systems consisting of many
particles, such as molecules, clusters or extended solid, approximations must be
imposed. In this section we give a short presentation of the Born-Oppenheimer
approximation. Thereafter we look at the independent particle model and
Hartree-Fock theory before going through some details for periodic system. We
then end with a short discussion of electron correlation. We begin, however,
with the Hamiltonian for systems of atoms.

2.2.1 The Pauli principle
Solutions to the many-particle problem must satisfy the Pauli principle, which
states that a wave function for a set of identical bosons must be symmetric, while
the wave function for identical fermions must be anti-symmetric with respect
to interchange of the coordinates of a pair of particles. For a set of N identical
particles, this can be formulated mathematically as

ψ(x1, ..., xi, ..., xj , ...xN ) = ψ(x1, ..., xj , ..., xi, ...xN ) Bosons
ψ(x1, ..., xi, ..., xj , ...xN ) = −ψ(x1, ..., xj , ..., xi, ...xN ) Fermions

(2.24)

2.2.2 Hamiltonian for systems of atoms
The non-relativistic Hamiltonian for a system of atoms consist of the kinetic
energy for the electrons and the nuclei, as well as the potential energy arising
from electron-electron repulsion, nucleus-nucleus repulsion and electron-nucleus
attraction. The Hamiltonian operator for a system of N electron and M nuclei
may be expressed as

10



H = −1
2

N∑
i=1
∇2
i −

1
2

M∑
A=1

∇2
A

Mj
−

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+
M∑
A=1

∑
B>A

ZAZB
rAB

(2.25)

where rij = |ri − rj |, MA is the mass of nucleus A and ZA is the number of
protons in nucleus A.

2.2.3 The Born-Oppenheimer approximation
Due to the large difference in mass, nuclei tends to move much slower than
electrons. As a result of this order-of-magnitude difference, we may assume
that the system takes a defined electronic structure for each position of the
nuclei. We may then solve the electronic Schrödinger equation

HeΨel(r;R) = EeΨel(r;R) (2.26)

for each set nuclear positions, where the electronic Hamiltonian He contains all
the terms in equation (2.25) except for nuclear kinetic energy, and the electron
wave function eΨel(r;R) depends only parametrically on the nuclear positions.

The Born-Oppenheimer approximation assumes a partial separation of the Schrö-
dinger equation such that the total wave function may be written as a product
of the electron wave function and the nuclear wave function φ(R)

Ψ(r,R) = Ψel(r;R)φ(R) (2.27)

and the total Schrödinger equation then becomes

(Tn +He) Ψel(r;R)φ(R) = EΨel(r;R)φ(R) (2.28)

where Tn is the nuclear kinetic energy operator. Substituting the result from
equation (2.26) gives

(Tn + Ee) Ψel(r;R)φ(R) = EΨel(r;R)φ(R) (2.29)

The complexity of this equation is significantly increased by the fact that Tn
also acts on Ψel(r;R) due to the parametric dependence on R. We can see
explicitly how it acts on the Born-Oppenheimer wave function by inserting the
explicit form and use the chain rule

TnΨel(r;R)φ(R) = −
M∑
A=1

1
2Mj

∇2
AΨel(r;R)φ(R)

= −
M∑
A=1

1
2Mj

[ (
∇2
AΨel(r;R)

)
φ(R) + Ψel(r;R)∇2

Aφ(R)

+ 2 (∇AΨel(r;R))∇Aφ(R)
]

(2.30)
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By putting this back into equation (2.29), multiplying from the left with Ψel(r;R)
and integrating over the electron coordinates gives

Eφ(R) = 〈Ψel(r;R)| (Tn + Ee) |Ψel(r;R)〉φ(R)
= 〈Ψel(r;R)|Tn |Ψel(r;R)〉φ(R) + Eeφ(R)

= −
M∑
A=1

1
2Mj

[
〈Ψel(r;R)| ∇2

A |Ψel(r;R)〉φ(R)

+ 2 〈Ψel(r;R)| ∇A |Ψel(r;R)〉∇Aφ(R)
]

+ (Tn + Ee)φ(R)

(2.31)

The Born-Oppenheimer approximation neglects the first term in the last ex-
pression. The resulting equation is then

(Tn + Ee(R))φ(R) = Eφ(R) (2.32)

which is just a Schrödinger equation for the nuclei where the electronic energy
takes the role of the potential energy. We may thus interpret the nuclei as
moving on a potential energy surface (PES), and we obtain the PES by solving
equation (2.26) for various nuclear positions. In this thesis we shall focus only
on solutions to the electronic Schrödinger equation and the resulting PES, and
not on properties related to nuclear motion.

2.2.4 The independent particle model
The simplest way of constructing a wave function for N identical fermions that
satisfies the Pauli principle is by means of a Slater determinant. A Slater de-
terminant may be written on the form

Ψ(x1, x2, . . . , xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN (x1)
ψ1(x2) ψ2(x2) . . . ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) . . . ψN (xN )

∣∣∣∣∣∣∣∣∣ (2.33)

where ψi(xj) are single particle wave functions called spin-orbitals, and xi =
(ri, σi) are combined spin and spatial coordinates, σj being a spin coordinate.
Particle-exchange corresponds to interchanging two rows, and since the inter-
change of two-rows changes the sign of a determinant, the Pauli principle is
automatically satisfies. The wave functions also vanishes when two particles
have the same coordinate values, creating a so-called Fermi hole. Also, if two
particles are put in the same spin-orbital, two columns will be equal, making
the wave function vanish in according to Paulis exclusion principle.

This form of a wave function is fine as long as the particles are non-interacting,
but we note that the wave function takes a more complicated form if the particles

12



interacts with each other. In many systems, however, the ground state may be
well approximated by a single Slater determinant. In the next section we present
the method for obtaining the optimal Slater determinant approximation to the
wave function: the Hartree-Fock method.

2.2.5 The variational principle and Hartree-Fock theory
Given an arbitrary normalized wave function Ψ(x) and a complete set of nor-
malized energy eigenfunctions {ψi} with eigenvalues Ei, the expectation value
for the Hamiltonian can be expressed as

〈Ψ|H |Ψ〉 =
∑
ij

〈ψi|H |ψj〉 =
(∑

i

C∗i 〈ψi|

)
Ĥ

∑
j

Cj |ψj〉


=
∑
ij

C∗jCiEj 〈ψi|ψj〉 =
∑
i

|Ci|2Ei

(2.34)

We assume that the states are labeled such that E0 is the lowest energy value.
Since the functions are normalized in accordance with equation (2.4), we may
write

E0 =
∑
i

|Ci|2E0 ≤
∑
i

|Ci|2Ei = 〈Ψ|H |Ψ〉 (2.35)

Thus, the expectation value of the Hamiltonian computed with some trial wave
function Ψ(r) is always greater than or equal to the exact ground state energy. It
is equal if and only if the exact ground state wave function is used. This is called
the variational principle. By minimizing the energy of a trial wave function
with respect to some parameters, this may be used to obtain approximate wave
functions and estimates of the ground state energy.

In the Hartree-Fock method, the energy of a single Slater determinant is varia-
tionally minimized with the constraint that the spin-orbitals remain orthonor-
mal. To perform this minimization, we first need an expression for the energy
functional of the Slater determinant 〈Ψ|H |Ψ〉. We note that the Hamiltonian
may be written on the form Ĥ =

∑
i h(ri) +

∑
i>j v(rij), so that the energy

functional may be expressed as

E [ΨHF ] =
∑
i

〈Ψ|h(ri) |Ψ〉+
∑
i>j

〈Ψ| v(rij) |Ψ〉 (2.36)

By the Slater-Condon rules [8] we have the following relations for Slater deter-
minants

∑
i

〈Ψ|h(ri) |Ψ〉 =
∑
i

〈i|h |i〉 (2.37)

∑
i>j

〈Ψ| v(rij) |Ψ〉 = 1
2
∑
ij

〈ij||ij〉 (2.38)
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where we have introduced the notations

〈pq|rs〉 =
∫
dr1dr2ψp(r1)∗ψq(r2)∗r−1

ij ψr(r1)ψs(r2) (2.39)

and

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (2.40)

Inserting this into equation (2.36) gives an energy expression in terms of the
spin orbitals

E [ΨHF ] =
∑
i

〈i| ĥ |i〉+ 1
2
∑
ij

〈ij||ij〉 (2.41)

Expanding the MOs in equation (2.41) in the atomic orbital (AO) basis yields

E [ΨHF ] =
∑
i

∑
µν

C∗µiCνi 〈µ| ĥ |ν〉+ 1
2
∑
ij

∑
µνστ

C∗µiC
∗
νjCσiCτj 〈µν||στ〉 (2.42)

The extra mathematical constraint that the spin orbitals remain orthonormal,
〈i|j〉 = δi,j , may be accounted for by Lagrange multipliers, and the functional
L to minimize then becomes

L [ΨHF ] = E[ΨHF ]−
∑
ij

(
λji
∑
µν

C∗µiCνj 〈µ|ν〉 − δij

)
(2.43)

We may now create explicit equations to solve by minimizing the energy func-
tional including the Lagrange multiplier condition with respect to the expansion
coefficients (using either the coefficients or their complex conjugates yields two
independent equations)

∂

∂C∗µi

E [ΨHF ]−
∑
ij

λji
∑
µν

C∗µiCνj 〈µ|ν〉

 = 0 (2.44)

Evaluating the derivatives and inserting the explicit form of the energy func-
tional gives

∑
µν

Cνi 〈µ| ĥ |ν〉+
∑
j

∑
µνστ

C∗νjCσiCτj 〈µν||στ〉 =
∑
j

λji
∑
µν

Cνj 〈µ|ν〉 (2.45)
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By switching name on the dummy variables, this may be written on the form

∑
ν

〈µ| ĥ |ν〉+
∑
j

∑
στ

C∗σjCτj 〈µσ||ντ〉

Cνi =
∑
j

λji
∑
ν

Cνj 〈µ|ν〉 (2.46)

Defining the matrix element of the Fock operator in the AO basis as

Fµν = 〈µ| ĥ |ν〉+
∑
j

∑
στ

C∗σjCτj 〈µσ||ντ〉 (2.47)

and elements of the overlap matrix of the AOs

Sµν = 〈µ|ν〉 (2.48)

equation (2.46) may be written on matrix form as

FC = SCλ (2.49)

This equation has infinitely many solutions, and extra conditions must be im-
posed in order to obtain an equation with a uniquely defined solution. A unitary
transformation of the C-matrix conserves the orthonormality of the MOs. Mul-
tiplying the equation from the right by some unitary matrix U and utilize that
U† = U−1, we get the equation

FCU = SCUU†λU (2.50)

By defining new matrices C ′ := CU and λ̃ := U†λU , and the Fock matrix in AO
basis being invariant to the unitary transformation, we see that this equation is
on the same form as equation (2.49). Since λ is a Hermitian matrix, the spectral
theorem says that it may be diagonalized by a unitary matrix V such that

V †λV = ε (2.51)

where epsilon is a diagonal matrix. By setting U = V we obtain the canonical
Hartree-Fock equation. This is by far the most common choice of scheme, and
gives spin-orbitals that are eigenfunctions of the Fock operator. Since these spin-
orbitals are eigenfunctions of an Hamiltonian, they transforms as an irreducible
representation of the point group of the system, an are typically delocalized.

We further note that the coefficient matrix C and the Fock matrix in MO
basis, λ, in equation (2.47) may be extended to include orbitals not occupied
in the HF ground state. We will denote these orbitals virtual orbitals. For
any i in equation (2.47), the equation is strictly satisfied with a sum only over
the virtual orbitals. Given a virtual space that is orthogonal to the occupied
space, any contribution λai must therefore be zero. The condition that the Fock
matrix elements between occupied and virtual orbitals must be zero is the HF
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optimization condition. The derivation just given assumed a basis expansion
for the MOs at the beginning, and we arrived directly at a matrix equation.
A derivation for general MOs without an initial basis expansion is given in
reference [9].

The Fock matrix elements in equation (2.47) takes the general form

FPQ = 〈P | ĥ |Q〉+
∑
J

〈PJ ||QJ〉 (2.52)

for any two spin orbitals φP and φQ.

In this work, we only look at closed-shell systems. In that case, it is often
convenient to force pairs of spin-orbitals with opposite spins to take the same
spatial form. We will in the following use lowercase letters to signify the index
for spatial orbitals, and Greek letters σ, τ and so on to signify the orthonormal
spin functions. The spin coordinate will be denoted m, and may take values
1
2 and − 1

2 for spin-half particles like electrons. Each spin-orbital is therefore
labeled by a pair of indices on the form pσ. Lets look at the terms in the
Fock matrix element expression in equation (2.52) in the formalism. We first
note that since the Fock operator is spin-independent, the Fock matrix elements
between orbitals of different spin is automatically zero due to the orthogonality
of the spin functions. We will show this by assuming that the left index has
α-spin and the right β-spin, but the calculation would yield exactly the same
result if this were switched. The elements of the core Hamiltonian can be seen
to be zero by writing explicitly the integral form

〈pα|h(r) |qβ〉 =
∫
drdmφp(r)∗α(m)∗h(r)φq(r)β(m)

=
∫
dmα(m)∗β(m)

∫
drφp(r)∗h(r)φq(r) = 0

(2.53)

Similarly writing out a term in the sum of two-particle integrals gives
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〈pα, jα||qβ, jα〉 =
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗α(m2)∗r−1

12

φq(r1)β(m1)φj(r2)α(m2)

−
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗α(m2)∗r−1

12

φj(r1)α(m1)φq(r2)β(m2)

=
∫
dm1α(m1)∗β(m1)

∫
dm2α(m2)∗α(m2)∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φq(r1)φj(r2)

−
∫
dm1α(m1)∗α(m1)

∫
dm2α(m2)∗β(m2)∫

dr1dr2φp(r1)∗φj(r2)∗r−1
12 φj(r1)φq(r2)

= 0
(2.54)

where the zero value again follows from the orthogonality of the spin functions.
The result would also be the same for a spin-orbital label jβ. More interesting
are the matrix elements where both spin-orbitals have same spin. The results
are the same for α and β spins, so we will assume α spins in the computation.
The elements of the core Hamiltonian is easily calculated as follows

〈pα|h |qα〉 =
∫
drdmφp(r)∗α(m)∗h(r)φq(r)α(m)

=
∫
dmα(m)∗α(m)

∫
drφp(r)∗h(r)φq(r)

=
∫
drφp(r)∗h(r)φq(r)

= 〈p|h |q〉

(2.55)

For the two-particle integrals, we now get two types of contributions: (1) those
where the sum-index (J in equation (2.52)) have the same spin as the matrix
element indices, and (2) those where the spins of J is different from that in the
matrix element indices. Lets calculate the first type of contribution first
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〈pα, jα||qα, jα〉 =
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗α(m2)∗r−1

12

φq(r1)α(m1)φj(r2)α(m2)

−
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗α(m2)∗r−1

12

φj(r1)α(m1)φq(r2)α(m2)

=
∫
dm1α(m1)∗α(m1)

∫
dm2α(m2)∗α(m2)∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φq(r1)φj(r2)

−
∫
dm1α(m1)∗α(m1)

∫
dm2α(m2)∗α(m2)∫

dr1dr2φp(r1)∗φj(r2)∗r−1
12 φj(r1)φq(r2)

=
∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φq(r1)φj(r2)

−
∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φj(r1)φq(r2)

= 〈pj|qj〉 − 〈pj|jq〉
(2.56)

For the second contributions, we get

〈pα, jβ||qα, jβ〉 =
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗β(m2)∗r−1

12

φq(r1)α(m1)φj(r2)β(m2)

−
∫
dr1dr2dm1dm2φp(r1)∗α(m1)∗φj(r2)∗β(m2)∗r−1

12

φj(r1)β(m1)φq(r2)α(m2)

=
∫
dm1α(m1)∗α(m1)

∫
dm2β(m2)∗β(m2)∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φq(r1)φj(r2)

−
∫
dm1α(m1)∗β(m1)

∫
dm2β(m2)∗α(m2)∫

dr1dr2φp(r1)∗φj(r2)∗r−1
12 φj(r1)φq(r2)

=
∫
dr1dr2φp(r1)∗φj(r2)∗r−1

12 φq(r1)φj(r2)

= 〈pj|qj〉
(2.57)

We see that the exchange terms vanish in the cases where the spin of the sum
index does not match that of the matrix element indices. If we exchange the
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sum of J in equation (2.52) with j, and remarks that there are two spin-orbitals
for each spatial orbital, we may write the Fock matrix elements in a purely
spatial orbital basis as

Fpq = 〈p| ĥ |q〉+
∑
j

(2 〈pj|qj〉 − 〈pj|jq〉) (2.58)

where we have simply combined the results from equations (2.55), (2.56) and
(2.57). Later we will often use the Mulliken notation for the two-particle inte-
grals, which takes the general form

gpqrs = (pq|rs) =
∫
dr1dr2φp(r1)∗φq(r1)r−1

12 φr(r2)∗φs(r2) (2.59)

Using this notation, the elements of the Fock matrix can be expressed

Fpq = hpq −
∑
j

(2gpqjj − gpjjq) (2.60)

2.2.6 Periodic Boundary Conditions
Crystalline solids are characterized by a periodically repeating pattern of atoms.
In the bulk of a macroscopic crystal, the distance to the edges are extremely large
seen from a microscopic perspective. Therefore, an infinite three-dimensional
lattice of repeating atomic patterns may be used as a model for the crystal.
Similarly, a system repeating infinitely in two dimensions may be used as a
model for crystalline sheets or surfaces, or in one-dimensions for polymers. We
will here assume three dimensions, but the corresponding cases for one and two
dimensions may be obtained by only treating the remaining dimensions as non-
periodic. The electronic Hamiltonian per unit cell for a periodic system may be
expressed as

H = −1
2

N∑
i=1
∇2
i −

∑
n

(
N∑
i=1

M∑
A=1

ZA
|ri − rA −Rn|

+
N∑
i=1

N∑
j>i

1
|ri − rj −Rn|

+
M∑
A=1

∑
B>A

ZAZB
|rA − rB −Rn|

) (2.61)

This Hamiltonian commutes with the lattice translation operator T̂R, whose
effect is to translate the system according to the general lattice translation vector
R. This vector is given by R = n1a1 + n2a2 + n3a3 where ni are integers and
ai are lattice vectors. Since all particles are translated into positions physically
equivalent to their starting point, the energy of the system must remain the
same. Thus,

[
T̂R, Ĥ

]
= 0, and there exists a common set of eigenfunctions of the

two operators. According to Bloch’s theorem, the common set of eigenfunctions
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of T̂R and some Hamiltonian for an electron in the lattice can be written on the
form

ψnk(r) = exp(ik · r)unk(r) (2.62)

where n is an integer label, k is the crystal momentum and unk(r) = unk(r+R)
is a function with the same periodicity as the crystal. The functions are thus a
product of the free particle solution and a periodic function. Due to the discrete
translational symmetry (as opposed to the continuous translational symmetry
in the case of a free particle), the wave functions also satisfies the periodicity
condition in reciprocal space ψnk(r) = ψnk+K(r), where K is a reciprocal
lattice translation vector.

In particular, equation (2.62) gives the form of the eigenfunctions of the Fock
operator, and thus the spatial form of the spin-orbitals obtained from canonical
Hartree-Fock calculations.

The wave function in equation (2.62) does not in general have the periodicity
of the crystal. Rather, the value of wave functions differs by a phase factor
between symmetry equivalent points in space. The reason for this is that only
the electron density is an observable, and so physically we can only demand
that the electron density has same periodicity as the crystal.

In actual calculations, however, we typically enforce so-called Born-von Karman
(BvK) boundary conditions, where the wave function is forced to be periodic
over a number of unit cells. This set of unit cells is called a Born-von Karman
supercell. k then become discrete and only values where exp(ik · r) has the
periodicity of the crystal. The approximation introduced by the BvK boundary
conditions corresponds to a sort of "folding" of the system where points in space
where wave function equality is enforced corresponds the same physical point,
rather than merely two symmetry equivalent points. This approximation is
improved by increasing the size of the BvK cell, and approaches the correct
physical restrictions as the size of the BvK cell approaches infinity.

2.3 Electron correlation
The wave function on the form given in equation (2.33) does not necessarily
vanish when two spatial coordinate are equal, since the spin coordinate may
differ. The actual wave function of identical charged particles should always go
to zero at this point since the Coulomb potential is infinite. The reduced prob-
ability of finding another electron in area around any given electron is known
as a Coulomb hole, and this effect is neglected in Hartree-Fock theory. The
inclusion of electrons closer to each other than in the actual system makes the
Hartree-Fock method overestimate the energy, in accordance with the varia-
tional principle.

At larger distances, the effect of the Coulomb correlation is more subtle, and
are known as London dispersion interactions. A typical somewhat classically
motivated explanation is that the instantaneous movement of one electron may
create a small dipole such that another electrons may adjust in a manner that
is energetically favorable, thus lowering the total energy. Even though these
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interaction are typically smaller than the Coulomb hole effect, they may still be
significant, and explains for instance the attractive force between helium atoms
leading to helium condensation at very low temperatures. We will here present
second quantization, a formalism essential for efficient theoretical description of
electron correlated methods. We then present some methods for treating elec-
tron correlation, with emphasis on Møller-Plesset perturbation theory (MPPT)
and CC theory.

2.3.1 Second quantization
In second-quantization, Slater determinants are represented as vectors in Fock
space. The basis vectors in Fock space, called occupation number vectors, are
chosen so that for a given spin-orbital basis, there is a one-to-one mapping
between the Slater determinants and the occupation number vectors.

Lets denote a vector in Fock space as

|p1, p2, ..., pN 〉 := |ψp1 , ψp2 , ..., ψpN
〉 (2.63)

such that a Slater determinant with combined spin-space coordinates is defined
as

〈x1, x2, ..., xN |p1, p2, ..., pN 〉 = 1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN (x1)
ψ1(x2) ψ2(x2) . . . ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) . . . ψN (xN )

∣∣∣∣∣∣∣∣∣ (2.64)

Now we define the creation and annihilation operators a†pi
and api

with the
properties

a†q |p1, p2, ..., pN 〉 = |q, p1, p2, ..., pN 〉 (2.65)

and

a†q |p1, p2, ..., q, ..., pN 〉 = |p1, p2, ..., pN 〉 (2.66)

We assume that the annihilation operator first permute the relevant spin-orbital
to the first index, and then destroys it. The sign in equation (2.66) is there-
fore positive for an even number of spin-orbitals to the left of q, and nega-
tive otherwise. Also, a†q |p1, p2, ..., pN 〉 = 0 if q ∈ {p1, p2, ..., pN} since this
would correspond to creating two equal columns in the Slater determinant.
Correspondingly, we will assign to the annihilation operator the property that
aq |p1, p2, ..., pN 〉 = 0 if q /∈ {p1, p2, ..., pN}.
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The creation and annihilation operators satisfies the following relations

{a†p, a†q} = 0
{ap, aq} = 0
{a†p, aq} = δp,q

(2.67)

where B̂ as {A,B} = ÂB̂+ B̂Â is the anti-commutator of two operators Â and
B̂. The first relation is obvious since applying {a†p, a†q} = 0 switches the order of
the two first columns in the determinant relative to applying {a†q, a†p} = 0, which
changes the sign of the determinant. Therefore, a†qa†p = −a†pa†q → a†qa

†
p+a†pa

†
q =

0.

For the second relation, we assume that p is to the left of q. Then, applying
ap first will change the number of states to the left of q by one, by the defining
property of the annihilation operator in equation (2.66), aqap must have opposite
sign of apaq. By the symmetry of the anti-commutator, this must be true also
if q is to the left of p.

The final relation is true for p 6= q for essentially the same reasons as argued
for the two first relations. In the case p = q, one of the terms in the anti-
commutator will annihilate the state: a†pap if p is unoccupied in the state and
apa
†
p if p is occupied in the state. The term that does not annihilate the state

will return the same state since we either first remove p and then put it back,
or put in p and then remove it. The sign factor cancels when the two operators
are used successively.

Operators in second quantization The form of the operators in second
quantization are achieved be making sure expectation values are the same as in
first quantization. Expectation values must be the same since first and second
quantization formalism ought to describe the same physics, and any measurable
value must therefore be the same. We will here simply state how to construct
operators in second quantization. We will care only about to types of operators:
one-particle operators and two-particle operators. The one particle operators
may be expressed in a spin-orbital basis as

f̂ =
∑
PQ

fPQa
†
PaQ (2.68)

where

fPQ =
∫
dxφ∗P (x)f(x)φQ(x) (2.69)

Two-particle operators take the general form

f̂ = 1
2
∑
PQRS

gPQRSa
†
Pa
†
RaSaQ (2.70)
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with the two-particle integrals defined as

gPQRS =
∫
dx1dx2φ

∗
P (x1)φ∗R(x2)g(x1,x2)φQ(x1)φS(x2) (2.71)

The electronic Hamiltonian in second quantization may be expressed as a sum
of a constant term, a one-particle operator and a two-particle operator as

Ĥ =
∑
PQ

hPQa
†
PaQ + 1

2
∑
PQRS

gPQRSa
†
Pa
†
RaSaQ + hnuc (2.72)

The explicit form of the second quantized spin-free operators in a spatial orbital
basis can be obtained by integrating out the spin coordinates in the same way as
was done for the Fock matrix elements. We will state the general form only for
spin-independent operators since operators on this form will be used later. The
one-particle spin-free operator in spatial orbital basis takes the general form

f̂ =
∑
pq

fpqEpq (2.73)

where the lowercase indices refer to spatial orbitals and the singlet excitation
operator is defined as

Epq = a†pαaqα + a†pβaqβ (2.74)

Similarly, the two-particle operators in spatial orbital basis may be written

ĝ = 1
2
∑
pqrs

gpqrsepqrs (2.75)

where the two-particle excitation operator is defined as

epqrs =
∑
στ

a†pσa
†
rτasτaqσ = EpqErs− δqrEps (2.76)

The one-electron and two-electron integrals fpq and gpqrs are defined as in equa-
tions (2.69) and (2.71), but with purely spatial orbitals and integral variables.
The electronic Hamiltonian can be constructed in a spatial orbital basis by ex-
changing the operators in spin-orbital basis in equation (2.72) with the operators
in spatial orbital basis given in equations (2.73) and (2.75).
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2.3.2 Configuration Interaction
Due to the completeness of Slates determinants in the space of anti-symmetric
functions, it is possible to write the exact ground state wave function as a
linear combination of Slater determinants. The most straight forward way of
treating electron correlation is therefore a linear parameterization in the basis
of Slater determinants. This method is called configuration interaction (CI),
and typically follows a HF calculation from which the Slater determinants are
obtained. Using second quantization formalism, the state may be expressed as

|CI〉 =

C0 +
∑
IA

X̂A
I +

∑
I>J,A>B

X̂AB
IJ + . . .

 |HF 〉 (2.77)

where weighed excitation operators are defined as

X̂AB...
IJ... = CAB...IJ... a

†
Aa
†
B . . . aIaJ . . . (2.78)

The problem is thus reduced to finding the coefficients. Minimizing the energy
variationally gives a set of secular equations

HC = ESC (2.79)

and the CI wave function is found by diagonalizing H. However, the number of
possible Slater determinants scales exponentially with the system size. Some
simplification is achieved by including only those Slater determinants with cor-
rect spin and space symmetries, but full CI is still computationally infeasible
for anything but very small systems.

The computational effort may be massively reduced by truncating the sum
in equation (2.77) so that it excludes Slater determinants with an excitation
order higher than some threshold. Truncated CI however, suffers from slow
convergence in the errors as higher excitation levels are included. In addition, it
is not size-extensive, meaning that properties computed with the method does
not scale correctly with system size, even when the system is extended with
non-interacting subsystems. The issue with size-extensivity makes truncated
CI not only computationally problematic, but also physically dubious.

2.3.3 Coupled Cluster Theory
In this section, we will give a review of coupled cluster theory with special focus
on CCSD. In the coupled cluster method, the state is written on the form

|ΨCC〉 = exp
(
T̂
)
|Ψ0〉 (2.80)
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where Ψ0 is the Hartree-Fock ground state. The exponential of the operator is
defined by

exp
(
T̂
)

=
∞∑
m=0

T̂m

m! (2.81)

The cluster operator T̂ may be written on the form

T̂ =
N∑
n

T̂n (2.82)

where T̂n is a n-particle excitation operator on the form

T̂n =
(

1
n!

)2 ∑
i1,i2,...,in
a1,a2...,an

ta1a2...an
i1i2...in

a†a1
a†a2

...a†an
ain ...ai2ai1 (2.83)

Given a set of Hartree-Fock wave functions, the CC wave function is fully de-
termined by the excitation amplitudes ta1a2...an

i1i2...in
. The goal in CC calculations

is therefore to determine the excitation amplitudes. In practical calculations,
the sum in equation (2.82) is truncated, giving rise to various truncated CC
schemes. For example, excluding terms where n > 2 gives CCSD, excluding
n > 3 gives CCSDT and excluding n > 4 gives CCSDTQ, where S,D,T and Q
refers to single, double, triple and quadruple cluster operators.

To find a set of equations that may be solved, the Schrödinger equation with
the CC wave function ansatz is first multiplied from the left with exp

(
−T̂
)
, and

then projected down on the set of Hartree-Fock states, giving rise to an energy
equation and a set of amplitude equations

〈Φ0| exp
(
−T̂
)
Ĥ exp

(
T̂
)
|Φ0〉 = E (2.84)

〈
ΦAI
∣∣ exp

(
−T̂
)
Ĥ exp

(
T̂
)
|Φ0〉 = 0 (2.85)

where
∣∣ΦAI 〉 refers to the determinants with excitation orders corresponding to

the cluster excitation operators included in the scheme. The energy in equation
(2.84) is not in general the exact expectation value of the Hamiltonian with the
CC state, and the CC method is not variational. An exception occurs, however,
if the highest order excitation operator matches the number of electrons. In this
case, the CC method is exact.

The inclusion of the left-multiplication of exp
(
−T̂
)

before mapping lets us
utilize the Baker–Campbell–Hausdorff (BCH) expansion

exp
(
−Â
)
B̂ exp

(
Â
)

= B̂+
[
B̂, Â

]
+ 1

2!

[[
B̂, Â

]
, Â
]

+ 1
3!

[[[
B̂, Â

]
, Â
]
Â,
]

+ . . .

(2.86)
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Lets begin, however, with the energy expression in equation (2.84). We first note
that since the excitation operators acts de-excitations on a bra, the following
simplification holds

〈Φ0| exp
(
−T̂
)

= 〈Φ0| (2.87)

This is true since all de-excitations from virtual orbitals will destroy the bra-
state and leave only the constant term from the sum in equation (2.81). Further
simplifications can be made by noting that all terms with triple-excitation op-
erators and higher order excitation operators vanish from the orthogonality of
Slater-determinants since the Hamiltonian is a two-particle operator, only capa-
ble of maximum a double de-excitation. Furthermore, contributions from single-
excitation operators vanish due to the Brilluoin theorem (assuming optimized
HF ground state). By employing these simplifications, the energy expression
reads

E = 〈Φ0| Ĥ
(

1 + T̂2 + 1
2 T̂

2
1

)
|Φ0〉 = E0 + 〈Φ0| Ĥ

(
T̂2 + 1

2 T̂
2
1

)
|Φ0〉 (2.88)

Subtracting the Hartree-Fock ground state energy, E0 from the equation gives
an expression for the CC correlation energy

ECC,corr = 〈Φ0| Ĥ
(
T̂2 + 1

2 T̂
2
1

)
|Φ0〉 (2.89)

Closed-Shell equations For the explicit form of the equations we look only
at closed-shell calculations. Furthermore, for the amplitude we reduce the prob-
lem to that of MP2. Assuming a spin-0 reference determinant, we only want
spin-conserving excitations. The one and two-electron parts of the cluster op-
erator in equation (2.83) then takes the form

T̂1 =
∑
ia

tai Ê
a
i (2.90)

T̂2 = 1
2
∑
iajb

tabij Ê
a
i Ê

b
j (2.91)

where the spin-singlet excitation operators Êai = a†aαaiα+a†aβaiβ and the lower-
case indices refers to purely spatial orbitals.

Since the cluster operators acting on a bra destroys the state, equation 2.89 may
just as well be expressed in terms of commutators as

ECC,corr = 〈Φ0|
[
Ĥ, T̂2

]
+ 1

2

[[
Ĥ, T̂1

]
, T̂1

]
|Φ0〉 (2.92)
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Writing out the excitation operators in accordance with equations (2.90) and
(2.91) gives

ECC,corr = 1
2
∑
iajb

(tabij + tai t
b
j) 〈Φ0|

[
Ĥ, EajEbj

]
+
[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉 (2.93)

Furthermore, the expression

〈Φ0|
[
Ĥ, EajEbj

]
|Φ0〉 = 〈Φ0|

[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉 (2.94)

since the only difference between the commutator on the left and right side of
the equation involves excitation operator to the left, which destroys the state.
Utilizing this relation, equation (2.93) may be rewritten as

ECC,corr =
∑
iajb

(tabij + tai t
b
j) 〈Φ0|

[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉 (2.95)

By explicitly evaluating the commutators (shown in appendix A), the correlation
energy may be expressed as

Ecorr =
∑
ijab

(
tabij + tai t

b
j

)
(2giajb − gibja) (2.96)

In CCD and MP2 the terms including single amplitudes are gone.

Ecorr =
∑
ijab

tabij (2giajb − gibja) (2.97)

The amplitudes in this work are obtained with second-order Møller-Plesset the-
ory, as shown in the next section.

We finally mention some features of CC calculations. A great benefit of CC
is that CCD, CCSD, CCSDT and so on constitute a series of systematically
improving approximations to the solutions of the Schrödinger equation. The
improvements are more systematic and faster than for CI. The method is also
size-extensive for truncated schemes.

2.3.4 Møller-Plesset perturbation theory
In time-independent Rayleigh-Schrödinger perturbation theory it is assumed
that the time-independent Schrödinger equation is solved for some Hamiltonian
H0 that is in some sense not too different from the Hamiltonian H of the system
we want to solve for. The difference between the solved system and the target
system is then treated as a perturbation with a corresponding Hamiltonian H ′
such that H = H0 +H ′. Given a solved Schrödinger equation
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H0ψ0
n = E0

nψ
0
n (2.98)

an attempt of the exact wave function and energy is expanded in some parameter
λ as

ψn = ψ0
n + λψ1

n + λ2ψ2
n . . . (2.99)

and

En = E0
n + λE1

nλ
2E2

n . . . (2.100)

Putting this into the time-independent Schrödinger equation gives

H0ψ0
n + λ

(
H0ψ1

n +H ′ψ0
n

)
+ λ2 (H0ψ2

n +H ′ψ1
n

)
+ . . .

= E0
nψ

0
n + λ

(
E0
nψ

1
n + E1

nψ
0
n

)
+ λ2 (E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n

)
+ . . .

(2.101)

Equating terms of equal order gives equations of zeroth, first and second order,
and so on

H0ψ0
n − E0

nψ
0
n = 0 (2.102)

H0ψ1
n +H ′ψ0

n − E0
nψ

1
n − E1

nψ
0
n = 0 (2.103)

H0ψ2
n +H ′ψ1

n − E0
nψ

2
n − E1

nψ
1
n − E2

nψ
0
n = 0 (2.104)

The non-canonical MP2 amplitude equations Møller-Plesset perturba-
tion theory is an application of Rayleigh-Schrödinger perturbation theory where
we assume the solved system is that described by the Fock Hamiltonian, such
that the exact Hamiltonian is given by

H = H0 + V (2.105)

where V is referred to as the fluctuation potential. Equation (2.97) (given closed-
shell system and orbital basis) may be derived from equation (2.104) with the
amplitudes derived from equation (2.103). In the case where canonical HF
orbitals is used, the Fock matrix is diagonal and a closed-form solution may be
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obtained for the amplitudes, such that also second-order energy may be written
on a closed-form. For non-canonical HF orbitals, this is not possible and the
MP2 equations must be solved iteratively. In principle, {ψ0

n} is a complete set,
and we may write psi10 as a linear combination of the unperturbed functions.
Putting this into equation (2.103) gives

∑
m

(
H0 − E0

0
)
cmψ

0
m + (V − E1

0)ψ0
0 = 0 (2.106)

for the ground state. Only second-order amplitudes of second order in excitation
contributes, so we may replace

cn → tabij (2.107)

and

ψ0
n →

∣∣Ψab
ij

〉
(2.108)

Multiplying from the left with
〈
Ψab
ij

∣∣ and writing out the full summation then
gives

∑
k 6=i

〈
Ψab
ij

∣∣H0 ∣∣Ψab
kj

〉
tabkj +

∑
k 6=j

〈
Ψab
ij

∣∣H0 ∣∣Ψab
ik

〉
tabik

+
∑
c 6=a

〈
Ψab
ij

∣∣H0 ∣∣Ψcb
ij

〉
tcbij +

∑
c6=b

〈
Ψab
ij

∣∣H0 ∣∣Ψac
ij

〉
tacij

+
(〈

Ψab
ij

∣∣H0 ∣∣Ψab
ij

〉
− E0

0
)
tabij +

〈
Ψab
ij

∣∣V ∣∣Ψ0
0
〉

= 0

(2.109)

E0
0 is the sum of the occupied diagonal Fock matrix elements, and using the

Slater-Condon rules on all the other terms, the explicit form of the MP2 ampli-
tude equations may be expressed as

−
∑
k 6=i
〈i| f |k〉 tabkj −

∑
k 6=j
〈j| f |k〉 tabik

+
∑
c6=a
〈a| f |c〉 tcbij +

∑
c6=b
〈b| f |c〉 tacij

+ (〈a| f |a〉+ 〈b| f |b〉 − 〈i| f |i〉 − 〈j| f |j〉) tabij + (ia|jb) = 0

(2.110)

Finally, this expression may be made nicer by including the diagonal Fock matrix
elements in the sums and replacing 〈p| f |q〉 → fpq, which gives
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∑
k

fikt
ab
kj +

∑
k

fjkt
ab
ik +

∑
c

fact
cb
ij +

∑
c

fbct
ac
ij + (ia|jb) = 0 (2.111)

The left hand side of this equation is itself a component of the residual tensor
Rabij . Using this notation, the amplitude equations simply reads

Rabij = 0 (2.112)

A downside with MPPT is that it sometimes struggles with convergence prob-
lems, especially for higher orders. Also, it does not have systematic improve-
ments as the order is increased in the same way as CC schemes. All the terms
in equation (2.111) also appears in the CCSD doubles amplitude equations, and
in this work we treat MP2 as lowest order of the CC schemes.

2.4 Local orbitals
Local orbitals are crucial for local correlation methods, and the locality may
greatly affect the possibility of performing small enough cutoffs on orbital spaces
and pair calculations to make the local correlation methods computationally
feasible. In this section we present some methods for obtaining local orbitals
and measuring orbital locality. We then present Wannier functions, which are
local orbitals for periodic systems.

2.4.1 Definitions of local orbitals
As there are infinitely many choices for sets of occupied HF orbitals and different
ways of measuring orbital locality and spreads, a local HF MO is not uniquely
defined. In practice, a canonical HF calculation is usually first carried out,
and the HF MOs are then subsequently localized by a unitary transformation
of the orbitals that optimizes a localization functional. We will mention three
localization schemes here: Boys, Pipek-Mezey and Edmiston-Ruedenberg.

The localization functional may be a sum of central moments, or powers of
central moments. Generally, such a localization functional may be expressed as

ξnm =
∑
p

〈p| (r̂ − 〈p| r̂ |p〉)m |p〉n (2.113)

Most commonly, both m and n are set to 1, which gives the Boys (sometimes
Foster-Boys) localization functional. However, increasing the value of m typi-
cally gives orbitals with smaller tail spread. Furthermore, higher values for n
tends to punish outlier orbitals and give set of orbitals with more even distri-
bution of orbital spreads. [10]

In the Pipek-Mezey functional [11] the sum of squared population charges (orig-
inally Mulliken charges) is maximized. Generally, this may be expressed as
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ξ =
N∑
p=1

∑
A

∑
µ∈A
〈p| P̂µ |p〉

 (2.114)

where p is an orbital index (of either a set of occupied or virtual orbitals), A is
an atom, µ an atomic orbital and P̂µ a projector, for instance for Mulliken or
Löwdin population.

Finally, the Edmiston-Ruedenberg functional is a self-repulsion integral given
by

ξ =
∑
p

〈pp| r−1
12 |pp〉 (2.115)

that is maximized to give local orbitals.

As a measurement of the locality of an orbital, we use the second-central moment

σ2 = 〈p| (r̂ − 〈p| r̂ |p〉)2 |p〉 (2.116)

and we denote

σ =
(
〈p| (r̂ − 〈p| r̂ |p〉)2 |p〉

)1/2 (2.117)

the orbital spread. We note, however, that this is a definition, and that the
measured locality is not uniquely defined.

2.4.2 Wannier functions
Wannier functions are real-space formulations of wave functions in systems with
periodic boundary conditions, and takes essentially the role of local MOs in sys-
tems of periodic boundary conditions. Here, we shall use them in the context of
local correlation methods, but they have also been used to study bond structures
and polarization. [12], [13] Given a set of Bloch functions defined in equation
(2.62), Wannier functions are generated by a Fourier transform according to

ψRn(r) = V

(2π)3

∫
BZ

ψnk(r) exp(−ik ·R)dk (2.118)

= V

(2π)3

∫
BZ

unk(r) exp(ik · (r −R))dk (2.119)

where the integration is over the Brillouin zone and R is a unit cell coordinate.
Since the Bloch functions unk(r) have the same periodicity as the crystal, the
two Wannier functions with the same label n in two different unit cells R and
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R′ are related by a simple translation according to ψR′n(r) = ψRn(r − (R′ −
R)) = ψ0n(r−R′). All Wannier functions may therefore be generator by simple
translations from a set of Wannier functions in a reference cell. For a position r′
such that |r −R| is a large number, the exponential factor will vary quickly as
we integrate along k. This corresponds to a rapid rotation around the unit circle
in the complex plane. Since unk is a smooth function of k, any contribution
to the integral will quickly be canceled by neighboring contributions where the
exponential factor has a value corresponding to the opposite side of the unit
circle. The magnitude of the value of the Wannier function will therefore be
small. Thus, Wannier functions are in some sense local, having significant values
only close to the unit cell they are associated with.

In fact there are more degrees of freedom available for localization. Similarly
to the unitary transformation of spin-orbital in molecular systems as shown in
equation (2.50), we now the possibility of unitary transformations at each k
point, according to

ψRn(r) = V

(2π)3

∫
BZ

∑
m

Uk
mnψnk(r) exp(−ik ·R)dk (2.120)

This form of unitary transformations may further improve on the locality of
Wannier functions.

With BvK boundary conditions, the Wannier functions are generated by a sum

ψRn(r) = 1√
N

∑
k

ψnk(r) exp(−ik ·R) (2.121)

where N is the number of primitive unit cells in the BvK cell. Let B be a
vector whose components are integer numbers of the side lengths of the BvK
cell. Since the Bloch wave functions satisfies the translational symmetry condi-
tion ψnk(r) = ψnk(r −B), this must now also be true for Wannier functions:
ψnR(r) = ψnR(r −B). The Wannier functions are thus local only within the
BvK cell, and may similarly be normalized within the BvK cell.

Finally, we note that the Wannier functions are translationally orthogonal. This
can be shown from the orthogonality of the Block functions (who must be or-
thogonal at k-values of different energies since they are eigenfunctions of some

32



Hamiltonian operator) by

〈ψnR|ψnR′〉 =
∫
BvK

ψnR(r)∗ψnR′(r)dr

= 1
N

∑
kk′

∫
BvK

exp(ik ·R)ψnk(r) exp(−ik′ ·R′)ψnk′(r)dr

= 1
N

∑
kk′

∫
BvK

exp(ik ·R) exp(−ik′ ·R′)δk.k′

= 1
N

∑
k

∫
BvK

exp(ik · (R−R′)) = δR,R′

(2.122)

This is a rather strict orthogonality requirement not present in normal molecular
calculations, and may affect the localizability significantly. In particular, long
tails with complicated nodal structure may be enforced on the orbitals in order
to satisfy the orthogonality condition.

2.5 Local Correlation Methods
Local correlation methods seek to achieve reduced scaling by exploiting the
locality of electron correlation, the ultimate goal being methods that scales
linearly in the computational resources with increased system size.

The DEC algorithm, as to be described in the forthcoming section, belongs to a
class of methods that split the system into smaller parts for which the amplitude
equations are solved individually.

2.5.1 The DEC algorithm
In the original DEC algorithm [14], the correlation energy expression is parti-
tioned by which atoms the occupied orbitals in the two-particle integrals are
associated with. The correlation energy expression in equation (2.96) may then
conveniently be reformulated as

Ecorr =
∑
P

EP +
∑
P>Q

∆EPQ (2.123)

where the atomic fragment energies EP and pair fragment energies are defined
as

EP =
∑
ij∈P

∑
ab

(
tabij + tai t

b
j

)
(2giajb − gibja) (2.124)

∆EPQ =
∑

ij∈P∪Q

∑
ab

(
tabij + tai t

b
j

)
(2giajb − gibja)− EP − EQ (2.125)
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In the DEC algorithm, the atomic fragment energy of atom P in equation
(2.124) is computed using only those occupied orbitals that, by some means,
are associated with atom P. An occupied orbital may be associated with an
atom that is closest to its center of charge, but also other criteria, like Mulliken
charges may be used. The virtual space is limited to orbitals that are spatially
close, and is expanded until the fragment energy converges within a threshold.
The space of occupied and virtual orbitals used to calculate a fragment energy
is denoted the energy orbital space (EOS). The amplitude equations in equation
2.111) are solved for each atomic fragment, and space for which the amplitudes
are solved for a fragment i called the amplitude orbital space (AOS). Compared
to the EOS, an extra buffer regions is included for the orbitals in the AOS.

For the pair energies ∆EPQ in equation (2.125), the union of the orbital of
fragment P and Q is employed. With the extra truncation in the virtual spaces,
the fragment energies and pair fragments energies may be expressed as

EP =
∑
ij∈P

∑
ab∈[P ]

(
tabij + tai t

b
j

)
(2giajb − gibja) (2.126)

∆EPQ =
∑

ij∈P∪Q

∑
ab∈[P ]∪[Q]

(
tabij + tai t

b
j

)
(2giajb − gibja)− EP − EQ (2.127)

where [P ] denotes the virtual EOS of atom P . Both the virtual space of the
atomic fragments, and the occupied and virtual buffer regions are expanded until
the energy change is smaller than some threshold called the fragment optimiza-
tion threshold (FOT). The central idea is that the total error in the correlation
energy should be determined solely by the FOT.

2.5.2 Extended DEC
The Extended DEC (XDEC) algorithm [5] is an extension of the DEC algorithm
to systems with periodic boundary conditions. Formally, the difference from
the original DEC algorithm lies mainly in a redefinition of the local MOs. In
addition, an alteration of the equations are necessary, so that they capture the
physical aspects of the periodic system. This may be done either by solving
for a big chunk of the system as a cluster, or by reformulating the energy and
amplitude equation to a periodic form (see section 2.5.3). For the local occupied
MOs, the Wannier functions defined by equation (2.121) are used. For virtual
orbitals, either Wannier functions or PAOs defined in equations (2.149).

The correlation energy is calculated for a reference unit cell. The energy ex-
pression may now be formulated as

Ecorr =
∑
P

EP0 +
∑
P<Q

∆EP0,Q0 +
∑
PQ

∑
L6=0

∆EP0,QL (2.128)

where L is a lattice coordinate and 0 is taken to be the reference cell for which
the correlation energy is calculated. The amplitudes are found by solving equa-
tion (2.137) for each fragment.
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As for pair fragments, the amplitude equations are solved in the union of the
fragment spaces. Buffer amplitudes are used only for the occupied indices, since
virtual buffer amplitudes seem have little effect.

2.5.3 Two versions of the XDEC code
There exist two implementations of XDEC. The work with interpolating pair
energies were originally done with the original implementation as described in
reference [5], and later implemented in the new implementation of XDEC. A de-
scription of the characteristics of the two implementations is therefore justified.
In this section, the key differences between the two XDEC implementations are
laid out.

In the original implementation, the equations are solved essentially as for a
cluster, and the symmetries in the two-particle matrix

g(0p, (Q−P) q, (R −P) r, (S−P) s) = g(Pp,Qq,Rr,Ss), (2.129)

are not utilized. In addition, the Wannier functions are fitted on a subset of the
original set of AOs. This subset is denoted an orbital extent. Density fitting is
done on a fragment level.

In the newly developed XDEC code, the symmetries in 2.129 are utilized such
that one lattice index may be removed. In addition, the density fitting is done
periodically, instead of on a fragment level. In the process of finding the coef-
ficients of the density fitting, the Coulomb matrix in the basis of the auxiliary
basis must be inverted. However, this becomes a scaling wall due to the slow
convergence of the matrix elements with increasing distance. The fitting is
therefore done with an attenuated Coulomb operator [15] defined as

erfc(ωr)
r

= 1
r
− erf(ωr)

r
(2.130)

If the attenuation parameter ω is chosen to be zero, the Coulomb operator is
retained. For positive non-zero values, the effect of the error function is to
undermine the long-distance values. This introduces another parameter that
affects the accuracy of the calculation. If this parameter is chosen sufficiently
small, however, the errors may be made negligible at the expense of increase in
computation time and memory.

Another difference is in the fragmentation. In the original implementation,
atomic fragments where always used. In the new version, the fragmentation
is more flexible, but the standard scheme is based on proximity between the
orbitals, and the orbitals are not assigned to atoms.

2.5.4 A detail about the orbital spaces for pair fragments
Due to the relevance for the cutoff algorithm, we will mention a detail about
the AOSs that are used for pairs in the new XDEC program.
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The amplitudes for the pairs are supposed to be solved in a AOS that the union
of the AOS of each of the fragments. That is, an AOS ωPQ for the pair P,Q is
defined by ωPQ =

¯
P0 ∪

¯
QN ∪ [P0] ∪ [QN ], buffer amplitudes are included in

¯
P0

and
¯
QN .

In the new XDEC program, the first occupied indices for the amplitude tensors
are only stored for the reference cell. This may be resolved by replacing the
relevant missing excitations from

¯
QN to P0 with excitations from

¯
Q0 to P−N .

In the implementation this forces the overlapping buffer amplitudes of [P̂ ] and
[P̂ ] to be equal. With the imposed cutoffs in the orbital spaces in the DEC
algorithm, however, these amplitudes should be allowed to differ somewhat.
This issue leads to a loss of translational symmetry of the pairs in the sense
that ∆E0P,NQ 6= ∆E−NP,0Q.

As a solution, the new XDEC program solves the amplitude equations in the
orbital space defined by ωPQ = ωPQ,−N ∪ ωPQ,0 ∪ ωPQ,N , where ωPQ,N =

¯
PN ∪

¯
QN ∪ [PN ] ∪ [QN ]

When solving the amplitude equations for in this space, the amplitudes for
computing ∆E0P,NQ, ∆E0Q,NP , ∆E0P,NP and ∆E0Q,NQ are obtained simul-
taneously. At this point, it is therefore computationally cheap to calculate the
energy for all four pairs simultaneously.

2.5.5 General fragments
The fragmentation of the occupied and virtual orbital spaces are possible due
to the gradual decoupling of any two amplitudes when their indices refer to sets
of orbitals that are separated by an increasing distance. The fragmentation is
therefore simply a splitting of the system up in subsystems where we assume
that the amplitudes in each subsystem are essentially non-coupled to amplitudes
in the other subsystems. The buffer amplitudes are introduced since the sets
of amplitudes are not completely decoupled. From this perspective, however,
the atomic fragmentation is just an example of how the fragmentation may be
done automatically, and we will here briefly mention some other methods of
fragmentation that can be useful in periodic systems.

A key feature of a fragment is that the set of occupied orbitals, and consequently
the virtual orbitals, is local in the sense that all the orbitals decay to zero at
points in space sufficiently far away from any occupied orbital in the fragment.

An alternative approach to generating fragments used in the new XDEC code
is to start with one initial occupied orbital, and include in the fragment all
occupied orbitals closer than a given distance. This is repeated for the orbitals
that has yet to be included in a fragment until all occupied orbitals have been
assigned to a fragment.

It is also possible to make one fragment for each occupied MO.

The previously described fragmentation schemes make sense in molecular sys-
tems and periodic systems with large unit cells since they all generate local
fragments. These schemes have also been used in periodic systems with small
unit cells. In these systems, however, it may make sense to include all the occu-
pied orbitals in the unit cell in on fragment, since this set of orbitals is already
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local. This will, depending on the size of the unit cell, create larger fragments.
On the other hand, it may dramatically reduce the number of pair calculations.

2.5.6 Another example of a fragmentation based method
The various local correlation methods varies in how the equations are sliced up,
how the virtual space is represented, or other approximation made, like extent
fitting or attenuated fitting. The way of slicing up the energy equation in the
DEC algorithm as shown in equation (2.123) and in periodic form in equation
(2.128) is just an example of how the equation may be split up. In the CiM
algorithm [16], [4], which is another notable fragmentation method, the energy
expression is written as

Ecorr =
∑
i

∆Ei (2.131)

where ∆Ei is defined as

∆Ei =
∑
jab

(ia|jb) tabij (2.132)

Given that atomic fragmentation is used, the DEC algorithm divides the corre-
lation energies into the interactions on each atom, and the interactions between
atoms. The CiM algorithm on the other hand, splits up the energy into the con-
tribution from a occupied orbital and the interaction of this occupied orbital.
This contribution for each occupied MO is summed up.

2.6 MP2 equations in periodic systems
In this work we will look at the effect of using PAOs as virtual orbitals. The
PAOs are non-orthogonal to each other, and non-orthogonal virtual orbitals
cannot be directly used in the MP2 amplitude equations presented previously.
There are mainly two ways to deal with the non-orthogonality. Either, the
orbitals must be orthogonalized, for instance made pseudo-canonical, or the non-
orthogonality must be accounted for in the equations. Here, we take the latter
approach. First however, the structure of block Toeplitz matrices is presented.

2.6.1 Block Toeplitz matrices
Block Toeplitz matrices are important for the theoretical description of periodic
systems, and will be presented in this section.

A Toeplitz matrix is a matrix where all elements along any given chosen diagonal
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is equal. An infinite Toeplitz matrix can be written on the form

A =



. . .
...

...
...

...
... . .

.

. . . a0 a1 a2 a3 a4 . . .

. . . a−1 a0 a1 a2 a3 . . .

. . . a−2 a−1 a0 a1 a2 . . .

. . . a−3 a−2 a−1 a0 a1 . . .

. . . a−4 a−3 a−2 a−1 a0 . . .

. .
. ...

...
...

...
...

. . .


(2.133)

In a Block Toeplitz matrix, the elements ai are themselves matrices referred
to as blocks. The block Toeplitz matrices occurs naturally in the description
of 1D periodic systems since matrices like the periodic overlap matrix SIi,Jj

or the periodic Fock matrix FIi,Jj may by organized such that the cell index
refers to blocks while the orbital indices refers to single matrix elements within
each block. In 2D and 3D systems, such properties can be written on a block
Toeplitz form by an appropriate flattening of the lattice indices. Figure 2.1
shows an idealized illustration of the typical block Toeplitz structure of periodic
matrices, where the color signifies the magnitude of the elements in each block.
It is assumed that the blocks are ordered such that the distance between cells
increases with increased distance between the blocks and the main diagonal.

Since the periodic systems are assumed to be infinite, the Toeplitz matrices are
also in principle infinitely large. In most cases, the magnitude of the elements
decreases with distance from the diagonal, and from an implementation point of
view, only block with elements larger than a given tolerance needs to be stored.
It is also apparent that only one row or one column of blocks defines the whole
matrix, and only one row or one column needs to be stored.

The periodic matrices have the translational symmetry

aIi,Jj = a(I−R)i,(J−R)j (2.134)

which can be used to reduce the dimensionality in the following manner

aIi,Jj = a0i,(J−I)j =: aJ−I
ij (2.135)

This is the form in which the Toeplitz matrices are stored in the XDEC program.

2.6.2 MP2 equations in periodic systems
We may extend the energy and amplitude equations given in equations (2.97)
and (2.111) to periodic systems by including sums over lattice indices L. The
closed-shell CC correlation energy expression for the reference cell then reads

Ecorr,MP2 =
∑

iAaJjBb

(
2tAa,Bb

0i,Jj g
Aa,Bb
0i,Jj − t

Aa,Bb
0i,Jj g

Bb,Aa
0i,Jj

)
(2.136)
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Figure 2.1: An idealized illustration of the typical structure of a block Toeplitz
matrix of a periodic system. Each block represent a matrix for some property
between two lattice cells. The blocks are assumed to be ordered such that the
distance between cells increases with the distance from the diagonal blocks of
the matrix.
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Figure 2.2: Visual illustration of the translational symmetry of the Toeplitz
matrices and amplitude tensors in a periodic lattice. Sets of two or four orbitals
always have a symmetry equivalent set relative to the reference cell, which is
marked with red lines.

The periodic non-canonical MP2 amplitude equations can similarly be formu-
lated as

0 = (Ii,Aa|Jj,Bb) +
∑
Cc

tCc,Bb
Ii,Jj fAa,Cc +

∑
Cc

tAa,CcIiJj fBb,Cc (2.137)

−
∑
Kk

tAa,Bb
Kk,JjfKk,Ii −

∑
Kk

tAa,Bb
Ii,Kk fKk,Jj . (2.138)

We note that for any lattice translation vector R, we have the following trans-
lational symmetries in the tensors with two and four cell vector indices:

SIi,Jj = S(I−R)i,(J−R)j (2.139)

tAa,Bb
Ii,Jj = t

(A−R)a,(B−R)b
(I−R)i,(J−R)j (2.140)

The overlap matrix and amplitude tensors are used as examples here, but the
same symmetries are true for any tensor on the with translational symmetry.
We may use this symmetry to reduce the dimensionality of the tensors. In
equations (2.139) and (2.140) for example, we may translate the tensors by the
vector I to obtain

SIi,Jj = S0i,(J−I)j =: SJ−I
ij (2.141)

tAa,Bb
Ii,Jj = t

(A−I)a,(B−I)b
0i,(J−I)j (2.142)
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This is the form in which the tensors are stored in the XDEC program. Using
this form of the tensors, we only need the residuals of the form RAa,Bb

0i,Jj , and the
amplitude equations given in equation 2.137 may be reformulated as

0 = (0i,Aa|Jj,Bb) +
∑
Cc

tCc,Bb
0i,Jj f

C−A
ac +

∑
Cc

tAa,Cc0i,Jj f
C−B
bc (2.143)

−
∑
Kk

t
(A−K)a,(B−K)b
0k,(J−K)j f−K

ki −
∑
Kk

tAa,Bb
0i,Kk f

J−K
kj . (2.144)

From an implementation point of view, the term of the form

∑
Kk

t
(A−K)a,(B−K)b
0k,(J−K)j f−K

ki (2.145)

is the most challenging. By utilizing the symmetry

tAa,Bb
Kk,Jj = tBb,Aa

Jj,Kk (2.146)

and then translate the tensor by J such that

tBb,Aa
Jj,Kk = t

(B−J)b,(A−J)a
0j,(K−J)k (2.147)

the contraction in equation (2.145) may alternatively be expressed as

∑
Kk

t
(A−J)a,(B−J)b
0j,(K−J)k f−K

ki (2.148)

This form has the apparent advantage of only summing over one index in the
amplitude tensor, but the difference in implementation is of minor importance.

2.6.3 Projected Atomic Orbitals
The occupied and virtual orbital spaces are vector spaces, and in principle any
set of functions that span either the occupied or virtual spaces can be used as a
basis. To span the virtual space, we may use PAOs instead of virtual Wannier
functions. A PAO is generated from an AO by projecting out the portion of the
AO in the occupied space

∣∣φPAOµ

〉
=
∑
i

(1− |i〉 〈i|) |µ〉 (2.149)

The PAOs are orthogonal to the occupied space, as can be seen by

〈
j
∣∣φPAOµ

〉
= 〈j|

(∑
i

(1− |i〉 〈i|) |µ〉
)

= 〈j|µ〉 −
∑
i

〈j|i〉 〈i|µ〉 (2.150)

=
∑
i

δji 〈i|µ〉 = 〈j|µ〉 − 〈j|µ〉 = 0 (2.151)
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We can generate as many PAOs as there are AOs, and the PAOs therefore
constitute a non-orthogonal and linearly depend basis set for the virtual space.
This must be taken into account when the equations of some correlation method
are solved, either by orthogonalization and elimination of linearly dependency,
or by altering the equations. The latter approached has been implemented in
XDEC and is described for non-canonical MP2 in the next section.

2.6.4 MP2 equations with non-orthogonal virtual basis
functions

The non-orthogonal MP2 amplitude equations with non-orthogonal virtual basis
functions for a periodic system are [17]

ΩMP2(t) = (0iAa|JjBb) +AAa,Bb
0i,Jj (t) +BAa,Bb

0i,Jj (t) = 0 (2.152)

where the terms AAa,Bb
0i,Jj (t) and BAa,Bb

0i,Jj (t) are defined as

AAa,Bb
0i,Jj =

∑
CD

∑
cd

fC−A
ac tCc,Dd

0i,Jj SB−D
db +

∑
CD

∑
cd

SC−A
ac tCc,Dd

0i,Jj fB−D
db (2.153)

BAa,Bb
0i,Jj = −

∑
CD

∑
cd

SC−A
ac β′Cc,Dd

0i,Jj SB−D
db −

∑
CD

∑
cd

SC−A
ac β′′Cc,Dd

0i,Jj SB−D
db

(2.154)

where β′Cc,Dd
0i,Jj and β′′Cc,Dd

0i,Jj are given by

β′Cc,Dd
0i,Jj =

∑
Kk

fJ−K
jk tCc,Dd

0i,Kk (2.155)

β′′Cc,Dd
0i,Jj =

∑
Kk

fK
ik t

C−Kc,D−Kd
0k,J−Kj (2.156)

The equations may alternatively be formulated using the transformed ampli-
tudes [18]

t̄Aa,Bb
Ii,Jj =

∑
CcDd

SC−A
ac tCc,Dd

Ii,Jj SB−D
db (2.157)

where the term BAa,Bb
0i,Jj now may be expressed as

BAa,Bb
0i,Jj = −

∑
Kk

fK−I
ik t̄A−Ka,B−Kb

0k,J−Kj −
∑
Kk

t̄Aa,Bb
0i,Kk f

J−K
kj (2.158)

42



2.7 Pair energy decay and cutoff
2.7.1 Decay of the pair energy with local orbitals
As equation (2.96) shows, the correlation energy in CC and MP2 calculations
are essentially determined by integrals of the form

giajb = (ia|jb) =
∫
dr1dr2φi(r1)∗φa(r1)r−1

12 φj(r2)∗φb(r2) (2.159)

were we may interpret the function products as density distributions, ρia(r) =
φi(r)∗φa(r). Each of the orbitals involved in the integral are in some sense
spatially localized, and these density distributions will consequently vanish if
the center of φi is far enough away from the center of φa. As a result, the
integral in equation (2.159) will be zero. We may therefore limit the excitation
space of an occupied orbital to include only virtual orbitals that are spatially
close.

The integral also vanished if the two density distributions ρia and ρjb are suf-
ficiently separated, in which case the product ρia(r1)ρjb(r2) only will have sig-
nificant values when r−1

12 is very small. By a multipole expansions, the integrals
may be shown to decay with distance as r−3 when the distance separation is
sufficiently large. [19], [20]

The resulting pair energies decay as r−6 as its essentially a product of the two-
particle integral and an amplitude determined predominantly by the two-particle
integral. As mentioned before, we may therefore impose a cutoff for computation
of the correlation energy for pairs of occupied orbitals, or fragments in the DEC
algorithm.

2.7.2 Test systems
In this section, some test systems that will be used in the following sections
are presented. The model systems are simple, but has certain interesting fea-
tures, and they reflect what until recently have been computationally feasible
to calculate in the XDEC codes.

The computationally simplest system we will use is the 1D ethylene system
illustrated in figure 2.3. This system is not physically stable under normal
condition, but serves as computationally cheap system that still has the ability
to illustrate important features of the pair energy behavior.

We also use two 2D ethylene systems created from the 1D ethylene system by
adding another axis with periodicity. In one of the systems, which we will refer
to as flat 2D ethylene, the second axis is perpendicular to the periodic axis in
1D ethylene, but in the molecular plane. This is illustrated in figure 2.5. In the
other system, the second periodic axis is perpendicular to the periodic axis in
1D ethylene and perpendicular to the molecular plane. This system, which we
refer to as stacked 2D ethylene, is illustrated in figure 2.4. The ethylene systems
are especially interesting due to the strongly directional covalent bonds within
the ethylene molecules, which may cause significant angle dependencies in the
pair energies.
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Figure 2.3: Visualization of the 1D ethylene test system.

Finally we use a 3D LiH system with a rock salt structure. The primitive unit
cell is shown in figure 2.6. The LiH system is interesting since the amount of
pair computation is particularly problematic in 3D systems. Moreover, it is a
realistic system.

2.7.3 Pair cutoff and the magnitude of pair energies
One main difference between molecular systems and periodic systems is the lack
of edges on the periodic system. As a consequence, there is always in principle
infinitely many pairs, and a pair cutoff is necessary for the possibility of doing
calculation even on systems with few atoms in the reference cell. The biggest
problem appears in 3D systems, where the number of pairs scales cubically with
the cutoff distance. Figure 2.7 shows a plot of the number of pairs as a function
of the cutoff distance in LiH 3D. The number of pairs quickly becomes large,
massively increasing the computation time. Choosing a large cutoff to be on
the safe side on the accuracy may therefore make the computation infeasible.

Even though the decay of pair energies at long distances goes as r−6, there may
be a large difference in energy for different pairs at any given distance. This is
clearly seen in for instance figure 2.8, where pair correlation energy is shown as
a function of pair distance in the 3D LiH system. It is worth mentioning here
that due to the symmetry of the system, there are several (potentially many)
pairs for each point in figure 2.8. If a purely distance-based cutoff is imposed,
the cutoff will be done as illustrated at the top in figure 2.9, but in this case we
compute many pairs that does not contribute significantly to the energy, and
leave out many pairs that contribute a lot more.

Because of this, we ideally want to do a horizontal cutoff as illustrated in the
middle of figure 2.9 instead. In addition, we want an estimate of the correlation
energy that is not regained as result of leaving out the pairs in the red area.
The main issue is of course that in a calculation situation, those pairs are not
calculated and we therefore do not know their exact values.

44



Figure 2.4: Visualization of the flat 2D ethylene test system.

Figure 2.5: Visualization of the stacked 2D ethylene test system.
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Figure 2.6: Visualization of the primitive unit cell of the 3D LiH test system.

Figure 2.7: Number of pairs as function of cutoff distance in 3D LiH with a
lattice parameter for the primitive unit cell of 2.8874 Å.
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Another feature of periodic systems that distinguishes them from molecular
systems is that pairs repeat regularly at various distances and angles. It may
therefore be fruitful to look for patterns in the behaviour of similar pairs as a
function of distances and angles.

The approach we take to try to mimic the horizontal type of cutoff is to attempt
to sort the pairs into groups based on characteristics of the involved fragments
known before the computation, and then interpolate on each of the groups such
that a pair cutoff can be given for each group separately. The details of how this
is done in the implementation is described in section 3.2.4, but as an example,
figure 2.10 shows that the pairs in LiH can be sorted by atomic type when
atomic fragments are used. With respect to the interpolation, we cannot just
start calculating from the smallest distance for each group, but instead we need
some pairs at relatively large distances and intermediate distances.

The main idea behind the cutoff algorithm presented here is to initially compute
some of the pairs at both short, intermediate and large pair distance for each
group to get an outline of the pair energy behaviour as function of distance, and
then interpolate on the pairs. We use smoothed cubic spline for this matter. The
interpolation curves are used to estimate the pair energy of the pairs that are not
yet computed within some sufficiently large interpolation domain. We use these
estimated energies to both estimate the remaining pair energy, and from that
a cutoff, and to determine which pair to calculate at any time. This situation
including some illustrative spline curves is shown in figure at the bottom of 2.9.
Since we always compute the pair with the largest estimated energy and can
estimate the energy of the pairs not yet computed, we get a method reminiscent
of the ideal horizontal cutoff scenario described above.

A similar trend of that seen for LiH in figure 2.10 is seen in the similar plot for
2d ethylene in figure 2.12. In this case, however, the C atoms are divided into
C4 and C5 with dramatically different pair energies. The reason for this is that
the C5 fragment has be given both the C-C bond orbitals. Furthermore, there
is a significant spread in the C-C pair energies at a given distance. As seen in
figure 2.11, most of this may be explained by angle dependencies. This angle
dependency stems from the large deviation from spherical symmetry in the C-C
bond orbitals. For a given distance, the energy therefore depends on the nature
of the fragments involved, along the relative angles between them.

We may therefore attempt to write the pair energy for a given distance as a
function of the set of orbitals defined by the fragment, and a set of angles.

EAB (φA, θA, αA, φB , θB , αB ; rAB) (2.160)

where φA and θA are the azimuthal and polar angles of fragment A on the
interfragment axis between fragment A and B. That this angle is relative to
the A − B axis is assumed implicitly, and not included in the notation. The
direction of the fragment must be defined somehow, for instance by the direction
of largest spread of the least local orbital. αA is a rotational angle around the
axis along the direction of the fragment.
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Figure 2.8: Pair-fragment energies for 3D LiH as function of distance. The MP2
calculations were done using the original XDEC code with FOT = 10−3 Hartree,
extent tolerance = 10−3 and a pair cutoff distance of 25 Bohr. Logarithmic scale
is used on both axes.

With this notation, the plot in figure 2.11 shows the angles θA and θB , which
are always equal in this case due to the symmetry of the system. The other
angles are constant, and as such, this case represents a quite simple case. The
more general case in three dimensions is significantly more complicated, and
may have to be simplified in order to be practically useful.

2.7.4 Pair energies and orbital spread
We see a strong relationship between the pair energies and the orbital spreads
(equation (2.117)) of the occupied orbitals. The general trend is that a larger
orbital spread gives a larger pair energy at a given distance. As an example,
the occupied orbital on Hydrogen in figure 2.10 has an orbital spread of 1.917
while the orbital spread of the occupied orbital on Li is 0.671. The H-H pairs
energies are correspondingly about two orders of magnitude greater than the
Li-Li pair energies at any fixed distance. Similarly, the binding orbitals in the
Carbon fragments in figure 3.1 has an orbital spread of 1.806 compared to that
of 1.517 for the occupied orbitals on the Hydrogen atoms. The C-C energies are
correspondingly larger than the H-H energies for a given distance.

We may also use orbital spreads to study the angular dependencies of a pair.
The expression for the second central moment in equation (2.116) can be refor-
mulated as
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Figure 2.9: Illustration of a distance based vertical cutoff at 10 Bohr (top),
an ideal horizontal cutoff (middle) and an interpolation based horizontal cutoff
(bottom) of pair energies in 3D LiH. The pairs in the red area (and pairs at
larger distances in the vertical cutoff or lower energies in the horizontal cutoff)
would be left out of the calculation.
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Figure 2.10: Pair-fragment energy for 3D LiH as function of interfragment dis-
tance where the pairs are sorted by the atoms involved in the pairs.

σ2 = σ2
x + σ2

y + σ2
z (2.161)

where

σ2
x = 〈p| (x̂− 〈p| x̂ |p〉)2 |p〉 (2.162)

and σx is the spread along the x-axis. The spread along the y-axis and z-axis
is defined in the same way. The Cartesian axes are arbitrarily defined, and the
computation of orbital spread can be projected onto any axis defined by a unit
vector e as

σ2 = 〈p| (r̂ · e− 〈p| r̂ · e |p〉)2 |p〉 (2.163)

This will generally require computation of matrix elements of products of x̂, ŷ
and ẑ.

For orbitals with significant angular dependency as seen in figure 2.11, we have
seen a correlation between the pair energy and the orbital spread along the
interfragment axis. As a simple example, the orbital spread in of the C-C
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Figure 2.11: Energy vs distance plot for the C5-C5 pairs in flat 2D ethylene.
Left: no additional sorting, middle: sorted into two groups distinguished by an
angle smaller or greater that 2π/8 from the polymer direction, right: sorted into
nine groups, each with a range of 10o angles from 0o to 90o from the polymer
direction.
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Figure 2.12: Energy versus distance plot for flat 2D ethylene (left) and stacked
2D ethylene (right). The MP2 calculations were done using the original XDEC
code with FOT = 10−3 Hartree, extent tolerance = 10−3 and a pair cutoff
distance of 100 Bohr. Logarithmic scale is used on both axes.

bond orbitals in figure 2.11 are 1.184 in the x-direction (0◦) and 0.831 in the
y-direction (90◦).

As another interesting example, we may look at the H-H pairs in the flat and
stacked 2D ethylene systems with pair energies plotted in figure 2.12. Figure
2.13 shows only the H-H pairs for these system with pairs exactly along the
x-axis and y-axis highlighted. The x-axis is along the polymer axis, while the
y-axis in both instances is in the direction that is perpendicular to the x-axis
and has periodicity.

In the stacked 2D ethylene system shown at the bottom in figure 2.13, the or-
bital spread is greatest in the polymer direction where it is 0.867 compared to
0.806 perpendicular to the polymer, and the pair energies generally lies a bit
higher in the polymer direction at a given distance. For the flat 2D ethylene
system the situation is reversed. Here, the orbital spread is greater perpendic-
ular to the polymer direction with 0.951 compared to 0.868 along the polymer.
Correspondingly, we see to the top in figure 2.13 that the energies along the
polymer direction generally lies lower than those perpendicular to the polymer
direction.

2.7.5 Integrals in the Born-von Karman realm
As previously mentioned, when BvK boundary conditions are imposed on the
system, Wannier functions become periodic, and integrals over R3 involving
Wannier functions will in general diverge. Integrals may instead be limited to
the BvK supercell, interpreting anything that leaves the BvK cell on one side as
re-entering the BvK cell on the opposite side. An illustration of this condition is
shown in figure 2.14. This is usually fine as long as we are dealing with integrals
close to the reference cell. For pair calculations, however, this is problematic
since the pair energy contributions will be periodic, and the total pair energy
will therefore diverge. There are mainly two ways of resolving this problem.
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Figure 2.13: Energy vs distance plot for the H-H pairs in flat 2D ethylene (top)
and stacked 2D ethylene (bottom). The pairs exactly along the x-axis and y-axis
are highlighted.
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Figure 2.14: Illustrations of how the electron density for a Wannier function
may look in one dimension. The thick black vertical lines signifies the edges of
the BvK cell, while the thinner grey lines signifies the boundaries between the
unit cell. The BvK boundary conditions are ignored in the translation of the
MO in the illustration to the left, while it is retained in the translation in the
illustration to the right.

The first possible solution is to translate the Wannier functions from the refer-
ence cell to other cells involved in integrals and simply ignore the BvK boundary
conditions, as illustrated to the left in figure 2.2. We would then integrate over
whole R3, and assume that the Wannier functions in the reference cell are zero
outside the BvK cell.

The main problem with this solution is that the Wannier functions are only or-
thogonalized within the BvK cell as periodic functions (the situation illustrated
to the right in figure figure 2.2). Without this property, the Wannier functions
will not necessarily be orthogonal, leading to potentially erroneous pair ener-
gies, especially close to the edges of the BvK cell. The energy versus distance
plot to the left in figure 2.16 shows an example of how the pair energies may
behave when the BvK cell is chosen too small. In this case, the parameter newk
in the Crystal program [21], [22] was set to 9. This parameter determines the
number of k-points for which the Bloch functions used to construct the Wannier
functions are computed. Increasing the newk parameter to 16 gives the result
to the right in figure 2.16.

To try to resolve the orthogonality problem we may monitor the Wannier func-
tions as the size of the BvK cell is increased. As the BvK cell becomes sufficiently
large, we can expect the change in the Wannier functions with further increase
in BvK cell size to be minimal. We may then assume that they have essentially
converged to the form they would have in the full crystal, and the orthogonality
problem would then disappear. A simple illustration of this is shown in figure
2.15, where the Wannier function changes significantly between the topmost
figure and the middle figure with an increase in the size of the BvK cell. The
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Figure 2.15: Illustrations of how the electron density for a Wannier function
may change in one dimension as the size of the BvK cell is increased. The thick
black vertical lines signifies the edges of the BvK cell, while the thinner grey
lines signifies the boundaries between the unit cells.
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change is minimal, however, between the middle and the bottommost figure
with increased size of the BvK cell.

The second solution is to use Wannier functions correctly orthogonalized in the
BvK supercell, and only calculate pairs within the BvK cell (or possibly in an
even smaller supercell). Conceptually, this may sound dubious since we are
effectively modelling a limited "circular" system as opposed to the full crystal.
The idea, however, is that the total correlation energy should converge to the
correct one as the size of the BvK cell is increased. This stems from the fact
that we approach the strictly correct model for the crystal as the size of the BvK
cell approaches infinity. A potential problem is that the BvK may have to be
large in order to avoid wrong pair energies at the edges of the BvK cell. It may
also be difficult to control the error in the correlation energy as a consequence of
the limited amount of pairs. Specifically, we note that the pair cutoff algorithm
presented in this thesis relies on the possibility of calculating pairs at large
distances.

The two options just described corresponds to treating the matrix products
C†AC involved in the basis transformation of a matrix A as a block Toeplitz
product, or block circulant product. The block Toeplitz product may be defined
as

(AB)ij =
∞∑

k=−∞
Ak−iBj−k (2.164)

where the superscript signifies a block index. In actual implementations the
summation is not infinite since the Toeplitz matrices have a finite extents of
non-zero elements, such that

Aj−i>N = Aj−i<−N = 0 (2.165)

The block circulant product may be defined within the BvK supercell as

(AB) = F−1{F{A} ∗ F{B}} (2.166)

where the operator ∗ signifies the Hadamard product and F signifies the discrete
Fourier transform.

2.8 Potential Energy Surfaces
Within the Born-Oppenheimer approximation, nuclei moves on a PES deter-
mined by the electronic structure and the electrostatic repulsion between the
nuclei. The potential energy of the nuclei should vary continuously with the
movement of the nuclei, which is illustrated for a diatomic molecule at the top
of figure 2.17. In local correlation methods, several approximations are imposed.
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Figure 2.16: Pair correlation energy as function of pair distance for 1D ethylene
with newk=9 (left) and newk=16 (right). The MP2 calculations were done using
the original XDEC code with FOT = 10−4 Hartree, extent tolerance = 10−4

and a pair cutoff distance of 100 Bohr. Logarithmic scale is used on both axes.

The effects of these approximations may differ for different displacements of the
nuclei, which may lead to steps on the energy surfaces [23]. This may be caused
by for instance a sudden inclusion of more virtual orbitals in a fragment as the
lattice parameter is reduced, or it may be the result of a pair cutoff. In the DEC
algorithm the automatic fragmentation is an additional potential source of steps
on the PES. The fragmentation may change for changes is parameters for vari-
ous reasons, for example significant changes in bonding during phase transitions.
The most significant perhaps, is small numerical differences in cases where bond
orbitals between symmetry equivalent atoms. This has been observed to happen
regularly in the bond orbitals in 2d ethylene in the original XDEC implementa-
tion, causing steps on the PES. Since the error in each fragment is determined
by convergence, there is no guarantee that the error is the same for different
fragmentations.

A simple illustration of how the non-smoothness may manifest on a PES is
given in the middle and at the bottom of figure 2.17. In the illustration at the
bottom of the figure, the extra terrain on the PES imposed by approximations
are severe, and calculations of properties like vibrations and reaction barriers
may be quite wrong. Local correlation methods naturally gives steps on the
PES, but should be able to produce PES more reminiscent of the figure in the
middle, and should also be able to control the error in the calculations, and thus
the magnitude of the unevenness in the PES.

Figure 2.17 is used merely as an illustration. For a system of N > 2 atoms, the
PES is a 6N − 6 (or 6N − 5 for linear systems) dimensional hypersurface. The
problem, however, remains conceptually the same as illustrated in figure 2.17:
The potential energy of the nuclei should vary continuously with the movement
of the nuclei.
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Figure 2.17: Illustration of the form of a potential energy surface for a diatomic
molecule. Top: ideal PES. Middle: Some visible deviations from the ideal PES.
Bottom: Large deviations from the ideal PES.
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Chapter 3

Implementation

In this chapter, the implementation of the PAO solver and the pair algorithm
is detailed.

3.1 MP2 PAO solver
To obtain a fixed-point iteration (FPI) scheme, we can start by extracting an
amplitude from the sum in equation (2.152) and solve for that amplitude, which
results in

tAa,Bb
0i,Jj = 1

S0
aa(f0

ii + f0
jj)S0

bb − f0
aaS

0
bb − S0

aaf
0
bb

(
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0i,Jj fB−D
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)
(3.1)

The solution is thus a fixed point of the function on the right-hand side. We
may note here that the overlap matrix elements in the denominator have the
value 1 if normalized PAOs are used. By adding the extracted amplitude back
into the sum and subtract on the outside of the sum, we may write the equation
on a more useful form as

tAa,Bb
0i,Jj = FAa,Bb

0i,Jj (t) + tAa,Bb
0i,Jj (3.2)

where the function FAa,Bb
0i,Jj (t) is defined as
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We may attempt to find the fixed point by the iterative scheme

(
tAa,Bb
0i,Jj

)
n+1

= FAa,Bb
0i,Jj (tn) +

(
tAa,Bb
0i,Jj

)
n

(3.4)

where n signifies the iteration number. A convergence criterion the element of
the residual with greatest magnitude (absolute value) can be used. Alterna-
tively, the Frobenius norm of the residual may be used. The Frobenius norm is
defined as

||R|| =

 ∑
0iJjAaBb

(
RAa,Bb0i,Jj

)2
1/2

(3.5)

where the summation goes over all non-neglected amplitude indices. It should,
however, in that case be normalized, since by the definition, its value will in-
crease with the number of elements in the residual, and thereby tighten the
convergence criterion for larger orbital spaces. From the definition, this can be
done by multiplying a factor 1/

√
Nt, where Nt is the number of non-neglected

residual elements.

The solver can also be converged on the difference in energy between two steps,
or the difference in residual norm or max absolute value. We have, however,
experienced instances with slow convergence where these values are small even
when the residual elements still have significant values.

3.1.1 Convergence and damping
We have experienced that the standard FPI scheme as formulated in equation
(3.4) diverges. This may be fixed by introducing a positive damping factor
α < 1, such that the scheme becomes

(
tAa,Bb
0i,Jj

)
n+1

= αFAa,Bb
0i,Jj (tn) +

(
tAa,Bb
0i,Jj

)
n

(3.6)
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Algorithm 1 Outline of the PAO solver scheme. The Einstein summation
convention is used.

1: Obtain initial guess for amplitude tensor t
2: Obtain virtual overlap matrix S and Fock matrix f
3: Set up tensor e with elements S0

aa(f0
ii + f0

jj)S0
bb − f0

aaS
0
bb − S0

aa

4: Store tensors β′,β′′ and F with same dimensions as t
5: for i < max iterations do
6: for C with virtual orbitals in AOS do
7: for D with virtual orbitals in AOS do
8: for J with occupied orbitals in AOS do
9: β

′C,D
0,J ← tC,D0,Kkf

J−K
k

10: β
′′C,D
0,J ← tC−K,D−K0k,J−K fKk

11: end for
12: end for
13: end for
14: for A with virtual orbitals in AOS do
15: for B with virtual orbitals in AOS do
16: for J with occupied orbitals in AOS do
17: g ← −(0A|JB)
18: g −= fC−Ac tCc,Dd0,J sB−Dd

19: g −= SC−Ac tCc,Dd0,J fB−Dd

20: g += SC−Ac β
′Cc,Dd
0,J SB−Dd

21: g += SC−Ac β
′′Cc,Dd
0,J SB−Dd

22: FA,B0,J ← e−1 ∗ g
23: Amplitudes outside amplitude extents are set to 0
24: end for
25: end for
26: end for
27: t −= αF
28: t possibly updated by convergence acceleration
29: if convergence criterion is satisfied then
30: break
31: end if
32: end for
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Test runs have of shown that the scheme no longer diverges when an appropriate
value of α is used. The convergence, however, is very slow, and seems to be too
slow for some realistic systems.

3.1.2 DIIS
Direct inversion of the iterative subspace (DIIS) is a method introduced by
Peter Pulay [24] to accelerate the convergence of SCF iterations. In DIIS, an
improved solution tensor is sought in the subspace of the m previous iterations

t =
m∑
i=1

cit
i (3.7)

where the sum always runs over the m previous iterations. For a given iteration
i, an error tensor ∆ti = ti+1 − ti is associated such that a total error tensor is
given by

∆t =
m∑
i=1

ci∆ti (3.8)

The coefficients ci are determined by minimizing the norm of ∆t with the con-
dition that the sum of the coefficient is 1. Introducing this condition with
Lagrange multipliers ultimately gives the following linear set of equations


B11 B12 . . . B1m −1
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...

...
. . .

...
...
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−1 −1 . . . −1 0




c1
c2
...
cm
λ

 =


0
0
...
0
−1

 (3.9)

where Bij =
〈
∆ti
∣∣∆tj〉. The coefficients may be obtained by diagonalizing

the matrix B. We implemented DIIS in combination with the FPI scheme. A
pseudo-code is given in algorithm 2. This algorithm is run at each iteration at
the convergence acceleration step in algorithm 1.

3.1.3 Newton’s method
Perturbation energies of order 2n, where n is an integer, can be expressed as a
minimization problem [20]

E(2n) = min
t
E

(2n)
H (t) (3.10)

where E(2n)
H is the Hylleraas functional. In the case of MP2 the Hylleraas

functional can be formulated as [18]
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Algorithm 2 Outline of the DIIS algorithm.

1: Obtain the maximal number of stored amplitudes N
2: Obtain iteration number i
3: Obtain amplitude tensor ti and update tensor ∆ti from the FPI solver
4: if i ≥ N then
5: D ← D
6: else
7: D ← i
8: end if
9: Set up matrix B of dimension D ×D

10: w ← B−1

11: C ← w[:, D]
12: Construct the amplitude tensor tiDIIS
13: if i ≥ N then
14: Delete ti−N and ∆ti−N
15: end if
16: Return tiDIIS

EH =
∑
i≥j

(2− δij)
∑
ab

t̃abij
(
(ai|bj) +Rabij

)
(3.11)

where

t̃abij = 2tabij − tbaij (3.12)

The Hylleraas functional is a scalar that equals the correct MP2 energy when
it is minimized, and is therefore convenient to use in Newton’s method. The
Newton’s method scheme for the amplitudes may now be expressed as

tk+1 = tk −
[
E

′′

H(tk)
]−1

E
′

H(tk) (3.13)

where E′

H and E
′′

H are the gradient and Hessian of the Hylleraas functional.
Autograd [25] was used for computing the Hessian matrix. We have implemented
Newton’s method for test systems with orbitals only in the reference cell.

3.2 Pair cutoffs
In this section, the various aspects involved in the automatic determination of
pair cutoff is described.
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3.2.1 General outline of the algorithm
In this section, we will assume that the fragment pairs have been sorted into
groups such that the pairs in each group lays approximately on a straight line
on an energy vs distance plot with logarithmic scales. The details of how this
is done is described in section 3.2.4.

The cutoff is decided by smoothed cubic spline interpolation. We must therefore
first decide on an interpolation range that is large enough so that we can assume
any contributions outside of this range is negligible. Here, a maximum distance
of 100 or 200 Bohr is used.

Then, for each group, the pair with smallest distance and longest distance in
the interpolation range is computed. In addition an intermediate pair is com-
puted at the smallest distance larger than some parameter min_incr from the
smallest distance pair. Another intermediate pair is computed with the same
condition relative to the first intermediate pair. We then have enough pairs
somewhat spread out distance-wise to perform a cubic spline interpolation, and
this procedure represent the minimum setup for initiating the pair algorithm.
The procedures for computing intermediate pairs may be continued to increase
the number of intermediate pairs and potentially improving the interpolation.
Once the interpolation have been performed on each group separately, the en-
ergies of all non-calculated pairs in the interpolation range are estimated from
the interpolation curves.

From this point on, the non-calculated pair that at any point has the high-
est estimated energy will be calculated. The pair calculations stop when the
total estimated energy of the non-calculated pairs is smaller than parameter
ε(FOT) = λ× FOT, where λ is a number, typically close to 1.

The cutoff algorithm may be summarised by the following steps:

1. For each group, compute close pairs, distant pairs and intermediate pairs.
For the minimum setup, one pair is computed at closest distance, one at
maximum distance of the interpolation range, and two intermediate pairs
in between.

2. Estimate the energy of each pair in the interpolation range. Compute the
estimated total pair energy Eremain of the non-calculated pairs.

3. If Eremain > λ × FOT: Compute the pair with largest estimated energy.
Else: Pair calculation is finished.

In the new implementation where we get the pair energies for the four pairs
0PLP , 0PLQ, 0QLP and 0QLQ simultaneously, the algorithm is altered such
that the energy for each such set of four pairs is estimated. The set of four pairs
that are estimated to have the greatest energy contribution is computed. Since
there are overlaps between pairs with the same orbital indices between some of
the sets, situations occur where some, but not all, pairs in one set is calculated.
In this case, the pairs that have already been calculated is left out of the energy
estimate.
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3.2.2 The spline interpolation
For the smoothed spline interpolation, we use the UnivariateSpline in the in-
terpolate sub-package of SciP [26]. The smoothing factor s [27] is set to 1000.
This is essentially corresponds to a maximum smoothing in that implemen-
tation. The interpolation was done on the logarithmic distance versus energy
datapoints. That is, the logarithm of the distances and logarithm of the negative
of the pair energies.

3.2.3 Parallelization
In the case of a fixed cutoff distance, the pair calculations may be trivially
parallelized with MPI. Given a run with N processes, the pair list may simply
be divided into N equally large parts, each handed out to a process. The pair
energies are simply collected and summed at the end. In this case, there are
two main problems that may cause significant reduction in the speedup.

The first issue is related to the unevenness in computation time for different
pairs, due mainly to varying number of occupied orbitals and the size of the
excitations spaces. Notably, the number of virtual orbitals increases with the
pair distance (up to some limit) due to the reduces overlap of the virtual spaces
of each of the fragments involved. Therefore, the computation time increases
with distance. If one process is given pairs consistently at lower distances than
some other process, the first process will finish before the latter. In some cases,
the time difference may be significant, and some sort of load balancing should be
considered. In the present implementation, the pairs have simply been shuffled
randomly before being handed out to the processes in order to even out the
computation times for the processes.

The second issue involves the storing of integrals. Due to the intact translational
symmetry, significant savings are made in the new XDEC algorithm by reusing
integral calculations. Extra computations are done in the parallelized version
since one process does not automatically know what integrals another process
has already computed. Some of the same integrals may therefore be computed
on the different processes.

When the automatic cutoff algorithm is used, the parallelization procedure is
somewhat more complicated since the full list of pairs to calculate is not known
beforehand. To deal with this, we split up the computation in two parts.

First, the list of initial pairs may be parallelized trivially. If the number of pairs
does not match the number of processes, the number of pairs is increased until
the number of pairs is an integer multiple of the number of processes.

In the second part, an estimate is made of which pairs to calculate in order
to satisfy the criterion for remaining estimated energy. This list may then be
parallelized in the same manner as described above. Again, the number of
pairs in the list is always increased so that the number of pairs matches an
integer multiple of N . If the remaining estimated energy condition is met, the
calculation ends, possibly with a control calculation. Otherwise, a new set of
pairs is handed out to the processes in the same way as described above.
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3.2.4 Pair groups
The formation of pair groups happens in two steps. The first step is to group
single fragments into sets of fragments, such that all fragments in a given set
are considered equivalent. We may for example decide, by some means, that
two or more distinct fragments may be treated as equivalent, and denote all
these fragments as belonging to fragment type A. Another set of fragments
that we decide are equivalent to each other, but distinctly different from those
in category A, may be denoted by B, and so on. The second step is to form pair
groups by all possible combinations of the fragment types. As an example, if
we have two unique types of fragments A and B, we can form three pair groups
by combining A with A, A with B and B with B. In general, if there are N
unique fragments, there will be N (N + 1) /2 pair groups.

This expression illustrates why it may be preferable not to treat every fragment
as unique, but rather attempt to minimize the number of fragments treated as
unique. In ethylene 1d, to take an example, there would be 21 groups, and this
number would grow rapidly with increased number of atoms in each unit cell.
This will lead to a correspondingly increased number of pair calculations for the
purpose of doing interpolation. It would also cause a decrease in the sampling of
pairs within each group since the pairs will be spread out among more groups.

We now move on to describing how we may decide whether or not two fragments
may be treated as equivalent. When atomic fragments are used, a primitive
method may be to group according to what element the atom in the fragment
is. In ethylene, for example, the two carbons atoms would in this case have
equivalent fragments, and the four hydrogen atoms would similarly have equiv-
alent fragments. There are two problems with this model. The first issue is that
two atoms of the same element may be quite different due to the environment.
As an example, it is likely that a carbon atoms bonded to an oxygen atoms
would behave quite differently from a carbon atom only bonded to hydrogen
atoms and other carbon atoms. This problem may be solved by taking the
environment into account when categorizing the fragments. The second issue
is of an algorithmic nature, and was mentioned in section 2.7.3. If there is no
enforcement of symmetry in the algorithm, fragments of two atoms that are
symmetry equivalent may be non-equivalent in the calculation due to asymmet-
ric assignment of orbitals. An example of this is shown in figure (2.12) where one
of the carbon atoms has been assigned both of the C-C bond orbitals. One of
the carbon atoms is therefore left with only what is essentially a 1s orbital, and
therefore has correlation energy practically negligible compared the fragment
on the other carbon atom.

Both problems are solved in the XDEC implementation by comparing the list
of occupied orbitals. If the list of occupied orbitals of two fragments contains
orbitals of the same spread within some tolerance, the two fragments are treated
as equivalent. Otherwise, the two fragments are distinctly different. The two
fragments of carbon in figure (2.12) are automatically treated as different since
the program realizes that the set of occupied orbitals are different. This method
does not consider the atoms that the fragments are associated with, and may
therefore be used on other fragment types than atomic fragments.

The grouping method described above is shown to give sets of pairs, each of
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which has less spread that the dataset as a whole. In cases with little variation
in angles (1D systems) and quite spherical orbitals (core orbitals or in ionic
bonding), the set of datapoints behave nicely with little spread. Cases with
more than one dimensions and covalent bonds may give rise to dataset with
more spreads internally in the groups, as seen in figure 2.12. This spread can be
accounted for by writing the pair in the group as a function of both distance and
the relative angles of the orbitals. Figure 2.11 shows the energy vs distance plot
for the C5-C5 pair along with two possible angle sortings. As may be expected,

In the general case, however, the problem is significantly more complicated. To
treat the general case, we may start by assigning an axis to each orbital to
which the angle is measured relative to. Note that this most be done for each
orbital, not each "equivalent" orbital, since they may be oriented differently, as
exemplified by the orbitals on the hydrogen atoms in ethylene. The axis may
be chosen as being along the direction of largest spreads, but a simpler heuristic
approach may be to use the associated bond axis. The major complication is
that we now have three important axes: the two fragment axes and the axis
between the fragments in the pair, and there are several angles that may be
important.

The method described above is a somewhat heuristic method where the cate-
gorization of fragments are done before any calculation. It is also possible with
more dynamic grouping where the fragments are grouped on the fly according
to initial energy calculations. Since the static grouping have worked well on the
systems tested so far, we have not pursued this method further.

3.2.5 Defining the fragment position
As previously explained, in the DEC algorithm, orbitals are assigned to atoms
based on some physical justification. When the pair energies are calculated, a
pair distance must be assigned, either to be used to determine which pairs to
calculated based on a cutoff distance, or in interpolations. To do this, a position
is assigned to each fragment, and the position is used to calculate the pair
distances. In the original XDEC implementation, the positions of the atomic
nuclei were used. It is, however, the positions of the Wannier functions that
are relevant in the energy calculations, not the nuclear positions. The distances
obtained are therefore not necessarily ideal to use in the interpolations, and
a more satisfying definition of the position should be related to the Wannier
centers.

Since the pair energy is strongly related to the spread of the occupied orbitals,
better definitions of the position should somehow put more weight on the po-
sitions of those orbitals with largest spread. For systems where each atomic
fragment has one occupied orbital with significantly larger spread than the oth-
ers, simply defining the atomic fragment position as the Wannier center of the
orbital with largest spread is a good choice. Figure 3.1 shows pair energy as
function of pair distance for a 1D ethylene system, where the positions are de-
fined by the nuclei (left figure) and the occupied Wannier function with largest
spread (right figure). The figure shows clearly the datapoints are much more
predictable when the fragment position is defined by the Wannier position.

The situation is less straightforward when there are two or more occupied or-
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Figure 3.1: Pair correlation energy versus pair distance for 1D ethylene where
the atomic position are used as fragment position in the leftmost plot, and the
Wannier center of the occupied orbital with largest spread is used as fragment
position in the rightmost plot.

bitals in the same fragment with similar spread. If they have the same spread,
the simplest solution is to use the centroid of the Wannier centers as fragment
position. That is, given a set of k occupied Wannier functions i of similar spread,
the fragment position would be defined as

Rfrag =
∑
i 〈i| r̂ |i〉
k

(3.14)

The behavior of the pair energy as function of distance must then be expected
to be more complicated since there are several significant distances at play.
Furthermore, there may be cases where two or more orbitals have quite similar,
but not equal, spreads. In that case, the Wannier centers must somehow be
weighed when determining an ideal position. An example could be the center
of mass inspired expression

Rfrag =
∑
i σi 〈i| r̂ |i〉∑

i σi
(3.15)

where the mass have been replaced with the orbital spread. This seems give
more well behaved dataset for more complicated fragments. In the current
implementation, the centroid of the Wannier functions is used if to or more
orbitals is less than a tolerance σtol smaller that the orbitals with largest spread.
In all other cases, a single Wannier center is used in the definition. A pragmatic
alternative may be to refuse to create fragments with several non-core occupied
orbitals.

3.2.6 Extrapolated pairs
Spline interpolation curves have a tendency of bending close to the edges of the
interpolation interval. This makes estimates for the remaining energy somewhat
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unstable, and dependent on the distance at which the distant pairs are chosen.
This problem can be solved by calculating extra pairs at distances far larges
than the interpolation interval goes. This would, however, take extra calculation
time for pairs that does not actually contribute to the energy calculation. An
alternative approach, which is used here, is to place out artificial pairs at large
distances. The values of these may be chosen by some extrapolation method.
Here, linear regression is used on the logarithmic data points. Alternatively, a
CR−6 extrapolation from the distant pair may be used. This method is in a
sense coarse and may be imprecise, but tests have shown that the result is not
very sensitive to exactly where the extrapolated pairs are chosen.
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Chapter 4

Results and discussion

Tests of the convergence of the MP2 solver for PAOs and the performance of
PAOs relative to virtual Wannier functions is shown in section 4.1. In section
4.2, tests of the stability of the cutoff algorithm, including an analysis of angle
sorting, is presented. Finally, in section 4.3, the cutoff algorithm is applied in
the generation of a PES for the 3D LiH system.

The test systems described in section 2.7.2 is used in this chapter. In addition, a
2D LiH system and a 3D He system is used. For helium, neon and the ethylene
systems, 6-31G basis sets [28] obtained from Basis Set Exchange [29], [30]. The
helium system uses the same basis set as neon. In LiH, the hydrogen atom has a
valence triple-zeta with polarization [31], while Li has a 6-1G [32] basis set. The
lattice structures and coordinates for the atoms in the test systems are given in
appendix B.

4.1 Non-orthogonal virtual orbitals
4.1.1 Convergence of PAO solver
As a validation of the implementation, we begin by looking at a simple 3D He
system with orbitals only in the reference cell. Figure 4.1 shows the maximum
absolute value of the residual as a function of the number of iterations for the
reference cell of the helium system using plain FPIs, FPIs with DIIS convergence
acceleration and Newton’s method. A damping factor of 0.1 was used for the
FPIs. Closer scrutiny shows that the Newton solver converges the equations
to within machine precision (of order 10−16) in two iterations with a fragment
energy of -0.02311742 Hartree. This validates that solutions can be found for
the amplitude equations in the present implementation.

After 100 iterations in the plain FPI solver, the residual has a maximum absolute
value of 0.00138, while the inclusion of DIIS improves the value to 1.95106e-05.
Correspondingly, the plain solver gives an energy that deviates from that of the
Newton solver in the forth decimal place (-0.02304416 Hartree) while the result
with DIIS deviates in the sixth decimal place (-0.02311602 Hartree). This shows
that DIIS gives a significant convergence acceleration relative to the plain FPI
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Figure 4.1: Max value of residual as function of number of iterations for the
plain FPI solver, FPI with DIIS convergence acceleration and Newton’s method
for the reference cell of a 3D helium crystal. The new XDEC code was used and
the virtual space was represented by PAOs.

solver, and suggests that the result of the DIIS solver in this case is good enough
for use in calculations with FOT at least 10−5 Hartree.

Even though the Newton solver converges fast and is convenient in the sense
that the Hessian of the Hylleraas functional is a constant, it is ruled out as a
possible general solver in anything but relatively small fragments due to the
rapid growth in the number of amplitudes. Using the Newton solver requires
the storage and inversion of a Hessian matrix of dimensions N2, where N is
the number of amplitudes. We therefore use FPIs with DIIS for the rest of the
calculations.

Figure 4.2 shows the maximum absolute value and the Frobenius norm of the
residual of the FPI solver without DIIS, and with DIIS with 4 and 8 stored
amplitudes. The test was run on a C fragment in 1D ethylene with one core
orbital and one C-C bond orbital. We see that the Frobenius norm converges
much more systematic than the absolute value, and we therefore suggest it as
the preferable convergence criterion.

As for the number of amplitudes to store in the DIIS scheme, we see that 4 am-
plitudes actually performs better than 8 amplitudes unless very many iterations
are performed. This seems to be related to a slow-down in the convergence
for few iterations when the full matrix has yet to be constructed. After 100
iterations the solver with 8 amplitudes has converged as well as the one with
4 amplitudes, but this is undesirably many iterations in most systems. We
therefore use 4 amplitudes as a standard in the DIIS algorithm.
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Figure 4.2: Frobenius norm and max absolute value of residual as function of
number of iterations for the fixed-point iteration solver with various number (8,
16 and 32) of stored amplitudes in the DIIS scheme. The system was ethylene 1d,
with a C-fragment consisting of one core-orbital and one C-C bond orbital. The
number of orbitals were 17 virtual and 6 occupied. Both axes has logarithmic
scales. The new XDEC code was used and the virtual space was represented by
PAOs.
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4.1.2 Representation of virtual orbital spaces
Figures 4.3, 4.4 and 4.5 shows the fragment energy as function of the number of
virtual orbitals in 1D ethylene, 2D LiH and 3D neon. For 3D neon all occupied
orbitals in the reference cell were included in the fragment, while the H-fragment
was used in the LiH system and a C-fragment with one core orbital and one bond
orbital was used in 1D ethylene. We see that for 1D ethylene, the convergence
of the fragment energy is quite similar for PAOs and virtual Wannier functions
(virtual Wannier functions are denoted LVOs for orthonormal localized virtual
orbitals). For the orbital located on the H-atom in 2D LiH, there is a region up
to about 15 virtual orbitals where the energy is closer to the converged fragment
energy when using PAOs, but the difference is only in the fifth decimal place. In
3D neon, however, the fragment energy is converged with very few PAOs, and
27 LVOs are needed to achieve the energy level obtained with only 8 PAOs. A
large reduction in the number of virtual basis functions can there be achieved
with FOT = 10−4 Hartree.

In addition, hen using LVOs in 3D neon, there is an energy plateau about
2 × 10−4 Hartree higher than the final converged baseline. This is a potential
cause of non-smoothness on PESs, and in this system, that problem would
seemingly be solved with PAOs.

Based on these observations, there does not seem to be a general benefit of
using PAOs instead of virtual Wannier functions in the XDEC implementation,
although the improvement was significant in 3D neon. This result is somewhat
contrary to that of Hansen et al. [6], as they suggested based on tests on di-
amond, LiH and HCN that the PAOs performed better than LVOs. However,
there are some potential causes for this discrepancy. Firstly, the discrepancy
may be due to differences in the way the energy is calculated, as the Cryscor
implementation generated orbital specific virtuals (OSVs) and subsequently or-
thogonalized the set of orbitals. In addition, the systems and basis sets are not
the same.

4.2 Cutoff determination
4.2.1 Number of interpolation pairs
In the cutoff algorithm, the interpolation curve, and therefore the number of
pairs calculated, will vary somewhat based on the choice of distant pairs. The
reason for this may be either that the maximum range of the interpolation is too
short, significant differences in the distant pair energies due to angle dependency,
or it may simply be due to small changes in the pair calculations, for instance
making the interpolation curve bend somewhat differently. The issue with small
"random" changes in the interpolation curve due to differences in the selected
intermediate pairs is an important factor in the stability of the algorithm, and
this is tested in the next section.

To eliminate the problem of the size of the interpolation range, we could simply
choose a very large cutoff distance for the interpolation range. A potential
problem that may arise is that, especially in 3D systems, the number pairs
quickly grows very large. As an example, in 3D LiH with interpolation cutoff at
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Figure 4.3: Fragment energy versus the number of virtual orbitals for a C-
fragment with one core orbital and one bond orbital in 1D ethylene.

Figure 4.4: Fragment energy versus the number of virtual orbitals for the H-
fragment in 2D LiH.
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Figure 4.5: Fragment energy versus the number of virtual orbitals in 3D neon.
All the occupied orbitals in the reference cell was included in the fragment.

200 Bohr, the pair list contains 575752 pairs. This number obviously grows fast
with further increase in interpolation cutoff distance. These have to be stored
and used in the interpolation.

The least number of pairs necessary in the interpolation range may be estimated
by fixing the distant pairs, and changing only the interpolation range. Table
4.1 shows results from runs on LiH with FOT = 10−3 Hartree and with varying
interpolation cutoff, but with the distant pairs fixed at ∼200 Bohr. With a cutoff
factor of 1.0, the number of pairs calculated is the same for an interpolation
cutoff of 30 and 200 Bohr. With an cutoff factor of 0.1, the number of pairs
increase by 6 when the interpolation cutoff is is increased from 30 to 50. Another
pair is computed when the interpolation cutoff is further increased to 100 Bohr.
We assume that this case may be used as an estimate for a calculation with
FOT = 10−4 Hartree and cutoff factor of 1.0.

The issue of pair contributions at very long range are typically most severe for
3D systems due to the rapid increase in the sheer number of pairs. We may
therefore conclude that we should be safe in including pairs up to 100 Bohr when
interpolating on 1D and 2D systems with FOT no smaller than 10−4 Hartree.

4.2.2 Stability
Table 4.2 shows the correlation energy in 2D ethylene with fixed pair cutoff
distance at 100 Bohr and FOT = 10−3. Table 4.3 shows the corresponding
energy and errors computed using the cutoff algorithm with 2 and 5 intermediate
pairs, and with 7 different values of min_incr. The deviation from the results
in table 4.2 is given as the error. The 2D ethylene systems are chosen since they
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Table 4.1: Number of computed pairs and estimated remaining energy with
cutoff factor 1.0 and 0.1 and various interpolation intervals in LiH. All compu-
tations were done with distant pairs at ∼200 Bohr, and the interpolation cutoff
defines the maximum pair distances included in the energy estimation. FOT
was set to 10−3 Hartree.

Cutoff factor Interpolation
cutoff (Bohr)

Number of
computed pairs

1.0

30 22
50 22
100 22
150 22
200 22

0.1

30 100
50 106
100 107
150 107
200 107

Table 4.2: Correlation energy and the number of calculated pairs in stacked and
flat 2D ethylene with a cutoff distance at 100 Bohr. The calculations were done
with the original XDEC implementation with an extent tolerance = 10−3.

System Energy
(Hartree)

Number
of pairs

Stacked 2D
ethylene -0.167065 7986

Flat 2D
ethylene -0.167292 8074

Table 4.3: The minimum and maximum errors from runs with the cutoff al-
gorithm and various number (2 and 5) and placements of intermediate pairs.
For each result, 7 runs were performed with 7 different values for min_incr dis-
tributed uniformly in the range [4,10] for 2 intermediate pairs and [2,6] for 5
intermediate pairs. The calculations were done with the original XDEC imple-
mentation with an extent tolerance = 10−3.

System
Number of
intermediate
pairs

Lambda Min error
(Hartree)

Max error
(Hartree)

Flat 2D
ethylene

2 1.0 8.78e-4 1.08e-3
0.1 8.67e-5 1.18e-4

5 1.0 9.15e-4 9.76e-4
0.1 8.91e-5 9.79e-5

Stacked 2D
ethylene

2 1.0 7.99e-4 2.20e-3
0.1 7.24e-5 8.52e-5

5 1.0 7.94e-4 1.48e-3
0.1 7.03e-5 7.79e-5
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Table 4.4: Estimated pair non-calculated pair energy for C5-C5 pairs in flat
2D ethylene with no angles sorting (A1), two angle groups (A2) and 9 angle
groups (A3). The calculated pairs was in all cases the initial pairs for A3 with
min_incr = 7 Bohr. The reference is computed with a fixed cutoff at 100 Bohr.

System
Estimated
pair energy
(Hartree)

Relative
error (%)

Reference -2.2812e-6
A1 -1.8674e-6 18.1
A2 -2.0176e-6 11.6
A3 -2.3005e-6 -0.85

contain pair energies with significant angle dependency, and the stability with
respect to the choice of intermediate pairs are expected to be significantly more
problematic in these systems than for instance in 3D LiH.

We see that with only two intermediate pairs and λ = 1, the results is quite
dependent on the intermediate pairs. This is especially true in stacked 2D ethy-
lene, where difference between the smallest and greatest error is larger than the
FOT. Increasing the number of intermediate pairs to 5 significantly stabilizes
the results. We note, however, that if no additional sampling conditions are im-
posed on the intermediate pairs, there is no guarantee that not all intermediate
pairs will be significantly off the ideal interpolation curve.

For λ = 0.1, which we regard as an estimate for the FOT = 10−4 case, the
results are significantly more stable, also relative to the target error of 10−4.
This is not surprising since the greater sampling will undermine the potential
bias in the selection of intermediate pairs.

We finally note that variations in the spline estimates may be significantly more
problematic in 3D systems, as relatively small variations may cause significant
differences in the number of pair calculations. To aim for an algorithm that is
not dependent on large sampling or chance, it may be useful to consider ways
of taking into account the angle dependencies.

4.2.3 An analysis of angle considerations
Table 4.4 shows the relative error between the estimated non-computed pair
energy and the actual non-computed pair energy (up to a cutoff of 100 Bohr)
when the pairs are sorted into one, two and nine angle groups for the C5-C5
pairs in flat 2D ethylene as illustrated in figure 2.11. The case with no angle
sorting, two angle groups and nine angle groups will be referred to as A1, A2
and A3 respectively. The actual energies are not so important since they are too
small to have major impact, but the results are somewhat scalable in the sense
that the relative error would be the same if all pair energies were multiplied
the same number. This may therefore give an indication on the applicability of
angle sortings or other ways of accounting for angles in systems where highly
angle dependent pairs have a greater contribution to the pair energy, as for
instance in diamond. Generally, an increased pair energy could be the result of
a greater number of pairs, that the pairs start out at smaller distances or simply
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a larger pair energy from each pair. We note, however, that the pairs in such
systems may not be as well behaved as in this case.

The pairs used in all calculations are the initial pairs generated for the A3 case
with the primitive pair setup (the pair with smallest distance, two intermediate
pairs with min_incr = 7 and one distant pair at approximately 200 Bohr). Even
though this is an artificial setup for the A1 and A2 systems, it should give a
good sampling of pairs angle-wise.

As seen from table 4.4, the angle sorting gives a large reduction in the relative
error of the estimated pair energies, from 18 % without angle sorting, to less
than 1 % with 9 angle groups. There is also an improvement when going from no
angle grouping to two separate angle groups. If similar results can be obtained
generally for systems with large angle dependencies in the pair energies, taking
into account the angle dependencies may be a fruitful path forward.

Although the pair energies in this case can be improved by angle sorting, the
general case introduces significant additional issues. Firstly, the additional angle
degrees of freedom can result in a large number of pair calculations necessary to
start the algorithm. Already on the A3 case, at least 36 pairs is needed to begin
the interpolation on the C5-C5 pairs alone. Introduction of an extra dimension
in the system and extra rotational degrees of freedom could significantly increase
this number. Secondly, the procedure must be automated. This includes an
automatic determination of whether angles are important for any pair group,
and an automatic determination of how it is convenient to slice up the angle
degrees of freedom.

Given the correlation between the directional orbital spread and the pair energy
at a given distance as suggested previously, we suggest that the spread values
may be used in the process of determining whether angle considerations are
important. In the case where angle sorting is not used, spreads can alternatively
be used to counteract biases in calculations of intermediate and distant pairs by
ensuring pair computations at angles corresponding to different orbitals spreads.

Another approach to the angle problem is to treat distance and angles on a
more equal footing. In the angle problem discussed here for flat 2D ethylene,
the energy moves on a surface with distance and the angle as coordinates as
shown in figure 4.6. In the more general system where more angles must be
taken into account, energy will similarly move on a higher dimensional hyper-
surface of angle coordinates and one distance coordinate. From this perspective,
multivariate interpolation may be interesting to consider.

4.3 Potential energy surfaces
In this section, we will first look at a case of non-smooth PES in 1D ethylene due
to premature convergence of the virtual orbital space. Thereafter, we look at
the case of fixed cutoff distance in 3D LiH before applying the cutoff algorithm
to the generation of a PES for 3D LiH.
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Figure 4.6: Logarithm of the negative pair energy as function of the logarithm
of the pair distance and angle in flat 2D ethylene. The distance range is 70-100
Bohr, and the plot is shown from two different angles for clarity. In the topmost
figure, a general view is given of the datapoints, while the bottommost figure
highlights the angle dependency.
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Figure 4.7: PES for ethylene 1D as function of the lattice parameter and a fixed
size for the ethylene molecules. 6 and 10 additional orbitals were included in
each iteration of the fragment optimization. The calculation were done in the
new XDEC code with all the occupied orbitals included in one fragment, and
pair energies were calculated for the two nearest unit cells.

4.3.1 Premature convergence of fragment spaces
Figure 4.7 shows how premature convergence of fragments may give rise to large
steps on a PES in the 1D ethylene system. In this run, all occupied orbitals were
included in one fragment and pairs for the two closest unit cells were computed.
Including only 6 orbitals for each step in the fragment optimization gives rise
to significant jumps in the energy. The cause of this is premature convergence
due to the non-systematic convergence of the fragment energy as the number of
virtual Wannier functions is increased by a distance-based measure. Including
10 orbitals at each step overcomes the plateaus on the convergence curve, and
we see steps on the PES of magnitudes that are in accordance with the FOT.
However, we note that this does not serve as a guarantee against premature
convergence, as cases with longer plateaus has been experienced. It is therefore
an important future research area to find methods of eliminating the effects of
the non-systematic convergence.

4.3.2 Fixed pair cutoff
Figure 4.8 shows a one dimensional PES for 3D LiH surface where the cell pa-
rameter is varied. The run was done with a fixed cutoff distance of 9 Bohr,
FOT = 10−3 Hartree and a maximum error in orbital extents of 10−3. The or-
bital spaces for the fragments does not change along the PES, and the differences
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Figure 4.8: 1D PES for 3D LiH where the lattice parameter is varied and a fixed
pair cutoff distance at 9 Bohr was used. The calculations were done with the
original XDEC implementation with FOT = 10−3 and with an extent tolerance
= 10−3.

in orbital extents does not cause visible steps.

The surface has a step located close to the minimum that is caused by the
sudden inclusion of 12 symmetry equivalent H-H pairs. The magnitude of the
step is roughly 2×10−4. It is noteworthy that the step is an order of magnitude
larger the largest single pair contribution at that distance due to the number of
pairs at the same distance.

As long as a fixed pair cutoff distance is used and not the same number of
pairs are computed for all runs, the pair contribution will cause steps. The step
is of an order smaller than those previously shown for differences in fragment
convergence, but for very short cutoff distances this may change. There may
also be systems where the pair steps may be more significant.

We finally mention that although a cutoff of 9 Bohr may seem small, it is not
entirely unreasonable. As an example, Wang et al. [4] investigated cutoffs of
occupied indices in the range from 4 to 6 Å in the CiM implementation, even
though they suggested using a cutoff at 5.5 Å (about 10.4 Bohr).

4.3.3 Automatic pair cutoff
3D LiH Figure 4.10 shows a snapshot of a PES for 3D LiH where the cell
parameter is varied and the automatic cutoff algorithm is used. The setup was
otherwise the same as for the run with fixed cutoff distance in section 4.3.2. The
run was done with the minimal setup of the pair algorithm, and cutoff factor λ
of 1.0, 0.5 and 0.1 was used. The PES with fixed cutoff at 9 Bohr is included
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Figure 4.9: Pair energy as function of the lattice parameter in 3D LiH and a
fixed pair cutoff distance at 9 Bohr. The calculations were done with the original
XDEC implementation with FOT = 10−3 and with an extent tolerance = 10−3.

for comparison. We see that several steps occur on the PES with λ = 1.0, and
the largest occurs at about 7.4 Bohr and are of a magnitude of about 2× 10−4

Hartree, which is the same as with the 9 Bohr cutoff. The numbers of pairs
calculated at this step, however, jumped from 20 to 21, while it jumped from
56 to 80 in the fixed cutoff case.

With λ = 0.5 the largest steps are somewhat smaller, but still of similar mag-
nitudes since a jump of up to three pairs appears at one step. Even though the
largest step is somewhat smaller than with λ = 1.0, the steps are of comparable
magnitude.

For λ = 0.1 the steps are not visible on the plot, even though small steps
still occur due to changes in the number of pairs. Although smaller steps is
expected due to the smaller value of λ, there is another significant factor in the
improved smoothness, namely that the magnitude of each pair contribution have
decreased faster than the decrease in the value of λ. This may be illustrated with
an example. There occurs a step on the λ = 0.5 curve at approximately 7.97
Bohr. At this point, the pair energy of the final computed pair was −1.4×10−4

Hartree for λ = 0.5. For λ = 0.1, however, this value was only −2.0× 10−6.

We can analyse this by roughly dividing the cutoff distances in 3D systems
like LiH into two regions: one region at small distances where the pair energy
contributions mainly stems from a few pairs, and one region at larger distances
where the number of pairs is the dominating contribution to the pair energy.
The reason for the large improvement in going from λ = 0.5 to λ = 0.1 is that
we have reached the second region.
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Figure 4.10: 1D PES for 3D LiH where the lattice parameter is varied. The
cutoff algorithm was used with 2 intermediate pairs, min_incr = 10 and a
interpolation cutoff at 100 Bohr. A calculation with a fixed cutoff at 9 Bohr
was included for comparison. The calculations were done with the original
XDEC implementation with FOT = 10−3 and with an extent tolerance = 10−3.
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The automatic cutoff algorithm offer no guarantee for a smooth PES unless
some specific smoothing conditions is enforced. The main objective of the use
of automatic cutoff should therefore be that the steps is of an order determined
by a FOT, along with a potential saving in pair computations. There are at
least two sources of steps in this case. The first is the magnitude of the single
pair energies. The second, and perhaps most problematic, is potential variations
in the spline curve as the intermediate and distant pairs changes along the PES.
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Chapter 5

Summary and outlook

5.1 Non-orthogonal virtual orbitals
We have implemented a MP2 solver for non-canonical and non-orthogonal vir-
tual orbitals. The plain FPI solver diverged, and the introduction of a damping
factor led to a solver with slow convergence. The convergence of the equa-
tions were significantly improved with the implementation of DIIS convergence
acceleration.

We have further applied the solver in a test of the performance of PAOs relative
to that of virtual Wannier functions. The tests showed a great improvement
of the PAOs in 3D neon compared to virtual Wannier functions, but the same
improvement was not seen in 1D ethylene and 2D LiH.

It is not clear to the author why the results differed so much between the various
systems, and from a theoretical perspective, it would be of great interest with
an explanation of why the PAOs perform so much better in some instances,
and not in others. From a computational perspective, it would be of interest
to be able to classify those systems where PAOs perform better than Wannier
functions and vice versa, or if possibly other representations of the virtual space
is preferable.

Generally, a minimization of the number of virtual orbitals necessary to span
the important part of the virtual space is of great computational interest. Since
the correlation energy seems to come from only a few orbitals, and the repeated
computation of fragment energy with increasing orbital spaces is relatively cheap
in the new XDEC implementation, we suggest that the orbital spaces may be
increased by one orbital at a time such that orbitals contributing less than a
given tolerance to the fragment energy can be thrown out. This may have the
potential to decrease the computational cost of pair calculations significantly.

5.2 Pair cutoff
For handling pair calculations, we have presented an algorithm for automatically
determining which pairs to calculate in local CC and MP theory. The pairs are
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automatically sorted into groups based on the orbital spreads of the occupied
orbitals in each fragment. Spline interpolations are performed on each group
and a pair energy estimate is assigned to all pair within the interpolation region.
The pair energy estimates are used both to decide which pair to calculate at
any point, and to decide on a pair calculation cutoff. The method attempts to
resemble a vertical cutoff based on pair energy contributions instead of a purely
distance-based cutoff.

We have illustrated that the pair energy within each group depends on both
the pair distance and angles between the orbitals in the fragments involved.
Only the distance dependency have been implemented, but we have presented
a preliminary analysis of the angle problem that suggested a potential practical
use for angle considerations.

Furthermore, we suggested that the orbital spread measured along various axes
can be used as a quantitative, although not necessarily precise, measurement for
explaining the angle dependencies of the pair energies. It could be of interest
to see if this can be used in the pair algorithm, for instance in improving the
sampling of pairs computed in each group. We also propose that the direction-
ality of the orbitals spreads may be used the determine whether or not the angle
dependency is significant enough that it has to be taken into account.

As further investigations, it would be of interest to investigate how the angle
sortings could be of practical use, for instance utilizing multivariate interpo-
lation. A persistent problem in this relation will be the number of degrees of
freedom in relative rotations of the fragments compared to the number of pairs
that is calculated.

As a more general remark, a larger sample of test systems is needed to establish
the generality of the cutoff algorithm. This could establish whether certain
setups in the algorithm, also those that are not directly related to the angle
dependencies of pair energies, must be adjusted. As an example, this could
be the notion that orbital spreads of the occupied orbitals is sufficient in the
automatic generation of pair groups.

We finally note that the cutoff algorithm should have some sort of mechanism
that detects potential failures, for instance due to large angle dependencies or
bad grouping of fragments. Such a method may for example be based on extra
pair computations after the cutoff has been reached, or on deviations between
pairs and the interpolation curve. No final implementation of such a mechanism
have been made so far.

5.3 Potential energy surfaces
As a more practical application, we have shown on a 3D LiH system how the
automatic cutoff algorithm may be used to produce PES with a smoothness
determined from the FOT.

As the 3D LiH systems represents a relatively simple system from a cutoff
perspective in the sense that the bonding is ionic and lacks distinct directionality,
further studies on the smoothness of PESs in systems with covalent bonds, as
for example in diamond, is of interest
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We also illustrated on a 1D ethylene system how premature convergence of the
virtual orbital spaces may cause steps on PESs. The premature convergence is
caused by the non-systematic convergence of fragment energy as additional vir-
tual orbitals are included by distance. A method for minimizing the number of
virtual basis functions is therefore not just important for improved performance,
but can also undermine the occurrence of steps on PESs.
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Appendix A

Commutators and
anti-commutators

The anti-commutation relations for creation and annihilation operators in an
orbital basis are

{a†pσ, a†qτ} = 0 (A.1)
{apσ, aqτ} = 0 (A.2)
{a†pσ, aqτ} = δpqδστ (A.3)

We also list the three somewhat primitive, but highly useful rules

[A,B1B2] = [A,B1]B2 +B1[A,B2] (A.4)
[A,B1B2] = {A,B1}B2 −B1{A,B2} (A.5)
{A,B1B2} = [A,B1]B2 +B1{A,B2} = {A,B1}B2 −B1[A,B2] (A.6)

These relations may easily be verified by simply expanding the right-hand side.
Lets compute the commutators of the singlet excitation operator Epq = a†pαaqα+
a†pβaqβ and the creation operator

[Epq, a†rγ ] = [a†pαaqα, a†rγ ] + [a†pβaqβ , a
†
rγ ]

= a†pα{aqα, a†rγ} − {a†pα, a†rγ}aqα + a†pβ{aqβ , a
†
rγ} − {a

†
pβ , a

†
rγ}aqβ

= δqr

(
a†pαδαγ + a†pβδβγ

)
= apγδqr

(A.7)
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The commutator between Epq and an annihilation operator may be computed
in the same manner, an the result is

[Epq, arγ ] = −aqγδpr (A.8)

Using these results, the commutator between two singlet excitation operators
may be calculated as follows

[Epq, Ers] = [Epq, a†rαasα + a†rβasβ ]

= [Epq, a†rαasα] + [Epq, a†rβasβ ]

= [Epq, a†rα]asα + a†rα[Epq, asα] + [Epq, a†rβ ]asβ + a†rβ [Epq, asβ ]

= δqrapαasα − δpsa†rαaqα + δqrapβasβ − δpsa†rβaqβ
= δqr(apαasα + apβasβ)− δps(a†rβaqβ + a†rβaqβ)
= δqrEps − δpsErq

(A.9)

The two-electron singlet operator may be defined as

epqrs = EpqErs − δqrEps (A.10)

Using the result from equation (A.9), the commutator between the singlet exci-
tation operator and the two-electron singlet excitation operator can be evaluated
as follows

[Etu, epqrs] = [Etu, EpqErs]− δqr[Etu, Eps]
= [Etu, Epq]Ers + Epq[Etu, Ers]− δqr[Etu, Eps]
= δpuEtqErs − δtqEpuErs + δruEpqEts

− δtsEpqEru − δqrδpuEts + δqrδtsEpu

= δpu(etqrs + δqrEts)− δtq(epurs + δurEps) + δru(epqts + δqtEps)
− δts(epqru + δqrEpu)− δqrδpuEts + δqrδtsEpu

= δpuetqrs − δtqepurs + δruepqts − δtsepqru
(A.11)

Using these results, we may calculate the commutator between the singlet exci-
tation operator and some electronic Hamiltonian on the form

Ĥ =
∑
pq

hpqEpq + 1
2
∑
pqrs

gpqrsepqrs + hnuc (A.12)

We first note that the commutator with hnuc is always zero. The commutator
may then be calculated as

92



[Ĥ, Eai] =
∑
pq

hpq[Epq, Eai] + 1
2
∑
pqrs

gpqrs[epqrs, Eai]

=
∑
pq

hpq(δaqEpi − δpiEaq)

+ 1
2
∑
pqrs

gpqrs(−δpieaqrs + δaqepirs − δriepqas + δasepqri)

=
∑
p

(hpaEpi − hipEap)

+ 1
2
∑
pqr

(−gipqreapqr + gpaqrepiqr − gpqirepqar + gpqraepqri)

(A.13)

The nested commutator
[[
Ĥ, Eai

]
, Ebj

]
, can now be computed by inserting the

results of equation (A.13). When computing the expectation value 〈Φ0|
[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉

however, many of the terms vanishes. The two first terms, for example, vanishes
due to Kronecker deltas between occupied and virtual indices and excitation of
the Salter determinant with the resulting orthogonality.

For the remaining commutator expectation values, all but one cancel either due
to Kronecker delta between occupied and virtual indices, excitations that is
impossible to de-excite, or cancellation of the contributions from the two terms
in equation (A.10). The only non-vanishing contribution is

1
2
∑
pqr

gpaqr 〈Φ0| [epiqr, Ebj ] |Φ0〉 (A.14)

This can be evaluated with the result from equation (A.11), and only the last
term from that equation can be non-zero. This gives the equation

〈Φ0|
[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉 = 1

2
∑
pq

gpaqb 〈Φ0| epiqj |Φ0〉 (A.15)

Here, the only non-zero contributions are if p = i and q = j or if p = j and
q = i. The final result can then be computed as
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〈Φ0|
[[
Ĥ, Eai

]
, Ebj

]
|Φ0〉 = 1

2 〈Φ0| giajbeiijj − gjaibejiiij |Φ0〉

= 1
2 〈Φ0| giajbEiaEjb − gjaibEjj |Φ0〉 |Φ0〉

= 1
2 〈Φ0| (giajba†iαaiα + a†iβaiβ)(a†jαajα + a†jβajβ)

− gjaib(a†jαajα + a†jβajβ) |Φ0〉
= 2giajb − gjaib

(A.16)
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Appendix B

Coordinates for test
systems

The distances are given in ångström. Fractional coordinates are used along axes
with periodicity.

1D ethylene

Lattice parameter: 3.704240458100000
H 0.000000000000000 0.000000000000000 0.000000000000000
H -0.357142857142857 0.000000000000000 0.000000000000000
H -0.357142857142857 0.000000000000000 1.833069849551200
H 0.000000000000000 0.000000000000000 1.833069849551200
C 0.142857142857143 0.000000000000000 0.916534924775600
C 0.500000000000000 0.000000000000000 0.916534924775600

Stacked 2D ethylene

Lattice parameters: 3.704240458100000 5.291772083000001
Angle between lattice vectors: 90.000000000000000
H 0.000000000000000 0.000000000000000 0.000000000000000
H -0.357142857142857 0.000000000000000 0.000000000000000
H -0.357142857142857 0.000000000000000 1.833069849551200
H 0.000000000000000 0.000000000000000 1.833069849551200
C 0.142857142857143 0.000000000000000 0.916534924775600
C 0.500000000000000 0.000000000000000 0.916534924775600

Flat 2D ethylene
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Lattice parameters: 3.704240458100000 5.291772083000001
Angle between lattice vectors: 90.000000000000000
H 0.000000000000000 0.000000000000000 0.000000000000000
H -0.357142857142857 0.000000000000000 0.000000000000000
H -0.357142857142857 0.34639999999999993 0.000000000000000
H 0.000000000000000 0.34639999999999993 0.000000000000000
C 0.142857142857143 0.17319999999999997 0.000000000000000
C 0.500000000000000 0.17319999999999997 0.000000000000000

2D LiH

Lattice parameters: 4.0834 3.80
Angle between lattice vectors: 60
H 0.500000000000000 0.500000000000000 0.000000000000000
Li 0.000000000000000 0.000000000000000 0.000000000000000

3D LiH

Lattice parameter: 4.0834
Primitive lattice parameter: 2.88740
Angle between primitive lattice vectors: 60
Space group: 225
H 0.500000000000000 0.500000000000000 0.500000000000000
Li 0.000000000000000 0.000000000000000 0.000000000000000

3D helium

Lattice parameters: 2.487132879010000 2.540050599840000 2.592968320670000
Angle between lattice vectors: 90
He 0.000000000000000 0.000000000000000 0.000000000000000

3D neon

Lattice parameters: 2.487132879010000 2.540050599840000 2.592968320670000
Angle between lattice parameters: 90
Ne 0.000000000000000 0.000000000000000 0.000000000000000
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