
Understanding the Role of
Background Knowledge in

Predictions

Ecotoxicological Effect Prediction

Nils Petter Opsahl Skrindebakke

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture (Software)
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Understanding the Role of

Background Knowledge in

Predictions

Ecotoxicological Effect Prediction

Nils Petter Opsahl Skrindebakke

© 2020 Nils Petter Opsahl Skrindebakke

Understanding the Role of Background Knowledge in Predictions

http://www.duo.uio.no/

Printed: X-press printing house

Abstract

Machine Learning (ML) models have proven to perform well in a broad range

of prediction challenges. However, ML models require discriminating data

to learn patterns and be capable of performing predictions. In this master

thesis, we implement a ML model for ecotoxicology effect prediction. To

connect the various chemicals and provide the model with a data landscape

it can discover patterns from, we utilize a Knowledge Graph (KG). However,

KGs are extensive and inevitably contain undiscriminating and noisy data.

Thus, we aim to better the performance by exploring methods of filtering and

prioritizing the triples in the KG.

We have created several algorithms for filtering and prioritizing the KG.

Based on the assumption that discriminating triples connects to either toxic

or non-toxic chemicals, the algorithms crawls the graph form each chemical,

and scores the triples visited based on the toxicity of the chemical. Because

the graph is connected (i.e., there is a path between every pair of vertices),

we demonstrate various ways to crawl and score the triples in the graph.

The results show that our approaches outperform the baseline method

of using the entire KG equally. Further, we discuss the possibility of these

approaches to provide explainability for the predictions.

Contents

I Preliminaries 1

1 Introduction 2

2 Background 4

2.1 Ecotoxicology . 4

2.1.1 Ecotoxicology and Risk Assessment 4

2.1.2 Ecotoxicological Endpoints 6

2.2 Semantic Web Technologies 6

2.2.1 RDF . 7

2.2.2 Ontologies . 8

2.2.3 Knowledge Graphs . 9

2.3 Machine Learning . 11

2.3.1 Data Preprocessing . 12

2.3.2 Overfitting . 13

2.3.3 Activation Functions 16

2.3.4 Deep Learning . 17

2.3.5 Few/Zero-Shot Learning 18

2.4 Combination of Machine Learning and Semantic Web Tech-

nologies . 19

2.4.1 Knowledge Graph Embeddings 22

3 Related Work 27

3.1 Monitoring of Building Energy Consumption 27

3.2 CORL for ZSC . 28

3.3 Logic Tensor Network for Semantic Image Interpretation . . . 29

3.4 Knowledge Enhanced Neural Networks 29

3.5 Knowledge Graph Embedding with Entity Neighbors and Deep

Memory Network . 30

i

3.6 Semantic Web Technologies for Explainable Machine Learning

Models: A Literature Review 30

3.7 Knowledge Graph Embedding for Ecotoxicological Effect Pre-

diction . 31

3.8 Sparsity and Noise: Where Knowledge Graph Embeddings Fall

Short . 32

3.9 Knowledge Graph Embedding with Triple Context 32

3.10 On the Relevance to this Project 33

4 Framework 37

4.1 Programming Language . 37

4.2 Machine Learning Framework 38

4.3 Machine Learning Models . 39

4.3.1 Knowlegde Graph Embedding 40

5 Ecotoxicology Effect Data 44

5.1 Knowledge Graph Analysis . 47

II The Project 51

6 Proposed Approach 52

6.1 Naive Approaches . 53

6.1.1 Only CID-mapped (OCM) 53

6.1.2 Crawling the Graph . 54

6.2 Approaches with Scoring Triples 57

6.2.1 Results from the Basic Scoring Algorithm 59

6.3 Solution to Trivial Entities Connecting all Triples 61

6.3.1 Remove Common Triples 61

6.3.2 Limited Step Crawl (LSC) 61

6.3.3 Directed Crawl (DRC) 65

6.3.4 Descending Influence Crawl (DIC) 69

7 The Execution 71

7.1 Preparing the Data . 72

7.1.1 Generating the Triple Output 72

7.1.2 Balancing the Input 73

ii

7.1.3 Converting the Concentrations to Binary 74

7.2 Repetitions . 74

7.2.1 Number of Epochs . 74

7.2.2 Overfitting . 75

7.2.3 Number of Runs . 75

8 Results 76

8.1 Evaluation Metrics . 76

8.1.1 Precision and Recall 76

8.1.2 ROC and AUC . 77

8.1.3 Probability Value . 78

8.2 Without Early Stopping . 79

8.2.1 ROC Comparison . 81

8.3 With Early Stopping . 82

9 Discussion 84

9.1 Challenges with the Crawling Methods 84

9.2 The Unsatisfying P-Values . 85

9.3 The Low Values in General . 85

9.4 The Results without Early Stopping 86

9.5 Results with Early Stopping 89

9.6 Explainability . 90

9.7 Ethics . 90

III Conclusion and Future Work 92

10 Conclusion 93

10.1 Future Work . 94

iii

List of Figures

2.1 An ecological risk assessment pipeline, simplified. Reprinted

with permission [54]. 5

2.2 W3C’s SWT stack [77]. 7

2.3 The Google search of Alan Turning collects relevant informa-

tion like where he was born, his partner and his education. The

text highlighted in blue is not only strings but hyperlinks to

other pages. These pages are again connected to other objects,

allowing the user to crawl the KG. 10

2.4 McCulloch and Pitt mathematical model of an neuron [28]. . . 12

2.5 Multilayer Neural Network [65]. 12

2.6 Illustration of how a model is a abstraction of the real world. . 13

2.7 The green line represent the classification after overtraining,

while the black line represent how the classification is when

optimal. The colouring of the dots are representing the real

classification of the training data [45]. 14

2.8 Illustration of how a network could look after applying dropout

[88]. 15

2.9 Some of the established activation functions. 17

2.10 A typical Convolutional Neural Networks [76]. 18

2.11 The is an illustration of how the unseen class is connected to

the seen classes with attributes in common (marked inside a

rectangular with dotted lines). Inspiration is drawn from Geng

et al. [38] example where they recognize a serval for having

shard attributes with a cat and a cheetah. 19

iv

2.12 Illustration of KG completion with embedding in vector space.

Inspired by Harmelen and Teije [78]. The three connected cir-

cles represent an KG, the brain with the nodes are a symbol for

an ML algorithm, while the graph with three arrows represent

embedding in vector-space. 20

2.13 Illustration of ontology matching. As the last symbol shows,

the outcome triples are connecting elements from both ontologies. 21

2.14 Example of an architecture where the reasoning can help ex-

plain predictions. Inspired by Harmelen and Teije [78]. The

triples under the loop, represent the reasoning engine. 21

2.15 The simplified model describes how the embedding is learned

from the KG, and later used in another ML algorithm when

predicting from data. The data points receives a vector that

describes them based on the KG landscape, and the ML model

can learn the discriminating patterns. 22

2.16 Demonstation of TransE. 23

2.17 Hierarchy in TransE. 24

2.18 RESCAL and HolE as neural networks [58] 25

2.19 Circular correlation in HolE [58]. 25

4.1 This is an abstraction of the elements in an epoch. e1, r, and e2

is the vector representation, while eT is used for the chemical in

the training data. They are all subscripts from the variable e,

to indicate that they are from the same set, except for r which

can not be a chemical, but only a predicate. As for the scores

(S), we have separated them with the subscripts KG and T to

indicate that it is the score of the triples and the chemicals in

the training data, respectively. 40

4.2 The KG model in more detail. As in Figure 4.1, e1, r, and

e2 is the vector representation, while eT is the chemical in the

training data. The outputs of the model are SKG and ST , which

represents the KG embedding score, and the score from the

training data, respectively. The blocks coloured green represent

the same chemical to illustrate how they are connected. 41

4.3 Python implementation of TransE. 42

4.4 Python implementation of DistMult. 42

v

5.1 Structure when only using ChEBI. 49

5.2 Structure when including MeSH. The connections with the in-

ternal nodes are for demonstration purposes and are not based

on concrete examples. 50

6.1 Examples of crawl from one chemical. 55

6.2 Example of the crawl when using chemicals in training data

as starting point. The kept triples have green heads and tails,

whilst the others have gray. 56

6.3 Implementation of the initial crawl algorithm. 56

6.4 The scoring algorithm takes in the KG and the training data

to return a scored KG. 57

6.5 The basic scoring algorithm, simplified. The term touches de-

scribe how many chemicals the triple is effected by. 59

6.6 Crawl with one step. C is a chemical in the training data, and

s,p,o is the triple receiving the score (i.e., the LC50 concentra-

tion value minus the median) from the chemical. 62

6.7 The symbol K represent the KG, and T the training set. The

notation describes that there exist no triple in the KG, where

both the subject and the object are from the training data.

Hence, no chemicals we train on are directly connected in the

KG . 63

6.8 Crawl with two steps. 63

6.9 EPN: short for O-Ethyl O-(4-nitrophenyl) phenylphosphonoth-

ioate. 63

6.10 Simple Directed Crawl. 65

6.11 Directed with back steps. 66

6.12 DRC with back step on first step. 67

6.13 Crawl with Descending Influence. Only the directed triples

are drawn to simplify the illustration. However, the subject

and objects can be connected to other subjects and objects,

respectively (Like we see in Figure 6.1). 69

7.1 Shows where the data separates at the median in linear-scale. 74

8.1 ROC curve. 78

8.2 ROC comparison using macro average. 81

vi

8.3 ROC comparison using macro average, zoomed to our area of

focus. 82

9.1 Illustrates what the DRC includes compared to the LSC, under

the assumption that all chemicals are on the same level in the

hierarchy. The nodes marked green are the once visited from

this crawl, the yellow nodes are the one visited form another

crawl, and the red is never visited. The dotted lines indicate a

weak link. 87

9.2 The same principle applies for subclasses of the chemicals on

the same level. 88

vii

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

AUC Area Under Curv.

BLM Baseline Method.

ChEBI Chemical Entities of Biological Interest.

CID Compound Identifier.

CNN Convolutional Neural Networks.

CORL Combining Ontology and Reinforcement Learning.

DIC Descending Influence Crawl.

DL Deep Learning.

DRC Directed Crawl.

ECOTOX Ecotoxicology knowledgebase.

EPN O-Ethyl O-(4-nitrophenyl) phenylphosphonothioate.

GLUE General Language Understanding Evaluation.

HolE holographic embeddings.

IBM International Business Machines.

KENN Knowledge Enhanced Neural Networks.

viii

KG Knowledge Graph.

KR Knowledge Representation.

LC Lethal Concentration.

LD Lethal Dose.

LSC Limited Step Crawl.

LTN Logic Tensor Networks.

MeSH Medical Subject Headings.

ML Machine Learning.

NIVA Norwegian Institute of Water Research.

OCM Only CID-mapped.

ON One Hot.

OWL Web Ontology Language.

RAdb Risk Assessment database.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.

ReLU Rectified Linear Unit.

ROC Receiver Operator Characteristic.

SCR Supplementary Concept Records.

SPARQL SPARQL Protocol and RDF Query Language.

SW Semantic Web.

SWT Semantic Web Technologies.

TCE Triple Context Embedding.

ix

TERA Toxicological Effect and Risk Assessment.

TransE Translating Embeddings.

URI Uniform Resource Identifier.

W3C World Wide Web Consortium.

WA Weighted Average.

WWW World Wide Web.

XAI Explainable Artificial Intelligence.

XML Extensible Markup Language.

ZSC Zero-Shot Classification.

x

Preface

The journey of working on this thesis has been challenging and demanding,

but at the same time, truly inspiring. My understanding of Machine Learning

and Semantic Web Technologies have profoundly increased, along with new

knowledge on Knowledge Graph embeddings, among other topics.

I have explored new approaches to improve ecotoxicology effect prediction

and its explainability. However, there are still many improvements to be

made, left out of the scope of this project. I hope this contribution can be of

inspiration for future work.

I want to thank my supervisors Ernesto Jimenez-Ruiz and Erik Bryhn

Myklebust, for excellent advice and guidance. This work would not have been

fulfilled if it were not for your help. I would also like to thank Thea Hvalen

Thodesen, my fellow student, for motivating me through this project.

xi

Part I

Preliminaries

1

Chapter 1

Introduction

Machine Learning (ML) have the past years received much attention. The

technology is not new, but with today’s computing power, and the access to

big data, the industrial applications have become much more relevant. One of

the domains, in which ML has shown to be beneficial, is ecotoxicology effect

prediction.

Ecotoxicology is the study of toxic chemicals effect on living organisms [80].

Commonly, only a few combinations of chemical-species pairs is examined.

The laboratory experiments are laborious and can raise ethical concerns if

performed unnecessarily. Hence, it is of great value to predict the consequences

of unknown chemical-species combinations from known combinations [55, p.1].

In this exploratory thesis, we implement a ML model for the ecotoxicology

domain. The objective is to predict the effect compounds have on particular

species. To accomplish this, we need to provide the model with data from

which it can learn patterns. To connect the various chemicals with discrimi-

nating data, we introduce Knowledge Graphs (KGs).

A significant weak spot in some ML models is the lack of explanations

for its prediction. The process is black-boxed, and the user usually gets no

indication of how the algorithm decided the output. It can, therefore, be a

problem for users to trust the system and make decisions based on something

unexplained. Providing explanations could also help the users obtain more

knowledge of the data to examine further. As a second challenge, we will

explore if explanations could be provided with the help of KGs. However,

that it is not in the main focus of this project.

The thesis is divided into ten chapters. In this chapter, we have given a

brief introduction and presented the master’s thesis project. The following

2

Chapter 2 will explain the relevant research fields to give the reader the nec-

essary background knowledge, while Chapter 3 will presents related work. In

Chapter 4, we will justify the choice of programming language, ML framework,

and the models we use. Chapter 5 explains the data used in this project, and

the transformation performed on them. Chapter 6 describes the various meth-

ods we propose with the concepts behind them. The details on the execution

and the results form the experiments are found in Chapter 7 and 8, respec-

tively. Chapter 9 contains discussions on our findings, and lastly, Chapter 10

concludes our work before discussing future directions.

3

Chapter 2

Background

This thesis incorporates a broad section of technologies in the Artificial Intel-

ligence (AI) research domain. The reader is in this chapter introduced to the

essential topics we encounter during this research. The first sections describe

the various areas of study. Section 2.1 introduces ecotoxicology, which is the

setting of the data sources. Section 2.2 is a more comprehensive part that

presents the Semantic Web Technologies (SWT), including RDF and Ontolo-

gies. Machine Learning is then represented in Section 2.3, while Section 2.4

and 3 are about combining ML with Knowledge Graphs and relevant projects.

2.1 Ecotoxicology

René Truhaut introduced the term ecotoxicology in the late ’60s. The name is

derived from two research areas: ecology and toxicology. Ecology is the study

of relations between organisms and their soundings, while toxicology is the

study of negative impacts chemicals have on living organisms. Ecotoxicology

analyses the harmful effects on ecosystems and individuals when exposed to

different chemicals [80].

2.1.1 Ecotoxicology and Risk Assessment

The inspiration of this work is the preliminary study in [55] which investigates

the use of KG embeddings in ecotoxicological effect prediction. This study is

based on the use case at the Norwegian Institute of Water Research (NIVA)

where predicted effects are integrated into the Risk Assessment database

(RAdb)1. RAdb is a system for performing ecological risk assessment case

1NIVA RAdb: https://www.niva.no/en/projectweb/radb

4

Figure 2.1: An ecological risk assessment pipeline, simplified. Reprinted with
permission [54].

studies concerning agricultural/industrial runoff into lakes and fjords.

The ecological risk for an ecosystem can be seen as

Fate + Effects = Hazard assessment

Hazard + Exposure = Risk

The ecological risk assessment is a combination of the hazard of a substance

and an estimate of the environmental exposure. The hazard is evaluated

from the effect of the chemical and fate (i.e., transport, transformation and

breakdown) [37].

“Prediction models for combined toxicity and cumulative risk are

used to assess the effect of chemical mixtures and multiple stres-

sors, whereas population and community modelling will be imple-

mented for impact assessment where traditional laboratory data

cannot be easily acquired.”

- NIVA’s Computational Toxicology Program team [36].

This citation encompasses the goal of risk assessment as a field. In other

words, prediction models are used to assess chemical effects where it can be

hard to collect laboratory data.

As we can see in Figure 2.1, the risk assessment pipeline is a circular

process. It has two primary sources: effect and exposure. The exposure is

5

data collected from the environment, and the effects are the hypothesis tested

in the laboratory. The risk is used to to create new hypothesises for further

testing, completing the circle [55].

2.1.2 Ecotoxicological Endpoints

To compare the toxicity between different compound, it is necessary with

standard units of measure. The different units are referred to as endpoints.

The mortality rate is most commonly used and measured at time intervals

until it becomes constant. Two frequently used endpoints are LD50 and LC50.

LD50 expresses the lethal dose (ingested) for 50% of the test population, while

LC50 indicates the lethal concentration (in the environment) for 50% of the

test population [55]. LD50 is often measured by g/KG, and LC50 by g/L or

mol/L.

In this project, we will look at how chemicals affect the fish called fathead

minnow. LC50 was used to measure the data as this is more suitable for testing

on fish. LC50 consists of mixing the chemicals into the water, in contrast to

LD50, where the organism is feed directly.

2.2 Semantic Web Technologies

A concept particular central to this paper is the Semantic Web (SW). It was

introduced in the late ’90s by Berners-Lee, the man behind the World Wide

Web (WWW) [23]. The idea was to make the data on the web readable,

not only for humans but also for computers. It could have given significant

benefits by enabling reasoning on the combination of data from sources all

over the world. It did not catch on in the beginning, but the appliance of

this technology in closed systems have become more and more relevant to

the industry in the last years, especially in the petroleum and healthcare

industries.

Tim Berners-Lee is also inventor and director of a global community that

sets web standards, called The World Wide Web Consortium (W3C). W3C’s

Semantic Web Technologies (SWT) stack includes RDF, RDFS and OWL.

Figure 2.2 shows how the different elements build on top of each other.

6

Figure 2.2: W3C’s SWT stack [77].

2.2.1 RDF

It was a challenge to structure the heterogeneous data from the numerous

sources as machine-readable. The solution was to store all the information

in triples. The W3C has a standardized framework for this, called Resource

Description Framework (RDF) [41]. The first instance is the subject that is

described; the second is the predicate describing what relation it has to the

last instance, the object. Using this technique, we can describe most things.

An example of this is the triples below.

:Alice foaf:knows :Bob

The subjects and objects are perceived as nodes in a graph, where the

predicates are directed edges between them. Customarily, the nodes and the

predicates are in the form of Uniform Resource Identifiers (URIs) that repre-

sents the unique class.

However, the nodes can also be blank nodes. Blank nodes are unknown

classes that are used between known classes. This enables, for instance, to

describe the grandparent relation, without knowing the parent of the child.

Consider the fact: “Alice has a parent that has a parent named Bob”. Bob is

in other word, Alice’s grandparent. We can demonstrate this by using © to

represent a blank node in the graph.

7

:Alice fam:hasParent © fam:hasParent :Bob

The objects can also be literals (e.g. numbers, strings, boolean). A literal

cannot be a subject nor a predicate. If we would want it to express, for in-

stance, that “10 is a number”, we would have to use a resource that represents

the number ten.

:Alice foaf:age 10

ex:Ten rdf:type ex:Number

The RDF initially builds over Extensible Markup Language (XML), but

as this is hard to read for humans, there exist several syntaxes that compile

down to XML. The examples in this chapter has an N-Triples syntax.

2.2.2 Ontologies

As one can see in the previous examples, the elements either begins with

a colon or a prefix followed by one. The prefix is pointing to a URI of a

vocabulary. If there is no prefix before the colon, it refers to the default one.

This way, RDF can combine elements from different vocabularies. FOAF2,

which contains the predicate Knows in the example above, is a vocabulary

describing people and their relations.

A synonym for vocabularies is ontologies. Ontologies or vocabularies de-

fine, as W3C states: “concepts and relationships used to describe and rep-

resent an area of concern” [40]. In other words, it expresses the facts of a

specific domain. W3C later specifies that:

“There is no clear division between what is referred to as vocabularies

and ontologies. The trend is to use the word ontology for more

complex, and possibly quite formal collection of terms, whereas

vocabulary is used when such strict formalism is not necessarily

used or only in a very loose sense.”[40]

Resource Description Framework Schema (RDFS) is a vocabulary that

supplies essential components to describe other vocabularies. Properties can,

2FOAFs URI: http://xmlns.com/foaf/0.1/

8

for instance, be described with domain and range, declaring what type the sub-

ject and object must be. At the same time, subClassOf and subPropertyOf

can define the hierarchy of classes and properties. The triples below specify:

A Student is a subclass of person. The predicate studyAt expect a person as

a subject, and School as an object. We have also expressed the triples with

description logic above the triples.

Student v Person

:Student rdfs:subClassOf foaf:Person .

∃StudyAt.> v Person

:studyAt rdfs:domain :Student .

> v ∀ StudyAt.School

:studyAt rdfs:range :School .

OWL is another part of the W3C’s SWT stack. It is a vocabulary that de-

scribes how the classes are related (e.g. disjointness), cardinality, equality,

properties characteristics (e.g. symmetry), and much more. One can, for in-

stance, say that an class cannot be both a person and a school:

Person u School = ∅
:Person owl:disjointWith :School

The triples in a vocabulary are separated into two groups, TBox and ABox.

The triples in Tbox describes concepts relevant for the data, while the triples

in ABox contains statements on individual classes [31]. The triples from our

previous examples that have the predicates subClassOf, domain, range and

disjointWith are typical TBox instances. In contrast, the triples with the

predicates age, hasParent and knows are a part of the ABox group.

2.2.3 Knowledge Graphs

Google introduced in May 2012 a new way of searching the web. This activ-

ity has previously required considerable human effort by matching the right

search words. Applying SWT enables the search engine to distinguish between

various objects as things and not only strings. This facilitates the search task,

9

making it effortless and more comprehensive. The searches are now both more

precise and contain more relevant information. Google calls this approach for

Knowledge Graph (KG) [71].

Figure 2.3: The Google search of Alan Turning collects relevant information
like where he was born, his partner and his education. The text highlighted in
blue is not only strings but hyperlinks to other pages. These pages are again
connected to other objects, allowing the user to crawl the KG.

The use of the term KG can be traced back to the 1970s. However, the cur-

rent perception of the term was established after googles publication, followed

by other big corporations publications (e.g., Amazon, Facebook, Microsoft)

[44]. The technology is not entirely new, and RDF-based KGs have been out

for a while [2]. However, the term KG has since been used broadly in the

literature, both in the industry and academia. An official definition is not

agreed upon, and many suggestions have been proposed [35, 44]. An example

of an adopted definition is:

“A graph of data intended to accumulate and convey knowledge

of the real world, whose nodes represent entities of interest and

whose edges represent relations between these entities.”

- Inclusive KG definition, Aidan Hogan et al. [44].

10

Many of the definitions are similar to RDF, if not recognizing it as a

synonym. The term has also been categorized as a buzzword made by Google

for knowledge representation applications [35]. However, we will use the term

KG in the following chapters. KG is usually applied when referring to both

the vocabulary and the data itself [66] (i.e., both TBox and ABox). It is also

descriptive to the way we see the data, as a graph of knowledge, and not only

as individual triples.

2.3 Machine Learning

The inspiration for Machine Learning (ML) is from the animal kingdom, where

the brain is the organ that enables us to learn. By studying how the brain

operates, we can create biologically inspired approaches to mimic these mech-

anisms, with computers.

The brain is a complex and impressive system. It is made up of hun-

dreds of millions of nerve cells, called neurons. These are interconnected with

each other and fires electrical signals to their neighbours. When a signal3

is received, it will forward this signal if it reaches a certain threshold. The

thresholds and how powerful the neuron fires are influencing how the output

will be. This explanation is a simplification of how the brain works, and the

brain is far more complex [51, p. 39].

McCulloch and Pitt introduced in 1943 a mathematical model where they

modelled a simplification of the neuron. It consists of a set of weighted inputs,

an adder that sums the input signals and activation function4 [51, p. 41]. This

model is the foundation of many ML algorithms. By setting multiple neurons

together in a network, similar to the brain, the system can learn from how

strong the nodes are interconnected, by updating weights between then [51,

p. 43].

If labelled data are available, weights can be adjusted by looking at the

produced output compared to the labelled answer. This action will train the

network to fit the real world, and a computer can calculate a classification

based on an input. This method is called supervised learning and is what this

project will be using.

3Can be multiple signals from different neurons.
4e.g., a threshold that fires if the summed input is great enough.

11

Figure 2.4: McCulloch and Pitt mathematical model of an neuron [28].

Figure 2.5: Multilayer Neural Network [65].

There are a number of other types of ML, including Unsupervised Learning

and Reinforcement Learning. Unsupervised Learning tries to find correlations

in the input and categorize them together. Labelled data are not provided in

this method, nor is it provided in Reinforcement Learning. Here the algorithm

only knows when the output is wrong, and have to explore until it finds the

right answer [51, p.6].

2.3.1 Data Preprocessing

“Garbage in, garbage out”

- George Fuechsel

The phrase above is a famous training mantra from the IBM instructor

George Fuechsel. He refers to the input data as “garbage in”, and the results

as “garbage out”. The last part of the phrase has further been replaced with

“gospel out”. The meaning of this is to emphasise the problem of trusting

the program excessively. It is essential to provide the models with reliable

and beneficial information, for the results to be accurate [47, p. 167]. When

12

looking at the whole data mining process, the data pre-processing is often

the most laborious. This step requires between 60% to 80% of the effort [39].

The step includes, among other things, removal of replicas and missing values,

converting to the standard units and mapping the IDs to the same domain

when possible.

When the data is of sufficient quality, it must be split into two parts: a

training set and a test set. As the names are insinuating, the training set is

used to train the model while the test set is used to test the model. It is crucial

to never train on the test data. This could give an unrealistic performance,

and disguise overfitting. The division is commonly between a 70-30 and 80-

20 split but can vary. However, the test set must be large enough to give

meaningful results and be representative of the whole set [13].

2.3.2 Overfitting

(a) The real tree [3]. (b) A model of the real tree.

Figure 2.6: Illustration of how a model is a abstraction of the real world.

A model is trained to fit the real world. It will presumably never be an

exact representation, but an abstraction with the essential details. The data

we train with are never completely representable as they do not hold all the

details. Hence the data contains noise: random and insignificant data. The

model is only a generalization drawn from this data, like the modelled three

(b) is a generalization of the real tree (a) in Figure 2.6.

“A model overfits the training data when it describes features that

arise from noise or variance in the data, rather than the underlying

distribution from which the data were drawn. Overfitting usually

leads to loss of accuracy on out-of-sample data.”

- Geoffrey I. Webb [84]

13

Overfitting is, in other words, a term used when the model is trained too

well to the training data, and no longer are a general model for the problem.

The problem is well-known, and solutions do exist (e.g., regularization).

There is a trade-off for how complex the model should be to provide the

best performance. A too simple model will risk not using the data to its full

potential. While on the other side, a too complex model will risk having the

noise overshadowing the discriminating features.

Figure 2.7: The green line represent the classification after overtraining, while
the black line represent how the classification is when optimal. The colouring
of the dots are representing the real classification of the training data [45].

Regularization L1 and L2

There are two main methods used in regularization, L1 and L2. L1 [1] liqui-

dates the trivial and slightly relevant features setting them to null, by adding

a penalty in proportion to the sum of the absolute values to the correspond-

ing weight. In contrast, L2 [1] penalizes with the sum of the squares. This

regularization moves the weight in the outline closer to zero.

L1 : λ
∑M

j=0 |Wj| L2 : λ
∑M

j=0W
2
j

The penalties are used with something called regularization parameter.

The lambda symbol (λ) represent the parameter in the expressions above.

The lower the value is, the less the regularization will influence, and we risk

the chance of overfitting. The higher the value, the more influence from the

regulation, and we increase the risk of underfitting.

14

Dropout

Dropout is a method which involves temporarily “dropping” out arbitrary

nodes in the network and their outgoing edges, during the training. The

nodes will, thus, not evolve too reliant on each other. The creators Hinton

et al. [72] represents a motivation for this technique from reproduction. One

could assume an asexual5 approach would be superior, as offspring would

inherit significant genes directly. These traits could be broken up by sexual

reproduction6, yet advanced organisms have evolved adopting this strategy. A

reasonable explanation of this is that the reduction of complex co-adaptations

will increase the opportunity of new features to emerge.

Figure 2.8: Illustration of how a network could look after applying dropout
[88].

Early Stopping

The concept of early stopping is to stop the training process when signs to

overfitting occur. The approach divides the training data into two divisions:

training and validation. After a preferred quantity of training iterations, the

algorithm controls the network with the validation data. The initial early

stopping technique suggests we stop the training when the error is more sig-

nificant than the last run. The evolution of the network is, however, not as

smooth. Other stopping criteria are, therefore, introduced. One can, among

other things, stop when the generalization loss reaches a particular threshold

or stop when the error has increased in the last N number of runs [62].

5Asexual reproduction: small genetic changes based on only one parent.
6Sexual reproduction: combines genetics from two parents with a modest appearance of

random mutations.

15

2.3.3 Activation Functions

The neurons in a network are densely connected. It receives input from multi-

ple sources and shall, based on this, itself send out a signal to the next neuron

in the network or the output of the model. In the human brain (the inspira-

tion behind ML), the input to the neurons needs to be of significant strength

for it to pass the signal on. The same can be simulated in an artificial neural

network. Before the aggregated output is passed on as an input to the next

node, it enters an activation function. In this section, we will discuss some

of the established activation functions. Plots of them are displayed in Figure

2.9.

The most explicit solution would be to set a threshold, which the sum of

the input needs to exceed for the neuron to activate. This Binary function is

not smooth and returns either zero or one, if the input is below or above the

threshold, respectively.

Another activation function, with a more smooth transition between firing

and not, is the Sigmoid function. All values are above zero [59], while still

achieving a distinct shift — especially when compared to a linear approach,

as we see in Figure 2.9.

However, the activation function Rectified Linear Unit (ReLU) has proven

to offer better performance than Sigmoid. On the positive side of the graph,

we can see its identical to the linear approach. ReLU eliminates the vanishing

gradient problem [59]. The problem occurs when the gradient eliminates the

small weights, leaving them stuck at a value close to zero.

A similar function to Sigmoid is the Tanh function. It has a similar distinct

shift but returns a result in the range of -1 to 1, in contrast to the Sigmoids

range of 0 to 1. Hence, the decision boundary is focused around 0. If we pass

in the value 0 to Sigmoid, we would have received the output 0.5, but with

Tanh, we will get the value 0.

There are plenty of other activation functions available (e.g. SoftMax,

Leaky ReLU, SiLU, ELiSH), but the ones mentioned above are the most

relevant for this work.

16

Figure 2.9: Some of the established activation functions.

2.3.4 Deep Learning

Deep Learning (DL) is a type of ML that consists of a neural network with

multiple, even up to hundreds, of hidden layers. The division between regular

ML and DL are, however, fuzzy and it is no exact size the network needs to

exceed for it to be classified as a deep neural network.

17

Figure 2.10: A typical Convolutional Neural Networks [76].

DL is not only referring to the size of the network. CNN, short for Convo-

lutional Neural Networks, is again a subcategory of DL. CNN abstract features

in separate layers to draw more complicated relations between output and in-

put. The technique applies well to images where the features can be edges,

colours or more specific traits. CNNs works best when trained with large data

sets [43].

2.3.5 Few/Zero-Shot Learning

Few-Shot Learning is a ML technique that only uses a few labelled samples

to train the model, contrary to traditional ML algorithms described in the

previous section [85].

Zero-Shot Learning is similar, but here we use no instances of the class we

try to predict in the training process. For the class to be completely unseen,

and for us to still predict, we need some excess information to connect the

classes to other labelled classes.

Figure 2.11, is an example to demonstrate this. We can see that apples

share attributes such as consistency and taste with pears and bananas, and

colour and shape with grapefruits and the tomatoes. This way, by training

the neural network on the seen classes, we can predict, for instance, an image

of an unseen apple.

18

Figure 2.11: The is an illustration of how the unseen class is connected to
the seen classes with attributes in common (marked inside a rectangular with
dotted lines). Inspiration is drawn from Geng et al. [38] example where they
recognize a serval for having shard attributes with a cat and a cheetah.

2.4 Combination of Machine Learning and Se-

mantic Web Technologies

We have in the previous sections introduced two distinct types of AI tech-

niques. The first, SWT, involves employing structured data, traditionally

modelled by specialists, and reasoning on this data. The second, ML, is con-

cerning learning based on patterns in the data. Combining the two areas can

be a powerful tool, and potentially have many applications. Some of which

are mentioned in Section 3.

One can unite the techniques in numerous ways. We will classify and

introduce some of these various applications in the following paragraphs. We

have chosen a task-oriented classification, in contrast to Harmelen and Teijes

boxology [78], which focus more on how components are connected. However,

inspiration are drawn from their framework.

19

Knowledge Graph Completion

ML algorithms can accept semantically structured data as input and output,

instead of the traditional images and tabular data. This enabling us to learn

new triples based on patterns in existing triples, that we might not obtain from

reasoning. Inspired by word2vec [53], recent graph completion solutions usu-

ally uses graph embeddings to solve this [69, 78]. KG embedding is explained

in Chapter 2.4.1.

Figure 2.12: Illustration of KG completion with embedding in vector space.
Inspired by Harmelen and Teije [78]. The three connected circles represent an
KG, the brain with the nodes are a symbol for an ML algorithm, while the
graph with three arrows represent embedding in vector-space.

Ontology Alignment

The fundamental concept of the SW is, as mentioned in the previous chapter,

to gather information from multiple sources and use them together to answer

complex queries. The different sources, however, might use different identi-

fiers for the same concepts. This problem is equally applicable to managing

multiple ontologies in the close world assumed systems. The identifiers can,

for instance, be connected with the predicate sameAs.

American-site.us/Soccer owl:sameAs British-site.uk/Football

After the alignment, one can utilise triples from both ontologies together,

which increases the expressivity.

Ontology alignment, also called ontology matching, is the process of map-

ping corresponding concepts from different ontologies together. This can

be accomplished by hand. However, the process can be laborious, time-

consuming and error-prone. A solution is to apply ML for the matching

task, like Doan et al. approach General Language Understanding Evaluation

(GLUE) [33].

20

Figure 2.13: Illustration of ontology matching. As the last symbol shows, the
outcome triples are connecting elements from both ontologies.

Explainable Artificial Intelligence

The traditional ML models can be viewed as black-box. The reasoning for

the predictions are absent, and we are provided with the conclusions alone.

Explainable Artificial Intelligence (XAI) is an academic umbrella term for

transparent and explainable ML methods. However, the focus of this is usually

on scientific analysis of the ML model, and not on providing an adequate

explanation to the end-user. It has been argued that SWT can be a solution

to enable human-centric explanations [68].

An example of how this could be accomplished in a CNN for image clas-

sification is to connect the hidden layers with the feature extraction to a KG

[48]. One could, by doing so, end up with a descriptive explanation to how

the system predicted the answer. For instance, claim it is a dog because it

has paws and a muzzle.

Figure 2.14: Example of an architecture where the reasoning can help explain
predictions. Inspired by Harmelen and Teije [78]. The triples under the loop,
represent the reasoning engine.

Reasoning and ML can be combined in multiple ways to provide explain-

able predictions. Figure 2.14 is just one architectural example among many.

Knowledge Graphs for Zero-Shot Classification

In Section 2.3.5, we introduced ZSC, the challenge of predicting unseen classes.

We explained how the additional information connects the unseen classes with

21

the seen and enables us to predict the unseen classes as well. KG can be

adopted to provide the system with this information. Figure 2.15 illustrates

how we, with the use of embedding methods, can represent the triples based

on their relations. When further using the embeddings in another neural

network, the unseen classes can be evaluated based on their position in the

vector space.

Figure 2.15: The simplified model describes how the embedding is learned
from the KG, and later used in another ML algorithm when predicting from
data. The data points receives a vector that describes them based on the KG
landscape, and the ML model can learn the discriminating patterns.

There exist various ways that the two technologies can be combined, and

this was only some examples. In our models, described in details in Section 4.3,

we utilize embeddings in vector-space. The following section will, therefore,

introduce the techniques of KG embedding.

2.4.1 Knowledge Graph Embeddings

To represent data in KGs have proven to be profoundly beneficial, as discussed

in Section 2.2. However, it can be hard to manipulate and computationally

expensive. Hence, the interests in KG embedding. The triples are embedded

into a low-dimension continuous vector space, while the inherent structure

is preserved [82]. Various embedding models exist, and the following para-

graphs will present a few methods. Choosing a reasonable embedding model

is essential in this project, both for performance, and ensuring to utilize the

information in the KG fully.

Facts in the KG consist, as described in Section 2.2, of three items —

subject, predicate, and objects. Embedding methods employ these as low

dimensional vector representations of the triples. The individual research

22

uses different aliases for the same elements. Head, relation and tail (i.e., h,r,

and t) is in equivalent use. However, we will adhere to use subject, predicate

and object, with the corresponding abbreviations S, P, and O.

Translating Embeddings

Bordes et al. proposed TransE [25], a translating embedding model described

as “... a method which models relationships by interpreting them as transla-

tions operating on the low-dimensional embeddings of the entities.”

Their objective is a model that is scalable, easy to train, and with a reduced

number of parameters. In the embedding space, the translations represent the

relationships. The object should be close to the subject, considering that a

vector depends on the predicate. For all entity and relation, only one single

low-dimension vector is learned [25].

Figure 2.16: Demonstation of TransE.

The translation-based model works by minimizing the distance between

the object and the subject plus the predicate (i.e., S + P ≈ O). The scoring

function can be implemented by moving the object (i.e., O) over at the same

side as the rest of the variables and end up with the equation S + P - O ≈ 0.

Hence, true triples should get a score close to zero.

This is only true if the triple holds, if not, they should have reasonable

distance and a score above 0. It is essential to consider this when optimizing

to prevent all the entities from ending up at the origin (i.e., give all the triples

the position [0, 0, 0]). Random false triples can be added to the training set to

prevent this. Hence, by giving the true triples output of 0, and the fabricated

ones an output of 1, we can apply ML to learn a vector space representation

23

[25].

Hierarchical relationships are according to Bordes et al. widespread in

KGs, and thus their primary motivation. Figure 2.17 shows how TransE

expresses the hierarchy, similar to a tree-model. The siblings in the graph

are adjusted the same height in the x-axis and grouped based on the parent.

Along the y-axis, we get the parent to children relations.

Figure 2.17: Hierarchy in TransE.

Holographic Embeddings

The objective of HolE [58] is to combine the expressiveness of tensor product

with the simplicity of TransE. For this, circular correlation is used on the vec-

tors to represent relations between entities. Tensor product (e.g., RESCAL)

can be explained as a neural network where a layer between the output and

the input (i.e., subjects and objects), contains as many nodes as the subject

and objects multiplied (Rn×Rn → Rn2
). The middle layer, when using circu-

lar correlation, has the same number of nodes as the number of subject-object

pairs (Rn × Rn → Rn). This reduces the memory and runtime complexity

for compositional representation from quadratic (O(d2)) to linear (O(d)) and

linearithmic (O(n log n)), respectively. When looking at the memory complex-

ity considering the embedding models it is the same for HolE as for TransE:

O(ned+ nrd) [58].

24

Figure 2.18: RESCAL and HolE as neural networks [58]

Figure 2.19: Circular correlation in HolE [58].

Bilinear-Diagonal Model

Yang et al. [87] introduce a general neural network framework for multi-

relations representational learning. A two-dimensional matrix operator is used

to represent the relations. By restricting it only to be a diagonal matrix, they

achieve the same number of parameters as TransE. Results from their research

show they manage to outperform not only TransE but additionally other more

expensive models (e.g., NTN).

In the research, Bilinear-diagonal and TransE are referred to as DistMult

and DistAdd, respectively. As mentioned, both models share the number of

parameters. The difference is the operand used on the two entity vectors.

DistMult utilises a multiplicative operand (i.e., element-wise dot product),

while DistAdd utilises an additive operation (i.e., element-wise subtraction

with a bias). To avoid confusion, we will use the terms DistMult and TransE

[87].

The Equivalence on HolE and Distmult

Hayashi and Shimbos prove in a study that HolE is equivalent to ComplEx

[42]. At the same time, Trouillon et al. [75] explain that the ComplEx em-

bedding is a version of DistMult, only in the complex plane. From this, we

interpret that HolE as well is a version of DistMult, in the complex plane.

25

However, the operations in the complex plane enables the handling of anti-

symmetric relationships.

26

Chapter 3

Related Work

In this chapter, we will present articles related to this master’s thesis. The

three central objectives are to get an understanding of the area of research,

gain inspiration for our work, and introduce challenges we should consider.

First, we explore research that combines Machine Learning and Semantic Web

Technologies, as well as introducing a literature review for Explainable Artifi-

cial Intelligence. Then we further describe the Knowledge Graph Embedding

for Ecotoxicological Effect Prediction, that, as specified in Section 2.1.1, are

the main inspiration behind this work. The last two articles present two chal-

lenges we face during this master project. The first is concerning how sparse

KGs perform poorly with knowledge graph embedding. The second article

addresses the concerns for established embedding approaches (e.g., TransE)

not to consider the context of the triple properly.

3.1 Monitoring of Building Energy Consump-

tion

The building sector was accountable for 40% of the energy consumption in the

U.S by 2016. Both ML and KGs have been independently considered in several

studies within the building domain to optimize this. Parastoo Delgoshaei

et al. explores the opportunities for combining the two AI technologies to

accommodate an enhanced intelligent building system [32].

The architecture of the system is divided into two parts, the Knowledge

Representation component (KR-component), and the Machine Learning com-

ponent (ML-component), which they implemented in Java and Python, re-

spectively. For the two components to interact, they use a Python module

27

called JPype [52]. With JPype, it is possible to access Java libraries with

Python.

There are three types of input to the system: Jena rules, ontology, and

XML data files. The XML data files are sent to the ML-component and hold

information on solar radiation, outdoor temperature, wind speed and KG

data. The rules and the ontology is sent to the KR-component and facilitates

the reasoner. The ML-component later uses the reasoner in its prediction.

The result shows that the prediction is close to the actual energy con-

sumption, especially in the low energy consumption range. The research does,

however, not compare to the result without using the semantics. Therefore, it

is not clear to what extent the KR-component facilitated the ML-component.

Their long-term vision is that this framework can be utilized for buildings-to-

grid integration.

3.2 CORL for ZSC

In a research paper from the National University of Defence Technology [49],

they propose a method they call CORL for ZSC. CORL is a abbreviation

for Combining Ontology and Reinforcement Learning, and ZSC for Zero-Shot

Classification.

The task is to predict animals based on their attributes. They have two

types of input in their model, an ontology that hierarchically connects the

animals, and a binary matrix where each animal have a value of either 0 or 1

for each attribute. The value 1 means that the animal has the traits, while 0

means that it does not. A chimpanzee has, for instance, the entries: swims =

0, bipedal = 1, hands = 1.

Reinforcement learning is used to arrange both the attribute annotations

and the ontology entries by its discrimination for each animal. In the ZSC,

only the most discriminating rules are used (e.g., IF forest = 0 AND carnivore

THEN Class = feline, where forest attribute comes from the training data,

and the carnivore is parent of the feline in the ontology). They conclude that

this approach achieves higher accuracy than baseline classifiers, while also

highlighting the discriminating parts of the data.

28

3.3 Logic Tensor Network for Semantic Image

Interpretation

Logic Tensor Networks (LTN) are a statistical relational learning framework

that uses first-order fuzzy logic to learn from noisy data with logical con-

straints. In [34], Ivan et al. implement an LTN to classify image bounding

boxes and detect relevant part-of relations between objects.

Logical operators are described using Likasiewicz t-norm2 [34, p. 5]. Take

for instance the definition of the ∧-operator:

G(φ ∧ ψ) = max(0, G(φ) +G(ψ)− 1)

The grounding G, of φ ∧ ψ, is determined by adding the grounding of the

operands and subtracting it by one. If the φ have the truth-value 0.8, and ψ

have the value 0.9, the result will be 0.8 + 0.9 - 1 = 0.7. It holds less true

than both the operands, which makes sense as adding a ∧ operator decreases

the possibilities of a true outcome since both have to be true. If the value is

negative, the function will return 0, indicating an untrue statement. Having

logical operators redefined with fuzzy logic, one can describe statements such

that cats have tails. If the algorithm comes over a cat without a tail, it

should not exclude it completely, even though it is more likely to be another

animal [34, p. 4].

3.4 Knowledge Enhanced Neural Networks

The research conducted by Daniele and Serafini [30] proposes KENN (Knowl-

edge Enhanced Neural Networks). They do so by adding a new layer that

includes a set of learnable parameters they call clause weights.

The approach outperforms the state of the art methods on multi-label

classification. The best results were on Zero-Shot Classification, where their

method outperforms the runner-up by 10% [30]. Multi-label classification is

the focus of this research, but they claim that the general framework and

theoretical results hold for relational data as well. A secondary objective is

giving information about the influence of each constraint. The clause weights

are used to evaluate this.

29

3.5 Knowledge Graph Embedding with En-

tity Neighbors and Deep Memory Net-

work

Kai Wang et al. [81] introduces a new model for KG embeddings, that provide

additional information on the neighbourhood of the entities in the triples. The

subjects and objects of the triples are passed trough a Deep Memory Network

Encoder (DMN) before they are sent to a traditional embedding function (e.g.,

TransE). The DMN integrates information from the entity neighbours to the

embedding. The approach is shown to outperform the baseline TransE and

other KG embedding methods, on graph completion tasks.

3.6 Semantic Web Technologies for Explain-

able Machine Learning Models: A Liter-

ature Review

This literature review discusses methods for using SWT to explain ML pre-

diction. Research on Explainable Artificial Intelligence (XAI) has previously

been explored, but the approaches commonly rely on technical analysis of the

models. The review understands that “explainability is highly dependent on

the usage of domain knowledge and not data analysis alone.” from the au-

thors Cherkassky and Dhar. Furthermore, they argue that “Semantic Web

Technologies might be the key to achieve truly explainable AI-systems” [67].

XAI was researched comprehensively between 1970 and early 1990s. The

field did decline the following decades, but with the rise of ML, it has recently

found it way back. Although the fields overlap in some areas, a clear overview

of the combination of SWT and ML is still missing, according to the article

[67].

Mainly, there are two models where SWT are used for explainability. Unsu-

pervised embedded task and supervised classification. They present different

approaches for both models, but we found the supervised classification section

to be of higher relevance to this project.

In regards to supervised learning, one method is to map neurons to classes

of an ontology. This way, class expressions can act as explanations. The

30

neuron-class relation can also be learned, linking the neuron’s weights the

semantic grounded domain knowledge [67].

Another approach is to include hierarchy in the input — this way, the

training can learn the patterns of the superclasses as well. This is more

relevant to interpretability [67]. However, this can be relevant to improve

the predictions as well.

3.7 Knowledge Graph Embedding for Ecotox-

icological Effect Prediction

Myklebust et al. [55] apply, as mentioned in Section 2.1.1, KG embedding to

ML models for ecotoxicology effect prediction and risk assessment. The intent

is to predict the hazards of chemicals not yet tested in the laboratory.

Myklebust et al. use three models, where the first is the baseline model

called “Nearest-neighbour”. The model rests on current classification used by

NIVA, and uses the most similar compound, defined by the hierarchy distance,

to predict the effect on species. The second model is a multilayer perception,

a neural network with hidden layers without using the KG. The last model,

however, embeds the KGs with the ML model. It considers chemical similarity

and shared attributes, as well as the hierarchy.

There was only a marginal improvement between the baseline model and

random choice, making it an inadequate solution. The second model, the

neural network without KG embedding, performs better than the baseline.

However, they point out that random choice, when predicting unseen classes,

will give a balance between positive and negative false prediction, resulting

in good accuracy, while not producing interesting results. The models using

the KG, however, is a more fitting approach to predict and provide interesting

and unseen recommendations to the laboratory.

All the embedding methods seem to perform better than the model with-

out embedding. They performed rather similarly, but some small variations

separates them. In terms of recall, the best embedding methods are HolE at a

decision threshold1 of 0.5. At a decision threshold of 0.3, all the methods got

a better recall. However, DistMult is the only one that maintains accuracy.

1Decision threshold sets the line of which output values to classified as true and false.

31

3.8 Sparsity and Noise: Where Knowledge Graph

Embeddings Fall Short

Pujara et al. [63] acknowledge the fact that current embedding techniques

are evaluated based on the benchmark datasets (e.g., Freebase and WordNet).

The data sets are usually dense and reliable as humans have curated them with

their field expertise. In their research, they performed empirical experiments

to confirm the effects when the sparsity and errors increase in the KG. The

researchers generated false triples to FB15k to analyze embedding methods

sensitivity to unreliability, while removed triples to analyze the sensitivity to

sparsity. The results confirm their theory, and we can see TransE and HolE

both declining in HITS@102

3.9 Knowledge Graph Embedding with Triple

Context

Jun Shi et al. claims that current embedding approaches, including TransE,

ignore relevant graph structure by viewing the triples separately. They intro-

duce a Java-implemented embedding method called Triple Context Embed-

ding (TCE) [70] as a solution to the problem.

TCE considers two specific context structures. The first is what they call

the neighbour context. The purpose is to cover the local structure of the

entity and its surrounding. The neighbour context is defined as CN(e) =

{r, t|∀r, t, (e, r, t) ∈ K}. In other words, it only includes outgoing relations

and the corresponding tail. We later in this project considers the context

of the triples when giving them scores. Similarly to neighbour context, we

use the term directly connected entities and entities in common, where we

in some methods include incoming relations as well. We can define it with

descriptive logic as CM(e) = {r, t|∀r, t, (e, r, t) ∈ K}∪{h, r|∀r, t, (h, r, e) ∈ K}.

Consider the following triples:

2HITS@K is an indicator of how many per cent of the true triples end up in the top-k
elements. When removing a triple, the denominator will decrease and compensate for the
lost opportunity for that triple being in the top 10.

32

Cats Are Animals

Dogs Are Animals

People Like Cats

People Like Dogs

CN(Cats) = {〈Are,Animal〉}

CM(Cats) = {〈Are,Animal〉, 〈People, Like〉}

The second context type is called path context and regards the relation-

paths between a pair of entities. We equivalent use the term indirectly con-

nected entities (see Table 6.4).

Even though TransE takes into account the parent-child relationship when

embedding in vector-space (see Figure 2.17), Jun Shi et al. shows that it han-

dles complex relations bad (e.g., one-many, many-one and many-many). The

relation categories many-to-one, and one-to-many when predicting subjects

and objects, respectively, are still performing worse than the reversed types.

DistMult, nonetheless, doubles the performance for the concerned relation cat-

egories, while still performing slightly better than TransE in all of the other

categories, with only one exception3, according to another study [87].

Jun Shi et al. only compares TCE to translating embeddings (e.g. TransE)

and not to DistMult. We observe that both the research of DistMult and

the research for TCE compares HITS@10 with TransE in the same relation

categories. The experiments are on TCE performed on FB15k, while FB15k-

401 (a subset with only frequent relations [86]) on DistMult. The results for

TransE are substantially differing from the two tests. Despite this fact, it

could look like TCE are out-performing DistMult in the challenging relation

categories, but perform worse on the other categories. We cannot conclude

from this analysis, other than acknowledging the possibility that TCE could

be more beneficial than DistMult for some KGs.

3.10 On the Relevance to this Project

We will, in this section, justify why we included each of the related works,

and how they are relevant for this master project.

3When predicting objects in many-to-one relations, the embedding methods TransE and
DistMult receives the HITS@10 scores 83.2 and 81.0, respectively.

33

Monitoring of Building Energy Consumption

The main interest of this article is to see how they combine Ontologies with

ML. As they chose to use two languages for their project, the architecture

gets a clear division between the semantics component and ML component,

with minimal interactions between them.

It is useful to know that libraries such as JPype exist, not to be bound

by one programming language for both paradigms of AI. If we were to chose

two programming languages, a divided architecture similar as they introduce

could be reasonable to consider.

CORL for ZSC

The CORL for ZSC research has a similar challenge to what we face, with

the same objectives. They combine ML with ontologies specifically for ZSC;

however, a similar approach could have applied to our challenge. In addition

to predict, they find the discriminating parts of the data and opens up the

black box. Although their data differs from ours, we can draw inspiration

form this in our project.

Logic Tensor Network for Semantic Image Interpretation

This approach applies first-order fuzzy logic in order to predict images. It is

interesting to see, for inspiration purposes, how fuzzy logic can be used to both

prioritize the semantics and improve the prediction. However, This is a project

more directed to the trust of the KG, rather than finding discriminating facts.

It also requires modelling specific to the logical constraints like “and” and

“or”. Our graph only contains subclass, type and domain-specific relations,

which could be challenging to model in a similar manner.

Knowledge Graph Embedding with Entity Neighbors and Deep Mem-

ory Network

This piece is included to highlight a method of strengthening the context of

triples in their embedding. The strategy has shown to outperform the baseline

method of using TransE directly for the KG completion task.

34

Knowledge Enhanced Neural Networks

The Knowledge Enhanced Neural Networks (KENN) approach works by adding

a new layer to the neural network in order to connect to the KG to the process.

We included this article mainly for the same reasons as previously mentioned

ones, to get inspiration and explore already existing approaches for similar

challenges.

Semantic Web Technologies for Explainable Machine Learning Mod-

els: A Literature Review

The secondary objective of this project is to open up the black box by finding

the discriminating triples, and conceivably be able to learn from this. Thus,

it was of interest to read a literature review on XAI. This was to give a brief

insight into what has been done in this area of research before.

Knowledge Graph Embedding for Ecotoxicological Effect Prediction

Knowledge Graph Embedding for Ecotoxicological Effect Prediction is the

main inspiration behind this work and is therefore included in this chapter.

Sparsity and Noice: Where Knowledge Graph Embeddings Fall

Short

This article highlights a critical shortcoming with KG embeddings. When the

sparsity of the graph increases, the performance decline rapidly. This factor is

taken into consideration when developing our approach and therefore included

in this chapter.

The paper uses KGs derived from text and images as an example of sparse

and noisy sources. The main source of the data in this work is the Toxi-

cological Effect and Risk Assessment (TERA) KG [54]. As shown in [54],

the KG has relatively little noise, although it is very sparse. TERA provides

all relevant information on the chemicals. Therefore, the KG also includes

non-discriminating triples.

Knowledge Graph Embedding with Triple Context

The embedding method Triple Context considers the context of the triple,

claimed to be ignored by the established embedding algorithms. As we later

35

introduce in Section 6, our approach also takes the context of the triple into

account, and it is essential for us that the embedding is capable of using that

information.

36

Chapter 4

Framework

In this chapter, we first consider various programming languages and ML

frameworks. The alternatives are numerous, and all can not be explored, but

we present the few we have acknowledged. After justifying our choice, we

describe the ML models we use in this project.

4.1 Programming Language

When choosing the programming language for this project, we considered two

in particular; Java and Python. The reasons for this are as follows. We

have prior experience with them both. The languages are widely used and

with proper documentation available. Lastly, useful libraries are accessible to

abstract accepted functionality with well-established frameworks.

Java was in 1991 developed by Sun Microsystems, who believed that the

union of digital consumer devices and computers was the next big wave in

computing [9]. Oracle acquired Sun in 2010, and have continued to maintain,

and further develop the language [18]. Java is strong typed, object-oriented,

and compiles down to bytecode instruction, making it platform-independent

[14].

Working with SWT in Java, the Apache framework Jena [15] provides li-

braries to handle RDF, RDFS, OWL and SPARQL. New facts can be explored

by reasoning with a rule-based inference engine. We will, however, not reason

in this project, but the framework also provides several strategies to store the

RDF triples [20]. It also exists ML frameworks for Java. Deeplearning4j [12],

Apache Spark [7] and Weka [4] are all Java libraries for AI. Tensorflow [19] is

also available for Java but not as fully developed as in Python.

37

Guido van Rossum developed Python in the early 1990s at the Stichting

Mathematisch Centrum [6]. The language is interpreted, meaning it executes

instructions directly without compiling the source code on beforehand. It is

also dynamic typing and binding, in contrast to Java. Python is, like Java,

object-oriented [17]. Python is a more abstracted language, resulting in fewer

code lines. According to a survey from Developer Economics, 57% of 2’000

data scientists and ML developers use Python as their programming language,

making it the winner of the study. Java arrives on the third place, coming

right behind C/C++, with 41% using it [79].

Our choice for programming language lands on Python. Python is powerful

for solving ML problems and contains as discussed convenient frameworks. We

would also argue that Python has more than enough RDF handling for this

project (e.g., RDFLibs [24] triple store and SPARQL [24]). Other imported

projects (e.g., TERA [54]) use Python, which furthermore makes it convenient

for us to use.

4.2 Machine Learning Framework

There is no shortage of ML frameworks to choose from in Python. Similar to

the programming language, we can not consider all, but we will discuss a few

well-used libraries.

Facebooks AI research group have since 2016 developed PyTorch [60]. Py-

Torch implements dynamic computation graphs, enabling network behaviour

to change without starting from scratch [57].

Theano [74] was developed back in 2017 and is now maintained by MILA

(Montreal Institute for Learning Algorithms). This is a cross-platform project

suitable for DL. However, the project is no longer under development. It

can also be challenging to use without wrappers since this is a lower-level

Application Programming Interface (API) [57].

Another popular tool is Scikit-Learn [61], which is strongly linked with

statistic and scientific Python packages. The Anaconda distribution of Python

does, therefore, includes Scikit-Learn. Scikit-Learn is however not compre-

hensive enough [57], and might not be suitable for our project. It comes

with several premade models, although it has limitations when it comes to

customization possibilities.

38

In November 2015, Google Brain released the open-source framework Ten-

sorFlow [21] under the Apache 2.0 licence. TensorFlow is the most popular

framework and is evolving fast [57]. However, this is a lower-level API and can

be challenging to use alone. Several other tools build on top of TensorFlow

to resolve this issue.

Francois Chollet’s Keras [27] is one of those tools. The wrapper library was

released in July 2018 and utilized other frameworks, among them TensorFlow,

making the set-up clean and convenient. Using this framework will allow us

to focus on defining the model and abstract the backend. This advantage

consequently introduces a weak spot; the tool becomes less flexible [57]. Today

Keras is a part of TensorFlow and provided as a submodule [16].

It looks like the Keras framework is comprehensive enough for our ML

models, which is presented in Section 4.3. The Keras.layers modules provide

the classes Embedding, Dense and Dropout. They allow us to convert chemical

id scalars into vectors, create hidden layers and apply dropout, respectively.

Keras also allows multiple outputs. This functionality makes it easier for us

to implement our model.

4.3 Machine Learning Models

This system is composed of various components that we will outline in this

section.

As we can see in Figure 4.1, the system takes in a scored KG. By having a

score corresponding to each triple, we allow the model to prioritize them and

address weights for the triples. We will deliberate in details on prioritizing

triples in Chapter 6. The baseline method only distinguishes between true

and false triples, where the triples get score 1 and 0, respectively.

Before entering the models, the two inputs are balanced to the same length

(explained in Section 7.1.2). In this case, the KG is considerably more massive,

and the training data is randomly duplicated to align. This means the size of

the KG can affect the results.

We use two Keras models. The first takes in a KG in addition to the

training data, therefore, called KG-model. It uses the embedding algorithms

to utilize the information in the KG to benefit the prediction. The second is a

One Hot Model, abbreviated as ON-model. This does not use any additional

39

Figure 4.1: This is an abstraction of the elements in an epoch. e1, r, and e2
is the vector representation, while eT is used for the chemical in the training
data. They are all subscripts from the variable e, to indicate that they are
from the same set, except for r which can not be a chemical, but only a
predicate. As for the scores (S), we have separated them with the subscripts
KG and T to indicate that it is the score of the triples and the chemicals in
the training data, respectively.

knowledge. Considering that the test data is not connected to the training

data in any means, it should perform close to random. The ON-models are,

however, trained under the same circumstances as the associated KG-models

and used as a baseline. This is to give a better comparison between the

KG-models, as the conditions can vary from each approach (e.g., size of the

KG).

Figure 4.2 illustrates the KG-model in more detail. All the entities and

relations are trough embedding layers converted from scalar ids to vectors,

creating matrices from the input vectors. The corresponding triples from the

KG are sent into the embedding algorithm before returning as the first output.

The corresponding entity from the training data is sent through a neural

network consisting of two hidden layers with 16 neurons and a dropout rate

of 0.2. The output layer consists of only one single node to determine if the

compound is toxic or not. The value is returned as the second output in the

models.

4.3.1 Knowlegde Graph Embedding

Training the neural networks is time-consuming. The number of runs is the

product of the quantity of chosen embedding algorithms, the proposed solu-

40

Figure 4.2: The KG model in more detail. As in Figure 4.1, e1, r, and e2 is
the vector representation, while eT is the chemical in the training data. The
outputs of the model are SKG and ST , which represents the KG embedding
score, and the score from the training data, respectively. The blocks coloured
green represent the same chemical to illustrate how they are connected.

tions, and repeated simulations. ML models are not deterministic, and the ex-

ecution must be measured repeatedly to get a representative average. Hence,

narrowing down the number of embedding methods and their performance is

essential in this project.

In Section 2.4.1 we point out that HolE is a version of DistMult, only in

the complex plane. Despite HolE handling antisymmetry and being a well-

established embedding algorithm, we would argue that it is sufficient to use

DistMult and TransE for the scope of this project. They are both efficient

in terms of complexity compared to the other discussed methods. DistMult

have as mention outperformed TransE and other more expensive models [46],

while TransE still considers directed graphs.

Under relevant work, Section 3.9, we introduced an embedding approach

(TCE) that priorities the context of the triple, and claims TransE of only con-

sidering triples separately. TCE has proven to outperform TransE. However,

we choose not to include it in the scope of this project. It is implemented in

Java and would have required reimplementation. It is also worth repeating

that keeping the number of embeddings algorithms in our project to a mini-

mum is of great benefit to us because of the increasing runtime it demands.

Thus, we would argue that the two embedding algorithms, TransE and

DistMult, is enough for proof of concept in the scope of this master thesis.

41

import tensorflow as tf

from keras.layers import Lambda, Activation

def TransE(s, p, o):

l = Lambda(lambda x: 1 / tf.norm(x[0] + x[1] - x[2], axis=-1))

score = l([s, p, o])

score = Activation('tanh', name='score')(score)

return score

Figure 4.3: Python implementation of TransE.

Figure 4.3 shows how we implemented TransE in Python. All the triples

are first sent through a lambda function. The function does, as TransE implies,

subtract the object value from the sum of the subject and the predicate values,

in order to generate a score. The function tf.norm is applied to find the

Euclidean distance, e.g., the straight lines in the tensor (|s+ p− o|).
As we know from introducing TransE, a low score, preferably close to zero,

indicates that the triple is true. However, we want to interpret the outputs

from the function the other way around. Hence, the values close to one as

true, and the values close to zero as false. Therefore, we need to convert the

score from TransE before sending the scores through the Tanh function. In

order to give a high score a low value, and a low score a high value, the value

can be applied as the divisor for the number one. For instance, the equation

1/100 equals 0.01, while the equation 1/0.01 equals 100.

from keras import backend as K

from keras.layers import Lambda, Activation

def DistMult(s, p, o):

l = Lambda(lambda x: K.sum(x[0] * x[1] * x[2], axis=-1))

score = l([s, p, o])

score = Activation('sigmoid', name='score')(score)

return score

Figure 4.4: Python implementation of DistMult.

42

Figure 4.4 shows likewise how we implemented DistMult. This approach

is similar to what we did with TransE, but with another lambda function.

The function K.sum(s * p * o) is a way to calculate the “Hadamard product”,

i.e., the element-wise dot product (S ◦P ◦O). This leaves us with a matrix of

batch size times 1 (i.e., a vector), were the corresponding result is the score

of the triple.

43

Chapter 5

Ecotoxicology Effect Data

This chapter will introduce the sources for the data we utilize in this project.

We will describe the content and structure of the datasets. In addition, we

provide an analysis for the sparsity in the Knowledge Graph.

A limiting factor in risk assessment for ecotoxicological research is the

access to data for chemical effect on species. Testing this can require up to

hundreds of organisms, that is both laborious and can raise ethical questions

for the welfare of the animals (see Section 9.7). Hence, it is beneficial to

collect data from public sources. The data structure varies from source to

source and can be in the form of tabular, RDF and SPARQL endpoints [54].

The heterogeneous sources need to be on the same format for us to use them

in our model. SWT is a solution to this issue. In Section 2.2, we describe how

it is achievable to express nearly all information with only three components.

Storing information in a graph-based database is an excellent solution when

combining various sources.

The Toxicological Effect and Risk Assessment Knowledge Graph, abbrevi-

ated as TERA [54], is such a solution. As mentioned, ecotoxicology is a broad

topic that involves various research fields. Hence, effect prediction depends

on different types of data to assess the outcome of unseen pairs of chemicals

and species. TERA collects not only effect data but also compound data,

taxonomy and species traits. To limit the scope of this master thesis, we only

focus on one species (fathead minnow), and thus only collect the compound

data. However, our methods can easily be extended to include more species.

In the following sections, we will highlight which parts of TERA we used.

44

Effect Data

The effect data specifies which chemical that is toxic for which species. In 1996

a database titled ECOTOX1 [5] was released for governmental users in the

U.S. Four years later it was released to the public with a web-based interface.

The system integrates data from three independent databases: AQUIRE with

aquatic life data, PHYTOTOX with terrestrial plants, and lastly terrestrial

wildlife from TERRETOX.

result id test id endpoint conc1 mean conc1 unit

2063723 2037887 LC10 220 mg/L

...

Table 5.1: Ecotoxicological effect data

The data is originally tabular and contains endpoints, concentration means,

and the concentration units. However, it is arranged by TERA into triples. In

Section 2.1, we describe the different endpoints like LC50 and LD50. The ex-

ample above uses LC10 and expresses that 10% of the population will die when

it is exposed to 220 mg of the chemical per litre of water. When analysing, it

is necessary to compare rows with the same endpoint and unit. It is feasible

to convert some units to make them relative. It is important to be aware of

the several factors that can affect the results. The temperature, pH-value and

ionic content in the water, the duration of the exposure, and organism traits

like age and size can all influence the outcome [54].

Other tables in the ECOTOX database contains additional information

regarding the compound and species. However, the information is limiting,

and external sources should complement the data [54].

Compounds

The compound dataset holds information on the chemicals, both the hier-

archy structure and their characteristics. TERA uses PubChem2 as a base.

Pubchem is an open (i.e., the users can themselves enter their research) graph

database released in 2014 [64]. We can use the data directly as it already is

1ECOTOX data download: https://cfpub.epa.gov/ecotox/
2PupChem data download: https://pubchemdocs.ncbi.nlm.nih.gov/downloads

45

stored in triples. TERA further supplies a dataset called ChEMBL to compli-

ment with the hierarchy. The relevant triples are retrieved by querying their

SPARQL endpoint ChEBI3. The query searches for items that have an edge

to one of the relevant chemicals [54].

The Medical Subject Headings, abbreviated as MeSH4, is a vocabulary

created by the National Library of Medicine. Specialists continuously expand

and alter the database, with thousand annually updates [10].

There are three basic types of MeSH records: Descriptors, Qualifiers and

Supplementary Concept Records (SCRs). Descriptors are used for indexing

and retrieval of articles. It additionally describes what the subject is about,

its genre, and geographical information. Qualifiers are used to supplement

the Descriptors, and group together records that have the same aspect of the

subject (e.g., to indicate that an article is about drug effect on the liver and

not a general article about the liver). SCRs are used to index chemicals and

drugs. These records are not arranged in a tree hierarchy. However, links to

Descriptors connects the chemicals in such a matter [11].

There are other types in addition to the once mentioned above. The graph

includes predicates like “see also”, “term” and “pharmacological action”. The

last-mentioned is considering how the chemical or drug behaves in the body

or the environment (e.g. pharmacological action insecticide) [8].

Subject Predicate Object

Veterinary Medicine See Also Laboratory Animal Science

Osteogenesis Term Bone Formation

Thymol Pharmacological Action Antifungal Agents

Table 5.2: Examples of triples with the predicates see also, term and phar-
macological action.

Mapping to CID

The sources use different ID-types. Thus, to recognize the equivalent objects

from the various systems as the same, we need to map to a standard ID. We

have chosen to use the Compound Identifier (CID) (e.g., from the InChIKey

DDBREPKUVSBGFI-UHFFFAOYSA-N to CID4763). We use the Python

3ChEMBL SPARQL endpoint: https://www.ebi.ac.uk/rdf/services/sparql
4MeSH SPARQL endpoint: https://id.nlm.nih.gov/mesh/query

46

library PubChemPy [73], a wrapper for the PubChem API, to translate to

CID. Note that not all IDs can translate (e.g., MeSH IDs that points to

concepts and not compounds). We will refer to the instances mapped to CID

and triples that have such an object or subject, as CID-mapped.

5.1 Knowledge Graph Analysis

First, we tried only using hierarchy data from ChEMBL dataset in our ex-

periments (presented in Part II). The graph gave a bad performance for the

baseline method, and we could not see any significant difference between the

KG-model and the ON-model. After analyzing the graph, we found out that

it was not as connected as we initially assumed.

There are two types of relations in the KG: has parent and type. The type

attribute is referring to other vocabularies and does not have CID-mapped

objects5 (i.e., the triples with the predicate type can not directly connect two

chemicals from the training data). However, two subjects can point to the

same class and be connected in that matter. e.g., Ethylbenzene and Styrene

in Pubchem refer to the same class in the Bioontology vocabulary. This is

unfortunately only true for four classes:

• http://www.biopax.org/release/biopax-level3.owl#SmallMolecule

• http://purl.bioontology.org/ontology/NDFRT/N0000008130

• http://purl.bioontology.org/ontology/NDFRT/N0000006718

• http://purl.bioontology.org/ontology/NDFRT/N0000179021

It appears that every subject relates to SmallMolecule, which is not a

chemical identifier. The other type relations only have two subjects relating

to them. We assume that these exceptions have a small impact when it only

regards a few triples. Therefore, the type relation is excluded in the following

set evaluation6.

Leafs : Objects \ Subjects
5CID is the standard ID-type we try to map all the entities to.
6The sign \ represent set subtraction (i.e., elements in Objects, not present in Subjects).

47

n(Leafs) = 675

Roots : Subjects \Objects

n(Roots) = 25157

Others : Objects u Subjects

n(Others) = 0

Objects u Subjects = ∅

Objects = Leafs

Subjects = Roots

Since no chemicals are both subject and object, the two sets will further

be handled as two separate disjoint sets. The depth of the tree is consequently

of length 2.

When excluding the type relation, there are duplicates among the objects

but none among subjects. All subjects are therefore unique. Hence, objects

can not relate to other objects in the KG. However, subjects can relate to

other subjects by having an object in common.

Since the two sets of subjects and objects are disjoint, it was interesting

to see if they are both included in the test and training data. It shows that

most of the objects (662 of 675) are contained in the test and training data,

although the training data only includes nine compounds from the subject set

— while test data has none in common. Figure 5.1 illustrates the parts of the

KG.

We could, indeed, switch training data with the test data, but since it is

so sparse, we could assume it would perform poorly in any manner.

To extend the KG, we included the MeSH dataset. The MeSH graph is

nearly five times larger than the ChEMBL graph. We observe after including

MeSH that 29,348 nodes are internal nodes (e.g., not leaves or roots), which

means that the depth of the graph is greater than 2. Hence the objects and

subjects cannot be treated as disjoint sets, as some of the nodes consequently

are objects and subject at the same time. Therefore, an identical analyze is

48

Figure 5.1: Structure when only using ChEBI.

not obtainable. However, we do observe that the graph is more connected.

The KG has the same number of connection (662) from the objects to train

and test data, but the subjects, have gone from 9 connections to 215. In

addition, the duplicates in the subjects have now gone from 0 to 211, and the

objects from 605 to 714. We have illustrated this in Figure 5.2, but keep in

mind that the subjects and objects are not disjoint and cannot be interpreted

equally as Figure 5.1.

After running experiments with the new KG, we saw the KG-model out-

performed the ON-model. This indicates that the KG now has sufficient

information to contribute to the ML model.

49

Figure 5.2: Structure when including MeSH. The connections with the internal
nodes are for demonstration purposes and are not based on concrete examples.

50

Part II

The Project

51

Chapter 6

Proposed Approach

In this chapter, we introduce our proposed approach to improve and provide

explainability to the predictions. The intention is to evaluate the triples level

of discrimination according to their relations with toxic and non-toxic chem-

icals. First, we present naive approaches and the concepts behind central

crawling and scoring algorithms. We later discover that the graph is too con-

nected for our initial crawl and therefore giving us the same results as the

trivial solution. To bypass this problem, we introduce various ways to limit

the crawl to only concern the relevant triples.

Data, crawling methods and ML models are available at:

https://github.com/NIVA-Knowledge-Graph/mpnp

The Knowledge Graph (KG) is extensive and consists of over 155,000

triples. Inevitably, a significant amount of those triples are irrelevant to the

prediction. As we observed in Section 3.8, KG embeddings fall short when

using sparse and noisy graphs. Hence, filtering out unnecessary triples is

believed to increase the precision of the prediction.

In the intention of filter out the uninteresting information in the KG, we

introduce our hypothesis. We believe that discriminating triples are either

connected to toxic or non-toxic chemicals. By scoring the triples, based on

their connection to the chemicals, we aim to narrow down and prioritize the

KG to better the prediction.

A secondary objective of this master’s thesis project is to provide ex-

plainability for the prediction. Although this strategy is not explaining the

individual prediction, it can provide us with information on the specific triples

in the graph.

52

6.1 Naive Approaches

The first approaches practice a strategy of filtering the KG to exclude irrele-

vant triples, without dropping too many discriminating triples.

6.1.1 Only CID-Mapped (OCM)

We described in Chapter 5 how the different sources use different identifiers

for the same chemical, and how we decided to use the PubChem Compound

Identifier, abbreviated as CID. The other subjects and objects in the KG were

translated to this ID, where it was possible. We define entities, and triples

containing entities, that are mapped to this type of ID, as CID-mapped.

Subject Predicate Object

CID22970781 has parent CID1183

Table 6.1: Example from the ChEMBL dataset. Both CID22970781 and
CID1183 qualifies the triple as a CID-mapped.

Subject Predicate Object

CID9237 pharmacologicalAction Radiation-Protective Agents

M0006679 term T012986

Table 6.2: Example from the MeSH dataset. The subject CID9237 qualifies
the first row as a CID-mapped triple. The second row, however, has neither
the subject nor the object mapped to CID and does not qualify as a CID-
mapped triple.

Chemical Concentration

CID4763 2.681

Table 6.3: Example from the training data. The row qualifies as a CID-
mapped because of the chemical CID4763.

All the instances in the ChEMBL dataset, the training and the test data

are CID-mapped. However, the triples from the MesH dataset have only

3.95% of the triples CID-mapped. Therefore, the remaining triples in MeSH

cannot be directly connected to the training data. However, they are believed

to complement the hierarchy and can play an essential part in the prediction.

53

We mentioned in Section 5.1 how the ChEMBL dataset was too sparse for

us to use, which is the reason we added the MeSH data. However, it would be

of interest to see how the models perform with only the CID-mapped MeSH

triples in addition to the ChEMBL data. Hence we include this approach and

assign it the name Only CID-Mapped, as it only includes CID-mapped triples.

6.1.2 Crawling the Graph

To our understanding, a substance from the test data needs to be connected to

a substance from the train data in the graph for the graph to provide helpful

information. It can be connected directly, indirectly, with other entities in

common (i.e., shared attributes), or a mix of the above. Triples that cannot

be connected to any chemical in the training data are, consequently of no use

in the training process. Table 6.4 shows examples of the different ways the

triples connect. The arrow → is used to demonstrate predicates relating the

entities.

Directly: A→ B

Indirectly: A→ x→ B

Entities in common A→ x,B → x

Mix

- Indirectly: A→ x, x→ y

- Entity (subject) in common: z → y, z → B

Table 6.4: Examples of how the triples can be connected.

The basic idea of this naive approach is to crawl through the KG, starting

with triples that are directly relevant for the training. At the end of the crawl,

only visited triples are kept. The remaining triples are considered irrelevant

for the learning process.

To use this approach, we need to find the relevant triples. First, we tried

to start with all the triples with either CID-mapped subject or object. The

benefit is that the new KG is independent of the training set. Should the

model later be trained with new inputs, the same KG can be used. However,

the resulting KG from this was identical to the original knowledge graph. In

other words, all the triples connect to a CID-mapped entity.

54

Figure 6.1: Examples of crawl from one chemical.

We also attempted to only start with triples that have subjects or objects

contained in the training data. This would mean that it is necessary create

a new KG every time the model is trained with new training data. The time

used to crawl the graph is relatively similar to the training time. Adding this

process as an initial process to the model would indeed increase the run time,

depending on the size of the original KG and the training set. However, if

this is proven to improve the prediction, the trade-off can be worth it. This

Machine Learning (ML) training process is not continuous, and we assume

only periodic training. The results are inadequately similar to the previous,

with 94% of the KG kept. We could as assumed not see any improvements

from only removing 6%.

55

Figure 6.2: Example of the crawl when using chemicals in training data as
starting point. The kept triples have green heads and tails, whilst the others
have gray.

def crawl(kg, to_be_explored):

global explored

if not to_be_explored:

return

explored = explored | to_be_explored

neighbors_o = [(s, p, o) for s, p, o in kg if o in to_be_explored]

s = [s for s, p, o in neighbors_o]

neighbors_o += crawl(kg, set(s) - explored)

neighbors_s = [(s, p, o) for s, p, o in kg if s in to_be_explored]

o = [o for s, p, o in neighbors_s]

neighbors_s += crawl(kg, set(o) - explored)

return neighbors_o + neighbors_s

Figure 6.3: Implementation of the initial crawl algorithm.

56

6.2 Approaches with Scoring Triples

Figure 6.4: The scoring algorithm takes in the KG and the training data to
return a scored KG.

In contrast to a lot of the relative works, this problem only have two labels: 1

(harmful) and 0 (not harmful). However, the original LC50 concentrations can

say something about the degree of harmfulness. The lower the concentration,

the more harmful a substance is. This method builds on the idea that triples

related to chemicals that causes great harm, can be more discriminating.

To illustrate this, we present a particular example form the data. The

entity in the MeSH dataset, D007306, is the URI for insecticides. The subset

of chemicals with relation to this entity is designed to be poisonous for specific

organisms. We discovered that the chemicals classified as insecticides have a

relatively high concentration, with an average of 5.573 mg/L. This is compared

to the other chemicals less toxic, as the average of all the chemicals is 4.042

mg/L. The reason can be that the insecticides target insects and that a much

higher concentration is necessary for other species, such as the fish used in

these tests. We will, however, use the example for demonstration purposes.

In the KG, the two compounds Phosalone and O-Ethyl O-(4-nitrophenyl)

phenylphosphonothioate are connected as described in Table 6.5.

57

Subject Predicate Object

Phosalone pharmacologicalAction Insecticides

O-Ethyl O-(4-nitrophenyl)

phenylphosphonothioate

pharmacologicalAction Insecticides

Table 6.5: The table shows how Phosalone is connected to O-Ethyl O-(4-
nitrophenyl) phenylphosphonothioate in the graph.

O-Ethyl O-(4-nitrophenyl) phenylphosphonothioate have in the training

set a concentration of 6.209 mg/L. Phosalone is among the test data and has

similar to the phenylphosphonothioate, concentration of 6.238 mg/L.

The algorithm displayed in Figure 6.5, is the initial idea of how to score

the triples. The concentrations of the chemicals are subtracted by the median

(≈4) to divide the toxic and non-toxic chemicals as negative and positive

numbers, respectively. All the triples start with a score of 0, which increases

or decreases as the chemicals visit them with their crawl. In the end, the

scores the triples retrieved are converted to positive numbers, to consider the

triples discriminating toward toxic and non-toxic equally.

Triples connected to multiple chemicals can gain more points. This can

mean that the triple is relevant. If the triples receive both negative and

positive scores, this would balance each other out, which can mean that the

triple is in fact, irrelevant. If the triple is both connected to toxic and non-

toxic chemicals, the information it holds has presumably little influence when

it comes to determining the toxicity of chemicals.

58

def basic_scoring_algorithm(training_data, kg):

chemicals, scores = list(training_data['cid']),

list(training_data(['y'])

start with 0 touches and scores for all the chemicals

kg_score, kg_touches = initialize_empty_dicts(len(kg))

subtract the median of all the scores

median = np.median(scores)

scores = scores - median

crawl the graph from the chemicals

for chemical, score in zip(chemicals, scores):

neighbors = crawl(kg, chemical)

add the score to all the connected triples

for neighbor in neighbors:

kg_score[neighbor] += score,

kg_touches[neighbor] += 1

convert to absolute value of the score

kg_score = {k: {np.abs(v)} for k, v in kg_score.items()}

sort knowledge graph based on score

kg_dict, kg_touches = sort_by_score(kg_dict, kg_touches)

return kg_dict, kg_touches

Figure 6.5: The basic scoring algorithm, simplified. The term touches describe
how many chemicals the triple is effected by.

6.2.1 Results from the Basic Scoring Algorithm

In Table 6.6, the first column “Rank” refers to the position of the triple based

on the “Score”, were 0 is the most discriminating. The column “Touched”

refers to how many chemicals visited the triple and influenced its score.

59

Rank Subject Predicate Object Score Touched

0 CID129760973 has parent CID289 71.440 456

1 CID129847363 has parent CID28780 71.440 456

2 CID67720914 has parent CID4101 71.440 456

...

146326 T690973 type Term 71.440 456

146327 CID66608653 has parent CID10342051 10.592 2

...

Table 6.6: Results from the basic scoring algorithm.

The results from the basic scoring algorithm are not unexpected. The KG

is profoundly connected, and 146326 out of the 155367 triples (94%) all have

456 “touches”, and the same scoring. This method involves the same type of

crawling as the previous method. We suspect that one or a couple triples, like

X type SmallMolecule, connects almost all of the triples.

We could either remove this from the graph classifying it as trivial or

introduce a general solution for this problem. When removing that triple,

140813 are still touched by the same 334 iterations. SmallMolecule was only

the 97th most repeated object with 166 occurrences. By the looks of it, several

common triples contribute to connecting most of the triples. This problem is

a significant weakness in the algorithm, and we should have a general solution

for this.

Rank Subject Predicate Object Score Touched

0 CID129847363 has parent CID28780 74.878 334

1 CID67720914 has parent CID4101 74.878 334

2 CID20153713 has parent CID6579 74.878 334

...

140813 T690973 type Term 74.878 334

140814 CID66608653 has parent CID10342051 10.592 2

...

Table 6.7: Results from the Basic Scoring algorithm without the object Small-
Molecule.

60

6.3 Solution to Trivial Entities Connecting all

Triples

As we can see in Section 6.2.1, the high connectivity in the graph is breaking

the method, and we need as discussed a general solution to the problem.

The following solutions do not handle all connections similar. For instance, a

triple connected to a toxic chemical by many steps can be less likely to to be

discriminating, compared to close triples.

For the following approaches, we applied the basic scoring algorithm de-

scribed above, but switched out the crawl function with the new crawl ap-

proach.

6.3.1 Remove Common Triples

One naive solution would be to remove triples that occur too often in the

graph. e.g., remove all connections that are shared by more than 10% of the

graph. Alternatively, we could remove entities that connect too many entities

from both poles (harmful and non-harmful chemicals).

With this solution, it can be hard to find the optimal boundary. Critical

triples that are common among one of the poles could be ruled out. It remains

a possibility that the graph would still be connected through multiple steps.

This is not an adequate general solution. A solution like this would be

quite graph dependent and not work in every case. The method is thus not

explored further.

6.3.2 Limited Step Crawl (LSC)

In this section, we introduce crawls which are limited to a specific depth. The

strategy of these approaches is to prioritize the local triples and ignore the

higher hierarchy.

61

One Step Crawl

Figure 6.6: Crawl with one step. C is a chemical in the training data, and
s,p,o is the triple receiving the score (i.e., the LC50 concentration value minus
the median) from the chemical.

The One Step Crawl is a somewhat restricted method. Only triples containing

the chemical as object or subject are given the score from the chemical. We

can see in Figure 6.6 how the scoring is limited to only direct connected triples

in the graph.

Rank Subject Predicate Object Score Touched

0 CID66608653 has parent CID10342051 5.296 1

1 CID70980984 has parent CID10342051 5.296 1

2 CID70288859 has parent CID10342051 5.296 1

3 CID88106247 has parent CID10342051 5.296 1

4 CID10342051 type CHEBI 39346 5.296 1

5 CID11497855 has parent CID10342051 5.296 1

6 CID70013000 has parent CID10342051 5.296 1

7 CID10342051 type C65672 5.296 1

8 CID3224 type CHEBI 4791 4.519 1

9 CID88477627 has parent CID3224 4.519 1

10 CID22439579 has parent CID3224 4.519 1

...

Table 6.8: Results from the Limited Steps Crawl algorithm .

However, only 23760, 16% of the triples in the graph, received a score

above 0. We observed as well that all the scored triples are only affected

by one chemical each. Hence, none of the chemicals in the training data is

connected directly in the graph. This crawl is too limiting on this dataset.

62

{s, p, o|(s, p, o) ∈ K) ∧ s, o ∈ T ∧ s 6= o} = ∅

Figure 6.7: The symbol K represent the KG, and T the training set. The
notation describes that there exist no triple in the KG, where both the subject
and the object are from the training data. Hence, no chemicals we train on
are directly connected in the KG

Two Step Crawl

Figure 6.8: Crawl with two steps.

The One Step Crawl was in our case too restrictive to provide any useful

information. The next strategy, however, takes the crawl one step deeper.

The triples containing the chemical are further searched for connected triples,

as we see in Figure 6.8. This extra step includes the shared attributes among

the chemicals.

In Section 6.2 we mentioned an example of chemicals with the attribute

insecticides. We can see in Figure 6.9 how both triples are reached, although

only one of the triples contains a chemical from the training data.

Figure 6.9: EPN: short for O-Ethyl O-(4-nitrophenyl) phenylphosphonoth-
ioate.

63

Table 6.9 presents the most discriminate triples according to this method.

The identifier for insecticides, D007306, are present either as an object or

subject in all of these triples. Investigating further, we see that all of the 85

triples containing relation to insecticides are ranked at the top.

The observation was a bit surprising as the chemicals categorized as in-

secticides were found to be less toxic than average. How insecticides affect

the different organisms, it is not designed to harm, is outside the scope of

this project. Although, it is interesting that the two-step method gave these

triples such a high ranking. However, 54 chemicals out of all the 766 chemicals

(≈7%) we use in this project are classified as insecticides, which is a relatively

large segment.

Rank Subject Predicate Object Score Touched

0 D007306 seeAlso D002800 81.379 61

1 D002800 seeAlso D007306 81.379 61

2 D007306 AQ Q000008 71.932 149

...

19 D007306 AQ Q000528 71.932 149

20 D007306 AQ Q000097 70.405 146

...

24 D007306 AQ Q000276 70.405 146

25 D007306 AQ Q000037 69.885 147

26 D007306 BD D010575 68.455 45

27 CID3224 PA D007306 67.638 43

28 D011722 PA D007306 67.291 43

29 CID3347 PA D007306 67.291 43

30 CID6758 PA D007306 66.972 43

31 CID4115 PA D007306 66.761 43

...

Table 6.9: Results from the Two Step Crawl algorithm. The predicates have
the abbreviations: PA: Pharmacological Action, AQ: Allowable Qualifier and
BD: Broader Descriptor.

About half of the graph, 62551 triples to be precise, are visited. However,

we do observe that 6666 and 21430 triples have gotten only one or two touches,

respectively. We could argue that there is a lower possibility that a chemical

64

is connected in the test data when having so few connections in the training

data1. Hence, filtering these triples out could be an option if a strict scoring

approach is preferred. We have nevertheless chosen not to neglect these, in

concern of missing important information

6.3.3 Directed Crawl (DRC)

Simple Directed Crawl

Figure 6.10: Simple Directed Crawl.

The previous methods take the local environment of the chemical into account.

However, it does not utilize the hierarchy of the graph to the fullest, but this

approach does. It will crawl to the top and the bottom, to include all super-

and sub-classes. This method does not visit the entire graph because it only

crawls in one direction, either from subject to object or object to subject, as

we see in Figure 6.10.

This strategy will bypass the problem of having every triple connected,

but as the limited step crawls, leave out information. The example we have

earlier discussed with the insecticides will not be taken advantage of in this

approach. However, in some graph structures, perhaps this one as well, the

hierarchy could be more characteristic than the local environment. Therefore

this approach is further explored.

1This is, of course, dependent on the structure of the KG

65

Rank Subject Predicate Object Score Touched

0 D006838 AQ Q000378 66.928 67

...

31 D006838 AQ Q000600 66.928 67

32 D006571 AQ Q000008 65.382 140

...

63 D03 type TreeNumber 65.382 140

64 D02.455 type TreeNumber 64.828 71

65 D02.455 PTN D02 64.828 71

66 D004786 AQ Q000032 63.479 130

...

173 D010575 AQ Q000600 63.479 130

174 D005659 AQ Q000600 63.139 129

...

Table 6.10: Results from the Simple Directed Crawl algorithm. The predi-
cates have the abbreviations: AQ: Allowable Qualifier and PTN: Parent Tree
Number.

Directed Crawl with back Steps

Figure 6.11: Directed with back steps.

The LSC and the Simple DRC focuses on two different aspects of the graph.

Both the strategies consequently neglect the aspects the other strategy con-

siders. A strategy that combines the benefits from both approaches could

conceivably be the best solution. Hence, we introduce a mix of them both: a

66

DRC with one back-step. This way, local information along the hierarchy is

included while the crawl remains somehow restricted.

Rank Subject Predicate Object Score Touched

0 M0010687 preferredTerm T020636 133.856 134

1 D006838 preferredTerm T020636 133.856 134

2 D006838 preferredConcept M0010687 133.856 134

3 D006838 treeNumber D02.455 131.756 138

4 M0010290 preferredTerm T019788 130.764 280

...

209 D035141 allowableQualifier Q000331 115.280 252

...

3880 D002906 allowableQualifier Q000469 115.280 252

...

Table 6.11: Results from the DRC with back Steps algorithm.

We recognize in Table 6.11 that from rank 209 to rank 3880, 3671 triples

share the same amount of touch and have the same score. We suspect that

this approach is too close to crawling the whole graph and that this strategy

is inadequately to separate the triples properly.

Directed Crawl with back Step on first Step

Figure 6.12: DRC with back step on first step.

This strategy is again a compromise, but now between the two previous meth-

ods. One could assume that the local triples close to the chemical are more

67

relevant to the ones of the super- and sub-classes. In this crawl, we only take

one step back at the first step. We can define this as a union between the

Two Step Crawl and the Simple Directed Crawl.

Rank Subject Predicate Object Score Touched

190 M0000913 preferredTerm T001785 57.990 126

...

79445 M0543318 preferredTerm T765305 57.305 125

...

83739 D001304 allowableQualifier Q000191 37.897 159

...

99122 D012893 allowableQualifier Q000276 37.490 157

...

103040 D016769 allowableQualifier Q000097 37.490 157

103041 D000438 allowableQualifier Q000037 36.970 158

...

103304 D014166 allowableQualifier Q000037 36.970 158

...

Table 6.12: Results from the Directed Crawl with Back step on first Step
algorithm.

We can still see similar scores being shared by multiple triples. However,

not to the extent as the previous method. Even though many of the scores

are similar, we can see some variations between most of them. Besides, the

clusters themselves, have a higher difference separating them.

68

6.3.4 Descending Influence Crawl (DIC)

Figure 6.13: Crawl with Descending Influence. Only the directed triples are
drawn to simplify the illustration. However, the subject and objects can be
connected to other subjects and objects, respectively (Like we see in Figure
6.1).

The previous approaches we have introduced cuts the crawling short in order

to limit the influence from each triple. Triples are either in relevance to

the chemical or not, with no middle ground. However, we believe that the

relevance of a triple descends the further away it is from the chemical.

With this assumption in mind, we introduce an approach we call Descend-

ing Influence. We divide the score by the number of steps from the chemical

before supplying it to the triple. Every chemical will touch most triples. How-

ever, the influence will vary.

69

Rank Subject Predicate Object Score Touched

0 CID3347 PA D007306 38.0256 456

1 CID38779 PA D007306 36.9928 456

2 CID6950 PA D007306 36.8743 456

...

69163 D011859 AQ Q000941 5.6471 456

69164 D000071199 AQ Q000502 5.6465 456

69165 D033101 AQ Q000706 5.6459 456

...

144308 CID5460998 has parent CID289 1.6910 456

144309 CID13529 type CHEBI 63104 1.6905 2

...

Table 6.13: Results from the Descending Influence algorithm. The predicates
have the abbreviations: PA: Pharmacological Action and AQ: Allowable Qual-
ifier.

70

Chapter 7

The Execution

In this chapter, we will discuss some of our procedures and choices regarding

the experiments. We deliberate on which triple scoring algorithms we decided

to examine, how we passed the data to our models, and lastly how many times

we repeated the various training processes.

We have chosen to experiment with the following triple scoring strategies.

• Baseline Method (BLM)

The BLM utilises the whole KG and handles all the triples equally. The

results from this are mainly used to compare other approaches.

• Only CID-mapped (OCM)

We described in Chapter 5 how we collect the data from two sources,

the ChEMBL and the MeSH datasets. All the triples in the ChEMBL

dataset have either the triple or the subject mapped to a CID. We

showed how this dataset alone did not provide enough information and

complimented it with the MeSH data. However, this dataset has only a

smaller subset mapped to CID, and the most mapped to other identifiers.

We question if the new CID-mapped triples alone provide the knowledge

graph with the valuable information. Therefore we include this approach

in our study.

• Limited Step Crawl (LSC)

When limiting the crawl with numbers of step, the Two Step Crawl

resembled a great place to draw the line. The One Step Crawl did not

connect any of the chemicals while introducing more steps could connect

the graph too strongly again.

71

• Directed Crawl (DRC)

We introduced three different strategies for the Directed Drawl. They

are similar in their approach but includes local triples in different ways.

The Simple Directed Crawl neglects these complete, while the Directed

Crawl with Back Steps tends to include too many triples and reminds us

of the original baseline method, where all the triples are handled equally.

The last strategy with back step only on first step seems to be the best

hybrid to combine the local and hierarchy information. Hence, we have

chosen only to examine this method.

• Descending Influence Crawl (DIC)

The last strategy we have chosen to include is Descending Influence. It

employs all triples but handles them differently based on the distance

from the chemical. This will, to some extent, prioritize the local context,

but not dismiss the higher parts of the hierarchy completely.

7.1 Preparing the Data

7.1.1 Generating the Triple Output

Triples we input to the model needs to have suitable output to be used during

training. The embeddings are in our model implemented with a Sigmoid

activation layer for the output layer. The Sigmoid ensures that the result is

in the range between zero and one. The number can be interpreted as the

probability of triple existing in KG. Strictly, in this work, we tie this to the

importance of the triple.

We mentioned in Section 2.4.1 how the embeddings need to be supplied

with negative triples to prevent the trivial solution. We generated negative

triples by randomly combining entities1 as subjects and objects. If the triple

does not already exist in the KG, it will be added with a score of zero. When

it comes to the existing triples, we use three distinct approaches to give them

a suitable output.

1Entities is referring to the union of subject and objects.

72

• Binary (Bin.)

For the BLM and the OCM approaches, we take a binary approach.

Since we only know that the triples exist and nothing more, they are

given the score 1.

• Normalization (Nor.)

In the second approach, we normalize the scores between 0.5 and 1.

The reason we sat the lowest value to 0.5, is because the triples who are

irrelevant does still exist, and differ from false triples. This method is

used for the LSC, DRC and the DIC strategies.

• Average (Avg.)

The last method is similar to the normalized method. The only dif-

ference is that the score is divided on the number of touches before

the normalization. Calculating the average before the normalization

will avoid the problem of triples connected to many less-toxic chemicals

could exceed triples connected to a few highly-toxic chemicals. We have

tested this on the same approaches as we did with the second approach.

One exception is for the DIC. Since the received scores are quotients

of their own, dividing on the number of touches will not be correct.

The scores received from a chemical far away will then have a negative

impact, despite it having a high concentration. Hence, we apply the

Weighted Average (WA) instead.

7.1.2 Balancing the Input

Our KG-model takes in two datasets when training, the KG and the training

data. They must be of equal length for both of them to be present through

every forward and backpropagation. The training data set is smaller than the

KG. We replicate arbitrary instances in the training data to compensate for

the gap.

Hence, when using shorter graphs, the epochs will include fewer instances

from the training data, compared to more extended graphs. This can have

73

an influence on the result in terms of overfitting and underfitting. Although

we have solutions for overfitting, comparing the KG-model to the ON-model,

will evaluate how they perform given the same circumstances.

7.1.3 Converting the Concentrations to Binary

The ecotoxicology effects are measured in concentration (mg/L). However, to

simplify the problem to a classification problem, we divide chemicals into two

classes, toxic and non-toxic.

The data are split at the median, resulting in equal parts of toxic and

non-toxic chemicals. In both the training and the test data, the median is at

about 3.9 mg/L. It is conceivable that it exists a more optimal division than

such; however, in the scope of this project, we will use this simplification.

(a) The division on the training data (b) The division on the test data

Figure 7.1: Shows where the data separates at the median in linear-scale.

7.2 Repetitions

7.2.1 Number of Epochs

The term epoch means training iteration. When the whole training data is

passed through the model and backpropagated, we call it an epoch. This can,

and usually should be repeated multiple times. If the number of epochs is

too low, we will get an underfitted model, whereas if the number of epochs

is too high, the model can be overfitted. It is challenging to find the perfect

number of epochs needed to get the best generalization from the model. The

balance is not on a fixed number and can vary for each run. However, as we

74

have discussed in Section 2.3.2, methods to avoid overfitting exists. We have

therefore decided to go for a relatively high number of epochs and settled on

100. To work against overfitting, we used the following strategies.

7.2.2 Overfitting

Our model uses, as illustrated in Figure 4.2, dropout on each hidden layer.

This is a method to avoid overfitting, where arbitrary nodes in the network

are left out during the training.

As we further deliberate in Chapter 9, the result from just using dropout

were less satisfying than what we expected. Although dropout assists to

avoid overfitting, we still suspect overfitting to be a potential cause for the

low values. Hence, we ran the models with early stopping in addition.

7.2.3 Number of Runs

ML is a stochastic method, where the results can vary based on initial con-

ditions2. Consequently, we need to perform multiple executions to get a rep-

resentative average — the more runs, the more reliable result. However, the

process of training the network is, as discussed, time-consuming.

We have chosen two embedding algorithms, two strategies against over-

fitting, and five scoring approaches, where three of them have two ways to

incorporate the scored triples. That gives us a total of 32 combinations.

Although increasing the number of runs per combination give us a more

accurate average, it also increases the number of runs rapidly. We have,

therefore, decided to do seven runs per combination, which leaves us with a

total of 224 runs.

2We use random initialization of model weights.

75

Chapter 8

Results

In this chapter, we present the results from our experiments with explanations

on how to read and interpret them. We observe that the Limited Step Crawl

(LSC) with average and the Directed Crawl (DRC) normalized, both using

DistMult, perform relatively good in all metrics. The Only CID-mapped

(OCM) with TransE have also shown an improvement in all the metrics, except

in one (p-value). However, the baseline, along with the other approaches, does

not perform a lot better than the random classifier.

8.1 Evaluation Metrics

This section describes the evaluation metrics we use to compare the different

approaches, to provide the reader with sufficient background knowledge to be

capable of interpreting the results.

8.1.1 Precision and Recall

We can divide all the results into four categories.

True Positive (TP) False Positive (FP)

False Negative (FN) True Negatives (TN)

The true positives and the true negatives on the leading diagonal are where

the prediction is correct and should be greater than the two others. From this,

we can calculate the accuracy:

Accuracy =
TP + TN

TP + FP + FN + TN

76

The accuracy can be explained as how many correct predictions we received

in correlation to the false. However, the metric does not describe the results

further. It does not separate between the positive and the negative results. We

can, nevertheless, use a complementary pair called precision and recall. The

ratio precision is how many of the positive samples were, in fact, relevant.

Recall, on the other side, is measuring how many of the relevant positive

samples we caught, as opposed to not. The two metrics are inversely connected

and can be united into one metric [51, p. 23].

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 = 2
Precision ∗Recall
Precision+Recall

F1 is considering all of the four outcomes by utilising precision and recall.

It does, however, conceal details in our area of concern. In ecotoxicology effect

prediction, it is essential to capture as many of the true positives as possible,

despite the increase in false positives. Hence, we want as few false negatives

as conceivable to avoid undetected hazards. The recall can measure this, as

it reflects how many of the relevant elements we manage to discover.

8.1.2 ROC and AUC

ROC is an abbreviation for Receiver Operator Characteristic and is displayed

as a curve where true positives are on one axis, and false positives on the

other, as we vary the decision threshold.

The ROC curve must lie above the diagonal from the line from (0,0) to

(1,1), for it to be better than random, at that specific point. The higher the

curve, the better the prediction. To compare different classifiers, AUC, short

for Area Under Curve, can be calculated. The bigger the area, the better the

classification [51, p. 24].

It is customarily to use AUC when comparing classifiers. However, when

it comes to ecotoxicology effect prediction, we value true positives, despite the

increase in false positives. Hence, it is reasonable for us to focus on the upper

right of the curves, which is lined out in Figure 8.1.

77

Figure 8.1: ROC curve.

8.1.3 Probability Value

Probability value (p-value) is a statistical model commonly used as a test of

significance for the findings in research. Ronald Fisher, how is considered as

the pioneer, interpreted the value as an index of evidence against the null

hypothesis (i.e., no difference in the datasets) [50].

It has been common to interpret the p-value as the probability of the

findings to be the result of chance. As a consequence, it is believed that the

remaining rate is the probability of the groups to differ. This is, however, not

entirely correct [22]. A high p-value is not an indication for the groups to be

similar. Instead, it should be interpreted as a lack of evidence for the groups

to differentiate, in this specific observation [56]. It does not say anything

about the probability of groups to be equal [83].

The American Statistical Association (ASA) have released statements about

misconceptions and misuse of the p-value. Among others, they mention how

the p-value is not a measurement of the effect or importance of a result. It

does not say how much the groups separate, but can rather present evidence

if they do so [83]. They also emphasise that the p-value alone should not be

the ground for the conclusion of the hypothesis [83].

78

“The p-value was never intended to be a substitute for scientific

reasoning” - Ron Wasserstein, the ASA’s executive director [83]

Ronald Fisher introduced <5% as a standard threshold to conclude that

the findings were of statistical significance. He later clarifies that this is not

an absolute rule, but rather a suggested cutoff. The cutoff has been perceived

as standard, especially in medical research, but if the p-value exceeds 5%, we

can still argue that there are tendencies toward statistical significance [29].

We collected, from all our seven runs, the F1 values from the KG- and the

ON-model in separate sets. The two sets were then used in the calculation to

find the p-value. The intent is to provide evidence that the sets are different

and conceivably strengthen the hypothesis that the KG-model outperformed

the ON-model or vice versa.

8.2 Without Early Stopping

Before introducing Table 8.1 with the results, we will describe how the columns

in the table are read. In the first column, “Approach”, we find the different

approaches to cut or prioritize the graph, that we decided to include, at the

start of Chapter 7. The second column, labelled “Scoring”, refers to the

distinct strategies to use the score of the triple in the model. We deliberated

on this in Section 7.1.1. The third column, “Embedding”, specifies which

embedding method that was used. As we decided in Section 4.3.1, we used

two embedding methods, DistMult and TransE. They are abbreviated in the

table as DM and TE, respectively.

The following columns: “F1”, “p-value” and “AUC”, are referring to the

metrics (described in Section 8.1) from the KG-models. “∆ F1” and “∆ AUC”

are the difference between the ON- and the KG-model. If the figure is positive,

it means that the KG model outperformed the ON-model and visa versa.

The table is colour coded with yellow and green. In columns “∆ F1” and

“∆ AUC”, we marked the results that outperformed the baseline method,

respectively to the embedding method applied, as green. The p-values marked

yellow, are relatively close to statistically significant.

79

A
p
p
ro

ac
h

S
co

ri
n
g

E
m

d
ed

d
in

g

F
1

(%
)

∆
F

1
(%

)

p
-v

al
u
e

(%
)

A
U

C
(%

)

∆
A

U
C

(%
)

R
ec

al
l

(%
)

∆
R

ec
al

l
(%

)

BLM Bin. DM 49.7 +3.4 40.9 52.4 +2.5 43.5 −6.8

BLM Bin. TE 47.6 +1.2 79.4 52.2 +2.7 46.0 +1.7

OCM Bin. DM 41.6 −10 21.2 51.0 −4.4 39.8 −11.6

OCM Bin. TE 56.9 +6.4 44.8 58.5 +9.1 67.3 +15.3

LSC Nor. DM 47.4 −4.6 23.7 49.3 −1.3 47.2 −7.0

LSC Nor. TE 52.8 +2.1 46.9 51.6 +0.1 54.7 +3.5

LSC Avg. DM 56.4 +5.3 16.9 54.2 +6.1 60.2 +6.0

LSC Avg. TE 49.0 −0.7 86.4 49.8 +0.6 48.9 −1.9

DRC Nor. DM 51.9 +3,3 44.0 51.7 +1.4 53.6 +4.6

DRC Nor. TE 52.1 +0.5 87.9 52.2 +0.3 53.4 +1.0

DRC Avg. DM 46.8 −0.3 96.1 49.7 −1.7 44.7 −1.0

DRC Avg. TE 51.3 +1.5 66.9 51.8 +3.3 53.0 +2.1

DIC Nor. DM 55.9 +7.1 6.7 55.3 +3.8 58.8 +9.5

DIC Nor. TE 48.2 −1.4 65.6 50.4 +1.0 46.6 −3.5

DIC WA DM 49.4 −1.2 78.2 51.9 +2.3 50.5 −2.9

DIC WA TE 53.0 +2.4 42.8 51.1 +1.3 55.3 +1.9

Table 8.1: Results without early stopping.

80

8.2.1 ROC Comparison

Figure 8.2: ROC comparison using macro average.

Figure 8.2 is a plot of the ROC curves for the three best performing classifiers,

along with Baseline Method. For the BLM, we used DistMult. This has both

the best performance compared to using TransE and are used by two out of

the three best classifiers.

At the start of the curves, we see that BLM is lying close to the diagonal

random classifier. The other three are all above at a similar height. At the

middle part of the graph, we can the pattern continue, except for the Only

CID-mapped that raises even more. Towards the end of the curve, we observe

the Descending Influence Crawl and Limited Step Crawl fall to the level of

81

the BLM. This is easier to see in Figure 8.3, where we zoomed in on the top

of the graph.

All the three classifiers are better, or equal, classifiers than the baseline,

in most areas in the figure. However, we see that the Only CID-mapped is

giving the best results.

Figure 8.3: ROC comparison using macro average, zoomed to our area of
focus.

8.3 With Early Stopping

In Table 8.2, we present the results when using early stopping in addition to

dropout. The columns and colour coding are equal to Table 8.1.

82

A
p
p
ro

ac
h

S
co

ri
n
g

E
m

d
ed

d
in

g

F
1

(%
)

∆
F

1
(%

)

p
-v

al
u
e

(%
)

A
U

C
(%

)

∆
A

U
C

(%
)

R
ec

al
l

(%
)

∆
R

ec
al

l
(%

)

BLM Bin. DM 51.1 +13.3 21.6 49.3 +0.0 58.4 +17.2

BLM Bin. TE 45.9 +5.0 57.9 47.9 −1.9 45.5 +1.2

OCM Bin. DM 41.0 −2.6 80.6 50.7 −2.6 41.2.0 −2.5

OCM Bin. TE 49.7 +15.3 21.1 48.6 +0.5 61.5 +26.3

LSC Nor. DM 41.7 +5.7 63.5 51.3 −1.4 45.3 +6.4

LSC Nor. TE 47.2 +10.6 35.0 49.1 +1.4 56.9 +19.7

LSC Avg. DM 52.6 +0.9 91.2 50.3 −0.4 65.2 +7.2

LSC Avg. TE 41.4 +10.0 48.5 52.5 +3.9 48.9 +15.5

DRC Nor. DM 42.8 +11.7 29.7 47.8 +0.3 48.9 +24.6

DRC Nor. TE 46.9 +1.7 81.8 49.6 +1.6 49.9 +1.9

DRC Avg. DM 45.8 +8.8 43.5 50.0 +0.5 48.0 +6.2

DRC Avg. TE 41.4 −3.3 76.9 48.4 −1.5 48.2 +2.1

DIC Nor. DM 48.0 −3.6 71.6 51.5 +2.5 57.8 −2.5

DIC Nor. TE 47.7 +5.5 58.9 49.2 +0.9 55.9 +13.5

DIC WA DM 52.3 +3.7 73.5 46.6 −4.0 65.2 +1.2

DIC WA TE 49.8 +13.8 20.9 47.4 −1.3 55.1 +16.6

Table 8.2: Results with early stopping.

83

Chapter 9

Discussion

In this chapter, we will discuss the results from our experiments, and delib-

erate on feasible explanations for the patterns we observe. We consider the

characteristics of the embedding methods, what data the various crawling

approaches prioritize, and more.

9.1 Challenges with the Crawling Methods

We face multiple challenges with these approach. The following paragraphs

will mention a few of the most notable obstacles we encounter.

Problem: If some of the test chemicals do not have any connected triples

with the train data, the method does not consider relevant triples for those

chemicals in particular.

Answer: These triples would not have any impact since they are not relevant

to the training and is irrelevant to the training even if it contains essential

information.

Problem: Even though triples that occur in many iterations from the crawl

can be a sign of relevance, it can also overshadow other triples that do not

appear that often if they get an unrealistic high score.

Solution: A alternative is to use the average on the scored triples instead of

only normalizing the score. Both methods are assessed.

Problem: Triples that are non-discriminating can get a high score using

our methods if not equally represented in both poles.

84

Answer: This is an issue that can falsely find discriminating triples, and

can be problematic when applying this algorithm to specifically rank triples.

However, when using it in the ML model, it can still be beneficial. The BLM

gives all the triples a score of 1. This method is filtering out noise from the

KG. If many triples are falsely given a high score, the effect of this method

could decline. However, the bigger problem is when essential triples do not get

the score they justify, as this could lead to a loss of discriminating information.

9.2 The Unsatisfying P-Values

The first thing we notice in the results were the unsatisfying p-values. They

are all in the range of 6.7% and 96.1%, where most are above 20%. We can

also see that the value for the BLM is just as unsatisfying, with 40.9% and

79.4% when using DistMult and TransE, respectively. However, this does not

mean that we should reject the results. What it implies is that the results

were not proven to be statistically significant, according to the p-value.

As we mentioned in Section 8.1.3, we should not rely on the p-value alone

and substitute it from scientific reasoning. We also expect variation within the

results as this is a non-deterministic method and besides a difficult learning

problem. We do, however, see two rows in Table 8.1 that stands out (marked

in yellow). Limited Step Crawl has a p-value of 16.9% when used with aver-

age and DistMult. In another context, this could have been perceived as an

insignificant finding, but the value is relatively decent compared to the other

values. As we mentioned in Section 8.1.3, The 5% cutoff is just a suggestion.

The other row is the Descending Influence Crawl also used with DistMult,

only normalized. Its p-value is 6.7% and can be interpreted as close to a

statistical significance.

9.3 The Low Values in General

None of the values was particularly exceptional, compared to other prediction

cases. The AUC is a metric that can be used to compare which classifier is the

best. A classifier predicting by random choice would get a straight diagonal

line through the ROC, and therefore, get an AUC value of 50%. All of the

results without early stopping have AUC values between 49.3% and 58.5%.

85

As we can see in Figure 8.1, the BLM has an AUC of only 52.4% and 52.2%

using DistMult and TransE, respectively.

Although the results are a bit under our expectation, we must recognise

that this is a challenging learning problem and be gratified with only small

improvements. The results were not statistically significant, but the problem

may not be in our crawling approach. The bad performance for the BLM does

also indicate this. The problem can be in the KG embedding approach or the

KG itself. However, we can still see interesting patterns in the results.

9.4 The Results without Early Stopping

We can see three approaches that outperformed the baseline classifier in all

the different metrics.

• Only CID-mapped (OCM) - Binary - TransE

• Limited Step Crawl (LSC) - Average - DistMult

• Descending Influence Crawl (DIC) - Normalized - DistMult

As we discussed in the previous section (Section 9.2), the two last-mentioned

methods, were also the ones with the best p-values.

The Directed Crawl (DRC) with average and TransE are close to being in

this category as well, had it not been for a slighter lower AUC. We do consider

the ∆ AUC over the AUC, as it is a comparison under the same circumstances.

However, the other metrics do not differentiate much. Neither do the BLM

results nor do the KG-model to the ON-model. Hence, we disregard this as

an outperforming approach.

Local Area over the Higher Hierarchy

A pattern we see in the results is that the approaches prioritizing local triples

perform better than the DRC looking at all sub and superclasses. As we

mentioned in Section 5, the MeSH dataset does contain hierarchy information

on the chemicals. This can indicate two things. Either the chemicals used in

the experiments unexpectedly lacks discriminating hierarchical information,

or this has little to say when it comes to the toxicity of the chemicals.

86

However, the DRC we used does not look back other than on the first

step. As we showed in Section 6.3.3, that would lead to a too connected

graph, similar to using all the connections. If all the chemicals are on the

same level in the hierarchy, we will reach siblings, parents and grandparents

but not cousins. This could give the classes higher in the hierarchy a bias

compared to the neighbouring. The embeddings, especially TransE (see Figure

2.17) should handle such relations. Although, if none of the cousin’s siblings is

included in other training sets, the connection from the sibling to the common

grandparents can get weak. We are not aware of how big of an influence this

has. Most of the approaches include all the triples, but give the poorly scored

an output toward, but not lower than, 0.5.

Figure 9.1: Illustrates what the DRC includes compared to the LSC, under
the assumption that all chemicals are on the same level in the hierarchy. The
nodes marked green are the once visited from this crawl, the yellow nodes are
the one visited form another crawl, and the red is never visited. The dotted
lines indicate a weak link.

87

Figure 9.2: The same principle applies for subclasses of the chemicals on the
same level.

The DRC is a union between the LSC and the Simple DRC (i.e., one step

back on the first step). Nevertheless, it performs worse than the LSC. This

could mean that the super-super-classes (i.e., grandparents), and the sub-sub-

classes (i.e., grandchildren), hold little or no discriminating information.

DistMult over TransE

The best approaches, except the OCM, performs best with DistMult compared

to TransE. We discovered in Section 3.9, how TransE performs poorly in

complex relation categories (e.g., one-many, many-one and may-many). Hence

the reason might be that most local relations in our data are of this complexity

and not as simple as Figure 2.17 in Section 2.4.1 depicts. It could resemble,

judging by our results, that DistMult is better at handling such relations.

As we also discussed in Section 3.9, DistMult is performing twice as good as

TransE with these complex relation categories, which lines up good with our

results.

We do, however, observe that TransE is performing better than DistMult

in some approaches (e.g. DRC with average and OCM binary). The DRC

has not as significant results as the other approaches, but we still see a small

improvement of TransE from DistMult. We could assume that nodes higher

and lower in the tree, has less complex relations, especially on one of the sides

(i.e., none or few of many-many relations), and that TransE handles these

better.

88

As for the only OCM, we believe that a lot of the complicated relations are

due to the triples in the MeSH dataset from other vocabularies, not directly

connected to CID chemicals but mappings between other concepts. Few of

the rows in MeSH have CID-mapped relations, but they alone could have

been enough to supply the ChEMBL dataset. By removing the other triples,

we avoid exposing TransE to noise (at least noise for TransE as it does not

handle complex relations). However, the results of the OCM have a high p-

value compared to the two other outperforming approaches. Hence, we should

interpret the results with some scepticism.

LSC is Best with Average, while DIC only Normalized

For the two other approaches, we recognize that the DIC worked better with

the scores only normalized, while the LSC, worked best by applying average

on the scores first. We believe that by applying weighted average on the

scores from the DIC, the effect of reducing the impact from certain chemicals

becomes too great.

9.5 Results with Early Stopping

We observe more variation in the results using early stopping. Most of the

runs, using this technique had only between eight and sixteen epochs. These

are relatively low numbers. The research introducing DistMult [87] used 100

epochs for FB15k and 300 for WordNet (WN). Hence, we believe that the

networks where underfitted, and that the results occur from random chance

in the model weight initialization. The AUC values from the BLM indicate

that it performs worse than random. We see high delta values in Table 8.2,

however, they can be explained by the poor performance from ON-models.

The KG-models results are still worse than random.

Early stopping can be challenging to apply in this problem, where we do

not expect the performance to increase a lot between runs. What we could

have done is to tweak the patience or the patience delta variable to include

more epochs. The early stopping was included under the concern that dropout

was not good enough to prevent overfitting. However, we conclude that early

stopping is not suitable for this problem and that dropout is better used alone.

89

9.6 Explainability

The secondary objective of this master thesis project was to use the KGs for

explainability. This approach does not provide a prediction specific explana-

tion. However, the ranking of the triples, from the successful methods, can be

of interest when determining its level of discrimination.

We mentioned in Section 6.3.2, how the LSC produced a ranking where the

top 85 triples were connected to the identifier for insecticides. Surprisingly,

we discovered that the chemicals classified as insecticides were less toxic than

the average of the chemicals. To find the reason behind this is left out of

the scope of this project. However, it is reasonable to assume that the label

insecticide is relevant to the toxicity of the chemicals.

It is worth to mention that triples can receive good scores, despite them

being non-discriminating. The results from the crawls should be interpreted

as a filter, to remove uninteresting information.

9.7 Ethics

Collecting data in the field of ecotoxicology involves, in most cases, animal

testing. As we rely on such data, it introduces ethical concerns, which are

necessary to recognise. The data we use in this master thesis project is the

concentration required to kill 50% of the population of fathead minnow. It

is worth mentioning that the data used in this theses is public information,

conducted for other purposes. The more the results from the experiments are

used, the more it justifies the applied hazards for the test subjects.

We would also argue that the outcome of ecotoxicological research, in gen-

eral, is balancing out the harm it causes. The objective is to preserve the

wildlife by classifying toxic chemicals and avoid harmful substances from in-

filtrating natural habitats [26]. Although the experiments can be justified, the

exposure should be kept to a minimum. Ecotoxicological effect prediction, the

challenge explored in this master thesis, can be used in the ecological risk as-

sessment pipeline to facilitate fewer and more explicit laboratory experiments

[55].

Based on the arguments made, we would argue that the research is within

a good ethical ground. The research of ecotoxicological effect prediction will

both limit animal testing in the laboratories and assist in finding hazard chem-

90

icals to prevent harm to nature.

91

Part III

Conclusion and Future Work

92

Chapter 10

Conclusion

In this master thesis project, we have embodied weighted Knowledge Graphs

with Machine Learning models using vector embeddings for ecotoxicology ef-

fect prediction. The weights of the KGs are constructed based on the triples

connection to chemicals in the training data. To enable that, we introduce

crawling algorithms that start from each chemical in the training data, and in

their distinct ways, crawl the graph, scoring the triples based on the chemical

toxicity. As the graph is connected, we propose various methods of limiting

the crawling, to avoid the trivial solution where all the chemicals influence all

the triples. In addition, we have performed a comprehensive evaluation and

given compelling insight into the performance of KG embeddings in general.

We show that three of our approaches outperforms the baseline in all the

metrics we use for evaluation. Even though the results are less significant

than expected, we observe improvements to the prediction. The low metrics

can be due to other factors like the KG embedding approach or the KG itself

and does not necessarily describe our approach, especially since the baseline

performed close to random.

When it comes to explainability, our approach brings us a small step closer

to explainable models. The crawling and scoring of the graph can highlight

discriminative triples by assigning then a high ranking.

We have justified the ethics behind this research and concluded that we

are within a good ethical ground. While we only use publicly available data,

the purpose of this project is to discover unobserved chemical hazards and

evidently avoid toxic runoffs into nature.

In the future, we hope that this project can contribute to precise, compre-

hensive and intelligible predictions, in order to limit hazardous experiments

93

performed on test organisms.

10.1 Future Work

Explainability

We believe that a lot can be further investigated when it comes to the ex-

plainability, and perhaps a similar crawl strategy can be used to explain the

individual predictions. By crawling from the predicted chemicals and collect-

ing triples with a good score, suggestions can be provided. If we were to

store the scored triples with positive and negative signs to represent non-toxic

and toxic chemicals, respectively, we could focus on only relevant triples for

the outcome. The prediction process would not conduct the suggestions, and

the two crawls would be on each side of the system architecture. However,

reasonable explanations could be presented.

Other Scoring Approaches

In this master thesis project, we have scored the triples based on the concen-

tration of the connected chemicals. However, this is only one of many possible

ways of using the training data to arrange the graph. Another approach is to

use the training data after it is binary converted. Then all records have either

the value 1 for toxic and 0 for non-toxic. If we for each triple had two counters,

we could then crawling the graph from the chemicals, and keep track of how

many toxic and non-toxic the triples connects to. This way, we can make de-

cisions on how discriminating the triples is, based on its representation in the

two poles. This is just an example to emphasis that there are many creative

ways this can be achieved.

Other Species

Our experiments are confined to only concern the fathead minnow. However,

our methods can easily be extended to include multiple species. It would be

interesting to see how this can affect the results from the predictions and to

compare the different ratings of the triples.

As we only consider one species, we have not included additional species

information to our KG. However, such data are available in triples from TERA

94

and can conveniently be included. Thus, chemical effects can be predicted

based on the chemicals interactions with other similar species. This could

potentially improve the prediction. However, the increased size of the KG

would result in more expensive epochs and require more computational power.

Other Applications

It would be interesting to see how the strategies introduced in this thesis

would perform on other applications in other domains. Especially since tradi-

tional KG training sets (e.g., FreeBase), do not include corresponding training

data, which strategies in this thesis utilise. The structure of the data is a

significant factor to which of the various approaches proposed are the most

beneficial. With less complex relations and a more straightforward hierarchy,

both TransE and the Directed approach could have performed better.

95

Bibliography

[1] Machine learning glossary. https://developers.google.com/

machine-learning/glossary.

[2] A brief history of knowledge graph’s main ideas. URL https://

knowledgegraph.today/.

[3] Tree png image with transparent background. Pngimg.

[4] WEKA. The Machine Learning Group at the University of Waikato. URL

https://www.cs.waikato.ac.nz/ml/weka/.

[5] Ecotox user guide: Ecotoxicology knowledgebase system. version 5.0.

available: http:/www.epa.gov/ecotox/. 1. April 2020.

[6] History of the software. Python Software Foundation, 2001. URL https:

//docs.python.org/2.0/ref/node92.html.

[7] Apache Spark™is a unified analytics engine for large-scale data processing.

The Apache Software Foundation, 2018. URL https://spark.apache.

org/.

[8] Use Pharmacological Action Terms [mh] with a Drug. National Library of

Medicine, 2018. URL https://www.nlm.nih.gov/bsd/disted/drugs/

pas.html.

[9] The History of Java Technology. Oracle, 2019. URL

https://www.oracle.com/technetwork/java/javase/overview/

javahistory-index-198355.html.

[10] MeSH Intro - Preface. National Library of Medicine, 2019. URL https:

//www.nlm.nih.gov/mesh/intro_preface.html#pref_rem.

96

[11] MeSH Record Types. National Library of Medicine, 2019. URL https:

//www.nlm.nih.gov/mesh/intro_record_types.html.

[12] Deep Learning for Java. Eclipse Foundation, 2020. URL https:

//deeplearning4j.org/.

[13] Training and Test Sets: Splitting Data. Google, 2020. URL https:

//developers.google.com/machine-learning/crash-course/

training-and-test-sets/splitting-data.

[14] Java™ Programming Language. Oracle, 2020. URL https:

//docs.oracle.com/javase/8/docs/technotes/guides/language/

index.html.

[15] Apache Jena. The Apache Software Foundation, 2020. URL https:

//jena.apache.org/.

[16] Keras overview. Google, 2020. URL https://www.tensorflow.org/

guide/keras/overview.

[17] What is Python? Executive Summary. Python Software Foundation,

2020. URL https://www.python.org/doc/essays/blurb/.

[18] Oracle and Sun Microsystems. Oracle, 2020. URL https://www.oracle.

com/sun/.

[19] org.tensorflow. Google, 2020. URL https://www.tensorflow.org/api_

docs/java/reference/org/tensorflow/package-summary.

[20] What is Jena? The Apache Software Foundation, 2020. URL https:

//jena.apache.org/about_jena/about.html.

[21] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

97

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015.

URL https://www.tensorflow.org/. Software available from tensor-

flow.org.

[22] Chittaranjan. Andrade. The P value and statistical signif-

icance: Misunderstandings, explanations, challenges, and al-

ternatives. Indian Journal of Psychological Medicine, 41(3):

210–215, 2019. doi: 10.4103/IJPSYM.IJPSYM 193 19. URL

http://www.ijpm.info/article.asp?issn=0253-7176;year=2019;

volume=41;issue=3;spage=210;epage=215;aulast=Andrade;t=6.

[23] Tim Berners-Lee and Mark Fischetti. Weaving the Web; The Original

Design and Ultimate Destiny of the World Wide Web by Its Inventor.

Harper Audio, 1999. ISBN 0694521256.

[24] Carl Boettiger. rdflib: A high level wrapper around the redland package

for common rdf applications, 2018. URL https://doi.org/10.5281/

zenodo.1098478.

[25] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason We-

ston, and Oksana Yakhnenko. Translating embeddings for modeling

multi-relational data. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 26, pages 2787–2795. Cur-

ran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5071-translating-embeddings-for-modeling-multi-relational-data.

pdf.

[26] John Cairns, Jr. Ethics in science: Ecotoxicology. Ethics in Science and

Environmental Politics, 3, 05 2003. doi: 10.3354/esep003033.

[27] François Chollet et al. Keras. 2015. URL https://keras.io.

[28] Chrislb. File:artificialneuronmodel english.png, 2005. URL https:

//commons.wikimedia.org/wiki/File:Neuron_McCullocha-Pittsa.

svg.

98

[29] Tukur Dahiru. P–Value, A True Test Of Statistical Significance? A

Cautionary Note. Annals of Ibadan Postgraduate Medicine, 2008. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111019/.

[30] Alessandro Daniele and Luciano Serafini. Knowledge enhanced neural

networks. In Abhaya C. Nayak and Alok Sharma, editors, PRICAI 2019:

Trends in Artificial Intelligence, pages 542–554, Cham, 2019. Springer

International Publishing. ISBN 978-3-030-29908-8.

[31] Giuseppe De Giacomo and Maurizio Lenzerini. Tbox and abox reasoning

in expressive description logics. volume 1996, pages 37–48, 10 1996.

[32] Parastoo Delgoshaei, Mohammad Heidarinejad, and Mark Austin. Com-

bined ontology-driven and machine learning approach to monitoring of

building energy consumption. 10 2018.

[33] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. On-

tology Matching: A Machine Learning Approach, pages 385–403. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-24750-0.

doi: 10.1007/978-3-540-24750-0 19. URL https://doi.org/10.1007/

978-3-540-24750-0_19.

[34] Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic Ten-

sor Networks for Semantic Image Interpretation, volume abs/1705.08968.

2017. URL http://arxiv.org/abs/1705.08968.

[35] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge

graphs. In SEMANTiCS (Posters, Demos, SuCCESS), 2016.

[36] The Norwegian Institute for Water Research (NIVA). Niva’s computa-

tional toxicology program (nctp). 2018. URL https://www.niva.no/

en/projectweb/nctp.

[37] The Norwegian Institute for Water Research (NIVA). Ecotoxicology

and risk assessment. 2019. URL https://www.niva.no/en/research/

ecotoxicology_and_risk_assessment.

[38] Yuxia Geng, Jiaoyan Chen, Zhiquan Ye, Wei Zhang, and Huajun Chen.

Explainable Zero-shot Learning via Attentive Graph Convolutional Net-

work and Knowledge Graphs. IOS Press, 2019.

99

[39] Vera Hermine Goebel. Lecture charts: Knowledge Discovery in Databases

(KDD) - Data Mining (DM). Department of Informatics, University of

Oslo, 2016.

[40] RDF Working Group. VOCABULARIES. The World Wide Web Consor-

tium, . URL https://www.w3.org/standards/semanticweb/ontology.

[41] RDF Working Group. Resource Description Framework (RDF). The

World Wide Web Consortium, . URL https://www.w3.org/RDF.

[42] Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of

holographic and complex embeddings for link prediction. CoRR,

abs/1702.05563, 2017. URL http://arxiv.org/abs/1702.05563.

[43] Mir Henglin, Gillian Stein, Pavel V. Hushcha, Jasper Snoek, Alexander B.

Wiltschko, , and Susan Cheng. Machine learning approaches in cardiovas-

cular imaging, 2017. URL https://www.ahajournals.org/doi/full/

10.1161/circimaging.117.005614.

[44] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard

de Melo, Claudio Gutiérrez, José Emilio Labra Gayo, Sabrina Kirrane,

Sebastian Neumaier, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga

Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Se-

queda, Steffen Staab, and Antoine Zimmermann. Knowledge graphs.

ArXiv, abs/2003.02320, 2020.

[45] User:Ignacio Icke. File:Overfitting.svg. wikimedia. URL \url{https:

//commons.wikimedia.org/wiki/File:Overfitting.svg}.

[46] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base

completion: Baselines strike back. CoRR, abs/1705.10744, 2017. URL

http://arxiv.org/abs/1705.10744.

[47] Karl G. Kempf, Pınar Keskinocak, and Reha Uzsoy. Planning Production

and Inventories in the Extended Enterprise. Springer, 2011.

[48] Freddy Lecue. On The Role of Knowledge Graphs in Explainable AI. IOS

Press, 2019.

100

[49] Bin Liu, Li Yao, Zheyuan Ding, Junyi Xu, and Junfeng Wu. Com-

bining ontology and reinforcement learning for zero-shot classification.

Knowledge-Based Systems, 144, 12 2017. doi: 10.1016/j.knosys.2017.12.

022.

[50] Per Lytsy. P in the right place: Revisiting the evidential value of p -

values. Journal of Evidence-Based Medicine, 11, 11 2018. doi: 10.1111/

jebm.12319.

[51] Stephen Marsland. Machine Learning - An Algorithmic Perspective, sec-

ond edition. CRC Press, 2015.

[52] Steve Menard and Luis Nell el al. Jpype documentation, 2018. URL

https://jpype.readthedocs.io/en/latest/.

[53] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

Efficient Estimation of Word Representations in Vector Space.

arxiv.org/abs/1301.3781, 2013.

[54] Erik B. Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf,

and Knut Erik Tollefsen. Tera: the toxicological effect and risk assessment

knowledge graph arxiv:1908.10128. 2019.

[55] Erik B. Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf,

and Knut Erik Tollefsen. Knowledge graph embedding for ecotoxicologi-

cal effect prediction arxiv:1907.01328. 2019.

[56] Francis Sahngun Nahm. What the P values really tell us, doi:

10.3344/kjp.2017.30.4.241. Korean Association of Medical Journal Edi-

tors, 2017.

[57] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro

López Garćıa, Ignacio Heredia, Peter Maĺık, and Ladislav Hluchý.

Machine learning and deep learning frameworks and libraries for

large-scale data mining: a survey, doi: 10.1007/s10462-018-09679-

z, 2019. URL https://link.springer.com/content/pdf/10.1007/

s10462-018-09679-z.pdf.

[58] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic

embeddings of knowledge graphs. CoRR, abs/1510.04935, 2015. URL

http://arxiv.org/abs/1510.04935.

101

[59] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen

Marshall. Activation functions: Comparison of trends in practice and

research for deep learning. CoRR, abs/1811.03378, 2018. URL http:

//arxiv.org/abs/1811.03378.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep

learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 8024–8035. Cur-

ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[62] Lutz Prechelt. Early stopping - but when? 03 2000. doi: 10.1007/

3-540-49430-8 3.

[63] Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise:

Where knowledge graph embeddings fall short. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Process-

ing, pages 1751–1756, Copenhagen, Denmark, September 2017. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/D17-1184. URL

https://www.aclweb.org/anthology/D17-1184.

[64] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA,

Thiessen PA, Yu B, Zaslavsky L, Zhang J, and Bolton EE. Pubchem 2019

update: improved access to chemical data, doi:10.1093/nar/gky1033.

2019.

102

[65] John Salatas. File:multilayer neural network.png, 2011. URL

https://commons.wikimedia.org/wiki/File:Multilayer_Neural_

Network.png.

[66] Bess Schrader. What’s the difference between an ontology and a

knowledge graph?, 2020. URL https://enterprise-knowledge.com/

whats-the-difference-between-an-ontology-and-a-knowledge-graph/.

[67] Arne Seeliger, Matthias Pfaff, and Helmut Krcmar. Semantic web tech-

nologies for explainable machine learning models: A literature review. 10

2019.

[68] Arne Seeliger, Matthias Pfaff, and Helmut Krcmar. Semantic web tech-

nologies for explainable machine learning models: A literature review. 10

2019.

[69] Baoxu Shi and Tim Weninger. Open-world knowledge graph comple-

tion. CoRR, abs/1711.03438, 2017. URL http://arxiv.org/abs/1711.

03438.

[70] Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. Knowledge graph

embedding with triple context. pages 2299–2302, 11 2017. doi: 10.1145/

3132847.3133119.

[71] Amit Singhal. Introducing the knowledge graph: things, not

strings. 2012. URL https://www.blog.google/products/search/

introducing-knowledge-graph-things-not/.

[72] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-

works from overfitting. Journal of Machine Learning Research, 15(56):

1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.

html.

[73] Matt Swain. Pubchempy. 2014. URL https://pubchempy.

readthedocs.io/en/latest/.

[74] Theano Development Team. Theano: A Python framework for fast com-

putation of mathematical expressions. arXiv e-prints, abs/1605.02688,

May 2016. URL http://arxiv.org/abs/1605.02688.

103

[75] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and

Guillaume Bouchard. Complex embeddings for simple link predic-

tion. CoRR, abs/1606.06357, 2016. URL http://arxiv.org/abs/1606.

06357.

[76] user:Aphex34. File:typical cnn.png, 2015. URL https://en.wikipedia.

org/wiki/File:Typical_cnn.png.

[77] user:Marobi1. File:semantic web stack.svg, 2014. URL https://

commons.wikimedia.org/wiki/File:Semantic_web_stack.svg.

[78] Frank van Harmelen and Annette ten Teije. A boxology of design patterns

for hybrid learning and reasoning systems. CoRR, abs/1905.12389, 2019.

URL http://arxiv.org/abs/1905.12389.

[79] Christina Voskoglou. What is the best programming language for

machine learning?, 2017. URL https://towardsdatascience.com/

what-is-the-best-programming-language-for-machine-learning-a745c156d6b7.

[80] C.H. walker, R.M. Sibly, S.P. Hopkin, and D.B. Peakall. Principles of

Ecotoxicology. CRC Press, 2012.

[81] Kai Wang, Yu Liu, Xiujuan Xu, and Dan Lin. Knowledge graph

embedding with entity neighbors and deep memory network. CoRR,

abs/1808.03752, 2018. URL http://arxiv.org/abs/1808.03752.

[82] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A

survey of approaches and applications. IEEE Transactions on Knowledge

and Data Engineering, 29(12):2724–2743, 2017.

[83] Ron Wasserstein. American Statistical Association Releases State-

ments On Statistical Significance And P-Values. American Statistical

Association, 2016. URL https://www.amstat.org/asa/files/pdfs/

P-ValueStatement.pdf.

[84] Geoffrey I. Webb. Overfitting, pages 744–744. Springer US, Boston,

MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8

623. URL https://doi.org/10.1007/978-0-387-30164-8_623.

104

[85] Leiming Yan, Zheng Yuhui, and Jie Cao. Few-shot learning for short

text classification. Multimedia Tools and Applications, 77, 02 2018. doi:

10.1007/s11042-018-5772-4.

[86] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.

Learning multi-relational semantics using neural-embedding models.

2014.

[87] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.

Embedding entities and relations for learning and inference in knowledge

bases, corr abs/1412.6575. 2015.

[88] Wenhao Zhang. Machine learning approaches to predicting company

bankruptcy. Journal of Financial Risk Management, 06:364–374, 01 2017.

doi: 10.4236/jfrm.2017.64026.

105

