
Large Scale Vulnerability
Scanning

Development of a large-scale web
scanner for detecting vulnerabilities

Torjus Dahle

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Large Scale Vulnerability
Scanning

Development of a large-scale web
scanner for detecting vulnerabilities

Torjus Dahle

© 2020 Torjus Dahle

Large Scale Vulnerability Scanning

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The number of services that connect to the Internet is steadily increasing.
Applications integrate with each other more than ever before. As such, the
possible attack surface of a given entity is ever increasing as well. Often,
a single vulnerability or weakness in security can seriously undermine the
security of entire systems. Other times, several flaws in tandem can prove
fatal when chained together by a proficient attacker.

This thesis explores the use of non-intrusive methods for vulnerability
discovery. Several vulnerabilities and methods for detecting them are
discussed, and a proof of concept (PoC) scanner that can detect some
vulnerabilities, while still being non-intrusive, is implemented.

Several methods were applied to the Alexa top 1 million sites on the
WWW. And a fraction of sites proved to be vulnerable to each of the
vulnerabilities the scanner scans for. This points toward the possible
conclusion that even big actors on the Internet need to take fundamental
security elements seriously. The so-called "low hanging fruit" is still out
there; many entities’ digital security can improve considerably with simple
security measures. There is no need for expensive solutions, like advanced
intrusion detection systems, when one is better served focusing on the
basics.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Overview . 4

2 Background 5
2.1 Definitions . 5

2.1.1 Vulnerability . 5
2.1.2 Vulnerability scanner 5
2.1.3 Vulnerability scanning 5
2.1.4 Active/passive scanning 6
2.1.5 Intrusive vs non-intrusive scanning 6

2.2 Related work . 7
2.2.1 Papers . 7
2.2.2 Conference presentations 7
2.2.3 Blog posts and news sites 8

2.3 Relevant concepts and material 8
2.3.1 The basics of penetration testing 8
2.3.2 OWASP TOP 10 . 8
2.3.3 Non-intrusive vulnerability detection 11

3 Methods for data collection and vulnerability discovery 15
3.1 Port scannning . 15
3.2 Scanning for web application vulnerabilities 16
3.3 Spidering . 18
3.4 Vulnerability assessment . 19
3.5 Scanners on the web . 20

3.5.1 Scan databases . 20
3.5.2 Using search engines 20
3.5.3 Using cloud scanners 21

3.6 Methods for subdomain discovery 21
3.7 Subdomain takeover . 23
3.8 Publicly exposed information 23
3.9 Collecting additional information 24
3.10 Unprotected videoconferencing rooms 25

iii

4 The scanner 27
4.1 Main focus . 27

4.1.1 Internet-wide non-intrusive vulnerability scanning . 27
4.1.2 Making the PoC vulnerability scanner 27

4.2 Preparation . 28
4.2.1 Fetching a list of targets 28

4.3 Design . 29
4.4 Implementation . 31

4.4.1 Build and usage . 32
4.4.2 Subdomain enumeration 32
4.4.3 Subdomains vulnerable to takeover 34
4.4.4 Open cloud storage solutions 34
4.4.5 Scanning for vulnerable services 35
4.4.6 Environment files . 35
4.4.7 Git directories . 35
4.4.8 Email . 35
4.4.9 Search for internet facing-services 35
4.4.10 Using search engines to find exposed information . . 36

5 Results 37
5.1 Subdomains . 37
5.2 Files exposed in webroot . 37
5.3 Git directories hosted in webroot 38
5.4 Amazon Simple Storage Service (S3) buckets 38
5.5 Emails . 39
5.6 Searching for hosts with Internet-facing services 39
5.7 Searching for exposed information and vulnerable services

with google dorks . 39
5.8 Vulnerable services . 39

6 Discussion 41
6.1 Efficiency and evaluation of the scanner 41
6.2 Mitigation . 41

6.2.1 Regulatory, World Wide Web (WWW)-wide technical
and compliance solutions 42

6.2.2 Precautions for organizations and companies 42
6.2.3 Security experts . 44
6.2.4 Security for the end user 44

6.3 Internet security in the future 45
6.3.1 Automation-assisted attacks 45
6.3.2 Cloud security . 46
6.3.3 Artificial intelligence (AI) 46

7 Conclusion and future work 49
7.1 Conclusion . 49

7.1.1 Vulnerabilities . 49
7.1.2 Methods . 49
7.1.3 The scanner . 49

iv

7.2 Future work . 50

Appendices 51
.1 Acronyms . 53

A Appendix 57
A.1 Scanner source code . 57

A.1.1 The controller class . 57
A.1.2 Example of a scan task: Env file scan 59

A.2 Exposed .env response example 59
A.3 Amazon Alexa top sites API JSON 60

v

vi

List of Figures

1.1 Attackers have plenty of uses for a compromised com-
puter. [30] . 3

3.1 Screenshot of the Dirbuster interface 19
3.2 Uses of hacked email addresses [31] 24
3.3 A screenshot of zWarDial [32] 26

4.1 Unified Modeling Language (UML) class diagram of the
vulnerability scanner. 30

4.2 Detailed UML class diagram of the vulnerability scanner
illustrating program flow through drawn dependencies. . . 33

6.1 The development in number of intrusions permitted (in
average) by a security bug during its lifetime [71, p. 17] . . . 43

6.2 The relations between various AI-concepts. [24] 46

vii

viii

List of Tables

2.1 The Open Web Application Security Project (OWASP) top
10 security risks and their possibility of being detected via
intrusive or non-intrusive means. 11

4.1 Various scan types . 27

ix

x

Preface

I have been fascinated by computer security and privacy for as long as
I can remember. With these topics becoming increasingly relevant in a
digital world, they garner more attention in the press, and the general
public as a whole. Many impactful events have taken place in recent
years; Stuxnet, the Snowden revelations, the 2017 Equifax data breach
impacting 140 million Americans. There are continuous developments and
new discoveries all the time, which makes this an exciting field of research.

First of all, I want to thank my supervisors, Nils Gruschka and Laszlo
Erdodi. Nils, especially for his guidance and patience in meetings along
the way.

I also would like to thank my lovely family for their support, and my
girlfriend, Ingrid, for supporting me and allowing me to spend some time
on this project.

xi

xii

Chapter 1

Introduction

For criminals, the Web has become a place to participate in various cy-
bercrimes and spread malware. Common activities include identity theft,
fraud, espionage and intelligence gathering. [8] Web-based vulnerabilities
outnumbered buffer overflows as early as 2007, [17] and as measured by
Google, about one in ten webpages may contain malicious code. [7] Most
Web-based attacks take place on legitimate websites, and most of them, as
measured by Unit 42, are hosted in the United States, China, Hong Kong,
and Russia. [66] The highest-ranking of all malware threats are injection
attacks against websites according to OWASP. [45] HTML and uniform re-
source identifiers (URIs) combined with JavaScript, made web sites vul-
nerable to attacks like Cross-Site Scripting (XSS) [21, p. 68–69] and were
worsened to some degree by Web 2.0 and Ajax Web design that rely on
the use of scripts for interacting with web content. [55] Today according to
one estimate, 70% of all websites are open to XSS attacks on their users. [9]
Phishing is another common threat to the Web. In February 2013, RSA
estimated the global losses from phishing at $1.5 billion in 2012. [1] Two
examples of phishing methods are covert redirect and open redirect. These
are used in phishing attacks that make links appear legitimate, but actually
redirect a victim to an attacker’s website.

More and more services are moving to the cloud. The shift towards
the cloud helps tackle some old challenges; flexibility, scalability, and
more but brings new ones as well. Sophos believes that the vast majority
of security incidents involving cloud computing platforms result from
misconfiguration. The platforms themselves are complex, and change
frequently, which can make it challenging to understand the ramifications
or consequences of toggling a specific setting in an Amazon S3 bucket, as
an example. [61, p. 19] All of these factors contribute to making it easier to
commit simple misconfigurations.

In 2020 large scale changes in the use of telecommunications took place
at the time of the coronavirus outbreak. More people were staying at home
and working remotely. As a result, general Internet usage skyrocketed.
There were also changes with security implications. Notably Firefox
(among other browsers) decided to re-enable Transport Layer Security
(TLS) 1.0 and 1.1 to allegedly "enable access to critical government sites

1

sharing COVID19 information". [20] The increase in people working from
home caused a surge in the use of video chat services and services assisting
in remote work, like virtual private networks (VPNs) and remote login
services such as Remote Desktop Protocol (RDP). As stated in a recent
Shodan blog post, The number of devices exposing RDP directly to the
Internet saw a sharp increase as organizations started to work remotely. 8%
of these services remain vulnerable to BlueKeep (CVE-2019-0708). [38] It is
generally considered by security experts to be malpractice to expose RDP
on internal endpoints to the public-facing Internet. According to Sophos,
attacks targeting RDP have been at the core of some of the largest and most
painful ransomware incidents they have investigated in the past year. [61,
p. 15]

Amid the coronavirus outbreak, in March 2020, two 0-day vulnerabil-
ities were noticed being actively exploited in targeted attacks in the wild.
The two vulnerabilities, known as CVE-2020-1020 and CVE-2020-0938 were
classified as critical and allow remote code execution (RCE) and resided in
the Windows Adobe Type Manager Library. The timing was particularly
unlucky, as more people than usual were working on their computers from
home, many using their Windows computers. On top of that, the patch
Tuesday of April was on the latest day possible; April 14th. Microsoft
has a patch schedule where patches come out every second Tuesday of the
month. Additionally, the company stated that it would not fix the vulner-
abilities before then.

In 2020, the number of daily active users of Zoom rose 67% from the
start of the year to mid-March as schools and companies adopted the
platform for remote work in response to the coronavirus pandemic. [34]

With the rise of videoconferencing, incidents of "Zoombombing," where
participants unexpectedly appear in conferences, and in some cases, send
pornography or other offensive material to other attendees, have occurred,
causing some organizations to abandon the use of Zoom.

Google notably banned Zoom from company-owned computers, and
SpaceX and NASA banned employees from using Zoom. [72] Zoom’s
data security and privacy practices have also come under increased
scrutiny. Consequently, Zoom’s CEO released a statement apologizing
for the security issues. Some of the issues were a result of Zoom having
been designed for "large institutions with full IT support." To combat
these issues, Zoom has said it would focus on data privacy and issue a
transparency report. Zoom published a guide to reduce the chances of
Zoombombing and other breaches of security or privacy on the platform.
The company has also actively taken steps to make its services more secure.

Despite recent security and privacy issues, many academic institutions
and organizations use zoom as their primary provider of video conferences
and meetings, including the university of Oslo (UiO). [67]

The 2020 coronavirus outbreak, although tragic, had some interesting
effects from an information security perspective, both with regards to the
change in usage patterns during a crisis and with malicious actors taking
advantage of the chaos of the situation. It was also likely not the only
pandemic humanity will face in the near future. [62]

2

Figure 1.1: Attackers have plenty of uses for a compromised computer. [30]

1.1 Motivation

A large part of websites today is still vulnerable to attacks. About 38% of
them are vulnerable to XSS attacks attack [68]. OWASP has a list of the top
then vulnerabilities in web applications worldwide at any given time.

Mostly the same ten security risks have remained on top of the list for
the last ten years with minor variations. [45] [46] As discussed in chapter 5,
simple security mistakes do occur, even in the top 1000 visited websites in
the world.

For cybercriminals, a compromised computer can be utilized for a vast
array of nefarious purposes, as illustrated by figure 1.1. Their motivations
can be many, ranging from financial or political to fame and fortune.
As the cybercrime industry keeps growing, one would expect to find an
increasingly motivated opposing force that wants to protect its systems.

Enumeration of networks and vulnerability scanning are two of the first
and most important steps of any practical information security assessment.
It is used by malicious actors to find ways to harm, find vulnerabilities
to exploit, open information, and so on. On the other hand, security
professionals also use the techniques to find vulnerabilities to patch, and
weaknesses to address within a network or organization.

Thorough vulnerability assessment is still an undervalued and often
forgotten process that can help detect many of these security defects. This is
the motivation for exploring methods for data collection and vulnerability
discovery in chapter 3. And in this day and age, with an increasing
use of cloud solutions enabling rapid changes in infrastructure, there are
significant benefits to automating the process of scanning for vulnerable
services and security misconfigurations. Chapter 4 goes into designing and
implementing a scanner for large scale automated scans.

Misconfiguration is the primary driver of security incidents in the cloud
according to Sophos. [61, p. 19] That makes processes, tools, and routines
for detecting such mistakes vital.

3

Given that many of these security risks continue to live on and are
prevalent in the wild, having a web scanner to detect the presence of one
or more of these is very beneficial to a potential threat actor. In the same
vein, if one can write a scanner that can somewhat reliably detect common
security misconfigurations or any of the top ten OWASP risks, chances are
some vulnerabilities can be detected, even in the world’s most popular
sites.

1.2 Objectives

The focus is going to be on the security of on the WWW, and especially the
exploration of methods for non-intrusive vulnerability scanning and the
development of a scanner that is capable of detecting some vulnerabilities
non-intrusively.

With the following research questions:

1. What vulnerabilities can be detected non-intrusively?

2. What methods can be used to identify these vulnerabilities?

3. Can a scanner be made to detect some of these vulnerabilities non-
intrusively at a large scale?

1.3 Overview

Chapter 2 contains definitions, previous work done on the subject,
background knowledge, and discusses some vulnerabilities. Chapter 3
discusses known techniques for data collection and vulnerability discovery.
Chapter 4 explains the design, implementation, and features of the
developed PoC scanner. Chapter 5 discusses some of the discoveries made
while running the scanner. Chapter 6 discusses some of the possible tactics
for mitigating security risks on the WWW, and the future of the security
landscape on the Web. And finally, chapter 7 explains what was not done
and summarizes.

4

Chapter 2

Background

2.1 Definitions

2.1.1 Vulnerability

vulnerability is the existence of a weakness, design, or implementation
error that can lead to an unexpected, undesirable event compromising
the security of the computer system, network, application, or protocol
involved [65].

2.1.2 Vulnerability scanner

A vulnerability scanner is a program that performs the diagnostic phase of
vulnerability analysis, also known as vulnerability assessment. Vulnerab-
ility analysis defines, identifies, and classifies the security holes (vulner-
abilities) in a computer, server, network, or communications infrastruc-
ture. Additionally, vulnerability analysis can forecast the effectiveness of
proposed countermeasures, and evaluate their effectiveness when put to
use. [56] [74]

2.1.3 Vulnerability scanning

Vulnerability scanning is, according to A dictionary of the Internet, "The
process of scanning the computers in a network to discover any weak point
through which an intruder can pass." [27]

Vulnerability scanning is the process of gathering of information or use
of tools like scripts and vulnerability scanners to detect vulnerabilities.
Vulnerability scanning is a key component to successful penetration and
exploitation of computer systems. It is usually one of the first steps in
the process of executing an attack. Vulnerability scanning is generally
considered an important part of a vulnerability assessment. [73]

Vulnerability scans can be conducted from inside a network, by setting
up a scanner on a local area network (LAN) or from outside the network
through the Internet.

System administrators usually scan their network from the inside,
using either an active or passive vulnerability scanner (definition below).

5

Attackers mostly scan the network from outside. If they can get a foothold
inside the network, they might try to scan the network from the inside.

2.1.4 Active/passive scanning

In a broad sense, there are two approaches to overseeing security from
a system administrator/blue team perspective. These two approaches
are active and passive vulnerability assessment or scanning. The active
approach encompasses everything a system administrator does to foil
system breaches, while the passive (or monitoring) approach entails all
the ways the organization oversees system security. Passive scanning can
also include passively collecting traffic information within a network. This
information can then be used to infer information about systems, versions,
vulnerabilities.

Passive vulnerability assessment is a relatively new concept, [52] that
might see increasing popularity in the future. The idea behind passive
vulnerability assessment is that rather than providing proactive probing of
networks by generating test traffic, one infers the vulnerabilities by sniffing
regular network traffic. Passive vulnerability scanning or assessment finds
information in the course of inspecting packets and can detect anomalies
or alert upon known bad signatures.

Active scanning, on the other hand, is the process of actively scanning
the network by doing activities like sending “fingerprint” packages to
identify operating systems and web server software versions and scanning
for open ports. Active scanners send transmissions to the network’s nodes,
examining the responses they receive to evaluate whether a specific node
represents a weak point within the network. [52] [6].

All actions taken by an attacker are active in some sense. No
information flows automatically from victim to attacker without some form
of action. From an attacker’s perspective, the concepts are the same, but
the methods are different. An attacker can passively collect information,
or use active scanning or exploitation to achieve their goal. Passive in
this context encompasses every method used to gather information about
an entity without making any direct requests to it. Completely passive
information gathering is executed via "indirect" means; some examples are
domain name system (DNS) lookups and the use of information that has
been cached by search engines.

2.1.5 Intrusive vs non-intrusive scanning

A vulnerability scanner can execute intrusive or non-intrusive tests. An
intrusive test tries to exercise the vulnerability, which can crash or alter
the remote target. A non-intrusive test attempts not to cause any harm
to the target system. The test will usually check the remote service
version, whether the any vulnerable options are enabled, or if the service
is configured insecurely. Intrusive tests are generally a lot more accurate,
but cannot be performed legally in a production environment without
a contract. In general, a non-intrusive test cannot determine with

6

complete certainty if a service installed is vulnerable, only if it might be
vulnerable. [11, p. 55]

2.2 Related work

2.2.1 Papers

Most papers on vulnerability scanning were done within isolated net-
works, and there are few open-world vulnerability scanning papers. There
is one paper discussing the use of Shodan and a Shodan-based vulnerab-
ility assessment tool [23]. This paper is fairly detailed and includes some
statistics for the scanner.

Another paper named "How Bad Can It Git? Characterizing Secret
Leakage in Public GitHub Repositories", analyzes secret leakage on Github.
The researchers found 100 000 repositories that leaked secrets, and that
thousands of new, unique secrets were leaked every day. [40]

A paper, named "Understanding the Security Threats of Esoteric Sub-
domain Takeover and Prevention Scheme" explains subdomain takeover
attacks and prevention. [51]

On the topic of security misconfiguration, there are several resources.
A paper by Sulatycki and Fernandez seeks to formalize threat patterns by
describing their different aspects. The two threat patterns they describe are
(1) taking advantage of security misconfiguration and (2) gaining access
to sensitive data. [64] These are two broad patterns that can be recognized
in chapter 3 and 4. Another paper presents a tool that audits the security
configuration for web applications, and can automatically adjust security
configuration settings. [19]

2.2.2 Conference presentations

Looking for vulnerabilities non-intrusively was discussed in a talk called
“Alexa Top 1 Million Security - Hacking the Big Ones” by David Wind
from It.sec [76]. It focused on simple security mistakes with a high-security
impact. Some of the vulnerabilities the uncovered were: Subdomain
takeover vulnerabilities, exposed credentials, exposed source code, cross-
origin resource sharing (CORS) misconfiguration, exposed Amazon Web
Services (AWS) S3 buckets. However, the results were largely censored,
but some tools and methods were briefly mentioned in the slides. They
found several well-known companies like Hp and Lenovo vulnerable to
subdomain takeover attacks. Various other sites in the top 1 million were
vulnerable to relatively simple attacks or exposed data publicly that were
not meant for sharing. The occurrences of these simple mistakes indicate
that even the big actors can benefit from focusing on getting the basics of
security right.

7

2.2.3 Blog posts and news sites

There is a high volume of blog posts written by enthusiasts, bounty hunters
and penetration testers on the topic of looking for vulnerabilities non-
intrusively. The variety of different methods and techniques that can be
used makes the demographic looking for vulnerabilities non-intrusively a
vibrant community.

A blogger who calls himself xxdesmus, that makes blog posts about
data leaks, recently wrote a post on a Thai Database that leaked 8.3 Billion
Internet Records. [77] He discovered the exposed ElasticSearch database
while browsing BinaryEdge and Shodan. In a news story posted by
Hanno Böck, Tiles in Microsoft Windows were subject to a subdomain
takeover attack. Microsoft allegedly deleted the nameserver record without
providing a comment after being informed of the vulnerability. [10] In a
may 2020 blog post by Tillson Galloway, he boasts that he has submitted
30 disclosure reports from Github secret leaks alone. He also published a
tool, GitHound, a tool that automates the process of finding secrets across
GitHub. [22]

2.3 Relevant concepts and material

2.3.1 The basics of penetration testing

The basics of penetration testing, according to the Pentest standard [42] are:

1. Pre-engagement Interactions

2. Intelligence Gathering

3. Threat Modelling

4. Vulnerability Analysis

5. Exploitation

6. Post Exploitation

7. Reporting

This model gives an idea of where intelligence gathering (2) and vulnerab-
ility analysis (4) fit into the penetration testing process. These two concepts
are important for the development of the scanner later on.

2.3.2 OWASP TOP 10

The Open Web Application Security Project (OWASP) is an open com-
munity dedicated to enabling organizations to develop, purchase, and
maintain applications and application programming interfaces (APIs) that
can be trusted. The OWASP top 10: The Ten Most Critical Web Application
Security Risks1 has become an authoritative source in the web application

1https://owasp.org/www-project-top-ten/

8

security community. These are only the top ten security risks out there, but
they can serve as a start to the discussion on the topic of which vulnerab-
ilities can be detected or exploited non-intrusively. Since they are held in
high regard in terms of web application security, some time will be spent
walking through them in the following paragraphs. Then a judgment of
whether the presence of a security risk can be done non-intrusively or not
will be made in table 2.1.

Injection Injection vulnerabilities, such as SQL, NoSQL, OS, and LDAP
injection, take place when untrusted data is passed to an interpreter as part
of a command or query. The attacker’s hostile data, which is usually crafted
to trick the system into treating it as instructions, can trick the interpreter
into executing unintended commands or accessing data without proper
authorization.

The presence of vulnerability to injection attacks is something that
would most often be detected intrusively. This is because the attacker
is trying to provoke unintended behavior by supplying the system with
malign input. Such attacks can lead to database tables being dropped or
system crashes.

Broken Authentication Application functions related to authentication
and session management are often implemented incorrectly, allowing
attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume the identity of another user
temporarily or permanently.

Broken authentication is a category of vulnerability that encompasses
various defects within an application’s login mechanism, which may
enable an attacker to guess weak passwords, conduct a brute-force attack,
or bypass the login entirely. Such methods are seen as intrusive in general.

Sensitive Data Exposure Numerous web applications and APIs do
not adequately protect sensitive data, such as financial, healthcare, and
personally identifiable information (PII). Attackers may steal or modify
such weakly protected data to conduct credit card fraud, identity theft, or
other crimes. Sensitive data may be compromised if it is not sufficiently
protected, as an example, it might require encryption at rest or in transit,
and requires special precautions when exchanged with the browser.

Sensitive data can be exposed in ways that are detectable with non-
intrusive methods. A typical case of this happening is when a file is
unknowingly saved to a public directory on a web server.

Xml External Entities (XXE) Many older or poorly configured Extensible
Markup Language (XML) processors evaluate external entity references
within XML documents. External entities can be used to leak internal
files using the file URI handler, internal file shares, internal port scanning,
remote code execution, and denial of service attacks.

XXE attacks generally fall into the intrusive category.

9

Broken Access Control Restrictions on what authenticated users are
allowed to do are often not adequately enforced. Attackers can exploit
these flaws to access unauthorized functionality and/or data, such as
access to other users’ accounts, read sensitive files, modify other users’
data, and change access rights.

Violating access control is generally seen as an intrusive action.
However, resources are not access controlled at all in some cases (most
likely because it was not properly implemented in the first place). In
such circumstances, it would generally be seen as a non-intrusive action
to access such resources. In that sense, the presence of this vulnerability
can be detected both intrusively and non-intrusively, but in general, it can
be considered an intrusive action to check for such vulnerabilities.

Security Misconfiguration Security misconfiguration is the most com-
monly seen issue. It is commonly a result of insecure default configura-
tions, incomplete or ad hoc configurations, open cloud storage, miscon-
figured HTTP headers, and verbose error messages containing sensitive in-
formation used during development. All operating systems, frameworks,
libraries, and applications have to be securely configured, and they must
be patched/upgraded in a timely fashion. [45, 61]

Cross-Site Scripting (XSS) XSS flaws occur whenever an application
includes untrusted data in a new web page without proper validation or
escaping, or updates an existing web page with user-supplied data using
a browser API that can create Hypertext Markup Language (HTML) or
JavaScript. XSS allows attackers to execute scripts in the victim’s browser,
which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.

Testing for XXS vulnerabilities is in general seen as an intrusive action,
but some XSS vulnerabilities can be tested locally (and therefore non-
intrusively).

Insecure Deserialization Insecure deserialization often leads to remote
code execution. Even if deserialization flaws do not result in remote code
execution, they can be used to perform attacks, including replay attacks,
injection attacks, and privilege escalation attacks.

Testing for insecure deserialization is in its very nature intrusive, as it is
based on giving malign input similar to injection attacks.

Using Components with Known Vulnerabilities Components like lib-
raries, frameworks, and other software modules, run with the same priv-
ileges as the application they belong to. If a vulnerable component is ex-
ploited, such an attack can facilitate severe data loss or server takeover.
Applications and APIs using components with known vulnerabilities may
undermine application defenses and enable various attacks and impacts.

Detection of vulnerable components can be done non-intrusively. As
an example, one can grab the banner of a service containing version

10

Table 2.1: The OWASP top 10 security risks and their possibility of being
detected via intrusive or non-intrusive means.

Risk non-intrusive intrusive
A1:2017-Injection X
A2:2017-Broken Authentication X
A3:2017-Sensitive Data Exposure X
A4:2017-XML External Entities (XXE) X
A5:2017-Broken Access Control X
A6:2017-Security Misconfiguration X
A7:2017-Cross-Site Scripting (XSS) X
A8:2017-Insecure Deserialization X
A9:2017-Using Components with
Known Vulnerabilities

X

A10:2017-Insufficient Logging &
Monitoring

information. Then known vulnerabilities for the given version of the
component can be looked up.

Insufficient Logging and Monitoring Insufficient logging and monitor-
ing, coupled with missing or ineffective integration with incident response,
allows attackers to further attack systems, maintain persistence, pivot to
more systems, and tamper, extract, or destroy data. Most breach studies
show time to detect a breach is over 200 days, typically detected by external
parties rather than internal processes or monitoring.

Insufficient logging and monitoring is not something an attacker would
usually detect via either intrusive or non-intrusive scanning or checking.

As summarized in table 2.1, it should be theoretically possible to exploit
or detect the presence of quite a few of these risks passively.

2.3.3 Non-intrusive vulnerability detection

Numerous vulnerabilities can be detected non-intrusively.

Unregistered subdomains

In the DNS hierarchy, a subdomain is a domain that is part of another
domain. At the top of the hierarchy are the top level domains (TLDs) which
are installed in the DNS root zone. Examples of these are com, org, and no.

Colloquially, one often refers to the subdomain-part of
subdomain.domain.com when speaking of a subdomain. While technically,
every domain that is not a top-level domain is a subdomain. So for
example: mn.uio.no is a subdomain of uio.no which again is a subdomain
of no.

11

As a company or organization accumulates lots of subdomains, it gets
harder to keep track of them. This is the primary reason why many
companies are vulnerable to subdomain takeovers today. What happens
is that a company utilizes some third-party CMS/Content/Cloud Provider
and points their subdomains to these platforms. If they ever forget to
configure the third-party service or deregister from that server, an attacker
can take over that hostname with the third party.

For example, a company registers an Amazon S3 bucket with the
name testlab.s3.amazonaws.com. It then has its company’s subdomain
testlab.company.com point to testlab.s3.amazonaws.com. A year later, it
no longer need the S3 bucket testlab.s3.amazonaws.com and deregisters
it but forgets the CNAME redirect for testlab.company.com. A malicious
actor can now go to AWS and set up the previously registered address,
testlab.s3.amazon.com, and have a valid S3 bucket on the victim’s
domain [29, p. 40].

Having control over a subdomain allows for various attack scenarios.
An attacker can use the same Secure Socket Layer (SSL)-certificates as
the base domain, impersonating the victim while, for example, stealing
login information that unknowing users type in or serve malicious content.
Numerous other attacks are also possible depending on the victim’s
configuration of cookies, CORS, Oauth whitelisting, CSP, configurations
that allow clickjacking, interception of emails, and so on. In the
case of cookies: subdomain.example.com can modify cookies scoped to
example.com. This can potentially allow an attacker to hijack the victim’s
session on the base name. If the base name is vulnerable to session fixation
and also uses HTTPOnly cookies, the attacker can set a cookie and when
the victim restarts their browser the malicious cookie will take precedence
over the newly generated cookie because cookies are sorted by age. [2]

Exposed credentials

Information that is not meant to be public is sometimes exposed by
mistake. One common scenario is that developers unknowingly commit
secrets into version control system (VCS). Even if this is later discovered,
and later removed from VCS the secret is still in the history. Most people
do not take the time to rewrite their history to remove any trace of the leak.
This can be exploited by attackers who search through the history of open
software repositories for such secrets.

Exposed source code

Another case of unintended sharing of information happens when the
source code of a website is hosted on its own server. This happens when
access to server directories is not restricted correctly. Attackers can use the
information found in the source code to steal and impersonate the site, steal
intellectual property (IP) from the source code, find vulnerabilities in the
application, and more. Depending on the information stored in the source

12

code, this can also mean leaking database information with customer data
and various passwords.

Open cloud storage solutions - AWS S3 buckets

A lot of cloud storage solutions are left open for anyone to access. Perhaps
a store is left unauthenticated while testing, and then later forgotten,
or maybe the appropriate security controls were never implemented.
Attackers can look for such open buckets and, depending on how the
bucket is access controlled, read or write to files.

One example of such a storage solution where many buckets have been
configured without the proper restrictions is Amazon S3.

Amazon S3 or Amazon Simple Storage Service is a service offered by
Amazon Web Services (AWS) that provides object storage through a web
service interface. Amazon S3 uses the same scalable storage infrastructure
that Amazon.com uses to run its global e-commerce network. Amazon S3
can be employed to store any type of object which allows for uses like
storage for Internet applications, backup and recovery, disaster recovery,
data archives, data lakes for analytics, and hybrid cloud storage.

One could understand how such a bucket and its contents can be of
high value to attackers.

CORS misconfiguration

To be able to securely browse the web with scripts enabled, it is imperative
that JavaScript that is running on one domain can only read data from
that domain. If this restriction was not enforced, a script running on any
page could open a tab or window to the current users’ email provider or
Facebook profile and steal private information.

This is the very reason JavaScript (and other scripts) are only allowed to
send requests and read data from the domain the request originates from.
So functions in JavaScript are allowed to make a request to the domain it
is hosted on and read the data. Most API calls work like this. This allows
data to be processed safely in JavaScript instead of being directly displayed
on the webpage.

However, in some cases, we do want to permit sending requests to
other domains. For example, there are public APIs that allow anyone to
query them. These APIs by necessity also have to allow JavaScript on
any domain to send requests to them. In cases such as these, the browser
needs to be able to send requests to other domains. cross-origin resource
sharing (CORS) solves this. CORS is a header set by the web server. The
header regulates precisely which domains are allowed to send requests to
the web server.

Unfortunately, it is possible to misconfigure CORS such that its security
is undermined. This is most often seen when bypasses of CORS have
been made during development, or erroneous checking of the origin is in
place, perhaps because of a regular expression that is too permissive when
validating the origin. [16]

13

Vulnerable tech-stacks

A server can run old and/or exploitable technologies. This can be because
of outdated software like an outdated operating system, web service stack,
dependencies, and imported modules. Their existence on a web server can
sometimes be detected with non-intrusive scans, but oftentimes they have
to be manually verified.

Vulnerable web applications

The web applications themselves can be vulnerable to various attacks.
The OWASP section mentions the ten greatest security risks for web
applications. The challenge with a lot of vulnerabilities in web applications
is that their presence often only can be detected or proved with intrusive
methods. This makes it impossible to scan for some of them with a non-
intrusive scanner.

Lack of defence against social engineering

While not a vulnerability, but rather a method of attack, social engineering
can be used to topple sophisticated security solutions. With the vast
amount of information openly available on the Internet today, an attacker
can gain much insight before performing attacks. The collected information
can also be leveraged to perform sophisticated social engineering attacks.
A sufficiently motivated attacker can take the time to craft convincing
spear-phishing emails, especially if he has some relevant information on
the victim. Any user can fall prey to a social engineering attack; it is just a
matter of timing and having a convincing story. Security policies, technical
solutions, and a healthy amount of scepticism can all be used to stop a
social engineering attack in its tracks.

14

Chapter 3

Methods for data collection and
vulnerability discovery

This chapter will map out some methods and tools for data collection and
vulnerability discovery.

3.1 Port scannning

Port scanning is the process of determining what ports are open on a
host machine. It is one of the most basic forms of information gathering.
While scanning for open ports is simple, more advanced techniques for
fingerprinting can be used to detect the operating system (OS), software,
and even software versions running on the different ports. Port scans can
be loud on the network, so advanced attackers generally limit the use of
such scans to avoid detection.

While there are old and evolving scanners, new ones pop up from time
to time as new needs arise.

Nmap (“Network Mapper”) Nmap is a free and open-source utility
for network discovery and security auditing. It uses raw IP packets
in novel ways to determine what hosts are available on the network,
what services (application name and version) those hosts are offering,
what operating systems (and OS versions) they are running, what type
of packet filters/firewalls are in use, and dozens of other characteristics.
Nmap is extensible with scripts that provide more advanced service and
vulnerability detection, and other features. It was designed to rapidly scan
large networks but works fine against single hosts. [44] All of these factors
make it an effective tool for discovering vulnerable services.

Various scans can be performed with Nmap. We can perform a default
scan. This scans some of the most commonly used ports on the internet.

nmap 192.168.0.104

We can scan all the ports of a given host.

nmap -p1 -65535 192.168.0.104

15

Or we can perform OS detection:

nmap -O 192.168.0.104

Nmap can also be used to gather detailed information. Increased
verbosity level in output, enabling aggressive scan options and probe open
ports to determine service and version info.

nmap -v -A -sV 192.168.0.104

Nmap can also scan an input list of hosts and write to an output file.

nmap -iL alexa -top -1000. list -oN nmap_output

This can be suitable for scanning a large number of targets.

Quick scanning with MASSCAN This is an Internet-scale port scanner.
The developers claim that it can scan the entire Internet in under 6 minutes,
transmitting 10 million packets per second, from a single machine.

MASSCAN is a fast scanner, but in practice, it seems to be less accurate
than Nmap. Masscan’s reliability seems to drop when scanning large
ranges. It can be used effectively for doing initial reconnaissance, but other
tools - like Nmap can be used for detecting changes in a network (also
referred to as diffing) [29, p. 25].

MASSCAN can perform quick scans but requires the use of an Intel 10-
Gbps adapter and a proprietary driver called "PF_RING ZC" from ntop,
which is available for 150 EUR. It allows for easy configuration of scans
with its configuration file format:

My Scan (myscan.conf)
rate = 100000.00
output -format = xml
output -status = all
output -filename = scan.xml
ports = 0 -65535
range = 0.0.0.0 -255.255.255.255
excludefile = exclude.txt

It is simple to run using masscan -c myscan.conf. A caveat when
using MASSCAN is that target addresses must be IP addresses or simple
ranges. They cannot be complex subnet ranges like the ones nmap can use,
one example being 10.0.0-255.0-255.

3.2 Scanning for web application vulnerabilities

Burp suite Burp Suite is a popular web vulnerability scanner. It is
proprietary but has a free “Community”-edition with some of the essential
tools. This feature-rich commercial tool comes at a price of 399 USD per
user per year. Its benefits come from the add-ons, modular design, and user
development base. As a free alternative, OWASP Zed Attack Proxy (ZAP)
is an excellent replacement. [29, p. 51-52]

16

The tools listed below are open-source. Open-source tools have several
advantages compared to proprietary or closed source software: They can
be easily inspected, modified, and are free. The next paragraphs take a look
at some of the top ones for web application vulnerability scanning.

Web Application Attack and Audit Framework (w3af) Web Application
Attack and Audit Framework (w3af) is an open-source web application
security scanner that helps developers and penetration testers identify and
exploit vulnerabilities in their web applications.

The scanner can identify 200+ vulnerabilities, including Cross-Site
Scripting, SQL injection, and OS commanding.

OWASP Zed Attack Proxy (ZAP) OWASP ZAP [49] is a web application
security scanner similar to Burp, but wholly open-source and free. It is
one of the most active OWASP projects. It can be used for vulnerability
assessment, penetration testing, runtime testing, and code review. ZAP
can also be used within build pipelines to test the security of applications
as part of the continuous integration (CI)/continuous deployment (CD)
pipeline.

BuiltWith A web site profiler tool. Upon looking up a page, BuiltWith
returns all the technologies it can find on the page. BuiltWith’s goal is
to help developers, researchers and designers find out what technologies
pages are using, which may help them to decide what technologies to
implement themselves [29, p. 51].

Retire.JS Scan a web app for the use of vulnerable JavaScript libraries.
The goal of Retire.js is to help detect versions with known vulnerabilit-
ies [29, p. 51].

Nikto Nikto is an open-Source web server scanner, released under GNU
General Public License (GPL), which performs comprehensive tests against
web servers for multiple items, including over 6700 potentially dangerous
files/programs, checks for outdated versions of over 1250 servers, and
version specific problems on over 270 servers. It also checks for server
configuration items such as the presence of multiple index files, HTTP
server options, and attempts to identify installed web servers and software.
Scan items and plugins are frequently updated and can be automatically
updated.

Nikto is not designed to be stealthy. It tests a web server in the quickest
time possible and is evident in log files or to an intrusion prevention
system (IPS)/intrusion detection system (IDS). However, it supports anti-
IDS methods, though these seem most suited for testing and not for reliable
stealth scanning.

Not every check that Nikito performs is a security problem, though
most are. Some items are "info only" type checks that look for things that

17

may not have a security flaw, but the webmaster or security engineer may
not know are present on the server. [43]

3.3 Spidering

Web spiders can be seen as some of the most powerful and useful tools
developed for both good and bad purposes on the Internet. A spider serves
one primary function, Data Mining. A typical spider (like those of Google)
works by crawling a web site one page at a time, gathering and storing the
relevant information such as email addresses, meta-tags, hidden form data,
Uniform Resource Locator (URL) information, links, etc. The spider then
crawls all the links on that page, collecting relevant information on each
following page, and so on. Since every page can link to a nearly infinite
number of other pages, a spider can crawl thousands of links and pages by
starting from one page and recursively following links to other pages. The
spider gathers information and stores it into a database as it goes along.
The web of paths that is followed is where the term ‘spider’ is derived
from. [47]

Many of the advanced vulnerability scanning tools have spidering
features. Some simple tools have to spider as their only purpose. Although
noisy, they are great for gathering information in a non-intrusive way.

Burp Suite Burp Suite Spidering: In both the free and paid versions,
Burp Suite has a great Spidering tool. Content Discovery: when using
the paid version of Burp Suite, one of the favorite discovery tools is under
Engagement tools, Discover Content [29, p. 52].

Burp is a smart and efficient discovery tool that looks for directories and
files. Several different configurations can be specified for the scan. Active
Scan: Runs automated vulnerability scanning on all parameters and tests
for multiple web vulnerabilities. [12]

OWASP ZAP Has similar discover and active scan features for spidering
as Burp [29, p. 53].

Dirbuster Dirbuster is an old tool to discover files/folders of a web
application. [29, p. 53]. This tool is made for finding pages and applications
inside web servers. Dirbuster is an inactive OWASP project, which
essentially has been forked by the OWASP Zap team and is now available
as a Zap add-on. It is written as a multithreaded java application, designed
to brute force directories and filenames on servers. [58]

GoBuster GoBuster [54] is a very lightweight, fast directory, and subdo-
main brute force tool. It is a simple console application, written in Go, as
the name suggests. It can brute-force URIs (directories and files) and DNS
subdomains [29, p. 52].

18

Figure 3.1: Screenshot of the Dirbuster interface

3.4 Vulnerability assessment

There are many ways of doing vulnerability assessments. More often than
not, however, some vulnerability assessment tool is going to be used as
part of the process. These are very potent and feature-rich tools. They
do, however, have some properties that make them less desirable for large
scale scanning. The more extensive the scan, the longer it takes to complete
- in general. These tools are often made for running long intensive tests
that can detect many vulnerabilities. Intensive scans are great for many
uses, but the scans take a long time to complete when ran on many hosts.
This makes many of these tools "bloated" for the purposes of this thesis
since they include much more functionality than is ever going to be used.
Additionally, some of them are made to run from within the target network.
And most importantly, depending on how they are set up and what scans
are used, they can have negative influences on the resources. Vulnerability
assessment tools usually exercise the vulnerabilities they scan for. This
requires explicit permission from the system owner.

Tenable (Nessus) Nessus by many considered the de-facto industry
standard vulnerability assessment solution for security practitioners. [41]
This is a rather expensive tool, with a cost of approximately 26 000 NOK
for a one-year license.

There are also scripts that help automate Nessus available, like
AutoNessus. [53] AutoNessus communicates with the Nessus API to issue
various commands to Nessus. It can be set up to run as a scheduled task or
cron-job to start or stop scans at the desired time.

Some other popular vulnerability assessment tools are Qualys, Rapid7,
Trustwave, IBM, WhiteHat Security, CA Technologies (Veracode) and
Checkmarx.

19

3.5 Scanners on the web

Today, more and more people are moving to cloud- and web-based
solutions for performing scans. The hackers and security researchers are
moving with them.

3.5.1 Scan databases

Several databases containing information from scans are also available
online; these are often called scan-databases. These databases can contain
a vast amount of information ranging from the results of simple port scans,
or scans for specific vulnerabilities.

Internet-wide scan data repository The Internet-Wide Scan Data Repos-
itory1 is a public archive of research data sets that describe the hosts and
sites on the Internet. The repository is hosted by the ZMap Team. [78]

3.5.2 Using search engines

There are numerous search engines and databases containing vulnerability
scan information out there.

Google Google can be used to find valuable information about potential
targets. Using advanced search terms, one can often find sensitive inform-
ation. These are often called “Google dorks”. An extensive collection of
these have been organized into a dictionary, called Google Hacking Data-
base. [35] There are even command line interfaces (CLIs)2 made for finding
vulnerabilities through Google (and other) search engines.

Cons of using the Google search engine:

• The Google Search API was deprecated in 2010. What can be used
instead is the standard site search: . But doing a high volume of
searches quickly gets one flagged as a bot and would require solving
captchas at regular intervals. So for a larger volume of requests, one
has to use the Custom Search JSON API.

• The new Custom Search JSON API is only meant to search within a
single domain, but it is possible to get around that by using wildcards
like "*.com/*". The downside to this is that it is a "hacky" solution,
and Google might disallow such configuration of the search API at
any time.

• The free Google API limits the user to 100 searches per day, with a
maximum of ten results per search. For more searches, one has to go
with the paid plan. Signing up for billing on the Google API site nets
a user $300 free to spend on API calls for 60 days.

1https://scans.io/
2https://github.com/utiso/dorkbot

20

https://www.google.com/search?q=keyword

• A file called robots.txt can be used by sites to stop Google’s crawlers
from indexing sites. This can be used to hide information that would
otherwise be indexed and appear in searches.

Pros:

• Feature-rich search for finding various information on a webpage.

• Cached sites: Even though the information is removed from a given
page, it can still be accessible through Google’s own cached version.

3.5.3 Using cloud scanners

Shodan.io Shodan is a search engine that allows a user to query for spe-
cific types of devices (webcams, routers, servers, and other devices) con-
nected to the Internet using a variety of filters. Some have (humoristically)
described it as the search engine of service banners, which are metadata
that the server sends back to the client. The banner can contain informa-
tion about the server software, what options the service supports, a wel-
come message or anything else that the client can deduce before starting its
interaction with the server. [75]

Shodan gathers data mostly from web servers using HTTP/HTTPS -
port 80, 8080, 443, 8443, FTP running on port 21, SSH (on port 22), Telnet
(port 23), SNMP (port 161), IMAP (ports 143, or (encrypted) 993), SMTP
(port 25), SIP (port 5060), and Real-Time Streaming Protocol (RTSP, port
554). The last example, RTSP, is used for streaming video and contributed
to Shodan’s relative popularity for searching for web cams. [59]

Censys.io Censys is a search engine for finding servers and devices that
are exposed publicly on a network. Censys is based on ZMap; it searches
data harvested by ZMap. [14]

S3 bucket scanners With the advent of cloud services like Amazons
S3 buckets for storing data online, come new security holes. A lot of
S3 buckets have their content openly accessible on the Web or are only
protected by weak passwords. Tools like S3Scanner3 [57] have been
developed to find open buckets and dump their contents.

3.6 Methods for subdomain discovery

In terms of identifying IP ranges, one can typically lookup the company
from public sources like the American Registry for Internet Numbers
(ARIN), AFRINIC (Africa), APNIC (Asia), LACNIC (Latin America), and
RIPE NCC (Europe). It is possible to lookup the IP address space belonging
to owners, search Networks owned by companies, Autonomous System
Numbers of an organization, and more.

3https://github.com/sa7mon/S3Scanner

21

These are all publicly available and listed on their servers. One can
lookup any hostname or full qualified domain name (FQDN) 4 to find the
owner of that domain through many available public sources, one example
being Domain Dossier [18].

Subdomains, on the other hand, are not listed publicly. Subdomain
information is stored on the target’s DNS server versus registered on some
central public registration system. One must know what to search for to
find a valid subdomain. [29, p. 32]

Manually parsing SSL-certificates It is common that companies do not
realize what they have available on the Internet. Especially with the
increase of cloud usage, many companies do not have access control lists
(ACLs) correctly implemented. They might not know that their servers
are publicly facing. These can include Redis databases, Jenkins servers,
Tomcat management, NoSQL databases, and more - many of which have
led to remote code execution or loss of PII [29, p. 30].

One tool for scraping hostnames from SSL-certificates is sslScrape. [28]
This is one of the many ways to build a list of hostnames.

Discover scripts Discover scripts is a collection of Custom bash scripts
used to automate various penetration testing tasks, including recon,
scanning, parsing, and creating malicious payloads and listeners with
Metasploit. It is made for use with Kali Linux and the Penetration Testers
Framework (PTF). [5]

An advanced feature of Discover scripts is that it takes the information
it gathers and uses that information in the ongoing search. For example,
from searching through the public PGP repository, it might identify emails
and then use that information to search Have I Been Pwned (through
Recon-NG). That will let us know if any passwords have been found
through publicly-released compromises. This is very useful to know for
an attacker that might have access to previously leaked information. [29, p.
33].

KNOCK Knockpy is a python tool designed to enumerate subdomains
on a target domain through a wordlist. Knock is an excellent subdomain
scan tool that takes a list of subdomains and checks it to see if it resolves [29,
p. 33].

Sublist3r The challenge with Knock is that it is only as good as the
wordlist being used. Some companies have unique subdomains that
cannot be found through a standard wordlist. The next best resource to
go to is search engines. As sites get spidered, files with links get analyzed

4A full qualified domain name (FQDN), sometimes also referred to as an absolute
domain name, is a domain name that specifies its exact location in the tree hierarchy of
the DNS. So as an example: A device with the hostname myhost in the parent domain
example.com has the FQDN myhost.example.com. The FQDN uniquely distinguishes the
device from any other hosts called myhost in other domains.

22

and scraped public resources become available, which means one can take
advantage of scraped and indexed information for finding subdomains.
Sublist3r does this. Sublist3r uses different “google dork” style search
queries that can look like a bot. This could get us temporarily blacklisted
and require us to fill out a captcha with every request, which may limit the
results from the scan. [29, p. 33]

SubBrute SubBrute [63] is a community-driven project with the goal
of creating the fastest, and most accurate subdomain enumeration tool.
SubBrute uses open resolvers as a kind of proxy to circumvent DNS rate-
limiting [70]. This design also provides a layer of anonymity, as SubBrute
does not send traffic directly to the target’s name servers. Not only is
SubBrute extremely fast, it performs a DNS spider feature that crawls
enumerated DNS records [29, p. 34].

We can also combine SubBrute with MassDNS [37] to perform very
high-performance DNS resolution [29, p. 35].

3.7 Subdomain takeover

One tool to check for vulnerable subdomains is called tko-subs [69]. This
tool can be used to check whether any of the previously discovered
subdomains are pointing to a CMS provider, such as Heroku, Github,
Shopify, Amazon S3, Amazon CloudFront, can be taken over [29, p. 40–
41]. If a dangling CNAME is found, something like tko-subs can be used to
take over Github Pages and Heroku Apps. Otherwise, we would have to
do it manually.

Two other tools that can help with domain takeovers are: HostileSub-
Bruteforcer [26] and autoSubTakeover [4] [29, p. 41].

3.8 Publicly exposed information

Github Penetration testers and Red Teams have been able to get pass-
words, API keys, old source code, internal hostnames/IPs, and more from
Github repositories. These either led to a direct compromise or assisted in
another attack. Many developers either push code to the wrong repository
(sending it to their public repository instead of their company’s private re-
pository) or accidentally push sensitive material (like passwords) and then
try to remove it. Github tracks every time code is modified or deleted.
That means if sensitive code at one time was pushed to a repository and
that sensitive file is deleted, it is still tracked in the code changes. If the
repository is public, all these changes can be viewed. For finding specific
organizations or entities, one can either use Github search to identify in-
dividual hostnames/organizational names or even just use simple Google
Dork search, for example, site:github.com + "orgname" [29, p. 35].

23

Figure 3.2: Uses of hacked email addresses [31]

Truffle Hog Truffle Hog tool scans different commit histories and
branches for high entropy keys and possible secrets and prints them. It
is well suited for finding secrets, passwords, keys, and more [29, p. 35].

3.9 Collecting additional information

OSINT open-source intelligence (OSINT) is data collected from publicly
available sources to be used in an intelligence context. Where the term
"open" refers to overt, publicly available sources. The collection of OSINT
can be of great use to attackers, as it can help set up social engineering
attacks or otherwise assist in an attack. There are many popular tools
for gathering such information out there: Whois, Nslookup, FOCA,
theHarvester, Shodan, Maltego, Recon-ng and Censys.

A couple of them explained in more detail as they have functionality
that could be of interest to us: Recon-ng is a full-featured reconnaissance
framework designed with the goal of providing a powerful environment
to conduct open-source web-based reconnaissance quickly and thoroughly.
TheHarvester is used to gather OSINT on a company or domain.

Email addresses Email addresses can be used for various purposes. A
commonly performed attack is credential stuffing, where known email
addresses combined with either passwords from previous breaches, words
from dictionaries, or exhaustive search/brute force techniques. Once access
is gained, there are a lot of possible uses, as illustrated by figure 3.2.

Knowledge of email addresses can also be used for email bombing.
In this type of attack, an attacker tries to hide his true intentions behind
massive amounts of spam email. While the user is dealing with an
overflowing inbox, the attacker purchases items in their name, and
attempts to reset passwords or transfer domains.

24

Spear-phishing is still one of the more successful avenues of attack. For
attackers that do not have any vulnerabilities they can use immediately
from the outside, attacking users is the next step. In a spear-phishing
attack, the attacker crafts a legitimately looking email and sends it off to
the victim(s). The mail often contains malicious attachments or links or
tries to trick the victim into doing some action, like sending money. Spear-
phishing emails are often spoofed. That means pretending to be from
someone else than they genuinely are. Generally, the better the story of
a spear-phishing email, the higher the success rate. Sophisticated attackers
collect considerable amounts of openly available information and leverage
it to create legitimately looking spear-phishing attacks.

To build a list of email addresses, one can scrape information from
various websites, web searches, openly available documents, and any other
sources that contain useful information. There are already tools that do
this; one example is SimplyEmail5. The output of this tool provides the
email address format of a company or website and a list of valid users [29,
p. 41].

Past breaches One of the simplest and most effective ways to get email
accounts is to continually monitor and capture past breaches [29, p. 42].

3.10 Unprotected videoconferencing rooms

The 2020 coronavirus pandemic forced people to work from home. As a
result, people are using services like Zoom for videoconferencing. On this
service, in particular, many users have found themselves Zoombombed:
they are either being attended or disrupted by someone who does not
belong. Since meetings are assigned a Meeting ID consisting of 9 to 11 digits
and are often not password-protected, unwanted parties can join them.

A tool developed by security researchers, called zWarDial, automates
the process of finding non-password protected Zoom meetings, its terminal
user interface is displayed in figure 3.3. They found a high number
of meetings at large corporations to not be password protected. One
researcher, Lo, shared the output of one day’s worth of zWarDial scanning,
which revealed information about nearly 2,400 upcoming or recurring
Zoom meetings. That information included the link needed to join each
meeting, the date and time of the meeting, the name of the meeting
organizer, and any information supplied by the meeting organizer about
the topic of the meeting. [32]

5https://simplysecurity.github.io/SimplyEmail/

25

Figure 3.3: A screenshot of zWarDial [32]

26

Chapter 4

The scanner

4.1 Main focus

4.1.1 Internet-wide non-intrusive vulnerability scanning

The definitions section discussed the differences between active and
passive scanning and scanning from the inside vs. outside of a network.
Our focus is going to be on passive Internet-wide scanning. This can
perhaps more simply be described by table 4.1, and specifically item
number four.

Table 4.1: Various scan types
1. Active (noisy)
LAN-scan

2. Non-intrusive
LAN-scan

3. Active (noisy)
Internet-scan

4. Non-intrusive
Internet-scan

4.1.2 Making the PoC vulnerability scanner

Making a vulnerability scanner is going to be the primary focus. Some
desirable properties for it would be:

1. Be capable of doing large scale scans; be able to scan a potentially
long list of hosts.

2. Have the property of non-intrusiveness; Not having any adverse
effects on the resources it scans.

3. Be able to detect several vulnerabilities.

The scanner will be focused around scanning web sites. When shaping
the scanner, it can be beneficial to think like an attacker. This can make it
easier to see what is an attacker interested in, and the potentially quickest
and simplest ways to get to it.

A lot of tools exist that are suitable for finding specific vulnerabilities
already. There is no need to reinvent the wheel, so any useful existing

27

programs should be included as separate modules in the scanner. It should
also be relatively easy to add or remove modules.

4.2 Preparation

4.2.1 Fetching a list of targets

To begin, one has to get a list of targets to scan. For testing, two datasets
will be used. One containing the top-visited no-domains and the Alexa top
1 million most visited websites.

The most popular Norwegian domains We can get this info through
Amazon Alexa, but they only provide the top 50 or 100 sites publicly for
unregistered visitors. Amazon Alexa provides an extensive list with their
Website Analysis Tools through their "Insights" plan, which costs 79 USD
/ month at the time of writing (September 1. 2019). But they also have a 7-
day free trial. It was tried to sign up for this first, but it would only provide
the top 500 sites for a country or 1000 globally.

Since many of the top-visited sites in Norway are not no-domains, this
proves to be insufficient. We want at least the top 500 visited sites with
".no" domains.

To get all the pages, we need to use the topsites API. This API costs
money to use (and has a somewhat esoteric pricing scheme). As the API
only returns 100 sites for each request, we need to make ten requests to get
the top 1000 sites.

If we test it for just one host:

Get information about the second most visited site
curl -H "x-api-key: jeelechei3ooR4thahzi4Leibee1ute6eebe0oko" \
"https://ats.api.alexa.com/api?Action=Topsites&Count=1\
&CountryCode=NO&ResponseGroup=Country&Start=2"

The output is quite verbose and is included in A.3:
To get data for one hundred sites at a time (this is the maximum allowed

by the API):

curl -H "x-api-key: jeelechei3ooR4thahzi4Leibee1ute6eebe0oko" \
"https://ats.api.alexa.com/api?Action=Topsites&Count=100\
&CountryCode=NO&ResponseGroup=Country&Start=1"

The call has to be repeated with start query parameter is incremented for
each call until the desired number of hosts is reached.

Then the data responses can be collected into a single file:

Having all the files in one folder called responses,
with an alphabetic ordering of the files starting with "response-"
to get all the files listed in the correct order:
find responses -type f -name "response-*" | sort

28

And to collect all the files into one:
cat $(find responses -type f -name "response-*" | sort) > result.json

Count lines
wc -l result.json
> 16480 result.json

So this yields a file with over 16000 lines. This file contains a lot of
information on the host, but only the hostnames are needed for scanning
the targets.

Using the following commands to extract the hostnames:

We can use grep to select only the lines with \acp{URL}
grep "\"DataUrl\":" result.json > grep_result

And then sed to remove everything except the hostnames
sed -e "s/^\\s*\"DataUrl\"\: \"//" -e "s/\",$//" \
grep_result > hostnames

Combined into a single "one-liner":
cat $(find responses -type f -name "response-*" | sort) | \
grep "\"DataUrl\":" | \
sed -e "s/^\\s*\"DataUrl\"\: \"//" -e "s/\",$//" > hostnames

The Alexa top 1m The second dataset is an already available dataset of
the Alexa top 1m. The data is from 2017, so the sites and order might be
somewhat outdated compared to what the ranking would have looked like
today. This is not a significant concern as we are mainly looking for a list of
hosts to scan, and are not so dependant on it being entirely up to date. To
fetch the list and format the file appropriately:

wget http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
unzip top-1m.csv.zip
cat top-1m.csv | sed 's/^[0-9]*,//' > top-1m

4.3 Design

The scanner is designed to do non-intrusive scans on large lists of hosts.
It attempts to incorporate known methods for scanning for vulnerabilities
in an extensible pipeline. It does not try to "reinvent the wheel"
through redeveloping or improving upon already known techniques for
vulnerability detection.

The scanner is designed to provide an extensible format where new
types of scans are easy to add. Various scans or tasks for the scanner are
easy to add in sequence or parallel. This means that the main focus is
put on running tasks in parallel, but when required, it can wait for one
task to complete before starting one that relies on the result of the previous
task. Additionally, the scanner has a configuration file that is loaded upon

29

Figure
4.1:

U
M

L
class

diagram
ofthe

vulnerability
scanner.

30

runtime, where the user can specify which tasks to run. This makes it easy
to tailor the run to the user’s needs without the user having to remember
any command arguments or flags.

A more detailed and technical description of the scanner and the
various scans that are implemented follows in section 4.4.

4.4 Implementation

The scanner is implemented in Java, with the build automation tool Maven
for building the application. The choice of language was arbitrary; the
scanner could just as well be written in any other language. Some source
code from the scanner is included in the appendix, in A.1. The scanner is
released under GPL 3.0, and its source code is available on https://github.
com/torjuskd/vulnscan.

Each type of scan the scanner performs is called a "scan task," and there
is a class for each one. All of these scan tasks are subclasses of the abstract
class ScanTask. This is illustrated by the UML class diagram in figure 4.1.
And figure 4.2 gives a more detailed view of the application.

The VulnScan-class contains the logic that defines which scans to run
and in what order. This kind of architecture allows for easy parallelization
of tasks. We can also run tasks that depend on other tasks sequentially,
which is useful for tasks where we need to use previously collected
information to run a scan.

Adding a new type of scan is as easy as adding another class that
extends the ScanTask-class and then adding it to the pipeline in the
VulnScan-class. To not run a scan type, its flag can be flipped from
true to false in the configuration file (vulnscan.config). To remove it
permanently from the scanner, one can simply remove the reference to it
from the VulnScan-class.

The scan tasks that are included in the scanner are:

1. ScanSubdomains

2. ScanForEnvFiles

3. ScanGit

4. ScanS3

5. ScanHeartbleed

6. ScanEmail

7. ScanGoogle

8. ScanShodan

ScanSubdomains (1) enumerates the subdomains for a domain and
checks if any of them are vulnerable to takeover attacks. The resulting
list of subdomains can be used by other tasks that require knowledge of

31

https://github.com/torjuskd/vulnscan
https://github.com/torjuskd/vulnscan

subdomains, such as the S3 scan. ScanForEnvFiles (2) scans for .env)-files
in the root directory of the web root. ScanGit (3) scans for git repositories
that are openly hosted in the directory of a website. ScanS3 (4) scans
for open Amazon AWS) buckets. ScanHeartbleed (5) performs a scan for
the ’Heartbleed’ security bug. ScanEmail (6) scans for email addresses
associated with a domain. Useful for performing social engineering attacks
or information gathering. ScanGoogle (7) scans using some simple google
dorks. Or scans for any query that is specified in the configuration
file. ScanShodan (8) scans for Norwegian hosts with RDP exposed to the
Internet. Custom scans can be configured in the same way as for the google
scan.

4.4.1 Build and usage

The application requires Java 11 and Maven to build. Building the
application is as simple as:

$ mvn clean install

With all dependencies installed it can be started from the command line
using:

$ java -jar vulnscan -1.0. jar

The version number depends on what version was built using Maven.
What scans to run can be easily configured in the file vulnscan.config
located in the same directory as the application itself.

The following subsections in this chapter will walk through all the tasks
of the scanner.

4.4.2 Subdomain enumeration

The scanner takes a list of domains as input, like the following:

$ head -n 5 top-1m-domains
google.com
youtube.com
facebook.com
baidu.com
tmall.com

There are several ways of finding subdomains for a target website. The
scanner uses the crt.sh database1 of the Certificate Transparency search
engine to look up subdomains. It accomplishes this by using a script from
Tlshelpers2 to look up the subdomains of all the listed domains. This can
take a long time when looking up the subdomains for one million websites.

Some dependencies are required to look up subdomains using this
technique. If using a Linux distribution with the Advanced Package Tool
(APT), download Postgresql and Tlshelpers:

1https://crt.sh/
2https://github.com/hannob/tlshelpers.git

32

Fi
gu

re
4.

2:
D

et
ai

le
d

U
M

L
cl

as
s

di
ag

ra
m

of
th

e
vu

ln
er

ab
ili

ty
sc

an
ne

r
ill

us
tr

at
in

g
pr

og
ra

m
flo

w
th

ro
ug

h
dr

aw
n

de
pe

nd
en

ci
es

.

33

sudo apt install postgresql postgresql-contrib
git clone https://github.com/hannob/tlshelpers.git

Then to find subdomains for a list of hosts the vulnerability scanner
does something equivalent to this:

while read in; do bash getsubdomain "$in" >> top-1m-subdomains; done < top-1m-domains

(Optional:) To monitor results as they appear, we can use tail:
tail -f top-1m-subdomains

Looking up the subdomains of the top 1m sites on a standard laptop
over a wireless connection took a couple of days when testing.

$ wc -l top-1m-subdomains
19015341 top-1m-subdomains

We can look up IP addresses from the list of subdomains with dig if we
want to.

dig +short -f filename

4.4.3 Subdomains vulnerable to takeover

With our list of the subdomains of the top 1m sites, we can try to find out
if some of them are exploitable. We can look for vulnerable subdomains
among the ones we found with subjack3, a subdomain takeover tool written
in Go. It uses a list of "fingerprints;" known responses of hosting and cloud
providers that indicate that the domain is available. The list of fingerprints
includes Fastly, Github pages, Heroku, Pantheon, Tumblr, Wordpress,
and many more. Subjack can also check for subdomains that belong to
unregistered domains (NXDOMAIN) and are available for registration.
The scanner simply uses the list of previously looked up subdomains and
subjack to concurrently check if any of them are vulnerable.

4.4.4 Open cloud storage solutions

Amazon S3 is a very popular cloud storage solution. Using the list of
already enumerated subdomains, one can quickly get possible Amazon
AWS S3 URLs with grep or ripgrep4 for even faster results, using a simple
regex as an heuristic for selecting domains:

rg '(s3|bucket|aws)' top-1m-subdomains

Using the S3 standard subscription, 1000 "LIST requests" costs $0.005
USD5, in the default region US East (Ohio). This is the request that is used
when listing the permissions of a bucket.

3https://github.com/haccer/subjack
4https://github.com/BurntSushi/ripgrep
5https://aws.amazon.com/s3/pricing/

34

4.4.5 Scanning for vulnerable services

Simple techniques like port scans can detect the presence of vulnerable
services.

One downside to scanning a high volume of ports is that it takes a
substantial amount of time. For this reason, a module for scanning for
only one vulnerability is included in the scanner, to avoid scanning a high
volume of ports on each host. This vulnerability is the OpenSSL Heartbleed
vulnerability (CVE-2014-0160). A Nmap Scripting Engine (NSE) script,
written in Lua by Patrik Karlsson, is used with Nmap to perform the scan
(ssl-heartbleed.nse).

The bug itself affects versions 1.0.1 and 1.0.2-beta releases of OpenSSL.
The bug permits reading memory from the systems using the vulnerable
versions and can compromise encrypted information and the encryption
keys themselves.

4.4.6 Environment files

A simple module is added for quickly looking for .env-files in the web
root. The module can be modified to look for any kind of file inside the
web directory of the given host. This module is based on a program called
meg6, made to fetch a lot of files quickly from servers without overloading
them.

Most pages will respond with a 404 status code and a body with some
text that usually says "Page not found" or similar. Therefore, only responses
with the status code 200 are saved. Even these will oftentimes just contain
error messages, so the results have to be analyzed/manually verified.

4.4.7 Git directories

The module that looks for git directories hosted in the web root is based on
GitTools7, and simply searches for the presence of git-repositories. URLs
for all the found git directories are saved to a file.

4.4.8 Email

The scanner has a module that uses SimplyEmail (mentioned in 3.9) for
scanning for email addresses. This tool does a very thorough search, using
several search engines, even looking inside documents for email addresses.

4.4.9 Search for internet facing-services

The scanner includes a module that integrates with the Shodan API built
on top of an available Shodan java client called jShodan8. The query to
search for can be configured in the scanner’s configuration file.

6https://github.com/tomnomnom/meg
7https://github.com/internetwache/GitTools
8https://github.com/fooock/jshodan

35

4.4.10 Using search engines to find exposed information

There is an included module that uses the Google search engine to find
exposed information. The module includes a simple keyword search that
can be configured in the configuration file, here queries can be added to the
comma-separated list.

36

Chapter 5

Results

5.1 Subdomains

The number of subdomains found for the Alexa top 1 million domains was
19 million (the exact number was 19015341).

The number of possibly exploitable subdomains, according to subjack,
was about 50 thousand (exact number 51981). This amounted to about
0.27% of all the subdomains.

The subdomains flagged as vulnerable must be manually verified to
know exactly how many of them are vulnerable in practice. They ranged
from being completely available to using certain providers that make it
easier to take over the domain.

Of the top 2000 visited sites in Norway, 606 of them where .no domains.
The number of subdomains found for these 606 sites was 24083. About 29
of the subdomains where found to be vulnerable with subjack. This equates
to 0,12% of the Norwegian subdomains. As the percentage was smaller
than for international sites, this can suggest that Norwegian websites are
more secure in this respect. But the sample of Norwegian sites is small, so
one should be careful drawing any conclusions from it.

5.2 Files exposed in webroot

Several sites were found to have their .env files publicly exposed in the
webroot directory. Many of them had environment variable names contain-
ing the string PASSWORD, with some common ones being MYSQL_PASSWORD,
REDIS_PASSWORD, DB_PASSWORD, MAIL_PASSWORD.

Some of these passwords are probably for internal services and are not
directly exploitable, but many of these .env-files were clearly not meant to
be public.

A quick way to look for sensitive information in these files is to do a
regex search for patterns that target one or more of the sensitive strings.
It was hard to come up with any good regexes that didn’t require a
high degree of manual verification. One that somewhat worked - it did
not filter out too many candidates, but had a lot of false positives, was
PASS|password.

37

An example of a response with an .env-file can be found in the
appendix (A.2). The domain name and some other potentially sensitive
information (secrets, database names) has been modified to not reveal any
sensitive information. From the example file, we can see that some secrets
are leaked, in addition to other potentially interesting information for an
attacker; the fact that the server seems to be running Laravel in debug
mode (APP_DEBUG=true), use of Mysql and Redis, the mailprovider and a
password and an API key. With this find, an attacker already has a lot of
information that can make it easier to attack the application running on this
server.

No exposed .env-files were found among the top 606 most visited .no-
domains.

5.3 Git directories hosted in webroot

In total, 1985 (or about 0.2%) git directories were found to be hosted in the
webroot folder of the Alexa top 1 million. Some of these were meant to be
hosted publicly, like the Xfce desktop environment source code at xfce.org.
And many were absolutely not meant to be public: Several webshops,
accounting firms, discussion forums, and many others.

No exposed git directories were found among the top 606 most visited
.no-domains.

5.4 Amazon S3 buckets

The scanner is designed to use the already looked up subdomains for
scanning for S3 buckets. However, if one were to scan all the subdomains
that were looked up, one would have to look up a massive list of
subdomains. And only a small percentage of them would be S3 buckets.
A simple heuristic to filter out most of the subdomains was therefore used
during testing.

With the simple regex mentioned in section 4.4.4; '(s3|bucket|aws)',
the total amount of possible S3 subdomains is narrowed down from 19
million to almost eight hundred thousand, or exactly 773 504. With a
lookup price of $0.005 per thousand domains, that is a cost of about $4.

The selection heuristic did not end up in a good percentage of found
buckets, so the regex '\.s3-' was attempted instead. Using this regex as a
heuristic, we got a total of 192 possible S3 buckets. 23 of these were found
to be real buckets, all with access denied.

It does not seem to be very fruitful to look for open buckets in this
manner, at least not for the top most visited sites.

During testing, it seemed more effective to attempt finding buckets by
watching certificate transparency logs, using Bucket Stream1. Searching
in this manner means that the logs are followed as they come in. So the
number of buckets that are found depends on the number of events in

1https://github.com/eth0izzle/bucket-stream

38

the certificate stream. This has the disadvantage of being slow, but it is
a suitable task for a background job. A handful of test buckets were found
with both read- and write privileges to all users during testing. One could
set up a script that takes the results from Bucket Stream, then lists and, if
possible, dump buckets with s3scanner afterward.

5.5 Emails

Finding email addresses proved to be quite a quite straight forward
process. However, it did take a enormous amount of time when scanning
with some test domains, so it was not done at scale and the flag for scanning
emails was flipped off by default in the final edition of the scanner.

5.6 Searching for hosts with Internet-facing services

Shodan and the Shodan API can be very useful for searching for hosts that
have certain properties, such as specific open ports. One such interesting
port is 3389, which is most commonly used for RDP (subtracting or adding
one to the port number seems to be common as well for the users of this
service). Globally, there are 4,591,881 hosts with this port open, and in
Norway, there are 5,192. These numbers are high for a service that (as
mentioned in chapter 1) should not be exposed to the Internet.

The Shodan API enables searching for and saving information about
these hosts. This is information an attacker would use to do credential
stuffing or brute force attacks.

Shodan can be used to search for tons of more compelling information
and for discovering vulnerable services. The scanner is configured to
search for hosts with RDP exposed to the Internet in Norway, but the query
can be changed to search Shodan for anything else in the configuration file.

5.7 Searching for exposed information and vulnerable
services with google dorks

A simple scan for finding ssh keys is included in the configuration files.
This scan was used to find some sites with publicly exposed ssh keys.

5.8 Vulnerable services

The Heartbleed-scan module was never tested on the host lists, because
the scan can be loud on the network and targets, and might even be illegal,
depending on local laws. [33]

However, a Shodan report from 11-07-2019, claimed that a search for the
vulnerability (vuln:cve-2014-0160) returned 91,063 results. With the USA
on top of the list with 21,258 hits and China in second place with 8,655. [25]

39

40

Chapter 6

Discussion

6.1 Efficiency and evaluation of the scanner

Evaluating the correctness of the results of the scanner is problematic.
An automated or manual verification process would be required. An
automated process would be just as error-prone as the scanner itself, or in
case it was a simple process, it could just be incorporated into the scanner
itself, and it would be fault-free in the first place. Manual verification seems
then to be the best approach. The problem here is the amount of labor it
would take to verify thousands (or millions of results if each subdomain
was checked for takeover vulnerabilities).

Neither approach is satisfactory. One is left with using the results of the
scanner as a guide or indication, but not as a source of truth.

That being said, the scanner found 0.27% of all subdomains to be
vulnerable to takeover, which was close to what was cited (0.5%) in the
presentation by David Wind. [76] And the total number of subdomains
found was the same (19 million), although the exact number found by It.sec
is not quoted in the presentation slides.

Significantly less, 1,985 (or about 0.2%) exposed git directories were
found by this scanner, than by It.sec (3,900), but crucially, It.sec scanned
all 19 million domains, while the scanner was only used on the Alexa 1
million list. By the percentage (exposed git directories/total domains) was
much higher for scanners results using the Alexa 1 million list, 0.2% vs.
0,02%.

The time taken to run the scans was not recorded exactly. This makes it
hard to make judgments on efficiency.

Having looked at some ways to detect vulnerabilities, some methods
and processes for mitigation is discussed in section 6.2.

6.2 Mitigation

We have so far looked at vulnerabilities and ways to exploit them, now
we’ll have a look at what can be done to improve the security posture for
different entities on the web.

41

6.2.1 Regulatory, WWW-wide technical and compliance solu-
tions

Proposed solutions to the inherent security risks on the Web vary.
Large security companies like McAfee design governance and compliance
suites to meet post-9/11 regulations[39], and some, like Finjan have
recommended active real-time inspection of programming code and all
content regardless of its source. [17] Some have argued that for enterprises
to see web security as a business opportunity rather than a cost center, [50]
while others call for "ubiquitous, always-on digital rights management"
enforced in the infrastructure to replace the hundreds of companies that
secure data and networks.[15] Jonathan Zittrain has said users sharing
responsibility for computing safety is far preferable to locking down the
Internet. [36]

Regulations like the EU General Data Protection Regulation (GDPR) can
push service providers to limit the use and collection of user information. It
can also make users more aware and in control of what information is being
shared and stored, because the user has to accept specific uses of their data
explicitly.

6.2.2 Precautions for organizations and companies

Security awareness in organizations Many organizations view informa-
tion security as a net cost center, as a sort of "necessary evil" that is there
only to prevent bad things from happening. The primary objective is to
keep costs down as much as possible while still complying with legisla-
tion. This is arguably a dangerously myopic view of information security,
and lends itself to pitfalls like complying with policy, while not considering
numerous vulnerabilities that the policy is not concerned with.

The alternative viewpoint to take is to see information security as an
area of opportunity and possibly excellence. Where current practices can
be made more secure and continuously improved. The lack of security we
see today on the Internet cannot be blamed solely on lack of knowledge and
complex technologies; information on how to make more secure solutions
is out on the Internet, freely available for anyone who is willing to learn
about it. No, the main reason we still see insecurity today is that it just is
not that high of a priority many organizations. By taking a proactive stance
towards security, money can also be saved in the process. Issuing a security
bulletin costs Microsoft at least USD 100 000$ [48, p. 34],and the cost to
customers is immeasurable. Data breaches can have grave consequences,
both personal and financial. With a proactive approach to security, some of
these events could likely have been prevented altogether.

Once a security mindset is in place in an organization, more secure
practices will follow. It is hard or impossible to go about it the other way
around. When security practices incorporated from the ground up they do
not have to be bolted on later.

Sophos suggests developing robust policies and systems to support
human decision making and that deals with human failures will be

42

Figure 6.1: The development in number of intrusions permitted (in
average) by a security bug during its lifetime [71, p. 17]

required. [61]

Process The old practice of "penetrate and patch" falls short in the current
climate of rapid development and integration. [71, p. 15-17] Companies
are moving fast and continuously add new servers, cloud solutions, and
applications to their portfolio. This requires a continuous reassessment of
risks and checking for old and new vulnerabilities. One approach to the
problem that is gaining in popularity is called DevSecOps. At its core,
DevSecOps is about incorporating security practices into Development
and Operations (DevOps). [13] This can make it easier to incorporate
security from the start and throughout the development cycle, and take
advantage of DevOps principles like test automation. This process can help
support suggested countermeasures to attacks, such as repeated security
hardening, software updating and patching, and operation of systems to
monitor the security of all components in the application stack. [64, p. 3-6]

Web application security The OWASP Testing Framework [48] can be
followed to assess the security of a web application. It is a complete
framework that can be used to build test programs and qualify test
processes. Made to tackle the questions of what, why, when and how
to test it takes a holistic approach to security testing. In the framework,
web application security testing is broken down into the following major
activities:

1. introduction and objectives

2. information gathering

3. identity management testing

4. authentication testing

43

5. authorization testing

6. session management testing

7. testing for error handling

8. testing for weak cryptography

9. business logic testing

The framework recommends regularly running vulnerability scanners,
testing and securing web applications from known risks, and securing
communications by enabling Hypertext Transfer Protocol Secure (HTTPS)
and HTTP Strict Transport Security (HSTS), among countless of other steps
to harden security.

6.2.3 Security experts

There can be many incentives for contributing to the security or "insecurity"
of the web for security researchers, bounty hunters and state actors.
Vulnerability markets and bug bounty programs can provide economic
incentives for disclosure. A public disclosure of a vulnerability also often
acts as a status symbol by many security experts. [64, p. 3] Disclosure of a
vulnerability to the affected product owner can help initiate the process of
patching a vulnerability, while selling vulnerabilities on the black market
arguably contributes towards undermining the security of the vulnerable
entities.

6.2.4 Security for the end user

From a user perspective, there are things one can do to reduce one’s attack
surface. One common and effective measure is to disable JavaScript from
running in the web browser. The downside to this is that it often breaks
much, if not all, of the functionality of many websites and cause others
not to display correctly. Other common ways to reduce footprint and
increase security are ad-blocking, more strict session handling for example
through containerized sessions, blocking specific trackers or rapid deletion
of cookies, multi-factor authentication, always using https, disallowing
TLS 1.0 and 1.1 and the age-old advice of strong password generation and
rapid patching.

The number of security precautions that can be taken as a user is
innumerable, and it is often tough or even impossible to assess the
effectiveness of the methods that are put to use. In any case, possible
security measures can be more easily evaluated when they are dictated by
a threat model.

Threat model A threat model is the end result of threat modeling. Threat
modeling is a process where potential threats, such as vulnerabilities or
the lack of appropriate safeguards, can be identified and enumerated. This

44

allows mitigations to be prioritized. A threat modeling serves to provide
defenders with a systematic analysis of what controls and defenses need
to be included, given the system, the probable attacker’s profile, the most
likely attack vectors, and the most valuable assets for an attacker. Threat
modeling answers questions like "Where is an attack most likely to occur?",
"Which threats are the most severe?" and "What actions can I take to defend
against these threats?". [60, p. 3-28]

operations security (OPSEC) A threat model can be used as part of a
more robust approach to security, known as the OPSEC model. Its five
key points are:

• Identify the information you need to protect

• Analyze the threats

• Analyze your vulnerabilities

• Assess the risk

• Apply countermeasures

The OPSEC model was developed during the Vietnam War era as a part
of military strategies to protect critical information, analyzing vulnerabilit-
ies and threats, assessing risks, and applying proper countermeasures. The
5 steps OPSEC model have been functional for the US Army’s operational
security and used by other NATO members as well. When threats have
spread widely in 21 st Century OPSEC began to be used and applied in a
more general context in the security industry. Today, in the cybersecurity
community, this model serves practically for the protection of critical data
and information. [3]

The OPSEC model is an iterative model where information can be
attained at any stage and can be applied to the next. For example, after
applying countermeasures, one might discover that there were threats that
one was not aware of. One can then go back to analyzing threats again, but
this time with more insight.

The bottom line is that there is no single solution to all the security
and privacy issues on the Web in sight. Stacking several mitigating
factors, using layered protection mechanisms seems to be the most sensible
approach.

6.3 Internet security in the future

6.3.1 Automation-assisted attacks

According to Sophos, Attackers are using a combination of automated
tools and humans to evade security more effectively controls than ever
before. In 2019 the MTR Operations Team observed attackers automating
the earlier stages of their attacks to gain access and control of the targeted
environment and then shift to utilizing patient, methodical means to
identify and complete their objective. [61, p. 23]

45

Figure 6.2: The relations between various AI-concepts. [24]

6.3.2 Cloud security

The rapid adaption of cloud solutions has brought with it its own
challenges. Since cloud solutions are flexible, they make it easier to make
configuration changes on a whim, which also makes it easier to make
mistakes. With a single misstep, a system administrator might open the
customer database to the Internet.

A recent example of this is the spread of Magecart - a malicious piece
of JavaScript that steals credentials or credit card information. The script
is embedded into the shopping cart or checkout page of online retailers,
where it redirects information to the attacker. This hit big online retailers:
Ticketmaster, Cathay Pacific Airways, Newegg, and British Airways. The
attacks were only discovered after customer complaints started to come
in. [61, p. 20-21]

Visibility into the consequences of configuration changes, and the
ability to monitor systems for malicious or suspicious activity has proved
the most effective for defending against attacks on cloud solutions. [61, p.
20]

6.3.3 Artificial intelligence (AI)

The use of Machine learning technologies is rapidly increasing. It can
be applied for various purposes, both for good and harm. Attackers are
already starting to target the machine learning engines. [61, p. 25]

We are not far from a world where machine learning systems are
attacking each other and defending themselves. Generative models are
models that can be used to generate content to looks human-made, but
can be crafted by a machine from scratch. They can be used to generate
images, news articles, and videos (often referred to as deep fakes). Such

46

systems might be used to spread misinformation and assist in phishing
attacks in the future. To defend from these attacks, one might employ a
machine learning systems and humans to identify fakes, by spotting flaws
using methods like pattern recognition and metadata analysis.

47

48

Chapter 7

Conclusion and future work

7.1 Conclusion

7.1.1 Vulnerabilities

In chapter 2, it was outlined that many vulnerabilities could be detected
non-intrusively. From OWASP top 10, there were: Sensitive data
exposure, security misconfiguration, and using components with known
vulnerabilities. Vulnerabilities not specific to web applications followed:
Unregistered subdomains, exposed credentials, exposed source code, open
cloud storage solutions, CORS misconfiguration, vulnerable tech-stacks,
and inadequate protection mechanisms against social engineering attacks.

7.1.2 Methods

There are a variety of methods for non-intrusive vulnerability scanning.
The methods can be used both by those wishing to attack systems, and
those wishing to defend themselves from attacks.

Some of the methods mentioned in chapter 3 are port scanning, scan-
ning for web application vulnerabilities, spidering, using scan databases,
search engines, and cloud scanners, various methods for subdomain dis-
covery and takeover, techniques for finding publicly exposed information,
gathering public information for use in other attacks (social engineering),
and detection of unprotected services. There are probably countless other
methods for non-intrusive vulnerability detection, and many are likely yet
to be discovered.

7.1.3 The scanner

An important goal was also to create a functional scanner. The goal for
making the scanner was for it to have the following capabilities:

1. Be capable of doing large scale scans; Capable of scanning a
potentially long list of hosts.

2. Have the property of non-intrusiveness; Not having any adverse
effects on the resources it scans.

49

3. Be able to detect several vulnerabilities.

The PoC scanner ended up attaining all of the mentioned capabilities:
The scanner takes a lengthy list of hostnames as input and effectively
parallelizes the scan tasks.

Modules were added to the scanner for the following tasks: subdomain
enumeration and takeover, scan for open cloud storage solutions, scan for
vulnerable services (Heartbleed), a scan for environment files, a scan for
detecting exposed Git directories, a module to gather email addresses, a
module to search for Internet-facing services using Shodan, and a simple
client for searching for exposed information using the Google search
engine.

7.2 Future work

Time and financial constraints Some of the scan types were not attemp-
ted on the whole dataset of Alexa top 1 million. They were either very
time-consuming or could be costly. A prosperous actor with lots of time on
their hands could afford to run all the scans on the entire Alexa list.

Warning/reporting to affected parties As email addresses also can be
found for the domains, one could also implement an automatic warning
mechanism and send an email to addresses like admin@domain.tld or
webmaster@domain.tld. But the criteria for what to warn about would
have to be well thought out; one organization may want to host their source
code publicly while others do not. It would be hard to distinguish between
such organizations automatically, so some sort of manual confirmation
would probably still be needed.

Extend scanner with Internet resources This scanner focused on using
local tools for finding vulnerabilities. More modules that take advantage of
data from scan databases and search engines could be added. The scanner
could be extended with additional features to become even more powerful
and tailored to whichever needs one has.

Assessing the validity of the results Assessing the validity of the results
and the effectiveness of the scanner turned out to be a daunting task.
Techniques for assessing the validity of results could be incorporated to
improve confidence in results, or manual verification can be applied to
evaluate validity of the scan results.

50

Appendices

51

.1 Acronyms

ACL access control list . 22

AI Artificial intelligence . iv

API application programming interface . 8

AWS Amazon Web Services . 7

CD continuous deployment . 17

CI continuous integration . 17

CLI command line interface . 20

CORS cross-origin resource sharing . 7

DNS domain name system . 6

DevOps Development and Operations . 43

FQDN full qualified domain name . 22

GDPR General Data Protection Regulation . 42

GPL GNU General Public License . 17

HSTS HTTP Strict Transport Security . 44

HTML Hypertext Markup Language . 10

HTTPS Hypertext Transfer Protocol Secure . 44

IDS intrusion detection system . 17

53

IPS intrusion prevention system . 17

LAN local area network . 5

NSE Nmap Scripting Engine . 35

OPSEC operations security . 45

OSINT open-source intelligence . 24

OS operating system . 15

OWASP Open Web Application Security Project . ix

PII personally identifiable information . 9

PoC proof of concept . i

RCE remote code execution . 2

RDP Remote Desktop Protocol . 2

S3 Simple Storage Service . iv

SSL Secure Socket Layer . 12

TLD top level domain . 11

TLS Transport Layer Security . 1

UML Unified Modeling Language. .vii

URI uniform resource identifier .1

URL Uniform Resource Locator . 18

54

UiO the university of Oslo . 2

VCS version control system . 12

VPN virtual private network . 2

WWW World Wide Web . iv

XML Extensible Markup Language . 9

XSS Cross-Site Scripting . 1

XXE Xml External Entities . 9

ZAP Zed Attack Proxy . 16

w3af Web Application Attack and Audit Framework 17

55

56

Appendix A

Appendix

A.1 Scanner source code

Some source code from the scanner is included here. The scanner is
released under GPL-3.0, and the source code is available on https://github.
com/torjuskd/vulnscan.

A.1.1 The controller class

package no . uio . i f i . vulnscan ;

import no . uio . i f i . vulnscan . t a s k s . * ;
import no . uio . i f i . vulnscan . u t i l . io . F i l e P a r s e r ;
import org . s l f 4 j . Logger ;
import org . s l f 4 j . LoggerFactory ;

import java . u t i l . * ;
import java . u t i l . concurrent . CompletableFuture ;

/* *
* The " c o n t r o l l e r "− c l a s s of non−i n t r u s i v e l a r g e s c a l e v u l n e r a b i l i t y scanner
* Handles proper t ies , cons tants and the execut ion of a l l the t a s k s of the scanner
*/

publ ic c l a s s VulnScanControl ler {
p r i v a t e f i n a l Logger log = LoggerFactory . getLogger (VulnScanControl ler . c l a s s) ;
p r i v a t e f i n a l S t r i n g processedHostsFilename = " processed_hosts " ;
p r i v a t e f i n a l S t r i n g processedSubdomainsFilename = " processed_subdomains " ;
p r i v a t e f i n a l S t r i n g subdomainsSubjackResultsFi le = " subdomain_subjack_results " ;
p r i v a t e f i n a l S t r i n g subdomainsTempFileName = " subdomains_temp " ;
p r i v a t e f i n a l S t r i n g heartbleedFi lename = " h e a r t b l e e d _ s c r i p t _ o u t p u t " ;
p r i v a t e f i n a l S t r i n g megPathsFilename = " meg_paths " ;
p r i v a t e f i n a l S t r i n g emailResultFolderName = " email_output " ;
p r i v a t e f i n a l S t r i n g propert iesFi leName = " vulnscan . conf ig " ;
p r i v a t e f i n a l S t r i n g megHostnamesWithProtocolFilename = " meg_hostnames_with_protocol " ;
p r i v a t e f i n a l S t r i n g simplyEmailDir ;
p r i v a t e f i n a l S t r i n g hostsToScan ;
p r i v a t e f i n a l S t r i n g googleApiKey ;
p r i v a t e f i n a l S t r i n g googleSearchQuery ;
p r i v a t e f i n a l S t r i n g googleSearchEngine ;
p r i v a t e f i n a l S t r i n g shodanApiKey ;
p r i v a t e f i n a l S t r i n g shodanSearchQuery ;
p r i v a t e f i n a l P r o p e r t i e s p r o p e r t i e s ;
p r i v a t e f i n a l L i s t <CompletableFuture <Void>> scanTasks ;

/* *
* S e t s the fol lowing
* f i lename the path of the f i l e conta in ing the hosts you want to scan
*
*/

publ ic VulnScanControl ler () {
scanTasks = new ArrayList < >() ;

p r o p e r t i e s = F i l e P a r s e r . readProper t i es (propert iesFi leName) ;

hostsToScan = p r o p e r t i e s . getProperty ("HOST_LIST_TO_SCAN_FILENAME") ;
simplyEmailDir = p r o p e r t i e s . getProperty ("SIMPLY_EMAIL_DIR") ;
googleApiKey = p r o p e r t i e s . getProperty ("GOOGLE_API_KEY") ;
googleSearchQuery = p r o p e r t i e s . getProperty ("GOOGLE_SEARCH_QUERY") ;
googleSearchEngine = p r o p e r t i e s . getProperty ("GOOGLE_SEARCH_ENGINE") ;

57

https://github.com/torjuskd/vulnscan
https://github.com/torjuskd/vulnscan

shodanApiKey = p r o p e r t i e s . getProperty ("SHODAN_API_KEY") ;
shodanSearchQuery = p r o p e r t i e s . getProperty ("SHODAN_SEARCH_QUERY") ;

}

/* *
* Run the various t a s k s of the scanner
* <p>
* This i s where scan t a s k s are executed . Add new scan t a s k s here i f wanted .
* New scan t a s k s have to implement the ScanTask−i n t e r f a c e , see { @link ScanTask } .
* <p>
* Tasks can run in p a r a l l e l or s e q u e n t i a l l y . This i s accomplished
* through the use of CompletableFutures .
*/

publ ic void run () {
i f (taskShouldRun (ScanForEnvFiles . c l a s s)) {

addTaskToPipeline (new ScanForEnvFiles (megPathsFilename ,
hostsToScan ,
megHostnamesWithProtocolFilename)) ;

}

i f (taskShouldRun (ScanGit . c l a s s)) {
addTaskToPipeline (new ScanGit (hostsToScan)) ;

}

/*
* Only runs s3 scan a f t e r subdomain enumeration .
*/

i f (taskShouldRun (ScanSubdomains . c l a s s) && taskShouldRun (ScanS3 . c l a s s)) {
scanTasks . add (CompletableFuture . runAsync (

new ScanSubdomains (new F i l e P a r s e r () . p a r s e F i l e (hostsToScan) ,
subdomainsTempFileName ,
subdomainsSubjackResultsFi le ,
processedHostsFilename ,
processedSubdomainsFilename))

. thenRun (new ScanS3 (processedSubdomainsFilename))) ;
} e l s e i f (taskShouldRun (ScanSubdomains . c l a s s)) {

addTaskToPipeline (new ScanSubdomains (new F i l e P a r s e r () . p a r s e F i l e (hostsToScan) ,
subdomainsTempFileName ,
subdomainsSubjackResultsFi le ,
processedHostsFilename ,
processedSubdomainsFilename)) ;

}

i f (taskShouldRun (ScanHeartbleed . c l a s s)) {
addTaskToPipeline (new ScanHeartbleed (hostsToScan ,

heartbleedFi lename)) ;
}

i f (taskShouldRun (ScanEmail . c l a s s)) {
addTaskToPipeline (new ScanEmail (hostsToScan ,

emailResultFolderName ,
simplyEmailDir)) ;

}

i f (taskShouldRun (ScanShodan . c l a s s)) {
addTaskToPipeline (new ScanShodan (shodanApiKey ,

shodanSearchQuery)) ;
}

i f (taskShouldRun (ScanGoogle . c l a s s)) {
addTaskToPipeline (new ScanGoogle (googleApiKey ,

googleSearchQuery ,
googleSearchEngine)) ;

}

log . i n f o (" Scan s t a r t i n g , process ing domains . ") ;
scanTasks . forEach (CompletableFuture : : j o i n) ;
log . i n f o (" Al l hosts processed , Finished . ") ;

}

/* *
* Checks i f a task should be run , based on parameters in the config−f i l e .
* classname=true to run a task or
* classname= f a l s e to not run a task
*
* @param c l a z z the c l a s s of the scan−task
* @return true i f task should run
*/

p r i v a t e boolean taskShouldRun (f i n a l Class c l a z z) {
re turn Boolean . parseBoolean (p r o p e r t i e s . getProperty (c l a z z . getSimpleName ())) ;

}

/* *
* Adds task to p i p e l i n e .
* Al l the t a s k s t h a t are added t h i s way w i l l be executed in p a r a l l e l .
*
* @param runnable task to run
*/

p r i v a t e void addTaskToPipeline (f i n a l Runnable runnable) {
scanTasks . add (CompletableFuture . runAsync (runnable)) ;

}
}

58

A.1.2 Example of a scan task: Env file scan

package no . uio . i f i . vulnscan . t a s k s ;

import no . uio . i f i . vulnscan . u t i l . BashCommand ;
import org . s l f 4 j . Logger ;
import org . s l f 4 j . LoggerFactory ;

publ ic c l a s s ScanForEnvFiles implements ScanTask {
p r i v a t e s t a t i c f i n a l Logger log = LoggerFactory . getLogger (ScanForEnvFiles . c l a s s) ;
f i n a l S t r i n g megPathsFilename ;
p r i v a t e f i n a l S t r i n g actualHostsToScanFileName ;
p r i v a t e f i n a l S t r i n g megHostnamesWithProtocolFilename ;

publ ic ScanForEnvFiles (f i n a l S t r i n g megPathsFilename ,
f i n a l S t r i n g actualHostsToScanFileName ,
f i n a l S t r i n g megHostnamesWithProtocolFilename) {

t h i s . megPathsFilename = megPathsFilename ;
t h i s . actualHostsToScanFileName = actualHostsToScanFileName ;
t h i s . megHostnamesWithProtocolFilename = megHostnamesWithProtocolFilename ;

}

@Override
publ ic void run () {

log . i n f o (" running meg to look f o r f i l e s in webroot ") ;

new BashCommand () . runCommandOutputString (" sed −e ' s/^/ht tps :\\/\\// ' " +
actualHostsToScanFileName + " > " +
megHostnamesWithProtocolFilename) ;

// c r e a t e paths f i l e with /. env i f i t does not e x i s t
new BashCommand () . runCommandOutputString (

" [! −f " + megPathsFilename + "] && echo \"/. env\" >> " + megPathsFilename) ;

new BashCommand () . runCommandOutputString (
"meg −−s a v e s t a t u s 200 " + megPathsFilename + " " +
megHostnamesWithProtocolFilename) ;

log . i n f o ("meg f i n i s h e d ") ;
}

}

A.2 Exposed .env response example

http :// example.com/.env

> GET /.env HTTP /1.1
> Host: example.com
> User -Agent: Mozilla /5.0 (compatible; meg /0.2; ...

< HTTP /1.1 200 OK
< Etag: "5c61c1fb -2fd"
< Accept -Ranges: bytes
< Server: nginx /1.16.1
< Date: Tue , 24 Sep 2019 16:32:30 GMT
< Content -Type: application/octet -stream
< Content -Length: 765
< Last -Modified: Mon , 11 Feb 2019 18:42:03 GMT

APP_NAME=Laravel
APP_ENV=local
APP_KEY=base64:cGFzc3dvcmRwYXNzd29yZHBhc3N3b3JkCg ==
APP_DEBUG=true
APP_URL=http :// localhost

LOG_CHANNEL=stack

59

DB_CONNECTION=mysql
DB_HOST =127.0.0.1
DB_PORT =3306
DB_DATABASE=mydb
DB_USERNAME=mydb
DB_PASSWORD=secret

BROADCAST_DRIVER=log
CACHE_DRIVER=file
QUEUE_CONNECTION=sync
SESSION_DRIVER=file
SESSION_LIFETIME =120

REDIS_HOST =127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT =6379

MAIL_DRIVER=smtp
MAIL_HOST=smtp.mailtrap.io
MAIL_PORT =2525
MAIL_USERNAME=null
MAIL_PASSWORD=null
MAIL_ENCRYPTION=null

PUSHER_APP_ID=
PUSHER_APP_KEY=
PUSHER_APP_SECRET=
PUSHER_APP_CLUSTER=mt1

MIX_PUSHER_APP_KEY ="${PUSHER_APP_KEY }"
MIX_PUSHER_APP_CLUSTER ="${PUSHER_APP_CLUSTER }"

REDIRECT_HTTPS =1

A.3 Amazon Alexa top sites API JSON

{
"Ats": {

"OperationRequest": {
"RequestId": "868a0fa1-c3c0-46f0-b10c-c9419518b9dd"

},
"Results": {

"Result": {
"Alexa": {

"Request": {
"Arguments": {

"Argument": [

60

{
"Name": "countrycode",
"Value": "NO"

},
{

"Name": "start",
"Value": "2"

},
{

"Name": "count",
"Value": "1"

},
{

"Name": "responsegroup",
"Value": "Country"

}
]

}
},
"TopSites": {

"Country": {
"CountryName": "Norway",
"CountryCode": "NO",
"TotalSites": "2521",
"Sites": {

"Site": {
"DataUrl": "youtube.com",
"Country": {

"Rank": "2",
"Reach": {

"PerMillion": "530000"
},
"PageViews": {

"PerMillion": "66700",
"PerUser": "3.74"

}
},
"Global": {

"Rank": "2"
}

}
}

}
}

}
},
"ResponseStatus": {

"StatusCode": "200"

61

}
}

}
}

62

Bibliography

[1] 2012 Global Losses From Phishing Estimated At $1.5 Bn - Firstbiz.
[Online; accessed 5. Apr. 2020]. Feb. 2013. URL: https://web.archive.
org/web/20141221122958/http://firstbiz.firstpost.com/biztech/2012-
global-losses-from-phishing-estimated-at-1-5-bn-16850.html.

[2] A Guide To Subdomain Takeovers. [Online; accessed 11. Apr. 2020]. Apr.
2020. URL: https : / / www . hackerone . com / blog / Guide - Subdomain -
Takeovers.

[3] M. Kubilay Akman. ‘OPSEC Model and Applications’. In: Security
Dimensions. International and National Studies 25 (2018), pp. 60–81.
ISSN: 2353-7000. URL: https://www.ceeol .com/search/article- detail?
id=723776#tableOfContents.

[4] autoSubTakeover. URL: https://github.com/JordyZomer/autoSubTakeover.
(visited on 19/05/2019).

[5] L. Baird. Discover scripts. URL: https://github.com/leebaird/discover
(visited on 15/05/2019).

[6] Genevieve Bartlett, John Heidemann and Christos Papadopoulos.
‘Understanding Passive and Active Service Discovery’. In: Proceed-
ings of the 7th ACM SIGCOMM Conference on Internet Measurement.
IMC ’07. San Diego, California, USA: ACM, 2007, pp. 57–70. ISBN:
978-1-59593-908-1. DOI: 10.1145/1298306.1298314. URL: http://doi .
acm.org/10.1145/1298306.1298314.

[7] BBC NEWS | Technology | Google searches web’s dark side. [Online;
accessed 29. Mar. 2020]. Mar. 2020. URL: http://news.bbc.co.uk/2/
hi/technology/6645895.stm.

[8] Yuval Ben-Itzhak. ‘Infosecurity 2008 - New defence strategy in battle
against e-crime’. In: ComputerWeekly.com (Apr. 2008). URL: https ://
www . computerweekly. com/opinion / Infosecurity - 2008 - New - defence -
strategy-in-battle-against-e-crime.

[9] Scott Berinato. ‘Software Vulnerability Disclosure: The Chilling
Effect’. In: CSO Online (Jan. 2007). URL: https://www.csoonline.com/
article/2121727/software - vulnerability - disclosure -- the - chilling - effect .
html?page=2.

63

https://web.archive.org/web/20141221122958/http://firstbiz.firstpost.com/biztech/2012-global-losses-from-phishing-estimated-at-1-5-bn-16850.html
https://web.archive.org/web/20141221122958/http://firstbiz.firstpost.com/biztech/2012-global-losses-from-phishing-estimated-at-1-5-bn-16850.html
https://web.archive.org/web/20141221122958/http://firstbiz.firstpost.com/biztech/2012-global-losses-from-phishing-estimated-at-1-5-bn-16850.html
https://www.hackerone.com/blog/Guide-Subdomain-Takeovers
https://www.hackerone.com/blog/Guide-Subdomain-Takeovers
https://www.ceeol.com/search/article-detail?id=723776#tableOfContents
https://www.ceeol.com/search/article-detail?id=723776#tableOfContents
https://github.com/JordyZomer/autoSubTakeover.
https://github.com/leebaird/discover
https://doi.org/10.1145/1298306.1298314
http://doi.acm.org/10.1145/1298306.1298314
http://doi.acm.org/10.1145/1298306.1298314
http://news.bbc.co.uk/2/hi/technology/6645895.stm
http://news.bbc.co.uk/2/hi/technology/6645895.stm
https://www.computerweekly.com/opinion/Infosecurity-2008-New-defence-strategy-in-battle-against-e-crime
https://www.computerweekly.com/opinion/Infosecurity-2008-New-defence-strategy-in-battle-against-e-crime
https://www.computerweekly.com/opinion/Infosecurity-2008-New-defence-strategy-in-battle-against-e-crime
https://www.csoonline.com/article/2121727/software-vulnerability-disclosure--the-chilling-effect.html?page=2
https://www.csoonline.com/article/2121727/software-vulnerability-disclosure--the-chilling-effect.html?page=2
https://www.csoonline.com/article/2121727/software-vulnerability-disclosure--the-chilling-effect.html?page=2

[10] Hanno Böck. ‘Subdomain Takeover: Microsoft loses control over
Windows Tiles - Golem.de’. In: Golem.de (Apr. 2019). URL: https ://
www.golem.de/news/subdomain-takeover-microsoft-loses-control-over-
windows-tiles-1904-140717.html.

[11] Bryan Burns et al. Security Power Tools. Sebastopol, CA: O’Reilly, 2007.
URL: https://cds.cern.ch/record/1095693.

[12] Burp Suite Scanner. URL: https : / / portswigger . net / burp (visited on
14/05/2019).

[13] K. Carter. ‘Francois Raynaud on DevSecOps’. In: IEEE Software 34.5
(2017), pp. 93–96.

[14] Censys - mission. URL: https://censys.io/about (visited on 13/05/2019).

[15] Thomas Claburn. RSA’s Coviello Predicts Security Consolidation –
Security – InformationWeek. [Online; accessed 5. Apr. 2020]. Feb. 2007.
URL: https : / /web . archive . org /web/20090207091418/http : / /www .
informationweek . com / news / security / showArticle . jhtml ? articleID =
197003826.

[16] CORS Misconfigurations Explained. [Online; accessed 9. Mar. 2020].
Apr. 2018. URL: https : / / blog . detectify . com / 2018 / 04 / 26 / cors -
misconfigurations-explained.

[17] CWE - Vulnerability Type Distributions in CVE. [Online; accessed 29.
Mar. 2020]. Mar. 2020. URL: https://cwe.mitre.org/documents/vuln-
trends/index.html.

[18] Domain Dossier. URL: https : //centralops .net/co/domaindossier . aspx
(visited on 13/05/2019).

[19] B. Eshete, A. Villafiorita and K. Weldemariam. ‘Early Detection
of Security Misconfiguration Vulnerabilities in Web Applications’.
In: 2011 Sixth International Conference on Availability, Reliability and
Security. 2011, pp. 169–174.

[20] Firefox 74.0, See All New Features, Updates and Fixes. [Online; accessed
6. Apr. 2020]. Apr. 2020. URL: https://www.mozilla.org/en-US/firefox/
74.0/releasenotes.

[21] Seth Fogie et al. XSS Attacks: Cross Site Scripting Exploits and Defense.
Syngress, May 2007. ISBN: 978-159749154-9. URL: https : / / www .
amazon.com/XSS-Attacks-Scripting-Exploits-Defense/dp/1597491543.

[22] Tillson Galloway. How I made 10K in bug bounties from GitHub secret
leaks. May 2020. URL: https : / / tillsongalloway. com/finding - sensitive -
information-on-github/index.html.

[23] Béla Genge and Călin Enăchescu. ‘ShoVAT: Shodan-based vulner-
ability assessment tool for Internet-facing services’. In: Security and
Communication Networks 9.15 (2016), pp. 2696–2714. DOI: 10.1002/sec.
1262. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1262.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1262.

[24] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

64

https://www.golem.de/news/subdomain-takeover-microsoft-loses-control-over-windows-tiles-1904-140717.html
https://www.golem.de/news/subdomain-takeover-microsoft-loses-control-over-windows-tiles-1904-140717.html
https://www.golem.de/news/subdomain-takeover-microsoft-loses-control-over-windows-tiles-1904-140717.html
https://cds.cern.ch/record/1095693
https://portswigger.net/burp
https://censys.io/about
https://web.archive.org/web/20090207091418/http://www.informationweek.com/news/security/showArticle.jhtml?articleID=197003826
https://web.archive.org/web/20090207091418/http://www.informationweek.com/news/security/showArticle.jhtml?articleID=197003826
https://web.archive.org/web/20090207091418/http://www.informationweek.com/news/security/showArticle.jhtml?articleID=197003826
https://blog.detectify.com/2018/04/26/cors-misconfigurations-explained
https://blog.detectify.com/2018/04/26/cors-misconfigurations-explained
https://cwe.mitre.org/documents/vuln-trends/index.html
https://cwe.mitre.org/documents/vuln-trends/index.html
https://centralops.net/co/domaindossier.aspx
https://www.mozilla.org/en-US/firefox/74.0/releasenotes
https://www.mozilla.org/en-US/firefox/74.0/releasenotes
https://www.amazon.com/XSS-Attacks-Scripting-Exploits-Defense/dp/1597491543
https://www.amazon.com/XSS-Attacks-Scripting-Exploits-Defense/dp/1597491543
https://tillsongalloway.com/finding-sensitive-information-on-github/index.html
https://tillsongalloway.com/finding-sensitive-information-on-github/index.html
https://doi.org/10.1002/sec.1262
https://doi.org/10.1002/sec.1262
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1262
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1262
http://www.deeplearningbook.org

[25] Heartbleed Report - Shodan. [Online; accessed 20. Mar. 2020]. Mar. 2020.
URL: https://www.shodan.io/report/0Wew7Zq7.

[26] HostileSubBruteforcer. URL: https : / / github . com / nahamsec /
HostileSubBruteforcer. (visited on 19/05/2019).

[27] Darrel Ince. vulnerability scanning. 2019. URL: https : / / www .
oxfordreference .com/view/10.1093/acref/9780191884276.001 .0001/
acref-9780191884276-e-4402.

[28] P. Kim. sslScrape, URL: https://github.com/cheetz/sslScrape (visited on
13/05/2019).

[29] P. Kim. The Hacker Playbook 3: Practical Guide To Penetration Testing.
Kindle Edition: Secure Planet, 2018.

[30] Brian Krebs. The Scrap Value of a Hacked PC, Revisited. [Online;
accessed 3. Jun. 2020]. June 2020. URL: https://krebsonsecurity.com/
2012/10/the-scrap-value-of-a-hacked-pc-revisited.

[31] Brian Krebs. The Value of a Hacked Email Account. [Online; accessed 12.
Apr. 2020]. Apr. 2020. URL: https://krebsonsecurity.com/2013/06/the-
value-of-a-hacked-email-account.

[32] Brian Krebs. ‘War Dialing’ Tool Exposes Zoom’s Password Problems. [On-
line; accessed 2. Apr. 2020]. Apr. 2020. URL: https://krebsonsecurity.
com/2020/04/war - dialing - tool - exposes - zooms- password - problems/
#more-51159.

[33] Legal Issues - Nmap Network Scanning. [Online; accessed 27. Apr 2020].
Apr. 2020. URL: https://nmap.org/book/legal-issues.html.

[34] Kristina Libby. ‘How Safe Is Zoom?’ In: Popular Mechanics (Apr.
2020). URL: https://www.popularmechanics.com/technology/security/
a31982009/is-zoom-safe.

[35] J. Long. Google Hacking Database (GHDB) in 2004. 10th May 2004. URL:
https://web.archive.org/web/ (visited on 09/05/2019).

[36] Carolyn Duffy Marsan. How the iPhone is killing the ’Net - Network
World. [Online; accessed 5. Apr. 2020]. Apr. 2008. URL: https://web.
archive . org /web/20080414043829/http : / /www .networkworld . com/
news/2008/040908-zittrain.html.

[37] MassDNS 0.3. URL: https://github.com/blechschmidt/massdns (visited
on 19/05/2019).

[38] John Matherly. Trends in Internet Exposure. [Online; accessed 6. Apr.
2020]. Mar. 2020. URL: https : / / blog . shodan . io / trends - in - internet -
exposure.

[39] McAfee Governance, Risk and Compliance Business Unit. [Online; ac-
cessed 5. Apr. 2020]. Apr. 2008. URL: https://www.eweek.com/security/
mcafee-governance-risk-and-compliance-business-unit.

65

https://www.shodan.io/report/0Wew7Zq7
https://github.com/nahamsec/HostileSubBruteforcer.
https://github.com/nahamsec/HostileSubBruteforcer.
https://www.oxfordreference.com/view/10.1093/acref/9780191884276.001.0001/acref-9780191884276-e-4402
https://www.oxfordreference.com/view/10.1093/acref/9780191884276.001.0001/acref-9780191884276-e-4402
https://www.oxfordreference.com/view/10.1093/acref/9780191884276.001.0001/acref-9780191884276-e-4402
https://github.com/cheetz/sslScrape
https://krebsonsecurity.com/2012/10/the-scrap-value-of-a-hacked-pc-revisited
https://krebsonsecurity.com/2012/10/the-scrap-value-of-a-hacked-pc-revisited
https://krebsonsecurity.com/2013/06/the-value-of-a-hacked-email-account
https://krebsonsecurity.com/2013/06/the-value-of-a-hacked-email-account
https://krebsonsecurity.com/2020/04/war-dialing-tool-exposes-zooms-password-problems/#more-51159
https://krebsonsecurity.com/2020/04/war-dialing-tool-exposes-zooms-password-problems/#more-51159
https://krebsonsecurity.com/2020/04/war-dialing-tool-exposes-zooms-password-problems/#more-51159
https://nmap.org/book/legal-issues.html
https://www.popularmechanics.com/technology/security/a31982009/is-zoom-safe
https://www.popularmechanics.com/technology/security/a31982009/is-zoom-safe
https://web.archive.org/web/
https://web.archive.org/web/20080414043829/http://www.networkworld.com/news/2008/040908-zittrain.html
https://web.archive.org/web/20080414043829/http://www.networkworld.com/news/2008/040908-zittrain.html
https://web.archive.org/web/20080414043829/http://www.networkworld.com/news/2008/040908-zittrain.html
https://github.com/blechschmidt/massdns
https://blog.shodan.io/trends-in-internet-exposure
https://blog.shodan.io/trends-in-internet-exposure
https://www.eweek.com/security/mcafee-governance-risk-and-compliance-business-unit
https://www.eweek.com/security/mcafee-governance-risk-and-compliance-business-unit

[40] Michael Meli, Mattew R. McNiece and Bradley Reaves. ‘How
Bad Can It Git? Characterizing Secret Leakage in Public GitHub
Repositories – NDSS Symposium’. In: The Network and Distributed
System Security Symposium (NDSS) (Feb. 2019). URL: https : //www.
ndss- symposium.org/ndss- paper/how- bad- can- it - git - characterizing-
secret-leakage-in-public-github-repositories.

[41] Nessus 3 documentation. URL: http://www.nessus.org/documentation/
index.php?doc=nessus3 (visited on 22/04/2019).

[42] C. Nickerson et al. The penetration testing execution standard, URL: http:
//www.pentest-standard.org (visited on 16/03/2019).

[43] Nikto. Mar. 2020. URL: https ://tools .kali .org/ information- gathering/
nikto (visited on 18/03/2019).

[44] Nmap. [Online; accessed 10. Apr. 2020]. Mar. 2020. URL: https://nmap.
org.

[45] OWASP. Category: OWASP Top Ten Project. URL: https://www.owasp.
org / index . php / Category : OWASP_Top _ Ten _ Project (visited on
23/02/2019).

[46] OWASP. OWASP Top 10-2017: The Ten Most Critical Web Application
Security Risks. URL: https://www.owasp.org/images/7/72/OWASP_
Top_10-2017_%28en%29.pdf.pdf (visited on 23/02/2019).

[47] O.W.A.S.P. Testing: Spidering and googling, URL: https://www.owasp.
org/index.php/Testing (visited on 14/05/2019).

[48] OWASP Web Security Testing Guide v4.1. [Online; accessed 12. Apr.
2020]. Apr. 2020. URL: https://owasp.org/www-project-web-security-
testing-guide.

[49] O.W.A.S.P. Zed. Attack Proxy Project. URL: https://www.owasp.org/
index.php/OWASP%5C_Zed%5C_Attack%5C_Proxy%5C_Project.
(visited on 14/05/2019).

[50] Rob Preston. Down To Business: It’s Past Time To Elevate The Infosec
Conversation. [Online; accessed 5. Apr. 2020]. Apr. 2008. URL: https :
//web.archive.org/web/20080414031843/http://www.informationweek.
com/news/security/client/showArticle.jhtml?articleID=207100989.

[51] S. M. Z. U. Rashid, M. I. Kamrul and A. Islam. ‘Understanding the
Security Threats of Esoteric Subdomain Takeover and Prevention
Scheme’. In: 2019 International Conference on Electrical, Computer and
Communication Engineering (ECCE). 2019, pp. 1–4.

[52] J. Reavis. Trend to ponder: Passive vulnerability assessment, 2003. URL:
https ://searchsecurity. techtarget .com/tip/Trend- to- ponder- Passive-
vulnerability-assessment (visited on 21/02/2019).

[53] Redteamsecurity. AutoNessus, Github. URL: https : / / github . com /
redteamsecurity/AutoNessus. (visited on 09/05/2019).

[54] O. Reeves. Gobuster. URL: https://github.com/OJ/gobuster. (visited on
14/05/2019).

66

https://www.ndss-symposium.org/ndss-paper/how-bad-can-it-git-characterizing-secret-leakage-in-public-github-repositories
https://www.ndss-symposium.org/ndss-paper/how-bad-can-it-git-characterizing-secret-leakage-in-public-github-repositories
https://www.ndss-symposium.org/ndss-paper/how-bad-can-it-git-characterizing-secret-leakage-in-public-github-repositories
http://www.nessus.org/documentation/index.php?doc=nessus3
http://www.nessus.org/documentation/index.php?doc=nessus3
http://www.pentest-standard.org
http://www.pentest-standard.org
https://tools.kali.org/information-gathering/nikto
https://tools.kali.org/information-gathering/nikto
https://nmap.org
https://nmap.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Testing
https://www.owasp.org/index.php/Testing
https://owasp.org/www-project-web-security-testing-guide
https://owasp.org/www-project-web-security-testing-guide
https://www.owasp.org/index.php/OWASP%5C_Zed%5C_Attack%5C_Proxy%5C_Project.
https://www.owasp.org/index.php/OWASP%5C_Zed%5C_Attack%5C_Proxy%5C_Project.
https://web.archive.org/web/20080414031843/http://www.informationweek.com/news/security/client/showArticle.jhtml?articleID=207100989
https://web.archive.org/web/20080414031843/http://www.informationweek.com/news/security/client/showArticle.jhtml?articleID=207100989
https://web.archive.org/web/20080414031843/http://www.informationweek.com/news/security/client/showArticle.jhtml?articleID=207100989
https://searchsecurity.techtarget.com/tip/Trend-to-ponder-Passive-vulnerability-assessment
https://searchsecurity.techtarget.com/tip/Trend-to-ponder-Passive-vulnerability-assessment
https://github.com/redteamsecurity/AutoNessus.
https://github.com/redteamsecurity/AutoNessus.
https://github.com/OJ/gobuster.

[55] Paul Ritchie. ‘The security risks of AJAX/web 2.0 applications’. In:
Network Security 2007.3 (2007), pp. 4–8. ISSN: 1353-4858. DOI: https :
/ / doi . org / 10 . 1016 / S1353 - 4858(07) 70025 - 9. URL: http : / / www .
sciencedirect.com/science/article/pii/S1353485807700259.

[56] M. Rouse. Vulnerability scanner. July 2006. URL: https://searchsoftwarequality.
techtarget . com / definition / vulnerability - scanner (visited on
23/02/2019).

[57] D. Salmon. Github - S3Scanner, URL: https : / / github . com/ sa7mon/
S3Scanner. (visited on 13/05/2019).

[58] Offensive Security. DirBuster Package Description. URL: https://tools.
kali.org/web-applications/dirbuster (visited on 19/05/2019).

[59] SHODAN FAQ. URL: http://www.shodanhq.com/help/faq (visited on
15/05/2019).

[60] Adam Shostack. Threat Modeling: Designing for Security. Wiley, Feb.
2014. ISBN: 978-1-118-80999-0. URL: https://www.wiley.com/en- us/
Threat+Modeling%3A+Designing+for+Security-p-9781118809990.

[61] SophosLabs research team. Security Threat Report for 2020. [Online;
accessed 5. Apr. 2020]. Jan. 2020. URL: https://www.sophos.com/en-
us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020- threat-
report.pdf.

[62] Kevin Stankiewicz. ‘’The Hot Zone’ author warns the next pandemic
could ’balloon faster’ than the coronavirus’. In: CNBC (Apr. 2020).
URL: https://www.cnbc.com/2020/04/03/the-hot-zone-author-next-
pandemic-can-be-worse-than-the-coronavirus.html.

[63] Subdomain-bruteforcer (SubBrute). URL: https://github.com/TheRook/
subbrute (visited on 04/05/2019).

[64] Rohini Sulatycki and Eduardo B. Fernandez. ‘Two Threat Patterns
That Exploit “Security Misconfiguration” and “Sensitive Data Expos-
ure” Vulnerabilities’. In: Proceedings of the 20th European Conference on
Pattern Languages of Programs. EuroPLoP ’15. Kaufbeuren, Germany:
Association for Computing Machinery, 2015. ISBN: 9781450338479.
DOI: 10.1145/2855321.2855368. URL: https://doi.org/10.1145/2855321.
2855368.

[65] The European Union Agency for Network and Information Security
(ENISA). Glossary - ENISA. URL: https : / / www . enisa . europa . eu /
topics/ threat - risk - management/ risk -management/current - risk/ risk -
management-inventory/glossary (visited on 21/02/2019).

[66] The Old and New: Current Trends in Web-based Threats. [Online;
accessed 5. Apr. 2020]. June 2018. URL: https://unit42.paloaltonetworks.
com/unit42-the-old-and-new-current-trends-in-web-based-threats.

[67] the University of Oslo. Zoom: Videomøter og digital undervisning -
Universitetet i Oslo. [Online; accessed 6. Apr. 2020]. Apr. 2020. URL:
https://www.uio.no/tjenester/it/telefoni-sanntid/videokonf/zoom.

67

https://doi.org/https://doi.org/10.1016/S1353-4858(07)70025-9
https://doi.org/https://doi.org/10.1016/S1353-4858(07)70025-9
http://www.sciencedirect.com/science/article/pii/S1353485807700259
http://www.sciencedirect.com/science/article/pii/S1353485807700259
https://searchsoftwarequality.techtarget.com/definition/vulnerability-scanner
https://searchsoftwarequality.techtarget.com/definition/vulnerability-scanner
https://github.com/sa7mon/S3Scanner.
https://github.com/sa7mon/S3Scanner.
https://tools.kali.org/web-applications/dirbuster
https://tools.kali.org/web-applications/dirbuster
http://www.shodanhq.com/help/faq
https://www.wiley.com/en-us/Threat+Modeling%3A+Designing+for+Security-p-9781118809990
https://www.wiley.com/en-us/Threat+Modeling%3A+Designing+for+Security-p-9781118809990
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.cnbc.com/2020/04/03/the-hot-zone-author-next-pandemic-can-be-worse-than-the-coronavirus.html
https://www.cnbc.com/2020/04/03/the-hot-zone-author-next-pandemic-can-be-worse-than-the-coronavirus.html
https://github.com/TheRook/subbrute
https://github.com/TheRook/subbrute
https://doi.org/10.1145/2855321.2855368
https://doi.org/10.1145/2855321.2855368
https://doi.org/10.1145/2855321.2855368
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://unit42.paloaltonetworks.com/unit42-the-old-and-new-current-trends-in-web-based-threats
https://unit42.paloaltonetworks.com/unit42-the-old-and-new-current-trends-in-web-based-threats
https://www.uio.no/tjenester/it/telefoni-sanntid/videokonf/zoom

[68] The Web Application Security Consortium / Web Application Security Stat-
istics. URL: http ://projects .webappsec .org/w/page/13246989/Web-
Application-Security-Statistics/#APPENDIX2ADDITIONALVULNERABILITYCLASSIFICATION
(visited on 21/02/2019).

[69] tko-subs. URL: https://github.com/anshumanbh/tko- subs (visited on
19/05/2019).

[70] U.S.-C.E.R.T. DNS Amplification Attacks. 19th Oct. 2016. URL: https :
//www.us-cert.gov/ncas/alerts/TA13-088A (visited on 04/05/2019).

[71] John Viega and Gary McGraw. Building Secure Software: How to
Avoid Security Problems the Right Way (Addison-wesley Professional
Computing Series). Addison-Wesley Professional, Oct. 2001. ISBN: 978-
0321774958. URL: https://www.amazon.com/Building-Secure-Software-
Addison-wesley-Professional/dp/0321774957.

[72] Brandon Vigliarolo. ‘Who has banned Zoom? Google, NASA, and
more’. In: TechRepublic (Apr. 2020). URL: https ://www. techrepublic .
com/article/who-has-banned-zoom-google-nasa-and-more.

[73] Vulnerability Scan vs Vulnerability Assessment: What’s the Difference?
[Online; accessed 30. May 2020]. May 2018. URL: https : / / www .
hitachi- systems- security.com/blog/vulnerability- scan- vs- vulnerability-
assessment / #targetText = Pentesting % 3A % 20A % 20Vulnerability %
20Assessment%20with,you%20are%20trying%20to%20protect.

[74] Vulnerability Scanning. URL: https://www.techopedia.com/definition/
4160/vulnerability-scanning. (visited on 02/04/2019).

[75] What is Shodan? URL: https://help.shodan.io/the-basics/what-is-shodan
(visited on 13/05/2019).

[76] David Wind. ‘Alexa Top 1 Million Security - Hacking the Big Ones’.
In: Proceedings of IT-SECX 2018. Matthias Corvinus-Straße 15, 3100 St.
Pölten Austria, 2018. URL: https://slashcrypto.org/data/itsecx2018.pdf.

[77] xxdesmus. ‘Thai Database Leaks 8.3 Billion Internet Records’. In:
Rainbowtabl.es (May 2020). URL: https : / / rainbowtabl . es / 2020 / 05 /
25/thai-database-leaks-internet-records.

[78] ZMap. Internet-Wide Scan Data Repository. URL: https : / / scans . io/
(visited on 09/05/2019).

68

http://projects.webappsec.org/w/page/13246989/Web-Application-Security-Statistics/#APPENDIX2ADDITIONALVULNERABILITYCLASSIFICATION
http://projects.webappsec.org/w/page/13246989/Web-Application-Security-Statistics/#APPENDIX2ADDITIONALVULNERABILITYCLASSIFICATION
https://github.com/anshumanbh/tko-subs
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.techrepublic.com/article/who-has-banned-zoom-google-nasa-and-more
https://www.techrepublic.com/article/who-has-banned-zoom-google-nasa-and-more
https://www.hitachi-systems-security.com/blog/vulnerability-scan-vs-vulnerability-assessment/#targetText=Pentesting%3A%20A%20Vulnerability%20Assessment%20with,you%20are%20trying%20to%20protect
https://www.hitachi-systems-security.com/blog/vulnerability-scan-vs-vulnerability-assessment/#targetText=Pentesting%3A%20A%20Vulnerability%20Assessment%20with,you%20are%20trying%20to%20protect
https://www.hitachi-systems-security.com/blog/vulnerability-scan-vs-vulnerability-assessment/#targetText=Pentesting%3A%20A%20Vulnerability%20Assessment%20with,you%20are%20trying%20to%20protect
https://www.hitachi-systems-security.com/blog/vulnerability-scan-vs-vulnerability-assessment/#targetText=Pentesting%3A%20A%20Vulnerability%20Assessment%20with,you%20are%20trying%20to%20protect
https://www.techopedia.com/definition/4160/vulnerability-scanning.
https://www.techopedia.com/definition/4160/vulnerability-scanning.
https://help.shodan.io/the-basics/what-is-shodan
https://slashcrypto.org/data/itsecx2018.pdf
https://rainbowtabl.es/2020/05/25/thai-database-leaks-internet-records
https://rainbowtabl.es/2020/05/25/thai-database-leaks-internet-records
https://scans.io/

	Introduction
	Motivation
	Objectives
	Overview

	Background
	Definitions
	Vulnerability
	Vulnerability scanner
	Vulnerability scanning
	Active/passive scanning
	Intrusive vs non-intrusive scanning

	Related work
	Papers
	Conference presentations
	Blog posts and news sites

	Relevant concepts and material
	The basics of penetration testing
	OWASP TOP 10
	Non-intrusive vulnerability detection

	Methods for data collection and vulnerability discovery
	Port scannning
	Scanning for web application vulnerabilities
	Spidering
	Vulnerability assessment
	Scanners on the web
	Scan databases
	Using search engines
	Using cloud scanners

	Methods for subdomain discovery
	Subdomain takeover
	Publicly exposed information
	Collecting additional information
	Unprotected videoconferencing rooms

	The scanner
	Main focus
	Internet-wide non-intrusive vulnerability scanning
	Making the PoC vulnerability scanner

	Preparation
	Fetching a list of targets

	Design
	Implementation
	Build and usage
	Subdomain enumeration
	Subdomains vulnerable to takeover
	Open cloud storage solutions
	Scanning for vulnerable services
	Environment files
	Git directories
	Email
	Search for internet facing-services
	Using search engines to find exposed information

	Results
	Subdomains
	Files exposed in webroot
	Git directories hosted in webroot
	Amazon S3 buckets
	Emails
	Searching for hosts with Internet-facing services
	Searching for exposed information and vulnerable services with google dorks
	Vulnerable services

	Discussion
	Efficiency and evaluation of the scanner
	Mitigation
	Regulatory, WWW-wide technical and compliance solutions
	Precautions for organizations and companies
	Security experts
	Security for the end user

	Internet security in the future
	Automation-assisted attacks
	Cloud security
	Artificial intelligence (AI)

	Conclusion and future work
	Conclusion
	Vulnerabilities
	Methods
	The scanner

	Future work

	Appendices
	Acronyms

	Appendix
	Scanner source code
	The controller class
	Example of a scan task: Env file scan

	Exposed .env response example
	Amazon Alexa top sites API JSON

