
University of Oslo

Composing Software Product Lines with
Machine Learning Components

Sebastian Schartum Nomme & Jørgen Borgersen

Master Thesis in

Informatics: programming and system architecture - software

60 credits

Department of Informatics

The Faculty of Mathematics and Natural Sciences

Spring 2020

Abstract

Background. A software product line is a set of software-intensive systems that share a com-

mon, managed set of features satisfying the speci�c needs of a particular market segment. The

most considerable bene�t of using a software product line is the ability of large-scale reuse. Cur-

rently, machine learning models lack reproducibility and su�er from inconsistent deployment.

There is a disconnect in machine learning engineering and traditional software that can cause

issues when including machine learning models in a software product line.

Aim. The study aims to outline an approach to address the problem allowing stakeholders bet-

ter to weight their options in regards to how successfully include machine learning components

in their software product line.

Method. In the thesis, we developed a prototype and conducted interviews to gain insights

into the topic.

Results. Findings suggest that automatic product derivation with machine learning compo-

nents has a few drawbacks. Manual e�ort is, in most cases, necessary. By having taken into

account all the restrictions and constraints of software product line engineering and machine

learning engineering, a composition-based approach is a viable option to architect software prod-

uct lines.

Conclusion. Utilising a composition-based approach with a component-based system will en-

able to retain the many bene�ts of a software product line while including machine learning

components.

Keywords: software product lines, machine learning.

i

ii

Preface

First and foremost, we would like to thank everyone who has participated and contributed

to the work in our thesis. It would have been hard to complete the thesis without your help and

support. Thank you, Snapper Net Solutions for providing experience, employees, and hospitality

throughout this process.

We would like to give a massive thank you to our supervisor, Antonio Martini. Thank you

for your excellent supervision and guidance throughout a long and complicated period of work.

Thank you for always helping us on the right track and having faith in the work that we did.

Thank you for being critical and for always asking the right questions.

Finally, thank you for all the support from our friends and family. Through all these years of

study, you have shown patience and encouragement towards our work. This is highly appreci-

ated, and we could not have done this without you!

Sebastian Schartum Nomme & J�rgen Borgersen

University of Oslo, June 2020

iii

iv

Table of Contents
Table of Contents ix

List of Tables x

List of Figures xiii

List of Equations xiv

1 Introduction 1

1.1 Experience and background . 2

1.2 Personal motivation . 2

1.3 Snapper Net Solutions . 3

1.4 Target group . 3

1.5 Presentation of the thesis layout . 4

2 The case 6

2.1 Problem description . 6

2.2 Terms and concepts . 7

2.3 Research questions . 7

3 Background 11

3.1 Software product lines . 11

3.1.1 Motivation / Awareness of problem . 11

3.1.2 Fundamental approach . 13

3.1.3 Product de�nition strategy . 14

3.1.4 Variability management . 15

3.1.5 Process . 17

3.2 Machine learning . 22

3.2.1 The use of machine learning . 23

3.2.2 Methods of machine learning . 24

3.2.3 Possible approaches . 25

3.3 Recommender systems . 32

3.3.1 How do recommender systems work? . 33

3.3.2 Filtering methods . 33

v

3.3.3 Top-N recommenders . 36

3.3.4 Designing and evaluating recommender systems 38

3.3.5 Accuracy measures . 38

3.3.6 Evaluating recommender systems . 41

3.3.7 Economical considerations . 43

3.3.8 Motivation . 45

4 Research process 48

4.1 Conducting research . 48

4.1.1 Foundation for the right research process 48

4.2 Our process . 49

4.2.1 De�ne problem case . 50

4.2.2 Research theory . 50

4.2.3 Initial approach . 51

4.2.4 Implementation of second protoype . 51

4.2.5 Evaluation . 52

4.2.6 Reection and conclusion . 52

4.3 Design science research . 53

4.4 DSR framework . 54

4.5 DSR Guidelines . 56

4.5.1 Guideline 1: Design as an artefact . 56

4.5.2 Guideline 2: Problem relevance . 57

4.5.3 Guideline 3: Design evaluation . 57

4.5.4 Guideline 4: Research contributions . 60

4.5.5 Guideline 5: Research rigor . 60

4.5.6 Guideline 6: Design as a search . 61

4.5.7 Guideline 7: Communication of research 62

4.6 Methods for collecting data . 62

4.6.1 Case study . 63

4.6.2 Survey . 67

4.6.3 Methods for data analysis . 68

vi

5 Product foundation 73

5.1 Data access and gathering . 73

5.1.1 Explicit data . 73

5.1.2 Implicit data . 74

5.2 Company A data access . 76

5.3 Generating mock data . 77

5.4 Foundation . 78

5.4.1 Architecture . 78

5.5 Requirements elicitation in SPL . 80

6 Initial approach 84

6.1 First prototype architecture . 84

6.1.1 A tweak of K-Nearest Neighbours . 86

6.2 Distance metrics . 87

6.2.1 Euclidean distance . 88

6.2.2 Pearson correlation coe�cient . 90

6.2.3 Recommending items . 93

6.2.4 Evaluating other distance metrics . 95

6.3 Prototype with SPL implementation . 96

6.3.1 Architecture . 97

6.3.2 Generic code . 99

6.3.3 Layout of components and views . 101

6.4 Process from �rst prototype to SPL prototype 103

6.5 Estimates of implementing R2 . 104

6.6 Considerations for the future . 105

7 Implementation 108

7.1 Overall architecture . 109

7.1.1 Architecture of the recommender system 111

7.1.2 Architectural ow with recommender system 112

7.2 Implementation of a recommender system in a SPL 113

7.2.1 Pre-processing . 114

7.2.2 Model training . 119

7.2.3 Model serving . 126

vii

7.2.4 Testing, experimentation and evaluation 126

8 Results from evaluation 130

8.1 RQ1: How possible is it to create machine learning components that work for

multiple products in a software product line? . 130

8.2 RQ2: How reusable are machine learning components in a software product line? 132

8.3 RQ3: How feasible is it to create and consume reusable machine learning models

in a software product line? . 133

8.4 RQ4: How can you support a Software Product Line Evolution containing Ma-

chine Learning Components? . 135

8.5 RQ5: How does a software product line a�ect the quality of its recommender

systems? . 137

9 Lessons learned 142

9.1 Reactive and feature-oriented approach . 142

9.1.1 Composition-based approach . 143

9.1.2 Reactive approach . 144

9.1.3 Feature-orientation . 144

9.1.4 Software composition with mapping to SPL 145

9.2 Variability mechanisms . 148

9.2.1 Components and services . 148

9.2.2 Parameters . 151

9.3 Version-control systems in software product lines 152

9.4 Recommender Systems in SPL . 156

9.4.1 ML and SPL . 157

9.4.2 Phases of recommendation process . 157

9.4.3 Composing components in an SPL ML pipeline 160

9.4.4 SPL feature interaction . 161

9.5 Summary . 163

10 Discussion 167

10.1 Theoretical contributions . 167

10.2 Practical contributions . 171

10.3 Ethical Considerations . 172

viii

10.4 Threats validity . 172

10.5 Related work . 175

11 Conclusion 177

12 References 180

A Product requirements 193

A.1 Company A - product requirements . 193

A.2 Company B - product requirements . 197

B Interview templates 201

B.1 Architecture interview template . 201

B.2 Business and process interview template . 206

C Survey - Google Form 213

D Code extract from the prototype 218

D.1 Engine . 218

D.2 CSV Loader . 222

ix

List of Tables
1 Probability of each terminal node 27

2 Course completion on employees of Company A 29

3 Explanations of data labels from mock data in csv �le 78

4 Three parameters fortype variable 86

5 Similarity ranking among users on mock data. 93

6 Collected data from implementation of �rst prototype 103

7 Collected data from implementation of SPL prototype 104

8 Predicted data from implementation of R2 recommender system for Company B 105

9 Requirements for CSV loader 116

10 Description of the hyper parameters we use 125

11 Values for the hyper parameters we used 125

12 Main types of validity threats. Table taken from Feldt and Magazinius (2010), p.

376. 173

x

List of Figures
1 Economics of SPL engineering. Figure taken from van der Linden, Schmid and

Rommes (2007), p. 4. 12

2 Relation of Di�erent Types of Variability. Figure taken from van der Linden,

Schmid and Rommes (2007), p. 9. 17

3 Data dependencies in ML Systems. Figure taken from Sculley et al. (2015), p. 4. 22

4 Decision tree for Company A employees showing mock data 26

5 KNN where k = 3. Figure taken from Srivastava (2018). 30

6 Logistic regression algorithm. Figure taken from Gupta (2018). 31

7 Collaborative �ltering 34

8 User-item matrix 35

9 Content-based �ltering 36

10 Rating frequency distribution. Figure taken from Liao (2018). 45

11 Our research process throughout the thesis 50

12 Model:knowledge is generated and accumulated though action 53

13 Design Science Framework 55

14 Design Evaluation Methods. Figure taken from Hevner et al. (2004), p.86 59

15 Rigor cycle 61

16 BAPO model. Figure taken from Bosch (2017). 64

17 Color codes mapped to research questions 69

18 Example of how we analyse interviews 70

19 Example of pie chart from survey 71

xi

20 Explicit mock data 74

21 Implicit mock data 75

22 Excel view of the mock data generated in acsv �le 77

23 Three basic techniques for realising variability in an architecture. Figure taken

from van der Linden, Schmid and Rommes (2007), pp. 41. 79

24 Product requirements for Company A and Company B 81

25 Architecture of �rst prototype 85

26 Euclidean distance (JavaScript) example code 88

27 User-feedback diagram 89

28 Pearson correlation (JavaScript) code 91

29 Architecture of SPL components 98

30 EuclideanDistance components module constructor 99

31 PearsonCorrelation components module constructor 100

32 Generic recommender (RC component) modules constructor input 100

33 First part of SPL prototype 101

34 Second part of SPL prototype, recommending courses 102

35 The three axes of change in an ML application: data, model and code, and reasons

for them to change 108

36 Product A architecture 110

37 Process architecture 111

38 Sequence diagram of how the recommender system work 112

39 Recommender system pipeline 113

xii

40 ML pipeline for the recommender system 120

41 LogisticRegression class diagram 122

42 Diagram showing the degree people think recommender systems make them do

decisions more e�ectively 137

43 Diagram showing if people lose trust in recommender systems if bad recommenda-

tions are responded 138

44 Diagram showing the distribution of di�erent categories of services where people

generally like to receive recommendations from 139

45 Function composition diagram 146

46 Merging feature branches 153

47 Merging feature branches with custom modi�cations 153

48 Revision control. Figure taken from Apel et al. (2013). 154

49 ML consists of code and data. Figure taken from Breuel (2020). 157

50 ML Pipelines connect data and code to produce models and predictions. Figure

taken from Breuel (2020). 158

xiii

List of equations
1 Bayes Theorem 28

2 Bayes Theorem with n conditions 29

3 Cross entropy loss metric 40

4 Dice coe�cient 44

5 Euclidean distance between two points in a two dimensional space 88

6 Euclidean distance between two points in an dimensional space 89

7 Pearson correlation coe�cient formula 90

8 Gradient descent formula 123

9 Sigmoid equation 124

10 Accuracy formula 124

xiv

1 Introduction
"A software product line is a set of software-intensive systems that share a common, managed

set of features satisfying the speci�c needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way"(Northrop, 2010, p. 521). Soft-

ware product lines support large-scale reuse, in which, enable order-of-magnitude improvements

in time to market, cost, productivity, quality and other business drivers.

There is a fundamental di�erence between machine learning and traditional software: Machine

learning is not just code; it is code plus data. A machine learning model (the artefact deployed

to production), is created by applying an algorithm to a mass of training data, which will a�ect

the behaviour of the model in production (Breuel, 2020). The behaviour of the model also

depends on the input data received at prediction time, unknown in advance. This is an issue at

the root of the problem, causing a disconnect that has to be addressed before trying to deploy

an ML model in production successfully. A few issues related to the production and deployment

of machine learning models are:

� Lack of reproducibility

� Performance reduction

� Slow, brittle and inconsistent deployment

The lack of reproducibility is | framed in another context | an issue of reusability when creat-

ing machine learning components in a software product line. In this thesis, we will discuss how

to compose software product lines in with machine learning components. We are very interested

in the quality of reusability and explore the topic through the development of Recommender

Systems, which is a subclass of machine learning algorithms. Recommender systems �lters

and recommends content to users based on discovered patterns in prediction of their ratings or

preferences they have given in the past.

We want to add context to term components in machine learning componentsas components

in a component-based system may provide and require multiple services, whereby each service

is described by a service speci�cation. A component can provide a speci�c service must declare

to do so by implementing the interface speci�ed by the service speci�cation. An approach of

"programming against interfaces" enables low coupling and exible designs that are malleable

1

(Eichberg et al., 2010). Utilising a composition-based approach with a component-based system

allows us to retain the many bene�ts of a software product line while including machine learning

components.

In this thesis, we will discuss Software Product Lines Engineering, Machine Learning Engineering

and the composition of those two �elds.

In this chapter, we present the introduction to our master thesis. We start by presenting

ourselves, with the experience and background we have as software developers. Then we present

our personal motivation for choosing to conduct this thesis. Then we present the company that

we are cooperating with. Then we present the target group for the thesis. And �nally, we

present the entire layout of the thesis.

1.1 Experience and background

We are two students studying Informatics: Programming and System Architecture, with a

specialisation in Software at the University of Oslo. Both have a background in software devel-

opment, where we have conducted the majority of our courses on the topic of web development.

We have had other courses covering a broad diversity of areas within the �eld of informatics as

well, including topics such as databases, software architecture, cloud computing, and so forth.

The most relevant experience we have is by working for di�erent companies through internships

or part-time job. Learning from experienced developers, we have gained professional experience

in how real production-ready software is being developed and deployed for customers.

1.2 Personal motivation

During our studies, we have had multiple courses on software development and engineering but

merely heard about what software product lines are. Discovering and learning about this topic

has been a great motivation for choosing this area to research on.

We wanted to get an overarching and holistic understanding of how software products are being

developed and how this a�ects and allows for scaling of companies. We also wanted to combine

this with machine learning, because we saw this as an interesting topic to dive deeper into. This

motivated us because we have not seen any similar work being done on the same topics with

the same approach that we have chosen. We also wanted to learn more about di�erent machine

2

learning algorithms, as learning about machine learning is more accessible now and has a rapidly

growing community.

This is �rst and foremost, a theoretical thesis. However, we wanted to do a practical part where

we could conduct research through the development and implementation of some products in the

form of prototypes and proof of concepts. Since we have a background in software development,

we found the case to be very interesting and exciting to be part of our research process.

1.3 Snapper Net Solutions

Snapper is a small Oslo-based company delivering e-learning solutions to medium- and large-

sized companies with expertise on nano learning. Snapper provided us with the initial case, in

which we used to derive our topic of research and problem description. The company was founded

in the year 2000, but due to massive technical debt accumulated and though competition, it

has been hard to scale the company. After a very successful launch of an e-learning application

called Product A for the consumer goods store chain Company A, they wanted to sell the same

product to other customers. This was the birth of their new software product line which radically

changed their focus and company structure. Snapper, in that case, has been very interesting

to work with as could better understand the needs and di�culties of implementing a software

product line as we researched in our thesis.

1.4 Target group

When conducting a master thesis for a company, we see them as a major stakeholder, and that

they have a high interest in the results that we provide from the research. We rely on resources

and competence from them and see them as an important target group for our research.

The target group is mainly companies that range from small to medium size in the number

of employees, similar to the characteristics of Snapper. These companies should be working

with a client base with diversity among the customers. The companies should either provide a

software product line for the customers or have the possibilities and bene�ts of doing so. The

product line contains products with product-speci�c con�gurations and commonalities among

the products. It should be relevant and interests in using machine learning algorithms in the

product line, that are shared among several of the products.

3

1.5 Presentation of the thesis layout

Chapter 2 is a presentation of thecase in the thesis. Here we present the problem description

that we want to solve, some frequently used terms and concepts we use throughout the thesis,

and �nally, the research questions are presented.

Chapter 3 is a complete presentation of thebackground literature and material we use as a

foundation when solving our thesis.

Chapter 4 is a presentation of the research processthat we use as our methodology for con-

ducting the thesis. We present a framework that we use in our process, and �nally, we present

the chosen evaluation methods we will conduct.

Chapter 5 is a presentation of the product foundation that we base the development of the

prototypes on. Here we present the di�erent data sets that we work with and what limitations

they have, we also present di�erent approaches to designing the architecture, and �nally how

we handle the di�erent requirements from several companies.

Chapter 6 is a presentation of theinitial approach we had to solve the case. This was our �rst

experience in making a prototype for solving the problem description.

Chapter 7 is a presentation of the �nal implementation (prototype) we made as a solution to

the case. When we became more experienced with the concepts, we saw a better way to solve

the problem description and made a new prototype.

Chapter 8 is a presentation of theevaluation resultswe received after conducting the evaluation

methods based on the prototype we made. We did a case study and a survey, and present the

results in this chapter.

Chapter 9 is a presentation of ourlessons learnedafter researching the di�erent topics, devel-

oping two prototypes and conducting the evaluation methods.

Chapter 10 is adiscussionbased on the �ndings and the lessons learned. We argue the outcome

of the research questions and discuss the validity and limitations of our research.

Chapter 11 is a conclusion on the �ndings from the evaluation methods and the discussion

based on the research questions. We summarize our contributions and suggest the possibility of

future work.

4

5

2 The case
In this chapter, we start by presenting the problem description for the thesis. Then we present

some frequently used terms and concepts in the thesis. And �nally, we present the research

questions we want to research and �nd answers for.

2.1 Problem description

In recent years, learning environments have shown increasing importance, playing a fundamen-

tal role in teaching and training activities in both academic and business settings. A few of

the primary motivations for e-learning is the impact of technological advancements, such as

intelligent interfaces, contextual modelling applications, and progress in the �eld of wireless

communication | which altogether has provided numerous new and innovative perspectives for

technology users.

Snapper would like to deliver their e-learning system, both as a mobile application and as a web

application to a variety of clients. Each product is very similar but has a few unique features

adapted to each unique client. In recent times, Snapper has ventured into mobile learning

development as it introduces exibility to the learning process since the access, creation and

exchange to information occur naturally due to the omnipresence of mobile devices. Users can

decide, when, how and where they feel more comfortable to learn. Due to a large number of

mobile devices available in the market, the production of content for these devices becomes

strongly dependent on issues such as the manufacturer and operating system.

The introduction of component-based development and service-oriented development has at-

tracted the interest of the software community to the bene�ts and opportunities of code reuse.

The success of before-mentioned initiatives has spurred the reuse in several stages of the software

development process, including artefacts such as documents, and models, further increasing the

perspective of cost reduction and return on investment (ROI).

The evolution of those ideas has led to the concept of the software product line, which represents

a paradigm change in regard to traditional software development. Rather than developing

software "project-to-project", businesses should now concentrate their e�orts on creating and

maintaining core assets, which would be the foundation for the construction of speci�c products

for a given domain.

6

In the sense of this, a software product line could yield signi�cant bene�ts for Snapper in the

perspective of cost reduction and ROI. Snapper has shown interest in adding functionality to

recommend courses based on the individual preferences to each user. For a company with

5-8 employees and an extensive portfolio of customers to manage, using machine learning to

recommend courses for a particular client's product deemed too expensive. Snapper questioned

whether it would be possible to build a recommender system which could serve as a core asset

in a software product line for multiple customers.

Motivated by this scenario, in this thesis, we will examine the bene�ts of systematic reuse of an

SPL in the context of a recommender system. The goal is to promote overall quality, domain

comprehension, and reduction of time spent in the development and maintenance of building

software product lines with machine learning components.

2.2 Terms and concepts

SPL is an acronym for Software Product L ines. The concept of a software product line is used

to describe an approach where common components and services are used to satisfy speci�c

requirements of a market segment shared by multiple products developed by the same company.

ML is an acronym for M achine Learning. Machine learning provides systems or algorithms

that learn and improve automatically through experience based on data provided by users.

Recommender systems are a subclass of machine learning algorithms. It �lters and recom-

mends content to users based on discovered patterns in their ratings or preferences they have

given in the past.

These terms and concepts are further described in chapter 3, and are frequently used throughout

the thesis.

2.3 Research questions

The overarching topic of the thesis is whether machine learning and software product lines

work together. By this we mean that we want to implement machine learning components into

the generalised components of the software product line, so each instance of the product line

can use the machine learning components as any other component. By researching through

implementation, we want to create new knowledge about machine learning models and software

7

product line theory to clarify whether the case can be solved or not. We have investigated the

following research question with sub-questions in this thesis:

RQ1: How possible is it to create machine learning components that work for

multiple products in a software product line?

The �rst research question (RQ1) is the main question we are researching. We

investigate whether it is possible to accommodate machine learning components

into a software product line or not. A lot of articles have been published on similar topics

with machine learning and software reusability. For example: Di Stefano and Menzies (2002),

Morisio et al. (2002) and Camillieri et al. (2016). But they all focus on software reuse and

evolution within a speci�c system or product, which is a slightly di�erent approach than to have

a software product line with generalised components. Their approach is to reuse and evolve

some parts of the code, rather than entire components which we are researching. We use these

articles as support for our research, but will further research the theory of software product lines

rather than software reuse.

RQ2: How reusable are machine learning components in a software product line?

This sub-question (RQ2) focuses on reusability, which is a big part of our thesis.

The research we conduct is to understand to what degree this is possible. We are interested in

knowing how notable a percentage of the machine learning components code that is reusable

and can be used to create generalised components. Another aspect that we want to research is

what parts of the machine learning components that are reusable.

RQ3: How feasible is it to create and consume reusable machine learning models

in a software product line?

We have been researching the development (consummation, with the framework TensorFlow) to

build machine learning models to give users recommendations. TensorFlow is an architecture for

executing graphs of numerical data. TensorFlow �gures out how to distribute processing across

the various GPU cores of your computer, or across various machines on a network, and allows for

massive computing problems in a distributed manner (Cardoza, 2018). Our goal is to create a

prototype with a machine learning component that can be used for multiple products and devices

serviced through an interface and evaluate how to manage and evolve a software product line

containing these machine learning components.This sub-question (RQ3) focuses not only

8

on the possibilities of reusability but the costs of doing it. We want to see if it is

cost-bene�cial to reuse machine learning components.

RQ4: How can we support a software product line evolution containing machine

learning components?

Modern software systems tend to be long-living and, therefore, have to undergo continuous

evolution to cope with new, and initially unforeseen, user requirements and application contexts.

In practice, the necessary changes applied to design-, implementation-, and quality-assurance

artefacts are often performed in ad hoc | conducted in a manual manner | thus lacking proper

documentation, consistency checks among related artefacts, and systematic quality-assurance

strategies. These issues become even more challenging in case of variant-rich software systems

such as software product lines; even a small change may (erroneously) a�ect a large number of

similar product variants simultaneously. This sub-question (RQ4) is to research how to

develop and evolve machine learning components in an evolving software product

line.

RQ5: How does a software product line a�ect the quality of its recommender sys-

tem?

When multiple products share the same machine learning models, the quality of the predictions

it provides can be a�ected. We have been researching whether this is the case, and if this can be

an issue of having such components in a software product line. We also want to see how much it

a�ects the quality and if this is a problem for the end-users. This sub-question (RQ5) is to

research if shared machine learning components satisfy the end-users requirements

and needs.

9

10

3 Background
In this chapter, we research the di�erent topics relevant to our research, with the purpose of

giving background and fundamental understanding of what we research and use as a knowledge

base in our thesis.

First, we give a thorough background on software product lines and di�erent topics within this

area. Then we present the main concepts of machine learning theory, to then go deeper into

di�erent machine learning approaches and algorithms. And �nally, we present the concept of

recommender systems.

3.1 Software product lines

Software increasingly becomes an important asset for modern, competitive products. Simple or

complex, small or large, there is barely any product without software. Software product lines

(SPL) have gained attention in recent years due to its quality, cost and time to market concerns.

Companies prize software reuse to capture more value from their investments.

3.1.1 Motivation / Awareness of problem

To embark on a software product line approach is down to di�erent reasons { ranging from

process oriented-aspects as cost and time to end-user aspects as interface consistency. The

move towards software product lines is usually based on economic considerations: the approach

supports large scale reuse during development. As opposed to traditional reuse approaches, this

can be as much as 90% of the total software. Reuse are more cost-e�ective than development

by orders of magnitude. Cost and time to market are heavily correlated in software product line

engineering.

11

Figure 1: Economics of SPL engineering. Figure taken from van der Linden, Schmid and
Rommes (2007), p. 4.

Thus, both development costs and time to market can be dramatically reduced by a software

product line approach. Other bene�ts include the improvement of qualities in the resulting prod-

uct as the reliability, ease of use, and decrease in product risk (Ferguson, 2018). Unfortunately,

these bene�ts does not come for free but requires some extra initial investment | needed for

building reusable assets, transforming the organisation, etc. Various approaches exist to make

this investment, such as incremental strategies or the big bang adoption (instant changeover).

Regardless, the need for underlying set-up remains. Break-even happens after about three prod-

ucts (as shown in �gure 1), along with a reduction in maintenance costs, i.e. the overall amount

of code and documentation that needs to be maintained is reduced along with project size and

risk.

Software product line engineering has a strong impact on the quality of the resulting software.

New applications will then consist of a large extent of matured and proven components, which

leads to more reliable and secure systems because the defect density can be presumed to be

lower than products that are developed anew. Process qualities such as quality assurance are

12

supported in software product line engineering by regarding a product and its simulation as two

variants. When both variants are derived from the same code; simulations can be used as a

foundation for analysing the quality of the end product. Thus, enabling extensive testing that

would not be possible otherwise. While arguments of costs typically dominate the product line

engineering debate, the ability to produce higher quality is for many organisations (especially in

safety-critical domains) the primary reason to expend major e�orts into software product line

engineering.

Beyond process qualities, software product line engineering impacts product aspects like the

usability of the �nal product by among things improving the consistency of the user interface.

This can be achieved by using the same building blocks for implementing the same kind of user

interaction | usually as a part of a design system. It is taking advantage of having a single

component for user registration or product rating for a whole set of products instead of having

a speci�c one for each product. In some cases, demand for this kind of uni�cation has been the

basis for the introduction of a product line approach in the �rst case.

3.1.2 Fundamental approach

Software product lines require a shift of focus: from the individual system to the product line

| implying a change in strategy from the ad-hoc next-contract vision to a strategic view of a

�eld of business.

Software product lines rely on a fundamental distinction of development for reuseand develop-

ment with reuse.

Domain engineering (development for reuse) provides a basis for the actual development of

individual products. Product line infrastructure encompasses all assets that are relevant through

the software development life-cycle instead of a narrow view on code assets common in traditional

approaches. Thus, the pooling of all assets is de�ning for the product line infrastructure. A key

distinction of software product line engineering from other reuse approaches that the various

assets themselves contain explicit variability. For example, a representation of the requirements

may include an explicit description of speci�c requirements that apply only for a certain subset

of products. Individual assets in the product line infrastructure are linked together, just like

assets in software development.

Application Engineering (development with reuse) builds the �nal products on top of the product

13

line infrastructure. Application engineering is animated by the product line infrastructure, which

contains most of the functionality required for a new product. Variability explicitly modelled

and added in the product line infrastructure provides a foundation to derive individual products.

In other words, when a new product is developed, an accompanying project is set-up. Then

requirements are gathered and categorised as a part of the product line (i.e. a commonality or

variability) or product-speci�c. After that, the various assets (e.g. architecture, implementation,

etc.) may be instantiated right away, leading to an initial product version. Depending on the

product line, the majority of the product should be available from reuse; only a small portion

must be developed in further steps.

The developed product platform determines the capability of the company to perform business

in the market; consequently, there are considerable ties with how an organisation does business

and its overall market.

There exist a few characteristics relevant to the discussion about product lines. We can categorise

them into:

� Product de�nition strategy

� Market strategy

� Product line life-cycle

� The relation of product line strategy and product line engineering

3.1.3 Product de�nition strategy

Product de�nition strategy illustrates how new products are de�ned. There are two main

divisions within the product de�nition strategy: customer-driven and producer-driven. In a

customer-driven situation, the speci�c product is mapped and determined based on demands

from existing and future customers. The end product is individualised til each customer's desires

| mass customisation | which proposes that there exist many di�erent customer needs and

the requirements for each product is hard to de�ne in advance. The product line platform must

support exible extensibility in the further development of products.

On the other hand, in a producer-driven strategy, the producer is responsible for the design and

development of the product line that de�nes the product(s). This approach is common when the

14

product is developed for mass-markets; when each variant is sold to a large number of di�erent

customers.

The producer-driven strategy can be further divided into market-oriented and technology-

oriented strategies. In a market-oriented strategy, the products in the product line portfolio

are accepted based on an analysis of potential market segments. New products are de�ned

mainly to satisfy new market segments or changes in established segments. As opposed to,

a technology-oriented strategy where the growth opportunity is inuenced by the technologi-

cal capabilities and opportunities developed by the company, delivered to the market. Product

de�nition strategy has importance when deciding the product portfolio; o�ered by the company.

In practice, the product de�nition strategy is usually a mixture of the examples above. Product

line engineering can support all of these approaches, but its relative advantage varies til relation

to the strategy used.

Some essential questions to answer are:

� Should a product line be started at all?

� Which product shall we develop as a part of a product line?

� What shall be the characteristics or features of these products?

� Which functionality shall be developed as individual functionality?

� What functionality shall be developed as apart of the product line, based on the platform?

� How shall we evolve the product line over time?

In this thesis, we used the product de�nition strategy in the development process of the proto-

types made, by considering the questions as mentioned above, while developing and planning

functionalities for the prototypes.

3.1.4 Variability management

Software product line engineering aims to support a range of products; supporting individual

and di�erent customers or address entirely di�erent market segments. Variability is a key

concept in this regard. Instead of understanding each system by itself | software product

15

line engineering looks at the product line as a whole and the variation among the individual

systems. This variability must be managed throughout the process. Variability management

covers the entire life-cycle and starts with the early steps of scoping, including implementation

and testing, eventually going into evolution. As aforementioned, variability is relevant to all

assets throughout software development.

Types of variability

1. Commonality: a characteristic (functional or non-functional) can be common to all prod-

ucts in the product line. The commonality is implemented as a part of the platform.

2. Variability : a characteristic that is common to some of the products, but not all. Variabil-

ity must be explicitly modelled as a possible variability and implemented in a way that

allows having it in selected products.

3. Product-speci�c : a characteristic may be part of only one product | at least for the

foreseeable future. These types of specialities are not required by the market per se but

are due to concerns of individual customers. While these variabilities will not be included

in the platform, the platform has to be able to support them.

A speci�c variability may change in type during the life-cycle of the product line. Product-

speci�c characteristics may become a variability or even a commonality | should a decision be

made about supporting an alternative characteristic. Thus, extending the platform beyond the

initial scope of the product line.

16

Figure 2: Relation of Di�erent Types of Variability. Figure taken from van der Linden, Schmid
and Rommes (2007), p. 9.

Commonalities and variabilities are handled regularly in domain engineering, and product-

speci�c parts are exclusively handled in application engineering.

The di�erent concepts and types of variability management are used in our thesis to map out the

functionalities (or features) for the various products that each company requests. We address

these requests in our study and implementation of prototype components for the SPL.

3.1.5 Process

The product line infrastructure is not a goal in itself. Its ultimate goal is its utilisation during

application engineering | also called the instantiation of the variability.

When new requirements are de�ned during application engineering, the future of each require-

ment in the life-cycle must be considered: should it be a part of the platform or as a part of the

product development?

In the simplest case | when the product line infrastructure supports the requirement | it is a

question of binding of time. A variant can be seen as a binding of time (compile-time, start-up

time, etc.).

Though when the product line infrastructure does not support the requirement, there are three

options: Either try to renegotiate or cancel the requirement. In the context of a product line

17

| every supported variability increase the complexity of evolving the product line further.

Integrate the new requirement with the product line infrastructure. This can usually be done

with a systematic scoping process. Integrate the new requirement on an application-speci�c

basis.

Both the second and third case usually occurs during the same system development. The

second case leads to a hand-over to domain engineering and while the third case leads to aper

se development cycle in the application engineering.

Business-centric

Product line engineering addresses the market as a whole, whereas traditional software tends

to focus on the individual system. For product line engineering to remain successful in the long

term; the product line infrastructure has to be an adequate tool to �eld new products onto

the market e�ciently. A holistic relationship between the development choices of an individual

product and the product line has to be managed from an economic standpoint.

Because of the relationship between the individual product and the product line | larger busi-

ness objectives must be well understood. Previously the goals have been addressed as time-

to-market reduction, e�ort (and cost) reduction, usability and reliability improvement. The

intent of usability improvement inherently supports user interface consistency. Thus, these

goals provide a basis for a product line engineering e�ort. Moreover, the choice of whether it

is implemented in full or on a per se application-speci�c basis. Either way, taking a business-

centric approach to product line engineering means that key choices about the inclusion and

realisation are based on a systematic �nancial decision. Thus, the break-even of three product

implementations is a rule of thumb in deciding the costs of adding functionality as a part of do-

main engineering. A scoping analysis is a common tactic to inform about the di�erent available

options:

� Product portfolio planning

� Domain potential analysis

� Asset scoping

Product portfolio planning is used to capture the products that will be a part of the product

line and to identify their main requirements | based on the commonalities and variabilities

18

required. Product portfolio planning is the �rst step at which optimisation can (and should)

occur. Though this activity is business-centric | because of product costs | technical aspects

must be taken into account as well.

Domain potential analysis has a strong focus on an area of functionality to determine whether an

investment into a software product line should be made. This is usually done with a top-down

approach with a holistic view of the product line; some strategies focus on the individual areas

of the product line. The overall result of this activity corresponds to an assessment grounding

in the question about where reuse investments should be focused.

Asset scoping aim to de�ne the individual components that must be built for reuse. Two

viewpoints (business and architectural) must be brought together to identify these components

adequately.

During the life-cycle of a product line, a team is usually responsible for managing the initial

set-up and evolution of the product line.

Architecture-centric

A common product line architecture (also called reference architecture) is crucial to the success

of the product line engineering approach compared to other reuse approaches. The reference

architecture is designed in domain engineering to provide a coherent overview of the various

components that shall be used. Having a single environment for all components used in the

individual products ensures that there is no need to develop multiple components that address

similar functionality and di�er only concerning their environment. The reference architecture

is used in each application engineering cycle to derive a new product instantiation; both, for

assignment of work in the development process and for determining the modi�cation of assets

to support product-speci�c requirements. In a few exceptional cases, product lines have been

set up without signi�cant investments in software architecture. Though it is safe to say that a

robust product line architecture assumes the overall success.

Two-life-cycle approach

Software product line engineering consists of domain engineering and application engineering.

In the ideal case | these two types of engineering are only loosely coupled and synchronised

by software releases. This is a key characteristic of a product line as it allows for them to be

conducted based on di�erent life-cycle models.

19

Domain engineering focuses on the development of reusable assets that can provide a necessary

range of variability. The underlying software development approach depends on being able to

handle long-term, very complex system development. Domain engineering activities include:

� Product management

� Domain requirements

� Domain design

� Domain realisation

� Domain testing

Product managementaims to identify the commonalities and variances among the products |

de�ning the products that will constitute the product line. Furthermore, it encompasses the

product portfolio planning and the economic analysis of the products in the product line. The

output of product management is usually a product roadmap.

Domain requirements engineering begins with the product roadmap. It has an end goal of

outputting a comprehensive list of requirements for the various products in the product line

with an initial variability model.

Domain design is an activity for developing the reference architecture. It provides the basis for

all future instantiations of the product line.

Domain realisation encompasses the detailed design and implementation of reusable software

components | planned variability, which has been expressed as a requirement, must be realised

with adequate implementation mechanisms.

Domain testing is used to validate the generic reusable components that were implemented as a

result of the domain realisation. This is especially hard because the implemented variability must

be taken into account, and there is no speci�c product which provides an integration context.

Though everything is not wrong, the activity of domain testing o�ers a lot of groundwork for

application testing by generating reusable test assets that can be used in application testing.

As a result, domain engineering provides a common product line infrastructure with all the

required variability.

20

On the other hand, application engineering consists of the following activities:

� Application requirements engineering

� Application design

� Application realisation

� Application testing

As opposed to single system approaches | groundwork has been completed during the domain

engineering phase | staying consistent with the reference architecture enables plug-and-play

reuse.

Application requirements engineeringis used to identify the requirements for an individual prod-

uct to stay as close as possible to the existing product line infrastructure.

Application design is the activity that derives an instance of the reference architecture and

adapts it to the requirements from the requirements speci�cation. During this design phase; the

product-speci�c adaptations are built.

Application realisation is the �nal implementation of the product that is developed | including

con�guration and reuse of existing components as well as building new components correspond-

ing to the product-speci�c functionality.

Application testing is the last step, and it is when the product is validated against the application

requirements. There is a lot of readily available reusable assets from the corresponding domain

engineering activity.

While the integration of domain engineering and application engineering largely situate on the

context: it is essential to separate these activities as they are carried out with di�erent objectives

and criteria of quality in mind. This is especially true when both life-cycles are enacted by the

same people, which is often the case in small businesses. The aspect of the process and the

two-cycle approach is relevant to discuss because it has to be addressed throughout the entire

production of the software product line and is a crucial aspect to consider when deciding on

what kind of SPL architecture to use.

21

3.2 Machine learning

Demands for machine learning (ML) capabilities in software products are increasing. Businesses

seek to combine advanced analytics in predicting system outcomes without being explicitly

programmed | with the prime purpose to allow computers to learn without human interference

and adjust accordingly.

Machine learning capabilities can be used to improve decision-making and support critical busi-

ness strategies. Machine learning components have to be continuously measured and monitored,

in order to understand their behaviour. Changes in the product or external user conditions can

have cascading consequences on the machine learning models, and the models will become less

accurate and robust, that can result in issues that are hard to correct. Gartner predicts that 60%

of big data projects "will fail to go beyond piloting and experimentation, and will be abandoned"

(Goasdu�, 2015). Therefore, the entry barrier can be very high from a perspective of product

development because of the di�culty in building and maintaining machine learning products.

Thus, machine learning is hard to put into production. Software products are divided into

components or layers that communicate with each other. The machine learning component of

the product is often integrated through an API. Challenges occur when yet a simple machine

learning component bring too many auxiliary components along with it, in order to function.

Sculley et al. state that only a small fraction of real-world ML systems are composed of the

machine learning code (Sculley et al., 2015), which �gure 3 illustrates.

Figure 3: Data dependencies in ML Systems. Figure taken from Sculley et al. (2015), p. 4.

Surrounding but the necessary infrastructure is vast and complex. Machine learning products

require spending signi�cant e�ort to make additional dependencies work. Given the complexity

22

of machine learning products, the development strategy can be more important than acquiring

the right tools.

3.2.1 The use of machine learning

Machine learning is a technique of data analysis that automates analytical model building. It

is a branch of arti�cial intelligence based on the idea that machines should be able to learn and

modify through experience. The process of learning begins with observations or data to look

for patterns in the data and make better decisions based on the data we provide.

Two operational phases characterise machine learning models; thetraining (or learning) phase

and the testing (or prediction) phase. In the training phase, a model is trained by explicitly

feeding it data that has the correct answer attached (historical data). This training data is used

to �nd patterns in the data and connect them to the right answer. Once trained this way, a

model can be supplied with new data (typically unseen at training time) to generate run-time

predictions (i.e. to compute the learned map on new data). These two phases are not always

disjoint: incremental learning approaches exist that allow adapting the parameters of an ML

model continuously and thus, predictions respond to new input data.

Data used in these phases can be divided into three portions:training data, cross-validation (or

dev) data and testing data (Bajo, 2020). The training data is used to let the model recognise

patterns in the data (adjust the parameters of the model), to reduce bias and the predictions

(i.e. to �t the data). The cross-validation data is used to ensure better accuracy and e�ciency

of the algorithm used to train the model. The validation data is not seen by the model during

training and has the aim to reduce variance (i.e. eliminate over-�t). Lastly, the test data is used

to provide an unbiased evaluation of the �nal model. Nor this data is seen by the model during

training. Furthermore, test and cross-validation data should come from the same distribution,

to reduce data mismatch (Assawiel, 2018).

The �nal quality of the machine learning model predictions is inuenced by the quality of the

training data and the adequacy of the learning model for the speci�c computational learning

task.

23

3.2.2 Methods of machine learning

There are various ways an algorithm can model a problem based on its interaction with the

experience or the environment. Machine learning has a broad research �eld encompassing several

paradigms, e.g. neural-inspired, probabilistic, kernel-based approaches and addressing an array

of computational learning task types (Heller, 2019). For the purpose of this thesis, we will focus

on machine learning models and algorithms targeted at solvingsupervised and unsupervised

learning tasks, and merely touch uponsemi-supervised learning.

Machine learning algorithms and models require the use of libraries because it relies so heavily

on mathematics. These libraries are functions and routines that make it easier to do complex

tasks, without having to write multiple lines of code. We use a library called TensorFlow.js.

How we use it and why we chose this library over other is further explained in chapter 7.

Supervised learning

Supervised learning refers to a speci�c class of machine learning problems related to the learning

of an unknown map between input information and output prediction (Bacciu et al., 2015, p.

75). After adequate training, the system will be able to provide targets for any new input.

Also, it can compare its output with the correct intended output and �nd errors to modify and

customise the model accordingly. Common supervised learning techniques include regression

and classi�cation. In a regression model, the value of the labels belongs to a continuous set

(boundary values). On the other hand, in a classi�cation model, the value of labels belong to a

discrete set and can have as many categories as reasonable.

The input data is called or de�ned as the training data. All data �elds are assigned (labelled)

with a category. Both the categories and the assigned category to a data �eld are selected by

people, and the data can, therefore, be biased, meaning external factors a�ect the model. After

the data has been labelled manually, the model is prepared through a training process where it

predicts categories for the data �elds. In this process, the model has to predict labels, and are

corrected when the predicted labels are wrong. This training process continues until the model

has achieved an expected level of accuracy, where a certain amount of the predictions done by

the model are correct (Brownlee, 2020).

Unsupervised learning

Unsupervised learning is used when the information used to learn is neither classi�ed nor la-

belled. Instead of responding to feedback, unsupervised learning identi�es commonalities in the

24

data and responds based on the presence or absence of such commonalities in each new piece

of data (Soni, 2020). In other words, unsupervised learning can be used for discovering the un-

derlying structure of the data. Some applications of unsupervised machine learning techniques

include clustering, anomaly detection, association mining and latent variable models.

The input data or any data are labelled and have, therefore, no known results. A model is

prepared by deducing structures that occur in the input data, and out of this may some general

rules be extracted (Brownlee, 2020). For example, the data may be organized by similarity

rules.

Semi-supervised learning

Semi-unsupervised learning is an approach where the some of the input data is labeled, and

some data is not. This is an approach where the model has to learn how to label the unlabeled

data based on the labeled data. For some cases it might increase the accuracy, or even save a lot

of time and cost for the model to �rst learn from the labeled, and then to predict the unlabeled

data �elds (Gupta, 2019). It is a combination of supervised and unsupervised learning that we

choose not to focus on, because we �nd it less relevant to our thesis.

3.2.3 Possible approaches

We have been researching di�erent machine learning algorithms that can solve our problem. In

the following section, we will describe the most relevant algorithms we found, and how applicable

and feasible they are to solving our problem.

Some of these approaches use di�erent distance metrics to calculate distances between a set of

coordinates or data points. How these distance metrics work and how they are implemented

are further described in chapter 6.2. We describe the ones we used, and some other metrics we

considered using but found less applicable.

Decision trees

Decision trees are a supervised learning algorithm that is most commonly used for classi�cation

problems (Ray, 2017). The goal of the algorithm is that the training model can predict a class

or variables by learning decision rules from the training data (Chauhan, 2019). The algorithm

starts in the root node and then traverse down the tree. Values from the input data are compared

with attributes that are stored in the nodes (called \decision nodes") that make forks in the

tree structure. These forks divide the data into sub-nodes based on attributes. The branch that

25

matches the values from the input data is then continued on. We continue traversing through

these forks in the tree until a \terminal node" is reached, a decision for the input is then made

or predicted (Brownlee, 2020).

Figure 4: Decision tree for Company A employees showing mock data

To clarify this description, we have made an example; an employee from Company A is consid-

ering whether to take a training course or not. A simple case of yes/no output that the decision

tree can try to predict the outcome of. There are 220 di�erent courses to take (described in

chapter 5.2), with varying numbers of completion degree. Figure 4 illustrated a decision tree,

and if we study the root node it says \Yes: 9653", meaning that 9653 employees have ful�lled

all the courses that is expected of them to complete. It also says \No: 11 852" which means 11

852 employees that have not ful�lled all their courses or none.

If we traverse down the decision tree, illustrated in �gure 4, we make decisions based on attributes

26

Terminal node: Probability
Ordering courses: Yes 0.09
Ordering courses: No 0.53
Course a: No 0.76
Safety A: Yes 0.24
Sales courses: Yes 0.56
Sales courses: No 0.22
Introduction courses: Yes 0.26
Introduction courses: Yes 0.04
Course C: Yes 0.25
Course C: No 0.04
Basic courses: Yes 0.67
Average probability: 0.33

Table 1: Probability of each terminal node

from the input data from the employee. Let's say he is a fresh employee, that has not completed

the basic courses. He has completed the Course R courses as well as the introduction courses.

From �gure 4, we end up at the terminal node that has \Yes" with 282 occurrences of completion

of their courses, and 804 with \No" that just have completed some of their courses. This gives

a probability of 0.26 (282
(804+282)) that he has completed all of his required courses.

From this example, we end up with a fairly low probability that the employee has taken all the

required courses, and it is, therefore, likely that he will take another course. If we study the

probability of all the terminal nodes, we can see that it varies a lot, this is shown in table 1. The

average probability of all of these nodes is 0.33, which is also fairly low. Of all the employees, 45%

of them have completed all their requirements of courses that are both expected and mandatory.

Considering the average of all terminal nodes being 0.33 and not corresponding with 45%, there

are other factors that a�ect this number. For example, the sub-nodes are divided into categories

and other attributes that make some of them overlap for several courses, as well as the data, is

not too precise when presented in this format.

Considering the results this small example shows, we found that decision trees only solve some

parts of the problem. Finding out whether an employee needs a course or not, is not our intended

scope. However, we could have used �ndings when traversing the decision tree. When the results

show that it is a high probability that the employee needs a course, we can see whether he has

completed courses in for example the sales category, and �nd out other categories where he

lacks skills or competence. The reason we did not choose this solution is that the decision tree

requires that the course data is stored with attributes. These need to specify the skill level, what

27

categories it is in, if it is mandatory, if it has any courses that are required as pre knowledge

and etc. Considering the need for such data quality, it is too time- and resource-consuming to

be able to complete, as well as the decision tree becoming too complex.

Naive Bayes

The next algorithm we researched was the Naive Bayes algorithm. This algorithm is part of

the Bayesian algorithms, meaning these algorithms apply Bayes' Theorem (shown in equation

1), solving classi�cation and regression problems (Brownlee, 2020). The theorem calculates the

probability of A happening, given that B has occurred (P(A jB). A becomes the hypothesis that

may occur, and B is the evidence. It also uses the probability of B happening given that A

has occurred or happened (P(BjA), and the independent probabilities of A (P(A) and B (P(B).

Naive Bayes is very useful for large data sets (Ray, 2017).

P(AjB) =
P(B jA)P(A)

P(B)
(1)

Bayes Theorem

For example, let's evaluate whether an employee of Company A has completed all his required

courses. Shown in table 2 (displaying mock data), we want to �nd out if he \has completed

all his required courses", this becomes A. The other columns are whether an employee has

completed the courses in that category or not and their experience. It is important to assume

that the variable is independent and have an equal impact on the outcome (Gandhi, 2018). This

means that if for example, an employee is\skilled" it does not imply that he has taken all his

required courses, and if an employee is\fresh" it does not imply that he has completed all the

basic courses.

28

ID Experience Basic course Sales course Ordering course Required course

0 Skilled Yes Yes No No

1 Fresh Yes No No No

2 Fresh Yes Yes No No

3 Fresh Yes Yes No Yes

4 Medium Yes No Yes Yes

5 Medium Yes Yes No No

6 Skilled Yes Yes Yes Yes

7 Medium Yes Yes No Yes

8 Fresh No Yes No No

9 Medium Yes Yes No Yes

10 Medium Yes No Yes Yes

Table 2: Course completion on employees of Company A

We are �rst going to just use the condition that the employee is a \Medium" experience worker,

this becomes the B. The probability that the employee has taken all the required courses be-

comes: P(YesjMedium). Reading the table 2, there are in total 11 employees, so counting all the

yes from the \Required courses" column, gives that P(Yes) is 6
11 . Counting the \Experience"

column gives P(Medium) being 5
11 . The number of \yes" when the condition is that the em-

ployee has\Medium" skill is 4
6 ; this becomes P(MediumjYes). Following the equation 1, gives

us the following calculation: P(YesjMedium) = P (Medium jyes) � P (Y es)
P (Medium) . Substituting the proba-

bilities we found gives: P(YesjMedium) = 0:67� 0:55
0:45 = 0.82. So if an employee has\Medium"

experience, there is a probability of 0.82 that he has completed all his required courses.

P(AjB1; :::; Bn) =
P(B1jA)P(B2jA):::P(BN jA)P(A)

P(B1)P(B2):::P(Bn)
(2)

Bayes Theorem with n conditions

In order for us to use Naive Bayes algorithm, it requires that the data about the employees are

stored and structured with labels or attributes that de�ne whether they have completed some

courses, what stages they are in, if they are experienced, etc. This is the same problem as we

had with decision trees; the algorithm requires a certain data quality. We have to manually

create these attributes, and it is too demanding and time-consuming. The courses also have to

29

be categorized with attributes, the same as the employees, and this is challenging as well. Based

on these factors, we did not choose the Naive Bayes algorithm.

K-Nearest Neighbors

The last algorithm we researched was the algorithm called k-nearest neighbours (hereby referred

to as KNN). KNN is an instance-based learning algorithm meaning that it compares new in-

stances of data to the training data that is already stored in some database; it can also be called

memory-based learning (Brownlee, 2020). Instance-based learning algorithms use this database

to search for similar data to compare it to the new data, calculated by a similarity measure.

This will �nd the best match, and it can make a prediction for a classi�cation problem.

KNN can be used for regression problems but is most commonly used for classi�cation problems,

which is relevant for our research (Ray, 2017). All data and new data instances are assigned

values that map it in a graph. To categorize a new data instance, it uses the labels of the

k nearest neighbours. The distance used to �nd the closest neighbours are calculated using a

distance metric such as Euclidean (Srivastava, 2018), which is described in chapter 6.2.1. Figure

5 illustrates k being 3, where 2 out of the 3 closest neighbours have the same labels. This gives

a probability of the new label to be 0.67 (23).

Figure 5: KNN where k = 3. Figure taken from Srivastava (2018).

KNN requires a database stored with labelled data to work. This is something we do not have

30

but can acquire if we manually label all the data �elds of courses. However, this will take a lot

of time to do, and will also require us to be in charge of choosing the di�erent categories for

each course, potentially making the data biased. KNN can to some degree solve our problem or

parts of it, where it predicts the category the courses would be in. This can be an issue, but it

is not the �nal solution we need and want to use. Because of this, we did not choose to use the

KNN algorithm to label the courses with categories, �nding the "best match" category.

However, KNN is a useful way of �nding the most similar users (with the lowest distance score),

to a given user. In chapter 6, we explain how the �rst prototype uses a tweak of this approach.

In subchapter 6.2, we explain how this tweak uses di�erent distance metrics for calculating

distances between data points and users.

Logistic regression

Logistic regression is used when the variables used are categorical, meaning that the algorithm

should determine between 0 or 1 (Swaminathan, 2018). For example, the algorithm predicts

whether the user is sad (0) or happy (1), and these are the two categories.

Imagine a two-dimensional space with multiple data points. Logistic regression algorithm draws

a graph between the data points. Data points above the graph can, for example, be true, and

below false. This is illustrated in �gure 6.

Figure 6: Logistic regression algorithm. Figure taken from Gupta (2018).

31

Logistic regression uses the probabilities from the data input, and uses the maximum probability

on the two output categories to determine thetrue categorical output. The maximum probability

can be adjusted with a threshold specifying how sure the model has to be before the category

output can be determined correctly.

Multinomial logistic regression

Multinomial logistic regression is used to predict the probability of a categorical placement

based on multiple independent variables (Starkweather and Kay Moske, 2011). Multinomial

logistic regression is an extension of logistic regression that allows for more than two categories

of output, hence multinomial (meaning several terms).

As �gure 6 shows, logistic regression uses only one graph to determine the categorical output.

Multinomial logistic regression uses several graphs, depending on how many categorical variable

outputs there are. It uses the maximum probability to determine the categorical output, similar

to what logistic regression does.

Gradient descent

Gradient descent is a machine learning technique for trying to �nd the most optimal set of

parameters for a given problem. It is therefore called an optimisation algorithm. The idea

behind gradient descent is that it returns a measurement of error, with a given set of parameters

chosen at random, and then continue adjusting those parameters until the error minimises itself

trying to �nd the local minimum (Pandey, 2019).

We use multinomial logistic regression with gradient descent in the second prototype described

in chapter 7 (implementation chapter). In this chapter, we further describe how we use it and

why we chose it.

3.3 Recommender systems

Recommender systems are a subclass of machine learning algorithms that is not an algorithm

itself but uses machine learning algorithms (Seif, 2020). These algorithms are an essential part

of a recommender system for it to work.

A recommender system is a program that �lters and recommends products or content to users

based on discovered patterns in their ratings or preferences they have given in the past. The

usage of these engines are increasing each year, through advertisements or e-commerce articles,

32

and are unavoidable when browsing the web (Rocca, 2019). The main concept of recommender

systems or engines are algorithms that calculate and suggest relevant items to the user. A large

factor to the growth of recommender systems is the economic possibilities it o�ers business. An

e�cient recommender system can generate a huge amount of income or outcompete competitors

in the same industry. In chapter 3.3.7, we further explore the economic motivations behind

these algorithms.

Recommender systems are a concept of their own. They can use supervised and unsupervised

learning approaches, but these learning approaches are merely tools for the recommendation

system (Loshin, 2016). In that sense, a recommendation system can use, on the one hand,

supervised learning to classify items into elements to be recommended or not recommended,

and on the other hand, use unsupervised learning techniques such as matrix factorisation to try

to predict a suiting item for the user.

3.3.1 How do recommender systems work?

Recommender systems tries to understand the people it recommends items for on an individual

level; it can be (1) a customer, (2) visitor to a website and (3) a network of sites that share

data between themselves. Either way, the recommender system starts with some data on every

"user" and use it to �gure out (or predict) each user's unique tastes and interests. This data

can be categorised into two types of interest data: (1) implicit and (2) explicit. The two types

of data are further explained in chapter 5.1.

Recommender systems can be used to predict items people want | before they know, they want

it | based on historical patterns. Data-driven recommender systems �nd relationships between

users and between items based on actions; more or less, without human curation. Recommender

systems are not limited to recommending things/items but can also recommend content. The

idea is similar but is instead looking at patterns in the content people consume instead of the

items people buy.

3.3.2 Filtering methods

Recommender systems methods are typically divided into two major categories:content-based

and collaborative �ltering methods.

Collaborative �ltering

33

Collaborative �ltering methods use the interaction between items and a user. Recommendations

are based on these past interactions (e.g. clicked, watched, purchased, rated, etc.). Figure 7

shows the principle of collaborative �ltering. This is by �nding an item that user 1 has watched,

and recommending it to user 2. These users are so-called\similar users" ; this is based on their

previous interactions with matching or similar items. It is therefore relevant to recommend the

items user 1 interacts with, to user 2.

Figure 7: Collaborative �ltering

The preference or interactions can be presented as a user-item matrix as �gure 8 shows, where

each column represent a user, and rows represent an item. Entries (e.g. p11) to the user-item

matrix can be numeric or explicit, with for example a rating range from 1 to 5, but are in

many cases binary or implicit, e.g. clicked or purchased (Luo, 2018). The majority of entries

are usually missing, meaning that the users have not interacted with the item, and the goal of

recommender systems are then often to �ll those missing entries. These entries are found based

on similar items, or based on similar users.

34

Figure 8: User-item matrix

There are two types of collaborative �ltering: model-based methodsand memory-based methods.

Model-based methods use matrix-factorisation to handle sparse matrix, meaning they have a

lot of 0 values, to predict a user's rating of an item they have not interacted with (Mwiti, 2018).

We are not going to use these types of methods and choose not to focus on it.

Memory-based methods use values of recorded interactions, meaning they do not predict ratings.

They are based on the principle of nearest-neighbours (as described in chapter 3.2.3), where

the method calculates what the most similar users or items are. Memory-based methods are

often more simple to implement and to reason about the results (Mwiti, 2018). An issue that

memory-based methods have is the \cold-start problem". If a user has not interacted with an

item, recommendations have nothing to be based on. This is an issue we have to address later.

Content-based �ltering

A content-based recommender uses knowledge of each item or user to recommend similar items

(similarity of item attributes). Content-based methods are computationally fast and inter-

pretable and can easily be adapted to new items or new users (Deng, 2019). These types

of methods use metadata in order to predict recommendations. If we take an example with

movies, the method will then use data such as genre, producer, actor, age-restrictions, etc., to

recommend new items on.

35

Figure 9: Content-based �ltering

Figure 9 illustrates the concept of content-based �ltering. For example, let's say a user likes the

actor Robert Downey Jr., and has watched all Iron Man movies. Then based on the actor and

the genre of the Iron Man movies, it is highly relevant to recommend the Avenger movies to the

user. This is because they are very similar. Content-based �ltering is based on the idea that if

a user liked a certain item, it is likely that he likes something similar.

Content-based are a lot less a�ected by thecold-start problem than collaborative approaches

(Rocca, 2019). The reason for this is that even though the user haven't watched any movies,

the recommender system can still recommend items to the user based on information that

the user has given, such as sex and age. It does not need a lot of information to calculate

recommendations, and this is a factor that we need to evaluate when choosing a method.

3.3.3 Top-N recommenders

We can classify a top-N recommender system as a recommender system that produces a �nite

list of the top-ranked items to present to a given person. This list can be arbitrarily long, but

should the recommender system, for example, return a list of three pages each with ten results;

it is a top-N recommender where N is 30 (Deshpande and Karypis, 2004).

Research on recommender systems tends to focus on the problem of predicting a user's rating

for everything a user has not already rated. Users want to see items they are likely to like and

not the recommender systems ability to predict their rating for an item. There are many forms

of recommender systems, widgets are for example, usually aggregate rating from other users and

36

not the rating a system thinks the user would rate the item. Thus, there is a di�erence in the

type of recommender systems to study.

Anatomies of top-N recommenders

Top-N recommender systems can be con�gured in many ways. Most commonly, there is a

data store representing the individual interest of each user. The interest data of each user is

normalised using techniques such asZ-scores or Mean Centering to ensure that the data is

comparable between users. Normalising the data e�ectively is not always possible because the

dataset may be too sparse.

During the candidate generation phase, recommendation candidates | items that may be in-

teresting to the users based on past behaviours | have to be generated. Each candidate is then

compared to similar items in another data store based on aggregate behaviour. Candidates are

then assigned a score based on how the user rated similar items and how strong the similarities

are. Should the score not reach a certain threshold, the candidate is �ltered out. There exist

many di�erent methods of candidate ranking such as "learning to rank" which employs machine

learning to �nd the optimal ranking of candidates at each stage, or take average review score to

help advance the highly-rated or popular items (Arya et al., 2017).

Before the top-N list is presented to the user it has to be �ltered; �ltering phase is used to

eliminate recommendations the user has seen, may not want to see or are allowed to see. Stoplists

are implemented to remove things that can be potentially o�ensive or below some minimum

rating or quality threshold. Items are then handed to a display layer where a component of

recommendations is presented to the user. Usually, candidate generation-, ranking- and �ltering

live inside a distributed web service that the frond-end queries to receive the data required to

render a page for a speci�c user.

Other architectures that may be deployed can be to build up a database ahead of time with the

predicted rating of each item by all users. Eliminating most of the work done in the candidate

generation phase and thus ranking the items is a matter of sorting them. This approach is not

recommended unless the dataset contains a small catalogue of items to recommend because it

requires to compare every single item in the catalogue for every single user.

37

3.3.4 Designing and evaluating recommender systems

It can be challenging to measure the quality of a recommender system. There are di�erent

ways to measure quality, and these measurements can conict with each other. Essentially a

recommender system is a machine learning system | it is trained by using prior user behaviour

and then predicts which items a user might like. Evaluation of a recommender system can be

done through similar methods as any other machine learning system.

Train/Test

The simplest way is to measure the recommender system's ability to predict how people rated

items in the past. As discussed earlier, to keep the results honest, the dataset is split into a

training- and test-set. Ratings are assigned randomly into one of the sets, but the training-set

should total at least 80% of the data. The recommender system is trained by only using training

data | learning the relationships between items or between users. Once the set is trained | it

can be used to make predictions about how a new user might rate an item the user has never

seen before. Next, the data reserved for testing | ratings that the recommender system has

never seen before | to ask the recommender system what it thinks a user would rate an item

without telling the answer. Doing this process on a large data set will return a meaningful

number to evaluate how good the recommender system is at recommending things people have

already seen or rated.

K-Fold Cross-Validation

K-fold cross-validation is the same idea as train/test but uses multiple randomly assigned train-

ing sets instead of a single set. Each individual training set or "fold" is used to train the

recommender system independently. A measure of accuracy is then achieved by testing the

resulting systems against the training set. Each fold then receives a score of how each fold

managed to predict the user ratings, and then the scores are averaged together (Sanjay, 2018).

K-fold cross-validation provides insurance against optimising ratings speci�ed in the training

set instead of the test set by ensuring that the recommender system works for any set of ratings

| not only a few in the training set that was chosen.

3.3.5 Accuracy measures

Finding the best way of measuring how accurate a recommender system is, is very important. In

the following sections, we will describe some techniques used to calculate recommender systems

38

accuracy.

We will use some of these accuracy measures when evaluating the implementation of the proto-

type we made. We will further explain this in the implementation chapter (chapter 7).

Mean Absolute Error

Mean absolute error (MAE) is the mean or average absolute values of each error in the rating

predictions. An error is undesired, and low mean absolute error score is good. Mean absolute

error can be calculated by taking each rating, in a test set of n ratings, predicting the value of

rating y and comparing the rating y with the actual user rating x. The absolute value of the

di�erence between the predicted rating and the actual rating is then summed up with other

errors across the entire test set and then divided by n to get the average or mean.

Root Mean Square Error

Root mean square error (RMSE) is utilised more as RMSE gives penalties when the rating is

not close and penalises less when the prediction was reasonably close. Instead of summing all

the absolute values of each rating prediction error | the squares of the rating predictions errors

are instead summarised. Both absolute values and taking the square of value ensures positive

numbers but squaring the value inates the penalty for more substantial errors.

Essentially root is the square root of the entire set, mean refers to an average, and square error

is the square of each individual rating prediction error.

Hit Rate

A "hit" is a recommendation in the top-N recommendations that a user already has rated. The

hit is a prediction that the user already found interesting on their own and can be considered a

success. To get the Hit Rate, add all "hits" in the top-N recommendations for every user in the

test set, divide by the number of users, and that is the hit rate.

An issue by following a train/test or cross-validation approach utilised for measuring accuracy is

that these approaches focus on individual ratings, not the accuracy of top-N lists for individual

users. Measuring the hit rate directly on top-N recommendations created by a recommender

system trained on all of the data would lead to a hit rate of 100%. Evaluating a system by using

the data it has trained with is undesirable.

Leave-One-Out Cross-Validation

39

Leave-one-out cross-validation is a method of computing the top-N recommendations for each

user in the training data and then remove an item from the user's training data. The recom-

mender system's ability to recommend an item in the top-N list for each user that was left out

from the training data.

Issues with using leave-one-out suggest that the dataset has to be large since getting a speci�c

item right during testing is harder than to get a random item of the top-N recommendations.

Leave-one-out has the advantage of being more user-focused as users tend to focus on the

beginning of lists. Similarly to hit rate but also accounts for where the hits in the top-N list

appear. Items in the top slot give a higher reciprocal rank than an item in the bottom slot. A

hit in the �rst slot of the top-N list would yield weight of 1.0, but a recommendation in slot 4

yields a weight of 0.25.

Leave-one-out metric depends a lot on the use case and how the top-N list is displayed. Good

recommendations hidden by scrolling or pagination should be penalised by the user's e�ort to

�nd the item.

Otherwise, a cumulative hit rank can be a good solution as it throws away hits if the predicted

rating is below a threshold instead of crediting the system for the recommendation.

Another take on hit rate is to use the predicted rating score to get an idea on the distribution

of how good the algorithm thinks recommended items are,� that get a hit.

Cross-entropy

Cross-entropy is commonly used in machine learning as a function for calculating loss. It gives

a measure of how di�erent two probability distributions for a set of variables are (Brownlee,

2019). This indicates howwrong or what loss the ML model has su�ered. It can be used to

optimise classi�cation models such as logistic regression.

It is used by a classi�cation model whose output is a probability value between 0 and 1 (Loss

Functions, 2017). Classi�cations that are incorrect are penalised more than classi�cations that

are close. Cross entropy metric is shown in formula 3.

� (
1
n

)
nX

i =0

Actual � log(Guess) + (1 � Actual) � log(1 � Guess) (3)

Cross entropy loss metric

40

High entropy is related to high loss, and low entropy is related to low loss and that probability

predictions are more correct.

3.3.6 Evaluating recommender systems

There exist a high diversity of di�erent ways and approaches to evaluating a recommender

system. The following sections cover some of the evaluation approaches that we will use in

chapter 9 (evaluation chapter).

Coverage

Coverage is the percentage of possible recommendations that the system can provide and can

give a sense of how quickly new items will appear in the recommendations. There is a tension

between enforcing a higher quality threshold to improve accuracy at the expense of coverage,

requiring to �nd a proper balance.

Diversity

Diversity is a measure of how wide a variety of items the recommender system is displaying. An

example of low diversity would be to recommend a course that is next in a succession of a series.

In the context of recommender systems is not always desired. High diversity can be achieved

by recommending completely random items.

Diversity can be measured by computing the opposite, a similarity between items. Average the

similarity scores S of every pair in a list of top-N recommendations and then average the results

to get a measure on the similarity. Use the result and subtract 1 to get a number associated

with diversity.

Diversity has to be used in conjunction with metrics of quality to avoid bad recommendations

as high diversity scores more often than not are just bad recommendations.

Novelty

Novelty is a measure on the popularity of the items recommended. As discussed earlier, rec-

ommender systems exist to surface items in the long tail. Most engaged with or sales often

come from a small number of items. Items in the long tail | items that cater to unique, niche

interests | adds a lot to the overall value.

Users might engage less with the recommended items if the recommendations appear to the user

as random. To build the concept of user trust, a few of the items need to be familiar. The user

41

needs a few"This was a good recommendation for me". Popular items are enjoyable by a large

segment of the user base, and these items would be expected to be good recommendations for

the user base who has not seen them yet.

Again, there must be a balance between a familiar, popular and serendipitous discovery of the

items the user has never heard of before. New items recommended allows the user to discover

items they might love, and familiar items establish trust with the user. Recommender systems

should be used to help people discover items in the long tail that cater to their unique, niche

interests. Other than being an excellent moneymaker for the company, it can help people explore

their passion and interests.

Churn

Churn is how often the recommendations for a user change. How often does the user see the

same recommendation? High churn in itself is undesirable, and by randomising the top-N

recommendations can expose the user to more items they would not have seen otherwise. All

of the metrics discussed have to be looked at together to determine the best tradeo�s between

them.

Responsiveness

Responsiveness determines how quickly new user behaviour inuences the recommendations.

Instantaneous responsiveness in recommender systems is complex, challenging to maintain, and

expensive to build. Thus, a balance between responsiveness and simplicity has to be addressed.

A/B Tests

None of the metrics discussed matters more than how users respond to the recommendations

produced. A surrogate problem is an e�ect where accuracy metrics in an algorithm are good,

but the results fail in a test with real users (Covington, Adams and Sargin, 2016). Accuracy

can not be used as a surrogate for good recommendations.

Recommendation systems should be designed with the user in mind. Using A/B tests is useful

to measure how users react to recommendations presented to them. Ideally, users are exposed to

multiple di�erent algorithms, and then track the users' interest in recommendations presented

to them. Continuously testing in controlled online experiments to see whether the recommenda-

tions cause people to discover or purchase more new things than they otherwise would, matters

and yields the most value for both the users and the business.

42

Previously mentioned metrics such as accuracy, diversity and novelty can indicate interest from

a user but will not replace feedback from users. From a practical standpoint, accurate rating

predictions are worthless should the user not �nd new items to engage with or buy. Replacing

an algorithm with a newer, more complex algorithm, should be discarded if users interacting

with the recommendations does not lead to measurable improvement. A/B tests with users

should be used to avoid introducing complexity that adds no value | complex systems are hard

to maintain. Thus, the results of A/B tests with the users are the only metric of success for a

recommender system.

Perceived quality

Measuring "perceived quality" can be done by asking the users for explicit feedback recommen-

dations in the same fashion as asking the users to rate items. How to de�ne a"good" rating

is not easy, and explicit feedback on recommendation can be advantageous. Though, there are

multiple disadvantages with this approach: (1) users can confuse whether they rate the recom-

mendation or rate the item, (2) requires extra work from customers with no clear contribution

of value for them, and (3) getting enough ratings on the recommendations to be useful can be

hard. A/B testing with interest and engagement is the most precise measurement of quality.

3.3.7 Economical considerations

Economic theory often portrays the goals of business organizations as being related to pro�t

maximization. Hence, business problems and opportunities often relate to increasing revenue or

decreasing cost through the design of e�ective business processes. In the last years, recommender

systems have been used for these purposes, to improve the cross-selling e�ect and to strengthen

customer loyalty (Long-Sheng et al., 2008).

Considering the viewpoint of the customer, recommender systems try to suggest helpful or suit-

ing items; however, from the vendors perspective, it is e�ectively used as targeted advertisement,

to increase pro�t (Das, Mathieu and Ricketts, 2009). The best case for a vendor is that the

customer follows their habits and preferences when purchasing or browsing their systems. If

the customer actively chooses not to follow the vendor's recommendations, because the \trust"

to these recommendations are fading, resulting in the transfer to another business is the worst

case. It is therefore vital to be careful when incorporating item pro�tability or other factors

into the recommender system that a�ect the trust too much.

43

Dice(~r) =
2~c� ~r

k~ck2 + k~rk2 (4)

Dice coe�cient

A good principle is that as long as the vendor uses an algorithm where the recommendations are

relatively similar to the customers own ratings, the level of trust will not be too compromised.

This can be calculated using, for example,Dice coe�cient as a similarity measure, shown in

equation 4, that measures similarities between two vectors. The vector�! c is the consumer's

true ratings for some items, and the vector�! c is the recommendation vector for the same items.

A function T(�! r) (from equation 4 being Dice(�! r)) gives a value that indicates the similarity

between �! r and �! c , where higher value indicates similarity. These measures are based on the

assumption that the trust from a customer is somewhat equivalent to how similar the vendor's

recommendations are to the actual ratings from the customer, as well as the assumption that

the trust remains on a high level as long as T(�! r) remains high.

Another issue with recommender systems is that they tend to recommend already popular

products (Fleder and Hosanagar, 2007). If an item has a lot of clicks by a lot of di�erent users,

these items will be more frequently recommended to other users. In �gure 10, a diagram shows

this, where an item with a lot of ratings will get more frequently recommended, and items with

few ratings will include the opposite. Jannah and Adomavicius names this problem as\rich-

get-richer" , where these products only increase in number of ratings, based on their frequent

recommendations (Jannach and Adomavicius, 2017). This is a problem that necessarily don't

need any solution but instead paid attention to in case it a�ects the business pro�tability or a

reduction in the user base.

44

Figure 10: Rating frequency distribution. Figure taken from Liao (2018).

As we mentioned earlier, the\cold-start problem" is an issue for recommender systems. This

can also a�ect business pro�tability. Cold-start problem of recommendation methods is that

collaborative �ltering cannot recommend unrated or unpurchased items (Fleder and Hosanagar,

2007). Jannach and Adomavicius suggest that sometimes it might be better to recommend

popular items to avoid this (Jannach and Adomavicius, 2017). Another solution can be hybrid

approaches to deal with sparsity (Long-Sheng et al., 2008). These can use information from

both user-item interactions and users/items' characteristics. A hybrid method can become more

accurate as more data are available by depending on content-based recommendations when there

is no or little activity on a user or an item, where collaborative methods fail to recommend.

3.3.8 Motivation

Regardless of method or approach, when designing a recommender system with a product line

approach, the conditional probability will always have to be considered. As a consequence, any

change in factors that were not initially designed as a feature in the machine learning component

will change the behaviour and performance of the machine learning model. Making rapid ex-

periments and iterations in the product will cause problems with keeping the ML model robust.

Hence, should business goals or the original problem and the ML model formulation change,

the original ML models, will no longer be valid to support the current business goals. Zinkevich

45

states that the product's �rst iteration should be minimally viable since machine learning is

one of the most complicated features added (Zinkevich, 2019). Validating and experimenting

with the market and building a solid product is more important in the early stages of product

development, than having an ML model that can be rendered obsolete by the product evolving

or any changes in the business goals.

When it comes to di�erent recommender methods, several aspects have to be evaluated. Whether

we are making a prediction algorithm that predicts a users rating for a user-item combination,

or a ranking algorithm that presents a list of \best match" items to a user. The algorithm needs

to avoid \rich-get-richer" problem, as �gure 10 shows with the Long Tail E�ect , where niche

products do not get recommended to a user (Pandey, 2019). We also have to evaluate whether

relevance of the recommended items are most important ifnovelty, in a sense, that the users

have not seen the item before can be important, ordiversity among the items in the result list

should be something that we emphasize.

Another factor that a�ects the decision of recommender approaches and methods are the data

set we can acquire from Company A and Company B or other forms of mock data. We will

come back to this in chapter 5, but the data quality has a lot of impact on what method we can

choose and how we can apply them to solving the problem. It will also impact the architecture

of the prototype and how components and modules are structured, but we will evaluate this

later (in chapter 9).

46

47

4 Research process
In this chapter, we describe the research process we have ocnducted, consisting of evaluation

and data analysis methods in our thesis.

First, we present the research process we followed throughout the entire process of conducting

the thesis. Then we present how we utilized a framework from design science research on how to

conduct multiple design steps. Then we describe how we used a set of guidelines for the research

process, also from design science research. And �nally, we present the methods we have chosen

for evaluation and how we analyse and retrieve data from these.

4.1 Conducting research

Research, in general, is an activity that contributes to the understanding of a phenomenon. In

our thesis, those phenomenons are SPL and ML. We want to improve our knowledge base on

these topics.

There are multiple ways of conducting research, and numerous processes to follow to achieve

results and new theories.Design science research(hereby referred to as DSR) o�ers a framework

and model for doing so. In DSR, all or part of the phenomenon may be created as opposed

to naturally occurring. The phenomenon is typically a set of behaviours of some entity that is

found interesting by the researcher or by a group (a research community). Research must lead

to the contribution of knowledge, usually in the form of theory, that is valid and new. Valid (or

true) knowledge may allow for prediction of the behaviour of some aspect of the phenomenon.

4.1.1 Foundation for the right research process

Our objective in this chapter is to use the performance of DSR in Information Systems as a

conceptual framework and guidelines for understanding, executing and evaluating our research.

At the moment, two paradigms characterise much of the research in Information Systems dis-

cipline: behavioural scienceand design science. Both paradigms are foundational to the Infor-

mation Systems discipline, positioned at the conuence of people, organisations and technology.

The behavioural scienceparadigm seeks to develop and verify theories that explain or predict

human or organisational behaviour. Thedesign scienceparadigm aims to extend the boundaries

of human and organisational capabilities by creating new and innovative artefacts.

48

In the design science paradigm, knowledge and understanding of a problem domain and its

solution are achieved in the application and building of a designed artefact, to analyse its

behaviours.

Focusing on the paradigm of design science is most relevant concerning our thesis. Through

the development of a design artefact we want to, not only develop, but research and analyse

the possibilities of this artefact, possibly within an organisation. This is the reason why the

design science framework is the right choice as a foundation for our research process. Because

researching with a DSR framework focuses on the development and evaluating an artefact.

Hevner et al. present a process model that DSR o�ers, consisting of 5 steps, that can be followed

as a general research process (Hevner et al., 2004). The �rst step is (1)awareness of problem.

In this step information from multiple sources are gathered, to understand the opportunity for

research. Then there is (2)suggestion to problem. In this step, the artefact is planned with

functionalities and descriptions. The third step is (3) development. In this step, the artefact

itself is developed according to the previous step. After this step, there is (4)evaluation, where

the artefact is evaluated based on suiting evaluation methods. The �nal step is (5)conclusion,

which is made based on the results from the evaluation step.

4.2 Our process

The overarching process we have been following through the process from start to �nish of our

thesis, is illustrated in �gure 11. Each circle (with a distinct colour) represents a signi�cant step

in the process. The process model proposed by the design science framework is a model we have

followed and conducted during our thesis, and our research process is inspired by this process

model.

49

Figure 11: Our research process throughout the thesis

4.2.1 De�ne problem case

The �rst step we did was de�ning the problem case (described in chapter 2). This was an

essential step of the thesis to understand what areas we wanted to conduct our thesis on, and

setting the scope to narrow it down.

4.2.2 Research theory

Because of our problem case regards two major topics of software development and engineering,

it was natural to start by creating a knowledge base on these �elds. After we had chosen what

we wanted to write about in our thesis, we did a substantial literature study on both machine

learning and software product line theory.

We read articles, journal and websites to gather and structure all the knowledge we found

50

relevant, and we thought we could use in our thesis. A lot of what we found has been described

in the background chapter (chapter 3).

These two steps (de�ne problem case and research theory) are theawareness of problemstep

from the DSR process model. The source of the problem case is Snapper, when they reached

out and handed us a case they wanted us to solve. However, they are most interested in the

prototype we have made, and not the research and �ndings we do along the way of making it.

4.2.3 Initial approach

After de�ning the problem case, we received the product requirements from two di�erent com-

panies that Snapper Net Solutions works with. When we had received this and had conducted

a literature study, we sketched and described what the solution to the problem could look like

(the artefact), with requirements and components description.

This is the suggestion to problemstep from the DSR process model. We conducted a creative

phase, making suggestions to the problem. This was done before the �rst development step

(initial approach). We redid the suggestion phase after the �rst development step, and before

the second. In retrospect, it is smart to repeat this step as often as possible, conducting it

multiple times, to get the functionalities as clear and well-de�ned as possible.

We started the �rst - of two, development phasesby implementing the �rst prototype. This

resulted in an initial approach of solving the problem case.

4.2.4 Implementation of second protoype

We saw some issues and aws in the �rst prototype that we were not completely satis�ed with.

After revising some of the product requirements and functional requirements, we started the

implementation phaseof the second prototype.

We did a split of the developmentphase, from the DSR process model, into two phases. This

was something we did after conducting the �rst development phase. We realised that there

where a need for re�nements to the prototype, so we redid thesuggestion to problemphase and

a new implementation phase.

Making a lot of assumptions and concerns about human cognition is not too relevant in our

thesis, because we develop a proof of concept prototype showing just the possibilities of it. It is

51

not meant to be tested directly on actual users in a relevant setting.

4.2.5 Evaluation

When we had a second prototype that we were satis�ed with, we started theevaluation phase.

We conducted acase studyof the prototype we had developed, with three di�erent experts. We

also made asurvey that we published, asking questions about the use of and trust people have

in recommender systems.

Completing the case studies and receiving answers on the survey we had published gave us a lot

of results. We, therefore,analysed the test resultsto see if we had what we needed and if they

were valid or not. We structured and compared the results.

The case study and survey, and analysing the results is theevaluation step from the DSR process

model. It states that once the prototype has been constructed, it should be evaluated according

to hypothetical predictions or criteria made in the awareness of problemphase. Sometimes,

it is relevant to repeat the suggestion and development phase to change how the prototype

behaves. Observations of changes to the test results or hypothesis are normal, and should also

be considered in the evaluation Hevner et al., 2004).

We did a minor evaluation phase after the �rst developmentphase (initial approach). It was this

phase that resulted in a new implementation phase to re�ne the prototype. We saw it lacked

some functionalities that we wanted to be implemented. The �rst prototype did not have all

the elements and proper architecture we wanted, and it, therefore, did not behave the way we

wanted it to do. After the second implementation phase, we conducted the mainevaluation

phase consisting of the case study and the survey.

4.2.6 Reection and conclusion

The �nal step of our research process was areection and conclusion step. After we had

conducted the evaluation phase, we had enough results to conclude the research process.

This is the conclusion step in the DSR process model. We evaluated the results against our

hypothetical predictions on the behaviour of the prototype and other assumptions we had made

during our research, looking for deviations and other implications. We �nished this step by

concluding on di�erent outcomes on the research questions (presented in chapter 2.3). We also

presented the knowledge and lessons learned on the di�erent steps in the research process.

52

4.3 Design science research

Design science is an outcome-based information technology research methodology, which o�ers

speci�c guidelines for evaluation and iteration within research projects. Design science research

(DSR) focuses on the development and performance of (designed) artefacts with the explicit

intention of improving the functional performance of the artefact. DSR is typically applied to

categories of artefacts including algorithms, human/computer interfaces, design methodologies

(including process models) and languages. Its application is most notable in the Engineering

and Computer Science disciplines, though it is not restricted to these and can be found in many

disciplines and �elds.

We will describe these guidelines further in section 4.5 that we have been using. Science of

the arti�cial (design science) is a body of knowledge about the design of arti�cial (human-

made) objects and phenomena (artefacts) designed to meet certain desired goals. Whereas the

traditional natural sciences focus on a class of things | objects or phenomenon | in the world

(nature or society) that describes or explains how they behave and interact with each other.

In other words, design science is knowledge in the form of constructs, techniques and methods,

models, and theory for achieving this connection. The know-how (procedural knowledge) for

creating artefacts that satisfy given sets of functional requirements. Design science research

is research that creates this type of missing knowledge using design, analysis, reection, and

abstraction.

Figure 12: Model:knowledge is generated and accumulated though action

We can draw the following model, in �gure 12, as a basis to understand how knowledge is

generated and accumulated through action. Figure 12 illustrates how creating something and

53

then evaluating the results helps to build knowledge; this is the process that we do when we

develop the artefact and testing it afterwards. Furthermore, abstraction and reection are

also mattering in the knowledge building process. Building knowledge through construction is

sometimes considered lacking rigour, but the process is not unstructured. The channels in �gure

12 of the general model are systems of conventions and rules under which the discipline operates.

They typify the measures and values that have empirically developed as 'ways of knowing' as

the discipline has matured.

Our objective in the thesis is to use design science research primarily as a research method when

conducting our research. Knowledge and understanding of the problem domain and its solution

are achieved in the application and building of the designed artefact. Combining the capabilities

of the Information Systems and characteristics of the organisation, its work systems, its people,

and its development and implementation methodologies determine the extent to which that

purpose is achieved.

Down the line, we will have to be aware of the risk in not distinguishing our work from a

design e�ort; simply creating state-of-practice design, and not research. Design science research

(within its community of interest) is distinguished from a routine design by the production of

interesting new and true knowledge. Though routine design can lead to DSR. To �nd out the

missing knowledge in a new area of design, it is quite useful to attempt carrying out the design

using existing knowledge | giving a better feel for the number of unknowns in the proposed

design (missing knowledge).

4.4 DSR framework

Hevner et al. present a framework that structures di�erent components, combining the concepts

of behavioural science and design science (Hevner et al. 2004, p. 80). It maps out the relations

and connections between the components and illustrates how they interact with each other. We

have structured all of this in �gure 13, to present our chosen methods and components.

54

Figure 13: Design Science Framework

DSR proposes a set of steps or activities and through these are the artefact developed, based on

organizational structures and requirements on a common knowledge base. Figure 13 illustrates

some of these cycles. Each cycle is typically iterated a number of time before the artefact is

designed and complete. TheRelevance cycleis to assure relevance from the environment, where

the business requirements and other demands are speci�ed.Rigor cycle is to ensure that the

appropriate foundations and methodologies are used, and other additions to the knowledge base

might be added here.

Environment section

The environment section describes what actors (People and Organizations) that have relied on

and cooperated with. For example, we used supervisors and professors for guidance on the the-

sis, and the workers of Snapper Net solutions was good support for evaluation and feedback on

the artefact. Company A is a working partner with Snapper Net solutions, and since we coop-

erate with Snapper, we relied on data providence from Company A. TheEnvironment section

describes the organizational strategies and structure that the artefact needs to be evaluated on.

Design Science Research section

As we described in chapter 4.3, the design is both a process and a product (the artefact). In �gure

13, in the Design Science Researchsection we have aDevelop/Build box that describes di�erent

55

design models we have used. Weincrementally improved our prototypes, and re-designedthe

�rst prototype, into a second version. In the Justify/Evaluate box, the evaluation methods we

have conducted are listed. TheDesign cyclebetween the boxes illustrates the process of going

back and forth between evaluation and development. First, we develop the product, then we

assess the evaluation of the artefact, to then re�ne it and start re-developing again.

Scienti�c Knowledge section

Scienti�c Knowledge is a section that describes our fundamental knowledge that we based our

thesis and our research on. This includes all the models and current theories on topics that

already exist out there. It also includes the methodologies that we chose to use as tools when

conducting and documenting our research. For example, was it necessary for us to choose

di�erent data analysis techniques to use after we had conducted our evaluation, in order to

produce results.

4.5 DSR Guidelines

In the article \Design Science in Information Systems Research", Hevner et al. have described

seven guidelines for the design science research process (Hevner et al. 2004). Design science

concerns the development of knowledge and understanding of a design problem. It is trough

building an artefact and �nding solutions to this problem that knowledge is acquired, the seven

guidelines are derived from this aspect. These create a template that we used as a foundation

for our research process. In the following chapter, we describe these guidelines and how we have

applied them to our research.

4.5.1 Guideline 1: Design as an artefact

An artefact is an innovation that de�nes the ideas, practices, technical capabilities and products,

that can be analysed, designed and implemented, and be used or accomplished in information

systems e�ectively and e�ciently (source).

\Design-science research must produce a viable artefact in the form of a construct, a model, a

method, or an instantiation." (Hevner et al. 2004). The artefact must address or try to solve

an important organizational problem. For the artefact to be of value, it needs to be applied

or implemented in an appropriate domain. By studying the de�nition from Hevner et al., it

does not need to be a standalone product or system, the artefact can be a simple model or an

instance of a larger system that solves a speci�c problem of varying size. Any models, methods

56

or constructs that were used in the development phase should also be part of the artefact.

In chapter 2 we described the research problem that we want to conduct our research on. Part

of the research questions is to see if it is possible or bene�cial to solve this problem. In order

to do so, we wanted to develop a prototype or proof of concept. Part of this prototype is a

generic recommender system that is a component. Exploration and development was done by

mainly focusing on this component, but the artefact itself is all the components, modules and

constructs that we have developed during the process. We hereby refer to the artefact as the

prototype.

4.5.2 Guideline 2: Problem relevance

Having a common understanding of the relevance of the chosen topic for our thesis is important.

Hevner et al. state that \the objective of design-science research is to develop technology-based

solutions to important and relevant business problems."(Hevner et al. 2004). When conducting

work for a company (Snapper Net Solutions), they have already stated their need for a solution,

which imply relevance for the research where doing. However, it is not relevant for them all

the other time we spend researching similar topics through articles. This is what motivates us

because we see the relevance of exploring a topic that has not been heavily researched.

A problem can be de�ned as the di�erences between a goal state and the current state of a

system (Hevner et al., 2004). We will further describe the di�erent states of the prototype

in chapter 6 (initial approach) and chapter 7 (implementation) that we reached when starting

from scratch. Solving a problem is de�ned as a search process using actions to reduce or

eliminate the di�erences; this is further explained in guideline 6 (in chapter 4.5.6). Artefacts

are designed, constructed and used by people and are therefore shaped by values and interests

from communities or investors (Orlikowski and Iacono, 2001). There is always an economical

approach and motivation behind a business need or requirement; this increases the problem

relevance.

4.5.3 Guideline 3: Design evaluation

Evaluating and testing the prototype is necessary when conducting research in order to produce

some results or indications.\The utility, quality, and e�cacy of a prototype must be rigorously

demonstrated via well-executed evaluation methods."(Hevner et al., 2004). It is important that

the evaluation is based on some metrics or criteria and in a strict environment. The \Publication

57

Scheme for a Design Science Research Study" (Gregor and Hevner, 2013, p. 350) also points

out validity as an important criterion to prove for the prototype. This, along with the other

criteria, gives evidence whether the prototype is useful.

Evaluation should be based on the following:

� Business environment establishes the requirements upon which the evaluation of the pro-

totype is based

� This environment includes technical infrastructure which itself is incrementally built by

the implementation of new IT prototypes

� Evaluation includes the integration of the prototype within the technical infrastructure of

the business environment

Figure 14 is listing all the Design Evaluation MethodsDSR o�ers. The highlighted ones are the

ones we have chosen to conduct.

58

Figure 14: Design Evaluation Methods. Figure taken from Hevner et al. (2004), p.86

We �nd observational evaluation with a case study to be suited for our prototype. A case

study can be a realistic way of analysing the prototype in an appropriate environment, where

functionality, usability, accuracy, etc can be measured.

We also think that an analytical analysis of the codebase can be appropriate and possible to

do. By doing so, one need experienced supervisors on machine learning or SPL to evaluate the

software architecture and code base, to give feedback while we take notes.

A descriptive evaluation of the prototype based on the knowledge base and creating some sce-

59

narios may also be relevant to conduct. This can give indications on whether it ful�ls some

theories or to demonstrate the utility of the prototype.

In chapter 4.6, we will further present what methods for testing we have chosen, and how we

retrieve data from it. In chapter 8 (evaluation chapter), we will present the test results we

received after conducting the tests.

4.5.4 Guideline 4: Research contributions

\E�ective design-science research must provide clear and veri�able contributions in the areas

of the design artefact, design foundations, and/or design methodologies."(Hevner et al., 2004).

The research must have clear and well-de�ned contributions. It is therefore important to ask:

\What are the new and interesting contributions?". There are three types of research contri-

butions based on novelty, generality and signi�cance of the prototype. At least one of these

contributions must be discovered or accounted for. The contributions are:

1. The prototypes - Often it is the artefact itself, designed to extend knowledge base or

apply existing knowledge in new ways

2. Foundations - all the constructs, models, methods or instantiations that extend and

improve the existing foundations in the design-science knowledge base

3. Methodologies - use of evaluation methods, (examples: experimental, analytical, obser-

vational, testing, descriptive). This will produce data and results.

Our contribution is mainly the prototype and the knowledge gained and lessons learned when

developing and evaluating it. We have researched what it is possible to utilize it for and for

what purpose. This has contributed to a knowledge base on the research area as well as the

prototype. The data and the results we produced during the research process is also part of the

contribution.

4.5.5 Guideline 5: Research rigor

Hevner et al. state that the \design-science research relies upon the application of rigorous

methods in both the construction and evaluation of the design artefact."(Hevner et al., 2004).

This implies that to produce well-tested research, the process that leads to the results has to

60

be strictly conducted based on accuracy. It is also important that the data validity and results

adhere to the analysis techniques. The research results need to be thoroughly analysed and

checked concerning the knowledge base and existing research; this is the main point of rigour

research (Pe�ers et al., 2008).

Figure 15: Rigor cycle

Figure 15 illustrate how we have performed our research rigor cycle. When producing results,

we have continuously checked and analysed these against the knowledge base to see if it was

reasonable and possible results, this is called\grounding" . If the results cohere with existing

theories, it is positioned in the knowledge base, if not it will also give additions to the knowledge

base but for example, as falsi�cations. We used the rigour cycle, mainly in the test and evaluation

phases.

4.5.6 Guideline 6: Design as a search

Problem-solving can be viewed as utilizing available means to reach desired ends while satisfying

laws existing in the environment (Hevner et al., 2004). This is the essence of design as a search.

Through designing and developing a prototype, the research process is a search for doing this

most e�ectively and in the best way.

� Means are the set of actions and resources available to construct a solution

� Ends represent goals and constraints the solution should satisfy

� Laws are uncontrollable forces in the environment or restrictions that prohibit or limit

the prototype in some ways

61

E�ective design requires knowledge of both the application domain (e.g. requirements and

constraints) and the solution domain (e.g. technical and organizational). Means, ends and laws

are iteratively re�ned to be made more realistic. As a result of this, the prototype becomes

more relevant and valuable. These iterations of"best optimal design", can be done through a

generate/test cycle (Presthus et al., 2016).

In our thesis, the means is for example the data sets, helping components and algorithms that we

have used when developing and constructing the prototype. The ends are all the functionalities

the �nal prototype have. This de�nes the goal state of the prototype and how it turned out.

The laws are the restrictions of the prototype we met prior to and while developing it. Often,

there can be limitations in the data sets, other information that is sensitive and requires a non-

disclosure agreement for one to use, and etc. Mapping out the means, ends and laws helped us

to structure the research process, and the environment we developed the prototype in.

4.5.7 Guideline 7: Communication of research

When completing a research process and producing valuable results, a vital factor of the process

is publishing it to other researchers. A thorough and complete article of the research is essential,

but it is also important how to communicate it and to what audience. \Design-science research

must be presented e�ectively both to technology-oriented as well as management-oriented au-

diences." (Hevner et al., 2004). Rarely, it is just one speci�c audience involved or having an

interest in a research �eld; this is important to take into consideration.

We have stakeholders both at the technology-oriented and management-oriented audience that

have an interest in our work. People at Snapper and at UiO require di�erent approaches to the

case solution and other �ndings. In the following chapters, we will be presenting at di�erent

strategy levels and views to cover a wider area of readers.

4.6 Methods for collecting data

We have chosen two di�erent methods for collecting data. The reason for this is to get feedback

from a larger target group, with a broader perspective on the topics we research, to get more

insights. Through collecting empirical data, we have had an inductive approach to the research

methods we have chosen (Sander, 2019).

As described in 4.5.3 we have chosen an observational evaluation with acase study. This can

62

give a good way of analysing the prototype with �tting people, and we can analyse measures

such as reusability and functionality. Part of this observational evaluation will be an analytical

analysis with an interview where we study the code base and architecture. This is where the

people are asked questions so we can get feedback and results on the prototype.

The second method we chose was also an observational evaluation. We made asurvey that we

published to receive a response from a broader target group. We wanted to get more insight

into peoples attitudes and experience towards recommender systems.

We did not �nd a descriptive evaluation (as mentioned in chapter 4.5.3) of the prototype as

�tting. Creating scenarios for the prototype was considered, but we thought it would not

provide any valuable results for our research. This is because it requires the prototype to be

placed in di�erent environments or settings, and this is not necessary as it is only a proof of

concept.

In the following sub-chapters (4.6.1 to 4.6.3) we explain how we conducted these evaluation

methods, how we learnt from them and how we analysed the results we got from conducting

them.

4.6.1 Case study

To evaluate the prototype, we used the BAPO model, illustrated in �gure 16, to show what

scope or perspective we focused on when conducting the observational evaluation. BAPO model

represents the four concerns that need to be addressed with SPL engineering (BAPO Model,

2011). We do not focus on the organizational view, as this is out of the scope (not connected

to the research questions). It is also not relevant for the context of Snapper, because it is a

relatively small company.

63

Figure 16: BAPO model. Figure taken from Bosch (2017).

The case study was conducted with three test subjects. Two of them are specialised software

developers, and the last one is CTO at Snapper. The CTO could give feedback from a business

and process point of view because he has experience with leading larger projects. The software

developers gave technical feedback from an architectural view, on the codebase.

How the study was conducted

One of the interviews were conducted over Whereby because of the COVID-19 virus. Two of

the three interviews were conducted in person, where we met the test subjects. Because of

the situation, it was not possible to do the last of the interviews in person, as we wanted to.

However, it was still very possible to conduct the entire process of the evaluation method, and

we got the full extent of the results we wanted out of the case study.

When we met the test subjects, we started by letting them analyse and understand the code

base of the prototype. This �rst phase, we named theobservational phase. While the test

subjects analysed the prototype, we had a passive role were we, for the most part, took notes,

and observed. They could always also ask us questions if they wanted to.

The next phase was theinterview phase of the case study. Here we had prepared a set of

questions based on what viewpoint we wanted to study (from BAPO model in �gure 16). We

could also ask unprepared to follow up questions that we felt were necessary to get more insights

into their thoughts and opinions on the prototype. We took notes during this phase as well and

64

�lled in missing parts we did not have time to do during the interview after we were done.

How we chose test subjects

It can be tough to have access to relevant and suiting interviewees and test subjects (Crang

and Cook, 2007). This is because they should be able to observe analyse and answer questions

about our prototype, that is both relevant and useful to us. We got help from Snapper Net

Solutions on �nding people that could do this. Two of the people we interviewed are employees

from Snapper, and the last one is a software developer at a consultant company called Bouvet.

We contacted the di�erent people directly, informing them about the thesis and research we

were conducting, before presenting them the case. After this, we received their acceptance, and

we then agreed on a meeting time and place.

The reason that it was challenging to �nd test subjects was that the people would preferably

have a lot of experience in both SPL and ML. We could not �nd this, but the software developers

we used had a lot of experience in developing software and some experience on SPL. Both had

a lot of interest in ML, and some experience there as well. The CTO had more experience with

SPL, and this was very important because we needed an analysis from a business and process

point of view. The CTO was familiar with some of the topics related to ML as well.

The way we have found and recruited the test subjects is calledtheoretical sampling (Crang

and Cook, 2007). This is because the people we use for evaluation are chosen because of

speci�c characteristics they have and the quality of information they, therefore, can o�er to the

evaluation methods. Theoretical sampling is valuing quality rather than quantity and diversity

in the test subjects. This was done because it was the most convenient way of evaluating

the prototypes as well. Having several extra interviews, with multiple experts would not be

bene�cial because it is too time-consuming.

Interviews

Conducting interviews has been the primary evaluation method for collecting data to our re-

search from the chosen test subjects. The importance of interviews in research is because it

provides insight into how the test subjects interpret and understand some events or objects

(the prototype) they are exposed to (Walsham, 2006). This gives valuable information we can

retrieve and use when trying to answer the research questions. Interviews were suiting for our

research because we could go in-depth with the experts we interviewed, to understand their

aspects and opinions on the prototype they analysed.

65

Interviews can be conducted structured, semi-structured or unstructured, depending on the

purpose and the wanted outcomes of the interviews (Crang and Cook, 2007). This depends

on how predetermined questions you want to ask and how much control the interviewer wants

to have in the conversation (Pollock, 2019). We chose to conduct semi-structured interviews,

with a lot of predetermined questions, and some follow up questions as well. This is because

we had some questions we wanted the answer to, and some that felt natural to ask during the

conversation, some aspects and topics that we wanted to elaborate and go deeper into.

As mentioned earlier, we conducted two types of interviews, focusing on getting di�erent infor-

mation on di�erent viewpoints illustrated in �gure 16. The �rst type of interview is focusing on

the architectural viewpoints of our prototype, and the second type is focusing on the business

and process viewpoint. This is to get a wider perspective on the aspects of SPL engineering

with ML. Our research questions (from chapter 2.3) focus on a broader perspective than just the

technical part of merging the two concepts, it also focuses on the evolution and cost-bene�cial

aspects of it.

The templates for the di�erent interviews we conducted can be found in appendix B. The

interviews with the architectural viewpoint we conducted with software developers can be found

in appendix B.1. The interviews with business and process point of view conducted with the

CTO of Snapper can be found in appendix B.2.

Observation

To avoid bias when collecting data, it is essential to conduct multiple forms of evaluation methods

(Walsham, 2006). During the case study of the prototype, we conducted not only an interview

but an observational study before that as well. Observational studies are often conducted

to understand how the test subjects react to some tests or objects (Crang and Cook, 2007).

Observations can either be conducted in a natural or controlled environment and can be direct

or indirect meaning whether the observer is present or not (Anguera et al., 2018). Indirect

observations can be conducted through audio recordings or logs that are read.

Conducting observation of this prototype in a natural environment was not relevant because

it is only a proof of concept, and not a �nal product ready to be deployed into production.

Conducting a direct observation was challenging (further explained in the next section). We

had a passive role while directly observing the test subjects while they analysed and tested the

prototype. We did not collect too much data out of this process, and it was merely to see how

66

quickly they understood the code base and architecture. Observations were to get a picture of

how understandable and easy it was for the test subjects to comprehend how the prototype was

structured and the di�erent components worked together. That is why we had a passive role

and did not want to interject in the process of their �rst experience with the prototype. The

degree of passiveness could vary slightly from the di�erent test subjects. This was depending

on how many questions they had and if we were unsure if they had understood something.

We took notes during the observation phase that we later came back to in the interview. To-

gether, we discussed with the test subjects about their experience and understandings of the

prototype.

4.6.2 Survey

We published a survey through Google Forms, consisting of 11 questions. The survey included

questions related to recommender systems. Users are asked to answer if they understand what

recommender systems are, how often they are exposed to them, and other questions related to

trust and items the systems recommend, and the area of usage. The survey is related to research

question R5 to see how a software product line a�ects the quality of a recommender system.

A survey is a form of an observational evaluation method, and it is indirect because the conduc-

tors of the study are not directly involved but study the results through recordings (Anguera

et al., 2018). It can also be called a retrospective observation because the results are based or

recorded on past events (Mitra, 2020).

When creating surveys, biases often occur and are a big issue. The reason that they occur is

that unfairness undergoes the di�erent options that the users can choose. The parameters can

often be statistically undermentioned. The actions we took to avoid bias in our survey was

to make it anonymous, not creating leading questions that where neutral, have similar scaling

parameters on all questions and allowing the users to withdraw from the survey at any time.

The survey was also not directed at a speci�c target group but was open for everyone to answer.

The process of doing the survey was conducted with an expert in statistics. He helped us

formulating the questions with clear and distinct options and a language that was easy to

understand. We created several drafts and versions of the survey that we sent to him and

received feedback on, before publishing the �nal version.

67

The survey questions we published through Google Forms can be found in appendix C.

4.6.3 Methods for data analysis

When collecting data through evaluation methods, it is imperative to analyse the results. An

analysis is a creative process that should be structurally and thoroughly conducted (Crang

and Cook, 2007). Several di�erent methods for data analysis exist for both qualitative and

quantitative data. In the following sections, we explain what methods we used for the (1) case

study (qualitative data) and the (2) survey (quantitative data).

Content analysis

Retrieving absolute meaning from qualitative data is di�cult, because it is made up of obser-

vations and words; therefore, it is mostly used for exploratory research (Bhatia, 2018). After

conducting the case study, we were left with notes and answers from the observation and inter-

view, resulting in three di�erent texts. Bhatia suggests four steps before and while analysing

the text, in the following order (Bhatia, 2018):

1. Get familiar with the data: we read the results and notes so we were completely

familiar with the content in the texts.

2. Revisit research objectives : we read over the research questions, so we had a clear and

common understanding of the research objectives, and what questions that needed to be

answered.

3. Develop a framework : �rst we read the texts to mark behaviours, opinions and certain

phrases or answers. Then we assigned codes to them (color codes). This is is to structure

and label the data in the text. Each color code is related to one research question (shown

in �gure 17).

4. Identify patterns and connections: then we read the text looking for patterns and

connections between answers. We also looked for an overall theme, which substantiate

and lead the answers in one direction.

68

Figure 17: Color codes mapped to research questions

We did these four steps for each text and conducted what is called acontent analysis (Bhatia,

2018). In such an analysis format, you analyse the content of texts or notes based on some

research questions. Figure 18 shows an example of how we analyse the interviews with each

color code representing a di�erent research question (from �gure 17). After we had done a

content analysis of each text, we compared the structured and labelled data to conclude.

69

	Table of Contents
	List of Tables
	List of Figures
	List of Equations
	Introduction
	Experience and background
	Personal motivation
	Snapper Net Solutions
	Target group
	Presentation of the thesis layout

	The case
	Problem description
	Terms and concepts
	Research questions

	Background
	Software product lines
	Motivation / Awareness of problem
	Fundamental approach
	Product definition strategy
	Variability management
	Process

	Machine learning
	The use of machine learning
	Methods of machine learning
	Possible approaches

	Recommender systems
	How do recommender systems work?
	Filtering methods
	Top-N recommenders
	Designing and evaluating recommender systems
	Accuracy measures
	Evaluating recommender systems
	Economical considerations
	Motivation

	Research process
	Conducting research
	Foundation for the right research process

	Our process
	Define problem case
	Research theory
	Initial approach
	Implementation of second protoype
	Evaluation
	Reflection and conclusion

	Design science research
	DSR framework
	DSR Guidelines
	Guideline 1: Design as an artefact
	Guideline 2: Problem relevance
	Guideline 3: Design evaluation
	Guideline 4: Research contributions
	Guideline 5: Research rigor
	Guideline 6: Design as a search
	Guideline 7: Communication of research

	Methods for collecting data
	Case study
	Survey
	Methods for data analysis

	Product foundation
	Data access and gathering
	Explicit data
	Implicit data

	Company A data access
	Generating mock data
	Foundation
	Architecture

	Requirements elicitation in SPL

	Initial approach
	First prototype architecture
	A tweak of K-Nearest Neighbours

	Distance metrics
	Euclidean distance
	Pearson correlation coefficient
	Recommending items
	Evaluating other distance metrics

	Prototype with SPL implementation
	Architecture
	Generic code
	Layout of components and views

	Process from first prototype to SPL prototype
	Estimates of implementing R2
	Considerations for the future

	Implementation
	Overall architecture
	Architecture of the recommender system
	Architectural flow with recommender system

	Implementation of a recommender system in a SPL
	Pre-processing
	Model training
	Model serving
	Testing, experimentation and evaluation

	Results from evaluation
	RQ1: How possible is it to create machine learning components that work for multiple products in a software product line?
	RQ2: How reusable are machine learning components in a software product line?
	RQ3: How feasible is it to create and consume reusable machine learning models in a software product line?
	RQ4: How can you support a Software Product Line Evolution containing Machine Learning Components?
	RQ5: How does a software product line affect the quality of its recommender systems?

	Lessons learned
	Reactive and feature-oriented approach
	Composition-based approach
	Reactive approach
	Feature-orientation
	Software composition with mapping to SPL

	Variability mechanisms
	Components and services
	Parameters

	Version-control systems in software product lines
	Recommender Systems in SPL
	ML and SPL
	Phases of recommendation process
	Composing components in an SPL ML pipeline
	SPL feature interaction

	Summary

	Discussion
	Theoretical contributions
	Practical contributions
	Ethical Considerations
	Threats validity
	Related work

	Conclusion
	References
	Product requirements
	Company A - product requirements
	Company B - product requirements

	Interview templates
	Architecture interview template
	Business and process interview template

	Survey - Google Form
	Code extract from the prototype
	Engine
	CSV Loader

