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Abstract

The liberalization of energy markets worldwide during recent decades has introduced se-
vere implications on the price formation in these markets. Especially within the European
day-ahead electricity markets, increased physical connections between different market areas
and a joint effort on optimizing the aggregate social welfare have led to highly connected
markets. Consequently, observing the exact same hourly day-ahead prices for two or more
interconnected electricity markets in Europe happens frequently. This affects the modeling
of such prices and in turn the valuation of derivatives written on prices from such market
areas. In this paper, we propose a joint model for day-ahead electricity prices in intercon-
nected markets composed of a combination of transformed Ornstein-Uhlenbeck processes.
We discuss the properties of the model and propose an estimation procedure based on fil-
tering techniques. Furthermore, the properties of the model reveal that analytical prices are
attainable for e.g. forwards and spread options.

Keywords: Day-ahead electricity prices; Interconnected markets; Stochastic modeling; Deriva-
tive pricing.
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1 Introduction

With the introduction of liberalized energy markets worldwide, increased interconnectedness
between different market areas has emerged. The so-called market coupling mechanism has
increased the degree of connectivity even more in the European electricity markets. The market
coupling works by collecting bids and offers for trading electricity the following day from each
market area. Then, based on a social welfare optimization, a single algorithm calculates optimal
flows in the system given interconnector limitations for each hour of the following day and the
corresponding electricity prices; hence, the name day-ahead prices (Epex Spot (2019)). Fig. 1
illustrates this procedure in a two-market setup. The prices labelled ”Domestic price” are the
prices set if the areas were not connected and no cross-border flows of electricity were present.
The difference between the domestic prices are rather large in this case. Though, by the market
coupling mechanism, the price spread between these two areas are minimized. In the case of
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Figure 1: Example of market coupling in a two-market setup where exact price convergence is
reached; i.e., the price spread between the two market areas is forced to be exactly zero by the
market coupling mechanism. As a result, the domestic price in the high price area is reduced
and the domestic price in the low price area is increased.

Fig. 1, we have enough interconnector capacity between the areas to eliminate the price spread
completely. We define such a zero price spread as exact price convergence (EPC). The result
is that cheap electricity is transferred from the low price area to the high price area, or loosely
speaking, electricity flows from the area with a surplus of electricity to the area with a need for
electricity.

As exemplified by Fig. 1, the market coupling has severe implications on the resulting prices
in interconnected markets. Most notable is the presence of EPC that naturally has an impact
on derivative prices, and in particular on transmission rights. A transmission right is basically a
spread option between two connected market areas with the underlying being the spread between
the market areas under consideration†. When EPC occurs, the underlying spread is zero, and
the transmission right becomes worthless. To conduct sensible pricing of transmission rights
(and related derivatives in interconnected markets), a model capable of incorporating zero price
spreads is therefore motivated.

Day-ahead electricity price modeling in general has been examined in numerous studies. To
name a few, Lucia & Schwartz (2002), Geman & Roncoroni (2006), and Meyer-Brandis & Tankov
(2008) all focus on modeling the temporal dynamics of a single market. Lucia & Schwartz (2002)
exemplify their proposed model using daily average prices from the Nord Pool market, Geman
& Roncoroni (2006) use daily prices from the US, while Meyer-Brandis & Tankov (2008) use
EEX prices. Benth & Šaltytė Benth (2004) and Benth et al. (2007) also focus on the temporal
dynamics of a single market, and additionally discuss derivative pricing. Both of them present
the model in the context of Nord Pool data, while the former also uses Brent oil data. Regarding
the spatial interdependencies between different market areas, we mention Douglas & Popova
(2011) and Abate & Haldrup (2017). Douglas & Popova (2011) estimate a spatial error model
on data from Pennsylvania-New Jersey-Maryland Interconnection, consisting of twelve market
areas at the time of their investigation. Abate & Haldrup (2017) investigate daily averages of

†A transmission right can either be physically or financially settled, and will collapse if the physical transmis-
sion right is sold under the ”use it or sell it” condition. We refer the interested reader to Mahringer et al. (2015)
for more information.
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day-ahead prices from the markets making up the Nord Pool area, and find that the inclusion of
spatial effects is as important as including temporal effects.

The literature concerning the joint modeling of day-ahead electricity prices for two or more
interconnected markets where market coupling is taken into account is quite scarce. Mahringer et
al. (2015) use a structural approach, where they model the supply and demand in a two-market
setup that incorporates market coupling and allows for closed-form solutions for transmission
rights. Pircalabu & Benth (2017) propose a reduced-form model in a two-market setup defined
in discrete time that includes the market coupling mechanism using a regime-switching model,
but no closed-form solutions for derivative prices are given.

As Pircalabu & Benth (2017) we propose a reduced-form model for day-ahead prices in a
two-market setup that takes market coupling into account. Compared to Pircalabu & Benth
(2017), we differentiate us by formulating the model in continuous time. Instead of an ARMA-
GARCH copula formulation combined with a discrete Markov chain, we assume that day-ahead
prices can be described by a suitable combination and transformation of Gaussian Ornstein-
Uhlenbeck processes. On one hand, this has the disadvantage that complicated dependence
structures that are easily handled by copulas can be rather hard to incorporate in the present
continuous-time formulation. On the other hand, the continuous-time formulation makes us able
to derive closed-form solutions of forward and transmission right prices. Our contribution to the
literature additionally includes an estimation procedure for the proposed model. It is based on
two independent parts, namely a Kalman filtering part and a particle filtering part.

Although we in this paper have a European perspective, we believe that the results are
interesting in other parts of the world as well where market area dependencies are present.
As an example, Park et al. (2006) examine connected electricity markets in the US, and find
that day-ahead prices in such connected market areas inherit spatial interdependencies. Also
interesting is the work in Ignatieva & Trck (2016), studying the dependence in day-ahead prices
between different market areas in the Australian electricity market. Ignatieva & Trck (2016)
find a positive dependence between all market areas, but the strongest dependence is observed
between adjacent market areas.

The remaining part of this paper is organized as follows: Sec. 2 introduces data and also
serves as a motivation for the model choices made in later sections. In Sec. 3 we introduce the
proposed model and discuss its properties. Sec. 4 concerns estimation of the model, while in
Sec. 5 we exemplify the model empirically through a case study of German and French electricity
prices and discuss derivative prices implied by the model. Sec. 6 concludes.

2 Data presentation and model motivation

This section presents data from the hourly power markets under consideration, and motivates the
model choices made in later sections. The observations in this paper cover the three-year period
from 1 July 2015 to 30 June 2018 and the market areas making up the Central Western Europe
(CWE) area; Germany, France, the Netherlands, and Belgium. The market coupling algorithm
was actually already introduced in the CWE area in November 2010; though, the underlying
optimization algorithm was changed from the so-called available transfer capacity method to the
flow-based market coupling method on 20 May 2015 (see Elia (2019)). In order to avoid results
affected by the old methodology, we have thus chosen to fix our start date to 1 July 2015.

To give a sense of the frequency of how often EPC happens, Table 1 reports the observed
percentage of time EPC occurred for each hour during the mentioned three years. The EPC
percentage varies quite a bit depending on the chosen price spread and chosen hour. Fig. 2
illustrates the data showed in Table 1, and shows a clear pattern throughout the day for all
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Hour DE-FR BE-FR BE-NL DE-NL

0 28 35 39 37
1 30 40 42 37
2 35 43 46 40
3 41 47 49 44
4 44 51 51 47
5 43 51 49 47
6 44 52 49 50
7 42 50 47 49
8 40 47 45 45
9 28 37 36 33
10 26 34 33 30
11 23 32 31 28
12 19 28 28 27
13 21 30 29 26
14 24 32 31 27
15 31 39 36 33
16 41 47 42 40
17 44 49 47 44
18 45 51 49 51
19 41 48 45 48
20 38 45 41 45
21 36 43 42 4
22 26 35 35 34
23 15 26 27 27

Table 1: Observed EPC percentage for each hour for the four different cross-border connections
in Central-West Europe from 1 July 2015 to 30 June 2018.

spreads, with peaks around hour 5 and 18. The lowest values are reached at hour 12 and 23.
Though, the rather high percentages in general suggests that EPC is important to consider in a
modeling context in all cases.

Fig. 3(a) illustrates the evolution of the day-ahead electricity price in Germany and France
for the hour from 21:00-22:00. In the rest of the paper, we denote the hour spanning the period
21:00-22:00 by hour 21 and likewise for the other hours. First of all, negative prices are observed,
indicating oversupply of electricity in the grid. Traditional financial models that only allow non-
negative prices are therefore not able to take this feature into account. Even though it is only
German prices that are negative for this particular time series, negative values are allowed for
the other CWE market areas as well. Secondly, it is apparent that the mean and volatility of
each price series seems to be highly seasonal. In particular, spring and summer periods result
in a more calm behaviour, and autumn and winter periods in a more volatile behaviour, see
Figs. 3(b)–3(c) that exemplify the seasonal differences.

Proceeding with the seasonal behaviour, Fig. 4 illustrates the day-ahead price differences
between three chosen price pairs. We see that EPC happens more often during summer and
spring than during autumn and winter in the FR-DE case in Fig. 4(a). A possible explanation
for this is the fact that the cheap nuclear power production from France during summer levels
out the differences between the French and German prices. Opposite, during winter the demand
for electricity rises in France and in turn the French power prices rise, while the German prices
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Figure 2: Time spent in the EPC state in percentage for each hour from 1 July 2015 to 30 June
2018 for the following spreads: DE-FR, BE-FR, BE-NL, and DE-NL.
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Figure 3: (a) Day-ahead pricse for France and Germany for hour 21 from 1 July 2015 to 30 June
2018, (b) and (c) are subsamples of the data presented in Fig. 3(a) to illustrate the differences
between these periods.
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(a) FR-DE hour 21 day-ahead price spread
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(b) NL-DE hour 12 day-ahead price spread
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(c) BE-NL hour 8 day-ahead price spread

Figure 4: Day-ahead price differences for different hours and market areas.

do not rise similarly partly due to the high wind power production and the lower dependency on
using electricity for heating, all in all making the gap between German and French prices widen
during autumn/winter. With a physical connection between Germany and France being only of a
certain size, and since the amount of needed transferred electricity between Germany and France
to level out prices during autumn/winter is greater due to the larger price gap, congestion is
observed more often during autumn/winter than spring/summer. A similar behaviour is observed
in Fig. 4(c), while the rate at which EPC occurs seems more evenly spread out over the year in
Fig. 4(b).

To investigate EPC in more detail, we plot in Fig. 5 the number of days being in the EPC
state for the spreads considered in Fig. 4. The plot is constructed by dividing the observations
in overlapping sub-samples of 60 days, and then calculating the number of EPC days in each
sub sample. Fig. 5(a) shows a rather large difference between the time spent in EPC during
spring/summer and autumn/winter, with a peak above 80% and the lowest value being 0%. The
same seasonal pattern is observed in Fig. 5(c), though with a lower amplitude. Opposite, the
level is much more constant in the case of Fig. 5(b).

As is apparent from the above discussion, special features distinguish hourly day-ahead prices
from traditional financial markets. Besides the obvious allowed negativity in the CWE area,
seasonality in the mean level and volatility are known features of electricity prices (see e.g.
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(a) FR-DE hour 21 day-ahead price
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Ju
l-1

5

Ja
n-

16

Ju
l-1

6

Ja
n-

17

Ju
l-1

7

Ja
n-

18

Ju
l-1

8

Date

0

20

40

60

80

100

T
im

e 
in

 E
P

C
 s

ta
te

 (
%

)

(c) BE-NL hour 8 day-ahead price

Figure 5: Time spent in the EPC state in percentage for overlapping sub-samples of 60 days.
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Haldrup et al. (2010), Pircalabu & Benth (2017), Borovkova & Schmeck (2017), or more recently
the work of Benth et al. (2019) or Latini et al. (2019)), but as discussed above time-varying
seasonality in probability of being in the EPC state is also important to take into account.

3 Model description

Let (Ω,F ,P) be a complete probability space. We propose the following model for the day-ahead
prices

S(t) = I(t)p(t), (1)

where S(t) ∈ RN is the vector of day-ahead prices at time t for N market areas. The motivation
for our model is to capture the price formation mechanism in a reduced-form manner. The exact
convergence of day-ahead prices is represented by I(t) ∈ RN×N , which is piecewise constant
resembling the exact price convergence of prices from different market areas. An illustrative
example of the process I(t) is in the case N = 2, where one can choose the states of I(t) as

I(1) =

[
w 1− w
w 1− w

]
and I(2) =

[
1 0
0 1

]
. (2)

Here w is a constant between zero and one that measures the pulling effect of each component of
S(t). In this example, state two—emphasized with subscript (2)—corresponds to no exact price
convergence and S(t) = p(t), whereas state one corresponds to exact price convergence with the
common price being wp1(t) + (1−w)p2(t). The states of I(t) is driven by an underlying process
z(t), which we will discuss shortly.

The process p(t) ∈ RN represents the partly latent non-convergence price set in each individ-
ual market area, and can thus be interpreted as the ”domestic” prices. It is only partly latent,
since we do in fact observe it in non EPC states. In the above example with N = 2, we observe
p(t) whenever we are in state two. Based on the rather deterministic demand for electricity
(which in turn is due to highly seasonal temperature patterns influencing the demand to a large
extent) we assume that deviations from a deterministic seasonal function are temporary. We
therefore assume that p(t) can be divided in a deterministic part, Λ(t) ∈ RN and a stochastic
part q(t) ∈ RN , by

p(t) = Λ(t) + q(t). (3)

We assume that the stochastic part is governed by a multivariate Ornstein-Uhlenbeck process

dq(t) = −Kq(t)dt+ ΣdBp(t), (4)

where K ∈ RN×N is a constant matrix with the real part of its eigenvalues being positive,
Σ ∈ RN×N , and Bp(t) is an N -dimensional Brownian motion. By this specification we allow
for negative prices. While this is clearly unsatisfactory in traditional financial markets, negative
prices in electricity markets do occur as discussed in Sec. 2.

We remark that a similar modelling idea has been proposed in a recent paper by Hinderks et al.
(2018) in a structural Heath-Jarrow-Morton approach to electricity futures pricing. There, fixed-
delivery futures price dynamics are modelled as a product of a noise process and a conditional
expectation of a structural component. As for our model, the authors demonstrate the analytical
tractability of such an approach in derivatives pricing.

The above specification holds for all N ; however, we will limit ourselves to the case where
N = 2 in the rest of the paper for two reasons. First of all, an important feature of the model is
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the ability to price transmission rights. By construction, these derivatives are essentially spread
options with the underlying being the spread between only two adjacent market areas. We thus
argue that the case with N > 2 is unnecessary regarding this application, but acknowledge that
it could be relevant in other contexts. Secondly, modeling issues related to the underlying process
governing I(t) arises when N > 2. We briefly comment on this in the next sections, where we
elaborate on the components of the model in more detail.

3.1 Properties of p(t)

Let vec(·) denote the vectorization operator that stacks the columns of a matrix A on top of each
other; i.e., if A is an m × n matrix, then the vectorization operator applied on A results in a
column vector of size mn× 1. Let further vec−1(·) be the operator satisfying vec−1(vec(A))=A
for a square matrix A. Notice that for non-square matrices, vec−1(·) is not uniquely defined;
however, since we only deal with square matrices, we omit a further discussion of this. Define
the Kronecker sum between two square matrices A and B by A⊕B = A⊗ IB + IA ⊗B, where
⊗ is the Kronecker product† and IB is the identity matrix with the same size as B, and IA is
defined in the same way. We denote the filtration generated by the Brownian motion Bp(t) by

{FBp

t }t≥0. Prop. 1 states the distribution of p(t) conditional on FBp
s .

Proposition 1. Let p(t) be defined as in Eq. (3), and let s < t. The distribution of p(t) is

normal conditional on FBp
s with mean

E[p(t)|FBp
s ] = Λ(t) + e−(t−s)Kq(s) (5)

and variance

Var[p(t)|FBp
s ] = vec−1

(
(K ⊕K)−1(I− e−(t−s)K⊕K)vec(ΣΣT)

)
, (6)

where I is the identity matrix of same size as K ⊕K.

Proof. The solution of Eq. (3) is seen to be

q(t) = e−(t−s)Kq(s) +

∫ t

s

e−(t−u)KΣdBp(u) (7)

by the multidimensional Ito formula. The normality and expected value follows. Using the Ito
isometry, we get

Var[p(t)|FBp
s ] =

∫ t

s

e−(t−s)KΣΣTe−(t−s)KT

du. (8)

For matrices A, B, and C of appropriate sizes, two useful identities are vec(ABC) = (CT ⊗
A)vec(B) (see e.g. Macedo & Oliveira (2013) and the references herein for more information on

†The Kronecker product between two matrices A ∈ Rm×n and B ∈ Rp×q is defined by

A⊗B =

 a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB,

 ,

being of size mp× nq. For more information see e.g. Macedo & Oliveira (2013).
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this result) and eA⊕B = eA⊗eB . Eq. (8) can then be simplified by writing the vectorized version
as

vec
(
Var[p(t)|FBp

s ]
)

=

(∫ t

s

e−(t−u)(K⊕K)du

)
vec(ΣΣT)

= (K ⊕K)−1(I− e−(t−s)K⊕K)vec(ΣΣT).

Since we assume that the eigenvalues of K all have positive real parts, all eigenvalues of K⊕K
have positive real parts, see e.g. Laub (2005). Hence, the existence of a limiting distribution of
q(t) follows from Prop. 6.2 of Ichihara & Kunita (1974). This limiting distribution is normal
with mean zero and variance

lim
t→∞

Var[q(t)|FBp
s ] = vec−1

(
(K ⊕K)−1vec(ΣΣT)

)
. (9)

As time approaches infinity, the expected value of p(t) will therefore coincide with Λ(t), while
the variance of p(t) coincides with the variance of q(t) given in Eq. (9).

3.2 Properties of z(t)

Limiting our investigation to the case N = 2, we assume that the state of I(t) is determined by
a latent univariate stochastic process z(t). Specifically, we assume that the EPC state occurs
whenever z(t) > 0, so in this two-dimensional case we have

I(t) =

{
I(1), if z(t) > 0

I(2), otherwise
,

where I(1) and I(2) are given in Eq. (2). z(t) is defined by

z(t) = λ(t) + x(t), (10)

λ(t) = aλ + bλ cos

(
2πt

M
+ cλ

)
,

dx(t) = −kx(t)dt+ σ(t)dBz(t), (11)

σ(t) = aσ + bσ cos

(
2πt

M
+ cσ

)
.

Here aλ, bλ, cλ, k, aσ, bσ, cσ,M ∈ R are constants, and Bz(t) is a univariate Brownian motion.
λ(t) is a seasonal function measuring the asymptotic mean level of z(t), while x(t) measures the
uncertainty of z(t). To allow for time-varying uncertainty in P(z(t) > 0), which is pronounced
in the empirical investigations in Sec. 2 and especially Fig. 5, we introduce seasonality in the
volatility parameter σ(t).

We denote the filtration generated by the Brownian motion Bz(t) by {FBz
t }t≥0, and assume

independence between FBz
t and FBp

t . Define Ft := FBz
t ∨ FBp

t . The following proposition is
useful in an estimation and simulation setting.

Proposition 2. Let z(t) be given as in Eq. (10), and let s < t. Then the distribution of z(t) is
normal conditional on Fs with mean

E[z(t)|Fs] = λ(t) + x(s)e−k(t−s), (12)

10



and variance

Var[z(t)|Fs] =
a2
σ

2k

(
1− e−2k(t−s)

)
+A(s, t) +B(s, t), (13)

where

A(s, t) =b2σ

(
4π2 +M2k2 +M2k2 cos

(
4πt
M + 2cσ

)
+ 2Mkπ sin

(
4πt
M + 2cσ

)
4(M2k3 + 4π2k)

− e−2k(t−s) 4π2 +M2k2 +M2k2 cos
(

4πs
M + 2cσ

)
+ 2Mkπ sin

(
4πs
M + 2cσ

)
4(M2k3 + 4π2k)

)
, (14)

B(s, t) =2aσbσM

(
π sin

(
2πt
M + cσ

)
+Mk cos

(
2πt
M + cσ

)
2(M2k2 + π2)

− e−2k(t−s)π sin
(

2πs
M + cσ

)
+Mk cos

(
2πs
M + cσ

)
2(M2k2 + π2)

)
. (15)

Proof. Using the Ito formula, the solution to Eq. (11) for s < t is

x(t) = e−k(t−s)x(s) +

∫ t

s

e−k(t−u)σ(u)dBz(u).

The normality follows from the deterministic integrand and the Brownian motion. The expected
value is trivially calculated, and the variance is obtained by using the Ito isometry and straight-
forward calculations.

3.2.1 An alternative approach

One approach that might be obvious to use to model the underlying process governing the state
of I(t) is that of continuous-time Markov chains, having been shown to be of great usefulness
in various applications (see e.g. Hubbard et al. (2008) in the context of disease progression
modelling, and Inamura (2006) in the context of credit rating modelling). As already noted, the
probability of EPC can be time-dependent with a seasonal pattern, see Fig. 5, meaning that a
time-homogeneous Markov chain would fail to give a realistic representation of the underlying of
I(t). Time-inhomogeneous Markov chains would take care of the just-mentioned shortcoming,
but, to the best of our knowledge, limited theoretical results exist to accommodate it. Hubbard
et al. (2008) use a common time transformation to make transition rates time dependent, which
is not applicable in our setting, since we would need a non-common time transformation to make
certain states more likely than others in certain periods and vice versa. Time-inhomogeneous
Markov chains being able to accommodate the above are therefore left as future research, which
would possibly also pave the way for the case with N > 2.

3.3 Properties of S(t)

Having established results regarding p(t) and z(t) in Sections 3.1 and 3.2, respectively, we now
turn to S(t).
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Proposition 3. Let p(t) and z(t) be defined as in Sections 3.1 and 3.2, respectively. The
distribution of S(t) is then mixed normal conditional on Fs for s < t with density

fs,t(x) =

2∑
j=1

P(j)(s, t)
1

(2π)Nj/2|Σ(j)(s, t)|
e−

1
2 (x−µ(j)(s,t))

T
Σ(j)(s,t)

−1(x−µ(j)(s,t))

with Nj ≤ N for j = {1, 2} being the rank of I(j), Φ(·) being the cumulative distribution function
for the standard normal distribution, and where

µ(j)(s, t) =I(j)E[p(t)|Fs]
Σ(j)(s, t) =I(j)Var[p(t)|Fs]IT

(j),

and

P(1)(s, t) = 1− Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)
, P(2)(s, t) = 1− P(1)(s, t). (16)

Proof. The characteristic function of S(t) is

E
[
eiy

TS(t)|Fs
]

=E
[
eiy

TI(t)(Λ(t)+q(t))|Fs
]

=E

[
E
[

exp

(
iyTI(t)

(
Λ(t) + e−(t−s)Kq(s)

+

∫ t

s

e−(t−u)KΣdBp(u)
))
|FBz
t ∨ Fs

]
|Fs

]

=E

[
exp

(
iyTI(t)

(
Λ(t) + e−(t−s)Kq(s)

)
− 1

2
yTI(t)

∫ t

s

e−(t−u)KΣΣTe−(t−u)KT

duI(t)Ty

)
|Fs

]

=P(z(t) > 0|Fs) exp

(
iyTI(1)

(
Λ(t) + e−(t−s)Kq(s)

)
− 1

2
yTI(1)

∫ t

s

e−(t−u)KΣΣTe−(t−u)KT

duIT
(1)y

)
+ (1− P(z(t) > 0|Fs)) exp

(
iyTI(2)

(
Λ(t) + e−(t−s)Kq(s)

)
− 1

2
yTI(2)

∫ t

s

e−(t−u)KΣΣTe−(t−u)KT

duIT
(2)y

)
.

The second equality is a consequence of the law of iterated expectations. As a result of Prop. 2,
we further have that

P(z(t) > 0|Fs) = 1− Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)
, (17)

concluding the proof.
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The construction of the model for S(t) implies that the introduced seasonal time variation in
p(t) and z(t) translates to seasonal time variation in S(t). To briefly elaborate on this, observe
that the expected value of S(t) is

E [S(t)|Fs] = E
[
I(t)E

[
p(t)|FBz

t ∨ Fs
]
|Fs
]

=
[
P(1)(s, t)I(1) + (1− P(1)(s, t))I(2)

]
E [p(t)|Fs] . (18)

Since we in both P(1)(s, t) and E [p(t)|Fs] can allow seasonal time variation, the expected value
of S(t) will thus be affected by these specifications. Eq. (18) has a very intuitive interpretation:
The expected value of day-ahead prices is a weighting of 1) the expected value of day-ahead
prices if EPC is present, and 2) the expected domestic prices. The weights are given by the
probability of being in each state.

4 Estimation

Due to the assumed independence between FBz
t and FBp

t , the estimation procedure can be
divided in two independent parts. Namely, estimation of the parameters governing p(t), and
estimation of the parameters governing z(t). A common feature is the latent behaviour of the
considered processes. We therefore use filtering techniques in both cases.

Besides these two components, we also consider estimation of the weights constituting I(t)
inspired by spatial econometrics, which turns out to be estimation of w in our two-market case,
cf. Eq. (2). We consider each of them in turn in the following sections.

4.1 Estimation of p(t)

We assume that we have an equidistant sampling between observations and mark it by ∆.
Eqs. (7)–(8) implies that the state equation of q(t) in a state space representation is

q(t) = F (t)q(t−∆) + η(t), (19)

where F (t) = e−∆K , η(t) ∼ N(0, Qt), and Qt = Var[q(t)|Ft−∆]. Given the estimation purpose of
this section, we introduce a measurement error in Eq. (1) and define the measurement equation
by

S(t) = I(t)p(t) + ε(t)

= I(t)(Λ(t) + q(t)) + ε(t),

where ε(t) ∼ N (0, R(t)). R(t) is

R(t) =

{
R(1), if I(t) = I(1)

R(2), if I(t) = I(2)

,

with R(1) and R(2) being constant diagonal matrices corresponding to the EPC and non-EPC
state, respectively.

4.1.1 Kalman filtering

The normality and linearity of the state space representation lead us to using the Kalman filter in
combination with maximum likelihood to estimate the parameters of p(t). There is vast literature
on the Kalman filter; see e.g. Schwartz & Smith (2000) in the context of commodity markets.
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During the predict step of the Kalman filtering procedure, the a priori estimate of the state
is

q̂(t|t−∆) = F (t)q̂(t−∆|t−∆),

and the a priori estimate of covariance of this state estimate is

P̂ (t|t−∆) = F (t)P̂ (t−∆|t−∆)F (t)T +Q(t).

We update the state estimate and the corresponding covariance by

q̂(t|t) = q̂(t|t−∆) +H(t)(S(t)− I(t)(Λ(t) + q̂(t|t−∆))),

and

P̂ (t|t) = P̂ (t|t−∆)−H(t)I(t)P̂ (t|t−∆),

respectively, where

H(t) = P̂ (t|t−∆)I(t)T (I(t)P̂ (t|t−∆)I(t)T +R(t))−1

is the Kalman gain. Due to the assumed independence between FBz
t and FBp

t , we regard I(t) as
given at time t in the Kalman filtering scheme.

Let T denote the number of observations, and let θΛ denote the parameters governing the
deterministic function Λ(t). Having established the Kalman filtering scheme, we maximize the
log-likelihood

L(θq) =

T∑
i=2

log f(S(i)|FBz
i ,FBp

i−1),

with respect to θq = (θΛ,K,Σ, R(1), R(2)), and where

f(S(i)|FBz
i ,FBp

i−1) = |2πV (i)|−1/2e−
1
2 (S(i)−E(i))TV (i)−1(S(i)−E(i)),

E(i) = I(i)(Λ(i) + q̂(i|i− 1)),

and

V (i) = I(i)P̂ (i|i− 1)I(i)T +R(i).

4.2 Estimation of z(t)

Let y(t) ∈ {0, 1} denote the observed state of I(t) at time t, meaning that y(t) is a Bernoulli
process with dependent and non-identically distributed Bernoulli trials. To see this, we assume
that y(t) = 1 corresponds to EPC. Therefore, by remembering Eq. (17) and Prop. 2, we get

P(y(t) = 1|Fs) = P(z(t) > 0|Fs)

= 1− Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)

= 1− Φ

(
−
(
λ(t) + e−k(t−s)x(s)

)√
Var[z(t)|Fs]

)
. (20)
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Hence, due to the dependence on x(s) we have that the Bernoulli trials are dependent and
non-identically distributed.

As a result of Eq. (20), the conditional density of y(t) is

f(y(t)|Fs) =

(
1− Φ

(
−
(
λ(t) + e−k(t−s)x(s)

)√
Var[z(t)|Fs]

))y(t)

Φ

(
−
(
λ(t) + e−k(t−s)x(s)

)√
Var[z(t)|Fs]

)1−y(t)

.

(21)

Standard estimation methods such as maximum likelihood estimation is not feasible, since the
log-likelihood,

L(θz) =

T∑
i=2

log

(
1− Φ

(
−
(
λ(i) + e−k∆x(i− 1)

)√
Var[z(i)|Fi−1]

))y(i)

Φ

(
−
(
λ(i) + e−k∆x(i− 1)

)√
Var[z(i)|Fi−1]

)1−y(i)

,

where θz = (aλ, bλ, cλ, k, aσ, bσ, cσ) cf. Sec. 3.2, depends on the latent process x(t). The linear
Kalman filter is suitable in the estimation of p(t), but the non-differentiable relationship between
y(t) and z(t) additionally invalidates the extended Kalman filter, and we are thus in the need
for another approach.

4.2.1 Particle filtering

We choose to use particle filtering to mitigate this, and specifically we have employed the boot-
strap filter. For references, the interested reader is advised to look at Kantas et al. (2015) in a
general state-space model, whereas Pitt et al. (2014) consider particle filtering in the context of
stochastic volatility models. As in the Kalman filter case, the bootstrap filter can be divided in
two steps: a predict and an update step†. In our context, the bootstrap procedure is as follows:

Let again T denote the number of observations. For t = ∆, 2∆, ..., T −∆ we do the following:

• Predict step

1. Draw n samples x̂i(t|t−∆) ∼ N(e−k∆x̂i(t−∆|t−∆),Var[x(t)|Ft−∆]), cf. Prop. 2.

• Update step

2. For each i ∈ {1, 2, ..., n}, calculate weights

γi(t+ ∆) =

(
1− Φ

(
−
(
λ(t+ ∆) + e−k∆x̂i(t|t−∆)

)√
Var[z(t+ ∆)|Ft]

))y(t+∆)

× Φ

(
−
(
λ(t+ ∆) + e−k∆x̂i(t|t−∆)

)√
Var[z(t+ ∆)|Ft]

)1−y(t+∆)

,

cf. Eq. (21).

3. For each i ∈ {1, 2, ..., n}, calculate normalized weights,

γ̃i(t+ ∆) =
γi(t+ ∆)∑M
j=1 γj(t+ ∆)

.

†The bootstrap filter can also be divided in an importance and selection step, but we find it more intuitive
to divide the algorithm in a predict and update step, also making the Kalman filter presented earlier and the
bootstrap filter easily comparable.
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4. For each i ∈ {1, 2, ..., n}, draw a sample x̂i(t|t) from the distribution with density

f(x) =

n∑
j=1

γ̃j(t+ ∆)δ(x− x̂j(t|t−∆)),

where δ(·) is Dirac’s delta function.

Having obtained n values of x(t) (i.e., z(t)) for each t = 0,∆, ..., T − ∆, we evaluate the log-
likelihood as

L(θz) =

T∑
i=2

log

(
1

n

n∑
j=1

(
1− Φ

(
−
(
λ(i) + e−k∆x̂j(i− 1|i− 2)

)√
Var[z(i)|Fi−1]

))y(i)

× Φ

(
−
(
λ(i) + e−k∆x̂j(i− 1|i− 2)

)√
Var[z(i)|Fi−1]

)1−y(i))
.

As pointed out by Pitt et al. (2014), one single run of the particle filter will therefore estimate
the log-likelihood.

Due to the non-observable nature of the z(t) process and the fact that the sign of it only
matters, one has to fix the level of it in order to avoid possible oscillating estimation issues.
Hence, we fix σ(t) to oscillate around 1, by setting aσ to

aσ =

√
2k

1− e−2k∆
.

4.3 Estimation of I(t)

Inspired by weight matrix determination in spatial econometrics (see e.g. Abate & Haldrup
(2017)), we construct I(t) using the spatial relationship between the market areas. Although
our model differs from spatial econometric models in that the observed prices do not depend on
lagged values of observed prices from the market areas under consideration, but rather depend on
a weighting of (partly) unobservable domestic prices, the weighting of the unobservable domestic
prices are chosen in a similar way. As discussed in Abate & Haldrup (2017), choosing the spatial
weight matrix is a delicate task, due to the selection of the factor influencing the weight matrix.
Since net export basically results in a horizontal shift in either the domestic supply or demand
curve, depending on the sign of the net export cf. Fig. 1, the consumed electricity in each market
area determines how sensitive the resulting domestic market price is to variation in net export.
Loosely speaking, a large market area—based on the supplied electricity—is not as price sensitive
to net export as a smaller market area. Hence, we use the supplied electricity in a market area as
the ”size” of the market area. In the two-market case, estimation of I(t) boils down to estimating
w, cf. Eq. (2).

5 Application

In this section, we first exemplify the proposed model by jointly modelling hour 21 day-ahead
prices for Germany and France. Presentation of estimation results is then followed by an analysis
of derivative prices implied by the model.
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5.1 Case study of German and French electricity prices

Our data set introduced in Sec. 2 contains daily observations. Hence, we set M = 365, and the
time between adjacent observations is set to 1/365. We report estimation results for p(t) and
z(t) in the following sections after a short note on the estimation of w in I(1). As discussed in
Sec. 4.3, we use the supplied electricity to determine w. Table 2 reports the supplied electricity for

DE FR

575,701 496,932

Table 2: Supplied electricity given in (GWh) based on IEA (2017).

Germany and France, which results in a weight for Germany of 575, 701/(575, 701 + 496, 932) =
0.537. The resulting two states of I(t) are given in Eq. (22).

I(1) =

[
0.537 0.463
0.537 0.463

]
or I(2) =

[
1 0
0 1

]
. (22)

Motivated by the empirical findings in Sec. 2 and related literature on electricity price mod-
eling (e.g. Pircalabu & Benth (2017)), we define the seasonal function Λ(t) in Eq. (3) as

Λ(t) = aΛ + bΛ cos

(
2πt

M

)
+ cΛ sin

(
2πt

M

)
+ dΛIW (t),

where IW (t) is an indicator function being one if day t is either Saturday or Sunday, and
aΛ, bΛ, cΛ, dΛ ∈ R2 are constants. We further assume that Σ is lower triangular, and that K
is diagonal in Eq. (4). In Tables 3-4 the estimation results for θq are reported using the estima-
tion method presented in Sec. 4. To simplify the presentation, the estimation results are divided
in the parameters governing Λ(t) and q(t).

âΛ b̂Λ ĉΛ d̂Λ

DE 36.42 0.75 3.43 -4.74

FR 45.17 4.52 -7.65 -6.34

Table 3: Estimation results for Λ(t).

K̂(1,1) K̂(2,2) Σ̂(1,1) Σ̂(2,1) Σ̂(2,2)

89.53 30.68 99.95 52.34 52.15

Table 4: Estimation results for q(t).

The estimated weekend coefficient, d̂Λ for both market areas is negative, and thus reflects the
lower electricity demand during weekends compared to weekdays. Also notable is the estimated
base level âΛ, where the German base level is lower than the French base level. Regarding
the speed of mean reversion, the estimated German one, K̂(1,1), corresponds to a half-life of
approximately 2.8 days, whereas the estimated French speed of mean reversion corresponds to a
more persistent behaviour with a half-life of approximately 8.2 days.
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(a) Ŝ and p̂ for Germany
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(b) Ŝ-p̂ for Germany
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(c) Ŝ and p̂ for France
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(d) Ŝ-p̂ for France

Figure 6: (a) Estimated Ŝ and p̂ for Germany, (c) Ŝ-p̂ for Germany, (c) estimated Ŝ and p̂ for
France, (d) Ŝ-p̂ for France.

To investigate the estimation results in more detail, we obtain the estimated p̂ process by
filtering of q̂, following the Kalman scheme described in Sec. 4. In addition, using the estimated
forms of I(t) presented in Eq. (22), and assuming we have knowledge of I(t) at time t as in the
described Kalman scheme, we also obtain the estimated Ŝ process. The intention of showing
the estimated Ŝ process in addition to the estimated p̂ process is twofold. Firstly, to give a
sense of the model’s ability to replicate the observed prices in Fig. 3(a), and secondly to give an
insight in the difference between the model implied Ŝ and p̂ processes. In Figs. 6(a) and 6(c)
we show the estimated p̂ process and the corresponding estimated Ŝ process for both Germany
and France, resembling the observations in Fig. 3(a) quite well. Figs. 6(b) and 6(d) illustrate
the difference between the estimated Ŝ and p̂ processes. It is apparent that the differences are
more frequent during spring/summer than autumn/winter, reflecting the fact that EPC happens
more frequently during spring/summer. Also notable is the fact that the differences are greater
during autumn/winter, so from this perspective, the impact from EPC on a single observation is
highest during autumn/winter. Due to the parameter w affecting the weighting of the domestic
day-ahead prices (the p process), the resulting differences between the Ŝ and p̂ processes in the
two market areas differ. The pattern in Fig. 6(b) is therefore reversed in Fig. 6(d), but they
differ in absolute terms.
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The estimated parameters for the z(t) process are reported in Table 5. The estimated speed
of mean reversion translates to a half-life of approximately 2.56 days. Fig. 7(a) shows the es-

k̂ âλ b̂λ ĉλ b̂σ ĉσ

98.8570 -0.6146 1.3094 0.0565 -14.2477 -1.3537

Table 5: Estimation results for z(t).

timated asymptotic probability of observing EPC throughout the year. The yearly pattern
observed in Fig. 5(a) is thus replicated by the model. The significant drop in probability during
August/September is notable and marks the switch from summer to autumn. The lowest prob-
ability is reached in November and is as low as 0.2%, while the highest is in July and is 82%. In
a risk management or asset valuation situation, this is quite a difference and must be taken into
account. We elaborate on this matter when covering derivative prices implied by the model.

Remember that we assume independence between FBz
t and FBp

t , which implies that we can
divide the estimation procedure in two independent parts. Fig. 7(c) shows a histogram of the
observed price spread between France and Germany. To investigate the dependence between
the p(t) process and the z(t) process, we only show price spreads from non-EPC days, which is
immediately followed by days with EPC. Most occurrences are observed just about zero, meaning
that there is a tendency that EPC happens in periods with small price spreads. Though, there is
no guarantee that EPC only happens in these periods, since it reaches as high as approximately
27 EUR/MWh in absolute terms. From the perspective of the estimated model, Fig. 7(b) shows
the difference between the asymptotic mean levels of p(t); i.e., it shows the spread between
Λ1(t) and Λ2(t), where Λ(t) = [Λ1(t) Λ2(t)]>. Comparing the shape of Fig. 7(b) to the shape
of Fig. 7(a), we conclude that a high probability of EPC roughly corresponds to a small price
spread asymptotically, and vice versa. Loosely speaking, even though we assume independence

between FBz
t and FBp

t , the seasonal components of the model suggest that a high probability
of EPC translates to a small spread between the components of p(t), and that a low probability
of EPC translates to a large spread between the components of p(t). Assuming independence

between FBz
t and FBp

t thus has the advantage that we can split up the estimation procedure
in two independent parts, while still allowing the above discussed dependency between the EPC
probability and the magnitude of the spread between the components of p(t). We leave it as

future work to investigate the case with dependence between FBz
t and FBp

t .
To further illustrate the model, we show in Fig. 8(a) a simulated path for both the German

and French prices using the parameters reported in Tables 3-5. Again we emphasize when EPC
occurs by a solid black line. As expected from Fig. 7(a) we observe most EPC states during
summer, and least during autumn/winter. Regarding the EPC aspect of the model, we plot in
Fig. 8(b) the simulated z(t) process, which is, due to the construction, positive whenever we
observe EPC in Fig. 8(a).

5.2 Derivative pricing

In electricity markets, the underlying cannot be stored—at least not effectively—and the classical
pricing assumptions about market completeness do therefore not hold. Hence, one typically
resorts to imposing a parametric form through a measure change, and thereby introducing the
so-called market price of risk. By using market data, it is then possible to back out the market
price of risk.
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Figure 7: (a) Estimated asymptotic probability of observing EPC throughout a year, (b) differ-
ence between the estimated seasonality functions affecting the p process, and (c) the observed
German hour 21 day-ahead price subtracted from the French hour 21 day-ahead price. The
prices used in (c) are prices from non-EPC days, where we observe EPC the next day.
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Figure 8: (a) Simulated hour 21 day-ahead prices for Germany and France, and (b) corresponding
simulation of z process.

The Girsanov theorem gives the p-process under an equivalent pricing measure Q as

p(t) = Λ(t) + e−(t−s)Kq(s) +

∫ t

s

e−(t−u)KΣϕ(u)du+

∫ t

s

e−(t−u)KΣdBQp (u). (23)

where ϕ(t) ∈ RN is the so-called market price of risk, assumed to be adapted to {Ft}t≥0 and
satisfying certain integrability conditions (see Girsanov (1960)). In addition, BQp (t) ∈ RN is a
Brownian motion under the new measure Q. By assuming no market price of risk concerning
z(t), we thus see that an appropriate shift in the mean level of p(t) will yield the appropriate
measure change.

In practice, one might assume that ϕ(t) is a piecewise constant deterministic function and
match it to the observed forward prices at time s, which we will cover in the next section. Eq. (23)
then implies that p(t) under Q is normally distributed with expected value

EQ[p(t)|Fs] = Λ(t) + e−(t−s)Kq(s) +

∫ t

s

e−(t−u)KΣϕ(u)du (24)

and variance given in Eq. (6). It follows from Eq. (24) and Prop. 3 that S(t) under Q is
characterized by the density

fQs,t(x) =

2∑
i=1

P(i)(s, t)
1

(2π)Ni/2|Σ(i)(s, t)|
e
− 1

2

(
x−µQ

(i)
(s,t)

)T
Σ(i)(s,t)

−1
(
x−µQ

(i)
(s,t)

)
, (25)

where

µQ(i)(s, t) =I(i)EQ[p(t)|Fs], (26)

and everything else is defined in Prop. 3.

5.2.1 Forwards

The liquidity of electricity markets is low compared to traditional financial markets, with the
forward market in general being the most liquid. As a result, derivative prices are often restricted
to be consistent with the forward market†, which is used to back out the market price of risk.

†We assume a deterministic interest rate, and thus the term forward market does also cover the futures market.
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Following the lines of the discussion of market incompleteness in electricity markets, we define
the forward price at time s for a forward contract with delivery time t as the expected value
under Q of the future day-ahead price, as in e.g. Benth & Meyer-Brandis (2009). In terms of
our multivariate model, we have

F (s, t) = EQ[S(t)|Fs],

where F (s, t) ∈ RN is the forward price at time s for delivery at time t for N different market
areas. In our modeling framework, Prop. 4 states the forward price.

Proposition 4. Let S(t) be defined under Q as in Eq. (25). Then the forward price at time s
for delivery at time t for two different market areas is

F (s, t) =
[
P(1)(s, t)I(1) + P(2)(s, t)I(2)

]
EQ [p(t)|Fs] . (27)

Proof. Follows from Eq. (18) and Eq. (25).

Eq. (27) implies that the spread between forward prices decreases gradually as P(1)(s, t)→ 1.
In the extreme case where P(1)(s, t) = 1, the model suggest that the forward prices in the two
different market areas are equal. The model is hence in line with the expectation of a single
forward price in a situation with two perfectly coupled markets.

5.2.2 Transmission rights

A transmission right is a European spread option with the underlying assets being day-ahead
prices of adjacent market areas. The pricing formula for transmission rights given the model
presented in Sec. 3 is closely related to the work by Bachelier (1900) and is given in the next
proposition.

Proposition 5. Let S(t) be defined under Q as in Eq. (25), g ∈ R2, and let (gTs(t) −H)+ be
the payoff of a European spread option with strike H. Then

EQ[(gTS(t)−H)+|Fs] =

2∑
i=1

P(i)(s, t)

(
a(i)(s, t)Φ

(
a(i)(s, t)

c(i)(s, t)

)
+ c(i)(s, t)φ

(
a(i)(s, t)

c(i)(s, t)

))
, (28)

where

ai(s, t) = gTµQ(i)(s, t)−H, (29)

ci(s, t) =
√
gTΣ(i)(s, t)g, (30)

and Φ and φ is the distribution and density function of the standard normal distribution, respec-
tively. µQ(i)(s, t) is given in Eq. (26), and Σ(i)(s, t) is given in Prop. 3.

Proof. Define Z(t) := gTS(t)−H. Eq. (25) implies that Z(t) under Q is

Z(t)|Fs ∼
2∑
i=1

P(i)(s, t)N(gTµQ(i)(s, t)−H, g
TΣ(i)(s, t)g)

22



Hence, by defining ai(s, t) and ci(s, t) as in Eqs. (29)-(30) and U ∼ N(0, 1), we obtain

EQ[Z(t)+|Fs] =

2∑
i=1

P(i)(s, t)EQ[(ai(s, t) + ci(s, t)U)+|Fs]

=

2∑
i=1

P(i)(s, t)

∫ ∞
−ai(s,t)/ci(s,t)

ai(s, t) + ci(s, t)u√
2π

e−u
2/2du

=

2∑
i=1

P(i)(s, t)

(
ai(s, t)Φ

(
ai(s, t)

ci(s, t)

)
+ ci(s, t)φ

(
ai(s, t)

ci(s, t)

))
,

where P(i)(s, t) is defined in Eq. (16).

To further comment on Prop. 5, we set g = [1 − 1], and H = 0, which is also the most
relevant case having the transmission rights in Europe in mind. Consequently, we get that
gTS(t)−H = 0 in the EPC case, and Eq. (28) thus reduces to

EQ[(S1(t)− S2(t))+|Fs] = P(2)(s, t)

(
a(2)(s, t)Φ

(
a(2)(s, t)

c(2)(s, t)

)
+ c(2)(s, t)φ

(
a(2)(s, t)

c(2)(s, t)

))
. (31)

Intuitively, the transmission right value should be increasing when the probability of no con-
vergence, P(2)(s, t), increases; this is confirmed by Eq. (31). As a result, by assuming no price
convergence—i.e. P(2)(s, t) = 1—one would simply overestimate the value of the transmission
right. Also, having Fig. 7(a) in mind and the empirical setup in Sec. 5.1, there is a significant
difference between the reduction of transmission right prices throughout the year, simply due to
the time-varying probability of EPC.

6 Conclusion

In this paper, we propose a model for the joint behaviour of day-ahead electricity prices in a
two-market setup where the market coupling mechanism is taken into account in a continuous
time manner. The model is dividable in two parts inspired by the way the market coupling
mechanism is effectuated in Europe: The first part captures the exact price convergence, modeled
by a latent univariate Gaussian Ornstein-Uhlenbeck process. The second part can be interpreted
as capturing the domestic prices set in each individual market area, which we model by a partly
latent multivariate Gaussian Ornstein-Uhlenbeck process.

We derive theoretical results of the model, and we discuss the estimation of the model in
detail. With regard to the latter, our estimation proposal consists of two assumed independent
parts: 1) standard Kalman filtering to estimate the process capturing the domestic prices, and 2)
particle filtering to estimate the process capturing the exact price convergence. Both approaches
are used in combination with maximum likelihood.

The model is exemplified through a case study where we jointly model German and French
hour 21 day-ahead prices. We find a strong seasonal behaviour in the estimated probability of
observing exact price convergence. Lastly, we discuss derivative prices implied by the model
and show that the implied forward and transmission right prices can be obtained by closed-
form formulas. The impact of the exact price convergence on forward and transmission right
prices can be directly read off from the closed-form formulas. In the example with German and
French hour 21 day-ahead prices, the strong seasonality in the probability of observing exact
price convergence suggests that 1) the spread between forward prices throughout a year varies
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greatly, and 2) with everything else being equal the transmission right prices throughout a year
vary greatly.

Future research includes the case where the number of market areas exceeds two. Although
we have argued that such case is not relevant given the presently traded instruments, advanced
scenario analysis could be derived from such model. Furthermore, it would be interesting to
investigate how to incorporate, and the implication of including, spikes. As an example, large
movements in opposite directions of two prices would significantly impact the value of a trans-
mission right. However, as a consequence of the market coupling mechanism, such scenarios are
very rare, and spikes of the same sign are often observed in adjacent market areas. The real
impact of such spikes on e.g. derivatives could therefore be of minor importance. This is also
supported by the fact that fewer and fewer spikes are observed, which in turn is possible due to
the increased market interconnectedness that potentially eliminates spikes.
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