
USING DEEP REINFORCEMENT
LEARNING FOR ACTIVE FLOW CONTROL

by

Marius Holm

Thesis
for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

May 2020

Abstract

We apply deep reinforcement learning (DRL) to reduce and increase the drag
of a 2-dimensional wake flow around a cluster of three equidistantly spaced
cylinders, known as the fluidic pinball. The flow is controlled by rotating the
cylinders according to input provided by a DRL agent or a pre-determined
control function. Simulations are carried out for two Reynolds numbers (Res),
Re = 100 and 150, corresponding to a periodic asymmetric and chaos sym-
metric flow respectively. At Re = 100 DRL agents are able to reduce drag by
up to ≈ 28% and increase drag by ≈ 45% compared to the baseline flow with
no applied control. For the chaotic flow at Re = 150 DRL agents are able to
reduce the drag by up to ≈ 32% and increase drag by up to ≈ 65% compared
to the baseline flow.

Deep reinforcement learning combines artificial neural networks (ANNs)
with reinforcement learning (RL) architecture that enables an agent to learn
the best actions by interacting with an environment. Reinforcement learning
(RL) refers to goal-oriented algorithms that can learn to achieve a complex
goal by interacting with an environment, i.e. by trial-and-error. Artificial
neural networks are used as function approximators for the reinforcement
learning policy and/or value function. The ANN is trained to be the best
possible approximation to the target function by a gradient descent (GD) op-
timization algorithm. This especially effective for complex systems where
the possible states of the system, and all possible actions are too large to be
completely known.

In the thesis we implemented a DRL agent based on the proximal policy
optimization (PPO) algorithm together with a fully connected neural network
(FCNN) to control the rotations of the cylinders. We also compare the DRL
strategies with simpler strategies like constant rotations and pre-determined
sinusoidal control functions.

iii

Acknowledgments

I would first and foremost like to thank Jean Rabault for being my supervi-
sor. Your importance to this project can probably not be overstated, clearly
indicated by the 105 GitHub issues currently registered in our various repos-
itories, in addition to weekly discussion pushing me to overcome my natural
desire to procrastinate. A big thank you to my main supervisor Morten Hjort-
Jensen for giving me such free reign when choosing my Master’s thesis, and
for always keeping spirits high in the CS: Physics offices. I will probably
never forget the first class of your introductory machine learning class where
you addressed me by name, to my great surprise as we had never previously
met! Thank you to Miroslav Kuchta for providing me with all-important code
that would have taken me longer than I care to admit developing on my own,
and for all your feedback on the thesis in the closing stages of the project. I
would also like to thank my final co-supervisor, Mikael Mortensen, who in his
course on computational fluid dynamics gave me the necessary background
to embark on this project.

A big thank you to all my friends and colleagues in the CS: Physics offices.
Although a Master’s thesis is a lonely project of many hours spent alone,
spending them “alone” with you made them a lot easier to handle. There is
also a good amount of coursework to be done before reaching the pinnacle
that is a thesis, and without the help of everyone in the offices, finishing those
courses would have been a lot more stressful than I already found them.

Finally, a big thank you to my friends and family outside of the University.
Having so many great people around me that support me in whatever I do is
something I try my best not to under-appreciate. You have helped me relax
and think of other things during motorcycle rides, taco evenings, and gaming
nights. Having people like you is all-important when going through such a
long project.

v

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis structure . 2

I Theory 5

2 Machine Learning ML 7
2.1 Introduction . 7
2.2 Learning algorithms and use cases 7

2.2.1 ML Tasks, T . 8
2.2.2 ML Performance Measure, P 10
2.2.3 ML Experience, E . 11

2.3 Linear Regression . 12
2.4 Fitting to data . 14
2.5 Regularization . 15
2.6 Hyperparameters . 17
2.7 Gradient Descent . 19

2.7.1 Stochastic Gradient Descent 20
2.7.2 Momentum Gradient Descent 21
2.7.3 Adam . 22

3 Deep learning 25
3.1 Feedforward neural networks . 26
3.2 Backpropagation . 30
3.3 Activation functions . 35

3.3.1 Sigmoid and Tanh . 36
3.3.2 Rectified linear . 37

3.4 Universal approximation theorem 38

vii

viii Contents

3.5 Network architecture . 39
3.6 Pre-trained networks . 40

4 Reinforcement Learning 41
4.1 Introduction . 42

4.1.1 Reinforcement learning systems 43
4.2 Computing the policy gradient 44
4.3 Proximal Policy Optimization - Background 46

4.3.1 Policy Gradient background for PPO 46
4.3.2 Trusted Region Methods 47

4.4 Clipped Surrogate Objective - PPO 47

5 Active Flow Control (AFC) 49
5.1 Linear control . 50

5.1.1 Introduction and LQR . 50
5.1.2 Sensor estimation and Kalman filtering 50
5.1.3 Reduced order model (ROM) 51

5.2 Gradient-based and stochastic control 51
5.3 Deep reinforcement learning for AFC 52

6 Literature Review 55
6.1 Artificial neural networks trained through deep reinforcement

learning discover control strategies for active flow control . . . 55
6.2 Accelerating deep reinforcement learning strategies of flow con-

trol through a multi-environment approach 57

II Implementation and Methodology 61

7 Technical implementation 63
7.1 NREC virtual machines (VMs) 63
7.2 Docker . 64
7.3 Necessary Python packages . 64

8 Flow Solver 67
8.1 Python packages and domain explanation 67
8.2 Initialization of FlowSolver attributes 68
8.3 Variational form and boundary conditions 70
8.4 Setting up cylinders and matrices for solutions 71
8.5 Making attributes of the FlowSolver class accessible 72
8.6 Evolving the flow and applying rotations 73
8.7 Cylinder setup with boundary conditions for rotations 75

Contents ix

9 Code implementation 79
9.1 TensorForce environment class 79
9.2 TensorForce agent and simulation start 88
9.3 Advantages of the implementation 92
9.4 Possible improvements . 92

10 Methodology - Fluidic Pinball 95
10.1 Simulation Environment . 95

10.1.1 Mesh creation . 95
10.2 Mesh Refinement Study . 96

10.2.1 Mesh refinement at Re = 100 96
10.2.2 Mesh refinement at Re = 150 99

10.3 Flow initialization . 100
10.4 Active flow control setup . 101

III Results 107

11 Results - Fluidic Pinball 109
11.1 Active flow control Re = 100 . 109

11.1.1 Drag reduction . 110
11.1.2 Drag Increase . 117

11.2 Active flow control Re = 150 . 125
11.2.1 Drag reduction . 125
11.2.2 Drag Increase . 130

11.3 Power spectral density (PSD) . 135
11.3.1 Power spectral density (PSD) of reducing drag agents . 135
11.3.2 Power spectral density (PSD) of increasing drag agents . 137

IV Conclusion and Discussion 141

12 Conclusion 143
12.1 Summary . 143
12.2 Discussion . 144
12.3 Future work . 145

Appendices 147

A Mean flow Re = 150 151
A.1 Drag reduction . 151
A.2 Drag increase . 154

B Re = 200 experimental 157

x Contents

References 159

Chapter 1

Introduction

In this Master thesis we study the application of deep reinforcement learning
(DRL) to active flow control (AFC) problems. Until recent years the study of
active flow control has been a completely separate field of study compared
to the study of neural networks (NNs) and DRL. However, recent advances
have opened up a multitude of new approaches to older classical problems,
among them the application of machine learning (ML) algorithms to active
flow control.

The study of turbulence and how to control it, has been around for thou-
sands of years. Applying feathers to arrows to stabilize the flight path and
increase the range of the arrows is one of the earliest examples. In the later
years, the study of flows and turbulence have moved more towards numerical
simulations which. Simplifying a lot of the experimental expertise that was
previously required, to now being able to use pre-made flow solvers and only
having to define the system of interest properly. Thus, fluid mechanics (FMs)
and AFC have been well researched for a long time, and even more so after
the introduction of numerical simulations.

In contrast to the very old study of turbulence and turbulence control
we have the second necessary part of this thesis, deep learning and ANNs.
Artificial neural networks mimic the neural networks found in the human
brain, which consists of billions of neurons communicating through electri-
cal signals. ANN research had its first high in the 1940’s due to the work
done by McCulloch and Pitts [23]. In the 1960’s Rosenblatt’s perceptron con-
vergence theorem caused another surge of interest, but after Minsky and Pa-
pert’s work showing the limitations of a single perceptron the interest quickly
faded [15]. After almost 20 years of very little activity the introduction of the
back-propagation algorithm for the multilayer perceptron model once more
resurrected the research into ANNs [15]. Since the 1980’s ANN research has
been actively pursued and is now also becoming an increasingly important
part of industry. A small and simple ANN is not very computationally inten-
sive, but some problems like image- and speech recognition benefit greatly

1

2 Introduction Chapter 1

from a larger NN. Thus, solving these kind of problems was for a long time
unrealistic due to computational limitations, however we now have powerful
enough computers to compute increasingly large and complex ANNs. It is
expected that the increase in computing power which has followed Moore’s
law for approximately 50 years, will soon slow down [44]. As such, making
algorithms and NNs more effective will make it possible to continue solving
more and more advanced problems without purely relying on the computer
chip industry. Han et al. [13] presents one way of reducing the number of
parameters needed in a NN without losing accuracy.

1.1 Motivation

ML and artificial intelligence (AI) methodology has seen huge developments
in the last few decades which has caused a great variety of new approaches to
problems that have previously been unapproachable or very challenging with
classical methods. Research of optimization and flow control in fluid mechan-
ics has found optimal control methods for simple linear systems, while for
more complex systems stochastic or gradient-based methods have been able
to achieve good non-optimal control methods. The work of this project will
be in the overlap of machine learning in fluid mechanics and optimization in
fluid mechanics, where we apply ML methodology to what is an optimization
task.

Combining the fields of machine learning (ML), more specifically deep
reinforcement learning (DRL), and active flow control (AFC) is still in the
early stages of research where Rabault et al. [34] was among the first to apply
DRL algorithms to control a fluid flow. In the paper it was found that a DRL
agent was able to significantly reduce the drag in the fluid mechanical system
known as the Kármán vortex street behind a single cylinder by controlling a
set of jets.

This thesis continues the work presented in Rabault et al. [34] and Rabault
and Kuhnle [32] by applying the same methodology to the more complex
problem of the fluidic pinball, introduced by Deng et al. [6]. If the same
methodology is successful at controlling the fluidic pinball we have shown
that the methodology is applicable to more complex control problems, which
in turn can inspire further research at increasingly complex problems.

1.2 Thesis structure

In part I we start by giving a thorough introduction to machine learning, then
a briefer introduction to deep learning and reinforcement learning. The final
chapters of part I are dedicated to introducing flow control, the finite element

Section 1.2 Thesis structure 3

method, and giving a brief summary of the two journal articles the project is
based upon.

In part II we describe the technical implementations utilized in the project
and present some of the key scripts of code for running simulations. The
last chapter of part II introduces the simulation environment of the fluidic
pinball, including mesh refinement simulations, the creation of initializated
flow fields, and active flow control configurations.

Part III presents the results of controlled flow simulations at two differ-
ent Reynolds numbers (Res) using DRL agents to both reduce and increase
drag. We also compare the results of the different agents with simpler control
strategies like constant control and sinusoidal control functions.

Part IV includes concluding remarks, a discussion of the results, and ex-
amples of future work relevant to the project.

Part I

Theory

5

Chapter 2

Machine Learning ML

2.1 Introduction

Machine learning is an essential tool used in the work done in this thesis
where we apply deep reinforcement learning algorithms to active flow con-
trol problems. Deep reinforcement learning is an advanced part of ML, and is
not as well known and widely used as regression models, supervised and un-
supervised machine learning. In this chapter we want to help the reader ob-
tain a basic understanding of machine learning and present some of the more
important building blocks of modern day machine learning (ML). In later
chapters we will give more in-depth explanations of the specific algorithms,
techniques, and theories which have been directly applied in the project.

We will begin by presenting a selection of classic machine learning tasks,
and what a “machine learning algorithm” consists of. As a relatively simple
example we will present the linear regression algorithm. We then take a look
at the challenges of fitting a model to data, while avoiding what is known as
over- and under-fitting. Then we take a look at some of the finer points of ML
like hyperparameters and regularization. Finally we will take a brief look at
different methods of measuring the success of a machine learning algorithm
on a given set of data, and how measuring performance differs between ML
algorithms and their use-case.

2.2 Learning algorithms and use cases

A computer algorithm that is able to learn from data is called a machine
learning algorithm. Mitchell [26] gives the general definition of a machine
learning algorithm as “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.”

7

8 Machine Learning ML Chapter 2

Due to the considerable diversity of experiences E, tasks T, and performance
measures P, giving a formal definition of each category would be futile in
our context. Instead we will give a few examples of each category to give
the reader an intuitive introduction the machine learning algorithm. Further
details and examples can be found in the books Deep Learning by Goodfellow
et al. [12] and Machine Learning by Mitchell [26].

2.2.1 ML Tasks, T

With machine learning (ML) algorithms we are now able to solve problems
which were unattainable with fixed programs written by humans. ML is
of special interest to scientists and society because the development of algo-
rithms which are able to learn also gives us a peek at what constitues intelli-
gence [12].

There’s an important distinction to make between the terms “learning”
and “task”. In our context the algorithm “learning” is our way of solving a
given “task” [12]. For example, if we want to make a car that can drive on
its own, then the autonomous driving is our task, while “learning” is how
the car gains the ability to solve the task of driving without user input. We
could try to write our own program manually describing to the car how to
drive, but given the massive complexity of combining lights, speed limits,
cornering, lane shifting, other cars, animals, and pedestrians such a program
would certainly fail sooner or later when approaching an unknown situation.
Autonomous cars is one of the most complex problems ML is applied to, and
while it is still quite early on in development, it is way ahead of what any
programmer would be able to do without a learning algorithm.

A task is often described by a collection of features collected from the
object or event we want the ML algorithm to learn from. This collection is
often called an example and is typically represented by a vector x ∈ Rn, where
each entry xi is a feature. Taking one of the most intuitive examples of an
image, each feature would be the value of a pixel in the image [12]. Examples
of classical machine learning tasks are:

• Classification: This type of task is one of the greatest successes by ma-
chine learning algorithms. Classification or categorization asks a com-
puter algorithm to determine which of k catogories an input belongs
too. Solving a task like this requires the algorithm to produce a func-
tion f : Rn → {1, . . . , k}. When we give the function an input x, the
machine learning model produces an output f (x) = y, where the dis-
crete value of y determines which category the input is classified into.
Instead of having the algorithm learn a function outputting a single
value, the function could learn to produce a probability distribution
over the different classes [12]. In the well-known ImageNet challenge,

Section 2.2 Learning algorithms and use cases 9

both variants are used, where you usually present error rates for both
top-1 predictions, as well as top-5 predictions [18]. Classification is to-
day best done using deep learning, which revolutionized the ImageNet
challenge in 2012 when Kriezhevsky et al. [18] introduced deep learning
with convolutional neural networks (CNNs) to the task.

• Regression: In regression tasks we want to predict a numerical value
based on a given input. Thus, the learning algorithm has to learn a
function f : Rn → R. Regression problems are quite similar to classifi-
cation tasks, but the output is usually given in a different format [12].
For example, given input parameters of location, size in square me-
ters, number of rooms, and distance to city center a regression model
could output a prediction of the price of a house. Such a prediction
value would be of a continuous nature, but with small modifications we
could change the task to a classification problem. Instead of outputting
a continuous value we could group houses in different price intervals
and ask the model to predict which price interval (class) a house with
given inputs would fall into.

• Anomaly detection: The task of anomaly detection requires the learn-
ing algorithm to sift through data and flagging datapoints that do not
fit the “normal” behavior of the data. Anomaly detection methods are
widely used in fraud detection, insurance, network activity, and fault
detection. Detecting fraudulent use of credit cards, faults in infrastruc-
ture, or suspicious network activity are some examples of important
applications of anomaly detection. Anomalies often lead to actionable
information, e.g. credit cards tagged as fraudulent can indicate that the
card is stolen or a case of identity theft. Anomaly detection is without
a doubt a very important application of learning algorithms, but does
not come without challenges. Defining what is normal behavior is very
difficult. If large variations in the data is defined as normal we risk
missing out on what is actually anomalies, while if we strictly define
what’s normal we might have too many “anomalies” to actually be able
to use the information. Should a bank send notice every time a credit
card is used in another city, in another country, or another continent?
Anomaly detection models are way more advanced than just looking at
the location the card is used in, but works as a simple illustration of the
dilemma met when trying to define what is an anomaly or not [4].

There are of course many more tasks possible to solve using learning al-
gorithms, and for a more extensive list we recommend taking a further look
at chapter 5.1.1 of Goodfellow et al. [12].

10 Machine Learning ML Chapter 2

2.2.2 ML Performance Measure, P

After having determined which kind of task we want our learning algorithm
to handle, we need a way to measure whether our model is any good or not.
This performance measure P is specific to the task T.

Some tasks have quite simple measures of success, such as classification
and transcription tasks where we with relative ease can measure the accuracy
of our model. Where accuracy is just the number of correct outputs divided
by the total number of examples. Another, equivalent, measure is the error
rate of a model, which measures the number of incorrect outputs compared
to the total number of examples [12]. For other tasks it would make no sense
to use accuracy or error rate as a measure of performance. If the task is to play
chess or checkers it would make no sense to talk about accuracy, but keeping
track of wins and losses and calculating percent of games won would be a
good metric of the models performance [26].

When we are training an algorithm we usually split our data into what is
known as a training set and a test set. The model is then trained solely on
the training set and never sees the data in the test set until we determine that
the model has finished training. We then use the test set data to evaluate the
model on data it has never seen before. If the model performs well on the
test set we know the model will most likely perform well in the real world.
Should the model however perform poorly on the test set it is likely the model
won’t work well in the real world either. In section 2.4 we will go into more
detail on the use of test sets and how to a create a model that works well,
both in training and in the real world.

Choosing a performance metric might seem relatively easy in a lot cases,
but choosing a performance measure that actually guides the model towards
the desired behavior can be quite challenging. This might be because it’s dif-
ficult to choose between several options of what should be measured. For ex-
ample, should we penalize a regression model for making frequent medium-
sized mistakes or only penalize rare but large mistakes? For a transcription
task we could either measure the accuracy purely on a complete sequence of
words, or we could use a finer measure which looks at smaller elements of
the sequence [12].

In other cases the difficulties in choosing a performance model might be
because the measure we would like to use is not easily extracted from the
system. If that is the case we would need to come up with alternate perfor-
mance measures which are easier to extract, while still giving insight into the
models performance [12].

Some tasks have very standardized performance measures, while others
are totally up to the imagination of the user. The choice of performance mea-
sures can have a huge impact on the learning of a model, as the performance
measure will be what tells the model whether it is improving or not. As such

Section 2.3 Learning algorithms and use cases 11

it is of utmost importance to have a clear picture of what the model should
do, such that we can come up with a clear and logical measurement to use as
feedback for the model.

2.2.3 ML Experience, E

Machine learning is usually split into three categories, supervised, unsuper-
vised, and reinforcement learning. This categorization reflects what kind of
data, also called experiences, the machine learning algorithm is given. A ma-
chine learning algorithm is given a dataset of experiences, each containing
multiple features or data points.

Supervised learning is the most commonly used method of machine learn-
ing. The dataset provided to the learning algorithm consists of a number of
experiences consisting of features relevant to whatever the task is. Impor-
tantly each example in the dataset is given a label, defining the true output
corresponding to each set of datapoints [12]. In an image classification task
an experience would be the pixels of an image, and the label would be the
correct class, e.g. cat, if the image was of a cat. The algorithm will then study
the dataset and learn to identify what images are of cats, dogs, giraffes, ele-
phants, cows, etc. It’s important that the dataset be relatively uniform in the
distribution of data for each class, such that we don’t have 100 images of cats
and only 5 images of dogs. Such an imbalance can easily twist the model into
“ignoring” dogs and when introduced to new images classify dogs as cats.

Unsupervised learning algorithms are given a dataset only consisting of
experiences, without labels, i.e. the algorithm is not trained by teaching what
is right and what is wrong. Instead, the algorithm is left to discover underly-
ing structures in the data without any user defined ground-truths. If we are
given a very large dataset without any labels, it might be possible to add la-
bels manually, but such an undertaking would take a very long time. In such
a case it might be more beneficial to use an unsupervised algorithm, saving
the time it would take to add labels, and still being able to draw interesting
information from the data. Unsupervised learning is used in applications like
clustering where you group a dataset into clusters of similar datapoints, or in
tasks like density estimation and denoising where the algorithm should learn
the probability distribution of the dataset [12].

The final big category of machine learning is reinforcement learning. In
contrast to supervised and unsupervised learning, reinforcement learning al-
gorithms are not given a fixed dataset valid during the entire learning period.
Reinforcement learning algorithms interact with an environment, thus the in-
puts given to the algorithm changes throughout the learning period [12]. A
more in-depth explanation of reinforcement learning (RL) will be given in
chapter 4.

12 Machine Learning ML Chapter 2

2.3 Linear Regression

Linear regression is often used as an introductory example to machine learn-
ing. Most students have met linear regression problems in high school, al-
though the problems might usually be solved using computer tools. The most
straighforward way of solving a linear regression problem requires some sim-
ple linear algebra and calculus.

To solve a linear regression problem we want to build a model which can
take a vector x ∈ Rn as input and output a value y ∈ R. Letting ŷ be the
predicted value of y our model outputs we have:

ŷ = wTx, (2.1)

where w ∈ Rn is a vector of weights, also called parameters [12].
The weights control how the model calculates the predicted output, in this

case wi is the coefficients we multiply with the inputs xi, before summing the
terms from each feature. Thus, if a weight wi is positive, then increasing
the value of the corresponding input xi will increase the resulting output
value ŷ. Naturally, it follows that increasing the value of an input xi with
a corresponding weight wi which is negative, will result in the predicted
output value to decrease. A large weight means the corresponding feature
has a large impact on the predicted output, while a zero weight corresponds
to the feature having no effect at all on the prediction [12].

We have thus defined a task T: predict y from the input x by calculating
ŷ = wTx. In order to know whether out model is performing good or bad we
need a performance measure P [12].

By splitting the data we have into two sets, training and test, we have
obtained data that can be used to evaluate the model. We will then train
the regression model on the training set, while using the test set to evaluate
the models performance. Suppose the test set is a matrix of m inputs, called
X(test), with a corresponding vector of regression targets or “labels”, y(test)

providing the correct value of y for each example input in X(test) [12].
We can then measure the performance of the model by computing the

mean squared error (MSE) of the model on the test set. Let ŷ(test) be the
predictions of the model on the test set inputs from X(test). The MSE is then
given by

MSEtest =
1

m

∑
i

(
ŷ(test) − y(test)

)2
i

. (2.2)

It should be quite obvious that the error decreased to 0 when ŷ(test) =
y(test). The error measure described is also equivalent to what is known as the
Euclidean distance between the predictions and the targets. Usually written
as

Section 2.3 Linear Regression 13

MSEtest =
1

m

∥∥∥ŷ(test) − y(test)
∥∥∥2
2

. (2.3)

By allowing the algorithm to gain experience by observing the training set(
X(train),y(train)), the algorithm should find better values for the weights w

such that the MSEtest is reduced. This can be done by minimizing the MSE
on the training set, MSEtrain, which can be done by solving for where the
gradient is 0 [12].

Before solving the minimization problem of MSEtrain let us introduce a few
machine learning terms, namely objective and cost functions. An objective
function, O, defines an optimization problem that we either want to maximize
or minimize. In machine learning we so often want to minimize the objective
function that this got its own name, the cost function C.

Back to the example of linear regression we define O = MSEtest, and as we
want to minimize the MSE, the objective function is also a cost function given
by

C =
1

m

∥∥∥ŷ(test) − y(test)
∥∥∥2
2

(2.4)

To simplify notation we will avoid adding “train” as superscript, but note
that all the matrices and vectors below are of the training set. Note also that
we will use ŷ = Xw, while keeping the true targets as y.

∇w C = 0 (2.5)

⇒∇w
1

m

∥∥∥ŷ(train) − y(train)
∥∥∥ = 0 (2.6)

⇒ 1

m
∇w ‖Xw− y‖ = 0 (2.7)

⇒∇w (Xw− y)T (Xw− y) = 0 (2.8)

⇒∇w

(
wT XT Xw− 2wT XT y+yT y

)
= 0 (2.9)

⇒ 2XT Xw− 2XTy = 0 (2.10)

⇒w =
(
XT X

)−1
XT y (2.11)

Solving eq. (2.11) is a simple sort of learning algorithm which can be
done using several different methods. Methods calculating matrix inversion(
XT X

)−1 are possible, but avoiding calculating the matrix inversion has a
few benefits like being more computationally efficient and being less prone
to errors.

Linear regression often includes an intercept parameter, also called a bias
parameter, with which the model can be written as

14 Machine Learning ML Chapter 2

ŷ = wTx+ b. (2.12)

The predictions will still be a linear function, but a non-zero bias parame-
ter will cause the function to not pass through the origin.

Linear regression is a very simple learning algorithm which has very lim-
ited use in the real world of complex datasets, but provides a simple introduc-
tion to some of the basics behind a learning algorithm. In the next sections we
will go more into more specific considerations and methods which are used
in more advanced learning algorithms, and that can handle more complex
datasets.

2.4 Fitting to data

In machine learning we want to fit a model to the data we have, and while
we have access to the raw data, knowing the complexity of the data, and the
corresponding need for complexity in our model is not as easy. In addition
there is a good chance that the collected data contain a certain amount of noise
and measurement errors. A machine learning model is initially trained on the
data we have access to, but is usually meant to be used on new data that we
don’t have yet. Thus, it is important that the model is able to extrapolate what
it has learned to new and unseen data. A models ability to perform well on
new unseen data is called generalization.

When we train our machine learning algorithm we split the data we have
into two sets, a training and a test set. When training the model we seek to
lower the error on the training set, called the training error. If all we wanted
to do was reduce the training error we would have simple optimization prob-
lem. The difference between optimization and machine learning is that what
we ultimately seek is to reduce the generalization error or test error as much
as possible. We use the test set to calculate the test error, as that data is yet
unseen by the model and as long as the test set is randomly selected will be
a fair representation of unseen data.

In the example of linear regression we trained the model by minimizing
the training error while what we actually want is to minimize the test error.

If the training and test set are completely randomly chosen, minimizing
the training error would not necessarily say anything about how the model
would perform on the test set. However, by making a few assumptions re-
garding how the two sets are collected we can say a bit more about how
improving the model during training will also improve performance in the
test set. The assumptions we have to make are known as i.i.d. assumptions.
We assume that the samples in the data are independent and that the training
and test set are identically distributed. This means that the same probability

Section 2.5 Regularization 15

distribution is used when sampling the data to split into training and test sets
[12].

After the data has been sampled into a training and a test set, we start
training our model on the training set. By updating the parameters of the
model we can improve performance on the training set and reduce the train-
ing error. When the model is finished training we apply it to the previously
unseen data of the test set and observe the test error. Note that because of the
assumptions made with regards to collecting the two datasets we know that
the expected test error is at best the same as the expected training error, and
most often it will be larger than the expected training error [12].

Overfitting and underfitting are two very important terms in machine
learning literature when we are talking about a models performance. As the
names themselves should hint at they describe two issues of opposite nature
we might face when working with ML algorithms. Underfitting means that
the model is not able to represent the complexity of the data, and the model
itself is not complex enough. The result of underfitting will be a larger error
value on the training set than what we can accept. Overfitting on the other
hand means that our model is too complex and instead of learning the general
structures of the data the model “remembers” the training data. This often
results in a very small and nice looking training error, but when we introduce
the unseen data of the test set the model is not able to generalize and the
test error will be quite large compared to the training error. If we are able
to avoid under- and overfitting we end up with an “ideal” machine learning
model with a low training error and a small gap between the training and
test error. Thus, the model is complex enough to represent the data it learns
from, while still being generalized enough to perform well on unseen data.

The issues we meet with over- and underfitting are clearly illustrated by
looking at a simple polynomial regression problem. We implement the illus-
tration using the python package numpy by Van Der Walt et al. [43].

2.5 Regularization

Computing power has been increasing exponentially following Moore’s law
since the 1970’s [44]. As a result we have vast computing resources available
which has made increasingly complex machine learning models available to
researchers. This has made solving more complex problems possible, while
at the same time it has become much easier to encounter the issues with
overfitted models. In order to counteract overfitting issues, which in general
are more common than underfitting, we have regularization techniques that
are used to reduce problems regarding overfitting.

As mentioned in the previous section, an overfitted model performs well
on the training set while performing significantly worse on the test set. As

16 Machine Learning ML Chapter 2

Figure 2.1: Polynomial regression of data produced by a cubic polynomial
with added noise drawn from a normal distribution. Polynomial regression
models are of varying complexity indicated by the polynomial basis Pn. The
models are fitted to the data in the training region, and then evaluated in
the testing region. The linear model, P1, is what we call underfitted. In the
training region the linear model performs reasonably well, but clearly worse
than the more complex models. When we look at the testing data it becomes
clear that a linear model is too simple and is not able to generalize to unseen
data. On the other hand we have the very complex models of P6 and P10.
In the training region they seem to follow the data very well, also following
minor variations created by the added noise. However, when proceeding to
the testing region the more complex models collapse completely and are not
able to generalize to the unseen data at all. Thus, the training error of the
complex models will be quite small, while the generalization error will be
much worse, which we know is very typical of an overfitted model. In the
middle we have the optimal solution, the P3 model, which fits the training
data quite well, while at the same time also generalizes very well into the
testing region.

such, we don’t necessarily want to worsen performance on the training set,
as long as we are able to improve the generalization error of the test set.
Regularization is therefore a tool we apply to better the generalization error,
and not something we use to improve the training error.

Taking the example of linear regression we can include a regularization
technique called weight decay. In the first example of linear regression we
minimized the MSE on the training set. We now add a term to the minimiza-
tion equation where we take the squared L2 norm of the weights, which when
minimizing the entire equation will push the weights toward smaller values
[12]. The equation we minimize will be of the form

Section 2.6 Hyperparameters 17

J (w) = MSEtrain + λwTw. (2.13)

The parameter λ must be chosen ahead of training and determining the
magnitude of λ can have significant impact on the results. If λ = 0 we have
no weight decay, and the model will be trained in exactly the same manner
as for the standard linear regression problem, and be prone to overfitting to
data. If λ is given a large value the model will tend to underfit because the
weights are forced so small that the model will tend to have no slope at all.
More details and plots of the effect regularization can be found in chapter
5.2.2 of Deep Learning by Goodfellow et al. [12].

2.6 Hyperparameters

Hyperparameters are central to machine learning algorithms and are es-
pecially important with regards to optimizing and fine-tuning models. In
essence, a hyperparameter is a setting used to control the algorithm. Hyper-
parameters are fixed during training and testing, and are not optimized by
the learning algorithm itself. Thus, choosing values for hyperparameters is
not done by the learning algorithm itself, although it would be possible to cre-
ate an additional learning algorithm trained to find the best hyperparameters
for the original algorithm.

In the polynomial regression problem presented in section 2.4 we have
one hyperparameter, namely the degree of the polynomial fitting. Another
example is found in section section 2.5 where the weight decay model for
linear regression includes a λ parameter which controls the penalization of
large weights.

To help us determine the performance of a chosen set of hyperparameters
we introduce another set of data, the validation set. This is necessary because
we cannot use the test set while still training our model, including choosing
hyperparameters. The test set should be isolated until we have fixed the
hyperparameters of our choice and are finished training. But we still need
some way to determine the proficiency of a given set of hyperparameters,
and that is where a validation set comes in handy. Figure fig. 2.2 shows
how we split a dataset first into two sets, and then if necessary can split the
training set once more in order to optimize hyperparameter configurations.
Note that as we are “training” the hyperparameters on the validation set the
validation set error will underestimate the generalization error of the test set,
but usually by less of a margin than the training error.

The two examples previously mentioned, weight decay of linear regres-
sion and polynomial regression, are both relatively simple optimization prob-
lems as they both only include one hyperparameter. Modern machine learn-

18 Machine Learning ML Chapter 2

Figure 2.2: The dataset contains all data to be used for a given machine
learning task. We first split the data into a training and a test set so we are
able to measure the generalization error on the test set. If we also want to
optimize our choice of hyperparameters we need a validation set to test the
different hyperparameter configurations on. The validation set is created by
splitting the initial training set into two parts. The larger part is still called
the training set and is used for initial training, while the smaller part is
the validation set which we use to test the hyperparameter configurations.
When we are happy with the performance of a configuration of hyperpa-
rameters on the training and validation sets, we then move on and do a final
performance measure on the test set.

ing algorithms are usually dependent on multiple hyperparameters and opti-
mizing a larger set of hyperparameters can be very computationally intensive
because we have to train the model for each hyperparameter configuration.
There are multiple methods for how one should proceed when optimizing
hyperparameters.

The simplest method would be to manually enter hyperparameter values
and see how performance changes with changing values. The next method
is a more structured approach known as grid search where we set up a mul-
tidimensional grid of the parameters and evaluate for every combination on
the grid. This method becomes computationally intensive very quickly with
increasing numbers of parameters, but usually works better than the manual
method. A more efficient method for finding optimal hyperparameters was
introduced by Bergstra and Bengio [2] where they show that a simple random
search is among the most efficient methods of hyperparameter optimization.
Among the reasons for a random search performing so well is the fact that not
all hyperparameters have the same importance, and thus a grid search will
test a lot of bad configurations with no real improvement. Random search
was shown to be more computationally efficient in addition to finding better
models in most cases [2].

Section 2.7 Gradient Descent 19

2.7 Gradient Descent

As previously mentioned optimization is central to machine learning. In sec-
tion section 2.3 we introduced optimization of an objective function either as
a maximization or minimization problem, where minimization is the more
common of the two in ML. An objective function cast as a minimization
problem is often called either a loss, cost or error function.

From calculus we know that a given function has an extremum where the
derivative of the function is equal to zero. Simple functions like a third degree
polynomials have closed-form solutions of where the derivative is zero and
finding minima or maxima of the function are trivial by analytically deriv-
ing the function. However for very complex functionals, like a cost function
might be, finding closed-form solutions of the first derivative might be either
impossible or impractical. In such cases we turn to iterative methods and
in the case of machine learning gradient descent methods are very popular.
Gradient descent is a first-order iterative optimization method used to find
a functions minima. Second-order methods like Newton’s method are not
widely used in machine learning because of increased computational costs
and issues with treating saddle points. Vanilla gradient descent computes
the gradient of a cost function J w.r.t. the parameters θ. The parameter up-
date performed by gradient descent is then given by:

θ = θ− η · ∇θ J (θ) , (2.14)

where η determines the size of each update step we take towards a min-
imum. The gradient vector of the function will point in the direction of the
steepest ascent of the function, so in order to move towards a minima we go
in the exact opposite direction. The parameter η is known as the learning rate
and is very important when optimizing ML algorithms. Also note that the
learning rate is always chosen to be positive real number, while the magni-
tude will be dependent on the algorithm and the function to be minimized. A
too small value of η will cause convergence to be very slow, while a too large
value can cause too large parameter updates causing us to miss the minimum
entirely.

The vanilla gradient descent method calculates the gradient of the cost
function, ∇θ J (θ), for the entire training set of data to do just one update.
This can make vanilla gradient descent very slow and close to impossible for
a dataset that does not fit in memory.

The vanilla gradient descent method, being a first-order method, meets
two problems which the gradient descent based alternatives tries to solve.
Those two problems being that a cost function will usually have a lot of local
minima which can easily cause a vanilla gradient descent method to get stuck,
and that the convergence of gradient descent can be very slow or miss a

20 Machine Learning ML Chapter 2

minima entirely depending on the used configuration, e.g. too large or small
learning rate. Although vanilla gradient descent has it’s shortcomings we
are guaranteed, given enough time, to converge to a global minimum for a
convex surface and to a local minimum for a non-convex surface [36].

Because of gradient descent methods being so useful and popular in mod-
ern machine learning a multitude of gradient descent variations exist. With
added modifications to the base gradient descent method they try to solve
the issues mentioned in the previous paragraph. In the next sections we will
present a few of the most popular gradient descent based optimization algo-
rithms used in machine learning today.

2.7.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is probably the most well-known modified
gradient descent method used in machine learning. Instead of performing
an update after computing the gradient of over the entire training set SGD
updates the parameters calculating the gradient update over a sampled mini-
batch of examples drawn uniformly from the training set. The size of such a
minibatch can range between 1 and up to a few hundred, and while it might
be intuitive to increase the minibatch size as the dataset increases in size this
is not necessary. Thus a dataset consisting of billions of examples can be fit-
ted by computing gradient descent updates on small batches of only a few
hundred samples [12].

As vanilla gradient descent computes the gradient for each example in
the dataset it will recompute gradients for similar examples before updating
the parameters. SGD avoids this by only calculating the gradient for each
example in the minibatch, which is much less likely to include similar experi-
ences, before updating. SGD with a minibatch size of 1 means that we update
the parameters for each example in the training data. The gradient descent
equation would then be given as:

θ = θ− η · J
(
θ; x(i); y(i)

)
, (2.15)

where x(i) is a training example and y(i) is the corresponding label. This
makes SGD a lot more computationally effective than vanilla gradient descent
and also allows us to add more data after training has been started, so called
learning online [36].

Compared to vanilla gradient descent the updates done by SGD will be
a lot more fluctuating. This somewhat complicates converging to a specific
minimum, but at the same time allows SGD to jump out of a local minima
to find a new and potentially better local minima. It has also been shown
that by slowly decreasing the learning rate, η, will let SGD reach the same
behavior as the vanilla method where we are almost guaranteed to reach a

Section 2.7 Gradient Descent 21

global minimum for convex functions and a local minimum for a non-convex
function.

2.7.2 Momentum Gradient Descent

Stochastic gradient descent (SGD) has trouble dealing with areas of a surface
with much larger gradients in one dimension than another, which is common
around local minima. This can cause SGD convergence to slow down a lot
when closing in on the local optimum. To help in such cases we can introduce
momentum to the SGD method.

(a) SGD without momentum. (b) SGD with momentum.

Figure 2.3: Illustration of SGD oscillations without and with momentum.
Source: Genevieve B. Orr (1999), lecture notes CS-449: Neural Networks.

Momentum helps accelerate SGD towards the minimum and at the same
time dampen the oscillations of SGD, as illustrated in fig. 2.3. The parameter
update for SGD with momentum is written as

vt = βvt−1 + (1−β)∇θ J(θ)
θt = θt−1 + η vt

(2.16)

where η is the learning rate. The “velocity” vt accumulates the previ-
ous gradients and the parameter β controls how quickly those contributions
should decay. The momentum parameter β is usually given a value of 0.9,
but can be modified as long as β ∈ [0, 1). A larger value of β gives more
weight to previous gradients, while if β = 0 we are back to standard SGD.

The addition of momentum can be thought of as rolling a ball down a
hill. The momentum of the ball will continue to increase as the velocity
increases until air resistance stops acceleration at terminal velocity, where
the “air resistance” is given by the parameter β. As the gradient is moving
towards a minimum the previous gradients pointing in the same direction
will build momentum, while the gradients pointing in other directions will
be reduced. Thus oscillations pointing in other directions than the minimum
are dampened while momentum drives us quicker towards the minimum.

Note that in some of the literature the equations for SGD with momentum
are written differently, e.g. from Ruder [36]:

https://www.willamette.edu/~gorr/classes/cs449/momrate.html

22 Machine Learning ML Chapter 2

vt = γ vt−1 + η∇θ J(θ)
θt = θt−1 + vt.

(2.17)

This is a matter of scaling and will impact which values will work best
for the learning rate, η, and the decay factor, γ. However, the two methods
are equivalent in practice and if the effective values are equivalent the results
will be the same.

2.7.3 Adam

Adam was introduced by Kingma and Ba [17] and combines several differ-
ent gradient descent modifications. Adam is based on stochastic optimization
where we use batched data, while also using momentum, and adaptive learn-
ing rates. An adaptive learning rate is given as a function of the epoch, the
magnitude of the derivative, or both, instead of setting the learning rate as a
fixed number.

Note that for vanilla gradient descent and SGD every parameter was up-
dated with the same learning rate at the same time step t. This is not the
case for Adam, AdaGrad and RMSProp, and thus we introduce the following
notation to make things easier for us:

gt,i = ∇θt J(θt,i). (2.18)

gt,i is now the gradient of the objective function, J, w.r.t. the parameter θi
at time step t.

Both RMSProp and AdaGrad compute adaptive learning rates by storing
an exponentially decaying average of past squared gradients vt. Adam does
the same, but additionally keeps an exponentially decaying average of past
gradients mt, which works similarly to momentum as introduced in subsec-
tion 2.7.2 [36].

mt = β1mt−1 + (1−β1)gt

vt = β2 vt−1 + (1−β2)g
2
t

(2.19)

mt and vt are estimates of the first and second moments of the derivative.
The update now contains two β parameters similarly to standard momentum
updates. Kingma and Ba [17] notes that because mt and vt are initialized as
zero-vectors they are biased towards zero, especially when the β parameters
are close 1. To avoid such issues Kingma and Ba [17] introduce bias-corrected
estimates for the two moments:

Section 2.7 Gradient Descent 23

m̂t =
mt

1−βt1

v̂t =
vt

1−βt2

(2.20)

The final parameter update is then given in the recognizable form:

θt+1 = θt −
η√
v̂t + ε

m̂t (2.21)

Adam was designed to combine the best of AdaGrad by Duchi et al. [7]
and RMSProp by Tieleman and Hinton [41], which both were among the
more popular optimization methods before Adam. AdaGrad works well with
sparse gradients, while RMSProp is great at dealing with non-stationary ob-
jectives [17].

For more details on the different versions of gradient descent presented
in section 2.7 we recommend the article by Ruder [36] which includes more
details and an even wider variety of gradient descent optimizers.

Chapter 3

Deep learning

Deep learning is a sub-field of machine learning where the learning algo-
rithms are based on neural networks (NNs) also called artificial neural net-
works (ANNs). Neural networks are inspired by neuroscience and the neu-
rons found in the brain, and work as a loose attempt at reproducing the cal-
culations the biological neurons compute. In the brain a neuron activates if it
receives strong enough signals from neighboring neurons, and similarly each
neuron in a neural network calculates an activation value determining what
information is passed along. Note that although neural networks are inspired
by the neurons found in the human brain, a modern neural network is guided
by a lot of mathematical and engineering disciplines and the main goal is not
to model the brain perfectly [12]. As mentioned in chapter 1 neural networks
have been popular within research multiple times in the last century, but in-
terest soared after Kriezhevsky et al. [18] with their neural network named
AlexNet lowered the ImageNet challenge error rate from 28% to 16%. It has
since been an area of widespread interest, not just in scientific research, but
this time also in the industry and business world.

In deep learning there are several different kinds of neural networks. In
this thesis we use what is known as a dense neural network (DNN) or FCNN,
which are equivalent. In section 3.1 we will explain more in detail how a neu-
ral network is built and explain the mathematics going on behind the scenes
in deep learning. We will also touch upon how a NNs are optimized with gra-
dient descent methods like those introduced in section 2.7, which requires a
few extra considerations compared to models like linear regression. A neural
network is largely described by the layer structure and its activation func-
tions. Different layer types and structures will be discussed in section 3.5,
and section 3.3 will introduce a selection of important activation functions
found in deep learning. In addition to DNNs there are several other kinds
of neural networks like convolutional neural networks (CNNs) and recurrent
neural networks (RNNs). Although we won’t implement those types of NNs

25

26 Deep learning Chapter 3

they are widely used, important to the field of deep learning. Neural net-
works can take advantage of previously trained models, so-called pre-trained
networks, which if applied correctly can reduce training time significantly
and also help convergence when moving to more complex problems. Both of
these traits were observed in the work of this thesis and an introduction to
pre-training neural networks will be given in section 3.6.

3.1 Feedforward neural networks

As mentioned in the introduction to deep learning the term “neural network”
describes a rather wide variety of models. In this section we will look at feed-
forward neural networks (FFNNs), also called deep feedforward networks or
multilayer perceptrons (MLPs). The goal of a FFNN is to approximate some
function f ∗. In the example of a classification task we would want to approx-
imate the function f ∗(x) = y, mapping an input x to a category y. A FFNN
would then define an approximate mapping f (x; θ) = ŷ and learn the values
for the parameters θ that results in the best function approximation [12].

“Feedforward” is given to the network because information goes from the
input x, through intermediate computations, and then finally evaluates the
output ŷ. If there were feedback connections where outputs of the model is
fed back into itself we would have a recurrent neural network (RNN).

A neural network in general consists of computational nodes called neu-
rons. The neurons are structured in layers where information is passed for-
ward from one layer to the next until the output is given by the final layer.
The layers in a neural network is split into three categories where the first
layer is known as the input layer. The input layer is usually given as a vector
of inputs, e.g. pixel values of an image or a vector of values. Thus, the size
of the input layer must match the size of the examples given in the training
data. The next layers are called hidden layers and the number of hidden
layers, as well as the size of each layer, is dependent on the complexity of our
task. These layers are named “hidden” as the behavior of the hidden layers
are left up to the learning algorithm and are not determined by the training
data. The final layer is the output layer which outputs the final result of the
neural network. The output layer is, like the input layer, limited somewhat
by the training data. If the training data is labeled in a binary fashion the
output layer must output either a 0 or a 1. However, if the problem is a re-
gression problem the labels and thus outputs might only be specified to be a
real number.

Each layer, except the input layer, in a neural network is given an activa-
tion function. The activation function is often the same for all of the hidden
layers, but as the output layer is given certain specifications by the training
data the output layer usually has a different activation function. For now

Section 3.1 Feedforward neural networks 27

it suffices to know that activation functions are an important part of neural
networks and we will more into detail with examples in section 3.3.

Input
layer

Hidden
layer

Hidden
layer

Output
layer

a
[1]
1 a

[2]
1

x1

a
[1]
2 a

[2]
2 ŷ1

x2

a
[1]
3 a

[2]
3 ŷ2

x3

a
[1]
4 a

[2]
4

Figure 3.1: A fully connected neural network (FCNN) with 2 hidden layers
with an input size of 3 and outputting two predictions ŷ. In a fully connected
neural network each neuron is connected to all neurons in the next layer,
while in a simpler FFNN a neuron might only be connected to a few of the
neurons in the next layer. Note that the number displayed in square brackets
denotes which hidden layer the neuron is located in, while the subscript
denotes the neurons location in the layer.

Now that we have introduced the essentials of a neural network let’s dive
into the mathematics. A neural network consists of many neurons in several
layers as described in fig. 3.1, but the mathematical formulas are the same for
every neuron, given that they use the same activation function. Activation
functions might differ between layers, but is usually the same for neurons in
the same layer. In general the calculations in a neuron consists of a linear
operation using weights to determine the relative importance of each input,
and a non-linear transformation σi(z). This non-linear transformation is what
lets the neural network to represent a more complex problem than what linear
and logistic regression are able to. The equations describing a forward pass
in the neural network of fig. 3.1 can then be given as:

28 Deep learning Chapter 3

• a
[l]
k is the activation of node k in layer l.

a
[l]
k = σ

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

 (3.1)

• w
[l]
jk is the weight from node j in layer l− 1 to node k in layer l.

• b
[l]
k is the bias of node k in layer l.

• σ is a non-linear activation function.

• The weights w and the biases b are the parameters being trained during
optimization.

• Note that we start counting the number of layers of a network from the
first hidden layer, and that the first and last layer are given as:

– a[0]k = xk

– a[L]k = ŷk

– n[l] is the number of nodes in layer l.

– The input dimension is nx = n[0] and the output dimension is given
as ny = n[L].

The feedforward operation, also known as feedforward propagation, from
the input layer to the first hidden layer is given by eqs. (3.3) and (3.4).

z
[1]
k =

nx∑
j=1

w
[1]
jk xj + b

[1]
k (3.2)

=

n[0]∑
j=1

w
[1]
jka

[0]
j + b

[1]
k (3.3)

a
[1]
k = σ

(
z
[1]
k

)
(3.4)

for k = 1, . . . ,n[1]. (3.5)

Moving from one hidden layer to the next is equal is general for all hidden
layers, given by:

Section 3.1 Feedforward neural networks 29

z
[l]
k =

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k (3.6)

a
[l]
k = σ

(
z
[l]
k

)
(3.7)

for k = 1, . . . ,n[l], (3.8)
l = 1, . . . ,L− 1. (3.9)

Equations (3.6) and (3.7) can be written in vectorized form avoiding the
use of indices and will then be given as

z[l] = w[l]a[l−1] + b[l] (3.10)

a[l] = σ
(
z[l]
)

. (3.11)

Going from the last hidden layer L− 1 to the output layer, L, we have:

z
[L]
k =

n[L−1]∑
j=1

w
[L]
jk a

[L−1]
j + b

[L]
k (3.12)

a
[L]
k = o

(
z
[L]
k

)
= ŷk (3.13)

for k = 1, . . . ,ny, (3.14)

= 1, . . . ,n[L]. (3.15)

Note that when moving to the output layer we call the activation function
o(·) instead of the σ(·) used in the previous layers to signify that the activation
function used in hidden layers is usually different from the output activation
function.

After performing a forward pass, i.e. feedforward propagation, we want
to optimize the neural network. As mentioned the parameters in a neural
network that “learn” are the weights, w[l]

jk, and the biases, b[l]k . In the linear re-
gression example in 2.3 we saw that the optimization problem could be solved
by a matrix inversion operation. This is no longer a possible solution method
because of the non-linearity introduced by activation functions, which causes
the weights and biases to not have closed-form first derivatives. Thus, we
turn to the iterative method of gradient descent introduced in section 2.7.
The cost function, C, will depend on the problem at hand, e.g. if the output is
a real number we could use MSE as for linear regression or if the output is a
probability a form of cross-entropy cost function is a possibility. The choice of

30 Deep learning Chapter 3

cost function is important to the problem we are solving, but does not change
the gradient descent update of the weight and bias parameters given as:

w
[l]
jk ← w

[l]
jk − η

∂C

∂w
[l]
jk

, (3.16)

b
[l]
k ← b

[l]
k − η

∂C

∂b
[l]
k

, (3.17)

for all


j = 1, . . . ,n[l−1]

k = 1, . . . ,n[l]

l = 1, . . . ,L
(3.18)

where η is again the learning rate introduced in section 2.7, and the up-
dated parameters are calculated for every neuron and neuron connection in
the neural network (note gradient descent does not touch the input layer, i.e.
the training data). This parameter update is done by what is known as the
backpropagation algorithm.

3.2 Backpropagation

The backpropagation algorithm, sometimes abbreviated backprop, was dis-
covered multiple times independently in the 1970s and 80s. The backprop
algorithm is not only applicable to multi-layered neural networks, but can
in general compute the derivative of any function, also functions where the
correct derivative is to answer “undefined”.

A brute force gradient descent would require us to calculate the gradient
of each parameter in the entire neural network once per gradient descent
update. The backpropagation algorithm uses the layered structure of the
neural network in such a way that it can more efficiently compute gradients
[24]. Backpropagation is sometimes mistaken as the actual learning algorithm
of a neural network, but is in fact only the method for which we calculate the
gradients, while the learning is performed by an algorithm like stochastic
gradient descent (SGD) [12].

Computing the derivatives ∂C
∂w

[l]
jk

and ∂C
∂b

[l]
k

is done by recursive use of the

chain rule. According to the chain rule the derivative of a function f depen-
dent on a function g which is again dependent on x is given by ∂f

∂x =
∂f
∂g
∂g
∂x .

For a function f dependent on multiple functions gi which are all dependent
on x we add a summation and find the derivative as:

Section 3.2 Backpropagation 31

∂f
∂x

=

n∑
i=1

∂f
∂gi

∂gi
∂x

. (3.19)

To calculate the derivatives in eqs. (3.16) and (3.17) we need to define the
cost function C. We will use the previously mentioned mean squared error
(MSE) function as our cost function. In the notation of our neural network
the MSE function has the form

C =
1

2n

∑
x

|| y(x) − a[L](x) ||2, (3.20)

where n is the total number of training examples, the sum is over indi-
vidual training examples, y = y(x) is the corresponding desired output (the
true output), L denotes the number of layers in the network, and a[L](x) is the
vector of activations outputted from the network when given the input x [29].

In order to use backpropagation we need two assumptions about the cost
function to be satisfied. The first assumption is that the cost function can
be written as an average C = 1

n

∑
x Cx over cost functions for each individual

training example, x. This holds for the mean squared error, also known as the
quadratic cost function, where the cost for a single example can be written
as Cx = 1

2 || y − a[L] ||2 [29]. The second assumption that must be satisfied is
that the cost function can be written as a function of the output of the neural
network. For the MSE cost function we can write

C =
1

2
|| y − a[L] ||2 =

1

2

∑
k

(
y − aLk

)2
, (3.21)

where aLk are the output activations of the neural network and the assump-
tion is satisfied. The cost function also depends on the desired true output
y, but because each input x is fixed the corresponding true output y is also a
fixed parameter. The true output y can in no way be changed or learned by
modifying weights or biases in the network. As such it makes sense to only
regard the cost function as a function of the output activations alone, where
y is just used as a parameter to help define the function [29].

The backpropagation algorithm is mainly based on well-known linear al-
gebra operations like vector addition, vector-matrix-multiplication, and so on.
However, there is a not so well-known operation that is simplifies the notation
of the backpropagation algorithm, namely the Hadamard product. Given two
vectors or matrices of the same dimension the Hadamard product denotes the
elementwise multiplication of the two vectors/matrices. Two vectors s and t
we can write

s ◦ t =
[
1

2

]
◦
[
3

4

]
=

[
1 ∗ 3
4 ∗ 2

]
=

[
3

8

]
. (3.22)

32 Deep learning Chapter 3

Backpropagation is implemented for simple use in most ML applications
which removes the need for a deep understanding of the individual compu-
tations performed by the backprop algorithm. However, having some sort of
understanding of the overall goal of the algorithm and a higher-level knowl-
edge of the main computations of the algorithm can help understand how
neural networks operate and how they are optimized. The backpropagation
algorithm is defined by four fundamental equations which will be presented
and given a brief explanation. For more details on the derivations and proofs
there exists a multitude of lecture notes going into more depth, among them
chapter 2 in the book Nielsen [29].

Before we dive into the four fundamental equations we will introduce
the quantity, δ[l]k , which we call the error in the kth neuron in the lth layer.
Backpropagation will give us a formula for how to compute the error and
how it is related to the parameter updates described previously. If a small
change ∆z[l]k is added to a neurons weighted input, z[l]k , so that the neuron
outputs σ(z[l]k + ∆z

[l]
k) instead of σ(z[l]k), that change will propagate through

the network until it reaches the last layer where it will affect the final cost
with a size equal to ∂C

∂z
[l]
k

∆z
[l]
k . Now we want to find a ∆z[l]k which will improve

the cost, i.e. making it smaller. If the derivative, ∂C
∂z

[l]
k

, has a large magnitude,

either positive or negative, then choosing a ∆z[l]k of opposite sign can reduce
the cost by a significant amount. However, if ∂C

∂z
[l]
k

is close to zero, then it

will be very difficult to find a value for ∆z[l]k that improves the cost, and the
neuron will in that sense be determined as close to optimal. If we were to
change the activation of a neuron, a[l]k , instead of the weighted input, z[l]k , we
would end up with a similar result, but with a more complicated presentation
of backpropagation [29].

The first equation of backprop is an equation for calculating the error in
the output layer.

δ
[L]
k =

∂C

∂a
[L]
k

σ ′(z[L]k), (3.23)

where the term ∂C
∂a

[L]
k

measures how quickly the cost function changes if

the output activation of the kth neuron is changed. If the cost function does
not depend much on the given neuron the error δ[L]k will be small. The second
term, σ ′(z[L]k), measures how quickly the activation function is changing at
z
[L]
k . We can write the same equation in vectorized form as follows:

δ[L] = ∇aC ◦ σ ′(z[L]), (3.24)

Section 3.2 Backpropagation 33

where ∇aC is a vector consisting of the partial derivatives ∂C/∂a[L]k . If we
use the MSE cost function previously introduced then ∇aC = (a[L] − y), and
the final vectorized form of eq. (3.23) applied to the MSE cost function can be
written as:

δ[L] =
(
a[L] − y

)
◦ σ ′(z[L]). (3.25)

The second fundamental equation of backprop computes the error δ[l] with
regards to the error in the next layer, δ[l+1].

δ[l] =

((
w[l+1]

)T
δ[l+1]

)
◦ σ ′(z[l]), (3.26)

where (w[l+1])T is the transpose of the weight matrix w[l+1] for the l+ 1th
layer. If we know the error in the l+ 1th layer, then we can think of applying
the transpose weight matrix as moving the error backwards in the network,
giving us a measure of the error in the lth layer. By taking the Hadamard
product ◦σ ′(z[l]) we move the error back through the activation function in
layer l, and thus we have the error of the weighted input to layer l, z[l]. By
combining eqs. (3.23) and (3.26) we can compute the error δ[l] for any layer
in the network. First, using eq. (3.23) to compute δ[L], then use eq. (3.26) to
compute δ[L−1], then eq. (3.26) again to compute δ[L−2], and so on until the
start of the network.

The third equation calculates the change in the cost function with respect
to any bias in the network.

∂C

∂b
[l]
k

= δ
[l]
k , (3.27)

thus meaning that the error δ[l]k is exactly equal to the rate of change in the
cost function, ∂C/∂b[l]k , which we already know how to calculate thanks to
eqs. (3.23) and (3.26).

The final equation for backpropagation is used to compute the rate of
change in the cost function with respect to any weight in the network. The
equation is given by

∂C

∂w
[l]
jk

= a
[l−1]
j δ

[l]
k . (3.28)

This tells us how to compute the partial derivatives with respect to δ[l] and
a[l−1] which we know how to calculate. Equation (3.28) can be written in a
possibly more intuitive manner, with no indices, as:

34 Deep learning Chapter 3

∂C

∂w
=

ain
×

δout

Figure 3.2: Zooming in on the two neurons connected by the weight w.
Illustration is reproduced from Nielsen [29] chapter 2.

∂C

∂w
= ainδout, (3.29)

where ain is the activation of the neuron input to the weight w, and δout
is the error of the neuron output from the weight w. An illustration of the
situation between the nodes connected by the weightw is presented in fig. 3.2.

From eq. (3.29) it follows that if the activation ain is close to zero, ain ≈ 0,
then the gradient term ∂C/∂w will also be small. When the gradient term is
close to zero we say that the weight learns slowly, because during gradient
descent the weight changes in very small increments. This means that weights
from neurons with small activations will learn more slowly than weights for
neurons where the activation is not small.

The term σ ′(z[L]k) in eq. (3.23) can tell us something about how the weights
in the output layer are able to learn. If the activation function of the output
layer is very flat when σ(z[L]k) is close to 0 or 1, then the derivative σ ′(z[L]k) ≈ 0.
The sigmoid activation function is just such a function, and will be described
in more detail in section 3.3. The weights in the output layer will therefore
learn very slowly if the activations of the output neurons are either very low
≈ 0 or very large ≈ 1. If this happens we say that the output neuron is
saturated, and as a result the weight learns very slowly, if anything at all. The
same applies for the corresponding bias of the output layer.

Similarly for any of layers previous to the output layer the term σ ′(z[L]k)

in eq. (3.26) can cause the error δ[l]k can become very small if the neuron is
close to saturated. This will again cause the weights and biases input to the
saturated neuron will learn slowly.

In conclusion, remembering and fully understanding all the equations like
eqs. (3.23) and (3.26) to (3.28) is not very important, and not really to be ex-
pected without significant study, but they can teach us something about the
learning taking place in a neural network. Namely, that a weight will learn
slowly if the input neuron is low-activation, or if the output neuron is sat-
urated, i.e. is high- or low-activation. Note also that the four fundamental
equations here presented are general, and can be applied to any activation

Section 3.3 Activation functions 35

function. This lets researchers create their own activation functions with spe-
cific properties that can help improve learning.

We list the four main equations of the backpropagation algorithm for an
easy overview.

δ
[L]
k =

∂C

∂a
[L]
k

σ ′(z[L]k) (Backprop 1)

δ[l] =

((
w[l+1]

)T
δ[l+1]

)
◦ σ ′(z[l]) (Backprop 2)

∂C

∂b
[l]
k

= δ
[l]
k (Backprop 3)

∂C

∂w
[l]
jk

= a
[l−1]
j δ

[l]
k (Backprop 4)

A high-level algorithmic implementation of the backpropagation algo-
rithm after having completed a forward pass through the network can be
written as:

1. Output error: Compute the vector δ[L] = ∇aC ◦ σ ′(z[L]).

2. Backpropagate the error: For each layer l = L− 1,L− 2, . . . , 2, compute
δ[l] = ((w[l+1])T δ[l+1]) ◦ σ ′(z[l]).

3. Output: Calculate the gradient of the cost function by computing
∂C
∂b

[l]
k

= δ
[l]
k and ∂C

∂w
[l]
jk

= a
[l−1]
j δ

[l]
k .

3.3 Activation functions

Activation functions are an integral part of neural networks, and can have a
significant impact to the effectiveness of learning. The activation functions
introduces the all-important non-linearity needed for the neural network to
be able to approximate any non-linear function that we want to learn. Differ-
ent activation functions can have very different non-linearities. For example,
the derivative of the perceptron is zero everywhere except where the input is
zero, and the resulting discontinuous behavior makes it impossible to train
perceptrons with gradient descent methods. Because of this issue with per-
ceptron functions, sigmoid and tanh functions were among the most popular
activation functions. In later years rectified linear units have taken over as the
most used activation functions. In this section we will present a selection of
activation functions that have been used both historically and more recently
in modern day deep learning.

36 Deep learning Chapter 3

Figure 3.3: A range of popular activation functions. The top row have been
used a lot historically, while the bottom row consists of modern special-
ized activations functions for neural networks. The perceptron function is
a step-function where the derivative is discontinuous and not possible to
train using gradient descent. Thus we will focus our attention on the other
functions which will be presented in the following sections. The illustration
corresponds to Figure 36 of Mehta et al. [24] licensed under CC BY 4.0. The
figure is adapted with a different color scheme.

3.3.1 Sigmoid and Tanh

The sigmoid and the hyperbolic tangent functions were used historically as
activation functions in deep learning and neural networks, but have in recent
years seen a lot less use due to the improvements observed by new and better
activation functions. Both functions are now mostly used for educational pur-
poses, in addition to a few specialized models like recurrent neural networks
(RNNs), many probabilistic models, and some autoencoders which cannot
make use of piecewise linear activation functions [12].

The sigmoid function is mathematically defined as

σ =
1

1+ e−z
, (3.30)

with a derivative that is cheap to compute given by

dσ

dz
= σ(z)(1− σ(z)). (3.31)

The hyperbolic tangent activation function is defined as

https://creativecommons.org/licenses/by/4.0/

Section 3.3 Activation functions 37

tanh(z) =
ez − e−z

ez + e−z
. (3.32)

The derivative of the hyperbolic tangent is not as easily computed as the
derivative of the sigmoid, given by

dtanh(z)
dz

= 1− tanh2(z). (3.33)

The hyperbolic tangent and sigmoid activation functions introduce the
required non-linearity to a NN, but the functions have a shared drawback.
Both functions are prone to saturated activation functions, thus leading to the
derivative of the output to approach zero, ∂σ/∂z ≈ 0 for z >> 1. We can
visually confirm this by looking at the plots of the sigmoid and hyperbolic
tangent in fig. 3.3 where both functions are very flat for z >> 1, and as we
know a function with a flat curve will have a derivative ≈ 0. This is what we
described in section 3.2 when talking about saturated activation functions.
Because both functions are bounded by [0, 1] and [−1, 1] we can avoid issues
with “exploding gradients” using the sigmoid or hyperbolic tangent as acti-
vation functions, but we run the risk of instead meeting saturated activation
functions leading to vanishing gradients instead.

3.3.2 Rectified linear

Rectified linear units (ReLUs) were introduced in 2010 by Nair and Hinton
[28] and have become the industry standard for NNs. ReLUs were popu-
larized through their use in the famous AlexNet which revolutionized the
ImageNet challenge in 2012. The ReLU function is defined such that it is
zero for all negative inputs and exactly the same as the input for all positive
values. Mathematically we can define the function as

ReLU(x) = f (z) =

{
z, if z > 0
0, otherwise.

(3.34)

The corresponding derivative is then a very simple step-function given by

f (z) =

{
1, if z > 0
0, otherwise.

(3.35)

ReLU, as all the other activation functions we have discussed, is mono-
tonic, meaning that the function always moves in the same direction, or stays
at the same value. I.e. the function does not go from increasing to decreasing
in value as we move along the x-axis, but can go from increasing value to
staying the same and then continuing to increase.

38 Deep learning Chapter 3

Note that ReLU is not differentiable at z = 0, which might seem to in-
validate the use of ReLU as an activation function together with learning
algorithms based on gradient descent. However, in practice gradient based
methods perform well enough for ReLU functions to be used in ML, partly
due to the fact that NNs usually don’t reach a local minima of the cost func-
tion, but instead just reduces the cost functions value significantly. Meaning
that we don’t expect the gradient descent training to actually reach a point
where the gradient is equal to 0, and it is thus acceptable for the minima
of the cost function to correspond to a point with undefined gradient. In
software implementations of the ReLU function a one-sided derivative is of-
ten returned, rather than undefined, thus avoiding the issue. This can add
some small numerical error, but in practice it is safe to disregard the non-
differentiability of ReLU functions [12].

A variety of ReLU activation functions have been suggested, among them
the leaky rectified linear unit (LReLU) which introduces a small slope to the
negative part of the activation, and is defined as

LReLU(x) = f (z) =

{
z, if z > 0
α z, otherwise,

(3.36)

where α is a chosen parameter usually given a small value like 0.01 or 0.1.
The derivative is then given as

f (z) =

{
1, if z > 0
α, otherwise.

(3.37)

ReLU activation functions avoids the issue of saturated activations causing
vanishing gradients. For activation functions like ReLU, LReLU, and ELU
(presented in fig. 3.3) the gradients stay finite even for large inputs, thus
avoiding exploding gradients.

In addition to a huge variety of possible activation functions there exists
methods of regularization like gradient clipping which can be employed to
avoid issues of exploding gradients, but this can come with side-effects like
slowing down training.

3.4 Universal approximation theorem

A linear model that maps input features to outputs via matrix multiplica-
tion can by definition only represent linear functions. Training such a model
would be relatively easy, but unfortunately we often want to learn non-linear
functions when working with neural networks [12].

Initially it might seem like we have to develop a new specific model for
every kind of non-linear function approximation we want to learn. Luckily

Section 3.5 Network architecture 39

this is not the case and the universal approximation theorem first presented
by Hornik et al. [14] states that a standard feedforward neural network given
sufficiently many hidden units is capable of approximating any measurable
function to any non-zero level of error [14]. The first iteration of the universal
approximation theorem were initially proven with activation functions that
were very prone to saturation, but has since been proven for a wide range of
activation function classes, including the popular rectifier functions [21].

A consequence of the universal approximation theorem is that any failure
in whatever application we utilize a neural network must be a result of in-
adequate learning, too few hidden units (neurons), or that the deterministic
relationship between input and output is not strong enough [14]. Meaning,
if the features we use as input are insufficiently correlated with a specific
output the model will not robustly give the correct output compared to the
true target. Thus, we know that whatever function we want to approximate
in order to solve a given task can be represented by a large NN, but we are
not guaranteed that the learning algorithm will be able to learn the function.
The universal approximation theorem does not state how large a specific NN
must be in order to approximate a given function, only that there exists one.
It is therefore up to us to choose the number of neurons and layers to use in
our function approximation. Too large of a network can easily lead to overfit-
ting a function and thus generalize poorly, while a very small network might
not be able to represent the target function at all.

3.5 Network architecture

In section 3.4 we learned that any function can be approximated with a neural
network. However, choosing what that NN should look like is not as easy,
and will in part be dependent on the task at hand.

A neural network of one single hidden layer can in theory approximate
any function, but for a very complex function we might need an infeasible
number of hidden neurons in that layer, making learning and generalization
very difficult. Instead of using a single very large layer we can construct a
neural network consisting of multiple hidden layers with fewer hidden neu-
rons in each layer. In many cases this can reduce the amount of neurons
needed significantly, in addition to reducing the generalization error of the
trained network [12]. When increasing the number of hidden layers we often
say that we are increasing the depth of the network, and it has been found
empirically that for a wide variety of tasks increasing the depth of neural
networks results in better generalization [12].

Besides choosing the number of neurons in each layer along with the
depth of a neural network there exists other architectural considerations that
are worth mentioning. Entire neural network architectures have been de-

40 Deep learning Chapter 3

veloped with a specific task in mind, e.g. convolutional neural networks
(CNNs) which are widely used in image recognition and computer vision
tasks. A feedforward neural network can be generalized to a recurrent neural
network (RNN) which is very commonly used when working with sequential
data like speech recognition and sentiment analysis. CNNs and RNNs have
seen tremendous success in a great variety of applications, but as we have not
applied either type of neural network in this project we will not give further
explanations. Instead we want to point the interested reader to chapter 9 in
Goodfellow et al. [12] as well as chapter 10 in Mehta et al. [24] for details on
CNNs, and chapter 10 of Goodfellow et al. [12] for a thorough introduction
to RNNs.

So far we have worked with neural networks were every neuron in one
layer is connected to every neuron in the next layer, but for more specialized
networks this is not always the case. In certain situations it can be beneficial
to reduce the number of connections in a network, e.g. in order to reduce the
complexity of the model and avoid overfitting or to reduce the amount of pa-
rameters and thus computations that are required. This can be done previous
to training, which would then result in a standard FFNN, not a FCNN, or
it can be done during training which is a deep learning regularization tech-
nique known as dropout, where neurons in the neural network are dropped
randomly during training.

3.6 Pre-trained networks

Some tasks might be too complex to directly train a model, e.g. the model is
too complex, hard to optimize, or the task can be very difficult. If we see that
learning initially fails we can train the model on a less complex problem then
move on to the more complex problem and continue training. Another form
of pre-training is to first train a simple model to solve a problem, and then
increase the complexity of the model. Generally pre-training entails that we
train simple models on simple problems before training the desired model on
the desired task we want to solve [12].

A related method to pre-training is transfer learning, where a model that
is trained on a different task can be used as the starting model before train-
ing the model to the actual task to be solved. E.g. a model trained on the
ImageNet classification task can be used as a starting point of other image
classification tasks on different datasets [12].

Chapter 4

Reinforcement Learning

Learning by interacting with the environment around us is probably the most
basic and common way of learning we observe around us. Infants waving
their arms around have no teacher that can tell them what will happen, but
they are able to observe their environment and what happens when waving.
This method of learning cause and effect, by observing what consequences
certain actions result in is a method of learning not only specific to infants, but
also something that can be observed in adult behavior. Learning to drive, how
to act in social settings, or how to play football are all instances of situations
where theoretical knowledge might help, but is in no way enough to master
the given skill.

Reinforcement learning (RL) is a computational approach to learning by
interacting with an environment and observing the outcome of actions. The
goal is to learn how to map situations to actions to maximize a numerical
reward, without specifying which actions to take. Instead the learner must
discover what actions results in the greatest reward by trial-and-error. In
more complex tasks an action might not just affect the immediate reward, but
also have significant impact on the subsequent rewards in the next situations.
In reinforcement learning the learner is most often called an agent.

A learning agent must to some extent be able to observe the state of its
environment and must be able to apply actions that affects the state of the
environment. The agent must also have a goal that is related to the state of
the environment, e.g. winning a chess game or making a car complete one lap
of a racing game. A Markov decision process is supposed to only include the
three components, sensation, action, and goal, in their simplest form without
trivialization [39].

If the reader is interested in further explanations and details than what is
provided in this chapter we recommend the freely available PDF-version of
the book Reinforcement Learning by Sutton and Barto [39].

In this chapter we will give a high-level introduction to reinforcement

41

42 Reinforcement Learning Chapter 4

learning, then we will describe some of the differences between reinforce-
ment learning and other machine learning methods, before we present the
RL learning method implemented, namely the proximal policy optimization
method.

4.1 Introduction

In supervised learning learning happens through training sets of labeled where
each label corresponds to a correct action, e.g. returning the correct category
to which the input data belongs to. In such learning the goal is to train a
model that can generalize to unseen examples and is still able to find the
correct “actions” that correctly label those examples. In an interactive envi-
ronment obtaining examples of every possible situation in order to find the
correct actions for every representative state of the environment would be
impractical, if not impossible. Instead the agent must learn from its own
experiences [39].

Reinforcement learning also differs from unsupervised learning where the
goal is generally to find structures in unlabeled data, while for RL we try to
maximize a reward rather than finding structures in data. Although it sounds
natural that supervised and unsupervised learning would be exhaustive in de-
scribing machine learning paradigms, reinforcement learning is considered
to be a third machine learning paradigm.

All reinforcement learning examples will include some interaction between
an active decision-making agent and an environment. The agent tries to
achieve a goal despite there being uncertainty in how the agent sees the en-
vironment. The agents actions are allowed to affect the future states of the
environment, thus affecting what actions will be available in the future. These
actions can usually not be fully predicted, meaning that the agent must fre-
quently observe the environment to take the best possible actions [39].

A challenge we face that is specific to RL is the trade-off between explo-
ration and exploitation. In order to maximize the reward an agent must base
its actions on actions already known to give high reward, but the agent must
first find those actions. The agent must exploit good actions it has found, but
at the same time keep exploring in order to find better actions in the future.
Balancing this trade-off is not easy, and choosing to focus only on exploration,
or only on exploitation will create an agent unfit to solve the task at hand.
The agent should try a variety of actions and as training progresses favor the
actions that appear to give the best reward.

Section 4.1 Introduction 43

4.1.1 Reinforcement learning systems

Besides an agent and an environment, there are a few core elements that are
present in a reinforcement learning system: a policy, a reward signal, a value
function, and optionally a model of the environment [39].

A policy defines how the learning agent acts at a given time. In some
ways the policy works as a mapping between the state of the environment as
perceived by the agent to the best actions for those states. The policy can be
everything from a simple function or lookup table to a much more complex
search process. The policy is thus the core of the learning agent, as the policy
is enough to determine the agents behavior [39].

The reward signal defines the goal of the RL task at hand. For each update
step of the agent the environment will send a single value to the agent, the
reward. The goal of the agent is to maximize the total reward received, not just
the instantaneous reward, but also maximizing future rewards. The reward
signal defines what is good and what is bad actions, based on how each action
has affected the environment, either in a positive or negative way. If an action
receives a low reward the policy of the agent may be changed in such a way
that it selects different actions the next time it encounters similar states. The
reward is thus the primary source of changes in policy, and the definition of
the reward signal can significantly impact the effectiveness of learning [39]. A
human example of reward signals are pleasure and pain. If we do something
good, like eating a good piece of food we receive pleasure, while if we cut
our hand we instantly feel pain.

A value function indicates what is good in the long run. While the reward
signal gives an immediate feedback, the value function gives an approximation
of the expected accumulated reward received from the current state of the
environment and onwards. The reward will thus give an estimation of the
desirability of an instant state of the environment, while the value function
indicates the long-term desirability of states taking into account the states
that are likely to follow and the rewards of those states. Thus, a state can at
the same time have low reward and high value, if it leads to several desirable
states, although the state itself is not as instantly desirable. The opposite case
of a singular desirable state of high reward, but low value is of course also
possible [39]. A human example of value could be that of a student taking
a course at university that he isn’t very fond of, but although his current
circumstances have low instant satisfaction (low reward), he recognizes that
he must complete the course and his degree before achieving his dream job
(high reward over time).

Note that there could be no value function without reward signals, but even
so we are most concerned with the values when we are making and evalu-
ation actions. We want the agent to take the actions that leads to the states
of highest value, not necessarily highest reward, because those actions will

44 Reinforcement Learning Chapter 4

result in the highest total accumulated reward. It is however much harder
to estimate values than it is to determine an instant reward of a state. The
reward is often given directly from the environment, while the value must be
estimated and re-estimated continuously during training [39].

The final core element found in some RL systems is a model of the envi-
ronment. A model mimics the behavior of the environment, giving the agent
the possibility to predict the next state, given a state and action. Models are
used to plan actions in advance, by considering multiple possible future states
and actions before they are actually experienced by the agent. Reinforcement
learning methods utilizing models and planning are called model-based meth-
ods, while model-free methods rely fully on trial-and-error learning [39].

Figure 4.1: A general visualization of the interaction between a reinforce-
ment learning (RL) agent and its environment. Reproduced from figure 3.1
of Reinforcement Learning by Sutton and Barto [39]. Licensed under CC
BY-NC-ND 2.0.

4.2 Computing the policy gradient

Model-free methods, as described in subsection 4.1.1, are further distinguished
between value-based and policy-based methods [39]. Both methods aim to maxi-
mize the expected reward which for policy-based methods is done by directly
optimizing the decision policy, while value-based methods learns to estimate
the expected value of a state-action pair optimally and in turn determine the
optimal action for each state [9].

In this section we will look at the policy gradient and how we can compute
it, before we in section 4.3 go into more specific derivations and explanations
of the proximal policy optimization (PPO) method which is the RL method
utilized in the simulations of the project.

http://incompleteideas.net/book/RLbook2020.pdf
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Section 4.2 Computing the policy gradient 45

Following the derivation of the policy gradient method given in appendix
C of Rabault et al. [34] we have a policy function, πΘ, represented by an ar-
tificial neural network (ANN) where all weights are collectively given by the
variable, Θ. We can formulate the learning problem as finding the optimal
weights of the ANN such that the expected accumulated reward is maxi-
mized. In mathematical notation expressed as:

Rmax = max
Θ

E

[
H∑
t=0

R(st)|πΘ

]
, (4.1)

where πΘ is the policy function described by the ANN with weights, Θ,
and where st is the state of the system at time, t. The maximization of eq. (4.1)
is solved through gradient descent methods optimizing the weights, Θ, of the
ANN following experimental sampling of the system through interactions
with the environment.

Introducing τ as a sequence of state-action-rewards triplets,
τ = (s0,a0, r0), (s1,a1, r1), . . . , (sH,aH, rH) and overloading the R operator as
R(τ) =

∑
i γ
iri, then the value function obtained with the weights Θ can be

written as

V(Θ) = E

[
H∑
t=0

R(st,ut)|πΘ

]
=
∑
τ

P (τ,Θ)R(τ). (4.2)

The value function defined in eq. (4.2) is the quantity we want to maximize
to find the optimal policy. To update the parameters we need to find the
gradient of the value function with respect to the policy parameters, i.e. for
DRL the weights of the neural network.

∇ΘV(Θ) =
∑
τ

∇Θ P(τ,Θ) R(τ) (4.3)

=
∑
τ

P(τ,Θ)
P(τ,Θ)

∇Θ P(τ,Θ) R(τ) (4.4)

=
∑
τ

P(τ,Θ)
∇Θ P(τ,Θ)

P(τ,Θ)
R(τ) (4.5)

=
∑
τ

P(τ,Θ)∇Θ log (P(τ,Θ)) R(τ). (4.6)

The last expression, eq. (4.6), represents a new expected value which can
be sampled under the policy πΘ and used as input to the gradient descent
optimization. We need to calculate the log-prob gradient ∇Θ log (P(τ,Θ)),
which can be done as

46 Reinforcement Learning Chapter 4

∇Θ log (P(τ,Θ)) = ∇Θ log

[∏
t

P
(
s
(i)
t+1|s

(i)
t ,a(i)t

)
πΘ

(
a
(i)
t |s

(i)
t

)]
(4.7)

= ∇Θ
[

log P
(
s
(i)
t+1|s

(i)
t ,a(i)t

)
+
∑
t

log πΘ
(
a
(i)
t |s

(i)
t

)]
(4.8)

= ∇Θ
∑
t

log πΘ
(
a
(i)
t |s

(i)
t

)
, (4.9)

where the last equation, eq. (4.9), is only dependent on the policy and not
the dynamic model. This allows effective sampling and gradient descent to
be carried out.

4.3 Proximal Policy Optimization - Background

Proximal policy optimization (PPO) presented by Schulman et al. [38] has
shown itself to be very successful in a wide range of RL applications. The PPO
algorithm combines the data efficiency and reliable performance of trusted
region policy optimization (TRPO), while using only first-order optimization
[38].

4.3.1 Policy Gradient background for PPO

A policy gradient method computes an estimator of the policy gradient and
then use this value in a stochastic gradient ascent algorithm. A commonly
used gradient estimator is given as

ĝ = Êt
[
∇θ logπθ (at | st) Ât

]
(4.10)

where πθ is a stochastic policy and Ât is an estimator of the advantage
function at time t. The expectation value, Êt, given above is the empirical
average over a finite batch of samples in an algorithm that alternates between
sampling and optimization [38]. Implementations using automatic differen-
tiation software obtains the gradient estimator ĝ by constructing an objective
function, LPG, whose gradient is the gradient estimator. The objective func-
tion thus has the form

LPG (θ) = Êt
[

logπθ (at | st) Ât

]
. (4.11)

It might be tempting to perform multiple steps of optimization on the loss
LPG using the same trajectory, however this often leads to destructively large
policy updates [38].

Section 4.4 Clipped Surrogate Objective - PPO 47

4.3.2 Trusted Region Methods

In TRPO introduced by Schulman et al. [37] an objective function, also known
as the "surrogate" objective is maximized subject to a constraint on the size of
the policy update. Given by

maximize
θ

Êt

[
πθ (at | st)

πθold (at | st)
Ât

]
(4.12)

subject to Êt
[
KL
[
πθold (· | st) , πθ (· | st)

]]
6 δ. (4.13)

Where KL is shorthand for the Kullback-Leibler divergence, an asymmet-
ric distance metric for comparing two probability distributions. θold is the
vector of policy parameters before the update. The problem can then be
solved approximately using the conjugate gradient algorithm after making a
linear and a quadratic approximation on the objective and the constraint, re-
spectively [37]. The theory behind TRPO originally suggests using a penalty
instead of a fixed constraint, i.e.

maximize
θ

Êt

[
πθ (at | st)

πθold (at | st)
Ât −βKL

[
πθold (· | st) , πθ (· | st)

]]
(4.14)

However, choosing a value for the coefficient β that works well across
multiple applications or within a single problem where the characteristics
change during learning is very difficult. Hence, experiments have shown that
using the penalized version of TRPO as a first-order algorithm emulating the
monotonic improvement of TRPO is not a good enough solution.

4.4 Clipped Surrogate Objective - PPO

TRPO seeks to maximize the "surrogate" objective

LCPI (θ) = Êt

[
πθ (at | st)

πθold (at | st)
Ât

]
= Êt

[
rt (θ) Ât

]
. (4.15)

We have here introduced the probability ratio rt(θ) =
πθ(at | st)
πθold

(at | st)
such

that rt(θold) = 1. r(θ) = 1 means no change in the policy, while rt(θ) 6= 1

measures the difference between the old and the new policy. The superscript
of the objective, CPI, refers to CPI introduced by Kakade and Langford [16].
If we were to maximize the objective, LCPI, without any constraint or penalty
the policy updates would become too large. In order to avoid such issues the
objective is modified such that changes in the policy that would move r(θ)

48 Reinforcement Learning Chapter 4

away from 1 are penalized [38]. The modified objective introduced for the
PPO algorithm is given as

LCLIP (θ) = Êt
[
min

(
rt (θ) Ât, clip (rt (θ) , 1− ε, 1+ ε) Ât

)]
(4.16)

where ε is a hyperparameter of a given value, ε > 0.0. Through experi-
ments, a value of ε = 0.2, proved to give the best results in the chosen test
cases, and is also the value used in the code for the fluidic pinball project.
The first term of the min function is equal to LCPI. The second term of the
min function, clip (rt (θ) , 1− ε, 1+ ε) Ât, clips the probability ratio such that
rt ∈ [1− ε, 1+ ε]. The final objective is then a found as a lower bound on
the unclipped objective by taking the min of the clipped and the unclipped
objective [38].

Note that in the paper by Schulman et al. [38] an additional objective func-
tion using a penalty coefficient rather than applying clipping in the objective
function is also presented. Through experiments it was found that the clipped
surrogate objective version of PPO performed better than the penalty coefficient
variation, but for those interested in how the Kullback-Leibler divergence is
applied for PPO we refer to section 4 of Schulman et al. [38].

Chapter 5

Active Flow Control (AFC)

The problem of actively controlling fluid flows has been an area of research
since the early 1900’s when Prandtl [31] discovered the boundary layer. How-
ever, more passive methods of controlling a flow has been present for mil-
lennia, e.g. attaching feathers on arrows to stabilize the flight path [3]. In
the years prior and during the second world war and the cold war a lot of
research was put into flow control, mostly in military related flow systems
[5].

Flow control strategies can be classified into three main categories: shape
optimization, passive-, and active flow control [3]. In shape optimization
the aerodynamic shape of an object is tailored to achieve a given goal, e.g.
reducing the drag of a vehicle to increase fuel efficiency. Passive flow control
involves a small change to the original configuration, like the addition of
vortex generators to suppress flow separation by enhancing mixing between
the boundary layer and the free flow [30]. The final method of flow control,
which will be our focus, is active flow control (AFC) where an active control
device is used to change the flow system to a more desirable state.

For active control we can differentiate between open- and closed-loop
control. Open-loop active flow control will involve pre-determined controls,
which are applied with no regard to the state of the flow. On the other hand,
for closed-loop control the actuations of the controller are informed of the
state of the flow by sensors or similar tools that can relate information of the
flow to the controller [3]. For more details on open- and closed-loop control
systems we refer to section 3 of Collis et al. [5].

The chapter will consist of a brief introduction to different methods of
linear flow control. Gradient based control methods will also be presented,
before we discuss the use of machine learning (ML)/artificial intelligence (AI)
methods to control a flow system.

49

50 Active Flow Control (AFC) Chapter 5

Figure 5.1: A typical closed-loop block diagram. The controller determines
some actuation to be taken, dependent on the state of the system. Reprinted
from Progress in Aerospace Sciences, 40, S. Scott Collis, Ronald D. Joslin,
Avi Seifert, and Vassilis Theofilis, Issues in active flow control: Theory, con-
trol, simulation, and experiment, 237-289, Copyright (2004), with permission
from Elsevier.

5.1 Linear control

5.1.1 Introduction and LQR

Many systems of interest where we want to apply control are either linear,
or correspond to the linearization of a non-linear system. For a multitude of
linear problems the optimal control is known. Linear control has several ap-
plications within fluid mechanic, among them stabilization of unstable lami-
nar boundary layers. Although the original system might not be linear, con-
trollers able to successfully stabilize the flow will change the system so that it
increasingly approximates the linearization [8]. We will mention a few linear
control methods, while referring to Duriez et al. [8] for details on the different
methodology.

If the full state of the system can be measures a full-state feedback control
method can be considered. For high-dimensional systems it might be unreal-
istic to measure the full state, but by using methods like a Kalman filter, an
estimate of the full state can be found.

An LQR is a full-state feedback controller that minimizes a quadratic cost
function to regulate the system of interest. Solving for the LQR controller is
done by solving a Riccati equation which scales with the cube of the state
dimension. Thus, for larger systems it will be too computationally intensive
to solve for the controller simultaneously as the flow develops [8].

5.1.2 Sensor estimation and Kalman filtering

For many systems measuring the full state of the system is not technolog-
ically possible or is prohibitively expensive. In experiments where particle
image velocimetry (PIV) is uses the full state of the system is measurable, but

Section 5.2 Gradient-based and stochastic control 51

such measurements are not practical for in-practice applications outside an
experimental setting [8]. However, estimating the full state of the system is
possible from limited and noisy sensor measurements. Such a method bal-
ances predictions created by a model with the sensor measurements to create
a balanced estimate of the full state. Under well-defined conditions it is possi-
ble to create an estimator that converges to an estimate of the full state which
can then be used with the optimal full-state feedback LQR control law.

The Kalman filter is possibly the most popular algorithm to estimate full-
state of a system, and have been used in a great variety of applications [8]. The
Kalman filter uses knowledge from noisy sensor measurements, actuation
input, and a model of the process dynamics to estimate the full-state of the
system. The Kalman filter is an optimal full-state estimator, and finding the
optimal solution is often called linear quadratic estimation (LQE). As for
the optimal controller of LQE, the optimal Kalman filter is found by solving
another Riccati equation.

By combining the estimated state found by the Kalman filter with the
optimal controller of LQR, i.e. combining the solutions of two separate Ric-
cati equations, we obtain the optimal linear quadratic Gaussian (LQG) con-
troller. The optimal LQG controller is thus not dependent on full-state mea-
surements, but instead uses the full-state estimate of the Kalman filter [8].

5.1.3 Reduced order model (ROM)

As the Riccati equations scale with the cube of the dimension, O(n3), high-
dimensional linear systems will introduce unwanted latency in the control
loop. This latency can prevent real-time control actuations of high-dimensional
systems where the system develops quickly, which is very common in fluid
flows. Reduced order models (ROMs) are used to avoid such issues by at-
tempting to represent a complex system in a less complex manner, without
loosing too much information. For flows of low Re or for weakly unstable
flows this works quite well, but a minor difference in the initial condition or a
small perturbation in the system can result in significantly different solutions.
However, for certain systems ROMs in combination with LQG controllers
have been successfully applied to control global oscillations in a separated
boundary layer and to reduce the skin-friction drag in a channel flow [3].

5.2 Gradient-based and stochastic control

Although finding an optimal controller is the end-goal of a flow control prob-
lem, it is very often not a realistic goal for problems more complex than linear
systems. Gradient-based control is a non-optimal control method based on
calculating the gradient of an objective function with respect to the control. If

52 Active Flow Control (AFC) Chapter 5

the gradient of the objective function is not possible to obtain, e.g. the objec-
tive function is not differentiable, we must use other methods like a stochastic
method. This is a key advantage of stochastic control methods, but stochas-
tic methods typically need many more evaluations of the objective function
than gradient-based methods, in addition to scaling very poorly with the di-
mension of the parameter space. The method of minimizing the objective
functions can vary, but one relatively common method implemented in both
Muldoon [27] and Min and Choi [25] is solving a set of adjoint equations,
which in these cases are derived from the Navier-Stokes equations.

In Muldoon [27] the objective function is found by solving the unsteady
Navier-Stokes and energy equations over significant time periods, resulting
in an objective function that is very costly to compute. The cost of comput-
ing the gradient of the objective function is equal to the cost of computing
the objective function itself. A gradient-based method is thus more efficient
because computing the objective function and the gradient a small amount
of times are less costly than having to compute the objective function many
times.

In gradient-based and stochastic control methods finding the best objec-
tive function might not be as straightforward as one may think. For example,
in Min and Choi [25] a gradient-based control method was used to control
vortex shedding behind a circular cylinder by blowing and suction control
actuations. They applied three different objective functions, where the first
objective function (called cost functional in the paper) is the pressure drag
of the cylinder. The second objective function is the square of the difference
between a target pressure and the real pressure on the cylinder surface, while
the third objective function is the square of the pressure gradient at the sur-
face of the cylinder. Each objective function is then minimized (objective 1
and 2) or maximized (objective 3) with respect to the blowing-suction actu-
ations. Intuitively we might think that the objective function that explicitly
includes the drag of the cylinder should be the best objective to reduce the
drag on the cylinder, but Min and Choi [25] found that the second objective
function with a given maximum of actuations was the most effective control
strategy for reducing drag on the cylinder.

5.3 Deep reinforcement learning for AFC

The fluidic pinball system that we will simulate in chapters 10 and 11 is quite
similar to the system of Min and Choi [25], most of all because both systems
are governed by the Navier-Stokes equations. Both systems also experience
vortex shedding for Re = 100, while the goal is to control the vortex shed-
ding in order to reduce the drag of the system. As such, it would be possible
to use similar methodology where objective functions based on the Navier-

Section 5.3 Deep reinforcement learning for AFC 53

Stokes equations are used to compute a gradient with respect to actuations.
However, such a system would include not only computing the solutions of
the Navier-Stokes equations, while also computing expensive objective func-
tions and their gradient.

By using a DRL agent as our flow controller we still have to solve the
Navier-Stokes equations to determine the evolution of the flow with respect
to actuations, but instead of computing expensive objective functions and
gradients, we use gradient descent to optimize the policy of our DRL agent.
In Rabault and Kuhnle [33], it was found that 99.7% of the time spent in
simulations was spent computing the fluid dynamics, and the time spent
optimizing the agent is thus very small in comparison. However, a DRL agent
is dependent on running simulations many times over, where it is allowed
to learn by trial-and-error to find the best control actuations. This means
that although the isolated optimization of the DRL agent is very effective in
comparison to optimizing an objective function using classical gradient-based
methodology, the total time spent on simulations is not necessarily in favor
of DRL methodology.

Another reasoning behind the choice of using DRL agents to control the
flow rather than more classical methods is that the goal of the project is not
necessarily to find the best control strategy possible for the fluidic pinball
system. The main goal is to investigate whether ML and AI models can be
used at all in problems related to active flow control, and how increasing the
complexity of the simulated system might affect the DRL agents ability to
learn control strategies. Once it has been established that ML models actually
are able to control flow systems, then it becomes more relevant to directly
compare the effectiveness of the control with a much wider variety of control
methods, such as gradient-based or ROM methods.

Chapter 6

Literature Review

The work of this thesis continues the work done by Rabault et al. [34] and
Rabault and Kuhnle [33]. Therefore, we will give brief presentation of those
papers as an introduction to the methodology applied, in addition to the
theory that has been presented in previous chapters, and the implementation
that will be explained further in part II. The first paper introduces the use of
deep neural networks and reinforcement learning to the field of AFC, where
a DRL agent is used to control actuations of two synthetic jets on a single
cylinder.

The second article presents a framework for running AFC simulations
controlled by DRL agents in parallel, applying the methodology to the same
flow control problem as presented in the first article. With near perfect paral-
lel scaling this methodology allows more computationally intensive problems
to be researched, among them the fluidic pinball system which will be pre-
sented in chapter 10.

6.1 Artificial neural networks trained through deep
reinforcement learning discover control strate-
gies for active flow control

The simulation environment is a 2 dimensional system simulated at Re =
100. The system consists of a single cylinder of non-dimensional diameter
D = 1 immersed in a box of non-dimensional length L = 22 and height
H = 4.1. The cylinder is placed slightly off-center to encourage the creation of
vortex shedding behind the cylinder. The unstructured computational mesh
is created with the gmsh software of Geuzaine and Remacle [10], consisting of
9262 triangular elements, and the numerical timestep used is dt = 5× 10−3.

A PPO agent is then trained to perform active flow control on the envi-
ronment by controlling two synthetic jets placed on the top and bottom of

55

56 Literature Review Chapter 6

Figure 6.1: Pressure wake of the flow after initialization without active
control. The black dots correspond to velocity probes, while the two red
dots indicate the control jets. The figure corresponds to Figure 1 in [34].
The figure is reproduced from the freely available preprint available at
https://arxiv.org/abs/1808.07664v5, licensed under CC BY 4.0 at ArXiv.

the cylinder, as shown in fig. 6.1. The placement of the jets on the north-
and south pole of the cylinder ensures that the observed changes in the flow
comes as a result of indirect flow control, and not a direct addition of mo-
mentum to the flow. The control is also configured such that the flow rate,
Qi, i = 1, 2, of the cylinders follows Q1 +Q2 = 0, i.e. the control will not add
or subtract mass to the system.

The PPO agent is then trained by interacting with the environment during
episodes, i.e. a limited amount of time, before the agent evaluates the effective-
ness of the control in the previous episode, and then starts over with a new
episode. The instantaneous reward function of the PPO agent is defined as

rt = −〈CD〉T − 0.2|〈CL〉T |, (6.1)

where 〈·〉T indicates the sliding average back in time corresponding to one
vortex shedding cycle. The agent tries to maximize the function, rt, thus
minimizing the drag coefficient and the mean lift. The PPO was not able to
learn if it was allowed new actions for every numerical timestep. Instead,
by only updating the action every 50 numerical timestep, and making the
control continuous in time the agent was able to learn effective control. The
continuous control at each numerical timestep can be defined as cs+1 = cs +
α(a − cs), where cs+1 is the new control, a is the action given by the PPO
agent for the current 50 timesteps, and α = 0.1 is a numerical smoothing
parameter.

Using these tricks the agent was able to learn a control strategy after ap-
proximately 200 episodes, corresponding to 1300 vortex shedding periods or
16000 sampled actions. For a finely tuned and stable control strategy the
agent needed around 350 episodes. The mean drag coefficient of the baseline
simulation without control is 〈CD〉 ≈ 3.205, compared to 〈CD〉 ≈ 2.95 of the
flow with applied flow control. The PPO agents strategy is thus able to re-
duce the mean value of the drag coefficient by approximately 8%. The mean
drag value of a hypothetical flow without any vortex shedding is 〈CD〉 ≈ 2.93,

https://arxiv.org/abs/1808.07664v5

Section 6.2
Accelerating deep reinforcement learning strategies of flow control through a

multi-environment approach 57

i.e. the flow control is able to suppress ≈ 93% of the drag increase observed
compared to a hypothetical flow that is kept completely stable. Represen-
tative snapshots comparing the baseline flow with the controlled flow are
presented in fig. 6.2, where the effect of control can be observed clearly.

Figure 6.2: The top figure is a typical snapshot of the flow without any
applied control, while the figure underneath is a representative snapshot
of the flow with active flow control. The figure corresponds to Figure 4 in
[34]. The figure is reproduced from the freely available preprint available at
https://arxiv.org/abs/1808.07664v5, licensed under CC BY 4.0 at ArXiv.

In conclusion this paper presents the possibility of using DRL agents,
specifically PPO agents, for active flow control problems that due to high-
dimensionality would be too complex to solve analytically. DRL methodology
based on ANNs allow efficient approximation of highly non-linear functions
and can be trained through experimentation with an environment. In the-
ory, this makes DRL methodology easily applicable to both simulations and
experiments without significant changes in the methodology.

6.2 Accelerating deep reinforcement learning strate-
gies of flow control through a multi-environment
approach

From Rabault et al. [34] it became clear that the limiting factor with computa-
tions is not with the DRL methodology, but rather lies with the computational
fluid dynamics part of the simulations. Significant speed-ups are required in
order for the new and promising DRL methodology to be applicable to more
complex flow systems.

A well-documented approach is to parallelize the numerical computations
of the simulation. Another possibility is to adapt the DRL algorithm such that

https://arxiv.org/abs/1808.07664v5

58 Literature Review Chapter 6

the algorithm can learn from multiple independent parallel simulations.
The simulation environment and DRL algorithm are the same as for Rabault

et al. [34], where a PPO algorithm is trained to control the 2-dimensional flow
around a cylinder described by the Navier-Stokes equations at Re = 100. The
flow is controlled by two small synthetic jets placed at the top and bottom of
the cylinder.

Figure 6.3: The simulations of the single cylinder system consists of two
separate timescales. The numerical timestep, dt, is determined by consid-
ering the numerical stability of simulations. The slower timescale is set to
capture the relevant timescale of the flow system. The action set by the
DRL agent are updated according to this slower timescale. The figure corre-
sponds to Figure 2 of [33]. Figure used from the freely available preprint at
https://arxiv.org/abs/1906.10382, licensed under CC BY 4.0 at ArXiv.

Parallelizing the numerical simulations has severe limitations with regards
to obtainable speed-up. In the single cylinder system the FEM problem is so
small that attempts speed-ups were limited to approximately 2, independent
of using more CPUs. Instead an approach where multiple independent en-
vironments feed data to the DRL agent is implemented. This means that the
agent is learning by interacting with several environments at the same time.
Transferring to a human context we can think of a human able to play multi-
ple games of chess at the same time and learn from every game that is played,
that is how the agent is able to interact with multiple simulations at the same
time and learn from each one of them. Parallellization in way is especially
well suited for DRL systems where most of the computation time is spent in
the environment.

To handle the parallel stream of experiences a communication layer is
added on top of the agent-environment interaction. In combination with the
DRL framework of TensorForce [19] the environment wrapper allows any
DRL algorithm and any environment to be parallelized. This allows the
expensive numerical simulations to be distributed on multiple CPUs or on
multiple computers through network communication.

Other parallelization methods based on the Hogwild method [35] have
been proposed, but are mainly concerned with simulations running hundreds

https://arxiv.org/abs/1906.10382

Section 6.2
Accelerating deep reinforcement learning strategies of flow control through a

multi-environment approach 59

of environments simultaneously where communication overhead and syncing
between instances and clusters are the greatest bottlenecks. The relatively
straightforward method presented by Rabault and Kuhnle [33] is better suited
for moderately short learning problems where the environment is expensive
to compute, like simulations of fluid dynamics.

The update period, also known as batch size, is set to 20 episodes, mean-
ing that the policy of the DRL agent is updated after data from 20 episodes
has been gathered. Using a number of parallel environments that is a divider
of the update period (1, 2, 5, 10, 20) show perfect speed-up, and running
simulations with synchronization (i.e. the DRL algorithm waits for all envi-
ronments to finish before starting new episodes) results in a situation that is
effectively identical to training in serial.

Increasing the number of parallel environments to more than the batch
size results in what can be seen as “overparallelizing” the data collection of
the DRL algorithm beyond what it is naturally able to. Significant speed-
up as still observed, but not quite perfect as for less environments than the
batch size. The learning quality is also slightly negatively impacted with the
introduction of clear steps in learning appearing. The results of overparal-
lelization are presented in fig. 6.4. This causes the second and third policy
updates to be based on off-policy data, and empirical results indicate that
this does not cause problems regarding the consistency and stability of the
learning algorithm.

Figure 6.4: Scaling results obtained with total number of environments equal
to and larger than the update period. As multiple batches finish at the
same time a comparatively large cumulative improvement of the policy is
observed, leading to clear steps in the learning curve. The learning speed is
slightly lower when compared to training with less environments than the
batch size (perfect speed-up), but significant speed-up is still present. The
figure corresponds to Figure 4 of [33]. Figure used from the freely available
preprint at https://arxiv.org/abs/1906.10382, licensed under CC BY 4.0 at
ArXiv.

In conclusion the multienvironment approach is able to greatly speed up
learning by collecting data from several independent simulations. If the num-
ber of parallel environments is more than the update period of the ANN some

https://arxiv.org/abs/1906.10382

60 Literature Review Chapter 6

of the updates are taken off-policy, but empirically this does not cause signif-
icant damage to the learning taking place. The resulting methodology is an
important step towards the application of DRL methodology to more complex
and realistic fluid mechanics problems.

Part II

Implementation and Methodology

61

Chapter 7

Technical implementation

The simulations that have been carried out in this project are quite compu-
tationally intensive and have thus been dependent on more than a personal
computer to carry out the simulations. To carry out simulations we utilized
cloud-based virtual machines (VMs) provided by NREC (previously known
as UH-IaaS), which could be run 24/7 whenever a simulation was ready to
start computations. When working with VMs in addition to multiple co-
dependent python packages it can be very beneficial to utilize containeriza-
tion. We chose to use Docker which is an open-source container technology
initially created for Linux (which we use), but in later years also has been
made available for Windows users. All code implementation was done in
Python which has several well-developed libraries for ML simulations.

In this chapter we will give a brief explanation of how the VMs were set up
and used together with Docker containers. We will also give an introduction
to the Python packages that were used in the code implementation. The
numerical flow solver will be presented in chapter 8, in addition to a selection
of the code relevant for DRL simulations that will be presented in chapter 9.

7.1 NREC VMs

NREC is a collaboration between the University of Oslo and University of
Bergen with additional sponsors, that provides cloud-based computational
resources for academic projects. Students at both mentioned universities can
apply for access to VMs for academically related projects.

In this project we have used 6 VMs of 16 virtual CPUs (vCPUs) for simula-
tions at Re = 100 and one VM of 64 vCPUs for simulations at Re = 150. Note
that a vCPU is not equal to a physical CPU core, but is rather a measure of
the allocated processing time spent on a CPU. For example, a physical CPU
processor with 8 physical CPU cores that each can support 8 virtual proces-
sors, can hold 8 · 8 = 64 vCPUs. Meaning that one physical CPU of 8 cores

63

https://www.nrec.no/
https://www.docker.com/
https://www.python.org/

64 Technical implementation Chapter 7

can support 64 vCPU / 4 vCPU per VM = 16VMs.
Each VM is initialized with Ubuntu 18.04 which is a reasonably lightweight

OS. When we create the VMs we pair it with an Secure Shell (SSH) key which
lets us connect to and control the VM remotely. By connecting to the VM
through SSH we have full access to the OS through the terminal, and can
install the software we need to run Docker containers.

7.2 Docker

A Docker container is software application that packages code and all re-
quired dependencies such that the code can be run in the same way inde-
pendent of the infrastructure the container is being run on. Our container is
based on a container created by the FEniCS project, which is an open-source
computing platform for solving partial differential equations in Python. The
fluid mechanical computations that are carried out in the project are solved
using FEM code from the python package developed by FEniCS.

In the Docker container we can install all the required Python packages we
need to run our simulations. We also add the GitHub repository of the project
where all the code necessary for running simulations is stored. Once the
Docker container is built we can simply download it to any laptop, desktop,
or VM and run the code in the exact same way as on whatever machine we
built the container on.

We can thus use the same initial Docker container on every VM we are
using for simulations, and then do individual changes to the code on each
VM in order to change the configuration of the simulations. In this way we
can carry out many different simulations, all based on the same code, by
adjusting a few parameters in the code on each VM.

7.3 Necessary Python packages

Before we move on to the actual code and implementation in chapter 9 we
will give a brief presentation of the main Python packages that are utilized in
the project. Note that a lot of packages require other packages to be installed,
without them being explicitly used in the implemented code. We will list the
packages that are actively used in the code, with a brief explanation of their
use.

• TensorForce: Open-source framework for deep reinforcement learning
(DRL). Based on the TensorFlow library. [19]

https://ubuntu.com/
https://fenicsproject.org/
https://github.com/MariusHolm/Pinball2DFlowControlDRL
https://github.com/tensorforce/tensorforce

Section 7.3 Necessary Python packages 65

• Numpy: Numpy is probably the most used package in Python, with
powerful array handling, linear algebra capabilities, basic math func-
tions, and functions to dump data to .txt or .csv files.

• Pandas: Pandas is a popular package for handling data, and have in
this project been used to handle data from simulations to create visual-
izations of the results.

• TensorFlow: TensorFlow is an open-source machine learning library de-
veloped by Google, and is widely used in both industry and academics.
We have not used TensorFlow directly, but as a required dependency
for TensorForce.

• Matplotlib: Matplotlib is another open-source library focused on cre-
ating visualizations. Most graphs and visualizations in this project has
been made by Matplotlib.

• FEniCS/Dolfin: FEniCS consists of several software components which
are split into separate python packages. Dolfin is the high-performance
backend of FEniCS written in C++. The fluid mechanical solver utilized
in this project, developed by Miroslav Kuchta, is largely written using
Dolfin.

• mpi4py: MPI for Python provides bindings for the message passing in-
terface (MPI) standard for Python programming, allowing Python pro-
grams to utilize multiple processors.

https://numpy.org/
https://pandas.pydata.org/
https://www.tensorflow.org/
https://matplotlib.org/
https://fenicsproject.org/
https://mpi4py.readthedocs.io/en/stable/

Chapter 8

Flow Solver

To apply flow control on the fluidic pinball system, that will be introduced
further in chapter 10, we require a way to simulate the flow. The fluid flow
is governed by the Navier-Stokes equations and the effects of applied control
is found by computing the solution for the Navier-Stokes equations on the
given domain, i.e. simulation environment. To solve the Navier-Stokes equa-
tions an incremental pressure correction scheme (IPCS) solver, Goda [11], is
implemented in Python, using the Dolfin package of FEniCS 1. The imple-
mentation of the solver was done by Miroslav Kuchta, and although it is
possible to simply use a solver as a given tool, having some insight of the
methodology and functionality can be beneficial.

We will present the code of the solver part-by-part which might cause
some loss of continuity in the code presented. For those who would prefer to
read the entire code as a whole we refer them to the GitHub repository of the
project where all source code is available.

8.1 Python packages and domain explanation

1 from p i n b a l l _ u t i l s import as_mpi4py_comm, un ique_po in t s #

API change for MPI and function that returns unique points

only

2

3 # Import Python packages

4 from mpi4py import MPI as pyMPI

5 from d o l f i n import *
6 import numpy as np

7 import s y s

8

1The solver is implemented using FEniCS version 2018.1.0

67

https://github.com/MariusHolm/Pinball2DFlowControlDRL

68 Flow Solver Chapter 8

9

10 class FlowSolver(ob j e c t):

11 ’’’

12 Solve Navier�Stokes in the box domain below. Following

arXiv:1812.08529

13 domains 1, 3, 4, have (Uinfty, 0) prescribed on them while

2 is outflow

14 boundary. Boundary conditions on the cylinders (C) are

rotations.

15

16 4

17 ul(x)����������������ur(x)

18 | C |

19 | 1 C | 2

20 | C |

21 ll(x)����������������lr(x)

22 3

23 ’’’

Listing 8.1: Flow solver - part 1 - packages and domain.

In the first section of code we import two simple functions from a separate
Python file, pinball_utils.py. One function safeguards the MPI version
dependent on the Dolfin version, while the other function checks that points
defined in a 2D array are unique, and removes any copies if present. The
other packages, Dolfin, numpy, and mpi4py, are presented in section 7.3. Then
the FlowSolver class is created. The domain is also given a brief description
along with boundary values, which will be implemented later in the code.

8.2 Initialization of FlowSolver attributes

24 def __init__(s e l f , comm, f low_params , geometry_params ,

so lve r_params):

25 ’’’IPCS solver’’’

26 mu = Constant(f low_params[’mu’]) # dynamic viscosity

27 rho = Constant(f low_params[’rho’]) # density

28

29 mesh_f i l e = geometry_params[’mesh’]

30 # Load mesh with markers

31 mesh = Mesh(comm)

32 h5 = HDF5File(comm, mesh_f i l e , ’r’)

Section 8.2 Initialization of FlowSolver attributes 69

33 h5. r ead (mesh, ’mesh’, Fa l s e)

34

35 s u r f a c e s = MeshFunct ion(’size_t’, mesh, mesh. t opo l ogy

().dim()�1)

36 h5. r ead (s u r f a c e s , ’facet’)

37

38 # Define function spaces

39 V = Vecto rFunc t i onSpace (mesh, ’CG’, 2)

40 Q = Funct ionSpace (mesh, ’CG’, 1)

41

42 # Define trial and test functions

43 u, v = T r i a l F u n c t i o n (V), Tes tFunc t i on (V)

44 p, q = T r i a l F u n c t i o n (Q), Tes tFunc t i on (Q)

45

46 u_n, p_n = Funct i on (V), Funct i on (Q)

47 # Starting from rest or are we given the initial state

48 for path , func , name in z i p ((’u_init’, ’p_init’), (u_n

, p_n), (’u0’, ’p0’)):

49 if path in f low_params:

50 comm = mesh.mpi_comm()

51 XDMFFile(comm, f low_params[path]).

r ead_checkpo in t (func , name, 0)

52

53 u_, p_ = Funct i on (V), Funct i on (Q) # Solve into these

54

55 dt = Constant(so lve r_params[’dt’])

56 # Define expressions used in variational forms

57 U = Constant (0.5)*(u_n + u)

58 n = FacetNormal(mesh)

59 f = Constant ((0, 0))

60

61 e p s i l o n = lambda u: sym(nabla_grad(u))

62 s igma = lambda u, p: 2*mu* e p s i l o n (u) � p* I d e n t i t y (2)

Listing 8.2: Flow solver - part 2 - Definitions and simulation setup.

In the second section of code the necessary parameters and functions are
initialized. Constants like mu and rho are determined by the flow parameters
that are input when calling the FlowSolver class in a Python script. A mesh
file of .h5 format should be provided which is read and from which the
surfaces of the domain are read.

The finite element method (FEM) that is applied to solve the Navier-Stokes
equations numerically involves the use of trial- and test functions. Lines 39

70 Flow Solver Chapter 8

and 40 create a vector-valued finite element function space is created for the
velocity, while a finite element function space is created for the pressure field.
Note that the function spaces are defined with respect to the mesh, with el-
ements of the Lagrange class (“CG”), which means that the trial and test
functions are continuous on the mesh. The integer following “CG” in the
FunctionSpace calls defines the degree of the finite elements, i.e. the poly-
nomial degree of the local basis functions on each cell of the finite element
mesh. Once the function spaces are created the trial- and test functions for
velocity and pressure are created. The trial- and test function for velocity are
based on the same function space, and correspondingly for pressure. Line 46
represents a function of form uh =

∑n
i=1 Uiφi, where {φ}ni=1 is a basis for a

function space Vh, in the code either function space V or Q, and Ui is the vector
of degrees of freedom for the function uh. Numerically u_n is the computed
velocity at timestep n, un.

Line 48 to 51 are used to determine whether the flow parameter that are
passed to the class upon creation include paths to initialized flow fields from
which the simulation should be started, or whether the simulation will start
from scratch.

Line 53 is essentially the same as line 46, where u_ is the latest computed
approximation of the velocity, un+1, while u is the unknown velocity at the
next timestep, mathematically given as u+1. The same naming convention is
applied to the pressure. Lines 57 to 62 define different expressions that are
used when expressing the problem in variational form.

8.3 Variational form and boundary conditions

64 # Define variational problem for step 1

65 F1 = (rho * dot((u � u_n) / dt , v)*dx
66 + rho * dot(dot(u_n, nabla_grad(u_n)), v)*dx
67 + i n n e r (s igma(U, p_n), e p s i l o n (v))*dx
68 + dot(p_n*n, v)* ds�dot(mu* nabla_grad(U)*n, v)* ds
69 � dot(f , v)*dx)
70

71 a1, L1 = l h s (F1), r h s (F1)

72

73 # Define variational problem for step 2

74 a2 = dot(nabla_grad(p), nabla_grad(q))*dx
75 L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx � (1/ dt)*

d i v (u_)*q*dx
76

77 # Define variational problem for step 3

https://fenicsproject.org/olddocs/dolfin/1.3.0/python/programmers-reference/functions/functionspace/FunctionSpace.html
https://fenicsproject.org/olddocs/dolfin/1.3.0/python/programmers-reference/functions/function/Function.html

Section 8.4 Setting up cylinders and matrices for solutions 71

78 a3 = dot(u, v)*dx
79 L3 = dot(u_, v)*dx � dt * dot(nabla_grad(p_ � p_n), v)*

dx

80

81 # Same inflow profile as Noack. (1, 0) unit vector

82 U_infty = Constant ((f low_params[’U_infty’], 0)) #

Scaled e_x

83 # Define boundary conditions for non�cylinder

boundaries

84 bcu_ in l e t = D i r i c h l e tBC (V, U_infty , s u r f a c e s , 1)

85 bcu_top = D i r i c h l e tBC (V, U_infty , s u r f a c e s , 4)

86 bcu_bot = D i r i c h l e tBC (V, U_infty , s u r f a c e s , 3)

87 # Fixing outflow pressure

88 bcp_outf low = D i r i c h l e tBC (Q, Constant (0), s u r f a c e s , 2)

Listing 8.3: Flow solver - part 3 - IPCS scheme and boundary conditions.

When using an IPCS solver we need to define three variational problems,
one for each step in the IPCS scheme. The IPCS schemes three steps are, first
compute the tentative velocity by solving for u in variational problem step
1, then compute the corrected pressure by solving for p in variational prob-
lem step 2, and finally compute the corrected velocity by solving variational
problem step 3 [42].

In line 82 the inflow profile is defined as a vector in the x-direction, where
the inflow velocity, U_infty is equal to 1 in our simulations, thus defining the
inflow as the unit vector in the x-direction. Following the inflow definition the
boundary conditions of the surrounding domain are set, note the exception of
the boundary conditions for the cylinders which are determined by a function
call later in the code.

For a complete introduction to the implemention of PDE solvers, including
Naiver-Stokes solvers, with FEniCS we refer to the freely accessible FEniCS
tutorial by Langtangen and Logg [20].

8.4 Setting up cylinders and matrices for solutions

89 # Finally we have rotations on the cylinders

90 tags , expr s , i n f o = FlowSolver. s e tup_cy l i nde r_bcs (

s u r f a c e s , 4)

91 bcu_cy l i nde r = [D i r i c h l e tBC (V, expr , s u r f a c e s , tag)

for tag , exp r in z i p (tags , e xp r s)]

92

https://fenicsproject.org/pub/tutorial/html/._ftut1009.html
https://fenicsproject.org/pub/tutorial/html/._ftut1009.html

72 Flow Solver Chapter 8

93 # All bcs objects together

94 bcu = [bcu_in l e t , bcu_top , bcu_bot] + bcu_cy l i nde r

95 bcp = [bcp_outf low]

96

97 As = [Matr i x(comm) for i in range (3)]

98 bs = [Vector (comm) for i in range (3)]

99

100 # Assemble matrices

101 a s s emb l e r s = [SystemAssembler(a1, L1, bcu),

102 SystemAssembler(a2, L2, bcp),

103 SystemAssembler(a3, L3, bcu)]

104

105 # Apply bcs to matrices (this is done once)

106 for a, A in z i p (a s s emb l e r s , As):

107 a. as semb le (A)

108

109 # Chose between direct and iterative solvers

110 s o l v e r s = [LUSolver(comm, A, ’mumps’) for A in As]

111 # Set matrices for once, likewise solver don’t change

in time

112

113 gt ime = 0. # External clock

Listing 8.4: Flow solver - part 4 - Cylinders and matrix setup.

Setting up the cylinders, i.e. locating positions and determining the bound-
ary conditions for each is done by the separate function setup_cylinder_bcs.
We will come back to the functionality of this function in section 8.7.

The boundary conditions of the cylinders and the rest of the computa-
tional domain are combined such that boundary conditions of velocity are
defined by bcu and boundary conditions for pressure are defined by bcp. As
the variational steps are time-independent we can assemble the matrices and
vectors manually instead of automatically through FEniCS’s solve() function
which lets us assemble them once and for all outside the time-stepping loop.

The flow solver is implemented with a direct LU solver (lower-upper de-
composition) that solves the linear system of equations. LU solvers are rec-
ommended for smaller systems like 2-dimensional and small 3-dimensional
systems [20]. For larger systems iterative solvers are better suited.

8.5 Making attributes of the FlowSolver class ac-
cessible

Section 8.6 Evolving the flow and applying rotations 73

114 # Things to remember for evolution

115 s e l f . cy l i nde r_bc_exp r s = e xp r s

116 s e l f . cy l i nde r_bc_tags = t ag s

117 s e l f . c y l i n d e r_ i n f o = i n f o

118 # Keep track of time so that we can query it outside

119 s e l f .gtime , s e l f .dt = gtime , dt

120

121 s e l f . s o l v e r s = s o l v e r s

122 s e l f . a s s emb l e r s = a s s emb l e r s

123 s e l f .bs = bs

124 s e l f .u_, s e l f .u_n = u_, u_n

125 s e l f .p_, s e l f .p_n= p_, p_n

126

127 # Rename u_, p_ for to standard names (simplifies

processing)

128 u_. rename(’velocity’, ’0’)

129 p_. rename(’pressure’, ’0’)

130

131 t ag s = t u p l e (map(i n t , t ag s))

132 # Also expose measure for assembly of outputs outside

133 s e l f . ext_sur face_measures = [Measure(’ds’, domain=mesh

, subdomain_data= s u r f a c e s , subdomain_id= tag)

134 for tag in t ag s]

135

136 s e l f . v i s c o s i t y = mu

137 s e l f . d e n s i t y = rho

138 s e l f .normal = n

139 # Finally the communicator

140 s e l f .comm = as_mpi4py_comm(comm)

Listing 8.5: Flow solver - part 5 - Make FlowSolver attributes accessible.

This section of code lets us access velocity, pressure, and boundary condi-
tions outside the __init__ function of the FlowSolver class.

8.6 Evolving the flow and applying rotations

141 def e v o l v e (s e l f , bc_va lues):

142 ’’’Make one time step with the given rotation

magnitudes’’’

74 Flow Solver Chapter 8

143 a s s e r t l e n (bc_va lues) == l e n (s e l f . cy l i nde r_bc_tags), (

bc_values , s e l f . cy l i nde r_bc_tags)

144 # Set rotation

145 for expr , v a l u e in z i p (s e l f . cy l i nde r_bc_expr s ,

bc_va lues):

146 exp r .A = v a l u e

147

148 # Make a step

149 s e l f .gt ime += s e l f .dt (0)

150

151 a s s emb l e r s , s o l v e r s = s e l f . a s s emb l e r s , s e l f . s o l v e r s

152 bs = s e l f .bs

153 u_, p_ = s e l f .u_, s e l f .p_

154 u_n, p_n = s e l f .u_n, s e l f .p_n

155

156 so l u t i on_okay = True

157 for (as semb le r , b, s o l v e r , uh) in z i p (a s s emb l e r s , bs ,

s o l v e r s , (u_, p_, u_)):

158 a s s emb l e r . as semb le (b)

159 try:

160 s o l v e r . s o l v e (uh. v e c t o r (), b)

161 except:

162 so l u t i on_okay = Fa l s e

163

164 so l u t i on_okay = so l u t i on_okay and not np.any(np. i s n an (

u_. v e c t o r (). ge t_ l o c a l ()))

165 so l u t i on_okay = so l u t i on_okay and not np.any(np. i s n an (

p_. v e c t o r (). ge t_ l o c a l ()))

166 # Reduce accross CPUs

167 so l u t i on_okay = s e l f .comm. a l l r e d u c e (so lu t i on_okay , op=

pyMPI.PROD)

168

169 if not so l u t i on_okay :

170 print(’Simulation gone wrong’)

171 s y s . e x i t ()

172

173 u_n. a s s i g n (u_)

174 p_n. a s s i g n (p_)

175

176 # Share with the world

177 return u_, p_, so l u t i on_okay

Section 8.7 Cylinder setup with boundary conditions for rotations 75

Listing 8.6: Flow solver - part 6 - Evolving the flow.

evolve() is the main function of the FlowSolver class which computes
the flow as it develops. The function accepts boundary conditions for the
cylinders as input. Any non-zero boundary condition on a cylinder will cor-
respond to a rotation that will affect the flow. Calling FlowSolver.evolve()
in a script where the FlowSolver class has been initialized will compute one
numerical timestep with given rotations of the cylinders.

In line 145 the rotational magnitude defined by the boundary conditions
accepted as input are applied to each cylinder before computing the velocity
and pressure fields. The actual computations are done in lines 157 to 163
where the script also checks that no undefined values for velocity or pressure
appears in the simulation. Line 167 collects the results of distributed com-
putations in the case of MPI processing, and returns a flag for whether the
simulation ended without undefined values. If a simulation returns unde-
fined values the simulation will stop with an error message, and we will have
to debug the scripts where the solver is called and consider the physics and
mesh quality of the simulation we want to compute.

8.7 Cylinder setup with boundary conditions for
rotations

178 @sta t i cmethod

179 def s e tup_cy l i nde r_bcs (s u r f a c e s , tag):

180 ’’’Discover cylinders and make rotation expression for

them’’’

181 # By convention cylinders are labels after tag; local

182 t ag s = [t for t in s e t (s u r f a c e s . a r r a y ()) if t > tag]

183

184 mesh = s u r f a c e s .mesh()

185 comm = as_mpi4py_comm(mesh.mpi_comm())

186 # Global tags are

187 t ag s = l i s t (s e t (sum(comm. a l l g a t h e r (l i s t (t ag s)), [])))

188

189 x = mesh. c o o r d i n a t e s ()

190

191 # On each surface the value is given by customizing

the following template

192 ro t_expr = lambda: Exp r e s s i o n ((’A*(x[1]�CY)/sqrt((x[0]
�CX)*(x[0]�CX) + (x[1]�CY)*(x[1]�CY))’,

76 Flow Solver Chapter 8

193 ’�A*(x[0]�CX)/sqrt((x
[0]�CX)*(x[0]�CX) + (x[1]�CY)*(x[1]�CY))’),

194 deg ree =1, CX=0, CY=0, A

=0)

195

196 mesh. i n i t (1, 0)

197 va l u e s , c y l i n d e r_ i n f o = [], []

198 for tag in t ag s :

199 # Discover center points as center of mass of

vertices lying

200 # on the cylinder

201 v_idx = sum((l i s t (f . e n t i t i e s (0)) for f in

S u b s e t I t e r a t o r (s u r f a c e s , tag)), [])

202 # Send the points to root

203 g l o b a l_ c i r c l e_p o i n t s = comm. ga the r (x[v_idx], 0)

204

205 center_x , center_y , r a d i u s = (None,)*3
206 # Let it compute the info

207 if comm. rank == 0:

208 g l o b a l_ c i r c l e_p o i n t s = un ique_po in t s (np.

row_stack(g l o b a l_ c i r c l e_p o i n t s))

209 center_x , center_y = np.mean(

g l o b a l_c i r c l e_po i n t s , a x i s =0)

210 r a d i u s = np. l i n a l g .norm(g l o b a l_ c i r c l e_p o i n t s

[0] � np. a r r a y ([center_x , center_y]))

211

212 comm. bca s t ((center_x , center_y , r a d i u s), 0)

213 # Just listen

214 else:

215 center_x , center_y , r a d i u s = comm. bca s t ((

center_x , center_y , r a d i u s), 0)

216

217 exp r = ro t_expr ()

218 exp r .CX = center_x

219 exp r .CY = center_y # Leaving magnitude to the

controller

220

221 v a l u e s .append(exp r)

222 c y l i n d e r_ i n f o .append((center_x , center_y , r a d i u s))

223 return tags , va l u e s , c y l i n d e r_ i n f o

Section 8.7 Cylinder setup with boundary conditions for rotations 77

Listing 8.7: Flow solver - part 7 - Setting up cylinders and make ready for
rotations.

The final function of the FlowSolver class that is necessary for our simu-
lations takes the surfaces of the domain, i.e. our three cylinders and a tag for
each as input. In the end the function outputs the rotation of each cylinder,
along with information of the cylinders positions, and a tag. After finding
each cylinder they are given a rotation defined by the expression in line 192.
The root process calculates the position of each cylinder and shares it with
each processor through .bcast, while the other processes uses .bcast to re-
ceive the results from the root process.

The cylinder position is then applied to the expression defining rotation of
the cylinders, while the final values that determine the magnitude of rotation,
A, is left to be defined in FlowSolver.evolve().

Chapter 9

Code implementation

In chapter 8 we presented the strictly necessary fluid mechanical part of the
simulations. In addition to the flow solver we need several Python scripts
in order to run control the simulation using deep reinforcement learning
agents. The main class is a custom TensorForce environment consisting of
almost 900 lines of code1. A good amount of those 900 lines are not strictly
necessary for running a simulation, but include dump routines for drag and
lift values in .csv format, and the possibility of dumping .pvd files of the
pressure and velocity fields for visual inspection in ParaView. To start a sim-
ulation we also need to configure the DRL agent and determine how long
the agent should be allowed to train for. This is done in the script called
launch_parallel_training.py and we will give an overview of the most im-
portant snippets. For further explanations of the code and implementation we
refer to the provided READMEs that can be found in the GitHub repository.

9.1 TensorForce environment class

The base class of a customizable TensorForce environment (version 0.5.0) can
be found in the TensorForce GitHub repository. Note that the custom envi-
ronment implemented for the fluidic pinball simulations differ quite signifi-
cantly from the custom environment template, and we will only present the
essential functions of the class here. Thus, significant amounts of the source
code is left out and the code presented here is not meant to be a working
example. For the complete code we refer to the source file available in the
thesis repository where the complete source code is available.

class Env2DPinba l l(Envi ronment):

1Code developed for TensorForce 0.5.0 - Major updates to the library has been added
since.

79

https://www.paraview.org/
https://github.com/MariusHolm/Pinball2DFlowControlDRL
https://github.com/tensorforce/tensorforce/blob/0.5.0/tensorforce/environments/environment.py
https://github.com/MariusHolm/Pinball2DFlowControlDRL/blob/master/Pinball2DFlowControlWithDRL/Env2DPinball.py

80 Code implementation Chapter 9

"""Environment Class for 2D flow simulation of the fluidic

pinball."""

def __init__(s e l f , path_root , geometry_params , f low_params

, so lver_params , output_params ,

opt imizat ion_params , i n spect ion_params ,

n_iter_make_ready=None, v e r bo s e =0, s i z e_h i s t o r y =2000,

r eward_func t i on =’plain_drag_lift’,

s i z e_t ime_sta t e =50, du ra t i on_execu t e =0.5, simu_name="Simu",

r o o t_ f o l d e r =’mesh/re100’):

"""

"""

Make the input parameters available to the rest of

the class

s e l f .path_root = path_root

s e l f . r o o t_ f o l d e r = r o o t_ f o l d e r

s e l f . f low_params = f low_params

s e l f .geometry_params = geometry_params

s e l f . so lve r_params = so lve r_params

s e l f .comm = mpi_comm_world()

Initialize drag, lift and recirc area for each

cylinder.

s e l f . ep i sode_drags0 = np. a r r a y ([])

s e l f . s t a r t_ c l a s s (comp le t e_re se t =True)

Listing 9.1: TensorForce environment class - __init__

The first section of code we present is the __init__ method, known as
a constructor, and is called when an object is created from the environment
class. The method allows the class to initialize the attributes of the class, and
make them available to the rest of the class by redefining the input parameters
of the __init__ method as self.input_parameter.

Parameters defining the flow are passed to flow_params, geometry_params
define geometrical values like cylinder locations, and solver_params contains
the numerical timestep that is to be used during a simulation. These values
are all defined in the script simulation_base/env.py, which is used to con-
figure each individual simulation. Finally we initialize arrays where we want
to save drag, lift, reward, and other variables that are relevant to the simu-

Section 9.1 TensorForce environment class 81

lation, and call the start_class method which will start the first episode of
simulations.

def s t a r t_ c l a s s (s e l f , comp le t e_re se t =True):

if comp le t e_re se t == Fa l s e :

s e l f . s o l v e r_ s t e p = 0

else:

s e l f . s o l v e r_ s t e p = 0

s e l f .accumulated_drag = 0

Dictionary to store simulation data

s e l f . h i s t o r y_pa r ame t e r s = {}

Set Path to .msh and .h5 file.

msh_f i l e = ’.’. j o i n ([s e l f .path_root , ’msh’])

h5_ f i l e = ’.’. j o i n ([s e l f .path_root , ’h5’])

if not os.path. e x i s t s (h5_ f i l e):

if no .h5 file of mesh, convert .msh to .h5

mesh = conv e r t (msh_f i le , h5_ f i l e)

if necessary , load initialization fields

if s e l f .n_iter_make_ready is None:

s e l f . f low_params[’u_init’] = ’/’. j o i n ([s e l f .

r oo t_ fo l d e r , ’u_init.xdmf’])

s e l f . f low_params[’p_init’] = ’/’. j o i n ([s e l f .

r oo t_ fo l d e r , ’p_init.xdmf’])

Create flow simulation object

s e l f . f l ow = FlowSolver(s e l f .comm, s e l f . f low_params

, s e l f .geometry_params , s e l f . so lve r_params)

Setup probes

if s e l f .output_params["probe_type"] == ’pressure’:

s e l f .ann_probes = Pre s su r eP robe (s e l f . f low ,

s e l f .output_params[’locations’])

probe setup for Pinball solver

s e l f .drag_probes = [DragProbe(i , s e l f . f l ow) for i

in range(l e n (s e l f .geometry_params[’cylinder_center’]))]

Initialize rotation and action as zeros

82 Code implementation Chapter 9

s e l f .Qs = np. z e r o s (num_cy l inders)

s e l f . a c t i o n = np. z e r o s (num_cy l inders)

if necessary , create initialized fields

if s e l f .n_iter_make_ready is not None:

s e l f .u_, s e l f .p_, s e l f . s t a t u s = s e l f . f l ow .

e v o l v e (s e l f .Qs)

for _ in range(s e l f .n_iter_make_ready):

s e l f .u_, s e l f .p_, s e l f . s t a t u s = s e l f . f l ow .

e v o l v e (s e l f .Qs)

s e l f . probe s_va lue s = s e l f .ann_probes.

sample(s e l f .u_, s e l f .p_). f l a t t e n ()

s e l f .drag = [dp. sample(s e l f .u_, s e l f .p_)

for dp in s e l f .drag_probes]

s e l f . s o l v e r_ s t e p += 1

if s e l f .n_iter_make_ready is not None:

encod ing = XDMFFile.Encoding.HDF5

mesh = conv e r t (msh_f i le , h5_ f i l e)

comm = mesh.mpi_comm()

u_ in i t = ’/’. j o i n ([s e l f . r oo t_ fo l d e r , ’u_init.

xdmf’])

p_ in i t = ’/’. j o i n ([s e l f . r oo t_ fo l d e r , ’p_init.

xdmf’])

save field data

XDMFFile(comm, u_ in i t).wr i t e_checkpo i n t (s e l f .

u_, ’u0’, 0, encod ing)

XDMFFile(comm, p_ in i t).wr i t e_checkpo i n t (s e l f .

p_, ’p0’, 0, encod ing)

s y s . e x i t ("\nInitialization fields have been

created!\nReset simulation using make_converge=False\n")

s e l f . ready_to_use = True

Listing 9.2: TensorForce environment class - start_class

The start_class method is used to start a new episode of simulations,
with the added possibility of resetting the simulation completely, i.e. complete_reset
= True. If the simulation is starting from scratch the method checks for a .h5

Section 9.1 TensorForce environment class 83

file of the computational mesh which is needed for the FlowSolver class to
carry out the numerical computations of the Navier-Stokes equations. If no
.h5 file is found the external function convert, imported from a separate
script, converts a .msh file to the .h5 format. The path to converged initial-
ization fields are stored in flow_params, if available, before the FlowSolver
class presented in chapter 8 is called and we create the flow solver object
self.flow.

A variety of probes are then set up, e.g. drag probes computing the drag
on each cylinder, and pressure probes that are used to sample the flow and
represents the state given to the DRL agent. Note that the agent is not given
a complete state of the system, but a quite sparse representation of the flow
(See fig. 10.8).

The control actuations are initialized as zero-rotation, which is necessary
if the script is used to create a converged initialization fields of the pressure
and velocity by simulating the flow without actuations for a long time. The
convergence of initialization fields is explained in more detail in chapter 10. If
converged initialization fields are created they are saved as .xdmf files which
will then be loaded in at the start of each episode.

def s t a t e s (s e l f):

"""

Returns:

States specification , with the following

attributes

(required):

� type: ’float’

� shape: integer, or list/tuple of integers (

required).

"""

if s e l f .output_params["probe_type"] == ’pressure’:

return d i c t (type =’float’,

shape =(l e n (s e l f .output_params["

locations"]) * \

s e l f . opt im iza t ion_params ["

num_steps_in_pressure_history"],)

)

elif s e l f .output_params["probe_type"] == ’velocity’:

return d i c t (type =’float’,

shape =(2 * l e n (s e l f .output_params["

locations"]) * \

s e l f . opt im iza t ion_params ["

num_steps_in_pressure_history"],)

84 Code implementation Chapter 9

)

Listing 9.3: TensorForce environment class - states

The states method defines how the state of the system is represented to
the DRL agent. The exact method of sampling is determined start_class,
but the agent requires a formal specification of the size of each state.

def a c t i o n s (s e l f):

"""

Returns:

actions (spec, or dict of specs): Actions

specification , with the following attributes

(required):

� type: ’float’ (required).

� shape: list/tuple of integers (default: []).

� min_value and max_value: float

"""

return d i c t (type =’float’,

shape =(l e n (s e l f .geometry_params["

cylinder_center"]),),

min_value= s e l f . opt im iza t ion_params ["

min_rotation_cyl"],

max_value= s e l f . opt im iza t ion_params ["

max_rotation_cyl"]

)

def c l o s e (s e l f):

"""

Close environment. No other method calls possible

afterwards.

"""

s e l f . ready_to_use = Fa l s e

Listing 9.4: TensorForce environment class - actions and close

Similarly the states method, the actions method formally defines the
action space of the agent, i.e. how many actuations should be returned and
what values are allowed for each actuation. In our case of the fluidic pin-
ball we have three cylinders which require 1 actuation value each and each
actuation must be in the interval [−1, 1].

The close method simply closes the environment at the end of simula-
tions.

Section 9.1 TensorForce environment class 85

def r e s e t (s e l f):

"""

Reset environment and setup for new episode.

Returns:

initial state of reset environment.

"""

if s e l f . s o l v e r_ s t e p > 0 and not s e l f . f l ag_need_rese t :

mean_accumulated_drag = s e l f .accumulated_drag /

s e l f . s o l v e r_ s t e p

mean_accumulated_l i f t = s e l f . a c cumu l a t e d_ l i f t /

s e l f . s o l v e r_ s t e p

if s e l f . v e r bo s e > �1:

print("mean accumulated drag on the whole

episode: {}". fo rmat(mean_accumulated_drag))

chance = random.random()

p r o b ab i l i t y_ha r d_ r e s e t = 0.2

20% chance for a complete reset

if chance < p r o b ab i l i t y_ha r d_ r e s e t or s e l f .

f l ag_need_rese t :

s e l f . s t a r t_ c l a s s (comp le t e_re se t =True)

s e l f . f l ag_need_rese t = Fa l s e

else:

s e l f . s t a r t_ c l a s s (comp le t e_re se t = Fa l s e)

nex t_s ta t e = np. t r a n s p o s e (np. a r r a y (s e l f . probe s_va lue s)

)

if s e l f . v e r bo s e > 0:

print(nex t_s ta t e)

s e l f . episode_number += 1

return(nex t_s ta t e)

Listing 9.5: TensorForce environment class - reset

The reset method calculates the accumulated drag of an episode, resets
the episode by calling start_class, and increases the episode counter by 1.

86 Code implementation Chapter 9

def ex e cu t e (s e l f , a c t i o n s):

"""

Executes action, observes next state(s) and reward.

Args:

actions: Actions to execute.

Returns:

Tuple of (next state, bool indicating terminal,

reward)

"""

try:

a c t i o n = a c t i o n s

if a c t i o n is None:

No rotation given, set rotation as zero

a c t i o n = np. z e r o s ((num_cyl inders ,))

s e l f . p r e v i o u s_ac t i o n = s e l f . a c t i o n

s e l f . a c t i o n = a c t i o n

To execute several numerical integration steps

s e l f . l a s t_a c t u a t i o n = 0

s e l f . t ime = 0

Resets between every new action given to execute

()

s e l f . cu r r en t_numer i ca l_s tep = 0

while (s e l f . t ime � s e l f . l a s t_a c t u a t i o n) < s e l f .

du ra t i on_execu t e :

s e l f . cu r r en t_dt = s e l f . so lve r_params[’dt’]

s e l f . t ime += s e l f . cu r r en t_dt

if "smooth_control" in s e l f .

opt im iza t ion_params :

Apply smoothing to avoid sudden changes

in rotation.

s e l f .Qs += s e l f . opt im iza t ion_params ["

smooth_control"] * (np. a r r a y (a c t i o n) � s e l f .Qs)

Evolve the flow one numerical timestep with

rotations Qs

s e l f .u_, s e l f .p_, s e l f . s t a t u s = s e l f . f l ow .

Section 9.1 TensorForce environment class 87

e v o l v e (s e l f .Qs)

Solver step resets every episode, current

resets every action.

s e l f . s o l v e r_ s t e p += 1

s e l f . cu r r en t_numer i ca l_s tep += 1

sample probes, drag, and lift

s e l f . probe s_va lue s = s e l f .ann_probes. sample(

s e l f .u_, s e l f .p_). f l a t t e n ()

s e l f .drag = [dp. sample(s e l f .u_, s e l f .p_) for

dp in s e l f .drag_probes]

s e l f . l i f t = [l p . sample(s e l f .u_, s e l f .p_) for

l p in s e l f . l i f t _ p r o b e s]

write sampled data to the history buffers

s e l f .wr i t e_h i s t o r y_pa rame t e r s ()

s e l f .accumulated_drag += np.mean(s e l f .drag)

s e l f . l a s t_a c t u a t i o n = s e l f . t ime

nex t_s ta t e = np. t r a n s p o s e (np. a r r a y (s e l f .

probe s_va lue s))

t e rm i n a l = Fa l s e

reward = s e l f .compute_reward()

except:

If exception , something has gone wrong.

Call functions that check state and reward for

NaN or Inf values

and reset simulation if invalid values found.

t e rm i n a l = True

return (next_state , t e rm ina l , reward)

Listing 9.6: TensorForce environment class - execute

The final method we present is where the actual simulation takes place.
The execute method takes a list of actions as input, if no actions are given
we default to no rotation, and carries out the applied actions given. During a
baseline simulation the actuations are zero, while if we are training or evalu-

88 Code implementation Chapter 9

ating a DRL agent the actuations are given by the agent. duration_execute is
calculated in simulation_base/env.py and determines how many timeunits
each set of actuations should be applied. We also apply smoothing of the ac-
tuations to avoid sudden changes in rotation leading to infinite acceleration
which can break the physics of the simulation. Thus, each new actuation,
Qn+1 is given as Qn+1 = Qn+α(a−Qn), where Qn is the previously applied
actuation, a is the actions provided by the DRL agent, and α is a smoothing
parameter.

Once the actuations are determined we pass the array of actuations to the
evolve method of the FlowSolver class which computes the flow for the next
numerical timestep. The drag, lift, and pressure probes are then sampled
and values stored by the write_history_parameters method (not described
here).

Once the duration_execute loop is finished with one given set of actua-
tions from the DRL agent the next observed state is prepared and the reward
corresponding to the given set of actuations is calculated. Some simulations
have been observed to break which is why we include try-except blocks. If
the simulation breaks we call a method that checks the state and the reward
for infinite or undefined values. If the simulation breaks we return terminal

= True which will reset and start a completely new episode.

9.2 TensorForce agent and simulation start

Once the custom environment class is properly defined with all necessary
methods we need a script to start the simulations. As for the environment
script we will not present everything here, but focus our attention on the
configurable parts of the script.

At the start of the script a number of environment objects, all named
example_environment, of the Env2DPinball class are created, one environ-
ment per parallel process. These environments are stored in a list of environ-
ments simply named environments, while one single environment is used for
evaluation and is named evaluation_environment.

network = [d i c t (type =’dense’, s i z e =512), d i c t (type =’dense’,

s i z e =512)]

agent = Agent. c r e a t e (

Agent + Environment

agent=’ppo’, env i ronment = example_environment ,

max_episode_timesteps=nb_actuat ions ,

Network

network=network ,

Section 9.2 TensorForce agent and simulation start 89

Optimization

batch_s i z e =20, l e a r n i n g_ r a t e =1e�3, s ub s amp l i n g_ f r a c t i o n

=0.2, op t im i z a t i o n_s t e p s =25,

Reward estimation

l i k e l i h o o d_ r a t i o_ c l i p p i n g =0.2, e s t ima t e_te rm ina l =True ,

Critic

c r i t i c_ne two r k =network ,

c r i t i c_ o p t im i z e r = d i c t (

type =’multi_step’, num_steps=5,

o p t im i z e r = d i c t (type =’adam’, l e a r n i n g_ r a t e =1e�3)

),

Regularization

e n t r o p y_ r e g u l a r i z a t i o n =0.01,

TensorFlow etc

p a r a l l e l _ i n t e r a c t i o n s =number_servers ,

s a v e r = d i c t (d i r e c t o r y =os.path. j o i n (os.getcwd(), ’saver_data

’), s econds =72000),

)

Listing 9.7: Define agent and neural network

After the necessary environments have been created we define a dense
neural network that defines the policy function estimator, i.e. the network
parameter. We also have a neural network that is trained to approximate
the state value function, V(s), used to calculate the advantage function, Ât of
section 4.4, i.e. the critic_network parameter. For details on the state value
function and advantage function estimation we refer to Schulman et al. [38].
The neural networks are implemented with ReLU activation functions, as
described in subsection 3.3.2.

We then call the create method of the Agent class provided from Tensor-
Force, which will create a DRL agent from a given specification. We specify
that we want a PPO agent, then pass a single example of the custom envi-
ronment the agent should interact with, and the maximum number of agent
actuations per episode.

Then follows a variety of hyperparameters like the batch size (number
of episodes per update batch), learning rate, and the clipping parameter,
likelihood_ratio_clipping, corresponding to the clipping parameter of Schul-
man et al. [38] that gave the best results in their experiments with the PPO
algorithm.

Finally we specify how many parallel environments are running, and
specify how to save the agent during training.

r unne r = Pa r a l l e l R u n n e r (

90 Code implementation Chapter 9

agent=agent , env i r onment s = env i ronments ,

eva l ua t i on_env i r onment = eva l ua t i on_env i r onment

)

r unne r . run(

num_episodes=800, max_episode_timesteps=nb_actuat ions ,

s ync_ep i sode s =True ,

e v a l u a t i o n_c a l l b a c k = eva lua t i on_ca l l back_2 ,

save_best_agent=use_best_model

)

r unne r . c l o s e ()

Listing 9.8: Define runner and start simulation

Once the agent has been created we initialize the runner utility where we
pass the created agent, the parallel environments, and the evaluation envi-
ronment.

Using the run method of the ParallelRunner class we define how many
episodes the agent should train for. sync_episodes=True as long as the num-
ber of parallel processes is less than the batch size, but for more complex
systems where more parallel processes are needed this should be checked as
False to avoid some environments waiting on the rest of the environments to
finish before starting the next episode.

Once the training is complete the runner is closed, and the trained agent
is saved. When an agent has finished training we want to evaluate the
agents performance. During training each updated action is determined
by a probability distribution of which action is supposedly good for the
given state of the flow. When we evaluate an agent we use so-called de-
terministic evaluation, i.e. the action to be taken for every state is the ac-
tion that is most likely to maximize the accumulated reward, according to
the probability distribution describing all possible actions. During training
each action the chosen action is not necessarily the supposedly best one,
and this introduces a natural form of exploration noise. The script to run
the evaluation is called single_runner.py, and is in essence quite similar to
launch_parallel_training.py. The main differences are outlined below:

agent = Agent. c r e a t e (

Agent + Environment

agent=’ppo’, env i ronment = example_environment ,

max_episode_timesteps=nb_actuat ions ,

Network

network=network ,

Optimization

Section 9.2 TensorForce agent and simulation start 91

batch_s i z e =20, l e a r n i n g_ r a t e =1e�3, s ub s amp l i n g_ f r a c t i o n

=0.2, op t im i z a t i o n_s t e p s =25,

Reward estimation

l i k e l i h o o d_ r a t i o_ c l i p p i n g =0.2, e s t ima t e_te rm ina l =True ,

Critic

c r i t i c_ne two r k =network ,

c r i t i c_ o p t im i z e r = d i c t (

type =’multi_step’, num_steps=5,

o p t im i z e r = d i c t (type =’adam’, l e a r n i n g_ r a t e =1e�3)

),

Regularization

e n t r o p y_ r e g u l a r i z a t i o n =0.01,

TensorFlow etc

p a r a l l e l _ i n t e r a c t i o n s =1,

s a v e r = s a v e r_r e s t o r e , # path to saved agent

)

agent. i n i t i a l i z e ()

##################################

def one_run():

print("start simulation")

s t a t e = example_envi ronment. r e s e t ()

example_envi ronment. r e nd e r = True

for k in range (3* nb_actuat ions):

a c t i o n = agent. ac t (s t a t e , d e t e rm i n i s t i c = d e t e rm i n i s t i c ,

i ndependen t =True)

s t a t e , t e rm ina l , reward = example_envi ronment. ex e cu t e (

a c t i o n)

Listing 9.9: Single runner evaluation

The agent specification is close to identical of the specification for starting
training, except that instead of saving the agent we load the trained agent
from the folder it was saved to during training. Once the agent is initialized
with agent.initialize() we define the function that runs the evaluation
simulation. We reset the state of environment before we start the loop that
will run the simulation. The evaluation is run for three times the length
of a training episode (3*nb_actuations) where the actions are given by the
agent.act() call before being passed to the execute method of the environ-
ment class. Note that instead of determining actions by calling agent.act()

we can also define actions as constant or following a simple function, e.g.

92 Code implementation Chapter 9

action = [0.5, 0.5, 0.5] which would correspond to constant rotation on
all three cylinders. We could also define actions as action = [sin(2k),

sin(k), sin(0.5k)], corresponding to sinusoidal control as a function of
actuation number.

9.3 Advantages of the implementation

The DRL training is parallelized with almost perfect speed-up with the same
methodology as used in Rabault and Kuhnle [33]. The agent is trained by
gathering experience from multiple parallel environments, allowing us to
study more computationally intensive problems.

Finding converged initialization fields can be done in two different ways.
In the Env2DPinball class it is done in serial, which can take very long on
a large computational mesh which is most likely needed on more complex
problems. The script found in converge_flow/create_init_fields.py takes
advantage of MPI to compute converged initialization fields where tests have
shown a reduction in computing time of > 50% for 3 and more CPUs com-
pared to the same simulation running in serial. In the flow solver the linear
systems are solved by a direct LU decomposition solver. LU solvers are gen-
erally faster than iterative solvers for smaller systems, like 2-dimensional and
small 3-dimensional problems [20]. Note that the speed-up of the MPI con-
vergence script does not scale linearly with the amount of processors, but
speed-up is very prominent when increasing from 1 to 4 processors. Speed-
up was observed to be noticeable up to 8 processors, but with decreasing
difference between 5-8 processors. The recommended number of parallel
processors for the MPI script will depend on the computer hardware running
the simulation.

9.4 Possible improvements

The code is based on an older version of the TensorForce library, and docu-
mentation of the older code is not as extensive as the more recent versions.
Further development of the code implemented in this project could be more
of a challenge because of this, but the same functionality is still present in
the latest TensorForce version, including the parallel training of DRL agents
which is now functionally built into the TensorForce framework, rather than
being handled by separate scripts.

The single runner evaluation is run in serial, which makes evaluation of
an agent slower than what it could be if MPI was successfully implemented
in such a way that the final evaluation could be run using parallel processing.
During training it is more efficient to use the already implemented strategy

Section 9.4 Possible improvements 93

of using 1 CPU per environment, which is why MPI implementation in the
code where we use DRL agents has not been a priority.

Although LU solvers are usually more efficient than iterative solvers in
2-dimensional systems, an LU solver will slow down for larger and more
complex systems. As such it could be interesting to compare an iterative
solver with the implemented LU solver, especially for larger meshes needed
to simulate at higher Re.

Chapter 10

Methodology - Fluidic Pinball

10.1 Simulation Environment

The simulation environment used for the fluidic pinball is based on the de-
scriptions given in Deng et al. [6]. The flow of the system is governed by
the Navier-Stokes equations in the computational domain, and are solved
numerically using the FEM method implemented in the FEniCS framework
[22]. As given by Deng et al. [6] the Cartesian origin is placed in the middle
of the two trailing cylinders. The three cylinders form an equilateral triangle
of sides 3R. In Cartesian coordinates the computational domain is given by
[−6, 20]× [−6, 6], as shown in 10.1. The boundary condition on the cylinders
are no-slip conditions, Ur = 0. On the inflow, upper, and lower boundaries a
far field boundary condition is applied, U∞ = ex. Where ex is the unit veloc-
ity in the x-direction, given as a vector, ex = (1, 0). The outflow boundary is
assumed to be stress-free.

The Reynolds number (Re) based on the diameter of a single cylinder is
defined as Re = UD/ν, where U is the inflow velocity, D is the diameter
of a single cylinder, and ν is the kinematic viscosity of the flow. For all
simulations we have U = ex = (1, 0) and D = 1, while we change the value
of ν to achieve the desired Reynolds number. For Re = 100 simulations the
kinematic viscosity is thus chosen as ν = 0.01, for Re = 150 ν = 0.00667, and
for the experimental Re = 200 simulation we have ν = 0.005.

10.1.1 Mesh creation

The mesh was created using the gmsh software [10]. The mesh is split into
three regions of different refinement levels. The area closest to the cylinders
is where we expect the most challenging physics to happen, and it’s therefore
necessary to refine the mesh of this area the most. Behind the cylinders
an unsteady periodic wake develops which will be affected when we apply

95

96 Methodology - Fluidic Pinball Chapter 10

rotation to the cylinders. Thus, we refine the area immediately behind the
cylinders more than the outlying regions of the system, but it’s not necessary
with as high levels of refinement as directly around the cylinders. The rest
of the mesh is kept relatively coarse as the flow in these regions will not
experience rapid changes in the same way as closer to the rotating cylinders.

Figure 10.1: The mesh used in flow control simulations at Re = 100. For
the mesh convergence study, and for simulations at higher Re the mesh is
refined for the entire domain following the same refinement regions as can
be seen in the figure.

10.2 Mesh Refinement Study

To be certain the simulations are done correctly without the computational
mesh influencing the results in any significant way we simulate the system
using several different meshes of different refinement levels. If there are sig-
nificant differences between the meshes further refinement would have to be
done, until the difference between the meshes is satisfactory small.

10.2.1 Mesh refinement at Re = 100

For simulations at Re = 100 we compared 4 different meshes of the following
specifications.

Using the MPI parallelized script for computing the converged flow, based
on the flow solver and a test script developed by Miroslav Kuchta, we simu-
late the flow for a very long time until the flow is converged on the different

Section 10.2 Mesh Refinement Study 97

Mesh name # of cells
Coarser 16930

Simulation 26480

Refined 1 43806

Refined 2 76552

Table 10.1: Refinement levels of convergence study at Re = 100. Using
numerical time steps of size dt = 0.005.

meshes. Each simulation is done without any control applied to the cylin-
ders, and the flow is allowed to develop naturally. After approximately 800
non-dimensional time units the flows reach an unsteady periodic state with
vortex shedding trailing the cylinders. To make sure that each simulation
has stabilized into its respective periodic regime we continue simulating un-
til reaching 1200 non-dimensional time units. We then compare the average
drag- and lift coefficient of each mesh configuration . We calculate the mean-
sum-drag of the 3 cylinders. That is, we sum the drag coefficients of the three
cylinders, then take the mean of that sum over the last 100 time units of the
simulation, i.e. long after the flow is fully developed. The calculation will
look something like this:

CD =

∑1200
t=1100

(∑2
i=0C

t
Di

)
∆T

, (10.1)

where ∆T = t2 − t1 = 1200 − 1100, i.e. the last 100 time steps, and i

indicates which cylinders drag value we add to the sum at the given time
step t.

Mesh name CD ± std Deviation CD CL ± std Deviation CL
Coarser 3.8420± 0.0025 0.0651 % −0.0542± 0.0291 53.69 %
Default 3.8405± 0.0028 0.0729 % −0.0535± 0.0292 54.58 %

Refined 1 3.8402± 0.0029 0.0755 % −0.0541± 0.0289 53.42 %
Refined 2 3.8403± 0.0029 0.0755 % −0.0537± 0.0291 54.19 %

Table 10.2: Drag and lift results as sum of all 3 cylinders for the last 100 time
units of baseline simulations. The mean coefficient values with correspond-
ing standard deviations are calculated on the interval from time 1100 to 1200
(last 100 time units). Deviation is calculated as CD/L = (1 std/meanCD/L) ∗
100. E.g. 1 standard deviation / mean = (0.0028/3.8405) ∗ 100 = 0.0729
%. I.e. 1 standard deviation equals 0.0729 % of the mean CD for the De-
fault mesh. As the lift coefficient of the baseline simulation is close to zero-
centered the standard deviation of the lift coefficient corresponds to a large
percentage of the mean lift coefficient.

98 Methodology - Fluidic Pinball Chapter 10

(a) Coarser mesh (16930 cells). (b) Simulation mesh (26480 cells).

(c) Refined 1 mesh (43806 cells). (d) Refined 2 mesh (76552 cells).

Figure 10.2: Average velocity field of the mesh convergence simulations.
The average velocity field is calculated on the last 100 time units with .pvd

dumps for every 100 dt, corresponding to every 0.5 time units. During
the 100 time units at Re = 100 we observe approximately 10 full vortex
sheddings.

(a) Coarser mesh (16930 cells). (b) Simulation mesh (26480 cells).

(c) Refined 1 mesh (43806 cells). (d) Refined 2 mesh (76552 cells).

Figure 10.3: Standard deviation of the velocity for the mesh convergence
simulations. The standard deviation is calculated on the last 100 time units
in the same fashion as the mean velocity magnitudes presented in fig. 10.2.

From the results in table 10.2 and the plots in figs. 10.2 and 10.3 we ob-
serve that the flows are very similar, independent of the mesh. In table 10.2
the coarse mesh differs by a relatively small margin, but compared to the
difference between the 3 more refined meshes it is rather “large”. The mesh

Section 10.2 Mesh Refinement Study 99

convergence simulation is run without any control on the cylinders, i.e. they
are stationary. When we apply control the simulation might break if the mesh
is not sufficiently refined, thus we run a simulation with active flow control
with the 3 more refined meshes. As none of refined meshes break when
flow control is applied we choose the mesh that has a fewest cells (less com-
putational cost) and for which the mesh does not significantly influence the
results. For simulations at Re = 100 the best combination is the mesh named
“‘Default” consisting of 26480 cells.

10.2.2 Mesh refinement at Re = 150

Simulations at higher Re makes the system more chaotic and is therefore an
obvious route when we want to look for a more complex and possibly more
difficult system for the DRL agent to control. Simulations at higher Re require
more refined meshes, in addition to decreasing the numerical timestep, dt.
The Reynolds number is increased by decreasing the value of the kinematic
viscosity of the simulation.

Following the same methodology as for Re = 100 we compare the three
most refined meshes by running convergence simulations at Re = 150, with a
refined numerical timestep dt = 0.0025.

Mesh name CD ± std Deviation CD CL ± std Deviation CL
Default 3.5826± 0.0598 1.6692 % 0.0178± 0.1098 616.85 %

Refined 1 3.5932± 0.0674 1.8758 % 0.0193± 0.1457 754.92 %
Refined 2 3.5855± 0.0739 2.0611 % 0.0142± 0.1118 787.32 %

Table 10.3: Refinement levels of convergence study at Re = 150. Using nu-
merical time steps of size dt = 0.0025. The mean and standard deviation
values are calculated for the last 100 non-dimensional time units of the sim-
ulation. Deviation is calculated in the same way as for table 10.2. Compared
to the convergence simulations at Re = 100 we can see a significant increase
in the deviation of both coefficients. The flow at Re = 150 becomes more
chaotic than the pseudo-periodic flow at Re = 100, causing larger variations
in the drag and lift of the system.

As we can see the difference between the 3 meshes are larger than what we
observed for Re = 100. In addition, the standard deviations are much larger
for the higher Re case. The mesh we used for Re = 100 works fine when no
flow control is applied, but the mesh is not sufficiently refined to handle flow
control at the higher Reynolds number and the simulation crashes. The two
more refined meshes are both able to handle active flow control. The most
refined mesh, “Refined 2”, is very computationally costly and thus we choose
the mesh named “Refined 1” for the rest of our flow controlled simulations
at Re = 150.

100 Methodology - Fluidic Pinball Chapter 10

Figures 10.4 and 10.5 present the average velocity and standard deviation
field of flow convergence at Re = 150. The fields are computed on the last
200 non-dimensional time units of the convergence simulations. The flow
becomes more unstable and chaotic at higher Re, which is why we compute
the average fields over a longer timespan than for Re = 100. This helps us
avoid the average fields being significantly impacted by short instabilities that
might appear at different times according to the mesh.

(a) Re = 100 simulation mesh (26480 cells).

(b) Re = 150 simulation mesh - Refined 1
(43806 cells).

(c) Refined 2 (76552 cells).

Figure 10.4: Average velocity field of the mesh convergence simulations at Re
= 150. The average velocity field is calculated on the last 200 time units with
.pvd dumps for every 200 numerical timestep, corresponding to every 0.5
time units. Due to the more chaotic flow at higher Re we choose to compute
the average velocity and standard deviation for a longer interval than we
did at Re = 100. As the flow is more unstable at higher Re computing the
average velocity field for a shorter timespan could be significantly impacted
by shortly lived instabilities in the flow.

10.3 Flow initialization

To perform active flow control with our DRL agent we need to properly ini-
tialize the flow field before we apply control. When we first create the mesh
there is no flow, but we define an inflow of unit velocity ex from the left.
When starting the simulation from scratch the flow first takes on a transient
flow structure as can be seen in fig. 10.6. For the flow to be properly initialized
we have to let the simulation run for a long time, until the flow is stabilized.
The stabilized flow regime in our case consists of a pseudo-periodic vortex

Section 10.4 Active flow control setup 101

(a) Simulation mesh (26480 cells).

(b) Refined 1 mesh (43806 cells). (c) Refined 2 mesh (76552 cells).

Figure 10.5: Standard deviation of the velocity for the mesh convergence
simulations at Re = 150. The standard deviation is calculated on the last 200
time units in the same fashion as the mean velocity magnitudes presented
in fig. 10.4.

shedding regime at Re = 100. At Re = 150 the flow is more chaotic, and
although the periodic vortex shedding regime is still present, the drag coef-
ficient does not follow the stable periodicity observed at Re = 100. Once the
flow has been properly initialized we can load the saved flow configuration
as an initial condition for the DRL simulations with AFC.

When the flow is fully developed we notice periodic vortex shedding hap-
pening behind the trailing cylinders. The vortex shedding alternates between
developing behind each of the trailing cylinders as shown in fig. 10.7.

10.4 Active flow control setup

The system we will simulate to train PPO agents uses probes to sample ei-
ther the pressure or the velocity of the flow to represent the flow as a state
that is observed by the agent. The sampling probes are placed throughout
the environment with a higher density of probes in the areas where the flow
field varies the most, i.e. around the cylinders, and in the direct wake of the
cylinders where we observe vortex shedding. The placement of the probes
is given in fig. 10.8. In this project we have 476 probes sampling the flow,
approximately three times the amount of probes used by Rabault et al. [34].
The number of probes could probably be reduced significantly without seri-
ously affecting the final results. However, the agent is dependent on receiv-
ing a state that can sufficiently describe the flow, and reducing the number of

102 Methodology - Fluidic Pinball Chapter 10

Figure 10.6: In the early stages of flow initialization the flow behaves
very much like a laminar flow before developing into an unsteady pseudo-
periodic regime with vortex shedding appearing behind the cylinders.

probes by too much would lead to the agent having a harder time learning
effective control strategies.

We train PPO agents for a variety of configurations, most notably we ap-
ply control on simulations at two different Reynolds numbers (Re = 200 is
experimental1). For each Re we train separate agents that seek to increase or
reduce the drag of the system. For each configuration of a given Re with the
goal of either reducing or increasing drag, we train two agents using two 80
or 160 actuations per episode of training. Having more actions per episode
will reduce the time each actuation is applied, thus giving the agent the pos-
sibility to change the applied control more often. In section 6.1, Rabault et
al. [34] found that letting the agent interact with the environment too often
would lead to no learning because the agent would not be able to observe the
effect of a single actuation input. However, if the flow changes in some way,
e.g. the frequency of vortex shedding increases, more frequent and shorter
lasting actuations can be beneficial, which we observe with simulations at Re
= 150 where the flow is more chaotic. The difference in behavior between the
baseline simulations at Re = 100 and 150 is illustrated in fig. 10.9.

1The mesh “Refined 2” is used in the experimental simulation at Re = 200. Due to the
computational cost we did not perform rigorous mesh convergence for Re = 200.

Section 10.4 Active flow control setup 103

(a) Vortex shedding appearing behind the top cylinder.

(b) Vortex shedding appearing behind the bottom cylinder.

Figure 10.7: Instantaneous flow field of the alternating vortex shedding de-
veloping behind the two trailing cylinders. Note that the vortex shedding
is not entirely symmetric, but is more pronounced for the bottom cylinder.
Because the flow is quite unstable we might observe that the flow changes
which cylinder develops larger vortex shedding. Snapshots of Re = 100

simulation.

104 Methodology - Fluidic Pinball Chapter 10

Figure 10.8: The pressure probes used to sample the flow field that repre-
sent the state observed by the DRL agent are placed frequently in the area
around the cylinders, and more sparsely further away. Some probes are
placed relatively far back from the cylinders because vortex shedding ob-
served in these areas as well as close to the cylinder. The DRL agent is thus
not given a complete state that represents the flow perfectly, but is rather
given a sparser observation of the actual flow.

Re # of actuations duration per actuation dt # of cells in mesh
100 80 0.875 0.005 26480

100 160 0.4375 0.005 26480

150 80 0.875 0.0025 43806

150 160 0.4375 0.0025 43806

200 160 0.4375 0.0003125 76552

Table 10.4: Overview of the simulation parameters used in the application
of DRL agents to control the flow of the fluidic pinball system. Each simu-
lation configuration is used twice, first we apply control to reduce the drag
and secondly we apply control to increase the drag. (Re = 200 is very com-
putationally intensive and was only simulated once to increase drag).

Section 10.4 Active flow control setup 105

(a) Baseline - Re = 100. (b) Baseline - Re = 150.

Figure 10.9: Comparison of the sum of drag for a single run deterministic
simulation without applied control at Re = 100 and = 150. The baseline
flow at Re = 150 is not stable and behaves quite chaotically compared to
the periodic behavior of the flow at Re = 100. Both simulations are run for
the same non-dimensional duration. As the simulation at Re = 150 uses
numerical timestep dt150 = dt100/2 = 0.0025 the x-axis interval is [0, 84000]
vs. [0, 42000].

Part III

Results

107

Chapter 11

Results - Fluidic Pinball

In this chapter we present the main results found by training a series of
DRL/PPO agents to reduce and increase drag in the fluidic pinball system.
We compare the control strategies of the PPO agents with simpler control
strategies like constant actuations and sinusoidal control functions, which are
chosen by approximating a constant value or sine functions to the strategy of
the corresponding PPO agent. For each set of simulations we will present a
selection of plots where we compare the different strategies and at the end
of each subsection we present a table summarizing the average drag and lift
coefficients of the simulations.

In section 11.1 we present our results of simulations at Re = 100. Starting
with subsection 11.1.1 where we present the effectiveness of different method-
ologies at reducing the drag in the system. In subsection 11.1.2 we present
our findings for increasing drag at Re = 100. Section 11.2 includes results
of simulations at Re = 150, where the flow is more chaotic than what is ob-
served for Re = 100. As in the previous section, we start by presenting drag
reduction results in subsection 11.2.1, and then the results of drag increase
strategies in subsection 11.2.2. The final section of the chapter contains power
spectral density (PSD) plots with a discussion of how applying flow control
may change the governing frequencies determining the vortex shedding os-
cillations observed in the flow.

11.1 Active flow control Re = 100

Once we have initialized our flow as described in section 10.3 we can start
training the DRL agent to control the flow. We start looking at the fluidic
pinball system at Re = 100. By modifying the reward function applied to
the DRL agent we guide the agent to either decrease or increase the drag
of the system. The agent is able to find strategies to both problems which
will be presented in the following sections. At Re = 100 we train the agent

109

110 Results - Fluidic Pinball Chapter 11

for 800 episodes where an episode lasts for 70 non-dimensional time units,
corresponding to approximately 8 vortex sheddings. For each episode we
allow the DRL agent to update the control rotations of the cylinders, 80 or 160
times. These rotation updates are carried out similarly to what is described
by fig. 6.3, where we carry out several numerical steps with the same applied
rotation before the agent is allowed to update the rotations.

Initial simulations were done using 80 actuations, as an input of 10 actua-
tions per vortex shedding has proven effective in previous projects. We also
carry out simulations using 160 actuations per episode, i.e. 20 actuations per
vortex shedding, which might be a benefit in certain flow systems.

11.1.1 Drag reduction

The first flow control agent is trained to reduce the drag observed on the
cylinders. We introduce a reward function that penalizes drag values while
also discouraging high lift values. In Rabault et al. [34] it was observed that
no lift penalization lead to very good drag reduction, but also caused a signif-
icant increase in lift that would be damaging in most practical applications.
The reward function implemented in the DRL code is given as

rt = −〈CD〉−α |〈CL〉|, (11.1)

where 〈·〉 is a moving average over the current given action and α is weight
parameter penalizing increased lift in the system. For our simulations we
used a value of α = 0.2. α = 0.5 was also tested, but the larger lift penalty
discouraged nearly all cylinder rotation, i.e. no actual applied control.

Once the reward function has been determined we start training the DRL
agent, letting the agent interact with the simulation and discover strategies
for reducing the drag. During training we observe the accumulated drag and
save the average drag for each episode. If the average drag for each episode
is randomly fluctuating it is clear that the agent is not able to find a strategy
for control. However, if the average drag per episode gradually converges to
a some value lower than the initial average drag it is clear that the agent has
found a strategy for drag reduction. In fig. 11.1 we plot the average drag and
lift per episode.

Once the agent has obtained robust and stable learning we run a simula-
tion with deterministic prediction to obtain results from the agent without the
exploration noise that is present during training. Instead of repeating each
time a simulation is done that “deterministic prediction” was used, we will
call such simulations a single runner simulation, or a single run simula-
tion. The naming convention, single run is simply derived from the python
script for running a simulation with deterministic prediction which is named
single_runner.py. During training we repeatedly do shorter simulations

https://github.com/MariusHolm/Pinball2DFlowControlDRL/blob/master/Pinball2DFlowControlWithDRL/single_runner.py

Section 11.1 Active flow control Re = 100 111

(a) Mean drag coefficient per episode. (b) Mean lift coefficient per episode.

Figure 11.1: Figure 11.1a shows robust learning taking place where the aver-
age drag coefficient over an episode steadily decreases until around episode
5− 600 and is stable for the rest of training. The figure contains results for
both agents, updating the applied control 80 or 160 times per episode. Fig-
ure 11.1b presents the average lift coefficient per episode which can give an
indication of whether the average flow is symmetric while control is applied
or if the applied control will cause asymmetry to appear.

until the agent is trained, while for a single run simulation we run one sin-
gle longer simulation equal to 3 times the length of a training episode, i.e.
70× 3 = 210 time units, or 14000× 3 = 42000 numerical time steps.

In fig. 11.2a we see that both agents are able to significantly reduce the
drag in the system. Figure 11.2b shows us that the lift of the baseline simu-
lation is periodic and CL ≈ 0, while when we apply control to reduce drag
this comes at the cost of an increased amplitude for the periodic oscillations
of the lift.

As the DRL agents are able to reduce the drag we want to investigate
the control strategies they apply. Figure 11.3 shows that both agents find
very similar strategies for achieving drag reduction. The first few thousand
numerical timesteps consist of non-periodic actuations which don’t seem to
follow any obvious strategy. However, after the initial actuations the strategy
develops to a pseudo-periodic strategy for each cylinder. The first cylinder,
cylinder 0, is given periodic inputs of magnitude close to 0, while the two
trailing cylinders apply actuations of opposite direction, with similar magni-
tudes much larger than the cylinder in front.

In addition to comparing the two different DRL agents in fig. 11.2 with
the baseline flow we also compare the agents with corresponding simulations
using:

1. Constant control equal to average actuations of DRL agents. (Mainly
applied for drag reduction.)

112 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.2: Drag and lift coefficients for simulation using DRL agents
to control the flow. We compare the results of single run deterministic
simulations at Re = 100. A baseline flow without applied flow control is
plotted with two DRL agents seeking to reduce the drag of the system. Both
DRL agents use the reward function given by eq. (11.1). The agents are
exactly equal except for the number of actuations per episode which are set
to 80 and 160, respectively. Note that when using 160 actuations per episode
each actuation is applied for half the duration of an actuation from the 80
actuations per episode agent.

Figure 11.3: The actions taken by the two DRL agents in fig. 11.2 are plotted
together for direct comparison. The y-axis measures the magnitude and
the direction of a cylinders rotation, while the x-axis is again the numerical
timestep of the simulation. The lines in red shades are the controls applied
by the agent using 80 actuations, while the blue lines are for the agent using
160 actuations per episode, i.e. per 14000 numerical timestep.

Section 11.1 Active flow control Re = 100 113

2. Sinusoidal control strategy fitted to DRL agent actuations. (Applied for
both drag reduction and increase.)

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.4: Drag and lift coefficients for simulation using constant rota-
tions to control the flow. The constant rotations are calculated by taking the
average magnitude of the control actuations applied by the two DRL agents
in fig. 11.3. Each cylinder is then given the corresponding average control
actuations as a constant control actuation, i.e. the same rotation is applied
throughout the entire single run simulation. From fig. 11.4a it is obvious
that constant rotations are able to significantly reduce the drag coefficient.
Figure 11.4b indicates that the constant rotations cause a small change in
the total lift coefficient, but compared to the DRL agents, the magnitudes of
oscillations are relatively small.

Significant drag reduction compared to the baseline simulation is ob-
served in fig. 11.4a. The DRL agents perform slightly better, but constant
actuations prove to be an effective alternative control method. However, in
order for constant control to be a real option we need a way to find what the
actuations should be independent of DRL agents. For some systems it might
be possible to find effective constant actuation values through a grid- or ran-
dom search method, but for more complex systems this becomes more and
more costly. A researcher or engineer with considerable skill and intuition
of fluidic mechanics might be able to find useful control values for simpler
systems, but this will once more become more difficult as the complexity of
the system increases.

Sinusoidal control actuations can be considered as a step up in complexity
compared to constant actuations. The rotation of the cylinders is not constant
any longer, but varies according to an individually determined sine function
dependent on the actuation number. By using a discrete fourier transform
from numpy combined with a least squares curve fitting tool from sympy we
find sine functions approximating the control strategy of the DRL agents.

114 Results - Fluidic Pinball Chapter 11

The sinusoidal control actuations are updated with the same frequency as the
DRL agent they are fitted to. Each cylinder is given a sine function of the
form:

A sin (ω · x+ϕ) +C, (11.2)

where A is the amplitude, ω is the angular frequency, x is the actuation
number, ϕ is the phase, and C is a constant offset that determines the value
the sine wave oscillates around. The results of reducing drag by using sine
functions to control the rotation of the cylinders are presented in fig. 11.5.

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.5: Drag and lift coefficients for simulations using sinusoidal
functions to control the rotation of each cylinder. Sinusoidal control func-
tions perform slightly better than using constant actuations and slightly
worse than controlling the flow with DRL agents, but with significantly
more variations in the drag coefficient than observed for the other meth-
ods. We also observe an increased amplitude in lift coefficient oscillations,
clearly illustrated in fig. 11.5b

From figs. 11.2a, 11.4a and 11.5a it is clear that reducing drag in the fluidic
pinball system is very much possible, but to understand what is happening
we will also take a look at the velocity profile of the flow, after control is
applied. During single run simulations we save the instantaneous flow to
.vtu/.pvd files which are accessible with ParaView once the simulation has
ended. For Re = 100 we saved the flow once every 50 timesteps correspond-
ing to every 0.25 time unit. Using the ParaView software we can compute
the mean and standard deviation of the flow. Below we present a side-by-
side comparison of the computed mean flow with corresponding standard
deviation for one DRL agent, one flow controlled by constant actuations, one
sinusoidally controlled flow, and the baseline flow.

https://www.paraview.org/

Section 11.1 Active flow control Re = 100 115

(a) Baseline mean flow. (b) DRL agent 80 actuations.

(c) Constant 80 actuations. (d) Sinusoidal 80 actuations.

Figure 11.6: We compare the mean velocity magnitude of the baseline sim-
ulation with three different drag reduction control methods at Re = 100.
Figure 11.6b shows a clear increase in the size of the recirculation area (the
area of low velocity behind the cylinder) compared to the baseline, which
is associated with lower pressure drop behind the cylinder. The recircu-
lation area size for constant and sinusoidal control is not increased in the
same way as for DRL control, but are somewhat more symmetric than for
the baseline simulation. Figure 11.7 compares the corresponding velocity
magnitude standard deviations.

Control strategy CD ± std CL ± std CD reduction
Baseline 3.8407± 0.0029 −0.0523± 0.0294 0 %
DRL 80 actions 2.7764± 0.0170 0.0011± 0.1607 27.71 %
DRL 160 actions 2.8056± 0.0125 0.1136± 0.1271 26.95 %
Sinusoidal actions - 80 2.8943± 0.0379 0.0238± 0.1541 24.64 %
Sinusoidal actions - 160 2.9274± 0.0334 0.1009± 0.1143 23.78 %
Constant actions - 80 2.9078± 0.0031 0.0251± 0.0258 24.29 %
Constant actions - 160 2.9390± 0.0091 0.1002± 0.0295 23.48 %

Table 11.1: The final drag and lift coefficients of the different control
strategies created to reduce drag at Re = 100 are presented. Each value
is calculated as the mean value over the last half of a single run eval-
uation simulation. The control strategy we determine gave the best re-
sult is highlighted in bold. The drag reduction in % is calculated as
(CD,baseline −CD,control)/CD,baseline.

116 Results - Fluidic Pinball Chapter 11

(a) Baseline mean flow. (b) DRL agent 80 actuations.

(c) Constant 80 actuations. (d) Sinusoidal 80 actuations.

Figure 11.7: We compare the velocity magnitude standard deviation of the
baseline simulation with three different drag reduction control methods at
Re = 100. Figure 11.7b shows that the velocity variations caused by vor-
tex shedding are moved significantly further away from the cylinders. For
the other control strategies the velocity variations are not obviously moved
further away from the cylinders, but it becomes clear that the flows are sig-
nificantly more symmetric after control is applied compared to the baseline.

Section 11.1 Active flow control Re = 100 117

11.1.2 Drag Increase

After the successful application of DRL agents to reduce drag we want to
see if the agents are able to work the other way, i.e. increase the drag in
the system. We need to implement a new reward function that will reward
increased drag and penalize low drag values. Similar to the drag reduction
reward function we again add a small term penalizing increased lift. After
testing a few different reward function options the best one also includes a
penalization term which is supposed to discourage large actuation magni-
tudes. The reward function, dubbed more_drag_ simple_actuation in the
code, can be written as:

rt = 〈CD〉−α |〈CL〉|−β
√∑

i

Q2i , (11.3)

where α = 0.2, same as for drag reduction, β = 0.1, and 〈·〉 denotes the
moving average over the last given action.

(a) Mean drag coefficient per episode. (b) Mean lift coefficient per episode.

Figure 11.8: Drag and lift coefficient average per episode while training the
DRL agent to increase the drag in the system. Comparison between using 80
and 160 control actuations per episode. Robust training seems to be reached
after approximately 300 episodes of training, with some variation observed
from 600-800 episodes of training.

After approximately 350− 400 episodes the agents are converged and fin-
ished learning. From fig. 11.8 we can see that there are smaller variations
from episode 6 − 800 where the agent applying 160 actuations per episode
seems marginally better than the 80 actuations agent. Note that as for drag
reduction the training curve includes noise due to exploration which and that
to evaluate the final model we need to run a simulation using deterministic
prediction. The results of those simulations, named single run simulations,
are presented in fig. 11.9.

118 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.9: Comparison of two DRL agents. The drag and lift coefficient of
the baseline flow without applied flow control is plotted with the results of
two DRL agents seeking to increase the drag of the system. Both DRL agents
use the reward function given by eq. (11.3). The configuration is the same
except for the number of actuations per episode which are set to 80 and 160,
respectively and which also changes the duration of each actuation.

Figure 11.9a shows us clearly that the DRL agents are very capable of
increasing drag in the fluidic pinball when we change the reward function.
Both agents quickly increase the drag in the first 10000 numerical timesteps
after which the drag fluctuates heavily. The agent applying 160 actuations per
episode achieves slightly more drag, with similar drag coefficient minimums,
but with higher maximums. From fig. 11.9b we can clearly see that the control
strategy is affecting the lift in the system quite drastically. Both agents cause
large periodic increases in lift indicating that obtaining increased drag is not
easily possible without introducing increased lift. To understand how the
agent is able to increase the drag we need to look at the control actuations, i.e.
the rotations of the cylinders. In fig. 11.10 we compare the control actuations
taken by the two agents, one plot per cylinder.

From fig. 11.10 it is not trivial to understand exactly what the control ac-
tuations actually do to the flow. This is a common issue within deep learning
because of the difficulties researchers meet when trying to understand exactly
what a NN has learned. In our case we have the advantage of being able to
see the physical system the DRL agent interacts with, and as such can observe
how the flow develops when control is applied. In fig. 11.11 we can see that
the control actuations causes significantly stronger and more frequent vortex
shedding, compared to the baseline vortex shedding in fig. 10.7.

The control strategy causing oscillating vortex shedding was initially sus-
pected to come as a results of the lift penalty in the reward function which
penalizes the agent if the mean lift drifts from zero, but this is not the case.

Section 11.1 Active flow control Re = 100 119

(a) Rotations applied to the first cylinder.

(b) Rotations applied to the bottom trailing
cylinder.

(c) Rotations applied to the top trailing cylin-
der.

Figure 11.10: Actions taken by DRL agents to increase drag. Both agents
use actuations of larger magnitude than seen in fig. 11.3, and in contrast
to the drag reduction strategies the first cylinder is also given rotations of
significant magnitude.

We simulated the fluidic pinball system applying constant actuations in the
same direction for both the trailing cylinders, using a magnitude of 0.8, equal
to 80% of the maximum rotation magnitude and observed a drag increase
with periodic oscillations of the drag coefficient of ≈ 4.2. This means that
controlling the flow and obtaining increased drag using constant actuations
is possible, but requires that both trailing cylinders rotate in the same direc-
tion. This strategy also causes a massive increase in lift with an approximate
average lift coefficient of ≈ (−)4.2. (The negative sign indicates direction and
is dependent of the direction of rotation we choose). Comparing the resulting
drag coefficient CD ≈ 4.2 to the results of the DRL agents in fig. 11.9a it is
clear that a constant actuation strategy to increase drag is significantly less
effective than a control strategy determined by a DRL agent.

In subsection 11.1.1 we compared the baseline flow with controlled flows
where we apply control by DRL agents, constant actuations, and sinusoidal

120 Results - Fluidic Pinball Chapter 11

(a) Strong rotations clockwise cause vortex
shedding from the top trailing cylinder.

(b) Strong rotations anti-clockwise cause
vortex shedding from the bottom trailing
cylinder.

Figure 11.11: The two snapshots of the instantaneous velocity magnitude
show the controlled flow at two extremes when the flow is controlled by
a DRL agent to increase drag. The periodic rotations applied by the DRL
agent cause strong vortex shedding behind the two trailing cylinders in a
periodic fashion according to the periodic actuations.

control functions. In the previous paragraph we determined that constant
actuations are is not an effective strategy to increase the drag, and will thus
focus our comparison on DRL agents and sinusoidal control versus the base-
line flow.

From fig. 11.12a it is clear that a sinusoidal control strategy can be very
effective. As the results of the best DRL agent and the best sinusoidal con-
trol strategy at a glance are very similar we plot them together for a direct
comparison.

In conclusion the DRL agent is very capable when trying to increase the
drag in the system, but at the same time individual sinusoidal control func-
tions are just as effective at increasing the drag. It is however important to
note that the effective sinusoidal control functions are fitted from the strategy
the DRL found during training, and that finding the corresponding control
functions independently would very difficult. We also discovered that the
most effective strategy is to create oscillating vortex shedding from each of
the trailing cylinders, and that constant rotations of high magnitude in the
same direction will increase the drag, but not by as much, in addition to
creating a lot of lift in a single direction.

Section 11.1 Active flow control Re = 100 121

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.12: Flow controlled by sinusoidal functions compared to base-
line flow. The sinusoidal functions fitted to the two DRL agents are both
able to increase the drag, but interestingly the sinusoidal functions fitted to
the 80 actuations per episode DRL agent is not stable in the same way as for
the corresponding 160 actuation sinusoidal functions. However, the lift is
increased quite significantly more in the case of the 160 actuation sinusoidal
function, which follows closely what was observed for the DRL agents in
fig. 11.9b. In fig. 11.9a the DRL agent applying 160 actuations per episode
performed better than the 80 actuations per episode agent, and again we ob-
serve that the control method with more frequent actuation updates perform
better.

Control strategy CD ± std CL ± std CD increase
Baseline 3.8407± 0.0029 −0.0523± 0.0294 0 %
DRL 80 actions 5.3685± 0.2344 −0.1025± 1.1920 39.78 %
DRL 160 actions 5.5629± 0.2992 0.4505± 1.4529 44.84 %
Sinusoidal actions - 80 4.7011± 0.2820 −0.0691± 0.8137 22.40 %
Sinusoidal actions - 160 5.4872± 0.2895 0.4376± 1.5056 42.87 %
Constant actions - same direction 4.1869± 0.1164 −4.1808± 0.4421 9.01 %

Table 11.2: The final drag and lift coefficients of the different control strate-
gies created to increase drag at Re = 100 are presented. Each value is
calculated as the mean value over the last half of a single run evalua-
tion simulation. The control strategy we determine gave the best result is
highlighted in bold. The drag increase in % is calculated as (CD,control −
CD,baseline)/CD,baseline.

122 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.13: Comparison of DRL agent, sinusoidal control and baseline.
The difference between the two control strategies are very small, but in ad-
dition to a small phase shift between the two graphs the DRL agent also
has marginally larger amplitude in its oscillations. One thing to note is that
the DRL agent seems to reach higher drag coefficient values in a shorter
amount of time, but after approximately 10000 timesteps the two control
strategies are almost identical. The fact that both methods reach the same
drag coefficient values indicates that the non-periodic initial actuations of
the DRL agent are not needed to reach the equal levels of drag increase, but
is rather used to speed up “convergence” to the periodic flow of maximum
drag (according to the DRL agent).

Section 11.1 Active flow control Re = 100 123

(a) Baseline mean flow. (b) DRL agent 160 actuations.

(c) Sinusoidal 80 actuations. (d) Sinusoidal 160 actuations.

Figure 11.14: We compare the mean velocity magnitude of the baseline simu-
lation with three different drag increase control methods at Re = 100. Signifi-
cant differences are obvious if we compare the mean flow for drag increasing
strategies with the mean flows of drag reduction methods in fig. 11.6. The
recirculation area, i.e. the area behind the cylinders with very low velocity
(color-coded blue), is growing during drag reduction, while during drag in-
crease this is reduced. Figures 11.14c and 11.14d illustrates this, where the
first figure corresponds to a somewhat failed strategy with mean CD ≈ 4.70,
compared to the second best strategy of all at drag increase at Re = 100,
reaching mean CD ≈ 5.49.

124 Results - Fluidic Pinball Chapter 11

(a) Baseline mean flow. (b) DRL agent 160 actuations.

(c) Sinusoidal 80 actuations. (d) Sinusoidal 160 actuations.

Figure 11.15: We compare the velocity magnitude standard deviation of the
baseline simulation with three different drag reduction control methods at
Re = 100. Compared to the baseline we can see that the variations of the
velocity magnitude are significantly increased when the flow is subject to a
successful drag increase strategy. The difference between a very successful
control strategy, see fig. 11.15b, and a less successful strategy, see fig. 11.15c,
implicating that more velocity variations in the wake behind the cylinders
are associated with more drag. The variations are also stronger in the small
gaps between the cylinders which can point to stronger flows interacting
with the cylinders, causing more drag.

Section 11.2 Active flow control Re = 150 125

11.2 Active flow control Re = 150

After successfully finding strategies to increase and decrease drag using DRL
agents at Re = 100 we want to look at a more complex system. We could
look at a more complex system with e.g. more cylinders, but simulating for
other Reynolds number (Re) values will result in a more chaotic and complex
flow, and will make comparing the control strategies of the different agents
easier. For complex problems training a DRL agent can be challenging, and
in such cases using a pre-trained model, as introduced in section 3.6, can be
very helpful. When controlling the flow at Re = 150 the agent had trouble
converging without any pre-training. By training a DRL agent at Re = 100

for a shorter time than what is needed to reach full convergence we give the
agent some starting help, while at the same time not training it for so long
that it is locked into the exact same strategy as for a fully converged model
at Re = 100. In our case we trained the agent for 150 episodes at Re = 100

before then training the agent for 650 episodes at Re = 150.
When moving to a higher Reynolds number we need to initialize the flow

once more with the new simulation parameters. Note that the flow starts
from a state of lower drag than for Re. For Re = 150 we have CD ≈ 3.6 while
for Re = 100 the drag coefficient converges to CD ≈ 3.8 during initialization.
Once we have established that the flow is not evolving any further we save
the current state after 1200 time units and load that state as the starting flow
when applying control.

11.2.1 Drag reduction

As in section 11.1 we first want to reduce the drag in the system. The first
step in the process is to pre-train the agents at Re = 100. We train two agents
at Re = 100 for 150 episodes, using the same reward function we used in the
previous section, eq. (11.1). Again we let one agent apply 160 actuations per
episode and the other applying 80 episodes. The idea of using more actua-
tions was found when the first simulations at Re = 150 were being carried
out as they continuously struggled to converge. By investigating the flow
initialization simulation it was discovered that the higher Re flow experiences
more frequent vortex shedding, reducing the number of actuations per vor-
tex shedding. The agent will thus have less actuations to counter the vortex
shedding, and will rely on taking smarter actuations which are more effective
throughout the longer duration each actuation lasts. In fig. 11.16 we compare
the mean drag per episode of two DRL agents using 80 and 160 actuations
per episode.

Figure 11.16 tells us that with the help of pre-training the DRL agents are
able to learn how to control the flow at Re = 150 in order to reduce drag. Once

126 Results - Fluidic Pinball Chapter 11

(a) Mean drag coefficient per episode. (b) Mean lift coefficient per episode.

Figure 11.16: Average drag and lift coefficient per episode while training the
DRL agent to reduce drag in the system. The pre-trained agent using 160
actuations per episode converges a lot faster than the 80 actuations agent,
but with quite similar results judging from this figure. Remember that the
final judgement should be reserved until we have studied the single run (de-
terministic prediction) simulation, which does not contain any exploration
noise as the results in this figure does. Note that both agents have been pre-
trained for 150 episodes at Re = 100. Interestingly the average lift coefficient
is quite different between the two agents, following a similar pattern as for
Re = 100 where the agent of 160 actuations during training moves further
away from CL = 0.

learning is finished we need to evaluate the control strategy the agents have
come up with by running a new simulation with deterministic predictions
(single run), meaning no exploration noise is applied to the actuations deter-
mined by the agent. Because of the more complex flow and refined mesh we
need to reduce the numerical timestep from dt = 0.005 to dt = 0.0025. The
simulation length is kept the same, but due to the refined numerical timestep
the new plots will have an x-axis of numerical timesteps [0, 84000] compared
to [0, 42000] for Re = 100. We start by comparing the single run results of the
two DRL agents before moving on to comparing the DRL results with simpler
strategies like constant rotations and sinusoidal control functions.

From fig. 11.17a we observe clear drag reduction using DRL agents at Re
= 150. It is also apparent that the differences between the agents are more
significant at Re = 150 than what we observed at Re = 100. Most notably
the drag coefficient of the flow controlled by the 80 actuations agent does not
reach a stable periodic flow state, but instead oscillates somewhat arbitrarily,
although at a much lower value than the baseline. The agent updating rota-
tions 160 times per episode is able to stabilize the flow in addition to reducing
the drag coefficient more than the other agent. Figure 11.17b reinforces this,
where the lift coefficient is stabilized and reaches a stable oscillating state,

Section 11.2 Active flow control Re = 150 127

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.17: Drag reduction flow control by DRL agents compared to
baseline flow. The baseline at Re = 150 is not a stable periodic flow with
small oscillations as observed for Re = 100, but is instead quite unstable
and non-periodic. The DRL agent with 160 actuations per episode performs
better than the 80 actuations per episode agent, and is able to keep the flow
in a stable periodic state. The 80 actuations agent also reduces drag quite
nicely, but is not able to obtain the same stable oscillating behavior as the 160
actuations agent. For the lift coefficient we see that for the baseline flow and
the flow controlled by the 80 actuations agent oscillate quite wildly. On the
other hand, the lift coefficient of the flow controlled by the 160 actuations
agent oscillates nicely around a value CL ≈ 0.25 after ≈ 30000 numerical
timesteps.

compared to the relative chaotic oscillations observed for the baseline and
the 80 actuations agent. In fig. 11.18 we compare the rotations of the two
agents for each cylinder, which might give us an indication to what causes
the differences of the two agents.

In fig. 11.18 we compare the rotations applied to the three cylinders by
the two DRL agents trained to reduce drag at Re = 150. For the first agent,
updating the rotations 80 times per episode, we can see that the irregular
rotations coincide with the interval where the drag coefficient in fig. 11.17a
is closest to the strategy of the 160 actuations agent. However, after a short
while of very low drag coefficient values the drag increases once more. The
agent might seem to be “greedy” where it discover a set of rotations that over
a short span of time will give very low drag values, but that the agent is not
able to stabilize the flow in such a regime. On the other hand the agent using
160 actuations is able to stabilize the flow in a very efficient regime where
stable oscillating rotations with small amplitudes keep the drag stable and
low.

After having found the better strategy of the DRL agents we look at the
two other methods of flow control applied in this project, namely constant

128 Results - Fluidic Pinball Chapter 11

(a) Rotations applied to the first cylinder.

(b) Rotations applied to the top trailing
cylinder.

(c) Rotations applied to the bottom trailing
cylinder.

Figure 11.18: Comparing the control strategies of the two DRL agents at
Re = 150. The control strategy of the 80 actuations DRL agent develops
in a very strange fashion where the rotations start off as stable oscillations,
but towards the later stages of the simulation becomes very irregular. This
coincides with the time of simulation where the stable oscillating behavior
of the drag coefficient breaks. The second agent of 160 actuation updates
per episode applies more stable rotations, that oscillate in the same way
from very early on in the simulation, obviously having found the optimal
rotations needed to keep the flow stable and reducing the drag coefficient.

actuations and sinusoidal control functions. The sinusoidal control functions
in fig. 11.19 are fitted to the control strategy of the DRL agents presented in
fig. 11.17. Due to the irregular rotations of the 80 actuations agent it was not
possible to find a sensible fit on all rotations in the interval [21000, 84000].
However, by fitting a sine function to the interval where the actuations are
similar to a sine function, [21000, 42000], we are able to get a good fit.

In fig. 11.19 it is clear that controlling the rotations of the cylinders with
sinusoidal functions can reduce the drag coefficient significantly. However,
simulations at both Re = 100 and = 150 have shown that sinusoidal control

Section 11.2 Active flow control Re = 150 129

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.19: Drag reduction flow control by sinusoidal control functions
compared to baseline flow. Sinusoidal control functions are capable of sim-
ilar drag reduction as the DRL agents they are based on, but both strategies
are unable to reach the stable oscillating flow of the 160 actuations DRL
agent.

functions are unable to establish a stable flow when reducing drag. Note
that using sinusoidal control functions as we have corresponds to what is
known as open-loop control. Meaning that no sensor readings or environment
observations are required, and the control (rotations) will continue in the
same manner independent of the state of the flow. In a real-life application
this would be much easier to implement, as there would be no need for sensor
readings or real-time computations to determine correct control actuations.

For Re = 100, in fig. 11.4, we observed that constant actuations were able
to reduce the drag of the flow while avoiding larger fluctuations of the drag
coefficient. In figure fig. 11.20 we plot the results for when we used similar
control strategies for Re = 150 simulations.

The final control strategies applying constant rotations at Re = 150 are
presented in fig. 11.20. It is once more clear that the control strategy based on
the better DRL model performs better, reaching lower drag coefficient values,
smaller oscillations, and a more stable lift coefficient. The constant control
strategy based on the 80 actuations per episode DRL agent is also able to
reduce drag significantly, but with less success than the actual DRL agent.

In table 11.3 we compare the drag and lift coefficient values of the dif-
ferent strategies, similarly to what we have done in the previous section of
simulations at Re = 100. For mean velocity magnitude and corresponding
standard deviation plots, as seen in figs. 11.6 and 11.7 for Re = 100, we refer
to section A.1.

130 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.20: Drag reduction flow control by constant rotations compared
to baseline flow. Constantly rotating the cylinders at fixed magnitude is
again a very effective method of drag reduction. Compared to the sinu-
soidal control in fig. 11.19 the drag coefficient values are more stable, while
at the same time obtaining similar average and minimum drag values as the
sinusoidal control. The lift is also more stable when applying constant actu-
ations compared to sinusoidal control, especially for the strategy based on
the 160 actuations agent. It does however, not reach the stable periodic oscil-
lations observed for the DRL agent updating rotations 160 times per episode,
which is a clear winner when it comes to drag reduction at Re = 150.

Control strategy CD ± std CL ± std CD reduction
Baseline 3.5724± 0.0619 −0.0128± 0.1293 0 %
DRL 80 actions 2.5342± 0.0612 −0.1099± 0.1403 29.06 %
DRL 160 actions 2.4347± 0.0212 0.2511± 0.1014 31.85 %
Sinusoidal actions - 80 2.6938± 0.0765 −0.0784± 0.2734 24.59 %
Sinusoidal actions - 160 2.4874± 0.0734 0.2820± 0.0878 30.37 %
Constant actions - 80 2.6792± 0.0537 −0.0801± 0.0782 25.00 %
Constant actions - 160 2.5089± 0.0220 0.2963± 0.0180 29.77 %

Table 11.3: The final drag and lift coefficients of the different control
strategies created to reduce drag at Re = 150 are presented. Each value
is calculated as the mean value over the last half of a single run eval-
uation simulation. The control strategy we determine gave the best re-
sult is highlighted in bold. The drag reduction in % is calculated as
(CD,baseline −CD,control)/CD,baseline.

11.2.2 Drag Increase

As fig. 11.21 clearly shows both agents learning to increase the drag also
for Re = 150 we now want to investigate simulations without added explo-
ration noise as we have done previously. The deterministic simulations for

Section 11.2 Active flow control Re = 150 131

(a) Mean drag coefficient per episode. (b) Mean lift coefficient per episode.

Figure 11.21: Drag and lift coefficient average per episode while training the
DRL agent to increase the drag in the system. At Re = 100 we observed
that both agents converged to very similar drag coefficient values, but for
Re = 150 we can now see that the agent using 80 actuations per episode is
seemingly converging to a significantly higher drag coefficient value. From
fig. 11.21b we can also clearly see the strategy of the two agents diverging
where the average lift per episode is no longer defined by zero-centered
oscillations.

increased drag using pre-trained DRL agents to increase drag are compared
to the baseline simulation in fig. 11.22.

Both agents have learned effective strategies for increasing drag, but while
previous simulations have shown quite similar results and strategies for both
agents using 80 and 160 actuations per episode, we are now observing a
significant difference between the two. In fig. 11.23 we compare the rotation
inputs given to each cylinder for the two agents.

The sinusoidal control methods fitted to the 80 actuations agent are able
to significantly increase the drag coefficient, to a similar degree as observed
of the 160 actuations DRL agent. However, the sinusoidal control method
fitted to the 160 actuations agent is not able to achieve the same level of drag
increase, similar to what we observed of the sinusoidal control method based
on the 80 actuations agent at Re = 100, see fig. 11.12a. The algorithmic fitting
of sine functions to the actions taken by the 80 actuations agent showed some
clear discrepancies, and we decided to try a manual tuning to better fit the
sine functions to the known actuations of the DRL agent. Figure 11.24a shows
us that the differences between the algorithmic fit, and the manually fitted
control functions are insignificant, and have no impact on the effectiveness of
sinusoidal control.

For mean velocity magnitude and corresponding standard deviation plots,
as seen in figs. 11.14 and 11.15 for Re = 100, we refer to section A.1.

132 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.22: Drag increase flow control by DRL agents compared to base-
line flow. As for Re = 100 the drag coefficient varies a lot more when we
want to increase the drag compared to reducing drag. Especially the 80 ac-
tuations agent causes very large fluctuations of ±1 centered around CD ≈ 6.
An interesting thing to note is that while we observed that having more actu-
ations per episode was a benefit when we wanted to reduce drag at Re = 100,
we now observe that when we want to increase the drag at Re = 150 this is
no longer beneficial. The baseline drag we are comparing the results with
is the exact same simulation as compared to the DRL agents reducing drag,
but due to the much larger range of values the variations we noticed pre-
viously seem insignificant compared to the fluctuations caused by applying
control. Figure 11.22b shows a clear difference between the two agents. The
160 actuations agent is applying a strategy where the lift is zero-centered,
although with quite large amplitude, while the control applied by the 80 ac-
tuations agent causes the lift to move from being zero-centered to oscillating
while centered around ≈ 1 instead. Thus, if working with a more stable lift
is desirable, then the DRL agent applying 160 actuations per episode might
be better suited to the task.

Section 11.2 Active flow control Re = 150 133

(a) Rotations applied to the first cylinder. (b) Rotations applied to the top trailing
cylinder.

(c) Rotations applied to the bottom trailing
cylinder.

(d) Sum of actions per numerical timestep.

Figure 11.23: Control actuations to increase drag by DRL agents. As was
indicated in fig. 11.22b the control strategies differ significantly. Most obvi-
ous is the difference in rotations applied to the first cylinder where the 160
actuations agent uses very small rotations whereas the 80 actuations agent
use oscillating rotations of high magnitude. For the agent using 160 actu-
ations the trailing cylinders are only rotated in one direction or standing
still, while the 80 actuations agent apply rotations to trailing cylinders in
either direction and with slightly larger magnitudes. Figure 11.23d we have
summed the rotation of all three cylinders at each timestep. If the sum of ac-
tions has a large magnitude the cylinder rotations are in large part moving in
the same direction, while values closer to zero will mean that the rotations
are moving counter to each other. For the 80 actuations agent the sum of
actions magnitude is large in either direction, meaning that the oscillations
seen in the rotations per cylinder are largely synchronised to work in the
same direction at the same time. On the other hand the 160 actuations agent
seems to be ignore using the first cylinder and then only apply rotation to
one of the two trailing cylinders at a time.

134 Results - Fluidic Pinball Chapter 11

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure 11.24: Drag increase flow control by sinusoidal control functions
compared to baseline flow. The sinusoidal control functions are able to in-
crease the drag to a similar degree as the 160 actuations DRL agent, but are
not able to reproduce the result of the 80 actuations agent. This strongly
indicates that the DRL agent has been able to learn an effective and com-
plex control function that is not “easily” reproducible, and would be very
difficult to find with no previous experience with the system. Note that the
sinusoidal control functions fitted to the DRL agent of 160 actuations, are not
able to increase the drag of the flow to the same degree as the two methods
based on the 80 actuations agent. At Re = 100, in fig. 11.12a, we observed
similar behavior of a sinusoidal control method, but that time it was based
on the 80 actuations agent.

Control strategy CD ± std CL ± std CD increase
Baseline 3.5724± 0.0619 −0.0128± 0.1293 0 %
DRL 80 actions 5.8799± 0.5585 1.2606± 2.2487 64.59 %
DRL 160 actions 5.2953± 0.2423 −0.2277± 1.4531 48.23 %
Sinusoidal actions - 80 5.4222± 0.2975 1.4876± 2.6120 51.78 %
Sinusoidal actions - 80 (tuned) 5.4031± 0.1935 0.7457± 2.8759 51.25 %
Sinusoidal actions - 160 4.4227± 0.2004 −0.1838± 0.9164 23.80 %

Table 11.4: The final drag and lift coefficients of the different control strate-
gies created to increase drag at Re = 150 are presented. Each value is
calculated as the mean value over the last half of a single run evalua-
tion simulation. The control strategy we determine gave the best result is
highlighted in bold. The drag increase in % is calculated as (CD,control −
CD,baseline)/CD,baseline.

Section 11.3 Power spectral density (PSD) 135

11.3 Power spectral density (PSD)

According to Fourier analysis, a signal can be decomposed into a combination
of discrete frequencies. A power spectral density plot can take a decomposed
signal and describe which frequencies a signal consists of by measuring the
intensity of each discrete frequency. We can treat our drag- and lift coefficient
data as a signal and create PSD plots that can tell us about the significant
frequencies present in the flow when control is applied or not. The following
plots are all based on data of the total drag coefficient.

If the oscillations in drag can be fitted to a single frequency we can expect
a PSD plot to contain a single, strong peak at the corresponding frequency.
On the other hand, if the oscillations are more chaotic they are more likely to
be the result of a combination of signals at different frequencies, and we will
see multiple peaks in a PSD plot.

11.3.1 PSD of reducing drag agents

We start by creating PSD plots of the DRL agents that are trained to reduce
the drag in the fluidic pinball system, and compare the PSD of the controlled
flows with the PSD of the baseline flow without control. The comparison
should give us a clear indication as to whether applying control interferes
with the natural frequency of the system, or if the DRL agent controls the
flow in such a way that the natural frequency is not affected.

In fig. 11.25 we can observe that the oscillations of the total drag of the
baseline flow at Re = 100 is governed by three distinct frequencies. When
we apply control with DRL agents we can see a clear effect on the govern-
ing frequencies, and the oscillations of the total drag are changed. For the
first agent, in fig. 11.25a, we can see one clear peak at a frequency slightly
lower than the main frequency of the baseline flow, and the two secondary
peaks observed in the baseline are gone. The oscillations in the drag of the
controlled flow is thus governed by a single frequency that is shifted from
the baseline. The applied control is thus impacting the oscillations of the
flow. The second agent does not show the same clear governing frequency as
the first agent, indicating more complex oscillations of the total drag taking
place, following a combination of frequencies. By looking at fig. 11.2 we can
see that drag coefficient of the agent using 80 actuations per episode is very
periodically stable and looks very much like a simple sinusoidal curve when
stabilized. On the other hand, the agent of 160 actuations per episode oscil-
lates in a more complicated manner, more reminiscent of how a combination
of sinusoidal functions might interact.

Comparing the baseline PSD of Re = 150, seen in fig. 11.26, with the base-
line of Re = 100 significant differences become apparent. Where the baseline

136 Results - Fluidic Pinball Chapter 11

(a) DRL agent of 80 actuations per episode. (b) DRL agent of 160 actuations per episode.

Figure 11.25: PSD plot of the total drag coefficient for the two DRL agents
trained to reduce drag at Re = 100, compared to the PSD of the baseline
flow. The baseline flow consists of three very distinct peaks, while the flows
controlled by DRL agents does not have the same distinctive peaks. For
the first agent we have a relatively clear peak for a frequency slightly lower
than the largest peak of the baseline flow, and notice that the two secondary
frequencies of the baseline are quite clearly gone. The second agent does
not have a very clear peak, indicating that the oscillations in drag are not
as dominated by a single frequency, but is rather a combination of several
frequencies.

flow at Re = 100 is dominated by three distinct frequencies, the oscillations
of the baseline drag at Re = 150 are significantly more complicated, and con-
sists of a much larger variety of frequencies. If we look at the baseline drag
coefficient in fig. 10.9b the baseline flow at Re = 150 varies a lot, and does
not follow a simple sinusoidal curve as the baseline at Re = 100. With some
goodwill we might say that strongly fluctuating peaks can be spotted around
the same frequencies as for Re = 100, but it is apparent that the oscillations of
the baseline drag at Re = 150 consists of more than a few separate frequen-
cies. After we apply control the number of frequencies governing the drag
oscillations are reduced significantly. The oscillations of the controlled flow
using the agent applying 80 actuations per episode consists of a few close-
laying frequencies. If we combine multiple sine functions which only vary by
a small margin the resulting function will in large part behave similarly to the
separate functions, but will eventually reach certain areas where the individ-
ual functions interfere with each other. If we look at the drag coefficient of
the agent in fig. 11.17a we can see that the drag coefficient varies in a clearly
sinusoidal fashion, but at the same time the oscillations are not as stable as
can be seen of the second agent applying 160 actuations per episode.

Section 11.3 Power spectral density (PSD) 137

(a) DRL agent of 80 actuations per episode. (b) DRL agent of 160 actuations per episode.

Figure 11.26: PSD plot of the sum of drag coefficients for the two DRL agents
trained to reduce drag at Re = 150. We should first note the significant dif-
ference between the baseline frequencies of Re = 150 compared to Re = 100.
The reason behind is apparent if we look at fig. 10.9b where it is obvious that
the baseline flow is quite chaotic, and not periodically oscillating as the base-
line of Re = 100. The oscillations of the baseline at Re = 150 are governed by
significantly more frequencies than the oscillations of the Re = 100 baseline.
Both agents controlling the flow reduce the amount of governing frequen-
cies by a significant amount. The oscillations in the resulting drag of the
first agent are governed by a few near-laying frequencies. The oscillations in
the drag coefficient of the second agent is largely controlled by a single fre-
quency, but note that the peak is not as substantial as the comparable peaks,
meaning that other frequencies will also have some impact.

11.3.2 PSD of increasing drag agents

Moving on to investigating the PSD plots of the DRL agents trained to in-
crease the drag of the system we can expect to see more power per frequency
due to the stronger oscillations present in the simulations for increasing drag.
As in subsection 11.3.1 we start by looking at PSD plots at Re = 100, before
moving on to the PSD plots of increasing drag at Re = 150.

In fig. 11.27 we observe that the DRL agents controlling the flow to in-
crease the drag of the system causes an increased number of important fre-
quencies, opposite of what we observed for drag reducing agents in fig. 11.25.
The governing frequencies are also moved towards the higher frequencies
rather than towards lower frequencies, indicating an increase in the number
of oscillations of the drag coefficient. From the visualizations of the flow we
know that the drag oscillated because of vortex shedding, and we can thus
conclude that as the oscillations of the drag increase, so does the vortex shed-
ding frequency. In fig. 11.9a we can see that the oscillations are very much
larger than what is observed in the baseline flow, as well as the oscillations

138 Results - Fluidic Pinball Chapter 11

(a) DRL agent of 80 actuations per episode. (b) DRL agent of 160 actuations per episode.

Figure 11.27: PSD plot of the sum of drag coefficients for the two DRL
agents trained to increase drag at Re = 100. Opposite of what we observed
for reducing drag, the flows controlled by DRL agents see a large increase in
significant frequencies. For the flow controlled by either agent the PSD con-
sists of more peaks indicating significant frequencies, as well as a few clear
negative peaks indicating that some frequencies are not present at all. The
results of the control applied by the two agents are presented in fig. 11.9a,
where we can see large oscillations in the drag coefficient. It is also apparent
that the oscillations do not follow a nice and smooth sinusoidal curve as we
observed for drag reduction agents, but are instead shaped quite sharply
where every other oscillation is smaller.

of the drag coefficient when the flow is controlled by drag reducing agents.
The oscillations of the drag increase agents are also not as smooth as what
is observed during drag reduction, which can indicate that the oscillations in
drag is controlled by more than a single frequency and that the overlapping
of multiple sine functions can cause local interference causing the amplitude
of the oscillations to vary.

For Re = 150 we observe that the oscillations are controlled by signifi-
cantly higher frequencies than what we saw for Re = 100. The oscillations
of the DRL agent applying 80 actuations per episode are governed by fre-
quencies up to 1 Hz, compared to the other agents where such frequencies
only have very minor impact. In fig. 11.22a we can observe the DRL agent,
and the resulting drag coefficient of the applied control. The oscillations of
the drag coefficient are very large compared to all the other agents we have
observed, and also consist of multiple smaller oscillations between each large
oscillation away from the mean. Figure 11.28a can give us an indication to
the underlying frequencies of the oscillations. A great number of frequen-
cies, also of higher frequency value, seem to have significant impact on the
drag oscillation, indicating that the oscillations can be described as a combi-
nation of many sine functions with frequencies determined by the PSD plot.

Section 11.3 Power spectral density (PSD) 139

(a) DRL agent of 80 actuations per episode. (b) DRL agent of 160 actuations per episode.

Figure 11.28: PSD plot of the sum of drag coefficients for the two DRL agents
trained to increase drag at Re = 150. Where the PSD plots of the two DRL
agents at Re = 100 are quite similar, we can see much more significant differ-
ences between the agents at Re = 150. The oscillations in drag of the agent
applying 80 actuations per episode are governed by a wide range of frequen-
cies, although with decreasing magnitude, as we have generally seen for the
other plots as well. The drag coefficient oscillations observed of the agent
using 160 actuations per episode consist of significantly fewer frequencies.
We also note that where the oscillations of the second agent are grouped
closer, and consist of lower frequencies than the relatively high frequencies
of the first agent. However, by comparing either agent to the baseline oscil-
lations it is clear that neither agent reduces the oscillation frequency, but are
rather increasing the frequency, just as we saw for Re = 100.

With many sine functions of significantly different frequencies we would ob-
serve serious interference between functions, which would result in smaller
oscillations when the interference is destructive, and large oscillations when
many of the functions experience positive interference. Figure 11.28b is more
similar to what we saw in fig. 11.27. This understanding is reinforced if we
compare the drag coefficient oscillations of the 160 actuations at Re = 150 in
fig. 11.22a to the oscillations of the two Re = 100 agents in fig. 11.9.

Part IV

Conclusion and Discussion

141

Chapter 12

Conclusion

12.1 Summary

After having explained and discussed a wide variety of theory, methodology,
simulations, and results, it is convenient to briefly summarize the thesis. We
started by placing the work of the thesis in the overlap of machine learning
in fluid dynamics, and optimization in fluid dynamics. More specifically we
wanted to apply deep reinforcement learning (DRL) on the active flow control
(AFC) problem of the fluidic pinball.

In part I important theoretical background was presented. In chapter 2 we
gave a thorough introduction to some of the key elements of machine learn-
ing. Starting with a relatively low-level introduction of learning algorithms
in general, before moving on to data fitting, regularization, hyperparameters,
and gradient descent methods. Chapter 3 presented the key components of
deep learning, some of which have been implemented in later chapters. Ma-
chine learning and deep learning are closely related terms, and the field of
deep learning is often considered to be a part of the very wide umbrella term,
machine learning. Another area covered by machine learning is reinforcement
learning (RL), which was presented in chapter 4, where we focused on giv-
ing the reader an understanding of what reinforcement learning is, and then
presented the proximal policy optimization algorithm.

Moving on to chapter 5 we introduced active flow control (AFC), start-
ing with classical methods like linear control and gradient-based methods,
before we presented deep reinforcement learning (DRL) methodology as an
optional method of active flow control. Chapter 6 gave brief summaries of the
two journal articles, Rabault et al. [34] and Rabault and Kuhnle [33], which
introduced the methodology implemented in the thesis.

In part II the technical necessities along with the most important parts
of the implemented code were presented. Chapter 7 presented important
software like Docker, along with the key Python packages that were used

143

144 Conclusion Chapter 12

in the implementation. The numerical solver of the Navier-Stokes equations
was presented in chapter 8, and the chapter served the dual purpose of also
presenting key elements of the finite element method (FEM). Chapter 9 pre-
sented selected parts of the implemented code related to combining deep
reinforcement learning (DRL) methodology with the previously presented
numerical flow solver. In chapter 10 the system to be simulated was pre-
sented, along with necessary preparations like mesh refinement and flow
initialization.

In part III and chapter 11 the results of the simulations described in chap-
ter 10 were presented. Starting with simulations at Re = 100 and then Re
= 150 different flow control strategies were presented and discussed. A
power spectral density (PSD) analysis of the deep reinforcement learning
control strategies was also presented, giving insight to how the frequency
of vortex shedding was altered by active flow control.

12.2 Discussion

The overall aim of the project was to investigate the potential of using DRL
methodology on AFC problems. This is still a very new area of research
located between the fields of machine learning in fluid mechanics and opti-
mization in fluid mechanics. The research carried out by Rabault et al. [34]
and Rabault and Kuhnle [33] introduced the use of a DRL agent to control
the flow around a single cylinder. The system they investigated is relatively
simple, but also a known benchmark, making it a good starting point of a
new methodology. We build on the methodology they introduced by using
deep reinforcement learning (DRL) agents to control a more complex system,
namely the fluidic pinball [6].

The results presented in chapter 11 clearly indicate that DRL, and more
specifically PPO, agents are very capable of learning effective control strate-
gies for the fluidic pinball system. For two levels of complexity, given by the
Reynolds number, we train agents to reduce and increase drag in the system.

At Re = 100 the best performing DRL agent is able to reduce the com-
bined drag coefficient of the three cylinders by ≈ 28%. We compare the
control strategy of the DRL agent with less complex control strategies, where
constant and sinusoidally controlled rotations are able to reduce the drag by
respectively, ≈ 24% and ≈ 25. The simpler strategies were both chosen to be
similar to the strategy of the DRL agent, and especially the sinusoidal con-
trol actuations are very similar to the control applied by the DRL agent. The
comparison does however indicate that the system is perhaps not so complex
that more classical control methods, as the passive open-looped control of
fixed sinusoidal rotations performs so well. We must then decide whether we
require the new methodology to significantly outperform any other method

Section 12.3 Future work 145

this early on in research.
We also trained agents at Re = 100 to increase drag, where the best agent

was able to increase the drag compared to the baseline simulation by ≈ 45%.
For this task the best performing sinusoidal control strategy was able to
achieve ≈ 43% drag increase. For simulations at Re = 100 is thus clear that al-
though not all the simple control strategies achieve comparable results to the
corresponding DRL strategy, the DRL agents are not outperforming the other
classes of control. It should also be mentioned that we have not compared the
DRL agents with classical non-optimal control strategies like gradient-based
optimization. Although such methods might struggle with systems of in-
creasing complexity the fluidic pinball system is not so complex that classical
methods are out of the question.

For drag reduction simulations at Re = 150 we see a similar story where
the DRL agents perform slightly better than the less complex strategies, ob-
taining drag reduction of ≈ 32% compared to ≈ 30% for the best performing
sinusoidal control. However, when we move on to drag increase simula-
tions we find some more interesting results. The two DRL agents trained to
increase drag achieve ≈ 65% and ≈ 48% drag increase. In the previous sim-
ulation configurations we have not observed such a difference between the
two DRL agents, and the corresponding sinusoidal strategies have generally
performed only a few percent worse. However, for this task the correspond-
ing sinusoidal control strategies achieve ≈ 52% and ≈ 24% drag increase.
The difference between the DRL agents and their corresponding sinusoidal
control is thus 14 and 24 percentage points, a very significant difference that
could indicate that the better DRL agent is able to find a very good strategy,
not following a simple function like a sine wave. On the other hand, such a
large difference between two relatively similar agents could be suspicious and
point to the agent getting lucky and finding a very good policy by “random”.
Training several agents of similar configurations could help prove whether
the agent was lucky, or if the difference between the two agents actually is
that significant.

12.3 Future work

Simulating the fluidic pinball system at higher Reynolds numbers would be a
natural extension of this project, similar to what has been done by Tang et al.
[40] of the single cylinder system controlled by a PPO agent. In chapter B we
briefly mention some of the issues that were met when experimenting with
the fluidic pinball at higher Re, but with more rigorous mesh convergence
studies, in addition to benchmarking an iterative solver that might speed up
simulations, we could see such simulations become more obtainable without
the need of large clusters.

146 Conclusion Chapter 12

We have tried to compare the DRL strategies with comparable, but some-
what simpler methods, that were based on the strategy found during training.
For the future it would be interesting to compare the strategies found by the
DRL agents with control strategies found by more classical control optimiza-
tion methods like gradient-based methods (briefly presented in chapter 5).

Applying the DRL methodology implemented in this project on increas-
ingly complex 2-dimensional systems, besides increasing Re could be an in-
teresting next step. For example, increasing the number of rotating cylinders
to the fluidic pinball system or create a completely new system consisting of
other kinds of controllers could be used to increase complexity. In such a sys-
tem it could also be helpful or even necessary to implement the translational
invariance methodology presented in Belus et al. [1], which helps to speed up
learning and can make controlling a large number of controllers possible.

It would also be very interesting to study DRL control of 3-dimensional
systems. This could potentially increase the needed complexity of control
strategies significantly, in addition to being a big step towards more realistic
simulations and applications of deep reinforcement learning in active flow
control. For large 3-dimensional simulations significant computing power
would be required, but before such complex problems are approached, the
methodology should be tested on simpler 3-dimensional problems.

Appendices

147

Acronyms

Re Reynolds number

AFC active flow control

AI artificial intelligence

ANN artificial neural network

CNN convolutional neural network

CPI conservative policy iteration

DNN dense neural network

DRL deep reinforcement learning

FC flow control

FCNN fully connected neural network

FEM finite element method

FFNN feedforward neural network

FM fluid mechanic

GD gradient descent

IPCS incremental pressure correction scheme

LQE linear quadratic estimation

LQG linear quadratic Gaussian

LQR linear quadratic regulator

LReLU leaky rectified linear unit

ML machine learning

149

150

MLP multilayer perceptron

MPI message passing interface

MSE mean squared error

NN neural network

PIV particle image velocimetry

PPO proximal policy optimization

PSD power spectral density

ReLU rectified linear unit

RL reinforcement learning

RNN recurrent neural network

ROM reduced order model

SGD stochastic gradient descent

TRPO trusted region policy optimization

vCPU virtual CPU

VM virtual machine

Appendix A

Mean flow Re = 150

We present mean velocity magnitude and velocity standard deviation figures
of the different flow control strategies simulated at Re = 150.

A.1 Drag reduction

In figs. A.1 and A.2 we present the mean velocity magnitude and standard
deviation velocity for drag reduction simulations at Re = 150. We provide a
brief interpretation of the figures in the caption of each set of figures.

151

152 Mean flow Re = 150 Chapter A

(a) Baseline mean flow.

(b) DRL agent 80 actuations. (c) DRL agent 160 actuations.

(d) Sinusoidal 80 actuations. (e) Sinusoidal 160 actuations.

(f) Constant 80 actuations. (g) Constant 160 actuations.

Figure A.1: Mean velocity magnitude of the baseline flow and of the drag
reducing control strategies at Re = 150. Interestingly the connection between
a larger recirculation area, i.e. an area of low or negative velocity in the x-
direction, and drag reduction is not clear for simulations at Re = 150. This
could indicate that the drag reduction is due to other effects, but it is also
possible that mean velocity magnitude plots are not ideal, and that there
exists better measures that would more clearly show the effects of the flow
control. We should however note that the controlled flows observe lower
velocities in the flow directly between the three cylinders, which is where
the drag is being calculated. The strategies could thus be more based on
leading the flow around the cylinders, rather than directly influencing the
recirculation area.

Section A.1 Drag reduction 153

(a) Baseline mean flow.

(b) DRL agent 80 actuations. (c) DRL agent 160 actuations.

(d) Sinusoidal 80 actuations. (e) Sinusoidal 160 actuations.

(f) Constant 80 actuations. (g) Constant 160 actuations.

Figure A.2: Comparison of the velocity magnitude standard deviation of
the baseline flow and of the drag reducing control strategies at Re = 150.
From the average velocity figures of fig. A.1 it was not so easy to distinguish
the baseline flow from the controlled flows that supposedly have less drag.
When we compare the standard deviation of the velocity the differences
become much clearer. From figs. A.2c, A.2e and A.2g we notice that the
variations in velocity in the area directly behind the cylinders is significantly
less for the controlled flows than for the baseline. The best control strate-
gies, corresponding to the strategies based on the 160 actuation updates per
episode agent, all show less variations in velocity in the domain behind the
cylinders, giving a clear indication that reducing the vortex shedding in the
area directly behind the cylinders is correlated with drag reduction.

154 Mean flow Re = 150 Chapter A

A.2 Drag increase

(a) Baseline mean flow. (b) Sinusoidal 80 actuations (manually
tuned).

(c) DRL agent 80 actuations mean flow. (d) DRL agent 160 actuations.

(e) Sinusoidal 80 actuations (not tuned). (f) Sinusoidal 160 actuations.

Figure A.3: Mean velocity magnitude of the baseline flow and of the drag
increasing control strategies at Re = 150. It is clear that an increase in drag
corresponds with higher mean velocity in the area directly behind the cylin-
ders, i.e. reducing the size of the recirculation area. Figure A.3c corresponds
to the control strategy that increases the drag the most. If we compare the
figure to the others we see the flow is more asymmetric, in addition to having
a slightly smaller area of low velocity behind the cylinders. The sinusoidal
strategy of fig. A.3f is based on the 160 actuations agent and is not able to
increase drag as well as the other strategies. This reflects in the larger re-
circulation area behind the cylinders, more similar to the baseline flow than
the other controlled flows.

Section A.2 Drag increase 155

(a) Baseline mean flow. (b) Sinusoidal 80 actuations (manually
tuned).

(c) DRL agent 80 actuations mean flow. (d) DRL agent 160 actuations.

(e) Sinusoidal 80 actuations (not tuned). (f) Sinusoidal 160 actuations.

Figure A.4: Comparison of the velocity magnitude standard deviation of the
baseline flow and of the drag increasing control strategies at Re = 150. From
figs. A.4b, A.4c and A.4e we observe that the control strategies that increase
the drag most are all significantly increasing the variations in velocity in the
area directly behind the cylinders. Figure A.4b shows the same asymmetric
behavior as we observed in the corresponding mean velocity figure, and
explains why the resulting lift coefficient oscillates around a non-zero mean
value.

Appendix B

Re = 200 experimental

In addition to the simulations carried out at Re = 100 and = 150 we did
one experimental simulation on Re = 200. Due to numerical considerations
requiring a very fine mesh, and very short timesteps, the simulation becomes
very computational intensive. We pre-trained an agent for 150 episodes at
Re = 100, before moving on to training at Re = 200 for approximately 500
episodes. We trained the agent to increase drag on a VM with 60 parallel
environments. Even with 60 parallel environments the training took over a
month of continuous running.

The choice of mesh and numerical timesteps were in this case simply cho-
sen by taking the most refined mesh we had created, and then testing simula-
tions with different numerical timesteps until the simulation could run with-
out breaking. A more rigorous mesh convergence study could help reduce
the computational intensity of the system. It is also possible that this system
with mesh size of 76552 cells is too large for the LU solver implemented, and
that an iterative solver could show significant speed-ups.

In fig. B.1 we show that DRL control is still possible at higher Re of the
fluidic pinball system, although the simulations are to be seen as experimen-
tal, and have not gone through the same analysis previous to training and
evaluation as for the lower Re simulations. From fig. B.2 it is also clear that
the control strategy found at Re = 200 is quite similar to the previously dis-
covered control strategies of lower Reynolds numbers.

157

158 Re = 200 experimental Chapter B

(a) Drag coefficient vs. numerical timestep. (b) Lift coefficient vs. numerical timestep.

Figure B.1: Single run evaluation results of experimental DRL agent to in-
crease drag at Re = 200. Clear drag increase is observed, indicating control
is still realistic at higher Re.

(a) Rotations applied to the first cylinder.

(b) Rotations applied to the bottom trailing
cylinder.

(c) Rotations applied to the top trailing cylin-
der.

Figure B.2: Actions taken by the DRL agent to increase drag at Re = 200.
The applied rotations are quite similar to what was observed of DRL agents
increasing drag at both Re = 100 and = 150.

References

[1] Vincent Belus et al. “Exploiting locality and physical invariants to de-
sign effective Deep Reinforcement Learning control of the unstable falling
liquid film”. In: AIP Advances 9.12 (2019). doi: 10.1063/1.5132378. arXiv:
1910.07788.

[2] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization”. In: Journal of Machine Learning Research 13 (2012), pp. 281–
305. issn: 15324435.

[3] Steven L. Brunton and Bernd R. Noack. “Closed-loop turbulence con-
trol: Progress and challenges”. In: Applied Mechanics Reviews 67.5 (2015).
issn: 00036900. doi: 10.1115/1.4031175.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly De-
tection: A Survey”. In: ACM Computing Surveys 41.3 (2009). issn: 0360-
0300. doi: 10.1145/1541880.1541882.

[5] S. Scott Collis et al. “Issues in active flow control: Theory, control, simu-
lation,’ and experiment”. In: Progress in Aerospace Sciences 40.4-5 (2004),
pp. 237–289. issn: 03760421. doi: 10.1016/j.paerosci.2004.06.001.

[6] Nan Deng et al. “Low-order model for successive bifurcations of the
fluidic pinball”. In: (2018). arXiv: 1812 .08529. url: http://arxiv.org/
abs/1812.08529.

[7] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient
methods for online learning and stochastic optimization”. In: Journal of
Machine Learning Research 12 (2011), pp. 2121–2159. url: http://www.
jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

[8] Thomas Duriez, Steven L. Brunton, and Bernd R. Noack. Machine Learn-
ing Control – Taming Nonlinear Dynamics and Turbulence. Springer In-
ternational Publishing, 2017. isbn: 978-3-319-40624-4. doi: 10 . 1007 /
978 - 3 - 319 - 40624 - 4. url: https : / / www. springer. com / gp / book /
9783319406237.

[9] Paul Garnier et al. “A review on Deep Reinforcement Learning for Fluid
Mechanics”. In: (2019). arXiv: 1908.04127. url: http://arxiv.org/abs/
1908.04127.

159

https://doi.org/10.1063/1.5132378
https://arxiv.org/abs/1910.07788
https://doi.org/10.1115/1.4031175
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.paerosci.2004.06.001
https://arxiv.org/abs/1812.08529
http://arxiv.org/abs/1812.08529
http://arxiv.org/abs/1812.08529
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-3-319-40624-4
https://www.springer.com/gp/book/9783319406237
https://www.springer.com/gp/book/9783319406237
https://arxiv.org/abs/1908.04127
http://arxiv.org/abs/1908.04127
http://arxiv.org/abs/1908.04127

160 References Chapter 12

[10] Christophe Geuzaine and Jean François Remacle. “Gmsh: A 3-D fi-
nite element mesh generator with built-in pre- and post-processing
facilities”. In: International Journal for Numerical Methods in Engineering
79.11 (2009), pp. 1309–1331. doi: 10 . 1002 / nme . 2579. url: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579.

[11] Katuhiko Goda. “A multistep technique with implicit difference schemes
for calculating two- or three-dimensional cavity flows”. In: Journal of
Computational Physics 30.1 (1979), pp. 76–95. issn: 10902716. doi: 10 .
1016/0021-9991(79)90088-3.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. url: https://www.deeplearningbook.org/.

[13] Song Han et al. “Learning both weights and connections for efficient
neural networks”. In: Advances in Neural Information Processing Systems
2015-Janua (2015), pp. 1135–1143. issn: 10495258. arXiv: 1506.02626.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural Net-
works 2.5 (1989), pp. 359–366. issn: 08936080. doi: 10.1016/0893-6080(89)
90020-8.

[15] Anil K. Jain, Jianchang Mao, and K. M. Mohiuddin. “Artificial neu-
ral networks: A tutorial”. In: Computer 29.3 (1996), pp. 31–44. issn:
00189162. doi: 10.1109/2.485891.

[16] Sham Kakade and John Langford. “Approximately Optimal Approxi-
mate Reinforcement Learning”. In: International Conference on Machine
Learning. 2002, pp. 267–274. url: https://homes.cs.washington.edu/
%7B~%7Dsham/papers/rl/aoarl.pdf.

[17] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A method for stochastic
optimization”. In: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings (2015), pp. 1–15. arXiv: 1412 .
6980.

[18] Alex Kriezhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. 2012, pp. 1097–1105. isbn:
9781420010749. doi: 10.1201/9781420010749.

[19] Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce:
a TensorFlow library for applied reinforcement learning. 2017. url: https :
//github.com/tensorforce/tensorforce.

https://doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://doi.org/10.1016/0021-9991(79)90088-3
https://doi.org/10.1016/0021-9991(79)90088-3
https://www.deeplearningbook.org/
https://arxiv.org/abs/1506.02626
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/2.485891
https://homes.cs.washington.edu/%7B~%7Dsham/papers/rl/aoarl.pdf
https://homes.cs.washington.edu/%7B~%7Dsham/papers/rl/aoarl.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1201/9781420010749
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce

References 161

[20] Hans Petter Langtangen and Anders Logg. Solving PDEs in Python: The
FEniCS Tutorial. Vol. I. 2017, p. 153. isbn: 978-3-319-52462-7. doi: 10 .
1007/978-3-319-52462-7. url: https://www.springer.com/gp/book/
9783319524610.

[21] Moshe Leshno et al. “Multilayer feedforward networks with a nonpoly-
nomial activation function can approximate any function”. In: Neural
Networks 6.6 (1993), pp. 861–867. issn: 08936080. doi: 10 .1016/S0893-
6080(05)80131-5.

[22] Anders Logg, Kent Andre Mardal, and Garth N. Wells. Automated so-
lution of differential equations by the finite element method. 2012, pp. 77–94,
399–440. isbn: 9783642230981. doi: 10.1007/978-3-642-23099-8_1.

[23] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The Bulletin of Mathematical Biophysics
5.4 (1943), pp. 115–133. issn: 00074985. doi: 10.1007/BF02478259.

[24] Pankaj Mehta et al. “A high-bias, low-variance introduction to Machine
Learning for physicists”. In: Physics Reports 810 (2019), pp. 1–124. issn:
03701573. doi: 10.1016/j.physrep.2019.03.001. arXiv: 1803.08823. url:
https://doi.org/10.1016/j.physrep.2019.03.001%20https://arxiv.org/
pdf/1803.08823.pdf.

[25] Chulhong Min and Haecheon Choi. “Suboptimal feedback control of
vortex shedding at low Reynolds numbers”. In: Journal of Fluid Mechan-
ics 401 (1999), pp. 123–156. doi: doi:10.1017/S002211209900659X.

[26] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997. isbn:
0070428077.

[27] Frank Muldoon. “Control of hydrothermal waves in a thermocapillary
flow using a gradient-based control strategy”. In: International Journal for
Numerical Methods in Fluids 72 (2013), pp. 90–118. doi: 10.1002/fld.373.

[28] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve
Restricted Boltzmann Machines”. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. Omnipress,
2010, pp. 807–814.

[29] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015. url: http://neuralnetworksanddeeplearning.com/index.
html.

[30] Georgios Pechlivanoglou. “Passive and active flow control solutions for
wind turbine blades”. In: PhD thesis (2012). doi: 10.14279/depositonce-
3487.

https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1007/978-3-319-52462-7
https://www.springer.com/gp/book/9783319524610
https://www.springer.com/gp/book/9783319524610
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1007/978-3-642-23099-8_1
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.physrep.2019.03.001
https://arxiv.org/abs/1803.08823
https://doi.org/10.1016/j.physrep.2019.03.001%20https://arxiv.org/pdf/1803.08823.pdf
https://doi.org/10.1016/j.physrep.2019.03.001%20https://arxiv.org/pdf/1803.08823.pdf
https://doi.org/doi:10.1017/S002211209900659X
https://doi.org/10.1002/fld.373
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
https://doi.org/10.14279/depositonce-3487
https://doi.org/10.14279/depositonce-3487

162 References Chapter 12

[31] Ludwig Prandtl. “Über Flussigkeitsbewegung bei sehr kleiner Reibung”.
In: Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904
(1904), pp. 484–491.

[32] Jean Rabault and Alexander Kuhnle. “Accelerating Deep Reinforcement
Learning of Active Flow Control strategies through a multi-environment
approach”. In: (2019). arXiv: 1906 .10382. url: http://arxiv.org/abs/
1906.10382.

[33] Jean Rabault and Alexander Kuhnle. “Accelerating Deep Reinforcement
Learning of Active Flow Control strategies through a multi-environment
approach”. In: Physics of Fluids 31.9 (2019), p. 094105. doi: 10.1063/1.
5116415. arXiv: 1906.10382. url: https://doi.org/10.1063/1.5116415.

[34] Jean Rabault et al. “Artificial neural networks trained through deep re-
inforcement learning discover control strategies for active flow control”.
In: Journal of Fluid Mechanics 865 (2019), pp. 281–302. issn: 14697645. doi:
10.1017/jfm.2019.62. arXiv: 1808.07664v5.

[35] Benjamin Recht et al. “Hogwild: A Lock-Free Approach to Paralleliz-
ing Stochastic Gradient Descent”. In: Advances in neural information pro-
cessing systems. Curran Associates, Inc., 2011, pp. 693–701. url: http :
/ / papers . nips . cc / paper / 4390 - hogwild - a - lock - free - approach - to -
parallelizing-stochastic-gradient-descent.pdf.

[36] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: (2016), pp. 1–14. arXiv: 1609.04747. url: http://arxiv.org/
abs/1609.04747.

[37] John Schulman et al. “Trust Region Policy Optimization”. In: Proceed-
ings of the 32nd International Conference on Machine Learning. Ed. by Fran-
cis Bach and David Blei. Vol. 37. 2015, pp. 1889–1897. url: http : / /
proceedings.mlr.press/v37/schulman15.html.

[38] John Schulman et al. “Proximal Policy Optimization Algorithms”. In:
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[39] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning An Intro-
duction. 2nd ed. Cambridge, MA: MIT Press, 2018. isbn: 9780262039246.
url: http://incompleteideas.net/book/the-book-2nd.html.

[40] Hongwei Tang et al. “Robust active flow control over a range of Reynolds
numbers using an artificial neural network trained through deep rein-
forcement learning”. In: April (2020). doi: 10.13140/RG.2.2.30207.97440.
arXiv: 2004.12417. url: http://arxiv.org/abs/2004.12417.

[41] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude”. In: COURS-
ERA: Neural networks for machine learning 4.2 (2012), pp. 26–31.

https://arxiv.org/abs/1906.10382
http://arxiv.org/abs/1906.10382
http://arxiv.org/abs/1906.10382
https://doi.org/10.1063/1.5116415
https://doi.org/10.1063/1.5116415
https://arxiv.org/abs/1906.10382
https://doi.org/10.1063/1.5116415
https://doi.org/10.1017/jfm.2019.62
https://arxiv.org/abs/1808.07664v5
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.13140/RG.2.2.30207.97440
https://arxiv.org/abs/2004.12417
http://arxiv.org/abs/2004.12417

References 163

[42] Kristian Valen-Sendstad et al. “A comparison of finite element schemes
for the incompressible Navier–Stokes equations”. In: (2012), pp. 399–
420. doi: 10.1007/978-3-642-23099-8_21.

[43] Stéfan Van Der Walt, S. Chris Colbert, and Gaël Varoquaux. “The NumPy
array: A structure for efficient numerical computation”. In: Computing
in Science and Engineering 13.2 (2011), pp. 22–30. issn: 15219615. doi:
10.1109/MCSE.2011.37. arXiv: 1102.1523.

[44] Mitchell M. Waldrop. “More than moore”. In: Nature 530.7589 (2016),
pp. 144–147. issn: 0028-0836. doi: 10.1038/530144a. url: https://doi.
org/10.1038/530144a.

https://doi.org/10.1007/978-3-642-23099-8_21
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/1102.1523
https://doi.org/10.1038/530144a
https://doi.org/10.1038/530144a
https://doi.org/10.1038/530144a

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis structure

	I Theory
	Machine Learning ML
	Introduction
	Learning algorithms and use cases
	ML Tasks, T
	ML Performance Measure, P
	ML Experience, E

	Linear Regression
	Fitting to data
	Regularization
	Hyperparameters
	Gradient Descent
	Stochastic Gradient Descent
	Momentum Gradient Descent
	Adam

	Deep learning
	Feedforward neural networks
	Backpropagation
	Activation functions
	Sigmoid and Tanh
	Rectified linear

	Universal approximation theorem
	Network architecture
	Pre-trained networks

	Reinforcement Learning
	Introduction
	Reinforcement learning systems

	Computing the policy gradient
	Proximal Policy Optimization - Background
	Policy Gradient background for PPO
	Trusted Region Methods

	Clipped Surrogate Objective - PPO

	Active Flow Control (AFC)
	Linear control
	Introduction and LQR
	Sensor estimation and Kalman filtering
	rom

	Gradient-based and stochastic control
	Deep reinforcement learning for AFC

	Literature Review
	Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
	Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach

	II Implementation and Methodology
	Technical implementation
	NREC VMs
	Docker
	Necessary Python packages

	Flow Solver
	Python packages and domain explanation
	Initialization of FlowSolver attributes
	Variational form and boundary conditions
	Setting up cylinders and matrices for solutions
	Making attributes of the FlowSolver class accessible
	Evolving the flow and applying rotations
	Cylinder setup with boundary conditions for rotations

	Code implementation
	TensorForce environment class
	TensorForce agent and simulation start
	Advantages of the implementation
	Possible improvements

	Methodology - Fluidic Pinball
	Simulation Environment
	Mesh creation

	Mesh Refinement Study
	Mesh refinement at Re =100
	Mesh refinement at Re =150

	Flow initialization
	Active flow control setup

	III Results
	Results - Fluidic Pinball
	Active flow control Re =100
	Drag reduction
	Drag Increase

	Active flow control Re =150
	Drag reduction
	Drag Increase

	psd
	PSD of reducing drag agents
	PSD of increasing drag agents

	IV Conclusion and Discussion
	Conclusion
	Summary
	Discussion
	Future work

	Appendices
	Mean flow Re =150
	Drag reduction
	Drag increase

	Re =200 experimental
	References

