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Popular Abstract

Standardized tests are commonly used in assessing individual performance, and their

results greatly influence high stakes decisions. Because the tests are generally

administered in alternate forms on multiple occasions, a statistical procedure known as

equating is used to ensure that the results of those alternate forms are comparable

across administrations. As any statistical procedure, equating is subject to sampling

variability. The measure allowing to quantify this variability accurately is referred to as

the standard error of equating. This paper focuses on one of the equating methods,

kernel equating, and investigates the additional variability stemming from selecting a

specific component within the procedure of kernel equating, and its effect on the

standard error of kernel equating. We quantify this additional variability and account

for it in modified formulas for the standard error of equating. The results of the present

study suggest that the component does influence the standard error of equating,

granted this influence is subtle. Hence, we are confident that implementing the methods

introduced in this paper can improve the accuracy of the standard error of equating,

and consequently, facilitate fairness and comparability of the equated results.



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 3

Acknowledgements

I would like to express my most profound appreciation for the help and support to

the following persons who directly or indirectly have contributed to making this thesis a

reality.

First and foremost, I would like to extend my deep and sincere gratitude to my

supervisor, Dr Björn Andersson, for believing in me, his patience and ample time spent

throughout this year. Without his continuous guidance, unwavering support, and

immense knowledge, this thesis would not be possible.

My appreciation goes to the lecturers and staff at CEMO for their kindness and

towering passion for what they do.

To my classmates, for their invaluable support and bright spirits which kept me

going during stressful times.

Above all, I’m forever indebted to my family for their unparalleled love and

encouragement in all my endeavours. To my parents, for teaching me to face challenges

with strength and determination. To my husband, Erik, for his undying support and

patience during these years.



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 4

Abstract

In standardized testing, equating is used to ensure fairness and comparability of the

results across multiple test administrations. This paper focuses on one of the

equipercentile observed-score equating methods, kernel equating. An essential step in

kernel equating is obtaining the continuous approximations to the discrete score

distributions by applying a kernel with a smoothing parameter, a bandwidth. When

selecting a bandwidth, however, additional variability is introduced, which is currently

not accounted for when calculating the standard errors of equating, consequently posing

a threat to their accuracy. In this study, the asymptotic variance and standard error of

the bandwidth parameter estimator are derived, and a modified method for calculating

the standard error of equating, which accounts for bandwidth selection variability, is

introduced. A simulation study is used to verify the derivations and confirm the

accuracy of the modified method across several sample sizes as compared to the existing

method and the Monte Carlo standard error estimates. The results show that the

modified method of the standard error of equating calculation is relatively accurate

under the considered conditions. Furthermore, the modified and the existing methods

produce fairly similar results suggesting that the bandwidth variability impact on the

standard error of equating is minimal.

Keywords: observed-score equating, kernel equating, bandwidth selection,

bandwidth variability, standard errors of equating, delta method
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Accounting for Bandwidth Selection Variability in Estimating the Standard Errors of

Kernel Equating

Standardized testing is commonly used for assessing individual achievement, and

its results greatly influence high-stakes decisions ranging from university admissions to

various industry certifications. The framework of standardized testing generally requires

the alternate test forms to be administered on multiple occasions. In consequence, the

tests often differ in their difficulty from one administration to another, which poses a

challenge with respect to comparability and fairness of their results. In order to address

this challenge, a statistical procedure known as equating is employed with a paramount

goal of adjusting the scores on the test forms so that they yield interchangeable results

(Kolen & Brennan, 2014).

Observed-score equating is one of the fundamental methodologies used in test

equating. Rooted in Classical Test Theory, it is concerned with establishing the

equivalence of the observed scores on two test forms and incorporates both linear and

equipercentile equating functions (von Davier, 2011). In this paper, we focus on one of

the equipercentile observed-score equating methods, kernel equating, which was initially

introduced by two ETS researchers, Holland and Thayer, in the late 1980s, followed by

the work of von Davier, Holland and Thayer in 2004 (Holland & Thayer, 1989; von

Davier, Holland, & Thayer, 2004).

The conceptual framework of kernel equating follows that of the equipercentile

observed-score equating and posits a series of steps to obtain equated results: 1)

pre-smoothing of the data to reduce sampling variability, 2) obtaining discrete score

probability distributions, 3) obtaining continuous approximations to the discrete score

distributions, 4) calculating of the equating function, and finally, 5) calculating of the

standard error of equating (von Davier, 2011; von Davier et al., 2004). A feature

distinguishing kernel equating from other equipercentile methods is that the continuous

approximation of the score probability distributions is achieved through the use of a

kernel with a bandwidth parameter. The bandwidth allows to make the density

functions as smooth as possible while retaining the properties of the original
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distributions. Applying such a parameter, however, introduces additional variability.

This variability is typically not accounted for when calculating the standard errors of

equating, and therefore constitutes a threat to their accuracy (Holland, King, & Thayer,

1989; von Davier et al., 2004).

It should be self-evident that accurate estimation of the standard error of equating

is integral to making correct inferences and comparisons. When estimated incorrectly, it

can lead to unjustified certainty. This thesis addresses the issue of additional variability

stemming from the bandwidth selection by modifying the existing method for

calculating the standard error of equating (Holland et al., 1989).

We structure this paper as follows. In the subsequent subsections, we give a brief

background to the kernel method of equating and expand on the issue of bandwidth

variability and the standard error of equating calculation. Next, the asymptotic

variance of the bandwidth parameter estimator is derived, which is then incorporated in

a modified method for calculating the standard error of equating. This modified method

is further verified and compared to the existing method using a simulation study.

Lastly, the results are reported and discussed.

Data Collection Designs

Kernel equating, as a method within the framework of observed-score equating,

consists of two fundamental components, the data collection design and the equating

method (von Davier et al., 2004). Hence, before we focus on the equating itself, it is

essential to review, if only briefly, the common approaches to collecting the data. There

are several designs of data collection widely used in practice. Those can be roughly

divided into two categories: designs which use examinees from a common population

taking both test forms, and designs which use common items on both test forms (von

Davier et al., 2004).

The first category of data collection designs includes the Equivalent-Groups (EG),

the Single-Group (SG), and the Counterbalanced (CB) designs.

The Equivalent-Groups (EG) design. Two independent random samples are drawn



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 7

from a common population, P , and one group takes test form X, while the other takes

test form Y .

The Single-Group (SG) design. Both test forms X and Y are administered to a

single sample from the population of test-takers, P . All examinees take both forms of

the test.

The Counterbalanced (CB) design. Both test forms X and Y are administered to

a single group of examinees drawn from a common population, P . The group is divided

into subgroups so that one subgroup first takes test X followed by test Y , and the other

- test Y followed by test X.

The second category of data collection designs uses common items instead of

common examinees and is represented by the Non-Equivalent groups with Anchor Test

(NEAT) design.

The Non-Equivalent groups with Anchor Test (NEAT) design. Test form X is

administered to a sample from one population, P , while test form Y is administered to

a sample from another population, Q. A number of anchor items, test form A, is

administered to both samples from the populations P and Q.

The choice of an appropriate data collection design is subject to considerations of

available sample size, time, and costs. The designs consecutively affect the equating

procedure such that some designs, e.g. the Equivalent-Groups design, allow for a

relatively straightforward comparison between the test forms while others are much

more complex, e.g. the Non-Equivalent groups with Anchor Test design. A more

detailed account of the considerations and procedures involved in various data collection

designs can be found in von Davier et al. (2004).

Kernel Equating

Adopting the notation of von Davier et al. (2004), the two test forms are denoted

as X and Y , and the target population is denoted as T . Let the possible observations

on the test form X be xj for j = 1, . . . , J ; and let the observations on the test form Y

be yk for k = 1, . . . , K. Hence, the score probabilities can be defined as
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rj = Prob{X = xj|T}, (1)

and

sk = Prob{Y = yk|T}. (2)

Further, an equipercentile equating function is defined in terms of cumulative

distribution functions and is given by

F (x) = Prob(X ≤ x|T ), (3)

and

G(y) = Prob(Y ≤ y|T ). (4)

In the situation when the cumulative distribution functions are continuous, we can

arrive to the equipercentile equating function of X to Y as follows

y = Equiy(X) = G−1(F (X)). (5)

Strictly speaking, however, most score distributions are discrete, and their

continuous approximation is required. Kernel equating addresses this problem by

introducing a series of steps which can be applied to various data collection designs.

Those steps include (1) pre-smoothing, (2) estimation of the score probabilities, (3)

continuous approximation to the discrete score distributions, (4) equating, and (5)

calculating the standard error of equating (von Davier et al., 2004). We now briefly

review the first two steps and dedicate subsequent subsections to present the remaining

steps in more detail as they pertain to the subject at hand.

(1) Pre-smoothing. In the first step, the score probabilities are estimated by

fitting statistical models to the raw data until one is selected as an adequate fit. This

can be achieved by fitting log-linear or item response theory, IRT, models. The methods

are described in detail in Andersson and Wiberg (2017), and Holland and Thayer

(1987), and are not repeated here.

(2) Estimation of the score probabilities. Having estimated the score distributions,

the score probabilities can be obtained using a linear or non-linear transformation, the

Design Function. The Design Function, DF, depends on the data collection design. For
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instance, consider the Equivalent-Groups design and let r denote the column vector of

the score probabilities of X given by (r1, ..., rJ)t and s - the column vector of the score

probabilities of Y given by (s1, ..., sK)t. The Design function is then a simple identity

function, i.e. r

s

 = DF(r, s) =

Ij 0

0 Ik


r

s

 , (6)

where Ij and Ik are JX × JX and KY ×KY identity matrices. Design Functions for

other data collection designs are given explicitly in von Davier et al. (2004).

Continuous Approximation and Equating

The third and essential step in kernel equating, distinguishing it from other

equipercentile methods, is the continuous approximation to the discrete cumulative

distribution functions, F̂ (x) and Ĝ(y) to F̂hX
(x) and ĜhY

(y), in order to compute the

equating function (5). This is achieved by applying a kernel with a smoothing

parameter, a bandwidth (von Davier et al., 2004). Following the notation of von Davier

et al. (2004), let Φ(·) denote the cumulative distribution function of the Gaussian

distribution, and let hX denote the bandwidth parameter. Then the Gaussian kernel

smoothing of the distribution of X has a cumulative distribution function defined by

F̂hX
(x) =

∑
j

r̂jΦ(RjX (x)), (7)

where RjX(x) is given by

RjX(x) = x− aXxj − (1− aX)µX
aXhX

, (8)

and

a2
X = σ2

X

σ2
X + h2

X

. (9)

ĜhY
(y) is defined analogously.

It is evident from (7) - (9) that for the continuous approximation to be carried out

bandwidth parameters, hX and hY , have to be selected. The primary goal of introducing

such parameters is to make the density functions as smooth as possible while retaining

the properties of the original distributions. Various methods of selecting the bandwidth
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parameter have been suggested in previous research (Andersson & von Davier, 2014;

von Davier et al., 2004). Of particular interest to this paper is a method described in

von Davier et al. (2004) which selects the bandwidth parameter by minimizing the first

part of the penalty function with respect to the bandwidth. The penalty function itself

is based on the squared distances between the estimated proportions and the derivative

of the continuous cumulative distribution function and is given by

PEN1(hX) =
∑
j

(r̂j − f̂hX(xj))2, (10)

where f̂hX(xj) is a density function, found by differentiating (7) with respect to x, i.e.

fhX(x) =
∑
j

rjφ(RjX(x)) 1
aXhX

, (11)

and RjX(x) is given in (8). If the bandwidth is chosen correctly, the result of

minimizing PEN1 is a good approximation of the raw discrete distribution.

Once the continuous approximations are obtained, the equating function estimator

for equating X to Y is given by

êY (x) = eY (x; r̂, ŝ) = G−1
hY

(FhX
(x; r̂); ŝ). (12)

The equating function for equating Y to X is analogous and found by substitution.

Standard Error of Kernel Equating

The standard error of equating is the measure of random equating error or

uncertainty which stems from the equating function being subject to estimation and

thereby sampling variability. We largely base this subsection on the work of Holland et

al. (1989) who derived the asymptotic standard error for the kernel method of equating

using the standard delta method for computing large sample approximations to the

sampling variances of functions of statistics. Adopting the notation of Holland et al.

(1989), the standard error of equating for equating X to Y is defined as

SEEx(Y ) =
√
Var(êY (x)). (13)

The standard error of equating for equating Y to X is defined analogously.
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Treating the bandwidth parameters hX and hY as constants, Holland et al. (1989)

assert that all the uncertainty in the equating function comes from the estimation of the

score probabilities r and s. Hence, the variance of the equating function, and in turn

the standard error of equating, reflect the data collection design, the choice of the

pre-smoothing technique used in the estimation of the population score probabilities,

and the equating function itself.

Reiterating the notation used previously, let r and s define the vectors of the

pre-smoothed score distributions. The calculation of the standard error of equating per

Holland et al. (1989) then requires two components: a vector of derivatives of the

equating function eY with respect to r and s, and the asymptotic covariance matrix

Σ(r̂,ŝ). Using the delta method, the variance of the equating function êY can then be

expressed as

Var(êY (x; r̂, ŝ)) = [∂eY ]′Σ(r̂,ŝ)∂eY , (14)

where Σ(r̂,ŝ) is the covariance matrix of the independently estimated score probabilities

given by

Σ(r̂,ŝ) =

Σr̂ 0

0 Σŝ

 . (15)

The matrix Σ(r̂,ŝ) is a matrix with dimensions of (JX +KY )× (JX +KY ) where

JX is the dimension of r, and KY is the dimension of s (von Davier et al., 2004). The

calculation of the Σ(r̂,ŝ) for different equating methods is beyond the scope of this paper

and can be found in Andersson and Wiberg (2017), Holland et al. (1989) and von

Davier et al. (2004).

The second component, ∂eY , is a vector of first order derivatives of the equating

function eY with respect to the estimated score probabilities r and s, i.e.

∂eY
=
[
∂eY
∂r

,
∂eY
∂s

]
. (16)

Recalling (12), the derivatives needed to compute the ∂eY
are defined in Holland et al.
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(1989) as

∂eY
∂rj

= 1
G′
∂F (x, r)
∂rj

, (17)

∂eY
∂sk

= − 1
G′
∂G(eY (x); s)

∂sk
, (18)

where ∂eY

∂r
is a row vector with dimensions 1× JX , ∂eY

∂s
is a row vector with dimensions

1×KY , G′ is the density evaluated at eY (x), i.e.

G′ = ∂G(eY (x); s)
∂y

, (19)

and

∂F (x; r)
∂rj

= Φ(RjX(x; r))−MjX(x; r)∂F (x; s)
∂x

, (20)

where ∂F (x;s)
∂x

is given in (11), RjX(x; r) - in (8), and

MjX(x; r) = 1
2(x− µX)(1− a2

X)z2
jX + (1− aX)xj, (21)

where zjX is defined as

zjX = xj − µX
σX

. (22)

The derivatives of eX are analogous to those above and can be computed by

substitution.

At this point, it is important to emphasize that the method for the standard error

of equating calculation described above treats the bandwidth parameters hX and hY as

fixed and not as functions of r and s. Hence, the additional variability introduced by

the bandwidth selection is currently not accounted for in the estimation of the standard

errors of equating, and consequently poses a challenge with respect to their accuracy

(Holland et al., 1989; von Davier et al., 2004).

Therefore, the objective of this thesis is to introduce a modified method of

calculating the standard error of equating which accounts for the additional variability

stemming from the bandwidth selection and compare it to the current method of

calculating the standard error of equating (Holland et al., 1989), and the Monte Carlo

standard error across several sample sizes.
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In order to narrow the aspects of the subject, we formulate our research questions

as follows:

1. Using Monte Carlo standard error as a criterion, what is the effect of the

sample size on the accuracy of the modified method of calculating the asymptotic

standard error of equating?

2. Using Monte Carlo standard error as a criterion, how do the modified and the

existing (Holland et al., 1989) methods of calculating the asymptotic standard error of

equating compare with respect to their accuracy?

Method

This section is structured as follows. First, the bandwidth parameter estimator

variance and standard error are derived. Next, we introduce a modified method for

calculation of the analytical standard error of equating, which accounts for bandwidth

variability. Finally, the simulation setup designed to illustrate the use of the modified

method and compare it to the current method of the standard error of equating

calculation (Holland et al., 1989) as well as the Monte Carlo standard error, is outlined.

Asymptotic Variance and Standard Error of the Bandwidth Parameter

Estimator

Before deriving the asymptotic variance of the bandwidth parameter estimator, we

see it appropriate to restate the multivariate delta method (Rao, 1973). Adopting the

notation of Rao (1973), let the (k × 1)-dimensional random vector
√
n(Tkn − θk)

converge to a multivariate normal distribution with zero mean and covariance Σ. Let g

denote a vector-valued function with components g1,..., gq, such that all the entries of g

are differentiable, then
√
n(g(Tkn)− g(θk)) converges to a multivariate normal

distribution with zero mean and covariance of GΣG′, i.e.

√
n(g(Tkn)− g(θk)) d−→ N(0, GΣG′), (23)

where G is the Jacobian matrix of partial derivatives of g with respect to θk.
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The bandwidth parameter estimator, however, is not defined explicitly but rather

in terms of other asymptotically normal variables. Therefore, we use a generalization of

the delta method presented by Benichou and Gail (1989) which facilitates computing

the asymptotic variance of the implicitly defined bandwidth parameter estimator.

Following the notation of von Davier et al. (2004), let hX denote the bandwidth

parameter selected to minimize PEN1 defined by (10), and r – the vector of estimated

score probabilities. Consider further that PEN1 is a continuously differentiable function

of the estimated score probabilities r in hX , and the function is minimized so that
∂PEN1
∂h′

X
= 0. Applying the implicit function theorem (Rao, 1973), we can then define hX

as a function of r such that hX = ghX
(r), and compute the partial derivatives of ghX

(r)

with respect to r as
∂ghX

(r)′
∂r

= −
(
∂2PEN1

∂h′X

)−1
∂2PEN1

∂h′X∂r′
, (24)

where ∂2PEN1
∂h′

X
is a scalar second order partial derivative of PEN1 with respect to hX , and

∂2PEN1
∂h′

X∂r′ is a 1× JX vector of second order partial derivatives of PEN1 with respect to r.

The ∂2PEN1
∂h′

X
and ∂2PEN1

∂h′
X∂r′ derivatives are unequivocally calculated using the chain rule and

implicit differentiation. The equations, however, are lengthy, and we summarize them in

Appendix III.

Let Σr̂ denote the asymptotic covariance matrix of the estimated score

probabilities r with dimensions JX × JX where JX is the dimension of r. By applying

the delta method for implicit functions (Benichou & Gail, 1989), we can define the

asymptotic variance of the bandwidth parameter estimator hX as

Var(ĥX) = ∂ghX
(r)′

∂r
Σr̂

[
∂ghX

(r)′
∂r

]′
, (25)

and its standard error as

SE(ĥX) =
√
Var(ĥX). (26)

The variance and the standard error of ĥY are analogous to those given for ĥX and can

be computed by substituting X by Y and r by s.
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Standard Error of Equating Accounting for Bandwidth Variability

As mentioned previously, the existing method of calculating the standard error of

equating fixes the bandwidth parameters hX and hY to be constant, and in doing so

ignores the variance they attribute to the equating functions eY (x) and eX(y) (Holland

et al., 1989). We introduce a modification to this existing method by expanding the

formula for the standard error of equating calculation to account for the additional

variance stemming from the bandwidth selection.

Treating hX as a function of the estimated score probabilities r (refer to the

previous subsection), we redefine (14) as

Var(êY (x; r̂, ŝ, ĥ)) = ∂eY (x; r̂, ŝ, ĥ)
∂(r̂′, ŝ′, ĥ′)

Σ(r̂,ĥX ,ŝ,ĥY )

∂eY (x; r̂, ŝ, ĥ)
∂(r̂′, ŝ′, ĥ′)

′ , (27)

where Σ(r̂,ĥX ,ŝ,ĥY ) is a (((JX + 1) + (JX + 1))× ((KY + 1) + (KY + 1)))-matrix of the

estimated score probabilities r and s, and the bandwidth parameters hX and hY ; and
∂eY (x;r̂,ŝ,ĥ)
∂(r′,s′,h′) is a (JX × (JX +KY + 1 + 1))-matrix of derivatives of the equating function

êY (x; r̂, ŝ, ĥ) with respect to the estimated score probabilities r, s, and the two

bandwidth parameters, hX and hY .

Recall that the derivatives of eY (x) with respect to r, s are given in (17) and (18).

We, therefore, define the additional derivatives of eY (x) with respect to the bandwidths

hX and hY by
∂eY
∂hX

= 1
G′
∑
j

r̂j
∂Φ(RjX(x))

∂hX
, (28)

where
∂Φ(RjX(x))

∂hX
=
∑
j

r̂jφ(RjX(x))∂RjX(x)
∂hX

, (29)

and
∂eY
∂hY

= − 1
G′
∑
k

r̂k
∂Φ(RkY (y))

∂hY
, (30)

where
∂Φ(RkY (y))

∂hY
=
∑
k

r̂kφ(RkY (y))∂RkY (y)
∂hY

, (31)

and G′ is defined in (19), RjX(x), RkY (y)) - in (8).
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The second component in (27), the matrix Σ(r̂,ĥX ,ŝ,ĥY ), incorporates
∂ghX

(r)′

∂r

defined in (24), ∂ghY
(s)′

∂s
calculated analogously, and Σ(r̂,ŝ) given in (15) and is computed

as follows

Σ(r̂,ĥX ,ŝ,ĥY ) =
[
∂ghX

(r)′
∂r

,
∂ghY

(s)′
∂s

]
Σ(r̂,ŝ)

[
∂ghX

(r)′
∂r

,
∂ghY

(s)′
∂s

]′
, (32)

where
[
∂ghX

(r)′

∂r
,
∂ghY

(s)′

∂s

]
is a (((JX + 1) + (KY + 1))× (JX +KY )) zero identity matrix

with ones on the diagonal and ∂ghX
(r)′

∂r
placed in 1 in (JX + 1) and ∂ghY

(s)′

∂s
placed in 1 in

(KY + 1).

Lastly, considering (27) whose main diagonal elements are the corresponding

variances of the equating function, we can define the standard error of equating which

accounts for bandwidth variability as

SEEY (x) =
√
Var(êY (x; r̂, ŝ, ĥ)). (33)

Simulation Design

Adapting the example of 20-item dichotomously scored parallel tests given in von

Davier et al. (2004), data for two test forms X and Y were simulated using the 2

parameter logistic, 2PL, models within the framework of the item response theory, IRT

(de Ayala, 2009). The discrimination parameters for both test forms were selected from

the U(1, 2)-distribution and the difficulty parameters – from the N(0, 1)-distribution.

These distributions were considered to mimic realistic item parameters used in

standardized testing (National Center for Education Statistics, 2004).

The Equivalent-Groups design was used in which two independent random

samples of individuals are drawn from a single common population, and groups take

either of the test forms X and Y (von Davier et al., 2004). Dictated by the design, no

differences in the latent distributions were enforced between groups, and the ability

distributions followed N(0, 1). The Equivalent-Groups design was considered because of

its simplicity. Relative to other data collection designs, it provided an opportunity for

direct comparison of the results on the test forms X and Y without additional

considerations or assumptions.
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In order to systematically verify accuracy of the modified method of calculating

the standard error of equating as well as to explore how well it performs in a variety of

sample sizes ranging from small to relatively large, sample sizes 250, 1000, 4000, and

16000 were considered. The study was conducted using version 3.6.2 of R software

environment (R Core Team, 2019) primarily employing packages kequate (Andersson,

Bränberg, & Wiberg, 2013), mirt (Chalmers, 2012) and numDeriv (Gilbert &

Varadhan, 2019). All the analyses were based on 10000 replications.

The study followed the recommended kernel equating procedure (von Davier et

al., 2004), albeit with a few adjustments to verify the derivations presented in previous

subsections. For each generated data set per sample size, a number of steps were carried

out.

(1) Pre-smoothing. The package mirt (Chalmers, 2012) was used to pre-smooth

the irregularities of the raw data by estimating IRT 2 parameter logistic, 2PL, models

to obtain item parameter estimates. The expectation-maximization (EM) algorithm

was used for estimation.

(2) Estimation of score probabilities. Under the Equivalent-Groups design, the

score probabilities r̂j and ŝk were estimated based on the item parameter estimates and

the assumed distribution of the latent variable (von Davier et al., 2004).

(3) Continuous approximation. Using the package kequate (Andersson et al.,

2013) continuous approximations to the discrete distributions were obtained by

applying a Gaussian kernel with an optimal bandwidth parameter (previous studies

suggest different kernels provide similar equating results; Lee & von Davier, 2008).

Optimal bandwidth parameters ĥX and ĥY were obtained by minimizing the first part

of the penalty function, PEN1 (von Davier et al., 2004). When optimizing the penalty

function, default tolerance of 1.50e-08 was used.

The analytical derivations for the bandwidth parameter estimator variance were

paramount to the study. Hence, upon obtaining the optimal bandwidths, the average

variance and standard errors of the bandwidth parameters were computed following the

equations introduced in this section, and their accuracy was assessed using Monte Carlo
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standard error as a criterion. When calculating the asymptotic variance of the

bandwidth parameter estimator, the bandwidth parameters hX and hY were replaced

with the estimated parameters ĥX and ĥY , and the asymptotic covariance matrices of

the estimated score probabilities Σr̂ and Σŝ were extracted from the kequate package

output (Andersson et al., 2013).

(4) Equating. Upon obtaining continuous cumulative distribution functions, an

equipercentile equating function was applied to equate the test forms X and Y .

(5) Calculating of the standard error of equating. The average analytical

standard errors of equating were computed using the existing method for the standard

error of equating calculation not accounting for the bandwidth variability (Holland et

al., 1989), and the modified method of the standard error of equating calculation

accounting for the bandwidth variability (refer to the previous subsection). The Monte

Carlo standard errors (MCSE) were used as a criterion for comparing the accuracy of

the modified and the existing methods of the standard error of equating calculation.

The analytical derivations used in computing the bandwidth variance and

standard errors, as well as the standard error of equating, were verified numerically

using the R package numDeriv (Gilbert & Varadhan, 2019). The R syntax code is

available for review in the supplementary material (Appendix II).

Results

The study largely depended on the accuracy of the asymptotic variance and

standard error of the bandwidth parameter estimator derivations presented in the

Method section and Appendix III. The results of the simulation for the standard errors

of the bandwidth parameter estimators hX and hY given in Table 1 confirmed that the

derivations were correct, and the asymptotic standard errors of the bandwidth

parameter estimator (ASE) were accurate as witnessed by comparison to the Monte

Carlo standard error estimates (MCSE). As can be expected for asymptotic variance

approximation (Ferguson, 1996), the differences between the asymptotic standard errors

and the Monte Carlo standard errors were lager in smaller sample sizes.
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Table 1

ASE and MCSE for the bandwidth parameters hX and hY

N
hX parameter hY parameter

ASE MCSE ASE MCSE

250 0.0099 0.0097 (0.0000) 0.0139 0.0136 (0.0000)

1000 0.0052 0.0052 (0.0000) 0.0076 0.0077 (0.0000)

4000 0.0026 0.0026 (0.0000) 0.0039 0.0040 (0.0000)

16000 0.0013 0.0013 (0.0000) 0.0020 0.0020 (0.0000)

Note. N = sample size; ASE = asymptotic standard error; MCSE = Monte Carlo standard

error.

Subsequently incorporating the bandwidth selection variability into computing the

modified standard errors of equating, Table 2 and Table 3 present the standard errors of

equating calculated using the modified method introduced in this paper, the existing

method (Holland et al., 1989), and the Monte Carlo simulation estimates. Additionally,

the standard errors of the Monte Carlo standard error estimates are provided in

parenthesis of Tables 1, 2 and 3, and given a large number of replications those are

sufficiently low.

When compared to the Monte Carlo standard error estimates, the modified

asymptotic standard errors of equating which take bandwidth variability into account

(ASEEmod) were fairly accurate for all sample sizes. Furthermore, the modified

asymptotic standard errors of equating in most cases appeared to be nearly identical to

those not accounting for bandwidth variability (ASEE), suggesting that the bandwidth

selection influence on the standard errors of equating was tenuous.

Supporting the previous finding were estimates of absolute aggregate differences

between the standard errors of equating for two pairs, ASEE - MCSE and ASEEmod -

MCSE. With the smallest sample size (N = 250), the differences were 0.0054 and 0.0056

for pairs ASEE - MCSE and ASEEmod - MCSE, respectively. The differences subsided
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Table 2

ASEE, modified ASEE accounting for bandwidth variability, and MCSE

N = 250 N = 1000

Score ASEEmod ASEE MCSE ASEEmod ASEE MCSE

0 0.408 0.412 0.422 (0.004) 0.208 0.210 0.212 (0.002)

1 0.537 0.540 0.548 (0.005) 0.274 0.275 0.277 (0.003)

2 0.593 0.595 0.600 (0.006) 0.300 0.301 0.302 (0.003)

3 0.601 0.601 0.605 (0.006) 0.302 0.302 0.303 (0.003)

4 0.582 0.581 0.584 (0.006) 0.292 0.291 0.291 (0.003)

5 0.554 0.550 0.553 (0.005) 0.277 0.275 0.275 (0.003)

6 0.525 0.519 0.522 (0.005) 0.263 0.259 0.260 (0.003)

7 0.501 0.492 0.495 (0.005) 0.251 0.246 0.247 (0.002)

8 0.481 0.471 0.474 (0.005) 0.241 0.235 0.236 (0.002)

9 0.466 0.455 0.459 (0.004) 0.233 0.227 0.228 (0.002)

10 0.455 0.444 0.448 (0.004) 0.228 0.222 0.223 (0.002)

11 0.448 0.437 0.442 (0.004) 0.224 0.219 0.219 (0.002)

12 0.443 0.433 0.439 (0.004) 0.221 0.216 0.217 (0.002)

13 0.441 0.432 0.438 (0.004) 0.220 0.216 0.216 (0.002)

14 0.439 0.432 0.439 (0.004) 0.220 0.216 0.217 (0.002)

15 0.436 0.431 0.438 (0.004) 0.219 0.216 0.217 (0.002)

16 0.428 0.425 0.433 (0.004) 0.215 0.213 0.214 (0.002)

17 0.410 0.408 0.416 (0.004) 0.206 0.206 0.206 (0.002)

18 0.375 0.375 0.383 (0.004) 0.189 0.189 0.190 (0.002)

19 0.320 0.322 0.328 (0.003) 0.161 0.162 0.162 (0.002)

20 0.244 0.248 0.250 (0.002) 0.124 0.126 0.125 (0.001)

Note. N = sample size; ASEEmod = modified asymptotic standard error of equating

accounting for bandwidth variability; ASEE = asymptotic standard error of equating; MCSE

= Monte Carlo standard error.
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Table 3

ASEE, modified ASEE accounting for bandwidth variability, and MCSE

N = 4000 N = 16000

Score ASEEmod ASEE MCSE ASEEmod ASEE MCSE

0 0.105 0.105 0.104 (0.001) 0.052 0.053 0.051 (0.000)

1 0.138 0.138 0.137 (0.001) 0.069 0.069 0.068 (0.001)

2 0.150 0.149 0.149 (0.001) 0.075 0.075 0.074 (0.001)

3 0.151 0.150 0.149 (0.001) 0.076 0.075 0.075 (0.001)

4 0.146 0.144 0.144 (0.001) 0.073 0.073 0.072 (0.001)

5 0.139 0.137 0.136 (0.001) 0.069 0.069 0.068 (0.001)

6 0.132 0.129 0.128 (0.001) 0.066 0.065 0.064 (0.001)

7 0.126 0.122 0.122 (0.001) 0.063 0.061 0.061 (0.001)

8 0.120 0.117 0.116 (0.001) 0.060 0.059 0.058 (0.000)

9 0.117 0.113 0.113 (0.001) 0.058 0.057 0.056 (0.000)

10 0.114 0.111 0.110 (0.001) 0.057 0.056 0.055 (0.000)

11 0.112 0.109 0.109 (0.001) 0.056 0.055 0.054 (0.000)

12 0.111 0.108 0.107 (0.001) 0.055 0.054 0.054 (0.000)

13 0.111 0.108 0.107 (0.001) 0.055 0.054 0.054 (0.000)

14 0.111 0.108 0.108 (0.001) 0.055 0.054 0.054 (0.000)

15 0.109 0.108 0.108 (0.001) 0.055 0.054 0.054 (0.000)

16 0.108 0.107 0.106 (0.001) 0.054 0.053 0.053 (0.000)

17 0.103 0.103 0.102 (0.001) 0.052 0.051 0.052 (0.000)

18 0.095 0.094 0.094 (0.001) 0.047 0.047 0.047 (0.000)

19 0.081 0.080 0.080 (0.001) 0.040 0.041 0.041 (0.000)

20 0.063 0.062 0.061 (0.001) 0.031 0.032 0.031 (0.000)

Note. N = sample size; ASEEmod = modified asymptotic standard error of equating

accounting for bandwidth variability; ASEE = asymptotic standard error of equating; MCSE

= Monte Carlo standard error.
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as the sample size grew with ASEE - MCSE = 0.0008 and ASEEmod - MCSE = 0.0028,

and ASEE - MCSE = 0.0006 and ASEEmod - MCSE = 0.0017 for sample sizes 1000 and

4000, respectively. Lastly, the differences for the largest sample size (N = 16000) were

notably lower with ASEE - MCSE = 0.0004 and ASEEmod - MCSE = 0.0009.

Discussion

As a special case of the equipercentile observed-score equating, the kernel method

of equating relies on the equipercentile equating function in which number-correct

scores are transformed into percentile rank scores from test form X to the scale of test

form Y , and the scores from the two test forms with the same percentile rank are

considered to be equivalent (von Davier et al., 2004). However, in order to obtain those

equivalent scores, the continuous approximation to the discrete score distributions is

necessary. To satisfy this requirement kernel equating uses a Gaussian kernel with a

smoothing parameter, a bandwidth. The selected bandwidth then determines the

characteristics of the continuous approximations of the raw discrete distributions (von

Davier et al., 2004).

The most commonly used in practice method for bandwidth selection is

minimizing a penalty function with respect to the bandwidth parameter (von Davier et

al., 2004). The bandwidth, in turn, is influenced by the estimated score probabilities

and therefore is subject to variability. This variability, however, is not currently

accounted for when calculating the standard error of equating (Holland et al., 1989),

challenging its accuracy and, ultimately, the fairness of the equated results.

The present study explored the issue of the additional variability stemming from

the bandwidth selection and its impact on the standard error of equating. Building on

the existing methodology of Holland et al. (1989) and von Davier et al. (2004), we

derived the asymptotic variance of the bandwidth parameter estimator using the delta

method for implicit functions (Benichou & Gail, 1989) and incorporated those

derivations to expand the existing formulas for calculating the standard errors of

equating (Holland et al., 1989), therefore introducing a modified method which
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accounted for bandwidth selection variability. A simulation study with eight data sets

generated for a wide range of sample sizes was used to illustrate the results of the

modified method as compared to the current method of the standard error of equating

calculation (Holland et al., 1989) and the Monte Carlo standard error.

The results offered several observations which could be valuable to the testing

industry. Firstly, the modified method for the standard error of equating calculation

was fairly accurate and close to the Monte Carlo standard error estimates for all sample

sizes, including relatively low ones (i.e., N = 250), suggesting that the method is, in

fact, suitable for practical use. Secondly, using the Monte Carlo standard error as a

criterion, the results of the study indicate that overall the existing (Holland et al., 1989)

and the modified methods for the standard error of equating calculation produced

similar results at times favouring the existing method, suggesting that the bandwidth

selection impact on the standard error of equating was minimal.

It is important to note that in this study, we derived the modified asymptotic

standard error of equating for two parallel test forms of 20 items in the setting of the

Equivalent-Groups data collection design. It can be the case that the bandwidth

selection influence on the standard error of equating is greater for other data collection

and equating designs, as well as for tests with a larger or smaller number of items. It

would, therefore, be beneficial for future theoretical and empirical studies to focus on

determining the bandwidth selection impact on the standard error of equating in those

additional equating scenarios.

As a final note, we believe that it is theoretically more sound to use a method

which successfully accounts for all sources of variability, however negligible those may

be. Introducing the modifications to the formulas for the standard error of equating

calculation akin to those explored in this study can improve the accuracy of the

standard errors of equating, and consequently, facilitate fairness and comparability of

the equated results.
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Appendix I

GDPR Documentation

The present study did not require obtaining any GDPR (General Data Protection

Regulation) documentation as no personal data were collected or processed. Therefore,

we present a mock NSD (Norwegian Centre for Research Data) application form.

NOTIFICATION FORM (ENGLISH TRANSLATION) – NSD

• Personal data

• Types of data

• Project information

• Responsibility for data processing

• Sample and criteria

• Third persons

• Documentation

• Other approvals

• Processing

• Information security

• Duration of project

• Additional information

Personal data

Which personal data will be processed?

N/A. No personal data will be collected or processed.

Personal data are any data about an identified or identifiable natural person (data

subject). Pseudonymized data are also considered personal data. “Pseudonymization”

means processing collected data in way that the data can no longer be linked to



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 27

individual persons, without the use of additional information. This usually involves

removing identifiable information such as name, national ID number, contact details

etc. from the collected data and giving each data subject a code/number. A scrambling

key is the file/list of names and codes that makes it possible to identify individuals in

the collected data. The scrambling key should be stored separately form the rest of the

data. NB: processing pseudonymized data is still considered processing personal data,

even if you do not have access to the scrambling key, and even if the scrambling key is

being stored by an external party, such as SSB, the National registry etc.

Types of data

Name. First name and surname. N/A

National ID number or other personal identification number 11-digit personal

identifier, D number, or other national identification number. N/A

Date of birth. N/A

Address or telephone number. N/A

Email address, IP address or other online identifiers. An email address is a unique

address that is assigned to the user of an electronic mail service. An IP address is a

unique address that is assigned to a device (e.g. a computer) in a computer network like

the Internet. Dynamic IP addresses may also be considered personal data in certain

cases. Cookies are an example of an online identifier. NB! If you are going use an online

survey, and the service provider (data processor) will have access to email addresses or

IP addresses, you must indicate this here. N/A

Photographs or video recordings of persons. Photographs and video recordings of

faces are usually considered to be personal data. N/A

Audio recordings of persons. Audio recordings where personal data are recorded

and/or where there exists a scrambling key that links the audio recordings to individual

persons on the recordings. The voice of the person speaking may be considered personal

data in combination with other background information. N/A

GPS data or other geolocation data. Data which indicate the geographical

location of a person. N/A
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Demographic data that can identify a natural person. E.g. a combination of

information such as municipality of residence, workplace, position, age, gender etc. N/A

Genetic data. Personal data relating to the inherited or acquired genetic

characteristics of a natural person, which give unique information about the physiology

or health of that person. N/A

Biometric data. E.g. fingerprint, handprint, facial form, retina and iris scan, voice

recognition, DNA. N/A

Other data that can identify a natural person. N/A

Will special categories of personal data or personal data relating to criminal

convictions and offences be processed? N/A

Racial or ethnic origin. This includes belonging to an ethnic group, population,

cultural sphere or society that has common characteristics. For example, information

that a person is Sami is not considered to say anything about race, but it says

something about ethnicity. N/A

Political opinions. That a person is a member of a political party and/or what a

person voted in an election, including political opinions and beliefs. However, this does

not include information that a person is a conservative, radical or labor party

supporter. N/A

Religious beliefs. That a person is a member of a religious

organization/congregation. This does not include information that a person has a

subscription to a religious newspaper. N/A

Philosophical beliefs. That a person is a member of a philosophical association, or

that a person believes that knowledge is acquired through logical speculation and

observation. N/A

Trade Union Membership. That a person is a member of a trade union that

organizes employees within the same industry/subject area, e.g. LO, NTL, NAR etc.

N/A

Health data. Personal data concerning a natural person’s physical or mental

health, including use of healthcare services. N/A
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Sex life or sexual orientation. A person’s sexual orientation (homosexual, lesbian,

bisexual etc.) and/or sexual behavior (e.g. that a personal has been unfaithful, indecent

exposure, offensive gestures/language) N/A

Criminal convictions and offences. Personal data concerning convictions and

offences or related to security measures. N/A

Project Information

Title

Accounting for Bandwidth Selection Variability in Estimating Standard Errors of

Kernel Equating

Project description

Give a description of the project’s scientific purpose/research question

The objective of this project is to introduce a modified method of calculating the

standard error of equating, which accounts for the additional variability introduced by

the bandwidth selection, and compare it to the current method of calculating the

standard error of equating, and the Monte Carlo standard error across several sample

sizes.

We formulate our research questions as follows:

1. How do the current and modified methods of calculating the standard error of

equating compare with respect to the accuracy of the standard error of equating?

2. Comparing between the two methods, what is the effect of the sample size with

respect to the accuracy of the standard error of equating?

The project focuses on analytical derivations which are verified using a simulation

study with artificially generated data.

Subject area

• Social sciences

• Statistics

• Educational Measurement
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Will the collected personal data be used for other purposes, in addition to the

purpose of this project? N/A

Personal data should only be processed for specified, explicit and legitimate

purposes. This means that each purpose for processing personal data must be identified

and described clearly and accurately. In order for a purpose to be considered legitimate,

it must also be in accordance with ethical and legal norms.

Explain why it is necessary to process personal data. N/A

Explain why the personal data are adequate, relevant and limited to what is

necessary for the purposes for which they are being processed. This includes limiting

the amount of collected data to that which is necessary to realize the purposes of data

collection. N/A

External funding

• The Research Council of Norway (Norges forskningsråd - NFR) N/A

• Public authorities. E.g. research commissioned by a ministry N/A

• Other. E.g. funding from a pharmaceutical company or from private actors N/A

Type of project

• Research Project and PhD thesis

• Student project, Master’s thesis

• Student project, Bachelor’s thesis

• Other student projects

Responsibility for data processing

Neither the student nor the supervisor will handle personal data.

Data controller N/A

The institution responsible for the processing of personal data. The data

controller determines the purposes for which, and the manner in which, personal data

are processed.
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Project leader (research assistant/ supervisor or research fellow/ PhD candidate)

Kseniia Marcq - Master Student, UiO

Björn Andersson – supervisor, Associate Professor, CEMO, UiO,

bjorn.andersson@cemo.uio.no

Will the responsibility for processing personal data be shared with other

institutions (joint data controllers)? N/A

If two or more institutions together decide the purposes for which personal data

are processed, they are joint data controllers.

Joint data controllers N/A

Institution

Institution not found in the list

Institution

Country

Postal address

Email address

Telephone number

Sample and criteria

Whose personal data will be processed?

You must describe each group of people whose personal data you will be

processing. Add and describe each sample individually. N/A. No personal data will be

collected or processed.

Sample 1 Describe the sample N/A

Recruitment or selection of the sample N/A

Describe how the sample will be recruited and how initial contact with the sample

will be made. For example, whether you will make initial contact during fieldwork or

via your own network, or whether a school, hospital or organization will contact its

pupils, patients or members on your behalf. If the sample will not be recruited but will

be selected from a registry or an administrative system etc., describe how the selection

will be carried out and what the selection criteria will be.



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 32

Age N/A

Will you include adults (18 y.o. +) who do not have the capacity to consent?

i.e. the person has reduced capacity or lacks capacity to consent. For example, the

person may have mental/cognitive impairment, significant physical/emotional ailments,

or may be unconscious, conditions which make it difficult or impossible for the person

to gain sufficient understanding in order to give valid consent. The central aspect is

whether the person is capable of understanding the purpose of the processing/project in

question, and of understanding potential positive and negative consequences (immediate

and long-term).

Types of personal data - sample 1 N/A

Name N/A

National ID number or other personal identification number N/A

Date of birth N/A

Address or telephone number N/A

Email address, IP address or other online identifier N/A

Photographs or video recordings of persons N/A

Audio recordings of persons N/A

GPS data or other geolocation data N/A

Demographic data that can identify a natural person N/A

Genetic data N/A

Biometric data N/A

Other data that can identify a natural person N/A

Methods /data sources - sample 1. N/A

Select and/or describe the method(s) for collecting personal data and/or the

source(s) of data N/A

Personal interview N/A

Group interview Online survey Paper-based survey N/A

Participant observation - Non-participant observation N/A

Field experiment / field intervention N/A
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Web-based experiment N/A

Tests for pedagogical research / psychological tests N/A

Medical examination and/or physical tests N/A

Human biological material N/A

Social media – open forum N/A

Social media – closed forum N/A

Discussion board/forum for online newspapers/online debates N/A

Big data N/A

Medical records N/A

Biobank N/A

Data from another research project N/A

Other N/A

Statistics Norway - SSB N/A

Criminal records (Det sentrale straffe- og politiopplysningsregisteret, SSP) N/A

Medical Birth Registry of Norway (Medisinsk fødselsregister, MFR) N/A

Norwegian Registry of Pregnancy Termination (Register over

svangerskapsavbrudd) N/A

Norwegian Cardiovascular Disease Registry (Hjerte- og karregisteret) N/A

Norwegian Cause of Death Registry (Dødsarsaksregisteret, DÅR) N/A

Norwegian Prescription Database - NorPD (Reseptregisteret) N/A

Norwegian Immunisation Registry (Nasjonalt vaksinasjonsregister, SYSVAK)

Norwegian Surveillance System for Communicable Diseases (Meldesystem for

smittsomme sykdommer, MSIS) N/A

Norwegian Surveillance System for use of antibiotics and healthcare related

infections (Norsk overvåkingssystem for antibiotikabruk og helsetjenesteassosierte

infeksjoner, NOIS) N/A

Norwegian Surveillance System for Antimicrobial Drug Resistance (Norsk

overvåkingssystem for antibiotikaresistens hos mikrober, NORM) Norwegian

Surveillance System for Virus Resistance (Norwegian Surveillance System for Virus
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Resistance, RAVN) N/A Norwegian Patient Registry (Norsk pasientregister, NPR)

IPLOS-registeret Kommunalt pasient- og brukerregister (KPR) N/A Cancer registry of

Norway (Kreftregisteret) N/A

Genetic Mass Survey of Newborns (Genetisk masseundersøkelse av nyfødte) N/A

Reseptformidleren N/A

Forsvarets helseregister N/A

Helsearkivregisteret N/A

Helseundersøkelsen i Nord Trøndelag (HUNT) N/A

Tromsø-undersøkelsen N/A

SAMINOR N/A

Den norske mor og barn undersøkelsen (MoBa) N/A

Nasjonalt register for langtids mekanisk ventilasjon N/A

Nasjonalt kvalitetsregister for barnekreft N/A

Norsk Kvalitetsregister Øre-Nese-Hals –Tonsilleregisteret N/A

Norsk vaskulittregister & biobank (NorVas) N/A

Norsk Parkinsonregister & biobank N/A

Norsk karkirurgisk register (NORKAR) N/A

Norsk hjertinfarkregister N/A

Gastronet N/A

Norsk register for analinkontinens N/A

Nasjonalt barnehofteregister N/A

Norsk kvalitetsregister for artrittsykdommer (NorArtritt) N/A

Norsk nakke- og ryggregister N/A

Nasjonalt korsbåndregister N/A

Nasjonalt register for leddproteser N/A

NorKog N/A

Norsk MS-register og biobank N/A

Nasjonalt register for KOLS N/A

Nasjonalt kvalitetsregister for lymfom og lymfoide leukemier N/A
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Nasjonalt kvalitetsregister for lungekreft N/A

Nasjonalt kvalitetsregister for føflekkreft N/A

Nasjonalt kvalitetsregister for brystkreft N/A

Nasjonalt kvalitetsregister for prostatakreft N/A

Nasjonalt kvalitetsregister for tykk- og endetarmskreft N/A

Nasjonalt register for ablasjonsbehandling og elektrofysiologi i Norge (ABLA

NOR) N/A

Norsk register for invasiv kardiologi (NORIC) N/A

Norsk hjertesviktregister N/A

Norsk pacemaker- og ICD- register N/A

Nasjonalt kvalitetsregister for gynekologisk kreft N/A

Norsk register for gastrokirurgi (NoRGast) N/A

Nasjonalt kvalitetsregister for behandling av spiseforstyrrelser (NorSpis) N/A

Information - sample 1

Will you inform the sample about processing their personal data? N/A

How? N/A

Written information (on paper or electronically)

Oral information

See what you must give inform about and preferably use our template for the

information letter.

Information should be given in writing or electronically. Only in special cases is it

applicable to give oral information, if a participant asks for this. See what you must

give information about.

Upload information letter N/A

Upload copy of oral information N/A

Explain why the sample will not be informed about the processing of their

personal data. N/A. No personal data will be collected or processed. + Add sample

Third persons

Will you be processing personal data about third persons? This includes data
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about persons who are not included in the sample/are not participating in the project;

information provided by a data subject that relates to another identified or identifiable

natural person. Examples of this are when a data subject is asked about their mother’s

and father’s education or country of origin, or when pupils are asked about their

teacher’s teaching methods. N/A. No personal data will be collected or processed.

Describe the third persons N/A

Types of personal data about third persons N/A

Name N/A

National ID number or other personal identification number N/A

Date of birth N/A

Address or telephone number N/A

Email address, IP address or other online identifiers N/A

Photographs or video recordings of persons N/A

Demographic data that can identify a natural person N/A

Genetic data N/A

Biometric data N/A

Other data that can identify a natural person N/A

Which sample will provide information about third persons? N/A

Will third persons consent to the processing of their personal data? N/A

Will third persons receive information about the processing of their personal

data? N/A

Explain why third persons will not be informed. N/A

Documentation

Total number of data subjects in the project (Data subjects: persons whose

personal data you will be processing)

• N/A

• 1-99

• 100-999
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• 1000-4999

• 5000-9999

• 10.000-49.999

• 50.000-100.000

• 100.000+

How can data subjects get access to their personal data or how they can have

their personal data corrected or deleted? N/A

Rights of data subjects (participants) include the right to access one’s own

personal data and to receive a copy of one’s data if asked for. A data subject can

request that their personal data are corrected if they feel that the information is wrong

or lacking, and the data subject can withdraw consent and request that their personal

data are deleted. Give a short description of the procedure for how a data subject can

get access to their personal data, and how they can have their personal data corrected

or deleted.

Other approvals

Will you obtain any of the following approvals or permits for the project? N/A

Indicate if you will obtain any of the following approvals or permits in order carry

out the project.

No approvals or permits are required as no personal data will be collected or used.

• Ethical approval from The Regional Committees for Medical and Health Research

Ethics (REC).

• Confidentiality permit (exemption from the duty of confidentiality) from the

Regional Committees for Medical and Health Research Ethics (REC)

• Approval from own management for internal quality-assurance and evaluation of

health services (intern kvalitetssikring) (The Health Personnel Act § 26)



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 38

• Confidentiality permit (exemption from the duty of confidentiality) from the

Norwegian Directorate of Health, for quality-assurance and evaluation of health

services (kvalitetssikring) (The Health Personnel Act § 29b)

• Biobank

• Confidentiality permit (exemption from the duty of confidentiality) from Statistics

Norway (SSB). Statistics Norway has the authority to grant a confidentiality

permit for the data that they manage, e.g. data about population, education,

employment and social security.

• Approval from The Norwegian Medicines Agency (Statens legemiddelverk, SLV).

E.g. for a clinical drugs trial

• Confidentiality permit (exemption from the duty of confidentiality) from a

department or directorate

• Other approval. E.g. from a Data Protection Officer

Processing

Where will the personal data be processed? In the framework of this project, data

will be simulated, meaning no personal data will be collected, used, stored or processed.

“Processing” includes any collecting, registering, storing, collating, transferring

etc. of data. You must indicate all processing of personal data that will take place in

the project.

• Computer belonging to the institution responsible for the project N/A

• Computer owned/operated by the data controller. For example, processing data

in a private or communal user area on the institution’s server. N/A

• Mobile device belonging to the data controller. Mobile device owned/operated by

the data controller. A mobile device can be a laptop, camera, mobile phone etc.

N/A



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 39

• Physically isolated computer belonging to the data controller. Not connected to

other computers or to a network, neither internally nor externally. N/A

• External service or network. Such as providers of cloud storage, online surveys or

data storage (such as TSD). Use of an external service or server requires that a

data processor agreement is made between the data controller and the external

party. N/A

• Private device. Data collection or storage on private devices such as your own

computer or mobile phone etc. is not recommended and must be clarified with the

institution responsible for the project. N/A

Who will be processing/have access to the collected personal data? N/A

• Project leader N/A

• Student (student project) N/A

• Internal co-workers. Employees of the data controller. N/A

• External co-workers/collaborators inside the EU/EEA. Employees of other

institutions that have formalized cooperation with the data controller, or

employees of other institutions that are joint data controllers. N/A

• Data processor. An external person or entity that processes personal data on

behalf of the data controller, such as an online survey provider, cloud storage

provider, translator or transcriber. There must be a data processor agreement or

other legal agreement between the data controller and the external party. N/A

• Others with access to the personal data. N/A

Which others will have access to the collected personal data? N/A

Will the collected personal data be made available to a third party or

international organisation outside the EEA? This includes when personal data are sent

to and stored in a country outside the EEA, or when persons outside this area are given
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access to personal data stored within the EEA. This means that you cannot use a

service provider or outsourced supplier outside the EEA, unless there is a valid basis for

the transfer of personal data. Yes No N/A

Give the name of the institution/organisation N/A Give the country of the

institution/organisation N/A On what basis will the collected personal data be

transferred? N/A

Personal data can be transferred on the basis of an adequate level of protection

(art. 45) or on the basis of appropriate safeguards (art. 46). Personal data can also be

transferred on the basis of the exception for special situations, but only if the transfer is

not repeated, concerns only a limited number of data subjects, is necessary for the

purposes of compelling legitimate interests pursued by the data controller (which are

not overridden by the interests or rights and freedoms of the data subject), and if the

data controller has assessed all the circumstances surrounding the data transfer and has

provided suitable safeguards with regard to the protection of personal data (art. 49).

Information Security

No personal data will be used in the project. Therefore, identification and/or

security issues are irrelevant for this project.

Will directly identifiable personal data be stored separately from the rest of the

collected data (in a scrambling key)?

It is common practice to remove directly identifiable data (name, national ID

number, contact details etc.) from the collected data and give each data subject a

code/number. A scrambling key is the file/list of names and codes that makes it

possible to directly identify data subjects in the collected data. It should be stored

separately from the rest of the collected data. In practice, this means that the

scrambling key cannot be stored in the same network as the rest of the data, unless the

scrambling key is encrypted. Yes No N/A

Explain why directly identifiable personal data will be stored together with the

rest of the collected data. N/A

For reasons of information security we recommend the use of a scrambling key in
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most projects, especially in projects where special categories of personal data

(previously “sensitive” personal data) or personal data relating to criminal convictions

and offences will be processed.

Which technical and practical measures will be used to secure the personal data?

• Personal data will be anonymized as soon as no longer needed. N/A

Anonymization involves processing the data in such a way that no individual

persons can be identified in the data that you’re left with, i.e. the data can no

longer be linked to individual persons in any way.

Anonymization usually involves: *deleting directly identifiable personal data

(including scrambling key/list of names) *deleting or rewriting indirectly

identifiable personal data (e.g. deleting or categorizing variables such as age, place

of residence, school etc.) *deleting or editing audio recordings, photographs and

video recordings.

• Personal data will be transferred in encrypted form. N/A

Encryption is a mathematical method for ensuring confidentiality in that

information cannot be read by unauthorized persons. For example, using an

encrypted VPN tunnel or equivalent measure for external login to work-place

network.

• Personal data will be stored in encrypted form. N/A

Encryption is a mathematical method for ensuring confidentiality in that

information cannot be read by unauthorized persons. For example, the encryption

of a hard drive to ensure the confidentiality of data when the computer is turned

off.

• Record of changes. N/A

Changes in the collected data are recorded/documented with the time of the

change and information about the person who made that change.
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• Multi-factor authentication. N/A

A method of access control where a user is granted access after presenting two or

more separate pieces of evidence to prove their identity (e.g. password + code

sent by text message)

• Restricted access. N/A

Blocking or restricting access to the collected data for unauthorized persons

• Access log. N/A

An access log shows who has accessed the collected data and when

• Other security measures. N/A

For example, locking away documents, automatic screen lock after a short time for

mobile devices, partitioning of hard drive, checksum/integrity check etc.

Duration of project

Project period

Will personal data be stored beyond the end of project period? Personal data

should not be further processed a way that is inconsistent with the initial purpose(s) for

which the data were collected. Anonymous/anonymized data may be stored indefinitely,

so long as nothing else has been agreed to by the data subjects.

• No, all collected data will be deleted

• No, the collected data will be stored in anonymous form. Stored in a form where

the data can no longer be linked to individual persons in any way

• Yes, collected personal data will be stored until

• Yes, collected personal data will be stored indefinitely.

• Other No personal data will be processed. Questions of storing personal sensitive

data are irrelevant for this project.

For what purpose(s) will the collected personal data be stored?



BANDWIDTH VARIABILITY WHEN CALCULATING SEE IN KE 43

• Research

• Other No personal data will be processed. Questions of storing personal sensitive

data are irrelevant for this project.

Where will the collected personal data be stored?

• At the institution responsible for the project (data controller)

• Other No personal data will be processed. Questions of storing personal sensitive

data are irrelevant for this project.

Additional information

Will the data subjects be identifiable (directly or indirectly) in the

thesis/publications for the project? If personal data are to be published, there should be

a scientific purpose for this. Data is usually published in anonymous form. Yes No N/A

Explain why N/A

Additional information N/A

Here you can provide information that may have significance for our assessment of

the project, including more detailed information about points covered in the form and

information that is not covered by points in the form.

Other attachments N/A e.g. interview guide, questionnaire, information letter and

consent form etc.
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Appendix II

Data Management and Analysis Code

The documented syntax code for the simulation study is presented to allow for

reproducibility of the findings. The study was conducted using version 3.6.2 of R

software environment (R Core Team, 2019). The analyses were carried out for sample

sizes 250, 1000, 4000, 16000, and were based on 10000 replications.

1 # load required packages

2 library ( kequate )

3 library (mirt)

4 library ( numDeriv )

5 library ( matrixStats )

6 # FUNCTIONS

7 # data - generating function

8 irtresponse3pl <- function (alpha , delta , chi , theta){

9 J <- length (alpha)

10 N <- length (theta)

11 res <- matrix (0, nrow = N, ncol = J)

12 for(j in 1:J){

13 res[, j] <- runif(N) < (chi[j] + (1 - chi[j]) /

14 (1 + exp(-alpha[j] * (theta - delta[j])))

)

15 }

16 return (res)

17 }

18 # PEN1 function ; in text - (10)

19 # adapted from kequate package ( Andersson et al., 2013)

20 PEN1 <- function (h, r, xx , var , mean){

21 xx <- as. vector (xx)

22 h <- as. vector (h)

23 f <- numeric ( length (xx))

24 mean <- as. vector (mean)
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25 a <- as. vector (sqrt(var /( var+h^2)))

26 for(j in 1: length (xx)){

27 ff <- 0

28 ff <- sum(r * dnorm ((xx[j]-a*xx -(1-a)*mean)/(a*h)) / (a*h))

29 f[j] <- ff

30 }

31 pen1 <- sum ((r-f)^2)

32 return (pen1)

33 }

34 # second partial derivative of PEN1 with respect to h;

35 # in text - (40) -(45)

36 d2PEN1dh2 . function <- function (h, r, xx , mean , var){

37 f <- numeric ( length (xx))

38 mean <- as. vector (mean)

39 dfdh <- numeric ( length (xx))

40 d2fdh2 <- numeric ( length (xx))

41 a <- as. vector (sqrt(var /( var+h^2)))

42 dadh <- -(h*( sqrt(var)))/((h^2 + var) ^(3/2) )

43 d1divahdh <- -a^( -2)*dadh *(1/h)- (1/h^2) *(1/a)

44 d2adh2 <- -sqrt(var) *((1/( h^2 + var) ^(3/2) ) - ((3*h^2) /(h^2 + var)

^(5/2) ))

45 d21divahdh2 <- 1/(h*a^2) *(2/a*dadh ^2 - d2adh2 + dadh* 1/h) +

46 + (dadh *(1/(a^2*h^2)) + 2/(a*h^3))

47 for (j in 1: length (xx)){

48 Rx <- (xx[j]-a*xx -(1-a)*mean)/(a*h)

49 dRdh <- ((mean -xx)*dadh)*(1/(a*h)) + (xx[j] - a*xx - (1-a)*mean)*

d1divahdh

50 d2Rdh2 <- (mean -xx)*( d2adh2 *(1/(a*h)) + dadh* d1divahdh ) + (( mean -

xx)*dadh* d1divahdh + (xx[j]-a*xx -(1-a)*mean)* d21divahdh2 )

51 dphiRxdh <- -dnorm(Rx)*dRdh*Rx

52 d2phiRxdh2 <- -dphiRxdh *dRdh*Rx -dnorm(Rx)* d2Rdh2 *Rx -dnorm(Rx)*dRdh

^2
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53 ff <-0

54 ff <- sum(r*dnorm(Rx)/(a*h))

55 f[j] <- ff

56 df <- 0

57 df <- sum(r*( dnorm(Rx)* d1divahdh + dphiRxdh *(1/(a*h))))

58 dfdh[j] <- df

59 d2f <- 0

60 d2f <- sum(r*(( d2phiRxdh2 *1/(a*h) + dphiRxdh * d1divahdh ) + ( dphiRxdh

* d1divahdh + dnorm(Rx)* d21divahdh2 )))

61 d2fdh2 [j] <- d2f

62 }

63 d2PEN1dh2 <- -2* sum( d2fdh2 *(r-f) -(dfdh ^2))

64 return ( d2PEN1dh2 )

65 }

66 # second partial derivative of PEN1 with respect to r_i;

67 # in text - (46) -(57)

68 d2PEN1dhdr . function <- function (h, r, xx){

69 mean <- sum(r * xx)

70 var <- sum(r * (xx - mean)^2)

71 xx <- as. vector (xx)

72 a <- as. vector (sqrt(var /( var+h^2)))

73 dadh <- -(h*( sqrt(var)))/((h^2 + var) ^(3/2) )

74 d1divahdh <- -a^( -2)*dadh *(1/h) -(1/h^2) *(1/a)

75 f <- numeric ( length (xx))

76 dfdh <- numeric ( length (xx))

77 dfdr <- matrix (0, length (xx), ncol = length (r))

78 d2fdhdr <- matrix (0, length (xx), ncol = length (r))

79 d2PEN1dhdr <- numeric ( length (r))

80 for(j in 1: length (xx)){

81 Rx <- (xx[j]-a*xx -(1-a)*mean)/(a*h)

82 dRdh <- ((mean -xx)*dadh)*(1/(a*h)) + (xx[j] - a*xx - (1-a)*mean)*

d1divahdh
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83 dphiRxdh <- -dnorm(Rx)*dRdh*Rx

84 d1divadr <- - 1/2*a*(h^2/ var)*(( xx - mean)^2/ var)

85 dRdr <- ( -1/(a*h)) *((1/2) *(xx[j]-mean)*(1-a^2) *((xx -mean)^2/ var)

+(1-a)*xx)

86 ff <-0

87 ff <- sum(r*dnorm(Rx)/(a*h))

88 f[j] <- ff

89 df <- 0

90 df <- sum(r*( dnorm(Rx)* d1divahdh + dphiRxdh *(1/(a*h))))

91 dfdh[j] <- df

92 dfdr[j, ] <- (1/h)*( dnorm(Rx)/a - dRdr * sum(r * dnorm(Rx) * Rx)

*(1/a) + d1divadr * sum(r * dnorm(Rx)))

93 d2Rdhdr <- (1/(a*h^2) - a/var) *((1/2) *( xx[j]-mean)*(1-a^2) *((xx -

mean)^2/ var)+(1-a)*xx) + ( -1/(a*h))*(( -( xx[j]-mean)*(( xx - mean)^2 /

var)*a*dadh)-xx*dadh)

94 P1 <- dphiRxdh *(1/a) + ((a*h)/var)*dnorm(Rx)

95 P2 <- d2Rdhdr *sum(r*dnorm(Rx)*Rx)*(1/a) + dRdr*sum(r* dphiRxdh *Rx +

r*dnorm(Rx)*dRdh)*(1/a) + dRdr*sum(r*dnorm(Rx)*Rx)*((a*h)/var)

96 P3 <- (-((xx -mean)^2/ var)/(2* var))*( dadh*h^2 + 2*a*h)*sum(r*dnorm(Rx

)) + d1divadr *sum(r* dphiRxdh )

97 P <- P1 - P2 + P3

98 d2fdhdr [j,] <- (-1/h^2) *( dnorm(Rx)/a - dRdr * sum(r * dnorm(Rx) *

Rx)*(1/a) + d1divadr * sum(r * dnorm(Rx))) + (1/h)* P

99 }

100 for(i in 1: length (xx)){

101 dr_i_j . vector <- numeric ( length (xx))

102 dr_i_j . vector [i] <- 1.0

103 d2PEN1dhdr [i] <- -2 * sum( d2fdhdr [ ,i] * (r - f) + dfdh * ( dr_i_j .

vector - dfdr[ ,i]))

104 }

105 return ( d2PEN1dhdr )

106 }
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107 # first partial derivative of the equating function eY with respect to

h_X

108 # in text - (28) -(29)

109 deYdh_X . function <- function (h, r, xx , var , mean , G.prime){

110 mean <- as. vector (mean)

111 xx <- as. vector (xx)

112 h <- as. vector (h)

113 a <- as. vector (sqrt(var /( var+h^2)))

114 dadh <- -(h*( sqrt(var)))/((h^2 + var) ^(3/2) )

115 d1divahdh <- -a^( -2)*dadh *(1/h)- (1/h^2) *(1/a)

116 dFdh <- numeric ( length (xx))

117 for(j in 1: length (xx)){

118 Rx <- (xx[j]-a*xx -(1-a)*mean)/(a*h)

119 dRdh <- dadh *(mean -xx)*1/(a*h) + (xx[j]-a*xx -(1-a)*mean)* d1divahdh

120 dF <- 0

121 dF <- sum(r*dnorm(Rx)*dRdh)

122 dFdh[j] <- dF

123 }

124 deYdhx <- (1/G.prime)*dFdh

125 return ( deYdhx )

126 }

127 # first partial derivative of the equating function eY with respect to

h_Y

128 # in text - (30) -(31)

129 deYdh_Y . function <- function (h, r, xx , var , mean , G.prime , eqscore ){

130 mean <- as. vector (mean)

131 xx <- as. vector (xx)

132 h <- as. vector (h)

133 a <- as. vector (sqrt(var /( var+h^2)))

134 dadh <- -(h*( sqrt(var)))/((h^2 + var) ^(3/2) )

135 d1divahdh <- -a^( -2)*dadh *(1/h)- (1/h^2) *(1/a)

136 dGdh <- numeric ( length (xx))
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137 for(j in 1: length ( eqscore )){

138 dRdh <- dadh *(mean -xx)*1/(a*h) + (xx[j]-a*xx -(1-a)*mean) *

d1divahdh

139 dG <-0

140 dG <-sum(r*( dnorm (( eqscore [j]-a*xx -(1-a)*mean)/(a*h)))*dRdh)

141 dGdh[j] <- dG

142 }

143 deYdhx <- -(1/G.prime)*dGdh

144 return ( deYdhx )

145 }

146 # score probabilities function

147 stats <- function (model){

148 freq <- fscores (model , method = " EAPsum ", full. scores = FALSE)[,c(1,

4, 5)]

149 prop <- freq$expected /sum( freq$expected )

150 }

151 # G.prime function ; the density of G evaluated at eY(x)

152 # in text - (19)

153 # adapted from kequate package ( Andersson et al., 2013)

154 G.prime. function <-function (r, h, var , mean , eqscore , xx){

155 h <- as. vector (h)

156 a <- as. vector (sqrt(var /( var+h^2)))

157 xx <- as. vector (xx)

158 mean <- as. vector (mean)

159 f <- numeric ( length ( eqscore ))

160 for(i in 1: length ( eqscore )){

161 ff <- 0

162 ff <- sum(r*dnorm (( eqscore [i]-a*xx -(1-a)*mean)/(a*h))/(a*h) )

163 f[i]<-ff

164 }

165 return (f)

166 }
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167 # first derivative of F(x) with respect to r

168 # in text - (20) -(22)

169 # adapted from kequate package ( Andersson et al., 2013)

170 dFdr. function <-function (r, h, var , mean , F.prime , eqscore , xx){

171 xx <- as. vector (xx)

172 h <- as. vector (h)

173 mean <- as. vector (mean)

174 var <- as. vector (var)

175 a <- as. vector (sqrt(var /( var+h^2)))

176 dFdrest <- matrix (0, length ( eqscore ), ncol= length (xx))

177 for(j in 1: length ( eqscore )){

178 Rx <- ( eqscore [j]-a*xx -(1-a)*mean)/(a*h)

179 Mx <- (1/2) *( eqscore [j]-mean)*(1-a^2) *(((xx -mean)/sqrt(var))^2) +(1-

a)*xx

180 dFdrest [j, ] <- pnorm(Rx) - Mx * F.prime[j]

181 }

182 return ( dFdrest )

183 }

184

185 # SIMULATION SETUP

186 # item parameters for test forms X & Y

187 set.seed (1234567)

188 apar_X <- runif (20, 1, 2)

189 bpar_X <- rnorm (20)

190 cpar_X <- rep (0, 20)

191 set.seed (260688)

192 apar_Y <- runif (20, 1, 2)

193 bpar_Y <- rnorm (20)

194 cpar_Y <- rep (0, 20)

195 # sample sizes

196 n_sample_sizes <- c(250 , 1000 , 4000 , 16000)
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197 # n of iterations per sample size

198 n_iter <- 10000

199 # complete datasets with all iterations for all sample sizes

200 h_data <- matrix (ncol = 5, nrow = 0)

201 colnames ( h_data ) <- c("N", "h_x", "ASEhx", "h_y", "ASEhy")

202 ASEE_data <- matrix (ncol = 22, nrow = 0)

203 colnames ( ASEE_data ) <- c("n", c (1:21) )

204 eqYx_data <- matrix (ncol = 22, nrow = 0)

205 colnames ( eqYx_data ) <- c("N", c (1:21) )

206 ASEE_mod_data <- matrix (ncol = 22, nrow = 0)

207 colnames ( ASEE_mod_data ) <- c("N", c (1:21) )

208 # temporary matrices to store iterations

209 h_mat <- matrix (ncol = 5, nrow = n_iter )

210 colnames (h_mat) <- c("N", "h_x", "ASEhx", "h_y", "ASEhy")

211 ASEE_mat <- matrix (ncol = 22, nrow = n_iter )

212 colnames ( ASEE_mat ) <- c("N", c (1:21) )

213 eqYx_mat <- matrix (ncol = 22, nrow = n_iter )

214 colnames ( eqYx_mat ) <- c("N", c (1:21) )

215 ASEE_mod_mat <- matrix (ncol = 22, nrow = n_iter )

216 colnames ( ASEE_mod_mat ) <- c("N", c (1:21) )

217 # matrix to store summary of all iterations for a sample size

218 h_summary <- matrix (ncol = 5, nrow = length ( n_sample_sizes ))

219 colnames ( h_summary ) <- c("N", " mean_ASEhx ", " MCSEhx ", " mean_ASEhy ", "

MCSEhy ")

220 ASEE_summary <- matrix (ncol = 22, nrow = length ( n_sample_sizes ))

221 colnames ( ASEE_summary ) <- c("N", c (1:21) )

222 eqYx_summary <- matrix (ncol = 22, nrow = length ( n_sample_sizes ))

223 colnames ( eqYx_summary ) <- c("N", c (1:21) )

224 ASEE_mod_summary <- matrix (ncol = 22, nrow = length ( n_sample_sizes ))

225 colnames ( ASEE_mod_summary ) <- c("N", c (1:21) )

226

227 idx <- 1
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228 for (n in 1: length ( n_sample_sizes )){

229 for (iter in seq (1, n_iter )){

230 seed <- seq (262626 , 262626 + n_iter -1, 1)

231 set.seed(seed[iter ])

232 print( n_sample_sizes [iter ])

233 # original data P and Q

234 dat_og_P <- data.frame( irtresponse3pl (apar_X , bpar_X , cpar_X , rnorm

( n_sample_sizes [n])))

235 dat_og_Q <- data.frame( irtresponse3pl (apar_Y , bpar_Y , cpar_Y , rnorm

( n_sample_sizes [n])))

236 # pre - smooth raw data with mirt and extract score probability

distributions

237 mod_P <- mirt( dat_og_P [ ,1:20] , 1, rep("2PL", 20) , SE = TRUE)

238 prop_R <- stats(mod_P)

239 mod_Q <- mirt( dat_og_Q [ ,1:20] , 1, rep("2PL", 20) , SE = TRUE)

240 prop_S <- stats(mod_Q)

241 # minimize PEN1 with respect to h, extract minimum h_X and h_Y

242 # tol = . Machine$double .eps ^0.5 to match tolerance used in irtose

function of kequate package ( Andersson et al., 2013)

243 h.x <- optimize (PEN1 , c(0, 10) , tol = . Machine$double .eps ^0.5 , r =

prop_R , x = 0:20 , var = sum( prop_R * ((0:20) - sum( prop_R * (0:20) )

)^2) , mean = sum( prop_R * (0:20) )) $minimum

244 h.y <- optimize (PEN1 , c(0, 10) , tol = . Machine$double .eps ^0.5 , r =

prop_S , x = 0:20 , var = sum( prop_S * ((0:20) - sum( prop_S * (0:20) )

)^2) , mean = sum( prop_S * (0:20) )) $minimum

245 # equate X and Y, and extract the ASEE without accounting for h,

and the eqYx

246 # ( Andersson et al., 2013)

247 sim2plan <- irtose ("EG", mod_P , mod_Q , 0:20 , 0:20)

248 ASEE_eYx_no_h <- sim2plan@equating$SEEYx

249 eqYx <- sim2plan@equating$eqYx

250 # calculate asymptotic variance and SE of h_X and h_Y
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251 d2PEN1dhx2 <- d2PEN1dh2 . function (h = h.x, r = prop_R , xx = 0:20 ,

var = sum( prop_R * ((0:20) - sum( prop_R * (0:20) ))^2) , mean = sum(

prop_R * (0:20) ))

252 d2PEN1dhy2 <- d2PEN1dh2 . function (h = h.y, r = prop_S , xx = 0:20 ,

var = sum( prop_S * ((0:20) - sum( prop_S * (0:20) ))^2) , mean = sum(

prop_S * (0:20) ))

253 d2PEN1dhdr <- d2PEN1dhdr . function (h = h.x, r = prop_R , xx = 0:20)

254 d2PEN1dhds <- d2PEN1dhdr . function (h = h.y, r = prop_S , xx = 0:20)

255 dhdr <- (-( d2PEN1dhx2 )^-1) %*% d2PEN1dhdr

256 dhds <- (-( d2PEN1dhy2 )^-1) %*% d2PEN1dhds

257 ASE_hx <- sqrt(dhdr %*% sim2plan@scores$covrs [1:21 , 1:21] %*% t(

dhdr))

258 ASE_hy <- sqrt(dhds %*% sim2plan@scores$covrs [22:42 , 22:42] %*% t(

dhds))

259 # in order to calulate (27) (in text), we need 1) deYdr; 2) deYds;

3) deYdhx ; 4) deYdhy .

260 F. primeY <- G.prime. function (r = prop_R , h = h.x, mean = sum( prop_R

* (0:20) ), var = sum( prop_R * ((0:20) - sum( prop_R * (0:20) ))^2) ,

eqscore = 0:20 , xx = 0:20)

261 G. primeY <- G.prime. function (r = prop_S , h = h.y, mean = sum( prop_S

* (0:20) ), var = sum( prop_S * ((0:20) - sum( prop_S * (0:20) ))^2) ,

eqscore = eqYx , xx = 0:20)

262 dFdreY <- dFdr. function (prop_R , h.x, var = sum( prop_R * ((0:20) -

sum( prop_R * (0:20) ))^2) , mean = sum( prop_R * (0:20) ), F.primeY ,

eqscore = 0:20 , xx = 0:20)

263 dGdseY <- dFdr. function (prop_S , h.y, var = sum( prop_S * ((0:20) -

sum( prop_S * (0:20) ))^2) , mean = sum( prop_S * (0:20) ), G.primeY ,

eqscore = eqYx , xx = 0:20)

264 deYdr <- (1/G. primeY ) * dFdreY # (von Davier et al., 2004)

265 deYds <- ( -(1/G. primeY )) * dGdseY # (von Davier et al., 2004)

266 # first partial derivatives of eY with respect to h_x and h_y

267 # in text - (28) -(31)
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268 deYdhx <- deYdh_X . function (h.x, r = prop_R , xx = 0:20 , var = sum(

prop_R * ((0:20) - sum( prop_R * (0:20) ))^2) , mean = sum( prop_R *

(0:20) ), G. primeY )

269 deYdhy <- deYdh_Y . function (h.y, r = prop_S , xx = 0:20 , var = sum(

prop_S * ((0:20) - sum( prop_S * (0:20) ))^2) , mean = sum( prop_S *

(0:20) ), G.primeY , eqscore = eqYx)

270 # matrix with first derivatives of eY with respect to r, s, h_x and

h_y

271 # in text - 1st and 3rd components of (27)

272 JeY <- matrix (0, nrow= 21, ncol =44)

273 JeY [1:21 , 1:21] <- deYdr

274 JeY [1:21 , 23:43] <- deYds

275 JeY[, 22] <- deYdhx

276 JeY[, 44] <- deYdhy

277 # matrix RhxShy ; in text - (32)

278 drhxshy <- matrix (0, nrow = 44, ncol = 42)

279 drhxshy [1:21 , 1:21] <- diag (21)

280 drhxshy [22, 1:21] <- dhdr

281 drhxshy [23:43 , 22:42] <- diag (21)

282 drhxshy [44, 22:42] <- dhds

283 covRhSh <- drhxshy %*% sim2plan@scores$covrs %*% t( drhxshy )

284 # calculate variance of eYx and ASEE; in text - (27)

285 ASEE_mod_eYx <- sqrt(diag(abs(JeY%*% covRhSh %*%t(JeY))))

286 # record in the temporary matrix

287 h_mat[iter ,] <- c( n_sample_sizes [n], h.x, ASE_hx , h.y, ASE_hy )

288 eqYx_mat [iter , 1:22] <- c( n_sample_sizes [n], eqYx)

289 ASEE_mat [iter , 1:22] <- c( n_sample_sizes [n], ASEE_eYx_no_h )

290 ASEE_mod_mat [iter , 1:22] <- c( n_sample_sizes [n], ASEE_mod_eYx )

291 }

292 h_data <- rbind(h_data , h_mat)

293 eqYx_data <- rbind(eqYx_data , eqYx_mat )

294 SEE_mod_data <- rbind( ASEE_mod_data , ASEE_mod_mat )
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295 ASEE_data <- rbind(ASEE_data , ASEE_mat )

296 # results summaries for (1) ASEhx , (2) ASEE - NOT accounting for h,

(3) ASEE_mod - accounting for h, (4) eqYx - MCSE

297 h_summary [idx , ] <- c( n_sample_sizes [n], mean(h_mat [ ,3]) , sqrt(var(

h_mat [ ,2])), mean(h_mat [ ,5]) , sqrt(var(h_mat [ ,4])))

298 eqYx_summary [idx , ] <- c( n_sample_sizes [n], sqrt( colVars ( eqYx_mat

[ ,2:22])))

299 ASEE_summary [idx , ] <- c( n_sample_sizes [n], colMeans ( ASEE_mat [ ,2:22])

)

300 ASEE_mod_summary [idx , ] <- c( n_sample_sizes [n], colMeans ( ASEE_mod_mat

[ ,2:22]))

301 idx <- idx + 1

302 }
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Appendix III

Computation of the Penalty Function Derivatives

In order to compute (24), two partial derivatives of the PEN1(hX) function need to be

defined, the second-order direct partial derivative of PEN1(hX) with respect to hX and

the second-order cross partial derivative of PEN1(hX) with respect to r. Clearly, the

computation of these derivatives subsequently requires defining the first partial

derivative of PEN1(hX) with respect to hX .

Recalling (8) - (11), we define the first partial derivative of PEN1(hX) with

respect to hX as

∂PEN1

∂hX
= ∂

∂hX
[(r̂j − f̂hX(xj)2]

= −2
∑
j

(r̂j − f̂hX(xj))
∂f̂hX(xj)
∂hX

 . (34)

We then need to calculate ∂f̂hX(xj)
∂hX

as

∂f̂hX(xj)
∂hX

= ∂

∂hX

∑
j

r̂jφ(RjX(x)) 1
aXhX


=
∑
j

r̂j

(
∂[φ(RjX(x))]

∂hX

1
aXhX

+ φ(RjX(x)) ∂

∂hX

[ 1
aXhX

])
, (35)

where ∂[φ(RjX(x))]
∂hX

and ∂RjX(x)
∂hX

are defined as

∂[φ(RjX(x))]
∂hX

= −φ(RjX(x))∂RjX(x)
∂hX

RjX(x), (36)

∂RjX(x)
∂hX

= ∂

∂hX

[
x− aXxj − (1− aX)µX

aXhX

]

= ∂aX
∂hX

(µX − xj)
1

aXhX
+ (x− aXxj − (1− aX)µX) ∂

∂hX

[ 1
aXhX

]
. (37)

The remaining components needed for computing the first partial derivative with

respect to hX are then ∂
∂hX

[
1

aXhX

]
and ∂aX

∂hX
. Thus we calculate

∂

∂hX

[ 1
aXhX

]
= −a−2

X

∂aX
∂hX

1
hX
− 1
aXh2

X

, (38)
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∂aX
∂hX

= ∂

∂hX

 σX√
σ2
X + h2

X

 = − σX

2(h2
X + σ2

X) 3
2

∂h2
X

∂hX
+ ∂σ2

X

∂hX

= − σXhX

(h2
X + σ2

X) 3
2
. (39)

Using (34) - (39), we can then compute the second partial derivative of PEN1(hX)

with respect to hX as

∂2PEN1

∂h2
X

= ∂

∂hX

−2
∑
j

(r̂j − f̂hX(xj))
∂f̂hX(xj)
∂hX


= −2

∑
j

∂2f̂hX(xj)
∂h2

X

(r̂j − f̂hX(xj))−
∂f̂hX(xj)

∂hX

2
 , (40)

where ∂f̂hX(xj)
∂hX

is defined in (35) and ∂2f̂hX(xj)
∂h2 is given by

∂2f̂hX(xj)
∂h2

X

= ∂

∂hX

∑
j

r̂j

(
∂[φ(RjX(x))]

∂hX

1
aXhX

+ φ(RjX(x)) ∂

∂hX

[ 1
aXhX

])
=
∑
j

r̂j

(
∂2[φ(RjX(x))]

∂h2
1

aXhX
+ ∂[φ(RjX(x))]

∂hX

∂

∂hX

[ 1
aXhX

])
+

+
∑
j

r̂j

(
∂[φ(RjX(x))]

∂hX

∂

∂hX

[ 1
aXhX

]
+ φ(RjX(x)) ∂2

∂h2
X

[ 1
aXhX

])
. (41)

Recall that ∂[φ(RjX(x))]
∂hX

is given in (36) and ∂RjX(x)
∂hX

- in (37). Hence, we define
∂2[φ(RjX(x))]

∂h2
X

and ∂2RjX(x)
∂h2

X
as

∂2[φ(RjX(x))]
∂h2

X

= ∂

∂hX

[
−φ(RjX(x))∂RjX(x)

∂hX
RjX(x)

]

= −∂[φ(RjX(x))]
∂hX

∂RjX(x)
∂hX

RjX(x)− φ(RjX(x))∂
2RjX(x)
∂h2

X

RjX(x)−

− φ(RjX(x))
[
∂[RjX(x)]
∂hX

)
]2

, (42)

∂2RjX(x)
∂h2

X

= ∂

∂hX

[
∂aX
∂hX

(µX − xj)
1

aXhX
+ (x− aXxj − (1− aX)µX) ∂

∂hX

[ 1
aXhX

]]

= (µX − xj)
(
∂2aX
∂h2

X

1
aXhX

+ ∂aX
∂hX

∂

∂hX

[ 1
aXhX

])
+

+ (µX − xj)
∂aX
∂hX

∂

∂hX

[ 1
aXhX

]
+ (x− aXxj − (1− aX)µX) ∂2

∂h2
X

[ 1
aXhX

]
.

(43)
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Consider further that ∂
∂hX

[
1

aXhX

]
is defined in (38), ∂aX

∂h
- in (39). We can then observe

that ∂2

∂h2
X

[
1

aXhX

]
can be computed as

∂2

∂h2
X

[ 1
aXhX

]
= 1
hXa2

X

 2
aX

[
∂aX
∂hX

]2

− ∂2aX
∂h2

X

+ ∂aX
∂hX

1
hX

+

+
(
∂aX
∂hX

1
a2
Xh

2
X

+ 2
aXh3

X

)
, (44)

and

∂2aX
∂h2

X

= ∂

∂hX

[
− σXhX

(h2
X + σ2

X) 3
2

]
= −σX

(h2
X + σ2

X) 3
2
− 3h2

X

(h2
X + σ2

X) 5
2
. (45)

Lastly, we can compute the second partial derivative of PEN1(hX) with respect to

r as follows

∂2PEN1

∂hX∂ri
= ∂

∂ri

−2
∑
j

(r̂j − f̂hX(xj))
∂f̂hX(xj)
∂hX


= −2

∑
j

 ∂rj
∂hX∂ri

− ∂f̂hX(xj)
∂ri

 ∂f̂hX(xj)
∂hX

+ (r̂j − f̂hX(xj))
∂2f̂hX(xj)
∂hX∂ri

 ,
(46)

where ∂rj

∂hX∂ri
= 1 if i = j, and ∂rj

∂hX∂ri
= 0 if i 6= j. Note that ∂f̂hX(xj)

∂hX
is given in (35).

Then, the components needed for computing (46) are ∂f̂hX(xj)
∂ri

and ∂2f̂hX(xj)
∂hX∂ri

. We define
∂f̂hX(xj)

∂ri
as

∂f̂hX(xj)
∂ri

= ∂

∂ri

∑
j

rjφ(RjX(x)) 1
aXhX


= 1
hX

φ(RjX(x)) 1
aX
− ∂RjX(x)

∂ri

∑
j

(rjφ(RjX(x))RjX(x)) 1
aX

+

+ 1
hX

 ∂

∂ri

[ 1
aX

]∑
j

(rjφ(RjX(x)))
 , (47)

where ∂RjX

∂ri
and ∂

∂r

[
1
aX

]
are given in Holland et al. (1989) as

∂

∂ri

[ 1
aX

]
= −1

2aX
h2
X

σ2
X

x2
i − µ2

X

σ2
X

, (48)

and

∂RjX

∂ri
=
(
− 1
aXhX

) [1
2(x− µX)(1− a2

X)
(
x2
i − µ2

X

σ2
X

)
+ (1− aX)xi

]
. (49)
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We further define ∂2f̂hX(xj)
∂hX∂ri

as

∂2f̂hX(xj)
∂hX∂r

= ∂

∂hX

∂f̂hX(xj)
∂ri

 . (50)

Given (47) is a lengthy expression, we further simplify the notation such that

∂

∂hX

∂f̂hX(xj)
∂ri

 = ∂

∂hX
[ 1
hX

]× P + 1
hX
× ∂P

∂hX

= − 1
h2
X

× P + 1
hX
× ∂P

∂hX
, (51)

where

P = ∂[φ(RjX(x))]
∂hX

1
aX
− ∂RjX(x)

∂ri

∑
j

(rjφ(RjX(x))RjX(x)) 1
aX

+

+ ∂

∂ri

[ 1
aX

]∑
j

(rjφ(RjX(x))). (52)

Noting the three components in (52), ∂P
∂hX

can then be presented as follows

∂P

∂hX
= ∂P1
∂hX

− ∂P2
∂hX

+ ∂P3
∂hX

. (53)

∂P1
∂hX

is given by

∂P1
∂hX

= ∂

∂hX

[
φ(RjX(x)) 1

aX

]
= ∂[φ(RjX(x))]

∂hX

1
aX

+ φ(RjX(x))aXhX
σ2
X

, (54)

where ∂[φ(RjX(x))]
∂hX

is given in (36). ∂P2
∂hX

is defined as

∂P2
∂hX

= ∂

∂hX

∂RjX(x)
∂ri

∑
j

(rjφ(RjX(x))RjX(x)) 1
aX


= ∂2RjX(x)

∂hX∂ri

∑
j

(rjφ(RjX(x))RjX(x)) 1
aX

+

+ ∂RjX(x)
∂ri

∑
j

(
rj
∂[φ(RjX(x))]

∂hX
RjX(x) + rjφ(RjX(x))∂RjX(x)

∂hX

)
1
aX

+

+ ∂RjX(x)
∂ri

∑
j

(rjφ(RjX(x))RjX(x)) aXhX
σ2
X

, (55)

where ∂RjX(x)
∂ri

is defined in (49), ∂[φ(RjX(x))]
∂hX

- in (36), and ∂2RjX(x)
∂hX∂ri

is given by

∂2RjX(x)
∂hX∂ri

= ∂

∂hX

[
(− 1
aXhX

)(1
2(x− µX)(1− a2

X)
(
x2 − µ2

X

σ2
X

)
+ (1− aX)x)

]

=
(

1
aXh2

X

− aX
σ2
X

)(
1
2(x− µX)(1− a2

X)
(
x2
i − µ2

X

σ2
X

)
+ (1− aX)x

)

+
(
− 1
aXhX

)((
−(x− µX)

(
x2 − µ2

X

σ2
X

)
aX

∂aX
∂hX

)
+ x

∂aX
∂hX

)
. (56)
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It remains to calculate ∂P3
∂hX

as follows

∂P3
∂hX

= ∂

∂hX

 ∂

∂ri

[ 1
aX

]∑
j

(rjφ(RjX(x)))


= ∂2

∂hX∂ri

[1
a

]∑
j

(rjφ(RjX(x))) + ∂

∂ri

[ 1
aX

]
∂

∂hX

∑
j

(rjφ(RjX(x)))


= −
((

x2
i − µ2

X

σ2
X

)
1

2σ2
X

)(
∂aX
∂hX

h2
X + 2aXhX

)∑
j

(rjφ(RjX(x)))+

+ ∂

∂ri

[ 1
aX

]∑
j

(
rj
∂[φ(RjX(x))]

∂hX

)
, (57)

where ∂
∂ri

[
1
aX

]
is given in (48), ∂aX

∂hX
- in (39), and ∂[φ(RjX(x))]

∂hX
- in (36).

The partial derivatives of the PEN1(hY ) with respect to hY , ∂PEN1
∂hY

, ∂
2PEN1
∂h2

Y
and

∂2PEN1
∂hY ∂si

, are computed analogously.
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