
Analyzing the Usefulness of a
Low-Cost Respiration Sensor for

Sleep Apnea Detection in a
Clinical Setting

A Metric Based Approach

Morten Hamborg Andersen

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Analyzing the Usefulness of a
Low-Cost Respiration Sensor for

Sleep Apnea Detection in a
Clinical Setting

A Metric Based Approach

Morten Hamborg Andersen

© 2020 Morten Hamborg Andersen

Analyzing the Usefulness of a Low-Cost Respiration Sensor for Sleep
Apnea Detection in a Clinical Setting

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Obstructive sleep apnea (OSA) is a common, but severely under-diagnosed
sleep disorder characterized by repeated periods of reduced or paused
breathing during sleep. Polysomnography (PSG) is the gold standard for
the diagnosis of OSA, but requires overnight monitoring in a sleep labor-
atory, which is both resource-demanding and uncomfortable for patients.
The main objective of the CESAR project is to increase the percentage of
detected/diagnosed OSA patients with the use of cheaper sleep monitor
solutions that can be applied at home. This should be achieved by utilizing
low-cost consumer electronics instead. Which in turn should reduce the
time and resources needed, as no PSG in a sleep laboratory is necessary for
the initial diagnostic step. The idea is to use machine learning for automatic
classification of OSA to eliminate the need for sleep experts in the first step.

In this thesis, we evaluate the usefulness of a low-cost strain-gauge res-
piratory effort sensor (FLOW) from SweetZpot for overnight monitoring of
sleep apnea in a home respiratory polygraphy study. During the A3 study
from Oslo University Hospital, we collect 57 FLOW and NOX recordings
from 34 patients diagnosed with atrial fibrillation. We measure the signal
quality produced by FLOW against the respiratory inductance plethysmography
(RIP) NOX T3 sensor from NOX Medical by evaluating the classification
performance of several machine learning models. This process requires the
signal data from both sensors to be synchronized to utilize annotated scoring
from a sleep expert. Our analysis reveals several data quality issues with
FLOW related to connection loss, unreliable timestamping- and sampling
rate, which proves to be a non-trivial problem to correct for synchroniza-
tion. We discuss several approaches for timestamp adjustment and finally
design a flexible window model that can both identify connection loss and
adjust timestamps. We evaluate the FLOW recordings on a window-based
approach to validate the timestamp adjustment (synchronization) and to
analyze how the signal quality changes overnight. The signal quality evalu-
ation is based on the breath detection accuracy metrics sensitivity, positive
predictive value (PPV), and clean minute proportion (CMP), along with the
breath amplitude accuracy metric weighted absolute percentage error (WAPE).
These metrics are similar to how apnea and hypopnea events are scored by
medical personal.

We achieve a sensitivity, PPV, CMP, and WAPE score of 97.2%, 94.2%, 59.4%,
and 18.4%, respectively, indicating that our preprocessing is sufficient for
mitigating the original data quality issues. Our results show that common
behaviors during sleep, such as movement and changes in sleeping position,
significantly affect the signal quality produced by FLOW, which we attribute
to belt entrapment or misplacement. We are able to significantly increase
the machine learning classification performance on FLOW data by applying
a simple standardization. Using ten-fold-cross-validation, we achieve a
classification accuracy of 76.1% using convolutional neural network. Our
improvements suggest that preprocessing of the data results in better classi-
fication accuracy. For comparison, we achieve a classification accuracy of
79.6% on NOX.

i

Acknowledgments

First and foremost, I would like to thank my supervisors, Professor Dr.
Vera Goebel and Professor Dr. Thomas Plagemann, for their guidance and
support during the work of this thesis. Their encouragement and dedication
are highly appreciated. I would also like to show my gratitude to researcher
Stein Kristiansen for his input and assistance with the more technical aspects
in this thesis. Finally, I would like to thank my partner of almost seven years,
Kristin Marie, for her incredible support and patience.

iii

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 2
1.3 Outline . 3

2 Background 5
2.1 Sleep Apnea . 5

2.1.1 Obstructive Sleep Apnea 6
2.1.2 Symptoms . 7
2.1.3 Diagnostic . 7
2.1.4 NOX T3 Sleep Monitor 11

2.2 CESAR Project . 12
2.2.1 Data Mining for Patient Friendly Apnea Detection . . 13
2.2.2 Signal Quality Evaluation of Respiratory Effort Sensors 13
2.2.3 A3 Study . 14

2.3 Machine Learning . 15
2.3.1 Approach . 16
2.3.2 k-fold Cross Validation 17

2.4 Discussion and Conclusions 18

3 Data Quality Issues 19
3.1 Data Quality Assessment . 19

3.1.1 Data Quality Dimensions 20
3.1.2 Physiological Time Series 20

3.2 Signal Quality Metrics . 21
3.2.1 Apnea Detection . 22
3.2.2 Hypopnea Detection 24
3.2.3 Breath Detection . 25

3.3 FLOW Issues . 26
3.3.1 Connection Loss . 26
3.3.2 Unstable Sampling Rate 27
3.3.3 Unreliable Time-stamping 30
3.3.4 Baseline Issues . 32

3.4 Discussion and Conclusions 34

v

vi CONTENTS

4 Preprocessing 37
4.1 Connection Loss Detection . 37
4.2 Time Stamp Adjustment . 40

4.2.1 Adjust Timestamps Using 10 Hz Sampling Rate . . . 42
4.2.2 Estimate Sampling Rate 43
4.2.3 Estimate Sampling Rate Periodically 44
4.2.4 Adjust Timestamps based on Packet Arrival Time . . 45
4.2.5 Window Timestamp Adjustment 45

4.3 Start Time after Gap . 49
4.4 Sampling Rate Measurement 51
4.5 Preliminary Testing . 52

4.5.1 Findings . 52
4.5.2 Discussion . 57

4.6 System Environment . 58
4.7 Preprocessing . 59

4.7.1 FLOW Preprocessing 60
4.7.2 NOX Preprocessing . 63
4.7.3 Preprocessing of FLOW and NOX 66

4.8 Discussion and Conclusion 68

5 Evaluation 69
5.1 Dataset . 69
5.2 Data Preprocessing Evaluation 71
5.3 Signal Quality Metrics . 71

5.3.1 Corrupt Signal . 72
5.3.2 Disrupted Breathing Events 72
5.3.3 Signal Quality Overnight 74
5.3.4 Breath Detection Accuracy 74
5.3.5 Breath Amplitude Accuracy 78
5.3.6 Comparison with Related Work 81

5.4 Machine Learning . 82
5.4.1 Approach . 82
5.4.2 Preprocessing . 83
5.4.3 Results . 84
5.4.4 Comparison with Related Work 87

5.5 Discussion and Conclusions 88

6 Conclusion 93
6.1 Summary of Contributions . 93

6.1.1 Window Model . 94
6.1.2 Quality of Dataset . 94
6.1.3 Signal Quality of FLOW 95
6.1.4 Machine Learning Classification 95

6.2 Critical Assessment . 96
6.3 Future Work . 96

Bibliography 99

CONTENTS vii

Appendices 104

A Source Code 105

B Evaluation Results 107

List of Figures

2.1 Illustration of physical blockage of upper airways [SomnoMed
2020] . 6

2.2 Illustration of traditional polysomnography [Medifixit 2016] 9
2.3 Illustration of NOX T3 [NOX Medical 2020a] 12

3.1 Respiratory signals during an obstructive apnea [Berry et al.
2012] . 23

3.2 Example of regression line . 25
3.3 Example of signal drop during recording 26
3.4 Actual and estimated sampling rate for sensors 28
3.5 Sensor sampling rate variation 30
3.6 Example of timestamping FLOW samples 30
3.7 Number of samples processed in a batch by the Sleep Re-

corder app . 31
3.8 Time between processing runs in the Sleep Recorder app . . 32
3.9 Overnight FLOW recording 33
3.10 Example of ABAMAR algorithm detecting baseline shift . . 34

4.1 Example of connection loss 38
4.2 Example of jitter . 38
4.3 Example of high variance in inter-arrival time of packets . . 39
4.4 Example of jitter in a real recording 39
4.5 Example of adjusted timestamps using 10 Hz 43
4.6 Example of adjusted timestamps using estimated sampling

rate of 10.3 Hz . 44
4.7 Example of adjusted timestamps in interval using estimated

sampling rate of 10.25 Hz . 44
4.8 Different types of window algorithms [DZone 2010] 46
4.9 Illustration of jumping window 47
4.10 Example of synchronized signals using the jumping window 47
4.11 Illustration of how the start time after a gap is estimated . . 50
4.12 Thirty-minute segment from a FLOW recording 52
4.13 Example of synchronization precision of different default

window sizes . 53
4.14 Example of connection loss detection with different default

window sizes . 55
4.15 Example of non-identical breaths aligning in time 56

ix

x LIST OF FIGURES

4.16 First seven minutes of an overnight recording 57
4.17 Limited amplitude peak of breaths for NOX 58
4.18 Uninterrupted EDF file with two overnight recordings . . . 63

5.1 Data flow during our quality evaluation 69
5.2 (a) Overview of dataset and (b) boxplot with the distribution

of recording duration . 70
5.3 Example of a corrupt FLOW recording 73
5.4 Example of a very good quality FLOW recording 73
5.5 Example of a period with low mean baseline breath amplitude 74
5.6 Periodically measured metric 75
5.7 Measured sensitivity score of all FLOW recordings 76
5.8 Example of FLOW not correctly registering shallow breaths 77
5.9 Measured positive predictive value (PPV) score of all FLOW

recordings . 78
5.10 The measured clean minute proportion (CMP) of all FLOW

recordings . 79
5.11 Breath amplitude error (WAPE) score of all FLOW recordings 80
5.12 Breath amplitude relationship between FLOW and NOX . . 81
5.13 Amplitude difference from standardizing every sixth minute

versus every minute . 84
5.14 Average and SD results of kappa 85
5.15 Average and SD results of accuracy 86
5.16 Average and SD results of sensitivity 87
5.17 Average and SD results of specificity 87

List of Tables

3.1 Recording distribution based on sensors 28

4.1 Example of how to adjust timestamps with 100 ms interval . 41
4.2 Example of how to adjust timestamps with 83.33 ms interval

(12 Hz) . 41
4.3 Example of how to adjust timestamps using intervals with

different sampling rate . 41
4.4 Example of how to adjust timestamps using the timestamp of

the last sample and 10 Hz . 42
4.5 Quality metrics for the thirty-minute segment using different

default window sizes . 54
4.6 Example of how the synchronization accuracy affects the

results of the signal quality metrics 56
4.7 Software versions used during preprocessing and signal qual-

ity evaluation . 58

5.1 Example of annotated file . 83

B.1 All FLOW signal quality results 108
B.2 CNN 10-cross-validation results 109
B.3 GRU 10-cross-validation results 109
B.4 MLP 10-cross-validation results 109
B.5 LSTM 10-cross-validation results 110
B.6 BILSTM 10-cross-validation results 110
B.7 SBILSTM 10-cross-validation results 110
B.8 BIWALSTM 10-cross-validation results 111
B.9 Random Forest 10-cross-validation results 111

xi

Listings

4.1 Function for estimating the start time of a recording or the
timestamp of the first sample to arrive after a gap 50

4.2 Function for measuring sampling rate 51
4.3 Example of breathing.txt output file from SweetZpot’s sleep

recording application . 60
4.4 Script for preprocessing FLOW 62
4.5 Script for extracting and converting NOX signal from EDF to

CSV . 65
4.6 Script to synchronize and combine FLOW and NOX signals 67

xiii

Chapter 1

Introduction

1.1 Background and Motivation

Sleep Apnea (SA) is a common sleep disorder characterized by repeated
periods of reduced or paused breathing during sleep. During disrupted
breathing, the amount of oxygen (oxygen saturation) in the blood decreases.
If the amount of oxygen in the blood becomes too low, the brain forces
an awakening to resume breathing. As this disorder shows itself during
sleep and the continuous awakenings are brief, sufferers are unlikely to
remember it the next day. The repeated awakenings hinder deep sleep that
consequently leads to daytime symptoms such as excessive sleepiness and
feeling fatigued. SA is associated with serious diseases such as stroke, heart
disease, diabetes, high blood pressure, anxiety, and depression. It can cause
severe health implications for the sufferer, and, in the worst case, even death
if left untreated [Young et al. 2002, 2004], [Punjabi 2008], and [Huang et al.
2008].

Obstructive sleep apnea (OSA) is the most common type of SA, which is
characterized by recurrent episodes of partial or complete collapse of the up-
per airway during sleep. According to Hrubos-Strøm et al. [Hrubos-Strøm et
al. 2011], one out of four middle-aged Norwegians are at high risk of having
OSA, yet approximately 70-80% of all cases are expected to be undiagnosed
[Punjabi 2008]. A study by McNicholas [McNicholas 2013] shows that SA
sufferers have about two or three times increased risk of being involved in
traffic accidents due to severe sleep deprivation. With numbers as high as
these, it is apparent that proper sleep is vital for maintaining physical and
mental health.

Polysomnography (PSG) is the gold standard and traditional procedure for
diagnosing OSA, which requires the subject to spend the night in a sleep
laboratory with several physiological sensors attached to the body. This
process is very resource-demanding as it requires both expensive medical
equipment, a laboratory, and trained medical personnel for supervision
and evaluation of the results. Limited availability makes it impossible for
doctors to prescribe polysomnography for everybody at risk of having OSA.

1

2 Chapter 1. Introduction

Besides, this type of sleep study can feel uncomfortable for many people as
they have to sleep in an unfamiliar setting while being monitored, making
it more difficult to fall asleep. As a consequence, a potential sufferer is less
likely to seek medical help for a diagnosis.

Portable monitoring devices have been developed, as an alternative, in
order to monitor sleep at home without the need for assistance. However,
the recorded data still needs to be analyzed by sleep experts before a pos-
sible diagnosis can be determined. Besides, the equipment is usually still too
expensive for the average person to buy as the number of sensors attached
to the body is not significantly reduced compared to PSG.

The main objective of the CESAR project is to increase the percentage of
detected/diagnosed OSA patients using cheaper polygraphy solutions that
can be applied at home. Another goal of the CESAR project is to reduce the
cost of polygraphy by utilizing low-cost consumer electronics. The idea is
to use NOX T3 (medical certified polygraphy system) to compare the signal
quality of cheaper sensors and evaluate their suitability for monitoring of
OSA. Moreover, the CESAR project aims to reduce the time and required
resources for diagnostic. Since PSG in a sleep laboratory is not necessary
for an initial test, the idea is to apply machine learning techniques on the
recorded sleep data for automatic classification of OSA to eliminate the need
for sleep experts. The classification results should provide the user with
a potential recommendation to visit a physician and help physicians with
deciding whether polysomnography should be performed.

To reach this objective, it is fundamental that the cost of sensors is afford-
able for consumers and that they support different types of smartphones.
Further, the signal of the sensors should be of good enough quality for
correct classification. A study by Kristiansen et al. [Kristiansen et al. 2018],
evaluates several machine learning algorithms based on their classification
performance for detection of disrupted breathing using physiological data
from two databases of different quality. The classification accuracy of the
machine learning algorithms for all signal combinations is in the range of
90.6%-96.6% for the Apnea-ECG database and 58.2%-73.1% for the MIT-BIH
database. The difference in accuracy clearly illustrates the importance of
good data quality for the detection of disrupted breathing.

1.2 Problem Statement

To conduct an initial SA test at home, cheaper consumer grade sensors are
an affordable alternative to certified medical grade equipment. The general
assumption that quality is related to price, does not necessarily mean that
these sensors cannot be used for an initial SA test. In recent studies by
Løberg [Løberg 2018; Løberg et al. 2018], the signal quality of FLOW, a
low-cost respiratory effort sensor, have shown promising results under
controlled lab conditions. However, the question remains unanswered

1.3. Outline 3

whether the sensor is useful for unattended overnight sleep monitoring
at home. In this context, the usefulness of the sensor is reflected in the
classification performance of machine learning models that can be achieved
with this sleep monitoring data. Therefore, the overall problem statement
can be summarized in one question:

• Is the classification performance on data from FLOW sensors during
unattended overnight sleep monitoring at home good enough?

To answer this question, we analyze how accurate the FLOW sensor is for SA
detection through empirical studies based on: recordings from real patients,
existing metrics suggested in previous work, and by testing it on machine
learning classifiers. As such, the overall problem statement breaks down
into more specific parts, which we address with the following questions:

• How good is the quality of the collected data?

• How good and consistent is the signal quality from FLOW sensors
during unattended overnight sleep monitoring at home?

• How good is the performance of machine learning classifiers on the
collected data?

• How can preprocessing increase the performance of classifiers?

1.3 Outline

The structure of this Master Thesis is as follows:

• Chapter 2 – Background
In this chapter, we present an overview of sleep apnea, along with the
contributions from the CESAR project and an introduction to machine
learning.

• Chapter 3 – Data Quality Issues
This chapter presents data quality issues in the dataset from the FLOW
sensors and the difficulties with measuring the quality of data accur-
ately. Furthermore, we describe our approach to evaluate the quality
of this dataset.

• Chapter 4 – Preprocessing and Implementation
In this chapter, we discuss how to correct the data quality issues in data
from the FLOW sensor, with the design of a flexible window model as
our solution. Furthermore, we present our Python implementation of
the steps for preprocessing the dataset.

• Chapter 5 – Evaluation
In this chapter, we evaluate the result of our preprocessing and the
quality of overnight recordings. Furthermore, we compare and evalu-
ate the classification performance of several machine learning classifi-
ers based on their ability to detect disrupted breathing in signal data
from FLOW and NOX with a comparison with related work.

4 Chapter 1. Introduction

• Chapter 6 – Conclusion
Finally, this chapter concludes our findings with a critical assessment
of this work and a discussion of future work.

Chapter 2

Background

This chapter presents an overview of sleep apnea, along with the contri-
butions from the CESAR project, and an introduction to machine learning.
We begin by describing the characteristics, symptoms, risks, and diagnostic
challenges of sleep apnea in Section 2.1, with an emphasis on the most
prevalent kind, i.e., obstructive sleep apnea. We continue in Section 2.2,
by describing the plan and objective of the CESAR project along with the
current status and contributions. The most important elements of machine
learning and techniques are presented in Section 2.3. Finally, we conclude
this chapter in Section 2.4.

2.1 Sleep Apnea

SA is a common sleep disorder characterized by repeated periods of re-
duced or paused breathing during sleep [Punjabi 2008]. During disrupted
breathing, the amount of oxygen (oxygen saturation) in the blood decreases.
If the amount of oxygen in the blood becomes too low, the brain forces
an awakening to resume breathing. As this disorder shows itself during
sleep and the continuous awakenings are brief, sufferers are unlikely to
remember it the next day. The repeated awakenings hinder deep sleep that
consequently leads to daytime symptoms such as excessive sleepiness and
feeling fatigued. The lack of any recollection of nightly awakenings means
that people can easily misinterpret these symptoms for something else. The
most notable effect of the disorder is a lower quality of life, though it can
lead to more serious complications if it remains undiagnosed. SA is associ-
ated with a higher risk of having diabetes, heart disease, stroke, depression,
anxiety, high blood pressure, and motor vehicle accidents [Young et al. 2002,
2004], [Punjabi 2008], and [Huang et al. 2008]. The severe consequences
show the importance of proper sleep patterns to maintain both physical and
mental health throughout life.

SA is one of the most treated sleep disorders in sleep clinics amongst in-
somnia, restless leg syndrome, and narcolepsy [Alaska Sleep Clinic 2018b].
However, approximately 70-80% of all SA cases remain undiagnosed [Punj-
abi 2008]. It is estimated that 25% of the Norwegian middle-aged population

5

6 Chapter 2. Background

is at high risk of suffering from obstructive sleep apnea [Hrubos-Strøm et al.
2011]. OSA sufferers are about two or three times as likely to be involved in
traffic accidents because of severe sleep deprivation [McNicholas 2013] and
[Gottlieb et al. 2018]. Early diagnosis of SA is vital for reversing or alleviat-
ing the disorder. To summarize; if SA remains untreated, it is clear that it
has a severe impact on the health of individuals, as well as society as a whole.

There are two main types of sleep apnea, namely Obstructive Sleep Apnea
(OSA) and Central Sleep Apnea (CSA), in addition to a more recently dis-
covered type, which is a combination of the two - known as Mixed or Complex
Sleep Apnea. Studies have shown that OSA accounts for most cases of SA
and that people start to exhibit symptoms of CSA when treated for OSA,
indicating that they suffer from complex sleep apnea [Morgenthaler et al.
2006]. In this work, we focus on OSA since it is the most prevalent type of
SA.

2.1.1 Obstructive Sleep Apnea

Obstructive Sleep Apnea (OSA) is characterized by recurrent episodes of
partial or complete collapse of the upper airway during sleep [ASAA 2020a].
If the muscles that control the tongue and the soft palate relax too much
during sleep, both can fall back and cause the upper airway to become
narrower and constricted. An illustration of regular airflow is shown in
Figure 2.1a, while in Figure 2.1b and Figure 2.1c, the tongue falls back,
which partially or completely blocks the airways. A complete blockage
inhibits breathing, while a partial blockage will make the sufferer breath
more shallow. In both cases, the sufferer will automatically increase the
respiratory effort by pressing more air through the blockage in order to
resume breathing. For this reason, loud snoring is often associated with
OSA, along with gasping during the brief awakenings.

Figure 2.1: Illustration of physical blockage of upper airways [SomnoMed
2020]

2.1. Sleep Apnea 7

2.1.2 Symptoms

A significant challenge with OSA is that it occurs when people are sleeping,
thus it is hard to notice. A contributing factor is that the most common
symptom is daytime sleepiness. Feeling tired can be normal for many
people due to various reasons, and since they are not aware of the nightly
awakenings, the disorder is very likely to go unnoticed. The obstruction
of the airways often results in loud snoring, which means that bedside
partners or family members in the house are often the first to raise suspicion
of someone having SA. Other symptoms include frequent breaks in breathing,
restless sleep, headaches, mood swings, and lack of concentration [Alaska Sleep
Clinic 2018a].

Risk Factors

Several factors increase the risk of someone having OSA. The condition is
directly linked to weight as obese people have an increased amount of fatty
tissue that builds up in the neck and throat, which can lead to narrowing
of the airways [Alaska Sleep Clinic 2018a]. Other factors are age and sex.
Middle-age males have the highest risk due to aging-related weakening
of muscle tone, lengthening of the soft palate, and increased deposition
of fat in the throat [Punjabi 2008]. Lifestyle habits like smoking can cause
inflammation and fluid retention in the upper airways, which can impede
the airflow. Frequent alcohol use is another factor, as alcohol can cause the
throat muscles to relax to such an extent that the airways become blocked.

Treatment

Common treatments of OSA include changes in lifestyle, such as quitting
smoking and losing weight. Although OSA can affect anyone, it is more
prevalent in people that sleep on their backs. Therefore, another option is to
use a special device to prevent people from sleeping on their backs. In more
severe cases of OSA, doctors often recommend continuous positive airway
pressure (CPAP), which is a face mask device that pressurizes the upper
airways of a person to keep them open during sleep [Punjabi 2008].

2.1.3 Diagnostic

To diagnose OSA, potential sufferers need to undergo a sleep study to
capture the nocturnal events (i.g., nightly awakenings) as they are happening
at night using various types of physiological sensors. The severity of OSA is
commonly determined based on the average number of apnea and hypopnea
events per hour of sleep, referred to as the Apnea-Hypopnea Index (AHI).
According to the American Academy of Sleep Medicine (AASM) [Berry et al.
2012], this metric is mandatory when diagnosing OSA. AHI is divided into
four severity classes: normal sleep, mild OSA, moderate OSA, and severe
OSA, which are classified as follows [WebMD 2020]:

• Normal sleep: An AHI of fewer than 5 apnea/hypopnea events, on
average, per hour

8 Chapter 2. Background

• Mild OSA: An AHI of 5 to 14 apnea/hypopnea events per hour

• Moderate OSA: An AHI of 15 to 29 apnea/hypopnea events per hour

• Severe OSA: An AHI of 30 or more apnea/hypopnea events per hour

Breathing disruptions are, in general, classified as either an apnea, or a
hypopnea. The difference between the two is that apnea refers to the complete
cessation of breathing, while a hypopnea refers to a reduction in airflow or
shallow breathing. According to the scoring rules outlined by AASM [Berry
et al. 2012], a breathing stop has to last for at least ten seconds to be classified
as an apnea. Hypopnea is classified when there has been a reduction in
breathing of at least 30% that lasts a minimum of ten seconds, in addition to
detecting either a ≥3% drop in oxygen saturation. Arousal means that the
person has woken up for three to fourteen seconds, which can be detected
using the EEG signal.

Polysomnography

Polysomnography (PSG) is the most common method used for objective
assessment of sleep and is the gold standard for the diagnosis of OSA. In a
clinical setting, it requires overnight monitoring in a sleep laboratory with
several physiological sensors attached to the patient’s body (see Figure 2.2).
There are several benefits of PSG stemming from its long documented his-
tory use in the field. The equipment is often very expensive and of good
quality, formally tested and medically certified, thus generally produce
data of high quality and precision. Additionally, during PSG, it is required
that trained sleep technologists monitor the subject, making sure that all
sensors are properly attached. Using their experience in analyzing sleep
results, they can determine if the recorded data is enough for a diagnosis or
if another sleep session is required. They may also ask the subject to change
the sleeping position to try and sleep on their back since OSA is often most
prevalent in this position.

There are also some drawbacks to PSG. First of all, it is very resource-
demanding as it requires medical trained personal to monitor the subject
during the night and to analyze the recorded sleep data afterward. The
excellent quality of PSG comes at the cost of limited availability, because of
expensive equipment and the need for trained sleep technologists. Besides,
the subject has to sleep in an unfamiliar environment with many sensors
attached, which can make them feel uneasy and stressed, possibly hindering
any sleep at all. As a result, there is often a waiting time for PSG, and
practitioners cannot recommend everybody at risk of having OSA for PSG.
As a consequence, the threshold for people to seek medical help may be
high, along with an unnecessarily long diagnostic time starting from the
initial suspicion of OSA to a medical diagnose.

2.1. Sleep Apnea 9

Figure 2.2: Illustration of traditional polysomnography [Medifixit 2016]

Physiological Signals

The variety of physiological sensors used during PSG largely contributes to
its reliability for the detection of OSA. Traditional PSG must include at least
the following signals: electroencephalography (EEG), electrooculography
(EOG), electrocardiogram (ECG), chin electromyography (EMG), limb EMG,
the respiratory effort from the thorax (chest) and abdomen, nasal airflow,
and pulse oximetry. Common for EEG, ECG, EMG, and EOG are that they
measure the electrical activity produced by the brain, heart, muscles, or eyes
by attaching electrodes to the body.

PSG studies often includes a microphone, accelerometer, and body pos-
ition sensors to capture and monitor snoring sounds and sleeping positions.
PSG is used to determine a variety of sleep disorders besides OSA and SA
in general, including narcolepsy, idiopathic hypersomnia, periodic limb
movement disorder, Rapid Eye Movement (REM) sleep behavior disorder,
and parasomnias. Continuing, we will only describe the most used sensors
as not all sensors included during PSG are relevant for the detection of OSA.

Since respiration is at the core of OSA, signals that monitor the respiratory
effort are crucial. They are divided into two types that either measure the
respiratory effort or the airflow. The gold standard for measuring airflow
is a pneumotachograph, which is a mask placed over the mouth and nose.
The mask is, however, bulky and large enough to reduce sleep comfort and

10 Chapter 2. Background

is therefore not used in most sleep studies. Instead, AASM recommends
non-intrusive sensors such as a nasal pressure transducer or oronasal thermal
sensor to measure airflow and for monitoring both apnea and hypopnea
events [Berry et al. 2012].

Sensors that monitor the respiratory effort, instead of airflow, measure the ac-
tual physical effort of breathing. There exists a wide variety of non-invasive
sensor types for such a purpose, but according to Berry et al. [Berry et al.
2012] only the respiratory inductance plethysmography (RIP) and polyvinylidene
fluoride (PVDF) type sensors are recommended for SA monitoring. Both
sensor types are placed on belts and strapped around the patient to measure
the expansion and contraction of the abdomen or thorax associated with
breathing. PVDF sensors are typically located in a single portion of the belt
and depend on the remainder of the belt to transfer the force (due to stretch-
ing of the belt) to the sensor part. RIP belts, on the other hand, measure
the inductance of the belt as a whole, which means they detect a change in
length of any sections of the belt [Bronstein et al. 2017].

During the scoring of PSG data, sleep experts rely on the signal from respir-
atory effort sensors to distinguish between the two types of apneas, namely
central and obstructive. The difference between the two types is that the
sufferer will show no effort of breathing during a central apnea, which
means the signal from respiratory effort sensors will flatline. In this case, the
issue lies with the brain, failing to transmit the proper signals to the muscles
that control the breathing [Mayo Clinic 2020].

EEG and EOG sensors attached on the face and scalp (see Figure 2.2) meas-
ures the brain activity and eye movement, respectively, during sleep. Both
sensors are often used in sleep studies to determine wakefulness and the
sleep stages. This is important for correctly calculating the AHI index since
we want to exclude the period when the patient is falling asleep, and be-
cause arousals are associated with hypopnea events.

A pulse oximeter sensor is a small clip that is often attached to the fin-
ger (see Figure 2.2) to measure the oxygen saturation in the blood. The
sensor is essential to classify hypopnea events, that is, to identify periods
with an oxygen drop of ≥3%. The oxygen saturation derived from a pulse
oximeter is referred to as SpO2 and is an indirect measurement as it is often
calculated over a time span, making it a delayed signal.

A microphone can be included during PSG to capture snoring sounds and
classify OSA as snoring is a very common symptom. Body position sensors
can be used to determine the sleeping position of the subject. In some cases,
this may be important information as sleeping on the side rather than the
back significantly lowers the number of apnea/hypopnea events for some
people, which may need to be considered to avoid misclassification.

2.1. Sleep Apnea 11

2.1.4 NOX T3 Sleep Monitor

Respiratory polygraphy is a cost-effective alternative to PSG that can be per-
formed at home without the assistance of medical personnel or monitoring.
Letting people use a portable monitoring device at home reduces the re-
sources needed, but only to some extend. The recorded sleep data still needs
to be manually analyzed by a sleep expert before an eventual diagnosis can
be determined. There exists a variety of portable devices, with NOX T3
made by NOX Medical, often being the preferred choice for the diagnosis of
sleep-related disorders in hospitals around the world. NOX T3 is a complete
medical grade respiratory sleep monitor that comes equipped with all of
the physiological sensors used in traditional PSG. The minimalistic design
of NOX T3 makes it easy to use as it is battery-powered and comes with
internal storage [NOX Medical 2020a].

The main drawback of portable respiratory polygraphy devices is the price.
For instance, the cost of NOX T3 is estimated to be around 77 000 - 100 000
NOK, making it far too expensive for personal consumers to buy for an
initial diagnosis at home. Respiratory polygraphy can be considered as a
portable version of traditional PSG to provide another option for the clinical
diagnosis of OSA. A recent study by Xu et al. [Xu et al. 2017] validates
the performance of NOX T3 for home sleep testing to diagnose OSA in
adults. The clinical/medical certification of NOX T3 implies that it is priced
towards hospitals and not for personal consumers. NOX T3 is used in the
CESAR project for several purposes, such as to evaluate the performance
of machine learning classifiers on physiological signals and to compare the
signal quality against cheaper sensors like FLOW, as in our case. We also use
the manual scorings done on NOX T3 data from a sleep expert later on. An
illustration of NOX T3 is shown in Figure 2.3. The device used for recording
and storing data is shown on the left side of the figure and is attached to
the chest on top of the respiratory effort sensor that measures the thorax
expansion, as shown on the right side of the figure.

FLOW Sensor

The FLOW sensor from SweetZpot is an affordable strain-gauge respiratory
effort belt, priced at about 200 Euros [SweetZpot 2020]. In addition to cap-
turing the respiratory effort, the sensor can measure the heart rate when the
belt is worn directly on the skin. The sensor uses batteries as power-source
and transmits the data over Bluetooth to a smartphone using the Android
application called RawDataMonitor. The FLOW sensor should capture the
respiratory data at a sampling rate of 10 Hz. FLOW was originally de-
veloped for training/fitness purposes, such as monitoring the breathing
of cyclists or rowers. Monitoring breathing in real-time can give athletes a
better insight into how their body is performing and how their breathing
changes during different levels of training intensity. This data can then be
used by athletes to optimize their performance.

12 Chapter 2. Background

Figure 2.3: Illustration of NOX T3 [NOX Medical 2020a]

The FLOW sensor might be useful for SA monitoring since it captures
the breathing effort. However, this context is different from the intended
training contexts. For instance, a cyclist will usually attach the mobile device
on the handlebar of the bike. As a result, the short distance between the
sensor attached to the chest and the smartphone means the connection is
free from obstacles. Furthermore, such activities usually do not last for more
than a couple of hours. For SA monitoring, on the other hand, the sensor
needs to record data for an entire night which is more demanding. Besides,
if a person is sleeping on the sensor part of the belt, the connection may
become blocked.

2.2 CESAR Project

The long-term goal of the CESAR project is to increase the percentage of
diagnosed OSA cases and reduce the time it takes for diagnosis. In addition
to support monitoring of patients in the long-term with cost-efficient tools
that are user-friendly for sleep analysis at home. Instead of providing altern-
atives to traditional PSG diagnosis, CESAR aims to reduce the threshold for
people to seek medical help by enabling them to take the first step towards
an early diagnosis at home. The core idea is that people should be able to
buy an affordable sensor, such as a respiratory effort belt or a smartwatch,
for use together with a smartphone to record sleep data. The goal is to utilize
machine learning techniques to automatically classify the recorded sleep
data and provide the user with an indication of OSA severity and further
recommendation.

2.2. CESAR Project 13

For this to be realistic, the signal data produced by these sensors need
to be of adequate quality, while at the same time being affordable for con-
sumers. Suitable machine learning classifiers should be determined. These
should have a high performance on physiological time-series signals that
can learn the relevant patterns for OSA.

2.2.1 Data Mining for Patient Friendly Apnea Detection

One of the first contributions of the CESAR project is a study [Kristiansen
et al. 2018] that analyzes whether a subset of the physiological signals used
in traditional PSG allows for detection of SA events using automatic classific-
ation. In this study, the signals in focus are the oxygen saturation measured
with a pulse oximeter, in addition to respiration from the abdomen, chest,
and nose. The performance of five data mining techniques in relation to SA
classification are evaluated using two datasets from PhysioNet. The two
datasets contain PSG data from several healthy subjects and SA sufferers.
An accuracy of 96.6% is achieved using a combination of respiration data
from the chest and nose. This highlights the ability to perform automatic
scoring to reach similar classification as trained medical personal. Their
findings clearly illustrate the importance of data quality as the accuracy
of the data mining classifiers on all signal combinations, is in the range of
90.6%-96.6% for the Apnea-ECG dataset and 58.2%-73.1% for the MIT-BIH
dataset. Furthermore, this study suggests that one signal might be suffi-
cient for the detection of disrupted breathing if the data size and quality
are good enough. Finally, this study concludes that the respiratory effort
from the abdomen is the preferable signal choice when considering both the
performance of classification and patient comfort.

2.2.2 Signal Quality Evaluation of Respiratory Effort Sensors

Based on the prior result of the respiratory effort sensors for automatic de-
tection of SA, a study by Løberg [Løberg 2018] compares the signal quality
of several low-cost respiratory effort sensors with emphasis on SA monitor-
ing. The best way to accurately determine the quality of respiratory effort
sensors is to include them during a sleep study and let sleep experts manual
score the data afterward. However, this is very resource-demanding and
not feasible, considering that multiple sensors should be evaluated. Instead,
Løberg determines the quality of sensors by capturing the respiratory ef-
fort of several participants in a laboratory while awake. The participants
performed several tasks to simulate sleep apnea events by, for example,
holding their breath or breathing shallow for an extended period of time.
Only shorter sessions were conducted because the subjects needed to be
awake the whole time.

A RIP sensor from NOX Medical is used as the gold standard to compare the
different respiratory effort sensors against. Løberg defines several suitable
metrics for measuring the quality of respiratory effort sensors closely related
to how medical personnel score apnea and hypopnea events. The sensitiv-

14 Chapter 2. Background

ity, positive predictive value, clean minute proportion are used to measure and
evaluate the breath detection accuracy of the signal produced by respiratory
effort sensors. In addition, the weighted average percent error metric is used to
measure and evaluate the breath amplitude accuracy.

The signal from FLOW achieves the best breath amplitude accuracy of
the sensors evaluated. A reason for this might be because it is the only belt
type sensor that captures the same unit of measurement as NOX, which is
lung volume (tidal volume). As a result, the CESAR project aims to use the
FLOW sensor in future studies.

2.2.3 A3 Study

Including a sensor in a clinical setting is usually an extensive process that
requires planning, medical equipment, personal and patient recruitment.
The A3 study from Oslo University Hospital presents us with a unique
opportunity because of the collaboration with the CESAR project. Besides,
the proximity between the Institute for Informatics and the Oslo University
reduces the time spent with collecting the FLOW sensors from patients for
data transfer and cleaning before further use. During the fall of 2018, the
remaining patients in the A3 study yet to undergo home polygraphy, were
asked and agreed to use the FLOW belt in addition to the NOX T3 sleep
monitor during sleep.

Since the quality of FLOW showed promising results during the initial
study by Løberg with regards to measuring the respiratory effort, we de-
cided to use the FLOW sensor with the last 34 patients in the A3 study
during the fall of 2018. These patients used both the NOX T3 Sleep Monitor
and the FLOW belt during their participation because the CESAR project
wants to study how low-cost sensors for specific respiratory signals compare
to certified medical-grade sensors for SA monitoring. The polygraphy data
from the NOX T3 is manually scored by a sleep expert, which is very bene-
ficial for us because it enables us to use the scoring of NOX T3 recordings
to analyze FLOW data (to determine SA events). The scoring results by
a sleep expert would likely be less accurate using the signal from FLOW
alone. The reason is that not all SA related events are easy to distinguish
when using only one respiratory signal. Based on how hypopnea events
should be scored according to AASM, accurate scoring requires monitoring
of the oxygen saturation level and detection of arousals. However, it may
be possible that machine learning algorithms can learn to detect hypopnea
events from only one respiratory signal better than experts.

The motivation behind the A3 study is to investigate the prevalence, risk
factors, characteristics, and type of SA in ablation candidates with par-
oxysmal atrial fibrillation (AF) [Traaen et al. 2019]. The main findings from
the A3 study are that SA is common in this AF population, with OSA being
the most prevalent type. The results indicate that SA is under-diagnosed in
patients suffering from AF.

2.3. Machine Learning 15

To summarize, we have collected recordings from 34 patients during the last
part of the A3 study in the fall of 2018. Our dataset consists of patients that
have not been diagnosed with OSA nor receives OSA treatment. None of
the patients have been diagnosed with persistent or no AF in the last three
months. Our population of 34 patients underwent two polygraphy sleep
tests at home using both NOX T3 and FLOW during their participation. The
dataset should consist of 69 nights of recording since one sleep test was
redone because of poor data quality. For various reasons, some recordings
are missing or excluded, which brings the dataset from 69 down to 57 nights
of recording. Some nights the FLOW sensor has only recorded for a small
period of the night. For this reason, some recordings are excluded because
they are too short to be used for evaluating the quality of FLOW.

2.3 Machine Learning

We use supervised learning algorithms to evaluate NOX T3 and FLOW data.
These algorithms rely on a training dataset that consists of a set of examples
for learning. By building a mathematical model based on the inputs and the
desired outputs from the training data, the goal is that these algorithms can
accurately predict the outcome from similar data in the future [Alpaydin
2014]. In our context, the signal data from either FLOW or NOX is the input,
while the desired output is the corresponding manual scoring by a sleep
expert. By training an algorithm only on the signal from FLOW, we can
compare the prediction accuracy to the prediction accuracy of the same
algorithm trained on the signal from NOX.

Since we are not interested in predicting the type of SA event, all SA related
events are combined into one single class of disrupted breathing. As a
result, the classification is a two-class problem, which means that an epoch
is either classified as disrupted breathing or normal breathing. The epoch
size determines the maximum number of SA events that a classifier can
detect per hour. A two-minute epoch size means that a maximum of 30
SA events per hour, although there might be more than one SA event in
each epoch. The estimated AHI index may be lower than expected as a
result. It is also possible to overestimate the AHI index by using a small
epoch size. For instance, some breathing stops may last for thirty seconds
or more, which means that the same SA event can span over subsequent
epochs if using a thirty-second epoch size or smaller. We have chosen to
use a one-minute epoch during our ML evaluation, which means that 60 SA
events are possible per hour. This is large enough to detect severe SA, i.e.,
AHI index of 30 or more.

Some of the standard metrics for evaluating the classification of a two-
class problem are sensitivity, specificity, and accuracy [Wikipedia 2020j]. For
a two-class problem, we want the algorithm to learn to identify the so-called
target class. For SA detection, disrupted breathing is the target class we

16 Chapter 2. Background

want the algorithm to learn to detect.

The sensitivity metric determines the algorithm’s ability to detect disrupted
breathing, while the specificity metric determines the algorithm’s ability
to detect normal breathing. The accuracy metric combines sensitivity and
specificity to describe the proportion of epochs that have been correctly
identified. The performance of several algorithms is often compared using
the accuracy metric. In some cases, however, a high sensitivity score might
be favored at the cost of a low specificity. One example is a metal detector at
an airport used to dangerous objects (i.g., weapons), that also detect belts
and watches that people wear. Therefore, the kappa statistic is commonly
used to indicate the degree of agreement by different metrics, which is use-
ful for comparing algorithms. A kappa value of 1 means there is a perfect
agreement between the metrics, while a kappa value of 0 implies that there
is no effective agreement between the metrics. Finally, a negative kappa
value means the agreement is worse than random [Wikipedia 2020g].

2.3.1 Approach

Choosing the best machine learning technique depends on the context in
question and the goal of the classification. Another aspect to consider
is the time and computation power needed for training a classifier. We
have chosen to use primarily deep learning algorithms. The selection is
based on performance, computational efficiency, and the fact that these
algorithms are already implemented in the CESAR project. Deep learning
algorithms are inspired by the human brain in the sense that they learn
from experience similarly by repeatedly performing a task to improve the
outcome [Wikipedia 2020i]. The classifiers, except for random forest, are split
between feedforward and recurrent neural networks. The main difference
between the two types is that feedforward networks only allow information
to move forward, while recurrent networks allow information to be reused
as input.

Multilayer Perceptron

Multilayer Perceptron (MLP) is a feedforward artificial neural network that
consists of at least three layers of nodes, namely an input layer, a hidden
layer, and an output layer. However, MLPs do often consist of multiple
hidden layers. MLPs are fully connected, which means that each node in
one layer connects with a certain weight to every node in the following
layer [Wikipedia 2020b]. For this reason, MLPs are prone to overfitting,
meaning they learn the training data too well, which reduces their ability to
generalize future data.

Convolutional Neural Network

Convolutional Neural Network (CNN) is another feedforward neural net-
work. CNN is one of the most popular deep learning models, most com-
monly applied to image classification. Over the last few years, CNN has

2.3. Machine Learning 17

shown surprisingly promising results in other fields, such as in recom-
mender systems and natural language processing. Besides the high accuracy
in image classification, a key factor for its popularity is the computational
efficiency, enabling the possibility to run the model on smartphones. Briefly
explained, CNN can be viewed as a regularized version of MLPs that re-
duces the risk of overfitting. CNN takes advantage of hierarchical patterns
in the data to assemble complex patterns using more simple patterns. CNN
requires little preprocessing as it learns the filters and features which are
important for the specific classification context [Wikipedia 2020c].

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a recurrent neural network with feed-
back connections, well-suited for classification on time series data where
there often can be a large time difference between subsequent events of
interest. LSTM is typically composed of a cell and three gates; an input,
output, and forget gate [Wikipedia 2020d]. The gating mechanism regulates
the flow of information in and out of the cell, thus the cell can remember
values over arbitrary time intervals. In addition to LSTM, we use some
variations of the algorithm. In bidirectional LSTM (BILSTM), time-series
data can propagate backward in time, in addition to forward. In stacked
bidirectional LSTM (SBILSTM), there is not only one, but multiple LSTM
layers stacked on top of each other. The deeper learning should, hopefully,
increase the accuracy, at the cost of more complexity. The BIWALSTM is
a bidirectional LSTM that that provides LSTM with an attention property
suggested by [Wang et al. 2016]. This should increase performance and
possibly give insight into which part of an epoch the algorithm uses to
determine whether the epoch contains disrupted breathing or not.

Gated Recurrent Units

Gated Recurrent Units (GRUs) is another gating mechanism like LSTM,
where the main difference is that GRUs lacks an output gate [Wikipedia
2020e]. Although GRUs are less sophisticated than LSTM, they have proven
to be as good or better than LSTM with a smaller dataset.

Random Forest

A random forest (RF) classifier is constructed by multiple decision trees,
where each tree is trained on a slightly different subset of the data [Wikipedia
2020a]. The prediction of all trees are averaged and serves as the final
prediction of the RF. The main point of a RF classifier is that it tries to correct
for decision tree’s tendency of overfitting and memorizing their training set.

2.3.2 k-fold Cross Validation

K-fold cross-validation is a popular technique used to evaluate machine
learning models by randomly splitting the data into k equal sizes, using
k-1 subsets to train the model and the remaining subset for testing and

18 Chapter 2. Background

evaluation [Wikipedia 2020f]. The key point of this approach is that cross-
validation is repeated k times (the folds) and that each subset is used exactly
once for testing and validation and k-1 times for training. The result of each
fold is then averaged to produce a final estimation of the model, including
the standard deviation of each metric. One advantage of cross-validation is
that we can inspect the result of each fold for obvious issues. For example, if
the accuracy in one fold is much lower than the remaining folds, likely, one
or more of the recordings used for testing and validation in this particular
fold has more variation in the data compared to the remaining recordings.
In general, a higher number of folds should reduce the significance of
error from bias, but the same time increases the errors related to the higher
variance of data. Another relevant factor to consider is the size of the dataset,
as the computational time increases with each added fold.

2.4 Discussion and Conclusions

Sleep apnea is a severely under-diagnosed disorder that is hard to suspect
because it shows itself during sleep. Traditional PSG sleep studies are very
resource-demanding and uncomfortable to undergo. Besides, the threshold
for people to seek medical help is often high. The CESAR project aims to
lower this threshold by enabling people to take the first step towards a
diagnosis at home using various types of low-cost sensors. There are several
important physiological parameters to consider for SA monitoring which
are: airflow, respiratory effort, wakefulness, and oxygen saturation.

FLOW is a low-cost respiratory effort sensor that the CESAR project has
evaluated in a controlled environment. Based on the results, we include
the sensor in a clinical sleep study, along with NOX T3 for comparison, to
evaluate the usefulness of FLOW for SA detection. The evaluation is based
on signal quality metrics and the classification performance of various ML
models regarding the detection of disrupted breathing.

The data quality issues we discovered in the FLOW data need to be ad-
dressed to synchronize the signal with NOX for evaluation. As a result, we
discuss how to preprocess the dataset in the following chapter.

Chapter 3

Data Quality Issues

In this chapter, we present an overview of data quality issues and how we
can assess the quality of data, with an emphasis on respiratory effort sensors
(like FLOW). We begin in Section 3.1 with a brief introduction to the factors
of data quality, followed by a description of the data quality dimensions
and metrics we use to measure the quality in Section 3.2. Next, we present
a baseline analysis of the data quality issues for FLOW in Section 3.3. We
finally conclude the chapter in Section 3.4.

3.1 Data Quality Assessment

The definition of quality is related to the wish of deciding how one object
(or some thing) compares to similar objects and the performance of that
object for a given task. Therefore, data quality can be defined as the data’s
purpose for a given context, which means the capability of data to satisfy
the stated business, system, and technical requirements of an enterprise,
that is, its fitness for use [Mahanti 2019]. In regards to our context, the quality
of the collected data is, first and foremost, reflected in its usefulness for the
detection of disrupted breathing.

The first dataset inspection and analysis is useful to get a first impression of
the general quality of data in question. Tools that allow for a visual repres-
entation of data can often help uncover underlying issues. Knowledge of the
data and context is fundamental to determine the right approach and steps
for preparing and measuring the quality of the dataset. The aim is to assess
data quality as accurately as possible to provide a foundation for further
decision makings. The motivation behind can be complex and depends
on the stated business. One reason is the wish to improve the quality of
existing data. Using well-defined metrics that are easy to understand means
that different attempts to improve the data quality can be compared to each
other. Another reason is the wish to improve the process or equipment used
to collect data. For example, if we want to improve the quality of the sensor,
we can use metrics to measure the captured data from various versions of
the sensor for comparison.

19

20 Chapter 3. Data Quality Issues

The uniqueness of our dataset means that we cannot redo the recordings
because of any data issues we may discover. Therefore, our focus is to im-
prove the quality of the obtained data if necessary. As a side effect, possible
data quality issues we discover should be useful for improving the quality
of future recordings.

3.1.1 Data Quality Dimensions

A Data Quality (DQ) dimension represents a particular feature of some data
that can be measured to analyze and determine the quality of the data. In
other words, each DQ dimension describes a way to view the data, which
is useful to understand, analyze, and hopefully resolve or minimize data
quality issues. Askham et al. [Askham et al. 2013] defines six generic key
DQ dimensions with the hope that data quality practitioners adopt them
as the standard method for assessing and describing the quality of data.
The six dimensions are completeness, uniqueness, timeliness, validity, accuracy,
and consistency. The motivation behind the study is to reduce confusion
since practitioners have different views and use different terms to describe
the same dimension. However, there is no definitive list of DQ dimensions
that can be used for assessing the quality of data, with the confusion still
being present. For example, Mahanti [Mahanti 2019] lists thirty different DQ
dimensions, including both accuracy and correctness, which are often used
interchangeably by practitioners even though these may be conceptually
different. The main takeaway point is that not all DQ dimensions of data
should or need to be measured, which is also infeasible for us, given the
limited time frame. Therefore, our focus is to determine the DQ dimensions
that are most important to consider when measuring the signal quality of
recordings and the quality of the dataset as a whole.

3.1.2 Physiological Time Series

One of our main objectives is to measure the signal quality of overnight
recordings to understand how reliable the FLOW sensor is. As previously
explained in Section 2.2.2, one of the contributions of the CESAR project is a
study by Løberg [Løberg 2018] which defines several metrics that are useful
for measuring the quality of respiratory effort sensors, like FLOW. Based on
Løbergs result, we decided to utilize the same metrics and scripts as much
as possible.

Out of the six generic DQ dimensions, only the accuracy and completeness
are used to measure the signal quality. This is partly because it is difficult
to measure the validity of a signal and because the uniqueness, timeliness,
and consistency are irrelevant when assessing the quality of individual time
series. The two dimensions we use are described as follows:

Completeness: The completeness dimension describes the difference in
the length of a recording compared to its intended length. For example, a
person that monitors the respiratory effort overnight for eight hours, but the

3.2. Signal Quality Metrics 21

recording only contains four hours of data. In this case, the completeness of
the data is 50%. Monitoring in an unattended setting means it is challenging
to determine what the intended length is. As we are recording with two
different device, one option is to use the length of the recording with the
NOX T3 to measure the completeness of the FLOW recording. However, the
length of the NOX T3 recording is not necessarily an accurate description of
the intended length, because we are mainly interested in the periods when
the person is sleeping for monitoring SA. There may be differences in the
setup as the recording with NOX T3 and the recording with FLOW is not
necessarily started simultaneously. Furthermore, both sensors are wireless
(e.g., Bluetooth), which means the signal can drop or become weak. A likely
scenario is that a person goes to the bathroom in the middle of the night,
causing a potential connection loss depending on the signal range.

Accuracy: The accuracy dimension is the degree to which the recorded
data correctly describes the real-world entity it represents. Accuracy, in
contrast to most DQ dimensions, cannot be evaluated by analyzing the
data itself. Instead, measuring the accuracy of recorded data can only be
achieved by comparing it to the ground truth, that is, the real-world entity
it represents, which in most situations is not practical or even possible. As
a result, it is common to use a third-party reference deemed trustworthy
enough to be the gold standard. The gold standard should most accurately
describe the ground truth and is, in our case, the RIP abdomen signal from
the NOX T3.

The accuracy of our dataset in the context of sleep apnea monitoring is
ultimately reflected by the classification performance of machine learning
classifiers for the detection of disrupted breathing. To do this, we use the
annotated NOX T3 scored by a sleep expert from Oslo University Hospital
to compare the results of the two signals.

3.2 Signal Quality Metrics

Defining metrics for measuring the signal accuracy of a sensor depends on
the nature of the data in question. In the context of sleep apnea monitoring,
the most precise method for measuring the signal quality of a respiratory
effort sensor is to include it in traditional polysomnography using real sleep
apnea sufferers, and let trained personal score the results manually. Al-
ternatively, studies have shown that there is a close agreement between the
results from home sleep testing, using the NOX T3 monitor, and the results
of in-laboratory polysomnography [Xu et al. 2017]. The disadvantage of
this kind of study is the lack of supervision, which means we cannot help
patients with proper placement of the sensors. Nevertheless, the recordings
are in a real-world setting and reflect what we expect users to record in an
initial sleep monitoring test at home.

There are some consequences of relying on the classification performance

22 Chapter 3. Data Quality Issues

as the only indication of the signal quality. For instance, if the performance
of a classifier is inferior, without any other quality metrics, it is difficult to
determine which aspects of the underlying data or recordings are to blame.
Some recordings may be of such poor quality that they should not be used
to train a model or to evaluate the prediction accuracy. The annotated scor-
ing from NOX T3 must be aligned with the signal from FLOW accurately
enough that all SA events correspond to the signal. If this is not the case, the
classifier may learn the wrong patterns during training, or even if it predicts
correctly, the evaluation may say otherwise if the annotated scoring is not
aligned accordingly. As a result, we consider different ways to measure the
signal quality.

The accuracy of a physiological time series data is simply the distance
between it and the ground truth or gold standard. This distance can be
measured in several ways, with one option being a raw signal comparison
of the waveforms using a domain function. For this to be meaningful, both
signals need to have the same unit of measurement. For instance, if one
sensor measures the respiratory process by the changes in airflow and an-
other by the change in lung volume, their signals cannot easily be compared
as the measurement units are different. The drawback of a raw signal com-
parison is that all signal parts are compared even though not everything
may be relevant to the context. The accuracy of respiratory effort sensors
for sleep apnea monitoring is related to their ability to detect breaths and
disrupted breathing. More precisely, the requirement is that such sensors
should be able to detect apnea and hypopnea events.

3.2.1 Apnea Detection

The definition of an apnea is given as a complete cessation of breath lasting
for at least ten seconds. There are two types of apnea events, central and
obstructive, although a combination of them is possible. For instance, an
apneic event can start as a central apnea and develop into an obstructive
apnea. During an obstructive apnea, the respiratory effort is persistent or
increased as the patient is trying to force air through the physical obstruc-
tion. In the case of a central apneic event, the patient shows no signs of
respiratory effort. Figure 3.1 illustrates a number of different respiratory
effort signals during an apnea event. Notice that both the RIPabdomen and
RIPthorax show respiratory effort during the apnea, which means it is an
obstructive apnea. As a result, RIP belts are not recommended by AASM for
apnea monitoring, but are recommended for determining the type of apnea
event as the sufferer will exhibit different respiratory behavior.

According to Løberg [Løberg 2018], the most fundamental quality met-
ric for apnea detection is the breath detection accuracy. Meaning if a sensor
can accurately detect breaths, it is trivial to reason about its ability to detect
apnea events (i.e., gaps between breaths for more than ten seconds). How-
ever, this is not true for respiratory effort sensors like FLOW since the signal
may exhibit a different waveform than NOX T3 during obstructive apneas

3.2. Signal Quality Metrics 23

Figure 3.1: Respiratory signals during an obstructive apnea [Berry et al.
2012]

that are not necessarily bad for machine learning classification, but may
result in fewer or more breaths detected. Nevertheless, breath detection
accuracy should still be useful as an indication of the signal quality.

Breath Detection Accuracy

For measuring the breath detection accuracy of a signal, we use the following
metrics: sensitivity, positive predictive value, and clean minute proportion.
These metrics suggested by Løberg are described as follows:

Sensitivity: The sensitivity metric reflects the ability to identify breaths
correctly. Data from a low cost sensor like FLOW might not reveal all of the
breaths that can be detected with the data from NOX T3, or some might be
false breaths. One reason for false breaths to occur is if the signal is unable
to flatline during central apnea events. The formula for sensitivity is given
in Equation 3.1, where |Btrue| is the number of correctly identified breaths,
and |R| is the number of real breaths detected by the gold standard.

Sensitivity =
|Btrue|
|R| × 100% (3.1)

Positive Predictive Value: PPV is used to determine the proportion of
correctly identified breaths in relation to all breaths detected. A perfect
PPV score of 100% means that none of the detected breaths are false breaths.
As such, it yields information about the proportion of false breaths. The
formula for PPV is shown in Equation 3.2, where |B| is the total number of
detected breaths.

Positive Predictive Value =
|Btrue|
|B| × 100% (3.2)

24 Chapter 3. Data Quality Issues

Clean Minute Proportion: CMP is used to understand the distribution
of errors in the sensitivity and PPV metrics. A minute is considered clean
when both the sensitivity and PPV score are 100% during the minute. As
such, a perfect CMP score of 100% means that there are no errors in the two
metrics for the given number of minutes. See Equation 3.3, where |M| is
the length of the recorded signal in minutes, s yields the sensitivity, and
ppv yields the positive predictive value. The CMP score is calculated with
Equation 3.4, where |Mclean| is the number of clean minutes.

Mclean = {m ∈ M | s(m) = 100 and ppv(m) = 100} (3.3)

Clean Minute Proportion =
|Mtrue|
|M| × 100% (3.4)

3.2.2 Hypopnea Detection

For a period of shallow breathing to be considered a hypopnea event, there
needs to be a minimum of 30% reduction in airflow lasting a minimum
of ten seconds, in addition to either a ≥3% drop in oxygen saturation or
arousal. Without any other signals than a respiratory effort sensor, we can
only consider the reduction in airflow requirement. The breath amplitude
(level of airflow) measured by the sensor needs to be linear in relation to the
abdominal expansion. As a result, the breath amplitude accuracy is how we
want to measure the accuracy of hypopnea detection, with the prerequisite
of an accurate detection of breaths.

Breath Amplitude Accuracy

With a linear relationship between breath amplitude and belt distraction, a
30% reduction in breath amplitude corresponds to a 30% reduction in air-
flow. This relationship can also be monotonic, meaning the sensor measures
a 30% reduction in breath amplitude, although the airflow reduction is only
15%. Moreover, the sensor may become somewhat trapped, reducing the
detected breath amplitudes even if the airflow remains the same.

We have chosen to measure the breath amplitude similarly to how hypopnea
events are scored using an error rate as a percentage. Meaning a breath
amplitude error rate of 5% means that the measured reduction in airflow
is within 5% of the actual reduction. As previously explained, hypopnea
events are scored when the airflow is reduced by ≥30% for ten seconds or
more. Therefore, a sensor with a 5% amplitude error rate means that all
hypopnea events with a minimum of 35% reduction in airflow are identified.
The reason is that the sensor will measure a 35% reduction in airflow in the
range of 30-40%. Since the two sensors use different scales of measurement,

3.2. Signal Quality Metrics 25

we cannot compare the amplitudes directly. Instead, we obtain the relation-
ship through linear regression as we assume and expect the relationship
to be linear. More precisely, we fit a linear regression model to the breath
amplitudes of FLOW and NOX. The error rate of one breath amplitude in
the FLOW sensor is then calculated as its distance to the regression line
[Løberg 2018]. Figure 3.2 illustrates how the regression line is intended to
work.

Figure 3.2: Example of regression line

Finally, to summarize the error of all breath amplitudes, we use the weighted
absolute percentage error (WAPE). The WAPE formula is shown in Equation
3.5, where E are the regression line values and B are the actual breath amp-
litudes recorded by FLOW, and B is the calculated mean value of all breath
amplitudes. The WAPE metric works by calculating the error percentages of
all breath amplitudes relative to the mean of all breath amplitudes known
as the baseline.

n = |B|
WAPE = 1

n

n
∑

i=0

|Ei − Bi |
B
× 100% (3.5)

3.2.3 Breath Detection

We will utilize the script in [Løberg 2018] to automatically detect breaths and
calculate the sensitivity, PPV, CMP, and WAPE metrics. The breath detection
is based on a form of peak detection constrained by physical limitations. The
limitations are needed as not all peaks are breaths. Therefore, the following
requirements are used to determine if a peak should be regarded as a breath:

• The duration must last between 0.6 and 12 seconds.

• The amplitude of the peak must be at least 10% of the mean breath
amplitude.

• Breaths cannot overlap.

This script can be found in Appendix A, with some modifications to suit our
needs, as we explain later in Section 5.3.

26 Chapter 3. Data Quality Issues

3.3 FLOW Issues

Løberg [Løberg 2018] evaluates the signal quality of FLOW amongst other
sensors for sleep apnea monitoring in a controlled and surveyed environ-
ment. During the signal capture sessions, the subjects performed several
tasks to simulate sleep apnea events, for example, holding their breath or
breathing shallow for an extended period of time. Since the subjects were
awake the whole time, only shorter sessions of about twenty minutes were
conducted. The controlled environment is the main reason that they did
not experience any connection issues with the FLOW sensor. Moreover, the
unreliable timestamps were easily adjusted due to the short duration of the
capture sessions.

To understand why we experience these issues in a real scenario, we look at
what makes our set-up scenario different. One aspect is that we have longer
recordings lasting typically between seven or eight hours. We conduct our
sessions in the home of patients without any supervision where patients
are sleeping with both the NOX T3 sleep monitor and the FLOW sensor
for the entire night. We have no control over the sleeping positions of the
patients, which likely change several times throughout the night. Besides,
they may wake up to go to the bathroom in the middle of the night, in
which case we have no information about it. If the patient with the attached
sensor is too far away from the smartphone, the Bluetooth connection may
be weakened or lost. The signal may also become blocked if a patient sleeps
on their stomach. Moreover, changing sleeping position may cause the belt
to become misaligned or trapped altogether. We have not one but several
FLOW sensors at our disposal, which means that we can get a better insight
into the consistency of quality for the different FLOW sensors.

3.3.1 Connection Loss

One of the first issues we discovered with FLOW is that the sensor tends to
loose connection sporadically while recording. An example of this can be
seen in Figure 3.3, where the signal drops for around ten seconds before it
resumes at another baseline. This issue is very common since most of the
overnight recordings in the dataset have one or more connection losses.

Figure 3.3: Example of signal drop during recording

3.3. FLOW Issues 27

After inspecting several recordings, the first impression is that gaps around
five seconds or more between two subsequent samples are the result of a
loss of connection. For reasons that will become clear in Section 4.1, we
cannot generalize this or be completely sure. Instead, we try to estimate the
number of connection losses and their duration in each recording based on
gaps longer than five seconds.

The results of this estimate are shown in Table 3.1, where the recordings
are grouped based on the specific FLOW sensor used to record. The eight
FLOW sensors we use are listed as A, B, C, E, F, G, H, and I. The table lists
the number of recordings, the total duration, how many gaps that are longer
than 5 or 60 seconds, and the total signal loss. One may first notice that all
sensors have periods of connection loss. Sensor C has lost the most data
according to this estimate, but the total recording time for this sensor is
significantly higher than many other sensors. The signal loss percentage
may be better for describing the connection issues of a sensor. For instance,
sensor H has a signal loss rate of 17.5%, indicating that it has more connec-
tion issues than sensor F, which only has a loss rate of 1.0%. However, this is
not so obvious when we consider that one of the recordings by sensor I has
lost more than six hours of data, while the remaining five recordings have
lost eleven minutes combined. Nevertheless, there is a correlation between
the signal loss rate and the total number of gaps longer than five seconds.
Sensors with a high loss rate such as sensor C, sensor I, and sensor H have
more gaps, compared to the remaining sensors.

Each patient is expected to sleep for around six to eight hours, depend-
ing on their sleeping habits, but we discovered that several recordings stop
in the middle of the night for unknown reasons. One possible explanation
is that the application on the smartphone crashed, which would make sense
since this problem is not limited to a specific sensor. This assumption is
based upon our experience with the application. This application creates a
summary file when the user presses stop recording. None of the recordings
that end in the middle of the night have such a summary file, which indic-
ates that something went wrong.

To summarize, all sensors have connection issues. Although it may seem
that this problem is more apparent for individual sensors, the limited sample
size of each sensor means that a single recording with severe connection
issues can significantly impact the overall results of a sensor. To understand
the exact cause behind the connection losses, one would have to study the
individual FLOW sensors in a controlled environment such as a laboratory.

3.3.2 Unstable Sampling Rate

The benefit of using eight individual FLOW sensors during the data acquisi-
tion phase is that it allows for a broader and more general analysis of the
quality of the sensor. SweetZpot states that the FLOW sensor samples at 50

28 Chapter 3. Data Quality Issues

Sensor Rec. Duration Gaps > 5s Sig. loss Loss (%)
A 11 71h 37 58m 1.3%
B 7 39h 61 33m 1.4%
C 9 62h 119 460m 11.0%
E 10 75h 74 165m 3.5%
F 5 23h 14 14m 1.0%
G 4 25h 65 103m 6.4%
H 8 33h 108 419m 17.5%
I 6 36h 175 385m 15.1%

Table 3.1: Recording distribution based on sensors

Hz, but averages five subsequent samples as they arrive internally, before
it outputs a signal at 10 Hz. However, our analysis shows that for most
recordings, the sampling rate is not close to being precisely 10.0 Hz.

The boxplots with the distribution of sampling rate for every recording
can be seen in Figure 3.4 grouped by sensor ID. We have chosen to include
two versions of the sampling rate because of the connection issues. Figure
3.4a shows the sampling rate calculated using the number of samples and
the duration using Equation 3.6. In Figure 3.4b, we estimate the sampling
rate minute-wise using Equation 3.7, where m is the total number of minutes
in the recording and Si is the number of samples in a specific minute. We
exclude any minutes without samples and average the sampling rate of all
minutes, resulting in the estimated sampling rate.

Figure 3.4: Actual and estimated sampling rate for sensors

Hz =
samples

duration (sec)
(3.6)

Hzest =
1
m

m

∑
i=0

Si

60
, f or Si > 0 (3.7)

3.3. FLOW Issues 29

As seen in Figure 3.4a, there is a significant difference in the sampling rate
between some sensors and even among recordings with the same sensor. We
expect that some recordings have a lower sampling rate than 10 Hz, given
the connection issues, but surprisingly some recordings have a sampling
rate of around 11-12 Hz, as seen in the boxplots for sensor G and I. Moreover,
when we consider the connection issues, the estimated sampling rate in
Figure 3.4b, indicates that the sampling rate for most recordings is more
than 10 Hz. Generally, the sampling rates seem to be in the range of 10.0-10.5
Hz. The only exception are sensors G and I, which have a higher variation.
The FLOW presumably samples at 10 Hz, but our findings show that all
sensors over-sample, that is, all sensors have recordings with a sampling
rate higher than the stated 10 Hz. One possible explanation is that FLOW
does not sample precisely at 50 Hz internally, assuming that the process of
averaging the samples are done correctly. This is not a problem in itself,
but the fluctuating sampling rate raises a concern about the reliability and
quality of the hardware and product.

It is concerning that the sampling rate is not always the same across sensors
and that it can change between recordings with the same sensor. Fur-
thermore, it raises the concern that the sampling rate can change during
recording. We have chosen to inspect the sampling rate for a few selected
recordings from four sensors, as seen in Figure 3.5. This selection is based
on some of the variations we have observed in the sampling rate. The
sampling rate is estimated minute-wise and excludes any minutes without
data. Finally, the sampling rate of ten subsequent minutes are averaged to
reduce clutter. Each subplot shows two recordings from that specific sensor.
One may first notice how similar and stable the sampling rates are for the
recordings from sensors C and E in Figure 3.5a and Figure 3.5b, respectively.
The few sudden drops below 10 Hz are most likely the result of one or
more small connection losses. For example, given a sample rate of 10 Hz
across nine minutes, if the sampling rate of the last minute is estimated
to 1 Hz, the average sampling rate for the ten minutes is calculated as:
9×10Hz+1Hz

10min = 9.1Hz.

The recordings from sensor G and I have more variation, as seen in Figure
3.5c and 3.5d. Both have recordings with a sampling rate more or less stable
just above 10 Hz, but also recordings with an unusual high and unstable
sampling rate. It is interesting that the recordings with a higher sampling
rate change more during recording, than those with a sampling rate around
10 Hz. After a visual inspection of the signals, there is no indication that the
variations are a result of connection issues. Our analysis indicates that the
sampling rate of FLOW is not necessarily stable during recording.

30 Chapter 3. Data Quality Issues

Figure 3.5: Sensor sampling rate variation

3.3.3 Unreliable Time-stamping

So far, we have strong indications that the FLOW sensors do not output
a signal at 10 Hz precisely. This may not even be a problem, if not for
the fact that the timestamping of samples in a recording also is unreliable.
To illustrate what we mean by this, we plot in Figure 3.6a the samples on
the y-axis represented as blue dots and their corresponding timestamps on
the x-axis. Additionally, we plot in Figure 3.6b the same samples with the
only difference being that we have changed the timestamps by separating
each sample with 100 milliseconds. The difference is very obvious, as the
samples in Figure 3.6a are clustered together in groups with almost identical
timestamps, while the line drawn between subsequent samples in Figure
3.6b looks like a sinus-curve, typical for how respiratory effort sensors meas-
ure breathing.

Figure 3.6: Example of timestamping FLOW samples

Presumably, what happens is that when the Sleep Recorder application
receives a packet (via Bluetooth), it timestamps each sample as they are read.

3.3. FLOW Issues 31

This assumption is based upon the fact that the inter-sample arrival time
(according to their timestamps in the output file of the application) has a
high variance where the expected 100 milliseconds is a value that seldom
or never appears. In most cases, however, two consecutive samples have
almost the same timestamp. Besides this, 700 ms between two timestamps
appear rather often, which we attribute to the possibility that seven samples
are collected in one Bluetooth packet. There are sometimes even longer
inter-sample arrival times, which we attribute to the possibility that differ-
ent Bluetooth packets are not always handled immediately. For instance,
the smartphone could be busy with doing something else, which means the
packet ends up in a queue somewhere in the kernel/OS until the process
running the Sleep Recorder application starts again.

The sleep recorder application on the smartphone often handles more
samples at a time when it has not processed any for a few seconds, as
seen around the four-second mark in Figure 3.6a. Since several packets may
be queued before being processed quickly after another, it is difficult to
know the exact size of every packet based on the timestamping. Instead,
what we can determine with some certainty, is how many samples the ap-
plication handles/processes at a time. This assumption is based upon the
fact that many samples have identical timestamping, which means that if
there are even a few milliseconds between two subsequent samples, we
believe that the latter sample is part of a new packet. We use a margin of ten
milliseconds between two subsequent samples as the threshold for decid-
ing when the following sample is not part of the current round of processing.

The results are presented as a pie-chart in Figure 3.7. For half of the time,
the application processes seven samples, which further indicates that this is
the typical size of a packet. However, for the remaining 50% of the time, the
number of samples the application processes is more disperse, indicating
that the packet size is not fixed, but for some unknown reason, it usually
consists of seven samples.

Figure 3.7: Number of samples processed in a batch by the Sleep Recorder
app

32 Chapter 3. Data Quality Issues

It is also interesting to consider how often the sensor sends a packet via
Bluetooth or how often the application runs the processing. As such, we
group the samples by timestamps in ranges of 100 milliseconds to get an
approximate idea of the distribution. We present the results in a pie-chart
in Figure 3.8. 71% of the time, there are 600 -699 milliseconds between two
rounds of processing, which highly correlates to the fact that seven samples
are combined into one packet, causing this down-time between each round
where the application has nothing to process. Since seven samples are often
processed together, it is interesting that there is seldom 700-799 ms between
subsequent processing rounds. This is another indication that the sampling
rate exceeds 10 Hz, or else one would expect seven samples to be processed
every 700 milliseconds more or less.

Figure 3.8: Time between processing runs in the Sleep Recorder app

3.3.4 Baseline Issues

The definition of baseline in the context of respiratory effort signal is the
value on the y-axis between breaths, or more precisely, where a breath starts
and ends. For longer recordings, the baseline is not necessarily stable for
several reasons. First of all, the baseline of respiratory effort signals tends to
wander, meaning the value on the y-axis between breaths slowly increases
or decreases as time passes. More abrupt changes in the baseline are often
related to movement by the subject. The reason is that respiratory effort
sensors capture any sort of motion and not only motion related to breathing.
The signal noise related to movement is commonly referred to as motion
artifacts. As shown in Figure 3.9, the signal from FLOW struggles with both
motion artifacts, baseline wander, and baseline shifts. In this particular case,
the baseline wander is highest during the first hour of recording, but it is
present for the majority of the signal. In some parts, the direction of the
baseline wander changes after a baseline shift. The baseline shifts are often
preceded by large motion artifacts, possibly because the patient changes
their sleeping position.

Reducing or removing baseline wander in signals such as ECG, is often

3.3. FLOW Issues 33

Figure 3.9: Overnight FLOW recording

a requirement. Depending on the domain and severity of the baseline
wander, different approaches can be useful. Since baseline wander is mostly
low-frequency noise, one option is to use a high pass filter, but at the risk
of attenuating the respiratory component, if not done correctly. Another
option is to fit a low-order polynomial to the signal, which essentially is
finding the trend or the signal behavior over time and subtracting it from
the signal. This approach is a simple technique that leaves the respiratory
component mostly intact.

In the case of baseline shifts, the change is more abrupt to such a degree
that fitting a low-order polynomial is not sufficient. As this is related to
movement, one option is to use accelerometer data to identify motion arti-
facts. Virtanen et al. [Virtanen et al. 2011] implement an accelerometer-based
motion artifact removal (ABAMAR) algorithm that can be used for such
cases. If the acceleration (movement) between two consecutive samples
exceeds a threshold, the algorithm flags the corresponding time interval Tm
as a motion artifact. In cases of prolonged movement, Tm can be extended ac-
cordingly. Not all motion artifacts change the baseline. Therefore, the mean
amplitudes of the signal before (Abe f ore) and after (Aa f ter) the motion artifact
are compared. When the mean amplitude difference exceeds a threshold
based on the standard deviation (SD) of Abe f ore, a baseline shift is detected.
To correct for the baseline change, the baseline of the preceding period is
imposed on the signal after, by multiplying the amplitudes after Tm by Abe f ore

Aa f ter
.

A margin of some seconds around the motion artifact is used to avoid noise
interfering. As such, to remove the transient motion artifact, the signal Tm
and the margin are set to Abe f ore.

We illustrate in Figure 3.10 how this algorithm can be customized to work
on the signal from FLOW. The accelerometer data from NOX T3 has flagged
the period Tm as a motion artifact. The margin around Tm ensures that the
baseline is not affected by the motion artifact. A smaller margin works well
for Abe f ore, but Aa f ter needs a larger interval as it takes some time before
the signal stabilizes at a new baseline. In other words, the accelerometer
detects the motion artifact correctly, but Tm does not cover the entire period

34 Chapter 3. Data Quality Issues

where the signal is noisy. How long it takes the sensor to calibrate to the new
baseline after a shift may be different from time to time. It might be chal-
lenging to chose a Tm that is large enough without removing unnecessary
amounts of data.

Figure 3.10: Example of ABAMAR algorithm detecting baseline shift

3.4 Discussion and Conclusions

There are four major types of issues regarding the initial quality of FLOW
recordings, summarized as follows:

• Connection loss
The signal from FLOW tends to drop for shorter or extended periods
of time. Deciding if an arbitrary gap between the timestamps of two
consecutive samples is the result of a connection loss is dependent on
the reliability of timestamps and possibly the sampling rate.

• Unreliable timestamping
The timestamping of samples, indicates that samples are timestamped
by the Sleep Recording application as soon as they arrive. Although
seven samples often have almost identical timestamps, longer inter-
sample arrival time between consecutive samples indicates that pack-
ets are sometimes queued somewhere in the smartphone.

• Sampling rate variation
The sampling rate of FLOW is not precisely 10 Hz, as stated by Sweet-
Zpot. The sampling can change from one recording to another and
during recording. The sensor tends to slightly over-sample, but the
combination of connection loss and unreliable timestamping makes it
difficult to measure the sampling rate precisely.

• Baseline wander and shifts
For overnight recordings, FLOW has a large number of baseline shifts,

3.4. Discussion and Conclusions 35

which are likely related to movement by patients as they turn and
changes sleeping position.

Chapter 4

Preprocessing

In this chapter, we describe the challenges we face during the preprocessing
of FLOW recordings. Based on the data quality issues discussed in the
previous chapter, we have identified four particular tasks needed for pre-
processing sensor data from FLOW:

• connection loss detection and ascertaining when a gap is not caused
by jitter,

• time stamp adjustment,

• start time of recording and start time after a gap, and

• sampling rate measurement.

Additionally, tasks to extract and export the NOX T3 abdomen signal are
needed, before both signals can be combined and synchronized to measure
the quality of FLOW recordings.

We begin Section 4.1 with a brief description of the data issues experienced
with the FLOW sensor and how we can detect connection loss. We continue
in Section 4.2, with an overview of several design alternatives for adjusting
the timestamps of FLOW, along with a discussion of their suitability. In
Section 4.3, we describe the process of estimating timestamps, followed by
how the sampling rate can be measured in Section 4.4. Next, we present
the results of several preliminary tests in Section 4.5. In Section 4.6, we
describe the system environment used during preprocessing, before we
define several automatic scripts for preprocessing the dataset in Section
4.7. This includes the process of converting and extracting NOX signal data
from the European data format (EDF) and the changes made to the existing
preprocessing script we use to combine and synchronize the signals. Finally,
we summarize and conclude this chapter in Section 4.8.

4.1 Connection Loss Detection

Many of the FLOW recordings contain periods without any respiratory data,
and the application used for capturing the sensor data has a rather high

37

38 Chapter 4. Preprocessing

variance in inter-sample packet arrival time. Due to these issues, we want
to distinguish between connection losses and gaps in the recording caused
by jitter. However, it turns out that the distinction is not trivial. To explain
this challenge, we illustrate in Figure 4.1 and Figure 4.2, the differences and
similarities between connection loss and jitter. In these figures, the red line
represents time, the blue line represents Bluetooth connection between the
sensor and smartphone, and the blue squares represent when a packet, with
several samples from the sensor, arrives at the application on the smart-
phone.

Figure 4.1: Example of connection loss

In Figure 4.1, the first three packets arrive at a constant rate before a long
inter-arrival time before the fourth packet arrive. The following packets
arrive again at a constant rate as the ones before the gap. At first, it seems
obvious that there is a connection loss as indicated by the blue line and as a
consequence, a loss of one or more packets, but as Figure 4.2 shows, this is
not necessarily the case. After the first three packets arriving at a constant
rate there is a gap, i.e., for a longer time period no packets arrive. At the end
of this period multiple packets arrive almost at the same time. Similar to
the situation in Figure 4.1, the following packets arrive again at a constant
rate as the ones before the gap. In this case, we have no connection loss
as indicated by the continuity of the blue line. Instead, four packets arrive
at a later time than expected. If we place these packets evenly spaced in
the longer time period without packets, there are no indications of packet
loss. This type of jitter can have several causes, such as buffering on the
sensor or somewhere on the smartphone. The signal can also become weak
or temporarily blocked due to an increase in distance between the sensor
and smartphone.

Figure 4.2: Example of jitter

If jitter causes the packets to bundle up, we can separate gaps caused by
jitter from gaps caused by connection loss. To do this, we check if the packets
that arrive directly after the gap contain the packets we were expecting to
arrive during the time period of the gap (assuming a constant packet arrival
rate). Unfortunately, it is more complicated than this. As Figure 4.3 shows,
sometimes the missing packets arrive at a much later time. Besides, there is

4.1. Connection Loss Detection 39

not a single large gap, but rather a high variance in the inter-arrival time of
packets. In such cases, it is difficult to know if there is a loss of connection
or for how long we need to wait for the missing packets to arrive.

Figure 4.3: Example of high variance in inter-arrival time of packets

To fully understand the scale of the problem we are facing with jitter and
why it is difficult to detect connection losses, we have used a short segment
of a real recording, as seen in Figure 4.4, to show how late packets sometimes
arrive compared to the estimated time they were recorded. In this figure, we
have the recording time in seconds on the x-axis, while the y-axis represents
the strain of the sensor, which changes as the patient breathes. The strain
values are standardized and denoted as amplitude since it represents the
amplitude of breaths. We have also included the time that packets arrive
and how many packets are processed at a time in Figure 4.4. Each packet
contains seven samples in general, although some variations exist.

Figure 4.4: Example of jitter in a real recording

In this example, packets have a high variation in inter-arrival time, where
the most notable one is the large arrival of 15 packets highlighted in orange.
Due to this jitter, the application adds incorrect timestamps to the samples.
However, adjusting the timestamps, using the expected interval of one
sample every 100 milliseconds, reveals a typically looking respiratory signal
without gaps. Interestingly, the samples in the orange packets (highlighted
by the orange line) get distributed over a 10 seconds time span. The late
arrival time of packets compared to the estimated time they were recorded
by the sensor, makes it significantly harder to detect connection loss without
falsely detecting cases, such as this one, where the missing packets arrive
later than expected. While it may seem obvious that larger gaps of minutes

40 Chapter 4. Preprocessing

or even hours are caused by connection losses, we cannot be completely
certain without visually inspecting the FLOW signal and comparing it with
NOX.

4.2 Time Stamp Adjustment

As described in Section 3.3.3, our early analysis of the FLOW sensor has
shown that multiple samples are collected in one Bluetooth packet and
then send to the smartphone. The arrival time of packets in the app de-
termines when the app is able to timestamp the tuples in the packet(s)
with the current time. The ideal solution is that the sensor timestamps
each sample considering we have no control over how the operating sys-
tem on a smartphone handles the packets. However, SweetZpot has not
provided us with a reason why this is not the case. Most likely, it is not
necessary for the contexts they usually work with, such as rowing or cycling.

To address this issue, we have to develop a way to adjust the timestamps of
FLOW. The specificity and characteristics of our problem means that it is not
easy or necessarily possible to find the optimal solution through a study of
literature. Instead, we use a more hands-on approach of trying five different
alternatives that seem to fit our case the best. The selection is based on our
analysis and the knowledge from working with the data from FLOW. We
analyze the timestamp adjustment of different alternatives by synchronizing
the signal with NOX for comparison. The idea is to start with the most
simple approach. If this approach falls short of solving our problem, we
should have more information helpful for finding other solutions.

The first alternative is to rely on the information from SweetZpot that claims
the sensor produces samples with a constant rate of 10 Hz. A sampling rate
of 10 Hz means there should be exactly one sample every 100 milliseconds.
Then given the start time of a recording, all timestamps can be updated such
that the first tuple of the recording gets as timestamp the start time of the re-
cording, and the timestamps for all subsequent tuples get as timestamp, the
previous tuples timestamp, increased with 100 milliseconds. An illustration
of how the timestamps are adjusted with this approach is shown in Table 4.1,
where the first packet is processed 602 ms after the start time of recording
by the application. The first sample gets the start time of 0 ms as timestamp,
and the timestamps of the remaining samples are 100 milliseconds apart.

The second alternative we present is a consequence of the first one. If
we cannot rely on the stated sampling rate by SweetZpot, we can try to
estimate at what rate the sensor produces samples. The timestamps can
then be updated with the same approach as in the first alternative, except
using the estimated sampling rate instead. An example of this is shown in
Table 4.2 to illustrate the difference between this and the first alternative. In
this example, the sampling rate is estimated at 12 Hz. The timestamp of the
first sample is again set to the start time of recording, and the timestamps of

4.2. Time Stamp Adjustment 41

Sample Original timestamps Adjusted timestamps
1 602 ms 0 ms
2 602 ms 100 ms
3 603 ms 200 ms
4 604 ms 300 ms
5 603 ms 400 ms
6 605 ms 500 ms
7 605 ms 600 ms

Table 4.1: Example of how to adjust timestamps with 100 ms interval

the remaining samples are 83.33 milliseconds apart.

Sample Original timestamps Adjusted timestamps
1 602 ms 0 ms
2 602 ms 83 ms
3 603 ms 166 ms
4 604 ms 249 ms
5 603 ms 333 ms
6 605 ms 416 ms
7 605 ms 499 ms

Table 4.2: Example of how to adjust timestamps with 83.33 ms interval (12
Hz)

For the third alternative, we estimate the sampling rate in intervals. This is
based on our findings in Section 3.3.2, that the sampling rate is not necessar-
ily constant while recording. The timestamps can then be adjusted with a
similar approach as before, using the specific sampling rate for each interval
instead. Table 4.3 shows how the samples in the first hour of recording are
adjusted using 10 Hz, while the samples in the following hour are adjusted
using 12 Hz.

Sample Original timestamps Adjusted timestamps
1 602 ms 0 ms
2 602 ms 100 ms
3 603 ms 200 ms
...
36000 3600608 ms 3600000 ms
36001 3600609 ms 3600083 ms
36002 3600609 ms 3600166 ms

Table 4.3: Example of how to adjust timestamps using intervals with differ-
ent sampling rate

The fourth alternative we present uses a different approach. If we assume
that the timestamp of the last sample in a packet is more or less correct,
the timestamps of the remaining samples in a packet can be adjusted using
this information. The last sample in a packet should be the least affected

42 Chapter 4. Preprocessing

by sensor buffering as it is measured right before the packet is sent to the
application. Table 4.4 illustrates how the timestamp of sample number 7 of
609 ms decides the timestamps of the remaining samples in the packet. In
this example, the samples are adjusted backwards in time in intervals of 100
ms. The last alternative is to adjust timestamps in intervals using a window

Sample Original timestamps Adjusted timestamps
1 602 ms 9 ms
2 602 ms 109 ms
3 603 ms 209 ms
4 606 ms 309 ms
5 607 ms 409 ms
6 607 ms 509 ms
7 609 ms 609 ms

Table 4.4: Example of how to adjust timestamps using the timestamp of the
last sample and 10 Hz

algorithm inspired by the landmark and sliding window models typically
used in real-time data stream processing.

To summarize we have the five following design alternatives:

1. Assume the sensor produces samples with a constant rate of 10 Hz
based on the given information from SweetZpot.

2. Estimate the sampling rate for each recording.

3. Estimate the sampling rate periodically throughout each recording.

4. Assume the timestamp of the last sample in each packet is correct.

5. Use a jumping window, which is a variation of the landmark and
sliding window approach.

4.2.1 Adjust Timestamps Using 10 Hz Sampling Rate

The first alternative to timestamp adjustment is the solution used in [Løberg
2018]. As described earlier, this study only includes shorter FLOW record-
ings without sampling rate abnormalities or connection loss. In which case,
the following solution proves sufficient for adjusting the timestamps. Given
the sampling rate and start time of a recording, all timestamps can be up-
dated using Equation 4.1, where ts0 is the timestamp of the first sample (i.e.,
the start time of the recording), n is the sample number, and interval is the
sampling rate converted to the interval. To convert the sampling rate from
Hz to an interval we use Equation 4.2.

tsadjusted = ts0 + samplen × interval (4.1)

interval =
1000

sampling rate (Hz)
(4.2)

4.2. Time Stamp Adjustment 43

When using this approach on our dataset, the precision of synchronization
between FLOW and NOX is accurate at the beginning of the recording, as
seen in the first part of Figure 4.5 where the breathing patterns in the signals
occurs at the same time. However, in this example, it takes less than a
minute before the signals are no longer synchronized. The FLOW signal
slowly starts to drift as the sampling rate used to adjust the timestamp is
not the actual sampling rate of the sensor. In this particular case, the breaths
in the FLOW signal are extended compared to the breaths in the NOX signal,
which means the actual sampling rate is higher than the 10 Hz we use to
adjust the timestamps. Even though a minuscule difference between the
sampling rate used to adjust the timestamps and the actual sampling rate
will not have an impact on the early phase of a recording, it is enough to
affect the precision of synchronization between FLOW and NOX later on.
If the sampling rate varies just 0.1 Hz, it is enough to reduce or extend
the recording with one second every hour. For each hour of recording, the
difference increases, which can affect the synchronization precision towards
the end of the recording.

Figure 4.5: Example of adjusted timestamps using 10 Hz

4.2.2 Estimate Sampling Rate

Based on the results from the previous solution, for the next possible solu-
tion, we try to estimate at what rate the FLOW sensor produces samples.
Using the estimated sampling rate of 10.3 Hz for this recording, we are only
able to keep the signals synchronized slightly longer, as seen in Figure 4.6.
The figure shows how the FLOW signal starts to drift towards the end of
this specific period of the recording. This time, the FLOW signal drifts in the
other direction compared to the FLOW signal in Figure 4.5. This indicates
that the estimated sampling rate used is too high, or that the sampling rate
is not constant throughout the recording. Nevertheless, this alternative is
a better solution than the first alternative as it keeps the signals synchron-
ized for a longer time. Moreover, it may work well if we can estimate the
sampling rate precisely enough, assuming it is constant.

44 Chapter 4. Preprocessing

Figure 4.6: Example of adjusted timestamps using estimated sampling rate
of 10.3 Hz

4.2.3 Estimate Sampling Rate Periodically

The next alternative we try is to estimate the sampling rate periodically
throughout the recording. The estimated sampling rate for each period (or
interval) is used to adjust the timestamps with the same approach as the first
two alternatives. Proceeding with the recording interval from Figure 4.6, the
estimated sampling rate for this two-minute interval of recording is 10.25
Hz. As seen in Figure 4.7, adjusting the timestamps using the sampling
rate of 10.25 Hz, keeps the signals synchronized for the duration of the
two-minute interval.

Figure 4.7: Example of adjusted timestamps in interval using estimated
sampling rate of 10.25 Hz

Based on the result, this alternative appears to be a promising solution
for dealing with an inconsistent sampling rate. However, some issues still
remain. Depending on how often the sampling rate changes and to what
extend, affect how often we need to estimate it. In the previous example,
a two-minute interval is small enough, but if the sampling rate changes
drastically all of a sudden, even a two-minute interval may not be small

4.2. Time Stamp Adjustment 45

enough. More importantly, this solution cannot solve the connection loss
issue. The reason is that we cannot know for sure, as explained in Section 4.1,
if an arbitrary period of time without samples is caused by a connection loss
or jitter, as the following period may contain the missing samples. Further-
more, it is difficult to estimate the sampling rate accurately for recordings
with connection losses.

4.2.4 Adjust Timestamps based on Packet Arrival Time

Instead of using the sampling rate to adjust the timestamps, another option
is to adjust them using the already existing timestamps. Since the arrival
time of packets determines when the app is able to timestamp the tuples
in the packet(s) with the current time, sequential samples in a packet often
get identical timestamps as the processing time of samples is minimal. The
idea is that the timestamp of the last sample in a packet should be similar to
the actual time it was measured by the sensor, assuming the arrival time of
a packet is not delayed by jitter, which means the application receives the
packet as soon as it reaches the smartphone. Compared to the remaining
samples in the packet, the last sample is not queued for as long, since it is
the last sample to be measured and collected in the packet before it is sent
to the smartphone. The challenge with this alternative is that we cannot
trust the timestamp of the last sample in every packet, as jitter can cause the
packet to arrive later than expected.

4.2.5 Window Timestamp Adjustment

The last alternative we present is a variation of the landmark and sliding
window models, sometimes referred to as the jumping window or moving
landmark window. The general idea is to use an adaptable approach that
adjusts the timestamps only when we have enough samples in the window.
The three different types of window algorithms are illustrated in Figure 4.8.
The start-point of the jumping window is fixed, similar to the landmark
window, while the end-point increases, similar to the sliding window, as we
look for more samples. The assumption is that if we do not have enough
samples in a given window, then extending it may include new data tuples
in the window. If we have enough samples in the current window, we adjust
the timestamps by evenly distributing the samples between the start and
end-point. However, when we do not have enough samples, we cannot
keep extending the window forever. Therefore, we set a maximum size that
limits how far the window can be extended. A loss of connection is detected
if the window reaches the maximum size and still does not contain enough
samples. In this case, we do not extend the window further. Instead, the
window jumps, which means we move the start point of the window. The
new start point is determined based on the previous start point and the
size of the window before it was extended, which we refer to as the default
window size. Since we do not know exactly where the connection loss is,
one option is to set the start point of the new window beyond the end of the
previous default window.

46 Chapter 4. Preprocessing

Figure 4.8: Different types of window algorithms [DZone 2010]

Having enough samples in the window is determined based on the cur-
rent size of the window and the sampling rate. The sampling rate gives us
the expected number of samples each second, which we multiply with the
window size (in seconds) to calculate the expected number of samples for a
given window size. A sampling rate of 12 Hz and a window of 10 seconds
means we expect: 12 Hz× 10 sec = 120 samples for this window. However,
we need to consider the implications of a change in sampling rate, as the
sampling rate of the FLOW sensor is not necessarily stable. If the sampling
rate is 10 Hz, but we expect it is 12 Hz, we only get 100 out of the 120
samples we expect for a time window of 10 seconds. We may falsely detect
the missing samples as a connection loss. The problem is that we cannot
know for sure if it is a drop in the sampling rate or a small connection loss
because of the jitter and unreliable sampling rate of the FLOW sensor. One
option is a visual inspection of the signal which should reveal if there is a
gap. This is not a feasible solution for longer recordings as it will be too
time-consuming. As a result, we may not find a perfect definition of having
enough samples in a window to adjust the timestamps correctly while at the
same time accurately detecting all connection losses.

Figure 4.9 illustrates how the jumping window should move as time passes.
In this example, the red line represents time, and the blue squares represent
when a packet of samples from the sensor arrives at the application on the
smartphone. The default window of window A, B, and C are the same
size and needs three packets to be filled up. In other words, three packets
are enough to adjust the timestamps correctly for the time period of the
default window. This is the case for window A since three packets arrive in
the default window. We move the start point of the new window past the
default window of A, illustrated with window B in Figure 4.9. For window
B, only one packet arrives in the default size. We extend window B with the
default window size four times and finally get a total of four packets in the
extended window at location t1, which is enough to fill the default size of
window B. However, the current size of window B at t1 is now four times
the size of the default window and only contains four out of the twelve
packets needed. We extend window B once again to look for the missing
packets and reach the maximum window size at location t2. Although more
packets arrive, window B only contains nine out of fifteen packets needed.
The result is the detection of a connection loss since window B cannot be

4.2. Time Stamp Adjustment 47

extended further.

Figure 4.9: Illustration of jumping window

There is one packet in the default size of window B that we need to handle
before moving the window past the detected connection loss. We discard the
samples in this packet because we cannot adjust the timestamps correctly.
The reason is that we do not know if the samples should be distributed
evenly in the default window or more towards the start or end-point. The
start-point for the new window after a gap is estimated based on the explan-
ation in Section 4.3. This start-point is shown as t0 in Figure 4.9 and is the
start-point for the window C. The default size of window C also contains
three packets, which means we can adjust the timestamps without extending
the window.

The result of using the jumping window model to adjust the timestamps
of FLOW is shown in Figure 4.10. The two subplots show that the signals
are synchronized at the beginning of the recording, as seen in Figure 4.10a,
and still after seven hours of recording, as seen in Figure 4.10b. Since the
recording is eight hours long, it is too time-consuming and tedious to visual
inspect and verify that the signals are accurately synchronized at all times.
After checking the signals at random times throughout the recording, there
is nothing to suggest that the signals are not synchronized.

Figure 4.10: Example of synchronized signals using the jumping window

48 Chapter 4. Preprocessing

Adjusting the timestamps with the window approach the signals are syn-
chronized after seven hours of recording, as seen in Figure 4.10. Although
this is a promising result, it is important to note that it only proves the signals
are synchronized in the given period and that the remaining hours of record-
ing are not necessarily synchronized. This is, however, very time-consuming
to manually inspect and verify. Another option is to use the breath detection
algorithm and compare for each breath the distance between the peaks
in the FLOW signal and NOX signal. One problem with this approach is
that peaks from motion artifacts can be detected as false breaths. If we
compare the distance between a false breath in one of the signal with a
real breath in the other signal, the result will be misleading. To avoid this
we can compare only the breaths that have been matched in the two sig-
nals. However, breaths are matched because the synchronization is accurate
enough that the peak of the FLOW breath is inside the start and end of the
corresponding NOX breath. In the end, breaths that are not false and are
not matched, yields more information about the synchronization accuracy,
which is what the sensitivity and positive predictive value metrics represent
later on during our evaluation.

Discussion and Conclusion

To summarize, we have presented five design alternatives for timestamp
adjustment. The first alternative is based on the results from Løberg [Løberg
2018], where the timestamps in shorter FLOW recordings have successfully
been adjusted according to Equation 4.1. Unfortunately, there is a tendency
that the sampling rate of FLOW sensors is not stable. This problem might
be negligible for shorter recordings, but for longer recordings, a constant
sampling rate is important, or else we cannot adjust the timestamps based
on a fixed sampling rate. For this reason, the second alternative that estim-
ates the sampling rate is also not sufficient since the sampling rate used is
still fixed. A solution to this problem was presented in the third alternative.
By measuring the sampling rate and adjusting the timestamps in intervals,
we should be able to adjust the timestamps more precisely throughout the
recording.

Another problem we have is the detection of connection loss in FLOW.
The first three alternatives we presented cannot solve this problem. As a
result, we explore ways to detect connection losses in FLOW. Based on our
analysis of FLOW, the timestamp of the last sample in each packet should
be the most correct. The reason is that the last sample does not have to wait
for other samples to be collected before the packet is sent to the smartphone.
Assuming that the packet is processed immediately by the application after
the smartphone receives it, then the timestamp of the last sample should
be near identical to the actual time it was recorded by the sensor. However,
this assumption is not true as jitter means we cannot trust every packet to
be processed as soon as they arrive on the smartphone. Sometimes multiple
packets are processed together, which suggests that packets are queued
somewhere on the smartphone.

4.3. Start Time after Gap 49

The final alternative we presented is the jumping window model. The
timestamps are adjusted using a landmark window that essentially is a
flexible interval. The estimated sampling rate is used to ensure that enough
samples are present in the window before we adjust the timestamps. Vari-
ations in the sampling rate can be handled by distributing the samples
evenly in the window when we adjust the timestamps. This effectively
means that if there are more samples in the window than required, the
samples are adjusted closer together. Determining how many samples are
enough in a window is challenging because we want a flexible window that
can handle sampling rate variations without falsely detecting connection
loss.

Of the five design alternative we present, only the last alternative, the
window model, is able to adjust the timestamps of longer recordings - while
simultaneously detecting connection loss. The results are promising enough
that we want to investigate this alternative further. Therefore, we focus on
the performance of the jumping window model in the following sections.

4.3 Start Time after Gap

When packets start to arrive after a connection loss, we need to estimate
the point in time where the connection between the sensor and smartphone
is re-established. Meaning we need to estimate when the first sample in
the first packet to arrive after the gap was measured in the sensor. The
unreliable time-stamping means that all we know is when the sample was
processed by the application (i.e., timestamped). We can, however, estimate
the correct timestamp of the first sample to arrive after a gap if we assume
that the timestamp of the last sample in the first packet to arrive is correct.
This assumption is based on the fact that multiple samples often get identical
timestamps as the time it takes to process a sample for the application is
minimal. It is possible that multiple packets arrive together after a gap due
to jitter. In this case, we always use the timestamp of the last sample in the
batch.

Figure 4.11 illustrates which samples are used to estimate the start time
after a gap. In this example, each small blue line in the packets represents
the timestamp of a sample. After the gap, a batch of three packets arrives
together. Each sample in this batch is processed in order, with the sample t0
first and the sample t1 last. To locate the last sample t1 in the batch, we look
for a large time difference in timestamps between two subsequent samples.
The last packet, as seen in Figure 4.11, arrives much later than the first three
packets. The timestamp of ts2 is therefore significantly higher than ts1. We
have found the last sample in the first batch, as these two samples have not
been processed together. To estimate the time of ts0, we use the sampling
rate, the number of samples in the batch, and the timestamp of the last
sample in the first batch. The timestamp of t0 is calculated using Equation

50 Chapter 4. Preprocessing

4.3, where N is the number of samples in the first batch, and the sampling
rate is converted to the interval. Using the example from Figure 4.11 with
sixteen samples in the first batch and an interval between each sample of
100 ms (10 Hz), t0 is estimated as: t1 − 16× 100 ms or 1.6 seconds before t1.

Figure 4.11: Illustration of how the start time after a gap is estimated

t0 = t1 − (N × 1000
Hz

) (4.3)

After we have estimated the point in time when the connection is rees-
tablished, we can use it as the new start-point of the window. This approach
is also used to estimate the start time of a recording. This method assumes
that we have identified a connection loss as opposed to a gap caused by
jitter. Severe cases of jitter cannot be handled by using this approach, but
the current level of information for FLOW recordings means we cannot
perfectly adjust the timestamps in any way. Therefore, we could decide
to exclude the first seconds after a gap, but as we see later on, it has no
significant impact on the data we have processed.

The function used to estimate the start time of a recording or the timestamp
of the first sample after a gap can be seen in Listing 4.1, where ts are a list of
all samples timestamps. We locate the index of the last sample in the first
batch to arrive by comparing the time difference of two subsequent samples.
If the time difference is higher or equal to the interval, we have found the
last sample in the first batch to arrive. The function returns the estimated
timestamp using Equation 4.3.

1 def estimate_timestamp(ts , interval =100):
2 for i in range(len(ts) -1):
3 if ts[i+1] - ts[i] >= interval:
4 return ts[i] - i * interval

Listing 4.1: Function for estimating the start time of a recording or the
timestamp of the first sample to arrive after a gap

4.4. Sampling Rate Measurement 51

4.4 Sampling Rate Measurement

The sampling rate of a sensor is the average number of samples it measures
each second. Measuring the sampling rate of a recording is trivial as long
as no data is missing and we know the duration of the recording. It can be
measured using the following equation: fs =

samples
durations

. The duration is easily
calculated based on the start and end time of the recording. Slightly wrong
estimation of the start time only matters when the duration of the recording
is short. However, larger periods of connection loss have a great impact,
because the number of samples decreases while the duration stays the same.
As a result, the calculated sampling rate is lower than the actual sampling
rate.

To estimate the sampling rate as precise as possible we want to exclude
periods of connection loss from the measurement. However, the problem of
whether a gap is caused by jitter or a loss of connection still exists. One way
of estimating the sampling rate is to calculate the average sampling rate over
a time interval. With this approach, it is possible to exclude periods without
any samples when calculating the average sampling rate. Measuring the
sampling rate in short periods means that the sampling rate is measured
many times and that a few periods of zero samples will not greatly im-
pact the average calculated sampling rate. For example, if we calculate the
sampling rate a thousand times to be exactly 10 Hz and once to 0 Hz, then
the average sampling rate is still 9.99 Hz. By measuring the sampling rate
multiple times with different intervals, we should end up with a decent
estimation of the actual sampling rate for a recording. In any case, it does
not have to be exactly precise, since the window model should keep the
signals synchronized as long as the sampling rate is somewhat estimated
correctly.

The function used for measuring the sampling rate can be seen in List-
ing 4.2, where the interval used for measuring the sampling rate is given in
seconds. This function also takes as argument a pandas data frame, which is
a mutable two-dimensional data structure consisting of rows and columns
similar to tabular data. The last option is to exclude the intervals without
any samples from the list used to estimate the average sampling rate of the
recording. It is important to note that this function estimates the overall
sampling and does not consider underlying changes in the actual sampling
rate.

1 def estimate_sampling_rate(dataframe , interval =60, exclude=False):
2 ts = datetime.timedelta(seconds=interval)
3 time = dataframe.index [0]
4 sampling_rates = []
5 while time < dataframe.index [-1]:
6 samples = len(dataframe.loc[time:time+ts])
7 time += ts
8 if samples == 0 and exclude:
9 continue

10 sampling_rates.append(samples / interval)

52 Chapter 4. Preprocessing

11 return numpy.mean(sampling_rates)

Listing 4.2: Function for measuring sampling rate

4.5 Preliminary Testing

The general purpose of our preliminary testing is to determine if the window
model detects connection losses correctly and how accurate the window
model adjust the timestamps. By comparing the signal quality metrics of
different window sizes, we should be able to determine if there is an optimal
size to use for the default window. The main hypothesis is that a small de-
fault window should adjust the timestamps of FLOW more accurately than
a larger default window. Another important aspect is how precisely we can
determine where a connection loss begins. Additionally, these preliminary
tests may uncover sensor-specific oddities or other issues that should be
taken into account during preprocessing.

To perform the testing of the window model, we use a thirty-minute seg-
ment from one of the FLOW. recordings. We have chosen to use a segment
that is definitively missing data because of a connection loss. The segment
is shown in Figure 4.12, where the connection loss lasting for around two
minutes, can be seen in the middle of the recording. When the connection
re-establishes, the baseline of FLOW is shifted. This segment should enable
us to test the accuracy of different default window sizes and their ability to
detect connection loss.

Figure 4.12: Thirty-minute segment from a FLOW recording

4.5.1 Findings

Default Window Size

During the timestamp adjustment of the thirty-minute segment, the first
notable thing we discovered is that both a small and a larger default window
size struggle with adjusting all of the timestamps correctly. A small selection
of the segment with the adjusted FLOW timestamps using a one-second and

4.5. Preliminary Testing 53

thirty-second default window is shown in Figure 4.13a and Figure 4.13b. We
want the FLOW signal to align in time (synchronize) with the NOX signal as
accurately as possible. Although most of the FLOW signal in Figure 4.13a
is synchronized with the NOX signal, they are less synchronized around
the twenty-second mark. The exact reason remains unknown, but it only
affects a few breaths before the signals are synchronized again. This is not
the case for the FLOW signal in Figure 4.13b. The signal is not synchronized
with NOX, evident as almost no corresponding breaths in the two signals
are aligned in time. It is only towards the end of this period that the signals
realign, which means that a larger period of the timestamps are inaccurately
adjusted compared to Figure 4.13a. This indicates that using a small default
window is better for accurately adjusting the timestamps of FLOW.

Figure 4.13: Example of synchronization precision of different default win-
dow sizes

We use the signal quality metrics to compare how accurate the different
default window sizes are at adjusting the timestamps of FLOW. A high
sensitivity, PPV, and CMP score means that breaths in the two signals are
aligned/synchronized. The signal quality metrics of different default win-
dow size on the thirty-minute segment is shown in Table 4.5.

One may first notice that the sensitivity and PPV scores are very similar
across the different default window sizes. If we instead consider the CMP
score, the three smallest default windows of 0.7s, 1.0s, and 1.4s achieve the
highest score of 96.0%. A thirty-minute segment means that each minute
accounts for roughly 3.33% of the final score, although this might devi-
ate slightly based on how the signals are synchronized. A score of 96.0%
means that approximately twenty-nine out of the thirty minutes are clean.

54 Chapter 4. Preprocessing

Default window Sensitivity PPV CMP WAPE
0.7 sec 100.0% 99.77% 96.0% 4.33%
1.0 sec 100.0% 99.77% 96.0% 4.47%
1.4 sec 100.0% 99.77% 96.60% 4.30%
2.1 sec 99.77% 99.53% 89.86% 4.38%
2.8 sec 99.77% 99.77% 93.29% 4.51%
3.5 sec 100.0% 99.53% 93.19% 4.40 %
7.0 sec 97.97% 98.39% 83.30% 4.47%
30.0 sec 98.18% 98.84% 79.95% 5.23%
60.0 sec 99.09% 99.53% 89.91% 5.36%

Table 4.5: Quality metrics for the thirty-minute segment using different
default window sizes

The lowest CMP score of 79.95% for the thirty-second default window re-
flects the observation from Figure 4.13 that larger windows appear to adjust
timestamps less accurately. A CMP score of 79.95% means that approx-
imately six of the thirty minutes are dirty with either a sensitivity or PPV
score of less than 100%, which indicates that the signals are not perfectly
synchronized.

Detecting Connection Loss

Detecting connection loss in the FLOW signal is essential in order to adjust
the timestamps correctly. As explained in Section 4.2.5, when a connection
loss is detected, we discard any samples in the default window leading up
to the connection loss as we cannot adjust the timestamps of these samples
correctly, or else the window model would not have been extended in the
first place. During testing, we discovered that the default window size also
affects how many samples we discard before a connection loss.

Figure 4.14a and Figure 4.14b shows the NOX signal and the FLOW signal
where the timestamps have been adjusted using a 700ms or a 60sec win-
dow. The two NOX signals are aligned in time, which means the different
appearance of the FLOW signals is because of our timestamp adjustment.
The connection loss in FLOW from the thirty-minute segment is noticeable
in the middle of both figures, when only the NOX signal is shown. One
may also notice that the start and end time of the connection loss is different
between the FLOW signals, although their duration is similar. In Figure
4.14b, the FLOW signal is lost more than half a minute before compared
to Figure 4.14a but also re-establishes the connection faster. However, the
FLOW signal in Figure 4.14b is no longer synchronized with the NOX signal
after the gap, but the FLOW signal in Figure 4.14a is. The first minute after
the gap is noticeable noisier for both FLOW and NOX, which may be the
reason that the larger default window of 60sec is less accurate at adjusting
the timestamps compared to the small default window of 700ms.

4.5. Preliminary Testing 55

Our findings indicate that a large default window of 60sec may remove/dis-
card more samples before a connection loss compared to a small window of
700ms. We may choose to exclude the first minute or so after a connection
loss as this signal period is noisier and may not be accurately synchronized
as evident when adjusting the FLOW timestamps with a large default win-
dow. It is interesting that NOX is recording normally during the period
of connection loss in FLOW. The connection re-establishes during a noisy
period (possible movement of the patient), which can indicate that the
FLOW signal was blocked.

Figure 4.14: Example of connection loss detection with different default
window sizes

Signal Quality Metrics

The requirement for using the breath detection accuracy metrics (sensitivity,
PPV and CMP) and the breath amplitude accuracy metric (WAPE) to evalu-
ate the FLOW recordings is that the FLOW signal is synchronized with the
NOX signal. The synchronization does not have to be 100% exact for the
metrics we are calculating. The only requirement is that the peaks of the
real breaths in the signal from FLOW are aligned, such that they are located
somewhere between the start and end of the corresponding breaths in the
signal from NOX. We want to test how the accuracy of our synchronization
correlates to the results of the signal quality metrics. The idea is that if our
timestamp adjustment for some parts of a FLOW recording is inaccurate,
then the result of the signal quality metrics should reflect that FLOW and
NOX are not synchronized in these specific parts of the recording.

To test this, we use a period from a recording where we have manually

56 Chapter 4. Preprocessing

synchronized the FLOW and NOX signals. We then shift the FLOW signal
in time, which means that the timestamp of every sample in the signal is
shifted. The results of measuring the signal quality metrics with the shifted
FLOW signal are shown in Table 4.6. Shifting the FLOW signal one second
out of sync lowers the sensitivity and PPV scores with around 2% compared
to the synchronized FLOW signal. This means that most breaths are still
correctly detected. However, the low CMP score of 46.67% means the errors
of false breaths or undetected breaths, are evenly distributed throughout
the FLOW signal.

Signal Sensitivity PPV CMP WAPE
Synchronized 99.10% 98.65% 73.33% 5.95%
Shifted 1 sec 97.27% 96.83% 46.67% 7.68%
Shifted 2 sec 82.65% 81.90% 0.00% 30.44%
Shifted 3 sec 88.64% 88.24% 6.67% 51.75%
Shifted 4 sec 95.91% 95.91% 40.00% 51.46%

Table 4.6: Example of how the synchronization accuracy affects the results
of the signal quality metrics

Except for the WAPE score, it is interesting that the signal quality results
when shifting the FLOW signal four seconds is better than when shifting
the signal two seconds. The reason is that we have shifted the FLOW signal
far enough that many non-identical breaths in the two signals align. An
example of this can be seen in Figure 4.15, where none of the breaths that
are aligned in time are alike. It is only the results of the WAPE metric that is
significantly different between the FLOW signal that is slightly out of sync
(shifted 1s) and the FLOW signal that is more out of sync (shifted 4s). In the
FLOW signal shifted four seconds, the WAPE score around 51% indicates
that there is no clear relationship between the breath amplitudes in the two
signals, which makes sense as the breaths compared are not identical.

Figure 4.15: Example of non-identical breaths aligning in time

4.5. Preliminary Testing 57

Sensor Oddities

During testing, we discovered that both the signal from FLOW and NOX are
noisy at the beginning of a recording. We suspect that this may be caused
by sensor calibration and movement by the subject. An example of sensor
initialization can be seen in Figure 4.16. Notice that the signal from NOX
flat-lines multiple times as indicated by a continuous straight signal line.
The missing signal period in the middle of the figured is caused by a connec-
tion loss in the signal from FLOW. During synchronization, we also remove
the NOX signal in the period corresponding to the connection loss in the
FLOW signal. It is normal for people to change sleeping position several
times before they fall asleep, thus, we may choose to remove the first several
minutes of a recording while the signals calibrate, and the patient falls to
sleep.

Figure 4.16: First seven minutes of an overnight recording

Another oddity we discovered is that the amplitude peak of breaths in
the signal from NOX is sometimes cut off, as seen in the example in Figure
4.17. See, for example, the breaths around the one- and two-minute mark,
where several breaths are limited to the same maximum peak amplitude.
One possible explanation is that this is an unfortunate effect of the auto-
matic signal preprocessing performed by the Noxturnal software system.
Although this oddity only exists in a minor part of the signal, it will nev-
ertheless be misleading when we measure the breath amplitude accuracy.

4.5.2 Discussion

Our preliminary testing indicates that using a small default window is a
better option for adjusting the timestamps of FLOW. Choosing the maximum
size the window can extend to, depends on how severe the jitter is. To allow
for a flexible solution, that can be adapted to the preprocessing needs of
specific recordings the default window size, the maximum size it can extend
to and what we consider to be enough samples in a window, should be
parameters of the window model that can easily be modified.

58 Chapter 4. Preprocessing

Figure 4.17: Limited amplitude peak of breaths for NOX

4.6 System Environment

We have chosen Python as the programming language to implement the
scripts in, mainly because we modify and reuse existing Python scripts.
There are libraries available for Python that contain some of the needed
functions, such as pyEDFlib [pyEDFlib 2018] for processing European data
format (EDF) files, pandas [pandas 2018] for CSV-parsing and data manip-
ulation, and NumPy [numPy 2020] for timestamp adjustment. All of these
libraries contain the functions used by the existing scripts for resampling,
interpolation, synchronization, and regression. To visualize the signals, we
use the matplotlib [matplotlib 2018] library to plot the data in a graph. At
last, the existing script used to measure the signal quality uses a findpeaks
function available in MATLAB [The Mathworks, Inc. 2018a]. A MATLAB
Python API is used to call the functions directly from Python as if it were
a normal library. MATLAB and the API must be installed on the system.
The software and versions we use during preprocessing and signal quality
evaluation are listed in Table 4.7.

Software Version
pandas 0.23.4
Python 3.6.8
pyEDFlib 0.1.14
NumPy 1.16.4
SciPy 0.19.1
scikit-learn 0.19.0
matplotlib 2.0.2
MATLAB R2018a
MacOS 10.14.6

Table 4.7: Software versions used during preprocessing and signal quality
evaluation

pandas [pandas 2018] is an open-source library for data manipulation

4.7. Preprocessing 59

and analysis. It contains data structures, tools, and functions for parsing of
CSV, resampling, and interpolation. Sliding window functions are available,
but they cannot be customized to suit our needs for a jumping window
method.

pyEDFlib [pyEDFlib 2018] is an open-source library to read and write
EDF files in Python built on the EDFlib library written in C language. We
have made some changes to the source code because of some errors that
occur when reading EDF files. The errors occur because we do not include
all of the signals when exporting the recording from the Noxturnal Software
Program in order to save space.

NumPy [numPy 2020] is a well renowned open-source library useful
for scientific computing. It supports functions for handling large, multi-
dimensional arrays and matrices, and mathematical operations. In our
implementation we make use of functions such as linspace to distribute
timestamps evenly.

SciPy [SciPy 2017] is an open-source library that includes signal pro-
cessing capabilities. The preprocessing script uses the cross-correlation
function during the synchronization of signals.

scikit-learn [scikit-learn 2018] is an open-source library useful for data
analysis and machine learning. The TheilSen linear regressor is used during
the signal quality measurement.

matplotlib [matplotlib 2018] is an open-source library well-documented
for 2D plotting in Python. We use the library for creating box-plot figures
and for plotting signals in a line chart.

MATLAB [The Mathworks, Inc. 2018b] is a commercial platform consist-
ing of a multi-paradigm numerical computing environment, and it includes
its own proprietary programming language. A license to the platform is
available through the University of Oslo (UiO). We only use MATLAB
during the measurement of signal quality.

4.7 Preprocessing

The complete dataset needs to be preprocessed before we can measure the
signal quality of overnight FLOW recordings. In addition to timestamp
adjustment and connection loss detection, we need to extract the abdomen
signal from NOX recordings. The signal from FLOW and NOX will both
be converted to a CSV-file to unify the data formats. We use a modified
version of a script to synchronize and combine the signals. We present the
implementation of three scripts we need to preprocess our dataset in this
section, with the following tasks:

1. Preprocessing of FLOW, including timestamp adjustment, connection

60 Chapter 4. Preprocessing

loss detection, and date format conversion.

2. Extraction of the abdomen signal from NOX T3, including timestamp
generation.

3. Combining and synchronizing non-connection loss periods in FLOW
with NOX. This includes resampling, interpolation and combining all
parts into one file.

4.7.1 FLOW Preprocessing

A FLOW recording exported from the RawDataMonitor application con-
sists of a folder with multiple text files (.txt). In this folder, there is one
breathing.txt file that contains the raw breathing data for this particular re-
cording. An example of a breathing.txt file can be seen in Listing 4.3. Each
row consists of one entry with multiple values separated by a single space.
We are only interested in two columns; the third column that measures
the current stretch of the strain-gauge belt (highlighted in blue) and the
corresponding UNIX timestamp in column eight (highlighted in orange).
The UNIX timestamps are listed with a precision of one millisecond.

1 0 0 1603 0.000000 11 0.000000 0.000000 1535917933038 true
2 0 0 1601 0.000000 11 0.000000 0.000000 1535917933040 true
3 0 0 1604 0.000000 11 0.000000 0.000000 1535917933041 true
4 0 0 1606 0.000000 11 0.000000 0.000000 1535917933042 true
5 0 0 1603 0.000000 11 0.000000 0.000000 1535917933043 true
6 0 0 1602 0.000000 11 0.000000 0.000000 1535917933044 true

Listing 4.3: Example of breathing.txt output file from SweetZpot’s sleep
recording application

The main part of the script we use to preprocess FLOW can be seen in listing
4.4. Since the script is rather long, we have omitted the argument parsing for
clarity. The script utilizes the pandas library to easily parse text files, manip-
ulate grouped data, and for DateTime conversion. To adjust the timestamps,
we use the linspace function included in the NumPy library, which returns
the samples evenly spread out over an interval. This script only requires
the breathing.txt file as argument to run as the remaining arguments are
optional. This includes the default window size, the maximum window
limit, and the minimum allowed sampling rate in a window in order to
adjust the timestamps. For instance, a minimum sampling rate of 9 Hz with
a window size of 1 second means we decide that 9 samples are enough to
adjust the timestamps.

The values of the optional arguments are preset based on the results of
preliminary testing, but can be altered to suit different needs. Additionally,
the estimate_rate argument should be used if one wants to use the estimated
sampling rate of the recording to determine the minimum sampling rate
allowed in a window. The script will write a comma-separated values (CSV)
file to standard output, which can be redirected to a file if desired.

The following is an example of how to run the script:

$ python flow-cleaning.py --file=breathing.txt --default=0.7
--limit=15 --min_rate=9.0 > flow.csv

4.7. Preprocessing 61

In this example, most arguments are specified. The --default argument
specifies that the default window size should be set to 700 milliseconds,
which is also the size the window increases in each iteration. If there are
insufficient samples in the default window, the window is extended with the
default window size in each iteration until it reaches the maximum window
limit. The --limit argument specifies that the maximum window extension
is 15 seconds. The --min_rate argument specifies the minimum sampling
rate allowed to adjust timestamps in the window. The output of this script
is redirected to new a CSV file stored as flow.csv, which consists of two
columns; the adjusted timestamps formatted to a more readable datetime
format, and the raw signal.

The script works by continuously updating the window in a loop as long as
the end-point of the current window is in the time-range of the recording.
In each iteration of the window, three scenarios are possible. If enough
samples are included in the current size of the window, then we adjust the
timestamps of the samples, or else, if the window has reached the limit, we
detect a connection loss. If none of the above is true, then we extend the
window and run the same checks again. The script estimates the start time
of the recording and the timestamps of the first sample after each gap, based
on the explanation given in Section 4.3.

62 Chapter 4. Preprocessing

1 # Parse the arguments into a dictionary
2 args = parse_arguments(sys.argv)
3

4 # Read breathing.txt file
5 signal = pandas.read_csv(args['file'], sep=" ", header=None , usecols

=[2, 7], names =[1 ,0])
6

7 # Est. start time of recording
8 signal [0]. values [0] = estimate_time(signal [0]. values)
9

10 # Use est. sampling rate as minimum rate allowed if specified
11 if 'est_rate ' in args:
12 args['min_rate '] = estimate_sampling_rate(signal.index)
13

14 # Use timestamp column as index
15 signal.index = signal [0]
16

17 # Align window
18 t_from = t_to = signal.index [0]
19

20 while t_to < signal.index [-1]:
21 t_to += args['default '] # Increase end point of window
22

23 samples = len(signal.loc[t_from:t_to])
24 rate = samples / (t_to - t_from)
25

26 # Sampling rate in window satisfies minimum sampling rate
27 if rate >= args['min_rate ']:
28 signal.loc[t_from:t_to , 0] = adjust_timestamps(t_from , t_to ,

samples)
29 t_from = t_to # Move window further
30 continue
31

32 # Connection loss. Move window past default window and estimate
start time after gap

33 if t_to - t_from > args['window_limit ']:
34 t_to = estimate_time(signal.loc[signal.index >= t_from + args[

'default '], 0]. values)
35 signal = signal.drop(signal.loc[t_from:t_to]. index)
36 signal.index = signal [0] # Reset index after drop
37 t_from = t_to
38

39 # Adjust timestamp for samples in last window if any
40 samples = len(signal.loc[t_from:t_to])
41 if samples != 0:
42 signal.loc[t_from:t_to ,0] = adjust_timestamps(t_from , t_from +

samples * 100, samples)
43

44 # Drop raw timestamps
45 signal = signal.drop(columns =[0])
46

47 # Convert UNIX timestamp to local datetime
48 signal.index = pandas.to_datetime(signal.index , unit="ms", utc=True).

tz_convert('Europe/Oslo')
49

50 signal.to_csv(sys.stdout , header=False)

Listing 4.4: Script for preprocessing FLOW

4.7. Preprocessing 63

4.7.2 NOX Preprocessing

The Noxturnal software program facilitates the storage of Nox T3 recordings.
The export of data to CSV file format from Noxturnal is restricted to 1 Hz,
even though the actual sampling may be higher. For instance, the actual
sampling rate of the RIP abdomen signal is 20 Hz. Data from Noxturnal
can also be exported to EDF, which maintains the original sampling rate
of the signals. Since the sampling rate of FLOW is approximately 10 Hz,
we have chosen to export the NOX signal to EDF to maintain a higher data
granularity when synchronizing the signals from the two sensors. This
means that another preprocessing step is required in order to convert the
NOX signal data from EDF to CSV.

EDF was originally designed for storage and exchange of multichannel
biological and physical signals [Alvarez-Estevez, Diego 2020]. The simple
and flexible format of EDF means it is commonly used for storing com-
mercial data independently of the acquisition software. According to the
specification of EDF, one EDF file can only contain one uninterrupted re-
cording. In our dataset, each patient recorded their sleep with NOX T3 for
two consecutive nights. As a result, each EDF file we export consists of
two overnight recordings, as shown in Figure 4.18. In this figure, we have
extracted the NOX T3 RIP abdomen signal from the EDF file. Notice that
around eight hours of recording, the NOX signal flatline which indicates that
the patient was no longer wearing the NOX belt. The signal starts recording
again around the following evening or night, that is, after twenty-four hours.

Figure 4.18: Uninterrupted EDF file with two overnight recordings

To convert EDF to the CSV format, we utilize the pyEDFlib library spe-
cifically created to read and write EDF files in Python. By using this library,
we can extract individual signals, such as the respiratory effort signal from
the abdomen or thorax. EDF files contain a header with information such as
the start time of the recording, duration, signal label (abdomen, thorax, etc.),
and the sampling rate for each signal. During the conversion to CSV, we
have to timestamp every sample ourselves as this information is not directly
stored. This is, however, an easy task to perform, since the start time and
sampling rate information is stored in the header file.

We discovered during the exportation to EDF from Noxturnal that some
of the recordings have an incorrect start time. These particular screenings

64 Chapter 4. Preprocessing

were conducted right after the daylight saving time ends in central Europe,
which means that the timezone is off with one hour compared to FLOW. To
correct the timezone of these particular recordings we utilize the tz_localize
function from pandas.

The main part of the script we use to extract the NOX abdomen signal
from EDF can be seen in Listing 4.5. By default, the script exports and
converts both nights of recordings into one CSV file. This is not a problem
since the preprocessing script we use to synchronize the FLOW and NOX
signals compares the timestamps and extracts the time-period that matches
both signals. Several arguments can be passed to this script. Exporting one
night of recording or a part of the night can be achieved using the start and
end arguments. This is useful since the complete exported CSV file of two
nights is around 100 Megabytes in size. The file-size is so large because the
sampling rate of the abdomen signal is 20 Hz, and the recording time is
often 32 hours long, meaning there are two nights plus the day in between.
Further, we have also included the option to resample the NOX signal as the
signal will be downsampled to 10 Hz later anyway when combining it with
FLOW.

The only required argument to run this script is the NOX EDF file to convert.
The output of the script is a new CSV file containing the abdomen signal
with the generated timestamps. The output is written to standard output,
which can easily be redirected to a new file if desired. Additionally, this
script accepts arguments for start/end time, and resampling. The optional
start/end arguments specify in hours what part of the signal to include in the
output. The resample argument specifies the sampling rate to output. The
localize argument is used to adjust the timezone to local time when needed.

The following is an example of how to run this script:

$ python edf-to-csv.py --file=nox.edf --start=0
--end=5 --localize --resample=10.0 --show > nox.csv

In this example, all arguments are specified. The --start=0 and --end=5
arguments specifies that the first five hours of recording should be extrac-
ted. The --resample=10.0 argument specifies that the signal should be
resampled to 10 Hz, and the localize argument adjusts the timestamps to
local time in Oslo. The result is a CSV-file stored as nox.csv with two columns;
the timestamps and the abdomen signal.

4.7. Preprocessing 65

1 # Parse the arguments into a dictionary
2 args = parse_arguments(sys.argv)
3

4 if 'file' not in args:
5 print_usage(sys.argv [0])
6 exit (1)
7

8 # Read EDF -file
9 edf = pyedflib.EdfReader(args['file'])

10

11 for i, label in enumerate(edf.getSignalLabels ()):
12 if label.lower () == 'abdomen ':
13 signal = edf.readSignal(i)
14 freq = 1000 // edf.getSampleFrequency(i)
15 freq = datetime.timedelta(milliseconds=freq)
16 break
17

18 time = edf.getStartdatetime ()
19 timestamps = []
20

21 # Generate timestamps for samples
22 for _ in range(len(signal)):
23 timestamps.append(time)
24 time += freq
25

26 df = pandas.DataFrame ({1 : signal}, index=timestamps)
27

28 if 'localize ' in args:
29 df.index = pandas.to_datetime(df.index ,
30 format='%Y-%m-%d %H:%M:%S.%f').tz_localize('Europe/Oslo')
31 else:
32 df.index = pandas.to_datetime(df.index ,
33 format='%Y-%m-%d %H:%M:%S.%f')
34

35 # Extract part if specified
36 start = df.index [0]
37 if 'start ' in args: start += args['start ']
38

39 end = df.index [0] + args['end'] if 'end' in args else df.index [-1]
40

41 df = df.loc[start:end]
42

43 if 'resample ' in args:
44 fs_interval = str (1000 // args['resample ']) + 'ms'
45 df = df.resample(fs_interval).mean()
46

47 df.to_csv(sys.stdout , header=False)
48

49 if 'show' in args:
50 pyplot.plot(df , label="NOX")
51 pyplot.legend ()
52 pyplot.show()

Listing 4.5: Script for extracting and converting NOX signal from EDF to
CSV

66 Chapter 4. Preprocessing

4.7.3 Preprocessing of FLOW and NOX

As previously explained, a script to synchronize and combine signals from
respiratory effort sensors have already been implemented in [Løberg 2018].
We utilize the script and modify it to suit our needs. A large proportion
of the original code is stripped away for simplicity as we do not need to
support other types of signals.

One of the changes to the existing code involves the implementation of
a function that splits the FLOW signal at connection loss. Another change
from the original code is that we synchronize each FLOW signal period
with connection loss with the corresponding NOX period. It is easiest to
synchronize two signals that have the same sampling rate. We resample
both signals to 10 Hz, since this is the expected sampling rate for FLOW. To
resample, we take the mean value for samples that end up between exist-
ing samples. In cases where the mean value is not available, for example
at signal boundaries, we interpolate the missing samples using quadratic
interpolation.

The main part of the script can be seen in Listing 4.6. The required ar-
guments for this script are the two CSV files, flow and nox, to preprocess.
Optional arguments for exclude and delay can be specified, in addition to the
show argument that plots each of the combined parts. The exclude argument
specifies the number of samples to exclude at the beginning of the recording
and after each connection loss. Removing the first minutes in the begin-
ning or after a connection loss can be beneficial as these periods are often
noisy. The delay argument overrides the automatic cross-correlation syn-
chronization and is useful for cases where we have to manually synchronize
the signals. This argument is an integer, which represents the number of
samples, which can be negative, that the FLOW signal should be delayed.
The output of this script is a new CSV file consisting of the two signals
that have been combined and synchronized. As before, this file is written
to standard output, and can be redirected to a new file. The optional show
argument plots the processed signals in a chart for each part of the recording
that is synchronized. This is useful for visually verifying that the signals are
synchronized.

To give an example of how to run this script:

$ python preprocessing.py --flow=flow.csv --nox=nox.csv
--exclude=600 --show > preprocessed.csv

In this example, most of the arguments are specified. The --exclude=600
specifies that the first 600 samples, for each part we combine, should be
excluded in the output. The results of the preprocessing script is stored in a
new CSV-file as preprocessed.csv.

4.7. Preprocessing 67

1 # Function to parse the arguments into a Python dictionary
2 args = parse_arguments(sys.argv)
3

4 # Read CSV -files
5 flow = pandas.read_csv(args['flow'], header=None , index_col=0,
6 parse_dates =[0], date_parser=parse_timestamp)
7

8 nox = pandas.read_csv(args['nox'], header=None , index_col=0, usecols
=[0, 1],

9 parse_dates =[0], date_parser=parse_timestamp)
10

11 # Split FLOW at connection loss
12 flow = split(flow)
13

14 # Split NOX to equalize part(s)
15 nox = [cutLengthOf(nox , to=part) for part in flow]
16

17 preprocessed = []
18

19 # Iterate over each signal period without connection loss
20 for sig1 , sig2 in zip(flow , nox):
21 # Resample
22 sig1 = sig1.resample("100ms").mean()
23 sig2 = sig2.resample("100ms").mean()
24

25 # Interpolate
26 sig1 = sig1.interpolate(method='quadratic ')
27 sig2 = sig2.interpolate(method='quadratic ')
28

29 if 'exclude ' in args:
30 sig1 = sig1[args['exclude ']:]
31

32 # Synchronize
33 delay = findDelay(detrend(sig1 [1]), detrend(sig2 [1]))
34 sig1 = sig1.shift(delay)
35

36 # Drop NaNs
37 sig1 = sig1.dropna ()
38 sig2 = sig2.dropna ()
39

40 # Equalize lengths
41 sig1 = cutLengthOf(sig1 , to=sig2)
42 sig2 = cutLengthOf(sig2 , to=sig1)
43

44 part = sig1 * 1 # make copy
45 part [2] = sig2 [1] # add column
46 preprocessed.append(part)
47

48 # Combine each synchronized period into one dataframe
49 combined = pandas.concat(preprocessed , axis =0)
50 combined.to_csv(sys.stdout , header=False)
51

52 if 'show' in args:
53 for part in preprocessed:
54 pyplot.plot(standardize(part [1]), label="FLOW")
55 pyplot.plot(standardize(part [2]), label="NOX")
56 pyplot.legend ()
57 pyplot.show()

Listing 4.6: Script to synchronize and combine FLOW and NOX signals

68 Chapter 4. Preprocessing

4.8 Discussion and Conclusion

To summarize, we have investigated several alternatives for adjusting the
timestamps and detecting connection loss in FLOW recordings. For most
alternatives, the main issue is keeping FLOW synchronized with NOX for
extended periods of time. The presence of jitter in recordings makes it diffi-
cult to be certain whether a small gap is caused by a loss of connection or
if data is buffered somewhere on the smartphone or sensor. However, the
jumping window model can adjust the timestamps for extended periods
and is the only alternative that also detects connection losses, although jitter
means some uncertainty always will exist.

Through preliminary testing, we have discovered that the size of the de-
fault window affects the performance of the window model for accurate
timestamp adjustment. Jitter and the changing sampling rate of the FLOW
sensor means it is difficult to determine the right parameters the maximum
window size and the minimum sampling rate in a window needed to accur-
ately adjust the timestamps, while at the same time detecting connection
losses. Even though we have seen indications that a small window exceeds
the performance of a large one, this is not necessarily true for every record-
ing. Therefore, the FLOW cleaning script includes the option to set the
window parameters for default and maximum window size and the min-
imum sampling rate required in a window to adjust the timestamps. These
parameters allow for fine-tuning the window model as desired.

For preprocessing the dataset we have implemented a total of three Py-
thon scripts, including the existing script in [Løberg 2018] that we have
modified to fit our needs. Preprocessing the dataset involves the following
steps:

• Adjusting the timestamps of FLOW, including identifying connection
loss and converting the data to a CSV file using the flow-cleaning.py
script.

• Then, extracting the NOX abdomen signal from EDF-files and convert-
ing the data to a CSV file using the edf-to-csv.py script.

• Finally combining the two signals, using the preprocessing.py script.

Execution of the preprocessing procedure may be as follows:

$ python flow-cleaning.py --file=breathing.txt
--default=0.7 --limit=15 --min_rate=9.0 > flow.csv

$ python edf-to-csv.py --file=nox.edf --start=0
--end=9 --localize --resample=10.0 --show > nox.csv

$ python preprocessing.py --flow=flow.csv --nox=nox.csv
--exclude=600 --show > preprocessed.csv

Chapter 5

Evaluation

In this chapter, we evaluate the usefulness of FLOW for sleep apnea detec-
tion. We begin in Section 5.1, with an overview of the clinical dataset. We
continue in Section 5.2, with an evaluation of the results of preprocessing
data from FLOW and the window models’ ability to adjust timestamps
correctly and detect connection losses. Next, we evaluate the signal quality
results of FLOW and compare it with related works in Section 5.3. In Section
5.4, we present some early results of eight data mining classifiers and their
ability to detect disrupted breathing in the signals from FLOW and NOX.
Finally, we conclude this chapter in Section 5.5. As a side note, this chapter
incorporates parts from related works for measuring the signal quality and
classification, with the general flow of data shown in Figure 5.1.

Figure 5.1: Data flow during our quality evaluation

5.1 Dataset

Figure 5.2 presents an overview of our dataset of FLOW and NOX record-
ings. Figure 5.2a lists the total number of hours recorded with the FLOW
and NOX signal together with how much we have been able to synchronize
and use for our evaluation. Notice that FLOW has recorded for a signi-
ficantly lower amount of hours compared to NOX (316 versus 493 hours).
The main reason for this is because several FLOW recordings are missing,
possibly because the patient forgot to start the registration. Additionally, we
have discovered at-least thirteen recordings where FLOW stops recording
soon after beginning or in the middle of the night. Furthermore, we have

69

70 Chapter 5. Evaluation

identified approximately twenty hours of missing data during our prepro-
cessing of FLOW recordings, which is due to the intermediate connection
losses of the signal while recording.

Figure 5.2: (a) Overview of dataset and (b) boxplot with the distribution of
recording duration

We have successfully preprocessed and synchronized every FLOW record-
ing except for one due to poor quality. We cannot combine every element
of a recording since patients do not always start and stop recordings at the
same time. As a result, there are approximately 290 hours of corresponding
sleep data between the two signals that we can use for evaluation. The size
of the dataset used for the signal quality metric (listed as SQM in Figure 5.2)
and machine learning (listed as ML in Figure 5.2) evaluation is 263 and 232
hours, respectively. The reason the data size of SQM and ML are lower than
what we have combined from FLOW and NOX is because we consider six
FLOW recordings to be corrupt. Meaning these FLOW recordings are of
such poor quality that even though we have been able to synchronize them,
the majority of the signal is too noisy for quality measurement. Additionally,
not every recording has yet been analyzed and scored by a sleep expert,
which reduces the number of recordings we can use for our ML evaluation.

In Figure 5.2b, a box-plot with the duration of recordings is shown. Notice
the significant difference in recording duration between FLOW and NOX.
As mentioned, the FLOW sensor does not record the entire night in some
cases. We know that many recordings suddenly stop in the middle of the
night, which we believe is not only a sensor issue because the application
used to collect the signal data from FLOW tends to crash. For comparison,
NOX generally records the entire night. There are two noticeable outliers
for NOX where it did not record for an entire night, represented as circles in
Figure 5.2b. We believe that the patient stopped the recording themselves
in these two cases, although we do not know for sure. Since many FLOW
recordings do not last for the entire night, it reduces the duration of the
combined and synchronized recordings, and also for evaluation.

5.2. Data Preprocessing Evaluation 71

5.2 Data Preprocessing Evaluation

The main goal of our preprocessing is to adjust the timestamp of samples in
the signal from FLOW to enable synchronization with NOX. To determine
the success of our preprocessing, we can visually inspect the synchronized
signals from the output of our preprocessing script. After inspecting a sig-
nificant number of recordings, we have yet to find any notable problems
with our timestamp adjustment of FLOW samples. It is, however, a very
time-consuming and tedious process to visually verify that hundreds of
hours of signal data are synchronized at all-times. As such, we rely on the
signal quality metric results, which we present in Section 5.3, for verifying
our timestamp adjustment. Before that, we evaluate our connection loss
detection.

One measurable effect of our preprocessing is that we have identified ad-
ditional data as missing due to connection loss in the signal from FLOW.
We have detected connection loss in 45 of the 56 recordings synchronized
with NOX. Interestingly, only six recordings have recorded a complete night
without having connection issues or other problems, which goes to show
that it is a common problem for the majority of FLOW recordings. Overall
we have detected more than 700 gaps, in the range of a few seconds long to
over eighty minutes. It is important to note that not all gaps are necessarily
a connection loss. For instance, in one case, the signal from FLOW keeps
sending two samples every second or so, which is significantly lower than 10
samples a second at a 10 Hz sampling rate. In this case, our implementation
of the window model means it continuously detects connection losses as
long as new data arrive when the sampling rate is lower than expected.
Additionally, the window model detects many gaps that are only a few
seconds long. In many cases, the reason is that the window model is unable
to adjust the timestamps of a few packets before a large connection loss.

Overall we have detected around 20 hours of missing data due to intermedi-
ate connection losses. Also worth noting is that 450 gaps have a duration of
five seconds or more, and that 100 gaps are longer than one minute. This
means that most connection losses are between five seconds and one minute
long.

5.3 Signal Quality Metrics

Measuring the signal quality of FLOW serves multiple purposes. First of all,
it confirms whether we have successfully adjusted the FLOW timestamps
during preprocessing or not. Secondly, it allows us to compare the quality of
overnight recordings with the signal captures in a controlled environment in
[Løberg 2018]. Thirdly, the metrics may identify additional signal issues and
eliminate the need to visually inspect every minute of a recording to confirm
synchronization. At last, the metrics should prove useful to determine if
any recordings should be considered as corrupt based on poor signal quality.

72 Chapter 5. Evaluation

During our analysis, we discovered that it was unfeasible to measure the
signal quality of hours-long recordings. The main issue is the variation in
the mean baseline breath amplitude, usually related to different sleeping
positions. The same issue is described in [Løberg 2018], who suggest to
either compare the periods with different baseline breath amplitudes with
the gold standard separately or to apply careful adaptive normalization
techniques to the FLOW signal. We want to avoid applying any further
preprocessing than necessary because we want to compare the quality of the
raw signal to the extent it is possible. Comparing each period of different
baseline breath amplitude separately is a very tedious process given the
size of the dataset. As such, we have chosen to measure the signal quality
periodically overnight.

We have chosen to measure the signal quality in periods of fifteen minutes.
A period of this length is long enough to estimate the average breath amp-
litude. This length should limit the number of periods affected by motion
artifacts and baseline breath amplitude changes. Measuring the signal qual-
ity periodically has a few advantages. It allows us to inspect if there is any
trend in the signal quality improving or deteriorating overnight. Changes in
the measured signal quality should help uncover periods with signal issues
such as poor synchronization or noise, detected by changes in the different
quality metrics.

5.3.1 Corrupt Signal

Early during the quality analysis, we discovered that the signal quality of
FLOW sometime changes significantly during recording, likely due to belt
misplacement or sensor entrapment. Most recordings contain at least one
period where the signal from FLOW is very noisy. In six recordings, the
FLOW signal is so noisy for several hours that we consider these recordings
as corrupt. An example of a corrupt FLOW signal is shown in Figure 5.3. In
this example, it is nearly impossible to visually distinguish the breaths in the
FLOW signal without using the NOX signal as a reference. Therefore, we
define a recording as corrupt when the majority of the signal is as poor as the
example shown in Figure 5.3. This is, however, our subjective assessment of
the signal that is not necessarily reflected by the quality metrics. As such, we
have chosen to include the corrupt recordings in the quality measurement
to see if there are any similarities. This should give us a first impression of
whether the signal quality metrics can be used to determine what FLOW
recordings are too poor for automatic detection of sleep apnea using ML.

5.3.2 Disrupted Breathing Events

Before measuring the signal quality of FLOW, we first present a few ex-
amples of disrupted breathing to see how the signal from FLOW behaves
compared to NOX. It is, after all, fundamental that the signal from FLOW
can detect breathing stops to be useful. An example of a FLOW signal of

5.3. Signal Quality Metrics 73

Figure 5.3: Example of a corrupt FLOW recording

very good quality can be seen in Figure 5.4 along with the NOX signal.
There are five apnea events and one hypopnea event scored during these
six minutes. Notice that the waveform of FLOW is almost identical to NOX
during the periods of disrupted breathing. This is very promising because
it means the FLOW sensor can detect the changes in breathing amplitudes
similar to NOX. The apnea event around the three-minute mark seems to be
a central apnea as there is a lack of respiratory effort during this period in
both signals. The remaining apneas all show a presence of respiratory effort
(i.e., breathing peaks), which means they are obstructive apneas.

Figure 5.4: Example of a very good quality FLOW recording

Another example of the signal from FLOW during disrupted breathing
is shown in Figure 5.5. In this example, the breath amplitudes in the signal
from FLOW is much lower compared to the breaths in the signal from NOX.
This is especially the case for breaths of lower amplitude, that is, when
the patient’s breathing is shallow. The FLOW signal almost flatlines which
means that ML classifiers may falsely classify these periods as disrupted
breathing.

74 Chapter 5. Evaluation

Figure 5.5: Example of a period with low mean baseline breath amplitude

5.3.3 Signal Quality Overnight

To analyze if there is any trend in the measured breath amplitude accuracy
throughout the night, we have included the sensitivity and PPV in addition
to the WAPE score of four recordings shown in Figure 5.6. Each circle, star
or square in the figure represents the quality metric scores measured for a
signal period of fifteen minutes. It is noticeable how much the WAPE score
changes overnight in contrast to the more stable sensitivity and PPV scores.
For instance, the sensitivity and PPV score of the recording in Figure 5.6a are
for the majority of the night close to 100%, while the WAPE score goes from
5% and almost up to 50 % between the first and second-hour mark. At times,
the WAPE score is more or less stable around 10% between subsequent
periods as seen at the four-hour mark in both Figure 5.6b, Figure 5.6c and
Figure 5.6d. The stability of the WAPE score in these periods, may indicate
that the patient is sleeping restful and not changing their sleeping position.
Notice also the low sensitivity, PPV, and WAPE score in Figure 5.6d around
the seven-hour mark. In this particular period, the scores of the three met-
rics indicate that this signal period of FLOW is very noisy and of low quality.

The WAPE metric appears to be very sensitive in general, as the measured
score often changes significantly even when the corresponding sensitivity
and PPV scores indicates that the signal quality is good. The WAPE score
is severely affected by motion artifacts and changes in the mean baseline
breath amplitude. As a result, we cannot measure the breath amplitude ac-
curacy of overnight FLOW recordings accurately without excluding motion
artifacts and measuring each period of different baseline breath amplitude
separately.

5.3.4 Breath Detection Accuracy

Sensitivity

One of the metrics we use to measure breath detection accuracy is sens-
itivity, which describes the proportion of real breaths correctly identified.

5.3. Signal Quality Metrics 75

Figure 5.6: Periodically measured metric

Achieving a sensitivity score of 100% suggests that all of the real breaths
are correctly identified. However, it is important to note that the possibility
of false breaths mistakenly being identified as real increases in correlation
to the number of false breaths. As such, sensitivity alone is not enough to
imply that the signal quality is good.

The sensitivity of the FLOW recordings is very good, with a mean score of
97.2% for the non-corrupt recordings and 89.5% for the corrupt recordings.
Figure 5.7 shows several box-plots with one box-plot for each recording.
Each box-plot describes the distribution of the measured sensitivity scores
for all periods in a recording. The median score of all the measured periods
is represented with an orange line in the box-plots. The fifty-one recordings
we use to evaluate the signal quality of FLOW are listed as 1 to 51, while the
corrupt recordings are listed as C1 to C6.

Notice that, the sensitivity is close to 100%, during most periods for many
of the non-corrupt recordings. There are a number of recordings that have a
median sensitivity score similar to the corrupt recordings. See for example,
recording 30 and 44 in Figure 5.7. The sensitivity of the corrupt recordings
is surprisingly good, although they generally show a larger spread in the
measured sensitivity compared to the non-corrupt recordings. We expect the
sensitivity score to decrease as the signal quality of FLOW deteriorates past
the point that breaths are no longer recognizable, since fewer real breaths
should be detected. However, this is often not the case. Instead, the number
of breaths detected in the FLOW signal increases, and so does the odds of

76 Chapter 5. Evaluation

Figure 5.7: Measured sensitivity score of all FLOW recordings

false breaths mistakenly being identified as real. As a result, noise in the
FLOW signal does not necessarily reduce the sensitivity score.

The sensitivity box-plots of most recordings have one or more outliers,
which is a period with a significantly lower sensitivity score compared
to the general distribution. In some of the recordings, FLOW appears to
struggle with correctly detecting shallow breathing, although it still accur-
ately detect deeper breaths. An example of this can be seen in Figure 5.8,
where deeper breaths, that is, the breaths with high amplitudes are similar
to the amplitude of breaths in the NOX signal. The shallow breaths in the
FLOW signal is buried in noise and cannot easily be distinguished. This
is likely because the FLOW belt is either misplaced, slightly trapped, or
not fitted tightly enough on the body to register small changes in the belt
expansion during shallow breathing as opposed to the larger belt expansion
during deeper breaths.

Positive Predictive Value

The second metric we use for measuring breath detection accuracy is the
PPV metric, which describes the percentage of detected breaths that are
actual real breaths. Achieving a PPV of 100% means that all of the detected
breaths in the are real breaths, while a PPV of 80% means that 20% of the
detected breaths are false breaths. It is important to note that PPV alone
is not enough to imply that the signal quality is good. For instance, it is
possible to get a perfect score even if the signal flat-lines for a longer period,

5.3. Signal Quality Metrics 77

Figure 5.8: Example of FLOW not correctly registering shallow breaths

as long as the breaths detected in the remaining part of the signal are real
breaths.

For most recordings, the PPV of the FLOW sensor is also very good, with
the mean scores for the non-corrupt and corrupt recordings being 94.2%
and 82.1%, respectively. Several of the non-corrupt recordings have a larger
variation in the measured PPV score, which is more similar to the PPV
scores of the corrupt recordings. See, for example, Recording 4 and 44 in
Figure 5.9. The median PPV score of Recording 4 is around 80%, while
four out of six corrupt recordings have a median PPV score above 85%. We
know from visual inspecting Recording 4 that the FLOW signal is noisier
in comparison to other recordings, but the breaths can be distinguished
in the signal. Although the PPV metric does not perfectly correlate to our
definition of when a recording is considered corrupt, there is more variance
in the measured PPV score during the corrupt recordings in general.

Clean Minute Proportion

The third and last metric we use for measuring the breath detecting accuracy
is the CMP metric, which describes the proportion of minutes in the record-
ing where both the sensitivity and PPV are 100%. The CMP is useful for
understanding the distribution of errors in the FLOW signal. If, for instance,
a signal has a low PPV, the CMP can explain whether false breaths are
contained within a few periods or somewhat evenly spread throughout the
recording. As we measure the signal quality in periods of fifteen minutes,
each clean minute increases the CMP score of that signal period with 6.66%.

The CMP score of most recordings has the largest variation. As seen in
Figure 5.10, it is not unusual for FLOW recordings to have signal periods
with almost no errors, that is, with a CMP score of close to 100%, in addition
to a signal period with a CMP score close to 0%. The median CMP score of
the corrupt recordings are centered around 10% and are among the record-
ings that have the lowest CMP score. The correlation between the PPV and

78 Chapter 5. Evaluation

Figure 5.9: Measured positive predictive value (PPV) score of all FLOW
recordings

CMP values is very noticeable and recordings with a low PPV, also have
a low CMP score. See, for example, Recording 4, 12, 35, and 44, between
Figure 5.9 and 5.10. The low CMP score indicates that these recordings are
in general nosier for the entire night. The correlation between sensitivity is
less noticeable but is still present. See, for example, Recording 18, 30, and 51
between Figure 5.7 and 5.10.

One may notice that Recording 22 and 23 have a very high CMP score.
These two recordings are from the same patient, and both recordings have a
sampling rate above 12 Hz. After a visual inspection of the FLOW signal,
it is clear that the signal-to-noise ratio remains high both nights, possibly
because the belt has been fitted perfectly tight. Notice also that Recording 4
again has an equally bad CMP score as the corrupt recordings.

5.3.5 Breath Amplitude Accuracy

We use the WAPE metric to measure the breath amplitude accuracy. This
metric calculates the distance (or difference) in amplitude between corres-
ponding breaths in FLOW and NOX. As such, a low metric score signifies
a high breath amplitude accuracy, or in other words, lower is better. It is
important to note that entirely random data will result in a score of 50% for
this metric, which means that results close to or worse than this indicates
an inferior relationship, which is one reason we are measuring the quality
periodically.

5.3. Signal Quality Metrics 79

Figure 5.10: The measured clean minute proportion (CMP) of all FLOW
recordings

The overall measured breath amplitude error is not great, with a mean
WAPE score of 18.4%. This indicates that FLOW can only accurately detect
hypopnea events with a minimum reduction in airflow of 48.4%, which
is significantly higher than 30% that is the definition of a hypopnea event.
Figure 5.11 shows the distribution of the periodically measured WAPE for
all FLOW recordings. Notice that we cannot easily distinguish the corrupt
recordings from the non-corrupt recordings using their WAPE scores com-
pared to when using the breath detection accuracy metrics. Notice also the
difference in the degree of dispersion between recordings. In fact, for most
recordings, there is a noticeable correlation between the median score and
the degree of variation. Generally, recordings with a high median WAPE
score also have large variations, while recordings with a low median WAPE
score have a more stable WAPE score.

Only eight recordings have a median WAPE score below 10%, but most
recordings have measured a WAPE score below 10% in one or more periods.
Recording 31 and 44 in Figure 5.11, are two examples of FLOW recordings
that have one period with a very good WAPE score of 2.4% and 2.6% re-
spectively, but also have periods with a measured WAPE score above 50%.
Motion artifacts and periods with more than one mean baseline breath amp-
litude causes the calculated WAPE metric to be inaccurate. As a result, to
determine if a period with a poor WAPE score is not because of inaccurate
measurement, we have to inspect the signals.

80 Chapter 5. Evaluation

Figure 5.11: Breath amplitude error (WAPE) score of all FLOW recordings

Figure 5.12 shows the breath amplitude relationship and the regression
line for a few selected periods from different recordings. We have selected
these periods to show how different kinds of breath amplitude relationship
between FLOW and NOX affects the quality. The periods in the scatterplot
are sorted based on quality, with Figure 5.12a, Figure 5.12b, Figure 5.12c, and
5.12d having a WAPE score of 2.6%, 4.5%, 24.5%, and 38.3%, respectively.

There is not much difference between Figure 5.12a and Figure5.12b. Both
periods show a strong linear relationship for shallow, normal and deep
breaths between FLOW and NOX. Except for two outliers, all breaths are
aligned very close to the regression line, which is what causes these periods
to score so well. Together they show how similar the FLOW sensor is to
NOX when it is fitted perfectly around the stomach. In Figure 5.12c, the two
distinct clusters represent two different breath amplitude relationships. In
this case, the regression line is fitted closest to the lower cluster, which means
the breaths in the upper cluster are far from the regression line, which is the
reason for the poor WAPE score of 24.5%. This illustrates the importance of
measuring different breath amplitude relationships separately to determine
the WAPE score accurately. By measuring the signal quality of FLOW in
periods of fifteen minutes, we reduce the number of signal periods that
have multiple breath amplitude relationships. However, there are still many
periods with poor WAPE scores, like the one in Figure 5.12c, that should
be excluded if we want to determine the actual breath amplitude accuracy

5.3. Signal Quality Metrics 81

Figure 5.12: Breath amplitude relationship between FLOW and NOX

of FLOW. Figure 5.12d shows a more monotonic relationship. If we chose
to exclude the shallow breaths, the slope of the regression line would be
more steep, revealing a more linear relationship between FLOW and NOX
for deeper breaths. This signal period is noisy, especially when the patient is
breathing shallow, which indicates that the FLOW belt may not be strapped
tightly enough to measure the amplitude of shallow breaths with the same
linear relationship as deeper breaths.

5.3.6 Comparison with Related Work

Løberg [Løberg 2018], evaluates multiple sensors using the sensitivity, PPV,
CMP, and WAPE metrics. FLOW is one of four sensors evaluated, and the
RIP signal from NOX is used as the gold standard sensor. Their results
for FLOW show a very good sensitivity of 98.91% for the supine position
and 98.22% for the side position. Likewise, the PPV score of FLOW is very
good with very few false breaths detected, resulting in a mean PPV of the
supine and side positions of 98.81%, and 99.16%, respectively. FLOW is the
best sensor regarding the PPV score in the study. In their study, they also
find that the signal from FLOW is one of the more noisy signals among the
sensors compared in the study, but that the noise is easily distinguished
from breaths in general. FLOW also achieves the best breath amplitude

82 Chapter 5. Evaluation

accuracy among the sensors, with a mean WAPE score for the supine and
side positions of 8.75% and 9.61%, respectively. They note that one possible
explanation as to why FLOW achieves a much better breath amplitude ac-
curacy than the other sensors is that it is the only sensor that captures the
same unit of measurement as NOX (volume), meaning the signals produced
by the sensors are very similar.

The performance of FLOW in our study is in line with the results of this
study. Regarding sensitivity, their findings from the supine position are very
similar to our results (98.81% versus 97.2%). Less similar is their results
for PPV compared to ours (98.81% versus 94.2%), but our result includes
a large difference in the measured PPV between recordings, ranging from
75.9% to 99.2%. There are several possible reasons as to why we experience
more false breaths. First of all, we do not exclude motion artifacts. Secondly,
we cannot check that the FLOW belt is attached properly, since we are not
conducting the recordings in a controlled environment. Furthermore, the
signal quality produced by the FLOW sensor is related to sleeping positions.
If the signal quality produced is worst when sleeping on the stomach, then
our results are likely to be worse, as the patients and the results are not
limited to the side and supine sleeping position.

The findings in [Løberg 2018] regarding the breath amplitude accuracy
of FLOW is the least similar compared to ours among the metrics used to
measure the signal quality (9.61% versus 18.4%). This is somewhat expected,
given our circumstances and the sensitivity of this metric. The large size
of our dataset inhibits us from manually measuring periods with different
baseline breath amplitudes separately, as it is too time consuming and re-
source demanding. However, we did find that most of FLOW recordings
have a least one period with a WAPE score below 10%. Our findings indicate
that the signal quality we measure periodically in overnight recordings is
comparable to the results from a supervised setting.

5.4 Machine Learning

Most of the NOX recordings in this dataset have been scored by a sleep
expert. As the final evaluation, this allows us to get a first impression of
whether the FLOW sensor can detect sleep apnea and how NOX performs
in comparison. Another benefit of machine learning (ML) is that if the
classification accuracy using the FLOW signal is similar to using the NOX
signal, it further confirms that our timestamp adjustment is accurate enough
for the signal from FLOW to be useful.

5.4.1 Approach

Because of our limited time frame, we will evaluate eight different machine
learning classifiers which are available for us to run through the CESAR
project based on forthcoming work by Kristiansen et al. [Kristiansen et al.
2020], which use the same classifiers on the complete NOX T3 dataset from

5.4. Machine Learning 83

the A3 study. The classifiers primarily consist of deep learning and neural
networks to limit the number of results and are chosen somewhat based on
performance and computational efficiency.

5.4.2 Preprocessing

The annotated NOX recordings contain all of the signal data from NOX T3
in addition to the manual scorings from a sleep expert. All of this can be
exported from Noxturnal to CSV files with a sampling rate of 1 Hz. We
need to combine the annotated scorings with the FLOW signal. If we want
to keep the sampling rate of 10 Hz, we need to upsample the annotated
scorings from 1 Hz to 10 Hz. However, we encountered a problem that the
NOX signal we have preprocessed and combined with FLOW deviates from
the same NOX signal in the annotated file, which we cannot explain by the
lower sampling rate in the annotated file alone. As a consequence, we have
decided to preprocess and combine FLOW with NOX anew, using the 1 Hz
NOX signal from the annotated file instead. A sampling rate reduction from
10 Hz to 1 Hz reduces the level of detail in the respiratory changes, but since
nightly respiratory changes are not so sudden and typically develop over a
time span of seconds, it should not have a significant impact on the results.

The annotated files distinguish between apnea and hypopnea events for
both obstructive, central and mixed sleep apnea. For simplicity and since
we are not trying to distinguish between different types of sleep apnea, we
have decided to combine all events related to either hypopnea or apnea into
one class for general disrupted breathing, as seen in Table 5.1. Each row
of this class is denoted as either 1 for disrupted breathing, or 0 for normal
breathing.

Timestamp FLOW NOX Class
1 2018-09-04 23:57:08 0.147436 0.218308 0
2 2018-09-04 23:57:09 -0.518685 -0.784432 0
3 2018-09-04 23:57:10 -0.539831 -1.141768 0
4 2018-09-04 23:57:11 0.496357 -0.395067 1
5 2018-09-04 23:57:12 0.972158 1.075836 1

Table 5.1: Example of annotated file

We have chosen to apply another preprocessing step to the signal from
FLOW to adjust for baseline shifts and periods with low mean breath amp-
litude. Currently, this is the most obvious difference between the FLOW and
NOX signals, although other types of preprocessing, such as noise removal,
also may increase the signal quality. One reason for doing this is that we
compare the ML results of different levels of preprocessing, which will give
us some indication about the impact further preprocessing can have on
classification performance regarding data from FLOW.

To remove motion artifacts and correct the baseline shifts, one option is

84 Chapter 5. Evaluation

to use the ABAMAR algorithm presented in Section 3.3.4. However, this
algorithm does not consider the impact that periods of different breath
amplitudes possibly have on the performance of ML classifiers. Moreover,
it needs to be carefully adapted to reach the FLOW signal, which is time
consuming. Instead, we have chosen a simple approach to standardize the
FLOW signal in small periods of one minute. As shown in Figure 5.13, the
difference from standardizing the signal every six-minute, see Figure 5.13a,
compared to every minute, see Figure 5.13b, is clear. The FLOW signal
in Figure 5.13a almost flatline towards the end, which can confuse a data
mining classifier to mistakenly detect this period as disrupted breathing.
However, when we standardize the signal every minute, it is obvious that
the signal is not flatlining and now looks more similar to NOX.

Figure 5.13: Amplitude difference from standardizing every sixth minute
versus every minute

5.4.3 Results

The performance of classifiers is often related to the size of the dataset used.
Therefore, we test each classifier using different sizes of the dataset. To
differentiate between the results of a classifier, we append the size of the
dataset to the name of the classifier. We use three sizes of the dataset, defined
as S for small, M for medium, and L for large. For instance, the results of
running the convoluted neural network (CNN) classifier using the large
dataset is represented in the following figures as CNNL.

We start in Figure 5.14, by comparing the kappa scores to get a better in-
sight into the general performance of the different classifiers, as shown
in Figure 5.14. A kappa value of 1 indicates a perfect agreement between

5.4. Machine Learning 85

the underlying metrics. The circle/point in the middle of each line is the
mean kappa score of the 10-folds, while the line represents one standard
deviation (SD). The SD indicates whether the kappa of each fold is close to
the mean (low SD) or more spread out over a wider range (high SD). Notice
that most of the classifiers have a much lower kappa score on the FLOW
signal without additional preprocessing. For instance, all sizes of random
forest (RF) have a kappa value close to 0, which means that there is a lack of
agreement between the metrics used to evaluate the classifier. The only two
feedforward neural networks we evaluate, CNN and MLP, are capable of
feature extraction on their own and manage to achieve a kappa score only
slightly lower than with our preprocessing. For most classifiers, the signal
from NOX generally has a kappa score between 0.55 and 0.6, while the
preprocessed signal from FLOW is centered just below 0.5. This suggests,
that the classifiers perform slightly better on signal data from NOX, than
from FLOW.

Figure 5.14: Average and SD results of kappa

Figure 5.15 shows the results of the accuracy metric of all classifiers. For
most of the classifiers, the accuracy reflects the kappa results to a large
degree. The accuracy of the recurrent networks, like the long short term
memory (LSTM), on the signal from FLOW without further preprocessing, is
generally centered around 50%, and since the dataset is balanced with only
one class, the results are no better than random guessing. The medium-sized
CNN (see CNNM in Figure 5.15), has the highest accuracy for both FLOW,
the further preprocessed FLOW signal, and the NOX signal, with a mean
accuracy of 73.3%, 76.1%, and 79.6%, respectively. We are able to improve
the accuracy of FLOW with a simple standardization even with an initial
accuracy as high as 73.3% using CNN. This indicates that there is a strong
correlation between the features we focus on, namely the amplitude, and
the scoring of the sleep expert.

86 Chapter 5. Evaluation

Figure 5.15: Average and SD results of accuracy

The measured sensitivity of most of the classifiers has the highest spread
between the different folds. This is worst for the FLOW signal without fur-
ther preprocessing, as seen in Figure 5.16. The sensitivity of NOX is around
3-4% better than the preprocessed FLOW signal. CNNL has the best results
for FLOW, preprocessed FLOW, and NOX with a mean of 71.5%, 81.1%,
and 84.3%, respectively. A high sensitivity is important as it represents the
classifiers’ ability to detect disrupted breathing. However, a classifier can get
a perfect sensitivity simply by detecting everything as disrupted breathing.
Therefore, this metric on its own is not enough to evaluate the performance
of a classifier. So far, CNN has scored overall the best for three metrics
indicating that the classifier is very suitable for the detection of disrupted
breathing.

The specificity of the classifiers is shown in Figure 5.17. Notice that the
signal from FLOW in some instances has a higher score compared to the
preprocessed FLOW signal. See, for example, CNN and MLP in Figure 5.17.
Of the metrics we present, this is the only one that is somewhat negatively
affected by our further preprocessing of the FLOW signal. The classifiers
that experience a decrease in specificity score after further preprocessing of
FLOW are the same classifiers that experience an increase in their sensitivity
score. Our standardization of the FLOW signal should ideally increase the
breath amplitude in periods with a lower mean breath amplitude. As a
side effect, this procedure can reduce the breath amplitude in other signal
parts, such that they are mistakenly identified as disrupted breathing, which
reduces the specificity score. There is a correlation between the measured
sensitivity and specificity, with classifiers having a lower sensitivity have a
higher specificity, see for example MLP between Figure 5.16 and Figure 5.17.

5.4. Machine Learning 87

Figure 5.16: Average and SD results of sensitivity

Figure 5.17: Average and SD results of specificity

5.4.4 Comparison with Related Work

A direct comparison with related work on the classification of polygraphy
(PG) sleep data using consumer grade sensors is not available, to the best of
our knowledge. However, we can compare the results from the forthcoming
paper [Kristiansen et al. 2020], which uses the same set of classifiers as us.
In their study, they use the complete NOX T3 dataset from the A3 study,
which means they are not limited to the abdomen signal, but also include
signals such as the respiratory effort from the chest (thorax) and cannula
airflow, among others. In [Kristiansen et al. 2020], CNN overall achieves an
accuracy of 83.4%, a sensitivity of 82.6%, and a specificity of 84.2% using the
abdominal signal from NOX. The CNN results are also the average from

88 Chapter 5. Evaluation

using a small, medium, and large size of the A3 dataset.

Some of the patients in the A3 study were given the opportunity to use
the FLOW sensor in addition to NOX T3 while sleeping. Our findings for
NOX should be similar since our dataset is a subset of the A3 study of
patients that used both belts. However, the average accuracy of the CNN
classifier of 79.6% on our data from NOX is slightly lower than that of 83.4%
in [Kristiansen et al. 2020]. Since the size of the two datasets is the only major
difference, this indicates that the performance of CNN is related to the size
of the dataset. Considering that a larger dataset increases the accuracy of
CNN with almost 4% on NOX data, it is fair to assume that the accuracy of
FLOW also increases with a similar rate. Therefore, it is very likely that the
accuracy of the CNN classifier will increase from the current 76.1% towards
80% with a larger dataset.

5.5 Discussion and Conclusions

Preparing FLOW Data

It is not trivial to prepare data from FLOW for evaluation, in fact, it is
very challenging. Even then, there is still no guarantee that everything has
worked properly with synchronization and gap detection. There are aspects
that can affect the data quality, which is hard to check by any other means
than visual inspection of the recordings.

FLOW Issues

During this work, we have discovered two areas of major issues with the
FLOW sensors. The first area is associated with communication and ap-
plication development. This includes Bluetooth connection, data loss, gap
detection and wrong timestamps. The second area is to our understanding
related to the very structure of the sensor itself, which probably is more prone
and sensitive to motion artifacts, which again probably leads to baseline
shifts. This is our assumption based on the fact that the NOX T3 sensor
stretches the whole circumference of the abdomen, which means that the
effect from changing sleeping position is less significant. Moreover, some
amount of automatic preprocessing is likely applied to NOX T3 recordings
by the Noxturnal software program. As a result of the first area, we have
significantly less data than we could have had. The second area leads to
a lower quality of the data we have than one could have wished for, for
good classification. The reason for this is the large difference in baseline
breath amplitude and a lack of extensive preprocessing to correct this. In
conclusion, the differences and similarities between the two signals and
their data are important findings that allow for further improvement of the
quality of the FLOW sensor.

5.5. Discussion and Conclusions 89

Signal Quality and Timestamp Correction

Determining the signal quality and the success of our timestamp correction
cannot be seen on a recording as a whole. Instead, a window-based solution
is needed such that sudden quality changes can be identified and inspected.
The quality metrics are based upon NOX as our gold standard that repres-
ents the ground truth. We have, however, discovered a number of instances
where this is not the case, where the NOX sensor is malfunctioning by flat-
lining or limiting the peaks of breath, while the FLOW sensor is working as
expected. The unattended overnight recordings are likely to contain periods
with motion artifacts due to restless sleeping or people waking up to use the
bathroom in the middle of the night. Such periods should not be included
during the quality measurement of FLOW. While a window-based solution
gives us an indication of the general quality, the actual quality is likely better
than what the metrics suggest, given the limited amount of data cleaning
we apply. What remains important is that the signal of FLOW behaves in a
distinguishable way during periods of disrupted breathing so that machine
learning classifiers can learn those patterns to differentiate between periods
of normal or disrupted breathing.

Synchronizing Signals

Synchronization of FLOW and NOX has proven to be relatively easy with
a good timestamp correction of FLOW samples. A less precise timestamp
correction would likely have increased the difficulty of maintaining syn-
chronization overnight. For synchronizing the signals, we are simply com-
paring two amplitudes from different signals. As long as the signal quality
of FLOW is good enough that breaths are distinguishable from noise, it is
not a problem to synchronize the signal with NOX.

WAPE Metric Issues

One of the main problems with measuring the signal quality is related
to the sensitivity of the WAPE metric used to measure the breath amp-
litude accuracy. The challenge arises as we determine the linear relationship
between breath amplitudes to derive the regression line, but multiple rela-
tionships exist. As suggested in [Løberg 2018], periods of different baseline
breath amplitudes should be measured separately, or else the relationship
is completely misleading. However, separating different baseline breath
amplitudes for overnight recordings is not feasible given the sheer volume.
The window-based measurement is a compromise that limits how many
windows are affected by multiple breath amplitude relationships, so the
overall WAPE score of recordings is less affected. However, the problem is
present, which means that the overall WAPE metric cannot precisely meas-
ure the breath amplitude accuracy of overnight FLOW recordings without
manual excluding the affected periods.

For FLOW, the breath amplitude relationship changes between linear and

90 Chapter 5. Evaluation

monotonic overnight, possibly based on the sleeping position and belt place-
ment. Since the sensor part of FLOW only spans a small part of the belt,
the sensor is more likely to become trapped or misaligned, especially if it is
not fitted properly in the first place. In some recordings, the FLOW signal
struggles with registering shallow breaths with the same linear relationship
as deeper breaths. This illustrates the need for further analysis of the impact
of belt placement on measurement quality and classification performance.

Corrupt FLOW Recordings

Besides the fifty-one nights of recording we use to evaluate the FLOW sensor,
we include six recordings considered as corrupt, to determine if there is any
correlation between our definition of a corrupt recording and the quality
metrics. The sensitivity of the corrupt signals compared to the non-corrupt
signals (89.5% vs. 97.2%) alongside the PPV (82.1% vs. 94.2%) and CMP
scores (21.4% vs. 59.4%), indicates that the recordings we consider corrupt,
indeed are worse than average, according to the breath detecting accuracy
metrics. However, if we inspect Figure 5.7, Figure 5.9 and Figure 5.10, the
metrics cannot easily separate corrupt recordings from recordings which
we have determined not to be corrupt. Although the WAPE metric of the
corrupt recordings is also lower than the non-corrupt (24.4% vs. 18.4%),
there is no clear correlation between the WAPE metric and our definition of
a corrupt recording.

The recordings that we determine to be corrupt is based on our subject-
ive assessment of the signal quality. The quality metrics should give a more
objective assessment of which recordings are likely to be corrupt, although
it is too soon to conclude anything specific. Therefore, it remains an open
issue if the signal quality metrics can be used to decide if a recording is
useful for machine learning or not. To answer this question, we need to
collect a larger dataset with more corrupt or poor recordings to balance the
dataset.

Machine Learning

Our initial evaluation of eight classifiers reveals the importance of further
preprocessing of FLOW for automatic detection of disrupted breathing.
Feedforward neural networks like CNN and MLP, are to a large degree, able
to extract the important features themselves, while our primitive standard-
ization of FLOW increases their accuracy with additional 3%. Although
recurrent neural networks are similarly advanced as feedforward networks,
it is interesting that their results on the FLOW signal without further prepro-
cessing is often not better than random guessing. The exact reason remains
unknown and is an issue for future work.

Further Preprocessing

Since this is the first study where FLOW sensors are used in a clinical setting
on real patients, it is very promising that the CNN classifier achieves an

5.5. Discussion and Conclusions 91

accuracy of 73.3% on FLOW data and 76.1% after applying further prepro-
cessing. Compared to the accuracy of 79.6% CNN achieves on NOX data,
the difference in classification performance on the two sensors are only 3.5%.
The classification result from most classifiers is significantly better than ran-
dom guessing, and the few simple measures taken concerning baseline shifts
and breath amplitudes indicate that with a comprehensive preprocessing
scheme, the classification performance is likely to increase. Considering
the issues with FLOW, our accuracy findings are important as it shows that
low-cost sensors can achieve a similar accuracy to medical grade sensors.

Further Classification

Excluding recordings of poor quality will most likely increase classification
performance to some extent, even more, if we only use the recordings with
the best quality. The recordings we have obtained are comparable with what
people will record at home in the future, which means that the quality of
some recording is likely to be poor. Training a classifier on poor quality data
limits the performance that can be achieved. Therefore, it is important to
study how the quality of FLOW data affects the classification performance.

Measuring Data Quality without NOX T3

In the future, people will not be using the NOX T3 during an initial sleep
apnea test at home. Therefore, we need another way to determine the quality
of recordings to limit misclassification. The obvious solution is to train a
classifier to identify recordings of lower quality. A potential benefit from
this is that people can get feedback after a night of recording, which likely
increases the quality of future recordings as they get used to wearing the
sensor and learn how to use it correctly.

Traditional Scoring Rules

In traditional sleep diagnosis it is normal to operate with a minimum re-
quirement for duration of recordings. Since we are trying to provide people
with the option to perform an initial sleep apnea test at home, we are not
limited by the typical standards used in the field. However, to determine
which people to recommend for a further check-up, some sort of metric is
required. Typically the AHI-index is used to indicate the severity of sleep
apnea and is calculated based on the total sleep time. During traditional
PSG there are several signals used to determine whether a subject is actually
sleeping, but this will not be the case during an initial sleep monitoring at
home. Therefore, it is important to consider the impact of including large
proportion of data during wakefulness on classification.

Chapter 6

Conclusion

In this chapter, we conclude the work of this thesis. We begin in Section
6.1, with a summary of our main contributions. This includes the process
of identifying and correcting the issues with the FLOW sensors, evaluating
the signal quality and preparing the dataset for an early evaluation of eight
different classifiers’ performance for detecting disrupted breathing. We
continue in Section 6.2, with a critical assessment of our work, before we
end the thesis by suggesting a few possibilities for future work in Section
6.3.

6.1 Summary of Contributions

In this thesis, we analyze the usefulness of the FLOW sensor during unat-
tended overnight sleep monitoring at home. The problem statement from
Section 1.2 and their answers are provided in the following subsections:

• the quality of the collected data is answered in Section 6.1.2,

• how good and consistent the signal quality from FLOW sensors is
during unattended overnight sleep monitoring at home is answered
in Section 6.1.3,

• the performance of ML classifiers on the collected data and if ad-
ditional preprocessing increases the performance are answered in
Section 6.1.4

Before tackling the overall problem statement of whether ML classifiers can
detect disrupted breathing from FLOW data, several problems are required
to be solved. Many of the partial problems that are extremely difficult to
solve were not predictable beforehand, which means they are not explicitly
a part of the problem statement. These issues are generally related to the
cleaning and preprocessing of data from FLOW.

As the first contribution in this work, we have collected the data from
both FLOW and NOX recordings and conducted an initial data cleaning. This
mainly involves identifying the real recordings and removing several tests

93

94 Chapter 6. Conclusion

or unsuccessful recordings. Given the uniqueness of the data and lack of
metadata information, a significant amount of time was also spend locating
missing recordings from both FLOW and NOX.

One of our main contributions is an early analysis of the sensor problems
related to FLOW. We discovered three specific issues regarding abnormalit-
ies in the sampling rate, unreliable time-stamping, and temporary loss of
connection. These issues, in combination, create a problem that proves diffi-
cult to solve. As a result, we include a discussion of the following possible
alternatives for preprocessing FLOW recordings, which is not included in
the problem statement:

1. Assume the sensor produces samples with a constant rate of 10 Hz
based on the given information from SweetZpot.

2. Estimate the sampling rate for each recording.

3. Estimate the sampling rate periodically throughout each recording.

4. Assume the timestamp of the last sample in each packet is correct.

5. Use a jumping window model.

As a consequence of the insufficiency of the first four alternatives tested, the
solution is the fifth option, which is the window model we design. The win-
dow model is able to adjust the timestamps with a good enough precision to
maintain synchronization overnight while also detect connection losses. For
machine learning (ML), we address the signal problems in FLOW regarding
baseline shifts and changes in mean breath amplitudes. The additional
preprocessing applied is a standardization of the FLOW signal on a minute
window-based approach.

6.1.1 Window Model

The design of the window model is generic to accommodate for higher
or lower sampling rate by changing the parameters. The current solution
can handle oversampling because all samples in a window are distributed
evenly in the window. It is more challenging if the sensor undersamples,
which can cause the model to detect a connection loss. To avoid this, one
would need a more complex model than ours that changes the expected
sampling rate throughout the recording, which can be based on the function
we use to estimate the overall sampling rate of a recording.

6.1.2 Quality of Dataset

The initial quality of the collected data cannot be considered useful or fit for
our purpose. The steps we take to correct the major issues with FLOW has
improved the quality such that the recordings can be synchronized and are
useful for further analysis. As this is the first study where FLOW sensors
have been used in an unattended setting, some sensor problems are likely
to occur, which affects the quality of the data we collect. For instance, the

6.1. Summary of Contributions 95

synchronization would be accurate if the FLOW sensor timestamped the
samples. Instead, we have to estimate the timestamping, which is not as
accurate. There is no guarantee that everything has worked properly with
preparing data from FLOW, which means there are still possible aspects that
can affect the data quality, such as periods with poor timestamp adjustment.

6.1.3 Signal Quality of FLOW

We have made some minor adjustments to two scripts in [Løberg 2018]
to accommodate synchronization and quality measurement of overnight
recordings with gaps. We evaluate the signal quality of fifty-one overnight
recordings using a window-based approach. The main reason is to reduce
the impact that baseline shifts and different mean breath amplitudes have
on the results from the more sensitive WAPE metric. However, there are
still many periods where the WAPE metric is affected by motion artifacts
and multiple breath amplitude relationships between FLOW and NOX.
Nevertheless, the WAPE metric is still useful for determining when the
FLOW sensor is registering shallow breaths with a very low amplitude as
it is common that FLOW recordings have periods where breaths are barely
distinguishable from noise. This implies that the signal quality of FLOW
is not always consistent overnight and can suddenly change from good to
bad or vice-versa depending on several factors such as sleeping position,
belt placement, and restless sleep. FLOW achieves a sensitivity, PPV, CMP,
and WAPE metric score of 97.2%, 94.2%, 59.4%, and 18.4%, respectively. In
comparison, the six corrupt recordings achieve a lower sensitivity, PPV, CMP,
and WAPE metric score of 89.5%, 82.1%, 21.4%, and 24.4%, respectively.

6.1.4 Machine Learning Classification

We evaluate the performance of eight different data mining classifiers on
forty-five overnight recordings. The classifiers we use, are readily available
to us through the CESAR project and are based on a fourth-coming paper
[Kristiansen et al. 2020]. We compare the classifiers on the NOX and both
before and after standardizing the FLOW signal. Among the eight classifiers,
CNN is generally the classifier that has the best performance on both the
raw and preprocessed signal from FLOW and NOX. Feedforward neural net-
works like CNN are able to do feature extraction to a large degree, while our
preprocessing further increases their accuracy with 3%. This confirms that
preprocessing indeed increases the performance of classifiers. Meanwhile,
the performance of recurrent neural networks like LSTM in many cases
is not better than random guessing on the not standardized FLOW signal.
With a simple preprocessing scheme like ours, we are able to improve the
accuracy of FLOW to a 4% difference from NOX. Between the three different
data sizes of CNN, FLOW achieves an accuracy, sensitivity, and specificity
of 75.6%, 78.9%, and 71.1%, respectively, while NOX achieves an accuracy,
sensitivity, and specificity of 79.4%, 83.1%, and 74.5%, respectively. This
suggests that low-cost sensors can achieve a similar classification accuracy
to medical-grade sensors, especially when we take into consideration the

96 Chapter 6. Conclusion

sensor issues we experience with FLOW.

6.2 Critical Assessment

With more than three hundred hours of sleep data and the limited time
frame in mind, there are inevitably some errors in the dataset we have not
discovered. With most datasets, some amount of data cleaning and prepro-
cessing is required. However, we spend a significant amount of time on
the sensor issues with FLOW and combining the FLOW and NOX record-
ings in the dataset, which means that less time was available for further
preprocessing to improve the signal quality and for further evaluation of
the performance of classifiers on FLOW.

To limit the complexity of the window model, we have chosen not to con-
sider variations in the sampling rate throughout a recording. The main
reason being that the results of the current solution have proven sufficient
for our needs. Since some of the FLOW sensor problems discovered in this
work already have been addressed by SweetZpot, it is unlikely that new
FLOW recordings require a more complex solution than the current model.

The design of the window model is based on the knowledge and experience
we have gained from performing a significant amount of tests of various
solutions. Another person with a different background may have come up
with a different approach and similar results. To the best of our knowledge,
there are no algorithms that is easily adaptable to the specific set of problems
we face. An important matter is that we rely on the timestamps of another
sensor as the ground-truth. It is easy to forget that this signal also can have
flaws like wrong time-zones and signal flatlining that we have discovered.

6.3 Future Work

Given our limited time frame, there are a number of opportunities for future
work related to our dataset. It remains an open issue if the signal quality
metrics used in this work strongly correlates to classification performance.
If this is the case, it may very well be possible to determine whether a re-
cording or parts of a recording, is good enough for classification based on
the signal quality and when recordings should be considered corrupt.

In this work, we have barely touched upon the vast amount of options
for improving the signal quality. Besides a simple window-based approach
of standardizing the signal once every minute, we have not applied any
additional preprocessing. Considering that this is enough to improve the
accuracy of most classifiers with at least 3%, it is likely that more advanced
techniques are capable of improving the quality even further and minimiz-
ing the difference between FLOW and NOX even more. One option is to use
the ABAMAR algorithm suggested in [Virtanen et al. 2011] to detect motion
artifacts and baseline shifts using the accelerometer already present in the

6.3. Future Work 97

FLOW sensor and do the same. Another option for further preprocessing is
to look into feature extraction, since optimizing the selection of data features
can increase the performance of classifiers.

Exploring different types of ML classifiers and whether fine-tuning dif-
ferent parameters can increase the overall accuracy is an option for further
study. Another aspect regarding classification that remains an open issue
is why feedforward neural networks perform better on data that have not
been preprocessed compared to recurrent neural networks.

Investigating if there is any correlation between sleeping position and the
signal quality of FLOW is another open issue. As NOX T3 and Noxturnal
software program contain information about sleeping positions, it may
be possible to determine what is the dominant factor affecting the quality
of FLOW overnight. Understanding whether a specific sleeping position
causes belt entrapment or if it is more related to poor belt placement, is
an important aspect for further study. One reason is that we may want to
exclude parts of the recording where the signal almost flatlines to avoid
misclassification during ML.

Related to this is a general analysis of the implications of belt placement for
classification performance. To do this, one option is to use future versions
of the FLOW sensor, which hopefully includes timestamping on the sensor
and local data storage. This should remove the sensor issues we have now
and allow for a more in-depth analysis of the signal quality of FLOW.

Since this is a preliminary study of the FLOW sensor, and the fact that
we have promising results, the natural cause of direction is to collect more
overnight sleep recordings with the FLOW sensor to increase the accuracy of
ML methods. A larger dataset will allow the possibility to study the correla-
tion between the signal quality metrics and classification performance even
further. Some improvements have already been made to the smartphone
application based on our findings, resulting in connection losses being more
easily identified, which will allow for a smoother preprocessing in the future.

Considering that the primary long-term goal of the CESAR project is to
allow people to take the first step towards a sleep apnea diagnosis at home,
it is important to determine when a recording is of good enough quality to
be used for classification. For instance, the premise for detecting disrupted
breathing is that the person is sleeping, which we need to determine based
on the recorded data. One option is to use the heart-rate monitor and accel-
erometer in FLOW to estimate when a person is sleeping. Since people will
not be wearing the NOX T3 in the future, it is also important to find another
way to determine the signal quality of FLOW. One possible solution is to
train a classifier to detect low-quality recordings using FLOW recordings
we know are of poor quality.

Bibliography

Alaska Sleep Clinic (2018a). “The 3 Types of Sleep Apnea Explained: Ob-
structive, Central, and Mixed”. Accessed February 24, 2020. URL: https:
//www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-
central-mixed.

— (2018b). “The 4 Most Common Sleep Disorders: Symptoms and Preval-
ence”. Accessed March 11, 2020. URL: https://www.alaskasleep.com/blog/
the-5-most-common-sleep-disorders-symptoms.

Alpaydin, Ethem (2014). Introduction to Machine Learning. 3rd ed. The MIT
Press. ISBN: 9780262028189.

Alvarez-Estevez, Diego (2020). “European Data Format”. Accessed March 5,
2020. URL: https://www.edfplus.info/.

ASAA (2020a). “Obstructive Sleep Apnea”. Accessed February 23, 2020. URL:
https://www.sleepapnea.org/learn/sleep-apnea/obstructive-sleep-apnea/.

Askham, N, D Cook, M Doyle, H Fereday, M Gibson, U Landbeck, R Lee,
C Maynard, G Palmer and J Schwarzenbach (2013). “The Six Primary
Dimensions for Data Quality Assessment”. Group, DAMA UK Working:
16.

Berry, Richard B., Rohit Budhiraja, Daniel J. Gottlieb, David Gozal, Con-
rad Iber, Vishesh K. Kapur, Carole L. Marcus et al. (2012). “Rules for
scoring respiratory events in sleep: Update of the 2007 AASM manual
for the scoring of sleep and associated events”. In: Journal of Clinical Sleep
Medicine 8.5, pp. 597–619. DOI: 10.5664/jcsm.2172.

Bronstein, Jason Z. and Lee J. Brooks (2017). “A potential alternative to
respiratory inductance plethysmography for children?” In: Journal of
Clinical Sleep Medicine 13.2, pp. 159–160. DOI: 10.5664/jcsm.6430.

DZone (2010). “Map Reduce and Stream Processing”. Accessed March 26,
2020. URL: https://dzone.com/articles/map-reduce-and-stream.

Gottlieb, Daniel J., Jeffrey M. Ellenbogen, Matt T. Bianchi and Charles A.
Czeisler (2018). “Sleep deficiency and motor vehicle crash risk in the
general population: A prospective cohort study”. In: BMC Medicine 16.1,
p. 44. DOI: 10.1186/s12916-018-1025-7.

Hrubos-Strøm, Harald, Anna Randby, Silje K. Namtvedt, Håvard A. Kristi-
ansen, Gunnar Einvik, Juratešaltyte Benth, Virend K. Somers et al. (2011).
“A Norwegian population-based study on the risk and prevalence of
obstructive sleep apnea The Akershus Sleep Apnea Project (ASAP)”. In:
Journal of Sleep Research 20.1 PART II, pp. 162–170. DOI: 10.1111/j.1365-
2869.2010.00861.x.

99

https://www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-central-mixed
https://www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-central-mixed
https://www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-central-mixed
https://www.alaskasleep.com/blog/the-5-most-common-sleep-disorders-symptoms
https://www.alaskasleep.com/blog/the-5-most-common-sleep-disorders-symptoms
https://www.edfplus.info/
https://www.sleepapnea.org/learn/sleep-apnea/obstructive-sleep-apnea/
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.5664/jcsm.6430
https://dzone.com/articles/map-reduce-and-stream
https://doi.org/10.1186/s12916-018-1025-7
https://doi.org/10.1111/j.1365-2869.2010.00861.x
https://doi.org/10.1111/j.1365-2869.2010.00861.x

100 BIBLIOGRAPHY

Huang, Qi Rong, Zhenxing Qin, Shichao Zhang and Chin Moi Chow (2008).
“Clinical patterns of obstructive sleep apnea and its comorbid conditions:
A data mining approach”. In: Journal of Clinical Sleep Medicine 4.6, pp. 543–
550. ISSN: 15509389. DOI: 10.5664/jcsm.27348.

Kristiansen, Stein, Morten Andersen, Vera Goebel and Thomas Plagemann
(2020). “Comparing and Analysing the Flow and NoxT3 Sensor Signals
for Sleep Apnea Detection”. work-in-progress.

Kristiansen, Stein, Mari Sønsteby Hugaas, Vera Goebel, Thomas Plagemann,
Konstantinos Nikolaidis and Knut Liestøl (2018). “Data Mining for Pa-
tient Friendly Apnea Detection”. In: IEEE Access 6, pp. 74598–74615. ISSN:
21693536. DOI: 10.1109/ACCESS.2018.2882270.

Løberg, Frederik (2018). “Measuring the Signal Quality of Respiratory Effort
Sensors for Sleep Apnea Monitoring: A Metric Based Approach”. URL:
http://urn.nb.no/URN:NBN:no-65349.

Løberg, Fredrik, Vera Goebel and Thomas Plagemann (2018). “Quantifying
the signal quality of low-cost respiratory effort sensors for sleep apnea
monitoring”. In: HealthMedia 2018 - Proceedings of the 3rd International
Workshop on Multimedia for Personal Health and Health Care, co-located with
MM 2018. Association for Computing Machinery, Inc, pp. 3–11. ISBN:
9781450359825. DOI: 10.1145/3264996.3264998.

Mahanti, Rupa (2019). “Data Quality and Data Quality Dimensions”. In:
Software Quality Professional Vol. 22 No. 1, pp. 4–8. ISSN: 1522-0540.

matplotlib (2018). “matplotlib”. Accessed March 28, 2020. URL: https ://
matplotlib.org/.

Mayo Clinic (2020). “Central sleep apnea: Symptoms and causes”. Accessed
March 23, 2020. URL: https://www.mayoclinic.org/diseases-conditions/
central-sleep-apnea/symptoms-causes/syc-20352109.

McNicholas, Walter (2013). “New Standards and Guidelines for Drivers
with Obstructive Sleep Apnoea syndrome”. In: SEPTEMBER, pp. 1–49.
DOI: 10.13140/RG.2.1.4510.5129.

Medifixit (2016). “Polysomnography (sleep study)”. Accessed February 26,
2020. URL: https://www.medifixit.com/blog/polysomnography-sleep-study.

Morgenthaler, Timothy I., Vadim Kagramanov, Viktor Hanak and Paul A.
Decker (2006). “Complex sleep apnea syndrome: Is it a unique clinical
syndrome?” In: Sleep 29.9, pp. 1203–1209. DOI: 10.1093/sleep/29.9.1203.

NOX Medical (2020a). “Nox T3 Sleep Monitor”. Accessed February 25, 2020.
URL: https://noxmedical.com/products/nox-t3-sleep-monitor/.

numPy (2020). “numPy”. Accessed March 28, 2020. URL: https://numpy.org/.
pandas (2018). “pandas”. Accessed March 28, 2020. URL: https://pandas.

pydata.org/.
Punjabi, Naresh M. (2008). “The epidemiology of adult obstructive sleep

apnea”. In: Proceedings of the American Thoracic Society 5.2, pp. 136–143.
DOI: 10.1513/pats.200709-155MG.

pyEDFlib (2018). “pyEDFlib”. Accessed March 28, 2020. URL: https://pypi.
org/project/pyEDFlib/.

scikit-learn (2018). “scikit-learn”. Accessed March 28, 2020. URL: https://
scikit-learn.org/.

SciPy (2017). “SciPy”. Accessed March 28, 2020. URL: https://www.scipy.org/.

https://doi.org/10.5664/jcsm.27348
https://doi.org/10.1109/ACCESS.2018.2882270
http://urn.nb.no/URN:NBN:no-65349
https://doi.org/10.1145/3264996.3264998
https://matplotlib.org/
https://matplotlib.org/
https://www.mayoclinic.org/diseases-conditions/central-sleep-apnea/symptoms-causes/syc-20352109
https://www.mayoclinic.org/diseases-conditions/central-sleep-apnea/symptoms-causes/syc-20352109
https://doi.org/10.13140/RG.2.1.4510.5129
https://www.medifixit.com/blog/polysomnography-sleep-study
https://doi.org/10.1093/sleep/29.9.1203
https://noxmedical.com/products/nox-t3-sleep-monitor/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.1513/pats.200709-155MG
https://pypi.org/project/pyEDFlib/
https://pypi.org/project/pyEDFlib/
https://scikit-learn.org/
https://scikit-learn.org/
https://www.scipy.org/

BIBLIOGRAPHY 101

SomnoMed (2020). “Hva er OSA - obstruktiv sovnapne?” Accessed February
23, 2020. URL: https://somnomed.com/nb/pasienter/hva-er-osa-obstruktiv-
sovnapne/.

SweetZpot (2020). “Flow”. Accessed March 20, 2020. URL: https://www.
sweetzpot.com/flow.

The Mathworks, Inc. (2018a). “findpeaks - R2018a”. Accessed March 28,
2020. URL: https://se.mathworks.com/help/signal/ref/findpeaks.html.

— (2018b). “matplotlib”. Accessed March 28, 2020. URL: https://se.mathworks.
com/products/matlab.html.

Traaen, G. M., B. Øverland, L. Aakerøy, T. E. Hunt, C. Bendz, L. Sande, S.
Aakhus et al. (2019). “Prevalence, risk factors, and type of sleep apnea in
patients with paroxysmal atrial fibrillation”. In: IJC Heart and Vasculature
26, p. 100447. ISSN: 23529067. DOI: 10.1016/j.ijcha.2019.100447.

Virtanen, Jaakko, Tommi Noponen, Kalle Kotilahti, Juha Virtanen and Risto
J. Ilmoniemi (2011). “Accelerometer-based method for correcting signal
baseline changes caused by motion artifacts in medical near-infrared
spectroscopy”. In: Journal of Biomedical Optics 16.8, p. 087005. DOI: 10.
1117/1.3606576.

Wang, Yequan, Minlie Huang, Xiaoyan Zhu and Li Zhao (2016). “Attention-
based LSTM for Aspect-level Sentiment Classification”. In: pp. 606–615.
DOI: 10.18653/V1/D16-1058.

WebMD (2020). “Apnea Hypopnea Index (AHI)”. Accessed March 7, 2020.
URL: https://www.webmd.com/sleep-disorders/sleep-apnea/sleep-apnea-
ahi-numbers#1.

Wikipedia (2020a). “Random forest”. Accessed February 16, 2020. URL: https:
//en.wikipedia.org/wiki/Random_forest.

— (2020b). “Multilayer perceptron”. Accessed February 16, 2020. URL: https:
//en.wikipedia.org/wiki/Multilayer_perceptron.

— (2020c). “Convolutional neural network”. Accessed February 16, 2020.
URL: https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_
note-4.

— (2020d). “Long short-term memory”. Accessed February 16, 2020. URL:
https://en.wikipedia.org/wiki/Long_short-term_memory.

— (2020e). “Gated recurrent unit”. Accessed February 16, 2020. URL: https:
//en.wikipedia.org/wiki/Gated_recurrent_unit.

— (2020f). “Cross-validation”. Accessed February 17, 2020. URL: https://en.
wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation.

— (2020g). “Cohen’s kappa”. Accessed February 17, 2020. URL: https://en.
wikipedia.org/wiki/Cohen%5C%27s_kappa.

— (2020i). “Deep Learning”. Accessed March 24, 2020. URL: https://en.
wikipedia.org/wiki/Deep_learning.

— (2020j). “Evaluation of binary classifiers”. Accessed April 12, 2020. URL:
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers.

Xu, Liyue, Fang Han, Brendan T. Keenan, Elizabeth Kneeland-Szanto, Han
Yan, Xiaosong Dong, Yuan Chang et al. (2017). “Validation of the Nox-T3
portable monitor for diagnosis of obstructive sleep apnea in Chinese
adults”. In: Journal of Clinical Sleep Medicine 13.5, pp. 675–683. ISSN:
15509397. DOI: 10.5664/jcsm.6582.

https://somnomed.com/nb/pasienter/hva-er-osa-obstruktiv-sovnapne/
https://somnomed.com/nb/pasienter/hva-er-osa-obstruktiv-sovnapne/
https://www.sweetzpot.com/flow
https://www.sweetzpot.com/flow
https://se.mathworks.com/help/signal/ref/findpeaks.html
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.ijcha.2019.100447
https://doi.org/10.1117/1.3606576
https://doi.org/10.1117/1.3606576
https://doi.org/10.18653/V1/D16-1058
https://www.webmd.com/sleep-disorders/sleep-apnea/sleep-apnea-ahi-numbers#1
https://www.webmd.com/sleep-disorders/sleep-apnea/sleep-apnea-ahi-numbers#1
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-4
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-4
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Cohen%5C%27s_kappa
https://en.wikipedia.org/wiki/Cohen%5C%27s_kappa
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
https://doi.org/10.5664/jcsm.6582

102 BIBLIOGRAPHY

Young, Terry, Paul E. Peppard and Daniel J. Gottlieb (2002). “Epidemiology
of obstructive sleep apnea: A population health perspective”. In: Amer-
ican Journal of Respiratory and Critical Care Medicine 165.9, pp. 1217–1239.
DOI: 10.1164/rccm.2109080.

Young, Terry, James Skatrud and Paul E. Peppard (2004). “Risk Factors for
Obstructive Sleep Apnea in Adults”. In: Journal of the American Medical
Association 291.16, pp. 2013–2016. DOI: 10.1001/jama.291.16.2013.

https://doi.org/10.1164/rccm.2109080
https://doi.org/10.1001/jama.291.16.2013

Appendices

103

Appendix A

Source Code

The source code presented and used in this thesis can be found at: https:
//github.uio.no/morthand/Morten-H-Andersen

105

https://github.uio.no/morthand/Morten-H-Andersen
https://github.uio.no/morthand/Morten-H-Andersen

Appendix B

Evaluation Results

This appendix includes the signal quality metric scores for all recordings
including the corrupt ones. These are presented in Table B.1. For machine
learning, the tenfold cross-validation results for the feed forward neural
networks CNN and GRU using the different data sizes are shown in Table
B.2 and in Table B.3, respectively. The results for the recurrent neural net-
works using the different data sizes are shown for MLP in Table B.4, for
LSTM in Table B.5, for BILSTM in Table B.6, for SBILSTM in Table B.7, and
for BIWALSTM in Table B.8. The results for Random Forest are shown in
Table B.9.

Recording Sensitivity PPV CMP WAPE
Recording 1 97.46% 98.10% 58.30% 28.03%
Recording 2 96.82% 98.70% 61.54% 13.15%
Recording 3 96.78% 94.64% 48.45% 20.70%
Recording 4 94.41% 77.06% 14.45% 27.35%
Recording 5 98.30% 97.89% 75.81% 16.77%
Recording 6 97.78% 93.37% 64.64% 18.72%
Recording 7 97.75% 93.71% 51.55% 26.31%
Recording 8 96.77% 98.36% 60.00% 14.42%
Recording 9 99.04% 98.01% 73.22% 11.54%
Recording 10 99.41% 97.37% 70.02% 7.71%
Recording 11 96.25% 94.18% 72.15% 19.28%
Recording 12 95.55% 85.92% 39.45% 22.95%
Recording 13 98.70% 92.19% 45.57% 14.47%
Recording 14 98.91% 92.16% 32.33% 12.61%
Recording 15 99.15% 95.34% 54.37% 17.01%
Recording 16 99.26% 87.95% 19.16% 17.10%
Recording 17 98.77% 95.67% 62.08% 11.48%
Recording 18 95.55% 98.54% 68.35% 10.76%
Recording 19 98.51% 96.02% 76.16% 12.04%
Recording 20 99.66% 97.08% 77.92% 12.81%
Recording 21 95.58% 91.88% 51.67% 17.56%

107

108 Appendix B: Evaluation Results

Table B.1 continued from previous page
Recording Sensitivity PPV CMP WAPE
Recording 22 99.64% 99.20% 91.92% 11.24%
Recording 23 98.94% 99.01% 88.01% 17.04%
Recording 24 98.79% 95.94% 68.89% 22.28%
Recording 25 97.09% 97.32% 68.30% 22.04%
Recording 26 99.17% 97.78% 79.41% 12.86%
Recording 27 99.27% 98.50% 84.74% 10.59%
Recording 28 98.88% 97.13% 74.40% 14.92%
Recording 29 94.45% 90.27% 38.84% 32.17%
Recording 30 90.09% 82.91% 26.23% 29.72%
Recording 31 98.66% 91.41% 57.32% 23.65%
Recording 32 96.44% 95.85% 72.35% 22.28%
Recording 33 99.15% 96.55% 75.52% 15.37%
Recording 34 96.39% 96.57% 57.47% 27.77%
Recording 35 96.99% 81.96% 25.97% 29.03%
Recording 36 99.47% 95.74% 65.75% 12.54%
Recording 37 99.69% 97.73% 82.09% 9.33%
Recording 38 98.95% 97.93% 79.35% 12.49%
Recording 39 98.97% 97.48% 73.89% 13.34%
Recording 40 97.45% 75.89% 21.59% 23.82%
Recording 41 98.98% 97.33% 74.95% 21.21%
Recording 42 98.75% 97.12% 67.05% 13.67%
Recording 43 91.71% 78.26% 3.72% 17.92%
Recording 44 88.58% 87.73% 43.72% 25.16
Recording 45 91.71% 95.99% 37.78% 37.45%
Recording 46 91.47% 97.39% 44.06% 33.59%
Recording 47 96.73% 97.94% 59.72% 26.01%
Recording 48 100.00% 99.08% 87.50% 10.68%
Recording 49 98.96% 97.94% 71.43% 13.56%
Recording 50 97.70% 98.52% 75.81% 6.81%
Recording 51 89.11% 96.10% 56.70% 14.81%
Corrupt 1 78.47% 84.56% 26.22% 19.61%
Corrupt 2 94.83% 80.69% 21.75% 28.59%
Corrupt 3 91.26% 81.19% 28.8% 25.56%
Corrupt 4 87.34% 89.98% 6.67% 48.39%
Corrupt 5 90.92% 77.62% 31.11% 23.48%
Corrupt 6 94.3% 73.39% 10.26% 20.96%

Table B.1: All FLOW signal quality results

109

Accuracy Sensitivity Specificity Kappa
FLOW S 72.80% 70.46% 73.68% 0.439
FLOW M 73.32% 71.29% 74.27% 0.452
FLOW L 72.47% 71.48% 72.69% 0.437
FLOW adj. S 75.12% 77.61% 71.58% 0.490
FLOW adj. M 76.09% 78.33% 72.17% 0.505
FLOW adj. L 75.53% 81.06% 69.47% 0.502
NOX S 79.32% 83.09% 74.54% 0.575
NOX M 79.58% 82.32% 75.26% 0.577
NOX L 79.30% 83.84% 73.66% 0.575

Table B.2: CNN 10-cross-validation results

Accuracy Sensitivity Specificity Kappa
FLOW S 57.30% 40.81% 73.89% 0.141
FLOW M 58.65% 47.15% 70.10% 0.168
FLOW L 58.07% 49.01% 65.17% 0.139
FLOW adj. S 74.70% 78.56% 69.84% 0.481
FLOW adj. M 75.02% 79.97% 69.12% 0.487
FLOW adj. L 75.23% 80.14% 69.03% 0.492
NOX S 78.70% 81.51% 75.09% 0.563
NOX M 79.42% 84.25% 73.71% 0.577
NOX L 77.69% 81.28% 73.19% 0.544

Table B.3: GRU 10-cross-validation results

Accuracy Sensitivity Specificity Kappa
FLOW S 60.52% 47.27% 73.97% 0.204
FLOW M 62.67% 51.27% 73.66% 0.242
FLOW L 61.59% 51.87% 70.99% 0.222
FLOW adj. S 62.11% 60.14% 64.35% 0.237
FLOW adj. M 62.97% 60.82% 64.89% 0.252
FLOW adj. L 62.63% 61.08% 64.55% 0.250
NOX S 71.39% 61.98% 80.44% 0.417
NOX M 71.50% 62.48% 80.19% 0.420
NOX L 70.77% 63.09% 78.19% 0.407

Table B.4: MLP 10-cross-validation results

110 Appendix B: Evaluation Results

Accuracy Sensitivity Specificity Kappa
FLOW S 51.76% 57.61% 44.36% 0.019
FLOW M 57.24% 48.91% 64.46% 0.132
FLOW L 49.27% 51.28% 50.60% 0.016
FLOW adj. S 74.00% 76.05% 70.69% 0.466
FLOW adj. M 74.40% 78.46% 69.53% 0.475
FLOW adj. L 74.31% 80.12% 68.26% 0.477
NOX S 77.01% 78.44% 74.92% 0.530
NOX M 77.90% 80.23% 74.81% 0.546
NOX L 77.44% 81.04% 72.82% 0.536

Table B.5: LSTM 10-cross-validation results

Accuracy Sensitivity Specificity Kappa
FLOW S 53.63% 54.24% 52.02% 0.058
FLOW M 56.62% 46.83% 65.10% 0.119
FLOW L 53.16% 71.03% 29.81% 0.010
FLOW adj. S 73.44% 75.48% 70.95% 0.458
FLOW adj. M 73.53% 79.30% 67.46% 0.461
FLOW adj. L 74.15% 78.79% 68.65% 0.471
NOX S 77.63% 79.98% 74.39% 0.540
NOX M 78.33% 82.24% 73.66% 0.555
NOX L 77.68% 80.55% 74.17% 0.543

Table B.6: BILSTM 10-cross-validation results

Accuracy Sensitivity Specificity Kappa
FLOW M 64.86% 59.85% 69.08% 0.285
FLOW L 60.22% 54.80% 68.06% 0.220
FLOW adj. M 73.49% 80.85% 65.50% 0.458
FLOW adj. L 73.74% 79.11% 67.19% 0.460
NOX M 77.24% 82.09% 72.02% 0.534
NOX L 77.69% 81.73% 72.91% 0.543

Table B.7: SBILSTM 10-cross-validation results

111

Accuracy Sensitivity Specificity Kappa
FLOW S 48.80% 50.15% 48.82% -0.012
FLOW M 51.37% 60.54% 40.69% 0.009
FLOW L 48.73% 55.24% 44.76% -0.000
FLOW adj. S 75.87% 77.26% 73.71% 0.506
FLOW adj. M 74.46% 75.81% 72.00% 0.476
FLOW adj. L 74.75% 77.40% 70.64% 0.480
NOX S 78.31% 77.8%7 77.63% 0.554
NOX M 78.21% 78.31% 77.17% 0.553
NOX L 77.61% 77.94% 76.16% 0.540

Table B.8: BIWALSTM 10-cross-validation results

Accuracy Sensitivity Specificity Kappa
FLOW S 49.24% 49.10% 51.13% 0.001
FLOW M 47.40% 52.99% 46.56% -0.006
FLOW L 49.49% 50.93% 50.73% 0.016
FLOW adj. S 67.67% 65.43% 70.96% 0.352
FLOW adj. M 67.85% 64.43% 71.47% 0.351
FLOW adj. L 68.52% 65.36% 72.80% 0.369
NOX S 67.32% 61.51% 72.73% 0.336
NOX M 67.04% 62.96% 71.46% 0.335
NOX L 67.25% 62.84% 71.63% 0.335

Table B.9: Random Forest 10-cross-validation results

	Introduction
	Background and Motivation
	Problem Statement
	Outline

	Background
	Sleep Apnea
	Obstructive Sleep Apnea
	Symptoms
	Diagnostic
	NOX T3 Sleep Monitor

	CESAR Project
	Data Mining for Patient Friendly Apnea Detection
	Signal Quality Evaluation of Respiratory Effort Sensors
	A3 Study

	Machine Learning
	Approach
	k-fold Cross Validation

	Discussion and Conclusions

	Data Quality Issues
	Data Quality Assessment
	Data Quality Dimensions
	Physiological Time Series

	Signal Quality Metrics
	Apnea Detection
	Hypopnea Detection
	Breath Detection

	FLOW Issues
	Connection Loss
	Unstable Sampling Rate
	Unreliable Time-stamping
	Baseline Issues

	Discussion and Conclusions

	Preprocessing
	Connection Loss Detection
	Time Stamp Adjustment
	Adjust Timestamps Using 10 Hz Sampling Rate
	Estimate Sampling Rate
	Estimate Sampling Rate Periodically
	Adjust Timestamps based on Packet Arrival Time
	Window Timestamp Adjustment

	Start Time after Gap
	Sampling Rate Measurement
	Preliminary Testing
	Findings
	Discussion

	System Environment
	Preprocessing
	FLOW Preprocessing
	NOX Preprocessing
	Preprocessing of FLOW and NOX

	Discussion and Conclusion

	Evaluation
	Dataset
	Data Preprocessing Evaluation
	Signal Quality Metrics
	Corrupt Signal
	Disrupted Breathing Events
	Signal Quality Overnight
	Breath Detection Accuracy
	Breath Amplitude Accuracy
	Comparison with Related Work

	Machine Learning
	Approach
	Preprocessing
	Results
	Comparison with Related Work

	Discussion and Conclusions

	Conclusion
	Summary of Contributions
	Window Model
	Quality of Dataset
	Signal Quality of FLOW
	Machine Learning Classification

	Critical Assessment
	Future Work

	Bibliography
	Appendices
	Source Code
	Evaluation Results

