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Angiogenesis is necessary for tumor growth and has been targeted in breast cancer; however, it is unclear which patients will

respond and benefit from antiangiogenic therapy. We report noninvasive monitoring of patient response to neoadjuvant

chemotherapy given alone or in combination with anti-vascular endothelial growth factor (bevacizumab) in a randomized clinical

trial. At four time points during neoadjuvant chemotherapy� bevacizumab of receptor tyrosine-protein kinase erbB-2-negative

breast cancers, we measured metabolites and inflammation-related markers in patient’s serum. We report significant changes in
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the levels of several molecules induced by bevacizumab, the most prominent being an increase in pentraxin 3 (PTX3) and von

Willebrand factor (VWF). Serum levels of AXL, VWF and pulmonary and activation-regulated cytokine (PARC/CCL18) reflected

response to chemotherapy alone or in combination with bevacizumab. We further analyzed serum cytokines in relation to tumor

characteristics such as gene expression, tumor metabolites and tumor infiltrating leukocytes. We found that VWF and growth-

differentiation factor 15 tumor mRNA levels correlated with their respective serum protein levels suggesting that these cytokines

may be produced by tumors and outflow to the bloodstream while influencing the tumor microenvironment locally. Finally, we used

binomial logistic regression which allowed to predict patient’s response using only 10 noninvasive biomarkers. Our study

highlights the potential of monitoring circulating levels of cytokines and metabolites during breast cancer therapy.

Introduction
Inflammation and an appropriate immune response can limit
tumor growth. On the other hand, chronic inflammation can
enhance tumorigenesis and metastasis through angiogenesis and
metabolic dysregulation.1 Angiogenesis as well as altered metab-
olism and tumor-related inflammation are cancer hallmarks,2

and these factors may interplay during tumor progression. Vas-
cular endothelial growth factor A (VEGF-A), the main cytokine
regulating angiogenesis, has been targeted in several cancer
types.3 We recently demonstrated that anti-VEGF-A therapy in
breast cancer affects the tumor immune contexture.4

Immune infiltration influences prognosis and response to
therapies.5,6 Notably high CD8+ T cell counts associate with
better overall survival in estrogen receptor (ER) negative
breast cancer patients.7,8 High immune infiltration has also
been associated with an increased response to neoadjuvant
and adjuvant chemotherapy.9

Breast tumors have distinct metabolic profiles10 which may
affect the differentiation and activity of immune cells and vice
versa. How metabolites produced by anabolic and hypoxic
tumors mold the tumor microenvironment and angiogenesis
remains poorly understood. Metaflammation, metabolically
induced low-grade and chronic inflammation,11 has mostly
been studied in relation to metabolic diseases, but may also
play an important role in breast cancer development and pro-
gression.12 In fact, this bidirectional interaction between
inflammation and tumor metabolism could be an important
pathway in the regulation of tumor progression.

Cytokines and metabolites secreted by tumors may outflow
to the bloodstream and affect the levels of related molecule sys-
temically. We hypothesized that serum levels of cytokines and
related metabolic markers may reflect breast tumor characteris-
tics and thereby the response to neoadjuvant chemotherapy.

In the NeoAva, a randomized clinical trial studying in a neo-
adjuvant setting the effects of chemotherapy � bevacizumab

(Bev; VEGF-A inhibition), we recently demonstrated that Bev
decreased serum levels of interleukin (IL)-12, interferon-gamma
inducible protein 10 (IP-10/CXCL10) and IL-10.4

In the present study, we extend our study of noninvasive
biomarkers associated with response to neoadjuvant chemo-
therapy of breast cancers by analyzing upstream markers of
endothelial and vascular inflammation and regulators of extra-
cellular matrix remodeling (Table 1). Based on the concept of
metabolically induced inflammation, we also collected the
levels of 26 metabolites measured in serum of the same
patients (Debik et al., submitted manuscript).

Cytokines serum levels were analyzed in perspective of clini-
copathological characteristics and tumor phenotypes such as
gene expression, tumor metabolism and immune infiltration.
Our results demonstrate that noninvasive measurement of
metabolites and cytokines could help to follow patient’s
response to neoadjuvant therapy.

Materials and Methods
Patients and treatment
Patients were recruited at Oslo University Hospital, Oslo, or
St. Olav’s University Hospital, Trondheim, between November
2008 and July 2012. Informed consents were obtained prior to
inclusion. The study was approved by the institutional protocol
review board, the regional ethics committee and the Norwegian
Medicines Agency and was carried out in accordance with the
Declaration of Helsinki, International Conference on
Harmony/Good Clinical practice. The study is registered at
http://www.ClinicalTrials.gov/ database with the identifier
NCT00773695. Untreated receptor tyrosine-protein kinase erbB-2
(HER2)-negative mammary carcinomas with size ≥2.5 cm and with
no sign of metastatic disease were included.

Patients were randomized to receive chemotherapy alone
(chemo arm) or Bev and chemotherapy (combination arm).

What’s new?
How inflammatory markers and metabolites mold the tumor microenvironment, especially angiogenesis, is still poorly

understood. Here the authors tested the response of patients with breast cancer to neoadjuvant chemotherapy with or without

the angiogenesis inhibitor bevacizumab. They identified 10 non-invasive biomarkers that predict therapy response, including

the acute phase protein pentraxin-3 and hemostasis regulator von Willebrand factor that were specifically upregulated by

bevacizumab treatment. The authors suggest that these factors could be further targeted to potentiate antiangiogenic

therapies in breast cancer and beyond.
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For more details on the treatment regimen, see Ref. 13. At
surgery, patient response was determined and minimal resid-
ual tumor (minRT) was defined as at least 90% reduction of
tumor size. Table 2 summarizes relevant clinical data of the
patients included in our study.

Cytokine serum levels
Blood samples were collected at diagnosis (screening),
12 weeks (after the first regimen of chemotherapy:
fluorouracil/epirubicin/cyclophosphamide � Bev), 25 weeks
(after the second regimen of chemotherapy: taxane � Bev;

Table 1. Markers included in the study

Markers for Protein full name Protein short name

Vascular inflammation Osteoprotegrin OPG

Pentraxin 3 PTX3

Tyrosine-protein kinase receptor Axl

C-X-C motif chemokine ligand 16 CXCL16

Von Willebrand factor VWF

Endothelial cell protein C receptor ePCR

Activated monocytes/macrophage markers Activated leukocyte cell adhesion molecule ALCAM (CD166)

p53-associated parkin-like cytoplasmic protein PARC

Cluster of differentiation 163 sCD163

Galectin-3-binding protein Gal3BP

Extracellular matrix Cluster of differentiation 147 (Basigin. EMMPRIN) CD147

Endostatin Endostatin

Growth differentiation factor-15 GDF15

Cathepsin S (Chloramphenicol acetyl transferase) Cats

General inflammation Tumor necrosis factor receptor 1 sTNFR1

C-reactive protein CRP

Notch Delta-like protein 1 DLL1

Metabolites Leucine

Valine

Isoleucine

2.methylglutarate

Alanine

Lysine

Acetate

Glutamine. Glutamate

Acetoacetate

3.hydroxybutyrate

Glutamate

Pyruvate

Glutamine

Citrate

Methionine

Creatine

Creatinine

Ornithine

Proline.betaine

Dimethyl.sulfone

Glucose

Glycine

Lactate

Tyrosine

Histidine

Phenylalanine
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also, time of surgery) and 31 weeks (follow-up; 6 weeks after
surgery). For an overview of data available for each sample,
see Supplementary Table S1.

Serum levels of 17 inflammation-related markers were mea-
sured in duplicate using commercially available reagents by
enzyme immunoassay using R&D Systems (Minneapolis, MN).
For von Willebrand factor (VWF), the assay was performed
with DakoCytomation (Glostrup, Denmark). Assays were per-
formed in a 384-format using the combination of a SELMA
(Jena, Germany) pipetting robot and a BioTek (Winooski, VT)
dispenser/washer (EL406). Primary and secondary antibody
concentrations were used according to manufacturer instruc-
tions (Coating 1–4 μg/ml; secondary 0.2–2 μg/ml). Assay vol-
ume was 25 μl and coating was performed in phosphate
buffered saline. Subsequent assay buffer was with 1% bovine
serum albumin in PBS while sample diluent was PBS with 25%
heat inactivated fetal calf serum (Gibco, Thermo Fisher Scien-
tific, Waltman, MA). Wash buffer was PBS with 0.05% tween-
20 and three wash cycles were included per step. Samples were
incubated overnight at 4�C. Absorption was read at 450 nm
with wavelength correction set to 540 nm using an EIA plate
reader (Synergy H1 Hybrid, Biotek, Vinooski, VT). Intra- and
interassay coefficients of variation were <10% for all assays.
The assays included a series of known concentrations to gener-
ate standard curves. The resulting data obtained were log trans-
formed before further analyses. Log transformed serum levels
are available in Supplementary Table S9.

Metabolite serum levels
Nuclear magnetic resonance (NMR) spectra were obtained on
a Bruker Avance III Ultrashield Plus spectrometer operating
at 600 MHz (Bruker BioSpin GmbH, Rheinstetten, Germany)
equipped with a 5 mm QCI Cryoprobe. Serum samples were
thawed at 4�C prior to the analysis. One hundred fifty micro-
liter serum were gently mixed with 150 μl of buffer (D2O with
0.075 mM Na2HPO4, 5 mM NaN, 3,5 mM TSP, pH 7.4). Data
acquisition was fully automated using a SampleJet with Icon-
NMR on TopSpin 3.1 (Bruker BioSpin). Carr-Puncell-
Meiboom-Gill spectra were acquired at 37�C. Spectra were
Fourier transformed to 128 K after 0.3 Hz exponential line
broadening. Furthermore, spectral preprocessing was per-
formed in Matlab R2017b. The left peak of the alanine doublet
at 1.47 ppm was used as a chemical shift reference. Three
spectra were removed from the analysis due to poor water
suppression after a visual inspection. Spectral peaks were
aligned to the peaks of the spectra with the highest correlation
to the other spectra using the function iscoshift.14 Spectra
were further baseline corrected using the asymmetric least
squares method.15 Quantification was performed by integrat-
ing the spectral peaks, and for metabolites with more than
one resonance, the average was used. Quantified peaks were
normalized by mean normalization, giving the relative
amounts of metabolites in each sample. The serum

metabolites are analyzed in perspective of clinicopathological
features in a separate study (Debik et al., submitted).

CIBERSORT analysis
The algorithm CIBERSORT was used on normalized bulk
tumor sample expression data to infer the relative proportions
of 22 types of infiltrating immune cells. CIBERSORT uses a
set of reference gene expression values (547 genes) to predict
the proportions of 22 immune cell types using support vector
regression.16 The algorithm was obtained from the developers
and analysis was performed by using the default signature
matrix at 1,000 permutations.

Gene expression
Expression profiling of tumor biopsies was obtained from Ref.
13. Briefly, total RNA from bulk tumors was analyzed by GE
8 × 60 k Microarrays (Agilent Technologies, Santa Clara, CA).
Arrays were scanned using Microarray Scanner with SureScan
High Resolution Technology (Agilent Technologies). Images
were processed using Feature Extraction software (v10.7.3.1;
Agilent Technologies). The data were quantile normalized
applying the Bioconductor package limma, and missing values
were imputed using Bioconductor package pcaMethods.

Binomial logistic regression
Binomial logistic regression was performed through the glmnet R
package.17 We set up, based on levels of the molecules measured
in the serum of the patients a logistic regression using the bino-
mial distribution to predict categorical response of the two possi-
ble outcomes: minRT (less than 10% residual disease at 25 weeks)
or residual disease (more than 10% residual disease). The levels of
17 inflammation-related cytokines, 26 metabolites and 27 previ-
ously published cytokines4 were normalized together by Z-scores.
The normalized levels of these 70 molecules were used to predict
response at baseline (screening) or 12 weeks.

This approach was successful at 12 weeks and gave a signa-
ture of target molecules which captured the variation associ-
ated with the two categories. A patient could now be assigned
to minRT or not according to the following score:

score =
Xn

g = 1

βg :Xgi

where g is the target (molecule), n is the number of targets, βg is
the Lasso coefficient for the target molecule and Xgi is the mole-
cule serum levels in sample i. If score for patient i was higher
than 0, a prediction of response to therapy was assumed.

Statistical analyses
All analyses were performed after natural log transformations
of cytokines and metabolites levels in the R version 3.5.1.

Analysis of variance (ANOVA) was performed with time
points, treatment arm or treatment response as factors to
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identify molecules with global significant differences in log
molecule expression levels for any of the factors (the results
are shown in Supplementary Tables S2–S5, respectively).
p-Values were adjusted for multiple testing by controlling the
false discovery rate (FDR) according to the method of
Benjamini–Hochberg.18 FDR-corrected p-values less than 0.05
were considered significant.

Mann–Whitney U or Kruskal–Wallis tests were used to
assess statistical significance within boxplots.

Pearson correlations were assessed with R and were
visualized with the corrplot package version 0.84 or
scatterplot.

Principal component (PC) analysis was performed with
R. Scatter plot of PC1 and PC2 are represented, where each
dot represents a sample projected onto the two main principal
components (PC1 and PC2); the dots are colored according to
time points.

Unsupervised clustering was performed using the pheatmap
package with correlation distance and average linkage.

Data availability
Log transformed serum levels of the 17 inflammation-related
markers are available in Supplementary Table S9. The levels of
26 metabolites measured in serum of the same patients are avail-
able in an upcoming article (Debik et al., submitted manuscript).
Gene expression profiling of tumor biopsies can be obtained at
Ref. 13.

Results
Serum levels of inflammation-related markers during
neoadjuvant therapy
Seventeen inflammation-related markers were measured by
enzyme immunoassay in serum of breast cancer patients at
different time points of neoadjuvant chemotherapy. PC analy-
sis of the longitudinal log transformed serum levels suggested
differences according to time points (Fig. 1a).

We therefore sought for significant changes in serum levels
between the different time points, at (i) diagnosis: screening, (ii)
12 weeks: after first regimen of chemotherapy: fluorouracil/epi-
rubicin/cyclophosphamide � Bev, (iii) 25 weeks: after the second
regimen of chemotherapy: taxane � Bev (also time of surgery)
and (iv) 31 weeks: 6 weeks after surgery (follow-up).

To identify inflammation-related markers with significant
changes throughout the different time points, we computed
an ANOVA FDR corrected p-value. Cytokines with corrected
p-value <0.05 (Supplementary Table S2) are presented in
Figure 1b which precises the changes between two consecutive
time points. We found that most of the significant changes
occurred between screening and 12 weeks. We interpret this
as a result of the potent effects of chemotherapy locally at the
tumor site but also systemically as we previously reported.4

The most prominent and significant changes in
inflammation-related markers between baseline and 12 weeks
were the increase in the levels of CXCL16, VWF and growth
differentiation factor-15 (GDF15), cytokines which may reflect

Table 2. Clinical characteristics of the NeoAva cohort

Screening 12 weeks 25 weeks 31 weeks

Chemotherapy
Combination
(+Bev) Chemotherapy

Combination
(+Bev) Chemotherapy

Combination
(+Bev) Chemotherapy

Combination
(+Bev)

Age (mean) 48 51 47 48 47 51 47 49

Tumor stage

T2 15 (43%) 6 (24%) 14 (37%) 12 (33%) 13(35%) 11 (34%) 8 (32%) 5 (22%)

T3 18 (51%) 17 (68%) 21 (55%) 22(59%) 21 (57%) 17 (53%) 15 (60%) 17 (74%)

T4 2 (6%) 2 (8%) 3 (8%) 3 (8%) 3 (8%) 4 (13%) 2(8%) 1 (4%)

Nodal status

pN0 13 (37%) 11 (44%) 13 (34%) 14 (38%) 12 (32%) 16 (50%) 9(36%) 9 (39%)

pN1 10 (28%) 3 (12%) 9 (24%) 7 (19%) 9 (24%) 4 (13%) 7 (28%) 5 (22%)

pN2 3 (9%) 1 (4%) 5 (13%) 2 (5%) 4 (11%) 2 (6%) 3 (12%) 3 (13%)

pN3 3 (9%) 3 (8%) 4 (11%) 2(8%)

NA 6 (17%) 10 (40%) 8 (21%) 14 (38%) 8 (22%) 10 (31%) 4 (16%) 6 (26%)

Treatment 35(58%) 25 (42%) 38 (51%) 37 (49%) 37 (54%) 32 (46%) 25 (52%) 23 (48%)

Response

minRT 6 (17%) 11 (44%) 7 (18%) 14 (38%) 8 (21%) 11 (34%) 6 (24%) 7 (30%)

RT 28 (80%) 11 (44%) 30 (79%) 20 (54%) 28 (76%) 19 (60%) 19 (76%) 14 (61%)

NA 1 (3%) 3 (12%) 1(3%) 3 (8%) 1 (3%) 2 (6%) 0 2(9%)

Estrogen receptor status

Positive 29 (83%) 19 (76%) 31 (82%) 29 (78%) 34 (92%) 24 (75%) 22 (88%) 20 (87%)

Negative 6 (17%) 6 (24%) 7 (18%) 8 (22%) 3 (8%) 8 (25%) 3 (12%) 3 (13%)

Abbreviations: Bev, bevacizumab; minRT, minimal residual tumor; NA, not available; RT, residual tumor.
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vascular inflammation and extra cellular matrix remodeling.
Between 12 and 25 weeks, the levels of these molecules tended
to go back to baseline levels. We also identified a prominent
decrease in AXL levels between baseline and 12 weeks.

These initial analyses identified the molecules with the
most variating serum levels during therapy independently of
the treatment arm or response.

Bevacizumab-induced changes in serum levels of
inflammation-related markers
We next focused on the effects of Bev on serum levels of
inflammation-related markers by comparing cytokine serum
levels according to the two randomized arms of the clinical
trial: chemotherapy only vs. chemotherapy + Bev.

We identified five inflammation-related markers: ALCAM,
AXL, VWF, pentraxin 3 (PTX3) and Cathepsin S (CatS)

(Figs. 2a–2e) with significantly different levels according to
treatment arm (ANOVA FDR corrected p-value <0.05; Sup-
plementary Table S3). We previously described a Bev-induced
significant decrease in VEGF-A levels accompanied by a
decrease in IL-12 and IP-10.4 Here, we show that levels of
ALCAM and AXL followed a similar pattern with marked
decrease in serum levels induced by Bev (Figs. 2a and 2b).

Inversely, levels of VWF and PTX3 significantly increased
in the Bev arm at 12 weeks and remained high throughout
therapy and until 6 weeks after surgery (week 31) (Figs. 2c
and 2d). We also found that levels of CatS significantly
increased at 31 weeks for Bev treated patients (Fig. 2e).

Altogether, these results indicate prominent changes in sys-
temic levels of inflammation-related cytokines induced by
Bev. Such changes could have important repercussions regard-
ing response.
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Figure 1. Changes in serum inflammation-related markers according to time points. (a) Principal component analysis was performed using the
serum levels of the 17 inflammation-related markers. Scatter plot of principal components 1 and 2 are represented, each dot represents a
sample projected in the two main principal components (PC1 and PC2) and are colored according to the time point they belong. (b)
Differences in serum inflammation-related markers between two successive time points are presented in boxplots. Only 12 molecules for
which significant changes between time points were observed according to ANOVA FDR corrected p < 0.05 (Supplementary Table S2) are
presented. In the box-and-whiskers plots, the line within each box represents the median. Upper and lower edges of each box represent 75th
and 25th percentile, respectively. Boxplots over the horizontal blue line crossing the y-axis at 0 indicates an increased in serum levels
between two successive time points. *p < 0.05 t-test, significant differences.

228 Serum levels of inflammation-related markers during breast cancer therapy

Int. J. Cancer: 146, 223–235 (2020) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t



Serum inflammation-related markers associated with
response
We next sought to identify noninvasive biomarkers associated
with response to treatment. Response to treatment was defined
by minRT which means reduction of at least 90% of tumor size
at 25 weeks (time of surgery). Through computation of ANOVA
FDR-corrected p-value <0.05 at the different time points

between responders (minRT) and patients with residual disease
(more than 10% residual disease), we identified cytokines associ-
ated with response (Fig. 3 and Supplementary Fig. 1). Summary
statistics for the cytokine levels in relation to response are shown
in Supplementary Table S4.

According to ANOVA FDR-corrected p-value <0.05, only in
the combination arm (Bev treatment), lower VWF levels were

Figure 2. Effect of Bevacizumab on serum cytokines levels. Line plots of the log transformed serum levels of ALCAM (a), AXL (b), PTX3 (c),
VWF (d), CatS (e) in the two treatment arms: chemotherapy (blue), chemotherapy + Bev (red), at four different time points: 0, 12, 25 and
31 weeks. Dots represent the averaged serum levels in each arm and error bars represent standard error to the mean. The significant
differences between the two arms are first tested for global differences at all time points using ANOVA and FDR corrected p-value (see
Supplementary Table S3, for summary statistics). The molecules with a significant ANOVA FDR p-value are further tested for significant
difference at each time point using t-test *p < 0.05, **p < 0.01, ***p < 0.001. [Color figure can be viewed at wileyonlinelibrary.com]

Nome et al. 229

Int. J. Cancer: 146, 223–235 (2020) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t

http://wileyonlinelibrary.com


found throughout the treatment period. However, when consid-
ering each time point separately, no significant difference
between responders and nonresponder was observed (Fig. 3b).

Similarly, in the Bev arm, pulmonary and activation-regulated
cytokine (PARC) serum levels (chemokine [C-C motif] ligand
18 [CCL18], a cytokine involved in breast cancer cell invasion19;

Supplementary Figs. S1a–S1c) and endothelial cell protein C
receptor (ePCR) levels (Figs. 3d–3f), a gene associated with risk of
breast cancer20 were lower for responders throughout treatment.

For patients in the chemotherapy only arm, at 12 weeks,
lower levels of three cytokines were associated with response.
Soluble tumor necrosis factor receptor 1 (sTNFR1), a soluble

Figure 3. Differences in molecule levels according to response to chemotherapy. Comparison using line plots of the serum levels of VWF (a-c),
ePCR (d-f ), sTNFR1 (g-i), AXL (j-l ) in responders (minRT, less than 10% residual disease) vs. nonresponders (residual tumor [RT]) in both treatment
arms. The differences in responders vs. nonresponders are shown in the left panels (black and gray lines) independently of the treatment arm,
middle panels combination arm (pink and red lines) and chemotherapy only arm (right panels, blue and light blue lines). Dots represent the
averaged serum levels and error bars show standard error to the mean. Summary statistics between responders and nonresponders in the
different arms are shown in Supplementary Table S4. Significant difference at each time point are assessed using t-test *p < 0.05, **p < 0.01.
[Color figure can be viewed at wileyonlinelibrary.com]
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marker of TNF activity (Fig. 3i), delta-like protein 1 (DLL1;
Supplementary Fig. S1f ), involved in promoting luminal
breast cancer21 and CRP (Supplementary Fig. S1i) which has
previously been monitored during neoadjuvant breast cancer

therapy.22,23 In addition, in the chemotherapy arm, lower
AXL levels throughout the treatment period (Figs. 3j–3l), a
molecule associated with aggressive breast cancers,24 were
associated with better response.

(a)

(c)

(e)

(b)(a)

(c)

(e)

(b)

Figure 4. Association between serum levels and tumor characteristics. Correlation among (a) VWF, (b) GDF15 serum (x axis) and mRNA
levels at the tumor site (y axis) across time points. Time points are denoted using different colors in the scatter plots. Pearson correlation
ρ and p-values are denoted. The green line shows the best fit. To show serum levels and the predicted immune cell infiltration on the
same scale, Z-scored serum levels of (c) VWF and (d) GDF15 and inferred mast cells (c) and M1-type macrophages infiltration at the tumor
site are plotted across three time points (0, 12 and 25 weeks) using boxplots. (c) VWF serum levels correlate with mast cell infiltration
(ρ = +0.33, FDR p-value = 0.0007). (d) GDF15 serum levels are negatively correlated with M1-type macrophages infiltration (ρ = −0.33, FDR
p-value = 0.0007). (e) Correlation plot represents all the significant (FDR p-value <0.05) Pearson correlations between inflammation-related
markers serum levels (x axis) and inferred immune infiltration at the tumor site (y axis). Color of the dots indicate positive (blue) or
negative correlations (red).
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Figure 5. Predicting response using serum phenotype and binomial logistic regression. (a) The score, output of the binomial logistic
regression penalized by the lasso method, is plotted and colored according to categories reflecting percentage of residual disease at surgery
(blue dot: less than 10%, green dot: between 10 and 60%, red dot: more than 60%). The vertical line crossing the x-axis at 0 indicates the
threshold for the samples predicted to have a good vs. bad response. (b) The efficiency of the binomial logistic regression penalized by the
lasso method at predicting the percentage of residual tumor was assessed using ROC curves. The model showed good performances with an
AUC of 91.8% (with 95% of CI between 84.5.5 and 96.7%). Confidence intervals are constructed using 100 bootstrapping. (c) Unsupervised
clustering by correlation distance and average linkage using the serum levels of the 10 molecules identified to predict response. We identify
three clusters of patients. Patient annotations on the y-axis indicate treatment received (+/- Bev) and minRT. (d) Boxplot represents the
percentage of residual tumor at surgery according to the three clusters identified in the heatmap (c). Kruskal–Wallis test p-value is denoted
on the top left. In the box-and-whiskers plots, the line within each box represents the median. Upper and lower edges of each box represent
75th and 25th percentile, respectively. (e) Kaplan–Meier survival curves for breast cancer survival for the three clusters are depicted. The
p-value is from log-rank tests.
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Overall, our results indicate that the inflammation-related
markers associated with response are different in the two
treatment arms.

Associating circulating molecule levels to tumor phenotype
We next assessed whether the measured inflammation-related
markers were related to tumor characteristics.

Serum levels of VWF and GDF15 were significantly posi-
tively correlated with their mRNA levels at the tumor site
(Figs. 4a and 4b). For both markers, the positive correlation
was stronger in the combination (Bev) arm (Supplementary
Fig. S2). In addition, serum and mRNA levels of VWF and
GDF15 were higher at 12 weeks (Figs. 4c and 4d). All rho
and corrected p-values for the correlation between cytokines
and their respective tumor mRNA expression levels are given
in Supplementary Table S5.

As VWF and GDF15 have previously been reported to
interact with immune cells,25,26 we investigated whether their
serum levels were correlated with the presence of specific
tumor infiltrating immune cells.

We used the tumor mRNA expression to infer for the
infiltration of 22 immune cell types using the algorithm
CIBERSORT.4,16 Resting mast cell infiltration was positively cor-
related (ρ = +0.33, FDR p-value = 0.0007) with serum levels of
VWF (Fig. 4c). GDF15 was inversely correlated (ρ = −0.33, FDR
p-value = 0.0007) with M1-type of macrophages (Fig. 4d); inter-
estingly GDF15 has been reported to inhibit macrophages sur-
veillance during early tumor development.25 In Figure 4e, all the
significant Pearson correlations (FDR corrected) between cyto-
kine serum levels and the predicted immune infiltration using
CIBERSORT are shown: the color of the dots indicates positive
(blue) or negative correlations (red) and the size of the dots
reflects the strength of the correlation. We further identified
GDF15 serum levels correlated with antitumorigenic immune
infiltration (Macrophages M1, T helper and activated T cells).

These analyses suggest a continuum between the tumor
and systemic patients’ characteristics.

Predicting response to chemotherapy using levels of
circulating molecules
We aimed at predicting response to chemotherapy � Bev
using only noninvasive biomarkers. We used serum levels of
the inflammation-related cytokines measured in our study
(n = 17) as well as a previously published set of 27 cytokines4

and 26 serum metabolites measured in the serum of the
patients of the same cohort. In total, a set of 70 molecules for
the time-series was obtained: at screening (n = 45), 12 weeks
(n = 58) and 25 weeks (n = 50). Due to relatively small sample
sizes for each time point, we combined both treatment arms
to fit a model predicting response to treatment.

Binomial logistic regression penalized by the lasso method
was used to predict response minRT vs. residual tumor.

At baseline, it was not possible to build a model in which the
levels of multiple molecules could accurately predict response at

this sample size (Supplementary Fig. S3a). However, at
12 weeks, we identified a set of 10 molecules, the levels of which
were associated to response (Supplementary Fig. S3b), these
molecules and their lasso coefficient are reported in Supplemen-
tary Table S6. We found a significant negative correlation
(Spearman r = −0.5, p = 5.5 × 10−05 and Pearson r = −0.46,
p = 0.0002) between the percentage of residual tumor at
25 weeks (time of surgery) and the score obtained from the
10 weighted molecules selected by the binomial logistic regres-

sion (scorei =
Pn

g = 1
βg :Xgi; see Materials and Methods section).

To illustrate the relationship between response to treatment
and the binomial logistic regression score, we plotted the score
as a function of the percentage of residual disease (Fig. 5a).

To assess the specificity and sensitivity of the binomial
logistic regression at predicting the percentage of residual
tumor, we used receiver operating characteristic (ROC) curve
and area under the curve (AUC) analysis (Fig. 5b). Our model
predicted response to therapy with an AUC = 91.8%
(84.5–96.7%).

We compared this AUC to AUCs obtained when using the
levels of each individual inflammation-related markers at each
time point (Supplementary Table S7) which highlights the
predictive value of the score (combining the levels of 10 cyto-
kines) when compared to individual cytokine. Similarly, the
score obtained from the binomial logistic regression showed
better correlation with the percentage of minimal residual dis-
ease than any of the inflammation-related marker at any time
point (Supplementary Table S8). This result indicated that for
the NeoAva cohort, the measurement of 10 molecules at
12 weeks could help predict which patients are likely to be
responders at 25 weeks.

Further using the levels of the 10 selected molecules in
unsupervised clustering (Fig. 5c), we identified a cluster (Cluster 1)
which contained 83% of the responders regardless of the treatment
arm. The three clusters obtained were significantly associated with
the percentage of residual disease (Fig. 5d). Interestingly, while
Cluster 1 points to responders, Cluster 3 was mainly composed of
nonresponders with a worse survival according to the “early”
5 years follow-up data for this cohort (Fig. 5e).

Altogether, our analyses demonstrate the relevance of
monitoring the serum of breast cancer patients during neo-
adjuvant chemotherapy.

Discussion
In our study, we assessed the relevance of measuring levels of
markers involved in vascular inflammation, angiogenesis,
extra cellular matrix remodeling and cell-to-cell interaction in
the serum of patients from a phase II randomized clinical trial
of HER2-negative breast cancer patients receiving neoadjuvant
chemotherapy with or without antiangiogenic therapy.

At different time points, we measured 17 inflammation-
related markers using enzyme-immunoassay and examined
them in perspective of treatment response and tumor molecular
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characteristics. Based on our results, we propose that a set of
10 molecules measured at 12 weeks (after the first regimen of
chemotherapy) could predict which are the responders.

Bev administration significantly affected the systemic levels of
several molecules, that is, PTX3, VWF, AXL, ALCAM and CatS.

Of these, PTX3 has previously been described as an inhibi-
tor of the proangiogenic effect of fibroblast growth factor 2.27

Such an antiangiogenic effect of PTX3 has been described to
be especially effective for hormone dependent tumors.28 We
found increased PTX3 levels in the Bev arm compared to the
chemotherapy only arm at all measured time points. These
results support the role of PTX3 in angiogenesis which may
be modulated by VEGF inhibition. PTX3 could therefore be
an actionable target when fibroblast growth factor 2 and
angiogenesis play a pathogenic role, as recently suggested.29

AXL is a receptor tyrosine kinase which has been associated
with an aggressive breast cancer phenotype.30 In HER2-positive
breast cancers, AXL is an important factor driving metastasis.24

We found that serum levels of the soluble form of AXL were
decreased by Bev. Furthermore, low AXL levels were associated
with better response in the chemotherapy only arm consistent
with the known oncogenic role of AXL in cancers.31 We suggest
that monitoring AXL in the serum of breast cancer patients
could be indicative of aggressive tumor phenotype and a prom-
ising measurement of treatment response.

We found several inflammation-related molecules associ-
ated with treatment response, in the combination arm: VWF,
ePCR and PARC and in the chemotherapy only arm: AXL,
DLL1, sTNFR1 and CRP.

Of these, in the combination arm (+Bev), lower levels of
PARC and VWF were associated with better response, but
notably, the levels of these two inflammation-related markers
were also increased by Bev. It is therefore conceivable that
increased levels of VWF and PARC may counteract the effects
of Bev or reflect adverse secondary effects of the drug. Bev
treatment in neoadjuvant setting has been documented to
increase adverse events.32,33 In the NeoAva cohort, we
observed secondary effects associated with Bev treatment, such
as hemorrhage, febrile neutropenia, infections and hyperten-
sion. Taking into account that VWF and PARC have been
associated with hemorrhage/hemostasis, endothelial dysfunc-
tion and neutropenia/infections,34,35 we may hypothesize that
the levels of these two cytokines may be related to adverse
effects induced by Bev and therefore with worse patient over-
all condition and response.

In the chemotherapy-only arm, lower levels of four cyto-
kines were associated with response (i.e., AXL, DLL1, sTNFR1
and CRP). Of these, four AXL has been associated with epithe-
lial mesenchymal transition and resistance to therapy,30,36

DLL1, a Notch ligand, promotes ER-positive21 and ER-nega-
tive37 breast cancer carcinogenesis, while sTNFR1 has been
associated with the risk of breast cancer.38 These results suggest
that these known oncogenic molecules at the tumor site could
be monitored systemically and still relate to response.

Using tumor characteristics such as metabolites, gene
expression and inferred immune cell infiltration, we found two
cytokines, VWF and GDF15, for which the serum levels corre-
lated with the mRNA expression of their corresponding gene
from the bulk tumor, but also with infiltration of specific
immune cells. VWF expression correlated with mast cell infil-
tration, while GDF15 was negatively correlated with M1 type
of macrophages, T helper cells and CD4 activated cells. This is
in agreement with a link between VWF expression and mast
cells adhesion/recruitment which has previously suggested.26

Our results therefore indicate that measuring the serum levels
of VWF and GDF15 cytokines can reflect the characteristics of
the tumor microenvironment. GDF15 has been associated with
the process of epithelial mesenchymal transition in breast can-
cer.39 Therefore, our results highlight a potential link between
cytokine production and immune infiltration at the tumor site
which may be monitored systemically. However, based on the
lack of protein data on these cytokine-related markers at the
tumor site, our data should be interpreted with caution.

Our findings deserve further investigations on a larger scale
for noninvasive monitoring of breast cancer treatment. Recently,
Hart et al. demonstrated that serum metabolomics profiles mea-
sured by NMR could be prognostic of recurrences.40 Here, we
suggest that a set of 10 molecules (cytokines and metabolites)
could be useful to predict response to neoadjuvant chemother-
apy � Bev. It is important to keep in mind that since the model
leading to selection of these 10 markers was produced with a rel-
atively small sample size, validation in an independent data set
is required. Furthermore, it would be interesting to investigate
whether serum levels of the inflammation-related markers inves-
tigated here could be used as biomarkers to detect the presence
of breast cancers by comparing the patients’ serum levels to
those of healthy individuals.

In conclusion, we demonstrate the importance of measur-
ing serum molecules by systematic assessment of cytokines
and metabolites in breast cancer. In the NeoAva cohort in
which patients have been randomized for chemotherapy or
chemotherapy + Bev, we suggest that such serum levels could
reflect adverse effect of therapy affecting patient fitness and
response to neoadjuvant chemotherapy. Our analyses of serum
levels of inflammation-related markers and metabolites in this
cohort point also to actionable targets to potentiate the effects
of antiangiogenic therapy applied today in many cancer
types.41,42
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