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ABSTRACT 
Nicotinamide adenine dinucleotide (NAD+) plays a fundamental role in life and health through 
the regulation of energy biogenesis, redox homeostasis, cell metabolism, and the arbitration 
of cell survival via linkages to apoptosis and autophagic pathways. The importance of NAD+ 
in ageing and healthy longevity has been revealed from laboratory animal studies and early-
stage clinical testing. While basic researchers and clinicians have investigated the molecular 
mechanisms and translation potential of NAD+, there are still major gaps in applying laboratory 
science to design the most effective trials. This mini-review was based on the programme and 
discussions of the 3rd NO-Age Symposium held at the Akershus University Hospital, Norway 
on the 28th October 2019. This symposium brought together leading basic researchers on 
NAD+, and clinicians who are leading or are going to perform NAD+ augmentation-related 
clinical studies. This meeting covered talks about NAD+ synthetic pathways, subcellular 
homeostasis of NAD+, benefits of NAD+ augmentation from maternal milk to offspring, current 
clinical trials of the NAD+ precursor nicotinamide riboside (NR) on Ataxia-Telangiectasia (A-
T), Parkinson’s disease (PD), post sepsis fatigue, as well as other potential NR-based clinical 
trials. Importantly, a consensus is emerging with respect to the design of clinical trials in order 
to measure meaningful parameters and ensure safety.  
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1. Introduction 
Ageing is a natural process which is increasingly being dissected for mechanisms that could 
be targeted with the hope of delaying or limiting the rapid functional decline in resiliency seen 
in old age (Fang et al., 2015; Partridge et al., 2018). In order to address the global healthcare 
and socio-economic issues that are becoming apparent as medical advances extend human 
lives, research is aimed at exploring possible transformative interventional strategies and 
molecules that target ageing and age-predisposed diseases (Bakula et al., 2018; Campisi et 
al., 2019; Fang et al., 2016b; Kennedy et al., 2014; Lopez-Otin et al., 2013; Rubinsztein et al., 
2011; Singh et al., 2019). Recently, nicotinamide adenine dinucleotide (NAD+) has entered the 
spotlight in ageing research, leading to many attempts to harness the potential of NAD+ and 
its precursors for use in the clinic. NAD+ coenzymes are the central catalysts of metabolism in 
all living cells, serving as critical components in energy production, metabolic transformations, 
detoxification of reactive oxygen species, and as a substrate for enzymes such as the PARPs, 
Sirtuins (SIRTs), CD38/CD157, and SARM1 (Bogan and Brenner, 2008; Canto et al., 2015; 
Fang et al., 2017; Lautrup et al., 2019c; Verdin, 2015; Yoshino et al., 2018).   
 
Over the last decade, the importance of NAD+ in healthy ageing and longevity has been 
recognised, detailed molecular mechanisms unveiled, and many clinical trials explored. 
Studies from laboratory animals, such as in nematodes and mice, and in human primary cells 
and post-mortem tissues, as well as human brain imaging, indicate that there is an age-
dependent reduction of NAD+ in cells and tissues (Fang et al., 2016a; Fang et al., 2014; 
Gomes et al., 2013; Hou et al., 2018; Lautrup et al., 2019c; Mouchiroud et al., 2013; Zhu et 
al., 2015). Mechanistically, it is suggested that ageing-induced NAD+ reduction may result from 
reduced production – as there is an age-dependent reduction of key enzymes involved in 
NAD+ metabolism – or increased consumption by NAD+-consuming enzymes, such as PARPs, 
CD38, and Sirtuins (Camacho-Pereira et al., 2016; Fang et al., 2016a; Fang et al., 2014; 
Lautrup et al., 2019c; Mouchiroud et al., 2013; Verdin, 2015). All three classes of enzymes 
compete for NAD+ during ageing, ultimately leading to a bioavailability level insufficient to 
sustain all NAD+-requiring cellular activities. Intriguingly, NAD+ repletion, by the 
supplementation of NAD+ precursors, such as nicotinamide riboside (NR) (Bieganowski and 
Brenner, 2004), nicotinamide mononucleotide (NMN), nicotinamide (NAM), or even NAD+ 
itself, delay ageing phenotypes and promote healthy longevity in both normal and accelerated 
ageing models in Caenorhabditis elegans (roundworms), Drosophila melanogaster (fruit flies), 
and mice (de Picciotto et al., 2016; Fang et al., 2019a; Fang et al., 2019b; Fang et al., 2016a; 
Fang et al., 2014; Frederick et al., 2016; Gomes et al., 2013; Mills et al., 2016; Mitchell et al., 
2018; Mouchiroud et al., 2013).  Encouraged by animal studies, more than 20 clinical studies 
exploring whether NR may alleviate pathological ageing and age-predisposed diseases have 
been initiated. At least 5 clinical trials have been completed showing that 1-2 g/day of NR for 
up to 1-3 months is safe, as summarised recently (Lautrup et al., 2019c). While there were 
encouraging results in some NR-based phase I clinical trials aiming to reduce blood pressure 
in healthy middle-aged and older adults (Martens et al., 2018) and to slow disease progression 
in amyotrophic lateral sclerosis (ALS) (NR + pterostilbene) (de la Rubia et al., 2019), no effect 
was reported in trials of short-term (up to 2-3 months) NR supplementation in obese, insulin-
resistant men (Dollerup et al., 2018) and nondiabetic males with obesity (Dollerup et al., 2019), 
nor muscle-mitochondrial bioenergetics in aged men (Elhassan et al., 2019). Of note, all three 
reports were from the same study and reported different outcomes from the same set of obese 
men (NCT02303483). Possible considerations include a much higher dose of NR (2 g/day) 
than other trials (mostly 1 g/day) and the sensitivity of the enzymatic, assay-based NAD+ 
detection method. Thus, these studies emphasise some of the challenges with clinical trials of 
NAD+-boosting compounds with regards to dose and assessment of NAD+ bioavailability.  
 
The Norwegian Centre on Healthy Ageing (NO-Age) aims to establish a multi-disciplinary 
research network to address the challenges of ageing and to foster translational studies to 
promote healthy ageing, healthy lifestyles and social participation in old age (Fang et al., 
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2019c). On the 28th of October 2019, the 3rd NO-Age Symposium took place, covering NAD+ 
in depth: from biochemistry to clinical trials. The event was hosted at the Akershus University 
Hospital (Ahus, Lørenskog, Norway), and was organised by Evandro F. Fang, Hilde Nilsen, 
Linda Bergersen and Jon Storm-Mathisen, founding members of the NO-Age network. Here 
we provide a summary of the main points of the symposium. 

 
 
2. An overview of the meeting  
2.1. The basics of NAD+ 
 
NAD+ has a central function in metabolism, where it functions in redox reactions. NAD+ 
switches back and forth between its reduced (NADH), and oxidised forms (NAD+). NAD+ is 
reduced to NADH during catabolic processes – the burning of fats, carbohydrates, and 
proteins, while its reduced counterpart is used for anabolic purposes – building new molecules 
such as ATP, glucose, and ketone bodies (Bogan and Brenner, 2008; Lautrup et al., 2019c). 
NAD+ is also important as a substrate or coenzyme in certain non-redox reactions involved in 
several cellular processes including, but not limited to: pathways central in ageing, DNA repair, 
calcium signalling and gene regulation (Camacho-Pereira et al., 2016; Fang et al., 2016a; 
Fang et al., 2014; Lautrup et al., 2019c; Mouchiroud et al., 2013; Verdin, 2015).  
 
Charles Brenner, the keynote speaker from the University of Iowa (Iowa, USA), started his 
lecture by explaining why we need a broader definition of metabolism. This argument is clearly 
emphasised by NAD+ having functions reaching far beyond anabolism and catabolism. Since 
his discovery of NR as an NAD+ precursor in 2004 (Bieganowski and Brenner, 2004), Brenner 
has expanded his research on NAD+ from metabolism to biomarker development and clinical 
trials for a broad variety of diseases. Failing metabolic homeostasis is observed in chronic 
heart failure (Diguet et al., 2018), Brenner and co-workers therefore investigated the 
expression of NAD+ biosynthetic enzymes in a mouse model of dilated cardiomyopathy and 
found a 30% decrease in NAD+ levels, a downregulated recycling enzyme, and an 
upregulation of nicotinamide riboside kinase 2 (NRK2) (Diguet et al., 2018). By supplementing 
the mice with nicotinamide riboside (NR) they showed increased levels of NAD+ and several 
of its metabolites, which helped to stabilise the metabolism and attenuated the development 
of heart failure in a mouse model of dilated cardiomyopathy (Diguet et al., 2018). 
 
Another metabolic stressor found to challenge the NAD+ metabolome is the postpartum period. 
A recent study by the Brenner group shows that postpartum rats have a suppressed NAD+ 
metabolome in the liver (Ear et al., 2019). Furthermore, raised blood levels of NAD+ were 
found, increasing the levels of NAD+ in the mammary glands at the liver’s expense. By 
supplementing the mothers with NR, Brenner and colleagues observed improved nursing 
behaviour and nutrient transfer to the pups (Ear et al., 2019). Several positive, lasting changes 
in neurodevelopment and metabolic parameters were also noted (Ear et al., 2019). Brenner's 
experiment is one of many showing how stressors can affect the NAD+ pool at a physiological 
level. NAD+ seems to be redirected or shuttled to areas with a high metabolic demand.  
 
Elucidating just how dynamic the flux of NAD+ is on a cellular level has been a focus in recent 
work of Mathias Ziegler from the University of Bergen (Bergen, Norway), who has developed 
tools to identify the intracellular pools of NAD+. NAD+ is found in the mitochondria, nucleus, 
Golgi apparatus, peroxisomes and in the endoplasmic reticulum (ER) and there is a balance 
of NAD+ between the different sub-cellular compartments (Lautrup et al., 2019c; Stromland et 
al., 2019). By selectively depleting cell compartments of NAD+ with an EGFP-PARP1cd (the 
PARAPLAY system (Dolle et al., 2010)), Ziegler can examine the resulting effects on a single-
compartment basis (VanLinden et al., 2015; VanLinden et al., 2017). By tracking the formation 
of NAD+ from stable isotope-labelled NAD+ precursors and simultaneously monitoring the 
disappearance of unlabelled NAD+, it is possible to determine cellular NAD+ turnover rates. 
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Thereby, the impact of cellular insults on compartmental NAD+ metabolism can be established, 
even if the NAD+ concentration itself remains unchanged. Despite having a rather large NAD+ 
pool, mitochondria are sensitive to direct changes to their NAD+ availability, both through 
depletion and satiety, and compensate by redistributing NAD+ from the cytosol to 
mitochondria. Mitochondria appear to play an important role in supporting NAD+-dependent 
processes throughout the cells under conditions that are accompanied by NAD+ depletion 
(VanLinden et al., 2015; Yang et al., 2007).  
 
2.2. NAD+ in accelerated ageing and age-predisposed neurodegeneration  
 
Hilde Nilsen from Ahus and UiO (Oslo, Norway) shared her understanding of NAD+ in Ataxia-
Telangiectasia (A-T), a rare disease with features of premature ageing caused by defects in 
DNA repair (Fang et al., 2016b; Shiloh and Lederman, 2017; Shiloh and Ziv, 2013). Key 
features of A-T include impaired coordination of muscle movements, telangiectasia, cancer 
predisposition, sensitivity to DNA damaging agents (especially DNA double-strand break 
inducers), immunodeficiency, vestigial thymus and gonads, endocrine abnormalities, as well 
as neurodegeneration (Shiloh and Lederman, 2017). The majority of the A-T phenotypes can 
be explained by an impaired DNA damage response due to mutations in the gene ATM which 
encodes ATM (Shiloh and Ziv, 2013); Vilhelm Bohr and Evandro Fang, in collaboration with 
the Nilsen group and others, reported that a sustained DNA damage response drove NAD+ 
depletion in ATM-defective animal models, leading to mitochondrial dyshomeostasis  and 
progressive neuronal loss (Croteau et al., 2017; Fang and Bohr, 2017; Fang et al., 2016a). In 
this study using C. elegans, Nilsen provided experimental evidence that hyper-PARylation 
consumes NAD+ in atm-mutant nematodes. Moreover, it was demonstrated that augmentation 
of NAD+ levels through NR supplementation, PARP inhibition, or Sir2.1 activation, improved 
healthspan and extended lifespan in the mutants (Croteau et al., 2017; Fang and Bohr, 2017; 
Fang et al., 2016a). These findings were conserved from worms to mice, indicating the 
potential for therapeutic intervention in A-T.  
 
Sofie Lautrup from Ahus and UiO (Oslo, Norway) presented a study on the autosomal 
recessive accelerated-ageing disorder Werner syndrome (WS), a classical DNA repair 
impairment-oriented premature ageing disease. From their second and third decade of life, 
WS patients develop a relatively short stature, display greying and loss of hair, prematurely 
aged faces, and juvenile cataracts, and are predisposed to cancer, dyslipidemia, premature 
atherosclerosis, and insulin-resistant diabetes (Oshima et al., 2017; Shamanna et al., 2017; 
Takemoto et al., 2013). Several major features of WS can be explained by a DNA repair 
deficiency caused by mutations in the gene encoding the Werner protein (WRN), an important 
DNA repair protein with unique helicase and exonuclease activities (Chan et al., 2019; 
Shamanna et al., 2016; Yu et al., 1996; Zhang et al., 2015). However, the molecular 
mechanisms underlying severe dysregulation of energy metabolism in WS is still not fully 
understood (Takemoto et al., 2013). Drs. Evandro Fang and Vilhelm Bohr led a project with 
data showing reduced NAD+ levels in WS patients and WS worms, possibly due to increased 
cellular NAD+ consumption by the PARPs, and reduced NAD+ production as evidenced by a 
decline in the levels of NMNAT1, which converts NMN to NAD+ (Fang et al., 2019a). The D. 
melanogaster WRN is a 353 amino acid protein with only the exonuclease domain (Cox et al., 
2007; Lautrup et al., 2019a). Lautrup and colleagues showed that the mutation of WRN in flies 
resulted in a short lifespan and impaired proliferation of intestinal stem cells (ISCs); NAD+ 
augmentation by supplying either NR or NMN was able to extend lifespan in both WRNexo 
knockdown and WT flies, as well as restoring proliferative capacity of ISCs in the WRNexo 
knockdown flies (Fang et al., 2019a). NAD+ augmentation also improved mitochondrial 
homeostasis and metabolism in both WS patient cells and WS animal models. Such data 
suggest reduced cellular NAD+ is a likely player in WS pathology, highlighting targeting of the 
NAD+ pool as an interventional target for WS patients. A clinical study in Werner patients is 
underway.  



6 

 

 
Yahyah Aman from Ahus and UiO (Oslo, Norway) presented on the potential uses of NAD+ 
precursors in delaying the progression of Alzheimer’s disease (AD). Although AD is most often 
characterised by accumulation of amyloid-β (Aβ) plaques and tau tangles, therapies targeting 
these proteinaceous deposits have given disappointing results in clinical trials, thus, there is 
a drive to develop novel therapeutic alternatives (Cummings et al., 2018; Kerr et al., 2017). 
Along with Aβ and tau, damaged mitochondria accumulate in the neurons of AD patients; a 
common pathological phenomenon partially due to compromised mitophagy (Fang, 2019; 
Fang et al., 2019b; Kerr et al., 2017; Lautrup et al., 2019b). Indeed, impaired mitophagy in AD 
was observed in human post-mortem tissue and in both iPSCs and animal models of AD. 
Moreover, pharmacological (including the use of NAD+ precursors) and genetic promotion of 
mitophagy alleviated memory loss in Aβ1-42 (CL2355) AD worms, tau (BR5270) AD worms, 
APP/PS1 AD mice and 3xTg AD mice (Fang et al., 2019b). The underlying mechanisms of 
NAD+-regulated mitophagy have been summarised by the Fang group elsewhere (Fang, 
2019). Aman is now working on understanding the molecular mechanisms of how mitophagy 
eliminates p-tau in different laboratory model systems.      
 
2.3. Clinical trials 
Norway is being put on the map as a small country with an intense interest in NAD+ precursors. 
Several clinical trials are either ongoing or planned to start shortly.  
 
Hilde Nilsen gave an update on an open-label observation trial on NR supplementation in 
children with A-T based on the results of the basic research she presented (mentioned above). 
Norway has established a nation-wide program for disease monitoring for this patient group 
that includes standardised longitudinal motoric testing. In this trial, A-T patients are given NR 
as a dietary supplement. Changes of blood NAD+ and related metabolites are monitored over 
a period of two years parallel to regular motoric testing and clinical follow-up.     
Neurodegenerative diseases like AD, Parkinson's disease (PD) and amyotrophic lateral 
sclerosis (ALS) are incurable, devastating, and often characterised by protein aggregation, 
where defective mitochondria likely play a role (Fang et al., 2019a; Fang et al., 2014; Lautrup 
et al., 2019c; Scheibye-Knudsen et al., 2014).  
 
Ole-Bjørn Tysnes from NeuroSysMed, Haukeland University Hospital (HUH) and the 
University of Bergen (UiO) (Bergen, Norway) gave a summary on the current literature on 
oxidative stress, NAD+ reduction and ALS. Major clinical phenotypes of ALS include 
impairment of voluntary muscle movement caused by the progressive degeneration of motor 
neurons in the spinal cord, brain stem, and motor cortex (Tang, 2017). ALS has complicated 
etiologies, with mitochondrial dysfunction, increased oxidative stress, NAD+ reduction, and 
impaired gut microbiota proposed as being implicated in some patients groups (Blacher et al., 
2019; Carri et al., 2017; Lautrup et al., 2019c). A recent study of the long-term ALS mortality 
trends in Norway between 1951 and 2014 revealed 5345 ALS deaths during this period, with 
a mean annual increase of 1.14% (Nakken et al., 2016) Age-period-cohort analyses suggest 
that this increase was best explained by cohort effects due to environmental impact and 
improved case ascertainment.    
 
Recent studies link impaired NAD+ metabolism to ALS pathology. A study reported that 
enhancement of the NAD+ salvage pathway protects astrocytes expressing an ALS-linked 
mutant SOD1, hereby promoting motor neuron survival (Harlan et al., 2016). Pharmacological 
(NR or NMN) or genetic (NAMPT overexpression) approaches to restore cellular NAD+ levels 
increased oxidative stress resistance in motor neurons (Harlan et al., 2019; Harlan et al., 
2016). Congruently, a recent study found low abundance of the protective bacterium 
Akkermansia muciniphila, associated with impaired NAD+ metabolism in ALS (Blacher et al., 
2019). Compared with healthy controls, NAM depletion was evident in both serum and 
cerebrospinal fluid (CSF) samples from ALS patients; accordingly, NAM supplementation 
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dramatically improved both behavioral and pathological phenotypes in ALS-prone SOD1-Tg 
mice (Blacher et al., 2019). Encouragingly, a recent preliminary clinical trial with EH301 (NR 
+ pterostilbene) indicated potential benefits for ALS patients (de la Rubia et al., 2019). Tysnes 
is planning to run a similar trial, termed NO-ALS, from Bergen, evaluating the value of NAD+ 
augmentation in treating ALS. 
 
Charalampos Tzoulis from the NeuroSysMed, Center, Haukeland University Hospital (HUH) 
and University of Bergen (UiB) (Bergen, Norway) gave updates on a randomised, double-
blinded clinical trial NAD-PARK and NO-PARK. Parkinson’s disease affects ~1.8 % of the 
population above the age of 65 years (de Rijk et al., 2000). The neuropathological hallmark of 
PD is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta 
(SNc). Additional neurodegenerative changes occur in multiple regions of the nervous system 
and patients suffer progressive disability due to a combination of progressive motor 
impairment and non-motor dysfunction (Dickson, 2012).  
 
Studies in post-mortem brain tissue from individuals with PD have shown impaired 
mitochondrial function, including complex-I deficiency (Flones et al., 2018) and defective 
mtDNA maintenance (Dolle et al., 2016). Furthermore, similar to AD and ALS, studies in 
patient iPSC-derived dopaminergic neurons, and animals modeling aspects of PD pathology 
have shown evidence of perturbed NAD+ metabolism. Moreover, NAD+ augmentation 
improved survival of dopaminergic neurons in fly-based models and patient iPSC-derived 
dopaminergic neurons (Lautrup et al., 2019c; Schondorf et al., 2018). For the nearly-
completed NAD-PARK trial, 30 PD patients were recruited at the Department of Neurology, 
HUH, then randomly assigned (1:1) to one of two study groups (n = 15 per group): NR 500 mg 
x 2/day, or placebo (NCT03816020). While they are now assessing the results of NAD-PARK, 
Tzoulis is leading the phase 2 clinical trial (NO-PARK) where they are recruiting 400 patients 
with newly diagnosed PD and randomly assigning them to either NR (500 mg x 2/day) or 
placebo for a period of 52 weeks (NCT03568968).    
 
Torbjørn Omland from Ahus and UiO (Oslo, Norway) gave a presentation of a clinical trial plan 
to evaluate the ability of NR to reduce chemotherapy-induced side effects in the cardiovascular 
system. Omland, together with Fang and Nilsen, is planning a clinical trial evaluating NR 
supplementation parallel to adjuvant therapy for breast cancer. Breast cancer is the most 
frequently occurring malignancy in Norwegian women, and the incidence has nearly doubled in 
the past 40 years (Cancer in Norway 2016). Unfortunately, many breast cancer survivors suffer 
from treatment-induced side effects, such as heart failure and other manifestations of 
cardiovascular malfunction. There are limited understanding of the molecular mechanisms 
driving development of these. The study will extend and benefit from local infrastructure built 
through the PRADA (PRevention of cArdiac Dysfunction during Adjuvant breast cancer therapy) 
study program that encompasses women with early breast cancer receiving adjuvant therapy. 
PRADA III, the NR study, aims to show if NAD+ supplementation is capable of reducing the side 
effects of cancer patients receiving chemotherapy. The rationale for supplementing with NR is 
to restore NAD+ levels depleted following chemotherapy-induced PARP1-hyperactivation. 
 
Arne Søraas from the Oslo University Hospital (OUS, Oslo, Norway) presented a planned 
clinical trial, also addressing PARP1-induced NAD+ depletion (NCT04110028). Arne Søraas 
is a post-doctoral fellow and project group leader at the research group for genome and 
epigenome regulation in embryo development, ageing, and disease. The research group 
studies geroscience with a translational aim and has set up the study in collaboration with 
several intensive care units at OUS to improve patient outcomes in the recovery phase after 
severe acute illness.  

Recovery is often prolonged after a severe illness in aged patients, and even younger patients 
experience fatigue which leads to lengthy hospital stays, incomplete recovery, and increased 
mortality (Boyd et al., 2008; Hermans et al., 2014; Iwashyna et al., 2010). Currently optimal 
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care, nutrition, and mobilisation are the best options for improving patient outcomes in this 
phase, and, to our knowledge, no pharmacological interventions are available. The severity of 
fatigue after acute illness is associated with the type of disease and extent of tissue damage 
suffered (Iwashyna et al., 2010). Tissue damage, usually caused by infections, circulation 
disturbances, surgery, or trauma is a known activator of the nuclear NAD+ consuming PARP-
1 pathway (Luo and Kraus, 2012), and the study aims to show if NAD+ augmentation is capable 
of improving patient outcome during recovery.  

In the trial, hospitalised patients are planned to randomised given NR or placebo when they 
are clinically stabilised and still expected to stay in the hospital for at least one week. The 
primary endpoint is the duration of hospital stay after randomisation. Secondary endpoints 
include measures of the completeness of recovery. NR will be administered over three months 
to cover the whole recovery period. NR has not been supplemented in this group before, and 
the study is also a dose-ranging study where increasing doses of NR (from 250 mg to 2,000 
mg daily) are tested. The NAD+ metabolome of peripheral blood mononuclear cells will be 
measured in some of the participants, while epigenetic changes including changes to DNA 
methylation clocks and biochemical status will be measured in all patients.  

 
Trygve Holmøy from Ahus and UiO (Oslo, Norway) chaired a panel discussion where several 
emerging questions, spanning from how to determine appropriate doses of NR for clinical 
trials, to revealing/monitoring potential side effects, to reasons for some negative NR-based 
clinical trials. There is a strong need to implement reliable biomarkers, particularly in 
neurodegenerative diseases where clinical scoring systems are rather insensitive and require 
long follow-up. Neurofilament light chain is now emerging as a promising biomarker that 
reflects treatment effects in several neurodegenerative diseases (Gaetani et al., 2019). 
Moreover, there is a paucity of observational data from humans during health and disease that 
would allow us to predict potential treatment effects and thereby guide power calculations in 
clinical studies. Such discussions were very useful in view of the ongoing or planned NR-
based clinical trials in Norway.   
 

3. Emerging questions on how to design a better clinical study 
While the majority of laboratory and clinical data suggest a strong translational potential for 

NAD+-boosting compounds, some studies have reported little-to-no effect, raising new 

questions to be addressed on challenges and barriers to the translation of NAD+-boosting 

compounds. For example, negative data from the study of NR in obese men (NCT02303483) 

suggests that further considerations on dose, treatment period, number and diversity of the 

patients need to be taken into account in future clinical studies, as well as the use of sensitive 

and stable NAD+ assessment methods. In the Q&A section, major questions and discussions 

related to how best to determine appropriate doses of NR in clinical trials, tips for experiment 

design, and timeline to watch for NAD+-related benefits. While there has been enough data on 

the pharmacokinetics and toxicity profile of NR in the healthy elderly, it is conceivable that kids 

and patients with different diseases may have different responses to NAD+-boosting 

compounds, thus independent data on pharmacokinetics and toxicity should be established 

for each specific disease. Accordingly, the aetiologies of each disease should be carefully 

considered to determine the optimal period for NAD+-boosting, compound-based treatment. 

The speakers also recommend including ‘exercise’ and ‘exercise + NAD+ boosting compound’ 

groups since exercise may play a synergistic role in NAD+-related benefits to metabolism and 

muscle functions.’        
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4. Closing remarks 
Over the past decade, our understanding of NAD+ has expanded beyond its crucial role in 
bioenergetics and metabolism to its new role as a key component in healthy longevity. 
Growing evidence from laboratory animals to humans suggest an age-dependent reduction of 
NAD+, while NAD+ augmentation has been shown to improve healthspan and extend lifespan, 
as well as alleviate the symptoms of a broad range of age-related diseases, including AD, PD, 
ALS etc., in laboratory animal models (Fang et al., 2017; Lautrup et al., 2019c; Verdin, 2015). 
Accordingly, several clinical trials of NR are planned or ongoing (https://clinicaltrials.gov/). 
 
Despite the optimism there are still outstanding questions in the field: first, further study is 
needed on the detailed molecular mechanisms and links between NAD+, healthy ageing, and 
longevity, including its neuroprotective effects. Second, the relationship between NAD+ 
reduction and ageing in a large, human population setting needs to be determined. Third, while 
NR seems to be a promising supplement in a wide range of diseases, we must not forget that 
clinical trials are still small and in an early phase, and that possible negative long-term effects 
could still become apparent. Furthermore, the precise relationships between NAD+ and 
different cancers should be addressed, since NAD+ augmentation has been shown to have 
tumour-promoting effects in laboratory animal model (Demarest et al., 2019; Nacarelli et al., 
2019) but also to inhibit breast cancer in mice (Santidrian et al., 2013) and skin cancers in 
high-risk patients (Chen et al., 2015). 
  

https://clinicaltrials.gov/
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