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Abstract: This manuscript extends the definition of the Absolute Standardized Mean Difference (ASMD) for
binary exposure (M = 2) to cases for M > 2 onmultiple imputed data sets. TheMaximalMaximized Standardized
Difference (MMSD) and the Maximal Averaged Standardized Difference (MASD) were proposed. For different
percentages, missing data were introduced in covariates in the simulated data based on themissing at random
(MAR) assumption. We then investigate the performance of these two metric definitions using simulated data
of full and imputed data sets. The performance of the MASD and the MMSD were validated by relating the
balance metrics to estimation bias. The results show that there is an association between the balance metrics
and bias. The proposed balance diagnostics seem therefore appropriate to assess balance for the generalized
propensity score (GPS) under multiple imputation.

Keywords:balance diagnostics; generalized propensity score;missing data;Monte Carlo simulations;multiple
treatment exposure.

Introduction

It is impossible in observational studies to control how subjects are assigned into treatment groups, and thismay
potentially result in biased effect estimates caused by confounding (Hernán et al. 2008; Rubin 2004). The
application of weights derived from the propensity score (PS) (the conditional probability of receiving treatment
given observed covariates) aims to balance characteristics between treatment groups (Rubin 2004). When this is
achieved, the result is reduced bias effect in the estimates (Austin 2011). For binary exposures, a common
approach to checking whether balance between treatment and control group has been achieved is to calculate
the Absolute Standardized Mean Difference (ASMD, d). For a continuous covariate x, the ASMD is defined as

d � |x̄treatment − x̄control|����������
s2treatment+s2control
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where x̄treatment and x̄control denote respectively, the sample mean of the covariate in the treated and control
groups, while s2treatment and s2control represent the sample variance in the respective treatment groups (Austin
2019; McCaffrey et al. 2013). When defining d for categorical variables, mean values (x̄) are replaced with
proportions and variances (s2) become functions of proportions (Austin 2019).

If balance has been achieved, the ASMD value should be below a pre-defined threshold after PS analysis
has been performed (Austin 2019; McCaffrey et al. 2013).

There is however inconsistency in balance thresholds across the literature, where values vary between 0.1
and 0.25 for d (Austin 2011; Nguyen et al. 2017; Stuart, Lee and Leacy 2013). Given these differences, a recent
study investigated the effectiveness of pre-defined thresholds for PS matching with binary exposure (Nguyen
et al. 2017). The authors concluded that if balance was below 0.1 on most variables, and if variables with
balance above 0.1 are included in the outcome model as adjustment variables, bias was small. Yet, a specific
threshold for the generalized propensity score (GPS) has not been tested.

TheGPS is the generalization of the PS for binary exposure. TheGPSmakes it possible to estimate the effect
of multiple treatment exposure on the outcome (Imai and Van Dyk 2004; Lechner 2001). The GPS has been
applied in various studies on observational data, for example (Feng et al. 2012; Jiang and Foster 2013;
Spreeuwenberg et al. 2010; Sugihara 2010).

A common problem of observational data is missing information due to non-response, especially where
data collection is performed via questionnaires (Pandis 2014).

Multiple imputation techniques are often applied to fill the information gaps (Miri et al. 2016). For binary
exposure, several studies have combined imputation techniques with PS analysis (Doidge 2018; Eulenburg
et al. 2016; Hayes and Groner 2008; Hill 2004; Hsu and Yu 2019; Kupzyk and Beal 2017; Lavori et al. 1995; Mitra
and Reiter 2016; Qu and Lipkovich 2009; Rosenbaum and Rubin 1984). A systematic review by Malla et al.
(2018) summarizes how missing data are combined with PS analysis on actual patient data. The authors
showed that the majority of reviewed articles performed PS analysis in combination with complete case data
(Malla et al. 2018).

Unlike for PS analysis, only one recent study, by De Vries, Van Smeden, and Groenwold (2018), considered
the combination ofmissing data and the GPS (De Vries, Van Smeden, and Groenwold 2018). The authors found
that multiple imputations of data, followed by PS estimation using Classification and Regression Trees (CART)
resulted in least biased estimates (De Vries, Van Smeden, and Groenwold (2018)). However, no previous study
has assessed balance for theGPSundermultiple imputations, partly due to the computational burden involved
(De Vries, Van Smeden, and Groenwold (2018)).

This paper proposes an approach for balance assessment of GPS under multiple imputation. It uses
simulated data to evaluate the proposed diagnostics. The article is organized in the following way. The
methodology section defines the quantitative concepts applied in this study, such as the GPS, its estimation, a
multiple treatment definition andmultiple imputation. Existing balance diagnostics are reviewed for binary PS
models and finally extended to the multiple treatment case under multiple imputations. The simulation study
section describes the data-generation process and details about the implementation. Then results of the
simulated data example are presented, followed by the discussion of the results and finally the conclusion.

Methodology

In this section we describe, the methodological concepts and ideas that are later applied to simulated data
examples.

Generalized PS

The aim of PS analysis is to reduce the dimension of observed pre-treatment variables X and bias, due to
confounding, by re-weighting them.
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Formultiple treatments, this can be achieved by using the GPS (Imbens 2000). In the present study,wewill
estimate GPS using generalized boosted models (GBM), and combine it with inverse probability of treatment
weights (IPTW) to obtain the average treatment effect (ATE) (McCaffrey, Ridgeway, andMorral 2004;McCaffrey
et al. 2013).

We applied IPTW based on the results by Nian et al. 2019, who showed that this approach had preferred
performance compared to other approaches, such asmatching, stratification or GPS adjustment. In addition PS
methodsmay differ in the populationwhere an overall treatment estimate shall be calculated Kurth et al. 2005.
The results in Kurth et al. (2005) have shown that IPTW is well suited to calculate the treatment effect of the
total population.

Following, Imbens (2000) and Feng et al. (2012), for the subject index i � 1,  … N, let T � {1,  2,  …,  M}
denote the set of M multiple treatments, and Yi(m) denote the potential outcome of subject i, if subject i has
been assigned to treatment m ∈ T (Imbens 2000, Feng et al. 2012). Let Ti be the treatment that subject i
received and the indicator that subject i receives treatment m is

Im(Ti) � I(Ti � m). (1)

Definition 2.1. (Generalized Propensity Scores (GPS) (Imbens 2000; McCaffrey et al. 2013)) Let Xi be the set of
observed pre-treatment variables of subject i. The GPS r(m,  Xi) is the conditional probability of receiving a
particular level of the treatment m given Xi:

r(m,  Xi) � Pr(Ti � m|Xi) � E[Im(Ti)|Xi]. (2)

Hence, for the set T of M different treatment groups, we obtain M GPSs, for all subjects i.

Given r(m,  Xi), the empirical expected outcome Ê(Y(m)) is estimated by the weighted mean (McCaffrey
et al. 2013), i. e.

Ê(Y(m)) �
∑
N

i�1
Im(Ti)Yi(m)wi(m)

∑
N

i�1
Im(Ti)wi(m)

, (3)

Where

Ti � m, wi(m) � 1
r(m,  Xi). (4)

Then, the ATE is estimated, comparing treatment t ∈ T vs. treatment ℓ ∈ T (t ≠ ℓ) across the subjects

ÂTEtℓ � Ê[Y(t)] − Ê[Y(ℓ)] , (5)

under the condition that treatment (Ti) is independent of the outcome Yi(Ti), and that the compared groups
are representatives of the population (Feng et al. 2012). The latter condition does not hold in general, but can be
achieved by the key assumption that treatment assignment isweakly unconfounded given observed covariates
X. For multi-valued treatments, without missing data, theweak unconfoundedness assumption was defined by
Imbens (2000), see Definition S1.1 in the Supplementary Material Section S1. This definition means that
treatment and potential outcome are independent given the observed covariate (Imbens 2000). It was shown in
Leyrat et al. 2019, that this assumption holds for a binary exposure under multiple imputation. However, to be
able to define the ATE for the present situation, similar assumptions have to hold for the GPS after multiple
imputation.
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For a proof of these assumptions, see the Supplementary Material Sub-section S1.1.
Previous studies estimated GPS with multinomial and ordinal logistic regression models (Bray et al. 2019;

Feng et al. 2012). However, these parametric approaches have been shown to lead to less robust ATE estimates
than non-parametric approaches, such as GBM, which we describe briefly below (McCaffrey, Ridgeway, and
Morral 2004; McCaffrey et al. 2013).

Generalized boosted models

Firstly, we describe how GBM are applied to estimate the PS for binary treatment, i. e., T ∈ {0,  1} (McCaffrey,
Ridgeway, and Morral 2004; McCaffrey et al. 2013). Then the GBM algorithm is generalized to the multiple
treatment case analogous to McCaffrey, Ridgeway, and Morral (2004); McCaffrey et al. (2013).

Let X be the set of observed pre-treatment variables and let Xi be the set of observed pre-treatment
variables for subject i. For the binary treatment case, the treatment indicators for subject i in Eq. (1) is given by
Ti � 1, simplified with I1(Ti) � 1 − I0(Ti) and r(1,  Xi) � 1 − r(0,  Xi). Instead of directly estimating the PSs, the
algorithm finds the maximum-likelihood estimate of the function g(X), which is the log-odds of treatment
assignment, i. e., g(X) � log(r(1,X)/(1 − r(1,X))). Therefore, the GBM algorithm iteratively adds regression
trees together to fit a non-linear logistic regression model to treatment indicator I1(Ti) (McCaffrey, Ridgeway,

and Morral 2004). Initially, the algorithm sets g0(X): � log(Ī/(1 − Ī)), where Ī is the average treatment
assignment indicator for the whole sample. Then to improve the PS fit to the data, at each new iteration
j (j � 1,  … J), a new regression tree h(X) is added to the currentmodel gj−1(X), if it is the best fit to the residuals
I1(Ti) − gj−1(Xi) and provides the greatest increase in the log-likelihood for the data. When the regression trees

are combined a shrinkage coefficient α is introduced to improve smoothness of the resulting piecewise con-
stant model. In order to avoid overfitting of the data, GBM selects a number of trees in order to minimize
imbalance on pre-treatment covariates across “treatment” and “control” groups. More details about the
boosting algorithm can be found in McCaffrey, Ridgeway, and Morral (2004).

GBM extension to more than two treatment groups (M > 2)
The approach in the preceeding section can be extended to more than two treatment groups in the following
way (McCaffrey, Ridgeway, and Morral 2004; McCaffrey et al. 2013): Firstly, we define indicator functions for
each of theM treatment groups as in Eq. (1). The GBM algorithm is then applied respectively to allM treatment

indicator functions Im(Ti), resulting inM PSs r(m,  Xi) � Pr(Ti � m|Xi). The respective IPTWwi(m) � 1
r(m, Xi) are

then applied in Eq. (3).
As mentioned previously, missing data are common in observational data. Therefore, techniques, which

fill information gaps, have been invented, such asMultiple imputation by chained equations (MICE), whichwe
describe below (Van Buuren and Groothuis-Oudshoorn 2011).

Multiple imputation by chained equations

Let S be a data set and letZ be the subset for the elements that are missing in S . MICE consists of three main
steps (Van Buuren and Groothuis-Oudshoorn 2011): Firstly, there is imputation of the missing data component
Z , using chained equations. After an initial random filling of all missing data, a MCMC algorithm draws
iteratively from the conditional distributions based on a collection of observed and missing variables (Chen

and Ip 2015; Van Buuren and Groothuis-Oudshoorn 2011). This results in Q multiple imputed data sets S (q),
where q � 1,  …,  Q, that are identical on each observed element, but differ on the initially missing entries. On
each of the q imputed data sets, PS analysis is performed, and leads to Q effect estimates of the PS analysis.
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Finally, all Q effect estimates and their variance are pooled into one estimate. Following Murray (2018), as
many variables as possible, including the outcome variable, should be incorporated into the imputationmodel
(Leyrat et al. 2019; Murray 2018).

Initially, the literature recommended that 5  ≤  Q  ≤  10 imputed sets are sufficient (Azur et al. 2011).
However more recent developments showed that in order to also detect small effect sizes aminimum ofQ � 40
imputed sets are needed (this however depends on percentage of missing data), see Graham, Olchowski, and
Gilreath (2007).

There are three approaches to combine multiple imputation and PS analysis (Leyrat et al. 2019): After
multiple imputation, one approach averages the estimated PSs to generate one outcome analysis (Leyrat et al.
2019; Mitra and Reiter 2016). Another approach, calculates the PS based on the pooled covariates over all
imputed data sets. A third approach averages theQ treatment effects, whichwere estimated based on the PS on
each imputed data set. Leyrat et al. (2019) compared all three approaches and concluded that the third
one leads to least biased results. This approach was therefore applied in the below illustrative example (see
Section Simulation study).

Next we review and extend the definition of balance.

Balance assessment

In order to assess if the PS analysis was able to balance treatment groups across observed pre-treatment
variables X, balance is calculated. Previous studies extended balance diagnostics to GPS for continuous and
multiple treatment for complete data (Austin 2019; Bray et al. 2019; Fong et al. 2018; McCaffrey et al. 2013; Zhu
et al. 2015). We first review the definition of balance for binary and multiple treatment groups and finally
extend this definition for the case undermultiple imputation. In addition to previous notations, let k � 1,  …,  K

denote the covariate index and let C � (M
2
) denote the total number of pairwise comparisons ofM treatments

and let c be an index over comparison pairs, i. e., c � 1,  …,  C.

Balance assessment without multiple imputation

Definition 2.2. (Absolute Standardized Mean Difference (ASMD) (McCaffrey et al. 2013)) For each covariate k
and binary treatmentm, the ASMD equals the absolute value of the difference between the weighted mean of
the covariate in the treatment group (m � 1) minus the weighted mean of the covariate in the control group
(m � 0), divided by the unweighted standard deviation of the pooled population for the ATE (see Eq. (5)). Given
covariate k,

ASMDk �
∣∣∣∣X̄k, 1 − X̄k,0

∣∣∣∣
σ̂k

,

where X̄k,m is the weighted mean for covariate k and treatment (m � 1) or control (m � 0) group, and σ̂k is the
unweighted averaged (pooled) within standard deviation for all treatment groups.

For GPS, Burgette, Griffin, and McCaffrey (2017) suggest that, balance shall be assessed, via the ASMD, for
all pairwise comparisons when determining the ATE.

Definition 2.3 extends Definition 2.2 to M treatment groups m � 1,  …,  M, which will result in C-pairwise
comparisons (Burgette, Griffin, and McCaffrey 2017; McCaffrey, Ridgeway, and Morral 2004).

Definition 2.3. (Multiple ASMD (McCaffrey et al. 2013)) ForMmultiple treatment groups, and given the set of K
covariates and treatment pairs (t,  ℓ),  t ≠ ℓ,
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ASMDk, c �
∣∣∣∣X̄k, t − X̄k, ℓ

∣∣∣∣
σ̂k

.

X̄k, t denotes the weighted mean for covariate k for treatment group t, while X̄k, ℓ is the weighted mean for
covariate k for treatment group ℓ. The denominator σ̂k is the unweighted averaged (pooled) standard deviation
of all treatment groups (same as in Definition 2.2).

A similar definition holds for categorical variables, where the mean is replaced by weighted proportions.
Except for McCaffrey et al. (2013), two recent articles (Li and Li 2019; Yang et al. 2016) included discussions

on balance assessments for more than two treatment arms: TheMultiple ASMD is a special case of the pairwise

absolute standardized differences (ASD) defined by Li and Li (2019), with wi(m) � 1
r(m, Xi) and tilting function

h(X) � 1. In addition, McCaffrey et al. (2013), Li and Li (2019) extended the population standardized difference
(PDS) for varyingweight functions (wi(m)). Instead of comparing weighted covariatemeans pairwise between
treatment groups, the PDS compares weighted covariate means between the treatment group and the target
population. The balance metric in Yang et al. (2016) is defined for matching and stratification, therefore
wi(m) � 1. Another major difference is that covariate means for each treatment group m are not compared
pairwise, but with the covariate mean of all other treatment groups combined, exceptm (i. e.,mc � T). Finally,
Yang et al. (2016) also proposed a metric that allows the assessment of balance in covariate distributions,
where the GPS are considered instead of the covariates directly.

In the next section, Definition 2.3 is extended to multi-treatment exposure under multiple imputation.

Balance assessment for GPS under multiple imputation

Definition 2.4. (Maximal Maximized Standardized Difference (MMSD)) For each covariate k, the MMSD is
defined by,

MMSDk � max
c

max
q�1,…,Q

ASMDq, k, c  , (6)

where ASMDq, k, c refers to the ASMD for covariate k and pairwise comparison c on the multiple imputed set q.

Definition 2.5. (Maximal Averaged Standardized Difference (MASD)) Similarly, for each covariate k, the MASD
is defined by,

MASDk � max
c

 
1
Q

∑
Q

q�1
ASMDq, k, c  , (7)

where ASMDq, k, c is defined as above in Definition 2.4.
It is assumed that balance is obtained when, after weighting, the Maximized Standardized Difference

(MMSD) or the Maximal Averaged Standardized Difference (MASD) are below a pre-defined threshold. If all
covariates are balanced under MMSD then they are automatically balanced under MASD. The reverse argu-
ment does not hold.

Pre-defined thresholds have been reported to vary between 0.1 and 0.25 for balance assessment in the
literature (Stuart, Lee, and Leacy 2013). For validation of the balance diagnostic, we follow a similar approach
as Franklin et al. (2014), which creates a summary score of balance diagnostics over all covariates. Therefore,
for the balance summary score, we decided to consider a threshold of 0.1 appropriate.

It is also important to assess, if the positivity assumption is fulfilled. The positivity assumption states that
each treatment group has a positive probability of receiving the treatment (Austin and Stuart 2015; McCaffrey
et al. 2004, 2013). Across all imputed data sets, we therefore select theminimumandmaximalweights, in order
to make sure that there are no extreme values. Occurrence of extreme values could be indicative of a violation
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of the positivity assumption. Hence in cases they occur, the weights are truncated or stabilizedweights are used
as alternatives (Austin and Stuart 2015).

Besides checking that the positivity assumption is fulfilled, we also checked that the selected GPS model
was well specified by quantifying the standard deviation of the weights (Austin and Stuart 2015; McCaffrey et
al. 2004; McCaffrey et al. 2013).

Simulation study

The aim of this simulation study is to evaluate balance metrics, MASD and MMSD, in their ability to detect
imbalances in confounders after IPTW based on the GPS on multiple imputed data sets. We will compare the
imbalance after weighting with the biased estimates of a continuous outcome.

Motivation of simulated data: clinical problem

The simulation example for this study is motivated by observational studies investigating the associations
between prenatal exposure tomedications on pregnancy outcomes (Lupattelli et al 2017; Nezvalová-Henriksen
et al. 2016; Nordeng et al. 2012). Such studies are necessary as clinical studies are rarely ethical among
pregnant women (Blehar et al. 2013). As many diseases have three or more therapeutic options, we decided to
focus on a multi-group comparison of three medication alternatives. For example, hyperthyroidism during
pregnancy can be treated with methimazole/carbimazole (MMI/CMZ), propylthouracil (PTU) or left untreated
(Alexander et al. 2017; Moleti et al. 2019). Although, we motivated the generation of simulation data on the
abovementioned clinical example, the main focus of this manuscript is of primary methodological nature and
allows no clinical implications and conclusions. The manuscript uses simulated data and has therefore no
ethical issues.

Data generation

Data sets of sample size n � 1000 were generated, in order to mirror an observational study comparing three
treatment options (M � 3), T � (T1,  T2,  T3), with T2 as reference treatment, on a fully observed continuous
outcome Y (birth weight in gram) with five measured covariates X � (X1,  X2,  X3,  X4,  X5). The covariates
represent, respectively Body Mass Index (BMI), maternal educational level and age, marital status and parity.
The covariates X1,  X2 and X3 were categorical, and X4 and X5 binary. While the variables X1 and X2 were
partially observed, the other covariates were fully observed. Simulation details on covariates are outlined in
Table 1. The data generation process is summarized in a directed acyclic graph (DAG) (see Figure 1).

Treatment assignment

For each subject i, the probability of treatment assignment was determined from a multinomial logit function
forM > 2 based on a linear combination of all five covariatesX andwith treatment reference T2 � 2 via (Menard
2002, Borooah 2002):

ln(P(T � m)
P(T � 2)) � αm + ∑

C

c�1
βm, cXi, c � Zm, i

With M > 2 treatment classes, there are M − 1 predicted log-odds, one for each treatment category, with
respect to the reference category. For our simulation example withM � 3, Z1, i and Z3, i were defined as follows:
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Z1, i � log(0.2) + log(1.4)X1 + log(2.0)X2 + log(1.25)X3 + log(1.3)X4 + log(0.2)X5  ,

Z3, i � log(0.5) + log(1.4)X1 + log(1.2)X2 + log(1.25)X3 + log(1.3)X4 + log(0.8)X5

The coefficients in models Z1, i and Z3, i were chosen empirically, such that pm > 0,  m � 2, ..,  M and p1 > 0.
Then, for m ∈ {1,  3}, treatment assignment probabilities were calculated the following way:

pm: � P(T � m) � exp (Zm, i)
1 + ∑m∈{1,3}exp (Zm, i)

The reference group probability was calculated, as

p2: � P(T � 2) � 1
1 +∑m∈{1,3}exp (Zm, i) � 1 − ∑

m∈{1,3}
pm,

since  p2 + ∑
m∈{1,3}

pm � 1.

Treatment was assigned to all subjects by simulating random categorical treatment groups using the
probabilities pm,  m ∈ {1, 2, 3}.

Table : Simulation details for covariates.a

Covariates Categories Properties, %

X BMIb ≤ ;   − ;   ≥  ., ., %
X Education in years < ,  – ,  – , and >  ., ., . and .%
X Age in years ≤ ,  – ,  –  and ≥  ., ., . and .%
X Married/Cohabiting vs. Other . vs. .%
X Primiparity vs. Multiparity . vs. .%

a Numbers were inspired by real world data in Frank (), Frank et al. (.) b BMI categories (kg/m),  ≤ BMI ≤  (normal
weight) and  ≤ BMI <  (overweight) are merged into one category in this dataset. Abbreviations: BMI, Body Mass Index.

Figure 1: Diagram of data generation. T represents the
treatment and Y the outcome, while the blue arrow from
T to Y represents the treatment effect. Xobs and Xmiss

represent, respectively, the completely and partially
observed covariates, and R the missing data indicator.
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Continuous outcome

The continuous outcome was simulated via a linear model based on the five covariates and the treatment,

Yi � βTTi + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε (8)

with ε  ∼  N (μ � 3000, σ � 250), coefficients β � (log(2.4),  log(4),  log(1.25),  log(1.3),  log(1.1)) and with
treatment effect of βT � 200. This means that we modeled a linear mean effect of treatment. The above models
define the full data situation. Next we will generate missing data with different missing percentages in
covariates X1 and X2.

Missing data mechanism

In this simulation study,we assume that data areMissingAt Random (MAR). Hence, themissing information in
the variables,X1 andX2, depends on the fully observed covariatesX3 andX4 but not onX5, T, orY. To introduce
missing information, we defined missing indicators R, respectively, for X1 and X2 via logistic models:

log it(p(R1 � 0|T,  X3,  Y)) � γ0 + γ1T + γ2X3 + γ4Y (9)

log it(p(R2 � 0|T ,  X3,  X4,  Y)) � η0 + η1T + η2X3 + η3X4 + η4Y (10)

The values were set to NA when the missing indicators were equal to zero. Parameters describing the missing
indicators are presented in Table 2. We varied several factors at-a-time, in order to generate several missing
percentages.

Missing data percentages of 14.9, 31.8 and 57.5% are well within empirically observed values, which vary
between 2 and 65% (Dong and Peng 2013; Karahalios et al. 2012; Marston et al. 2010). Though the 83.1% level of
missing data falls outside the empirical range, it was chosen to test ability of themethodology to accommodate
extreme values, as the literature documents evaluation of imputation techniques for 80%missing information
(Lee and Huber 2011). For missing percentages larger than 10%, it is assumed that the analysis is potentially
biased and imputation analysis is therefore recommended (Dong and Peng 2013).

Estimates

We estimated the mean treatment effects β̂, intercepts β̂0 and approximate 95% confidence intervals (CIs) on
the full data set, and the imputed data sets. Over the Q imputed data sets, the effect estimates and CIs were
averaged applying Rubin’s rule (Leyrat et al. 2019; Murray 2018).

Methods

For all missing scenarios, we imputed Q � 10 data sets via chained equations (using R package “MICE” from Van Buuren and
Groothuis-Oudshoorn (2011)), due to the computational burden involvedwhen calculating theGPS (Azur et al. 2011). The imputation
model included the outcome, all covariates and the treatment (Frank 2019; Murray 2018). For each scenario, we then estimated the
GPS based on all five covariates, and calculated the MMSD and MASD for each covariate separately, before and after IPTW. Then
similar to the approach in Franklin et al. (2014), we created balance summary scores that average the balance metrics over all
covariates. To evaluate whether the balance metrics describe appropriately imbalance in covariates after IPTW, we plotted the
estimated bias vs. the balance summary score, after IPTW. Balance assessment was based on the function “bal.table” in R package
“TWANG” (Burgette, Griffin, andMcCaffrey 2017; Ridgeway et al. 2017). The GPS and IPTWwere calculated based on GBMusing the
R function “mnps” in the R package “TWANG” (Burgette, Griffin, and McCaffrey 2017; Ridgeway et al. 2017). With help of the
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“SURVEY” R package, IPTW was performed on each imputation set by using the “imputationList”-tool from the package
“MITOOLS” (Lumley 2018, 2015). The pooled effect estimates and CIs across the multiple imputed data sets were obtained by
applying Rubin’s rule via the function “MIcombine” from the “MITOOLS” R package (Lumley 2015).

Performance measures

For each scenario, and the treatments, T1,3, we estimated bias, coverage, and relative percent error in the model standard error

(RelError), together with theMonte Carlo standard error (MCSE) for β̂. These performancemeasureswere calculatedwith help of the
R package “rsimsum” (Gasparini and Lang 2018). Based on conservative estimates from an initial small simulation run, we assumed

that SD (θ̂) ≤ 1676, and that the MCSE of the bias should be lower than 52 g (Morris, White, and Crowther 2019). Using equations for
the MCSE of the bias and coverage, as well as the maximized MCSE of the coverage, as provided by Morris, White, and Crowther
(2019), we are required to simulate nsim � 1053 repetitive runs (see Figure S1 in SupplementaryMaterial Section S2). TheMCSE of the
bias estimate of 52 g is very conservative, as this was based on initial runs. It is therefore likely that the required nsim value may be
higher in reality. Figure S1 was created in MATLAB (Version 9.4.0.813654 (R2018a)).

Given the computational burden involved in calculating the GPS (De Vries et al. 2018), we were unable to perform
analysis over all requiredMonte Carlo simulations (nsim � 1053). We therefore iteratively reduced the number of nsim, and used
the number of simulated sets for which we had enough memory capacity (that was the case for nsim � 10). These 10 sets were
randomly selected out of the 1,053 simulated data sets and statistical analysis was performed on them. Since, for each of the
10 selected data sets, we imputed 10 data sets for the missing data cases, we analyzed the full data set over nsim � 100 Monte
Carlo runs.

The results of the analysis and balance assessment are presented next.

Results of simulation study

For all simulation scenarios, Figure 2 shows the bias on the x-axis vs. the balance summary score on the y-axis,
respectively for the MASD and MMSD. For high imbalance, we would expect a high (i. e., ≥ 0.1) balance
summary score, and for low imbalance, a low (i. e., < 0.1) balance summary score. In Figure 2a–d, the full data
set had consistently low bias and balance summary score, for each treatment case (T1 and T3), when estimated
over both, the MASD and MMSD. Compared to the imputed data scenarios, the CIs of the full data set analysis
were narrow. For the imputed data sets, we see higher bias together with larger balance summary scores
(Figure 2a–d), and larger variation in bias, as compared to the full data set. In total, we find a non-linear, but
consistent association between the balance measures, and covariate imbalance, due to multiple imputation.
For this illustrative example presented, the low balance summary scores (Table 3) reflected low imbalance in
covariates. Table 3 also shows a clear reduction of balance summary scores from unweighted to the weighted
sets.

The estimates of the full and imputed data sets are presented in Table S1 in Supplementary Material
Section S2. Table 4 presents performance measures for all simulated scenarios. The mean coverage rate was
above the 95% rate for the full data set, however slightly lower in the imputed case scenarios. For all scenarios,
we see lowMCSE of the coverage rate. The relative percentage error in themodel standard error (Table 4) shows
that the results are conditioned on adequate number of simulated Monte Carlo runs. However, even for 10
Monte Carlo simulations (due to computational burden of the GPS algorithm), we can see in Table 4 that the
relative percentage error is still relatively low.

Table : Missing percentages and parameter values for Eqs. () and ().

Missing, % γ

;  η


γ

;  η


γ

;  η


γ

;  η


γ

;  η



. logð:Þ;  logð:Þ logð:Þ;  logð:Þ logð:Þ;  logð:Þ −;  logð:Þ logð:Þ;  logð:Þ
. logð:Þ;  logð:Þ logð:Þ;  logð:Þ logð:Þ;  logð:Þ −;  logð:Þ logð:Þ;  logð:Þ
. logð:Þ;  logð:Þ logð:Þ;  logð:Þ logð:Þ;  logð:Þ −;  logð:Þ logð:Þ;  logð:Þ
. logð:Þ;  logð:Þ logð:Þ; logð:Þ logð:Þ;  logð:Þ −; logð:Þ logð:Þ;  logð:Þ
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For all imputed sets, diagnostic tools, considering the distribution of the observed and imputed data, as
well as convergence of the MICE algorithm for multiple imputations, indicated that the imputed values were
plausible. Given that the multiple imputations seemed plausible, the GPS for each scenario was calculated

Figure 2: Bias vs. Balance summary scores after IPTW. In
the panels a–d, each line represents a missing data
level setting. The line indicated with label “Full”
represents the results obtained from the full data set,
before missing values were introduced. Similarly, the
lines notated with labels “14.9%”, “31.8%”, “57.5%”,
and “83.1%”, represent results of the imputed data sets
withmissing values of respectively, 14.9, 31.8, 57.5, and
83.1%.
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and balance assessed. Furthermore, on each imputed data set, and for each missing case, the maximal
standard deviation of the weights were small (i. e. ≤1.5), indicating that the PS model was well specified (Xu
et al. 2010).

Discussion

This study extended the definition of balance diagnostic to include multiple treatment exposure under mul-
tiple imputation. It has used simulations to investigate the performance of the proposed approach. Results
from the analysis show that the mean differences after multiple imputation were unbiased for 14.9 to 83.1%
missing data. The results were in accordance with the MASD and the MMSD balance summary scores after
weighting, which indicate that covariates were balanced between groups.

The significance of this study can be appreciated when one considers the preponderance of data with
missing covariates, especially in pharmacoepidemiological studies involving multiple treatment exposure
(Bandoli et al. 2018; Franklin et al. 2013). Specifically, the current approach allows incorporating external
validation data, as suggested byWebb-Vargas et al. (2017), for multiple treatment exposure. A recent study by
Frank et al. (2019), combined the incorporation of validation data and multiple treatment exposure after
multiple imputation. For balance assessment, the authors applied the MASD balance metric. In contrast to the
present study, where the balance summary score of the metrics was calculated for validation purposes, the
authors in Frank et al. (2019) assessed the balance of each covariate separately. This approach seems
appropriate when the balancemetrics are applied to real world data.When analyzing and interpreting balance
metrics for each covariate separately, it should be taken into account that PS methods cannot balance cova-
riates with small sample sizes (Rubin 1997). Hence, when there are small sample sizes within treatment groups
among a specific covariate, the balance metrics might fail to reduce balance for that covariate.

Table : Balance summary scores.

Balance metric Full data set Imputed data setsa with missing values of

14.9% 31.8% 57.5% 83.1%

Unweighted [MASD] . . . . .
Weighted [MASD] . . . . .
Unweighted [MMSD] . . . . .
Weighted [MMSD] . . . . .

a The balance summary scores are the averaged MASD and MMSD over all covariate values.

Table : Performance measures per treatment group.

Treatment Full data set Imputed data sets with missing values of

T  14.9% 31.8% 57.5% 83.1%

Biasa (MCSE) . (.) . (.) . (.) . (.) . (.)
Coverage (MCSE) . (.) . (.) . (.) . (.) . (.)
RelError (MCSE) −. (.) . (.) . (.) . (.) . (.)

T  14.9% 31.8% 57.5% 83.1%

Biasa (MCSE) −. (.) −. (.) −. (.) −. (.) −. (.)
Coverage (MCSE) . (.) . (.) . (.) . (.) . (.)
RelError (MCSE) . (.) −. (.) −. (.) −. (.) −. (.)

a Bias is measured in grams (g). Abbreviations: MCSE, Monte Carlo standard error, ModSE, Model standard error, RElError, Relative
% error in ModeSE.
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Each PS method (i. e., weighting, stratification, matching or adjustment), has its own merits and limita-
tions. Our choice of IPTW in combination of GPS has been confirmed in the recent published article by Nian
et al. (2019). However, the simulation results by Yang et al. (2016), identified IPTWwith multiple exposures as
the worst performing approach. Hence, more research is needed to identify under which condition a GPS
approach performs best. Such a methodological comparison exceeds the scope of this current study.

With the illustrative example presented, we could validate the proposed balance metric for multiple
treatment groups under multiple imputation. However, we did not see a linear relationship (as proportional to
the missing data percentage) between the summary scores and bias of imputed data sets. One explanation
could be that we were not able to perform analysis on the required number of Monte Carlo runs, and therefore
the result might be more prone to noise due to multiple imputations. Although, we cannot rule out some
influence of chance, it should be noted that low imbalance and low balance summary scores were consistent for
all presented data cases. The results were also in accordancewith the data-generation process. Nevertheless, the
conclusions made, based on the simulation data example presented, should be considered taking into account
the drawbacks of the data generation, aswell as the lownumber ofMonte-Carlo runs. The latter limitation should
however be attributed to the method applied. In the present study the MASD and MMSD diagnostics resulted in
the same conclusion. It seems however that the MMSD diagnostic maintains the balance characteristics better
than theMASD for small percentages of missing data (i. e., <30%). Therefore, whenMASD should be applied vs.
MMSD needs further investigation. A recently published article considered the use of GPS under multiple
imputation of missing covariates (De Vries et al. 2018). The authors found that bias was introduced when the
CART algorithm was applied directly for multiple imputation. However the authors concluded that the CART
approachworked fine, whenmultiple imputation was applied before the estimation of the PS. Results presented
in this paper confirm the finding.

The results reported come with some limitations. The determination of GPS and balance assessment are
based on algorithms by Burgette, Griffin, and McCaffrey (2017); McCaffrey et al. (2013); McCaffrey, Ridgeway,
and Morral (2004). Therefore, limitations and strength of their approach will also hold for the present study.
One such limitation is the improper CIs, while a strength of the determination of GPS via boosted regression
models is the relatively small weights. Another limitation, is that our proposed balance diagnostic does not
assess interaction and higher order terms (De Vries, Van Smeden, and Groenwold 2018). Based on our results,
this however did not seem to be a major problem, as long as the imputation and PS models are well-specified.

Furthermore, in this illustrative simulation example, we assumed that for missing data the MAR
assumption holds. However, future studies need to investigate how balance diagnostics perform under the
missing completely at random and missing not at random assumptions, as well as when the missing data
process is complex, i. e. linear and non-linear dependents on more than two observed variables. In addition,
our example assumed that there are no unmeasured confounders. For real data, this assumption is unrealistic.
Therefore, one could evaluate the effect of bias due to unmeasured confounders with trimmingmethods for the
IPTW, as presented in Yoshida et al. (2018). There was not time varying confounding present in the illustrative
example presented. However, if this should be the case, methods, such as proposed by Imai and Ratkovic
(2015); Jackson (2016) should be implemented in the analysis.

In this study, we choose to propose and evaluate the diagnostic based on the standardized difference, as
this is most commonly used in the pharmacoepidemiology literature, although other diagnostics exist, such as
the Kolmogorov–Smirnov test statistic or the C-statistic (Austin and Stuart 2015; Franklin et al. 2014). As other
balance measures (e. g., C-statistic), showed promising results in assessing imbalance in covariates (Franklin
et al. 2014), the MASD and MMSD could be alternated based on these balance measures. Such alternations
however require separate validation.

The different scenarios of missing data percentages investigated can be considered as strength.
Differentmethods exist, which combine PSs andmultiple imputation for a binary exposure as presented in

Leyrat et al. (2019). Such approaches should also be applied to the GPS in future studies, in order to better
understand the effect of balance and missing data on causal effect estimates.

Given that, to our knowledge, no previous study has proposed or analyzed balance diagnostics for the GPS
under multiple imputed data, this study is the first of its kind and will hopefully influence future research.
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Conclusion

Based on simulation data, the proposed balance diagnostics seemed appropriate for balance assessment of the
GPS after multiple imputation. Further research is needed to validate the results of the present study under
different assumptions and conditions, and to apply the proposed diagnostics to real world data.
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