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ABSTRACT

Aims. We intend to understand cosmological structure formation within the framework of superfluid models of dark matter with finite
temperatures. Of particular interest is the evolution of small-scale structures where the pressure and superfluid properties of the dark
matter fluid are prominent. We compare the growth of structures in these models with the standard cold dark matter paradigm and
non-superfluid dark matter.

Methods. The equations for superfluid hydrodynamics were computed numerically in an expanding ACDM background with spherical
symmetry; the effect of various superfluid fractions, temperatures, interactions, and masses on the collapse of structures was taken
into consideration. We derived the linear perturbation of the superfluid equations, giving further insights into the dynamics of the
superfluid collapse.

Results. We found that while a conventional dark matter fluid with self-interactions and finite temperatures experiences a suppression
in the growth of structures on smaller scales, as expected due to the presence of pressure terms, a superfluid can collapse much more
efficiently than was naively expected due to its ability to suppress the growth of entropy perturbations and thus gradients in the thermal
pressure. We also found that the cores of the dark matter halos initially become more superfluid during the collapse, but eventually
reach a point where the superfluid fraction falls sharply. The formation of superfluid dark matter halos surrounded by a normal fluid
dark matter background is therefore disfavored by the present work.
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1. Introduction

A universe with cold dark matter (CDM), a cosmological con-
stant (A), and inflationary initial conditions forms the founda-
tion of the standard ACDM paradigm that has proven successful
at explaining a wide range of observables, such as the expan-
sion history of the universe, the cosmic microwave background,
formation of large-scale structure, the matter power spectra,
and the abundance of light elements (Tegmark etal. 2004;
Planck Collaboration XIII 2016; Cyburt et al. 2016). Nonethe-
less, it is a phenomenological model that is ignorant of the ori-
gin of the cosmological constant and the identity of dark matter
(DM), which remain two of the greatest mysteries in fundamen-
tal physics today.

A number of challenges to ACDM have emerged as
both observations and numerical simulations become increas-
ingly more precise, especially on small scales. The cores of
DM halos predicted from N-body simulations are denser and
more cuspy than observed, and the number of dwarf galax-
ies in the Local Group is far smaller than expected from
pure ACDM simulations. These issues are known as the
too-big-to-fail, cusp-core, and missing satellite problems (see
e.g., Del Popolo & Le Delliou 2017; Bullock & Boylan-Kolchin
2017 and references therein). Another puzzling phenomenol-
ogy on the scale of galaxies is the empirical baryonic Tully-
Fisher relation (BTFR; McGaugh et al. 2000; McGaugh 2005;
Lelli et al. 2015). This relates the baryonic mass of galaxies
M, with the asymptotic circular velocity v, through M, ~ v}
and holds for many orders of magnitude with remarkably small
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scatter. The ACDM prediction for this relation is M ~ v? with
the total mass M from both baryons and DM (McGaugh 2012).
It is the latter that dominates the gravitational pull in galaxies,
which only adds to the strangeness of the BTFR.

Solutions to these problems within the framework of
ACDM have been proposed by including baryonic physics
(Santos-Santos et al. 2015; Sales et al. 2016; Zhu et al. 2016;
Sawala et al. 2016), but it is unclear if they can completely cure
the ails of ACDM. These processes are not yet fully understood
and are difficult to model in simulations of galaxy formation,
and their stochastic nature makes it even more puzzling as to
how they can be responsible for the tight correlation in scaling
relations, such as the BTFR.

An alternative possibility is that the mismatch between
observations and simulations is an indication of physics beyond
the standard model, either through modified theories of gravity,
the particle nature of DM, or both. An example of such a model
is modified Newtonian dynamics (MOND; Milgrom 1983a,b,c;
Famaey & McGaugh 2012), in which the Newtonian law of
gravity in low-acceleration regions is modified to explain the
rotation curves of galaxies without the need of resorting to DM.
One of its most appealing features is that the BTFR and its small
scatter is a direct consequence of it. However, MOND and its rel-
ativistic extensions face challenges of their own on extragalactic
scales where the CDM paradigm is successful (Zuntz et al. 2010;
Dodelson 2011; Angus et al. 2013, 2014). This has, somewhat
ironically, motivated extended models of DM where MOND is
an emergent fifth force on small scales (Berezhiani & Khoury
2015; Khoury 2016). This is achieved by DM undergoing
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Bose—Einstein condensation on galactic scales and adding a cou-
pling designed to give a MONDian long-range force between
baryons mediated by phonons in the superfluid cores of galax-
ies. Outside galaxies, the DM fluid ceases to be superfluid, and
the extra force disappears, preserving the success of CDM on
large scales.

Superfluid dark matter (SFDM) models are also interesting
on more general grounds. From condensed matter physics, we
know that self-interacting boson gases can become superfluid
given sufficiently high densities and low temperatures. In the
weakly interacting Bose gas, the critical temperature that marks
the onset of superfluidity depends almost solely on the particle
mass and number density. We can therefore expect boson DM
candidates with self-interactions to exhibit superfluid behavior
in certain mass ranges.

Observations of the large-scale structure of the universe
strongly favor cold and collisionless DM, but for SFDM this is
no longer the case since the transition in and out of the super-
fluid phase requires both self-interactions and finite tempera-
tures. We must therefore be wary of how structure forms in
SFDM. Studies of other DM models with pressure-like terms,
such as fuzzy dark matter (Hu et al. 2000; Schive et al. 2014;
Schwabe et al. 2016; Mocz et al. 2017) and self-interacting dark
matter (Spergel & Steinhardt2000; Elbert et al. 2015; Tulin & Yu
2018), find they can help remove the surplus of small-scale struc-
ture in ACDM. So far, there has been little work done on structure
formation in SFDM and how it differs from conventional DM flu-
ids. In this paper, we aim to provide preliminary answers to these
questions by considering the spherical collapse of SFDM.

The paper is organized as follows: in Sect. 2, the equations
for superfluid hydrodynamics used to describe the collapse of
SFDM are introduced, as well as the critical temperature and
the critical velocity, which are important for the superfluid phe-
nomenology. The linear expansion of the superfluid equations
was derived to better understand how superfluidity changes the
behavior of the DM fluid. In Sect. 3, the results are presented and
discussed, and we draw our conclusions in Sect. 4.

2. Method
2.1. Superfluid hydrodynamics

To describe a finite-temperature superfluid, we employed
the superfluid hydrodynamic equations (Taylor & Griffin 2005;
Chapman et al. 2014), which in proper coordinates and physical
variables are;

dp
riv.ji= 1
L 4v-j=0, 1)
aS
- V- =0, 2
ot (Suy,) =0 2)
Oug 1A
£y +V(u+ ZMS)_ Vo, 3)
9j
E + VP + pg(us - Viug + pn(uy - Viuy,

+ug[V - (psteg)] + uy [V - (onuy)] = —pVO, 4)
66—? +V. (U + %pnug + P) u, + %psufus

+,U,0s(us - un):| = _j -VO. (5)

This set of equations describes the evolution of the fluid mass
density p, entropy density S, superfluid velocity u;, momentum
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density j, and energy density E under the influence of the grav-
itational potential @ sourced by matter and a cosmological con-
stant,

V20 = 47G(p — 2p). (6)
Equations (2) and (5) are degenerate in our set of equations if the
solution is free of shocks, otherwise entropy is generated. The
former is used in this work, but both are given for completeness.

A superfluid differs from a classical fluid in that it con-
sists of two fluid components; the “superfluid” with density ps
and velocity ug, and the “normal fluid” with density p, and
velocity u,. The sum of the two component densities gives
the total fluid density p = p, + ps, and likewise for momen-
tum, j = pnly + psus. However, only the normal fluid trans-
ports entropy and thermal energy, as can be seen from Eqs. (2)
and (5), and the superfluid velocity evolves according to its
own potential given in Eq. (3), where the chemical potential is
u=[P+U-ST- %p,,(us —u,)*1/p. Since there are two fluid com-
ponents with separate velocity fields a superfluid can have two
sound modes. One is called first sound and is associated with
density perturbations, which we are familiar with from regular
hydrodynamics. The other is called second sound and is asso-
ciated with temperature perturbations. This is made possible by
the fact that only the normal component carries entropy, hence
the normal and superfluid components can oscillate in such a
way that perturbations in temperature, and not density, are prop-
agated through the fluid. As we will see it is this property that is
responsible for the difference in collapse of superfluid and non-
superfluid DM.

The remaining variables in the above set of equations are
pressure P, internal energy density U, and temperature 7. In the
limit py = 0, they reduce to the Euler equations of fluid dynam-
ics.

2.2. Critical temperature and velocity, and equation of state

When a boson gas is cooled below a critical temperature 7.,
the particles begin accumulating in the quantum ground state of
the system and form a Bose—FEinstein condensate (BEC). In the
three-dimensional homogeneous and ideal Bose gas this critical
temperature is

27h? ol 203
5Pk (4(3/2>) ’

where {(x) is the Riemann Zeta-function. This result holds app-
roximately for weakly interacting gases as well (Sharma et al.
2019), apart from a small interaction-dependent shift (Andersen
2004) that we neglect.

The formation of a BEC does not automatically imply a
superfluid. A further criterion must be satisfied as realized by
Landau (1941). He assumed that if dissipation and heating hap-
pens through the creation of elementary excitations in the fluid,
and if these excitations can no longer spontaneously appear the
fluid will become superfluid. This gives the so-called Landau cri-
terion and requires the relative motion w = u — u, to be smaller
than the critical velocity v,

e(p)

w < v, = min —,
p p

N

®)

where €e(p) is the energy of an elementary excitation with
momentum p. Clearly, we must have v, > 0, otherwise any
motion will destroy the superflow, and it no longer makes sense
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to refer to it as a superfluid. An ideal Bose gas can therefore not
be superfluid since the elementary excitations are e(p) = p?/2m
so that v, = 0. In an interacting Bose gas, on the other hand, the
condensation of the gas makes the energy spectrum phonon-like
at small momenta, e(p) = ¢, p. The critical velocity is in this case
finite, v, = cs, and we get superfluidity.

As w approaches and exceeds the critical velocity, the super-
fluid flow begins to decay. This happens because a tangle of
superfluid vortices, so-called quantum turbulence, forms and
interacts with the excitations that make up the normal fluid,
resulting in a dissipative mutual friction between the normal
and superfluid components (Skrbek 2011; Skrbek & Sreenivasan
2012; Barenghi et al. 2014). This effect is not included in the
equations for superfluid hydrodynamics and must be added
through additional terms. However, this would require us to
assume the dependence of this force on the fluid variables
and specify the extra parameters introduced to our model (for
examples of this in numerical studies of superfluid helium, see
Doi et al. 2008; Darve et al. 2012; Soulaine et al. 2017). To cap-
ture the basic consequence of Landau’s criterion relevant for this
work, which is that the counterflow w is limited by the critical
velocity, we instead assume the mutual friction only takes place
once the critical velocity is exceeded, and that the complicated
processes taking place happen on time and length scales much
shorter than we are considering. The mutual friction is there-
fore effectively instantaneous, and since it is dissipative, there is
a conversion of kinetic energy into internal energy, heating the
fluid and generating entropy. Stated more precisely, we enforce
the superfluid critical velocity at every position in our numeri-
cal scheme by converting kinetic energy of the two fluid com-
ponents (while conserving the total momentum) into internal
energy and generated entropy so that w < v, is always satisfied.
See Appendix B.3 for further details.

We must also specify the equation of state (EOS) that defines
how the thermodynamic quantities depend on the temperature
and particle density. In superfluids, the EOS is also a func-
tion of the counterflow w (Landau & Lifshitz 1987; Khalatnikov
2000), but we neglected this dependence and used the EOS cor-
responding to the w = 0 limit. While this work is motivated
by the superfluid DM model presented by Berezhiani & Khoury
(2015), it lacks a complete EOS at finite temperatures. We there-
fore employed the weakly interacting Bose gas with effective
repulsive two- and three-body contact interactions as described
by Sharma et al. (2019), where the three-body case corresponds
most closely to the model by Berezhiani & Khoury (2015).
Effective contact interactions can describe the s-wave scatter-
ing limit of more complicated interactions through the Born
approximation, which makes this class of models a more gen-
eral description of superfluids (Pethick & Smith 2008). The cou-
pling term between the DM fluid and baryons that gives rise
to the emergent fifth force is not included in this work. For
computational speed, we approximated the EOS in the sub-7,
regime by an ideal Bose gas with contributions from interactions
at zero temperature. Notably, the superfluid fraction is approx-
imated as the fraction of condensed particles in an ideal BEC,
fi = ps/p = 1 — (T /T.)**. This might appear paradoxical since
we already stated that an ideal Bose gas cannot be superfluid,
but in the weakly interacting gas these quantities can be seen
from Fig. 1 to be closely related. For strong interactions, the
superfluid fraction can approach unity while the condensate frac-
tion remains small, which is the case in superfluid *He (Glyde
2013), but this scenario is outside the scope of this paper. See
Appendix A for further details on the EOS.

1.0
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Fig. 1. Superfluid fraction f; for the two-body interacting Bose gas cal-
culated by Sharma et al. (2019) with p = 10% p,o and m = 1eV com-
pared to the approximation f;,, = 1 — (T/T.)*/. For sufficiently weak
interactions, f; can be approximated by the condensate fraction in an
ideal Bose gas.

2.3. Super-comoving variables

Since we are interested in the evolution of the superfluid in an
expanding space, we introduce the peculiar velocity v = u — Hr
and super-comoving variables (Martel & Shapiro 1998), denoted
by a tilde-sign, to rewrite the hydrodynamic equations in a more
convenient form':

B - -
=4+V-j=0,
R &)
s . .
— +V-Ss,) =0, 1
57t Sv,)=0 (10)
a—"f V(ﬁ + %af) =-Vé, (11)
0 o5~ e o o
E‘ +VP +ps(vs ° V)vs +pn(vn . V)Un

+ B[V - (D8] + Bu[V - (Bobn)] = —pV, (12)
0E . S D U B
¥ +V. (U + Epnvn + P)vn + EpsvsvS

+ fps (D —%)} =-H@BP-20)-j V¢. (13)

The super-comoving quantities are re-scaled to reduce the
dependence on the scale factor a, with the variables defined as
before: j = puby + pibs and E = U + %ﬁnﬁﬁ + %ﬁsﬁg. The only
real difference is the peculiar gravitational potential ¢ that is now
given by (in a flat universe with matter and a cosmological con-

stant)
Vip=6a(p—1). (14)

H is the super-comoving Hubble parameter.

2.4. Linear perturbation expansion

The superfluid hydrodynamic equations at linear order can tell
us a lot about the collapse of a superfluid, in particular how it

! The temperature and entropy in super-comoving variables are not
given in Martel & Shapiro (1998, MS). We define them here as T =
a*T/T, and § = a3S/S., where T, is a free parameter, S, = p,v>/T.,

with p. and v, given in MS.
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will differ from CDM and non-superfluid thermal DM. The fluid
variables are expanded around their background values, p = pg +
op, S = §y+6S, etc. The peculiar background Velogities are zero,
S0 ¥ = O, Dy, = by, and j = 8. We also have V26¢ = 6adp.
This gives the following linear equations;

0P - -
TP 1 ¥.sj=0, 15
Fra J (15)
068 . o
F-FS()V'(SUH:O, (16)
Ao, - i

a; + V(6 + 66) = 0, (17
5] o o -
a_fj + V6P + oV6d = 0. (18)

These can be combined into two coupled equations for 6p and
6S in k-space;

3%6p; [(aﬁ) - (aﬁ) o
— | B —6apylop; + | —= | K*65; =0, 19
P % . 00 [0PF PA 4 19
*S; [{1 (013) Sopso(af) }~2
S — == + == - k° — 6alop;
a2 "\ po\dp )y Popuo \ 8B ), ¢
~[1 (0P Sopso (OT\ 1-r .=
+So[~—(—~) +~°—€°(—~) ]kzas,;zo, (20)
Po\OS /o PoPro \OS /g

where the subscript “0” indicates the background values.

We would like to enforce the critical velocity in the linear
approach, though we cannot do it in the same way as for the full
hydrodynamic equations. Since the effect of the critical velocity
is to essentially restrict the two-fluid nature of the superfluid,
forcing the whole fluid to evolve like a normal fluid, we can, as a
rough approximation, set p; = 0 and p, = p once @y > ., where
iy, is the relative velocity of mode k and evolves at linear order
according to

of Pnol\ P ), a8 /o

This approximation is further justified by the fact that the critical
velocity decreases with the DM density. Once w reaches v, it
only becomes smaller in the linear regime, forcing the superfluid
to behave even more like a normal fluid.

A few qualitative statements can be made from Egs. (19)
and (20). Both mass density and entropy perturbations grow due
to gravity, but this growth is slowed by pressure terms that are
scale dependent through the &> factor, as expected in a self-
gravitating fluid with nonzero pressure. In a superfluid, how-
ever, there are additional effective pressure terms that suppress
the growth of entropy perturbations, and hence thermal pres-
sure, that are absent in conventional fluids. This in turn allows
the mass density perturbations to collapse more efficiently, even
though the DM fluid may have relatively high temperatures. The
reason for this behavior is the superfluid component’s attraction
to higher temperatures. The normal component tends to transport
mass and entropy from hot to cold regions, while the superfluid
tends to flow in the opposite direction and balance the mass-loss
due to the normal component, resulting in a thermal flux that can
be large compared to the net mass flux. This effect, called ther-
mal counterflow, makes superfluids very efficient at conducting
heat.

@
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Fig. 2. Profiles of a collapsing SFDM halo with an initial Gaussian den-
sity contrast, m = 30eV, g = 107%eV=2, L = 100 kpe, and T/T, = 0.1.
A thermal counterflow develops and the growth of entropy perturbations
is at first suppressed. This also gives a slight decrease in the ratio 7'/7,
and hence the superfluid fraction, since f; = ps/p = 1—(T/T.)*?. As the
critical velocity is reached, entropy is generated, and 7'/T, increases.

3. Results and discussion

The hydrodynamic equations were integrated numerically using
a modified first-order FORCE scheme (see Toro 2006 and
Appendix B for further details) for a spherically symmetric sys-

tem with an initial density contrast of the form 65/po = Age™/L"
and 6§ = 0, where L is the size of the overdensity. The ini-
tial state is at approximately the same 7 /7., and hence the
same mixing fraction of the normal and superfluid components,
throughout the system. A flat ACDM background cosmology
with Q0 = 0.3, Qa9 = 0.7, and 2 = 0.7 was used, and the
integration started at redshift z = 1000 with Ay = 5 x 1073, An
example of a collapsing SFDM halo at various redshifts can be
seen in Fig. 2, illustrating that as the halo collapses, a thermal
counterflow carrying entropy away from the halo center devel-
ops, slowing down the growth of entropy until the critical veloc-
ity is reached and the fluid starts heating up.

3.1. Growth of structure

In Figs. 3-5, the redshift when the central density contrast
reaches 200 is shown for various parameters for both the super-
fluid and non-superfluid (a conventional fluid with p; = 0,
Pn = P, and the same EOS) cases. While the growth of structure
is slower compared to CDM, the SFDM halos collapse more effi-
ciently than their non-superfluid counterparts as the interaction
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Fig. 3. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various particle
masses, with 7/T. = 0.1 and L = 100kpc. Both the superfluid case
(solid lines) and the corresponding non-superfluid case (striped lines)
are shown. For constant 7'/T., the temperature is increased for decreas-
ing mass, since T, ~ m™/3. The comparison of the collapse for various
masses is therefore not done at the same temperature, but instead at a
similar place in the superfluid phase.
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Fig. 4. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various scales,
with T/T. = 0.1 and m = 50eV. Both the superfluid case (solid lines)
and the corresponding non-superfluid case (striped lines) are shown.

strength is increased until a maximum is reached, after which
the growth of structure in both super-and non-superfluid DM is
suppressed. This is counter to what one would intuitively expect,
since an increase in interactions also means an increase in pres-
sure. It can, however, be understood as follows: for small inter-
actions, the superfluid behaves nearly the same as a normal fluid
because the critical velocity, which scales as v. ~ +/g;, is reached
very early. When this happens, the flow of the normal and super-
fluid components become “locked” to one another, unable to effi-
ciently conduct heat away from the halo core. As the interaction
increases, the thermal counterflow can both be larger and last
longer, resulting in an increased suppression of thermal gradi-
ents and thus allows for a faster collapse. For sufficiently large
interactions, the collapse is instead suppressed due to large zero-
temperature pressure gradients that the superfluid is unable to
wash out.

Most production of entropy due to mutual friction as the Lan-
dau criterion is broken takes place away from the center of the
halo. The resulting extra thermal pressure acting on the interior
causes the central density contrast to grow slightly faster and can
best be seen by the gap between collapse times of the superfluid

0.8
0.7 e
0.6
S 051
o~
1}
s 0.4
<
S -
x 0.3 \\\
\\
024 CDM
— TIT.=0.15 N
014 — TTe=01 5\
—— T/Tc=0.05 A
0.0 . . . . : :
1015 10713 101 1079 107 10-5 10-3
g, [eV7?]

Fig. 5. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various temper-
atures, with m = 50eV and L = 100kpc. Both the superfluid case
(solid lines) and the corresponding non-superfluid case (striped lines)
are shown.

0.8
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2(6p/po = 200)
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0.1
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Fig. 6. Comparison of redshifts when the central density contrast
reaches 200 for two-body and three-body interactions as function of
the interaction strengths g, and gj, respectively, with m = 30eV,
L = 100kpc, and T/T. = 0.1. The three-body interaction is multiplied
by V10X 10~ to make the comparison clearer. Both the superfluid case
(solid lines) and the non-superfluid (striped lines) are shown.

and non-superfluid cases at low g,. If entropy was not produced,
this gap would vanish.

3.2. Dependence on equation of state

The Bose gas with two-body interactions is compared with three-
body interactions in Fig. 6. The same qualitative behavior is
present in both cases and is expected to be a general feature
regardless of the EOS used, as long as there is superfluidity.
In the linear expansion of the superfluid equations, Egs. (19)
and (20), the additional effective pressure terms due to a super-
fluid component require only the temperature to be dependent
on mass density or entropy. Indeed, the approximated two-body
and three-body EOS used in this work both have a temperature
profile that is independent of mass density for 7 < T, so that
one of the effective pressure terms in Eq. (20) is absent. For EOS
where the temperature is dependent on both the mass density and
entropy, the collapse of SFDM may be even more efficient.

3.3. Effect of small-scale and nonradial motion

In this work, we assumed perfect radial infall of DM. The rel-
ative velocity w is simply the difference between the radial
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Fig. 7. Comparison of redshifts when the central density contrast
reaches 200 for various effective critical velocities as function of the
interaction strength, with m = 30eV, T/T. = 0.1, and L = 100kpc.
Both the superfluid case (solid lines) and the non-superfluid (striped
line) are shown.

velocities of the two fluid components. In a real system, there
is expected to be additional small-scale motion in all directions,
such as turbulence that our simplified model averages over. The
superfluid critical velocity may therefore be exceeded on small
scales, while the large-scale radial average only appears to have
w < v In this case, the superfluid would behave like a con-
ventional fluid at much smaller w. In other words, there is an
effective superfluid critical velocity off < v, that is a decreas-
ing function of the local turbulence. This leads to a difference in
collapse times of halos with different amounts of turbulence, the

turbulent ones collapsing at a slower rate, as seen in Fig. 7.

3.4. Evolution of superfluid fraction

In a conventional fluid, the entropy and mass density collapses
at the same rate so that the ratio 7'/T, is constant. A fluid that is
initially in the normal phase will therefore remain so. A collaps-
ing superfluid, on the other hand, experiences an increase in the
superfluid fraction due to thermal counterflow until the critical
velocity is reached. At this point, entropy is generated causing
T/T. to rise, and thus the superfluid fraction to fall; though it
takes time for the full effect of this to propagate to the center
of the halo, as shown in Figs. 2 and 8. It may be, however, that
Egs. (1)—(5) do not properly describe super-critical flow, and too
much entropy is generated in our numerical scheme for enforc-
ing the critical velocity. The evolution of 7/T, when no entropy
is generated is therefore also shown in Fig. 8 as the opposite
extreme. This case behaves similarly until near the end of the
collapse, where T /T, rises only modestly. Profiles are shown
in Fig. 9, which corresponds to Fig. 2 with no production of
entropy.

The decrease in T/ T, during collapse becomes smaller as the
temperature approaches 7., where the superfluid fraction goes
to zero and thermal counterflow becomes inefficient. The for-
mation of DM halos with much higher superfluid fractions than
the background, as required in the emergent MOND scenario of
Berezhiani & Khoury (2015), therefore appears unlikely through
collapse alone. Additional cooling mechanisms during or after
collapse are necessary.

3.5. Dark matter self-interaction constraints

The distribution of DM, gas, and stellar mass in cluster col-
lisions provides constraints on the cross-section of DM self-
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Fig. 8. Evolution of T'/T, in the halo center during collapse for various
masses and initial temperatures with g = 10°eV™2 and L = 100kpc.
Both the evolution with entropy production (solid lines) and without
(striped lines) are shown until the overdensity reach 10°. The two cases
differ only in the end stage of the collapse, well after the critical velocity
is first reached, indicated by the colored vertical lines.
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Fig. 9. Profiles of a collapsing SFDM halo where no entropy is produced
as w = v, with an initial Gaussian density contrast, m = 30eV, g =
107°eV~2, L = 100kpc, and T/T, = 0.1.

interactions, o/m < 0.5cm? g~! (Harvey etal. 2015). In
terms of the two-body interaction strength, this corresponds to
(Pitaevskii & Stringari 2016)

2 1ev)'/?
gr = VAo — < 5x 10—'2(i) eV, (22)
m

m

The values of g, in the above results do not generally satisfy this
constraint, but we chose to relax it since we do not know how
it translates to SFDM. In any case, the above features were also
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Fig. 10. Redshifts when the linear density contrast for the mode k =
2/100kpc™" with T/T, = 2 x 107® reaches unity for various masses
and interaction strengths. Both the superfluid case (solid lines) and the
corresponding non-superfluid case (striped lines) are shown, illustrat-
ing that the same features can be found for a choice of parameters
that satisfy the constraint from cluster collisions on DM mass and self-
interaction.

found for smaller g, using perturbation theory (while simultane-
ously lowering m and T/T.) that do satisfy the constraints, as is
exemplified in Fig. 10.

4. Conclusions

When superfluid behavior is included in a finite-temperature
DM fluid, the formation of structure is found to be much more
efficient in certain regions of parameter space than one would,
naively, expect, through it is still slower compared to CDM.
The effect of thermal counterflow is most prominent when the
thermal suppression is large, such as at small scales and rel-
atively high temperatures. The increased collapse efficiency is
also expected to be a general feature of SFDM regardless of the
EOS used, though the specific model in question will certainly
affect the finer details through the dependence of entropy, pres-
sure, and critical velocity on temperature, mass density, and the
model parameters. The toy models used in this work were moti-
vated by condensed matter physics, but suffer some severe limi-
tations at high redshifts. Both are derived under the assumption
that the interactions are weak and the number density is not too
large, which is invalid at very early times. Furthermore, the zero-
temperature pressure depends on the number density through n?
and 3, resulting in very high pressures at high redshifts that
might wash out the initial perturbations set up by inflation. The
generalization of this work to more exotic DM fluids and adding
interactions between DM and baryons, which has recently been
considered in the literature, is therefore of interest in the further
study of SFDM models. It may also be of interest to study the
case when thermal equilibrium is not always assumed so that the
DM fluid can fall in and out of equilibrium and superfluidity can
vanish and reappear.

Superfluid models of DM involve processes that require the
superfluid hydrodynamic equations to be properly described.
Throughout this work, spherical symmetry was assumed, but
nonradial and turbulent motion is expected to have a significant
impact on the superfluid dynamics, especially through the criti-
cal velocity, which is broken at smaller radial thermal counter-
flows. It is also important to understand the effect of mergers in
SFDM. Large-scale and high-resolution simulations will there-
fore be essential for the further study of structure formation. The

main challenge in this line of inquiry may be developing numer-
ical schemes that are faster and more accurate than the modified
first-order FORCE scheme used in this work that can capture the
small-scale motion of the superfluid and its effect on structure
formation.
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Appendix A: equation of state

An EOS for a weakly interacting Bose gas valid at all temper-
atures was recently proposed by Sharma et al. (2019) for two-
body and three-body interactions. Since we do not know the
true EOS of DM and must resort to toy models, we instead
approximated the EOS by using an ideal Bose gas with zero-
temperature contributions from weak interactions. At very low
temperatures, this approximation breaks down as the interac-
tions become increasingly important, but we generally remain
well above this regime.

An important quantity is the critical temperature 7., above
which the fluid behaves as a normal fluid, while below the fluid
condenses into a BEC and becomes superfluid;

o on NP 2w p VP
(5(3/2))  m¥kg (5(3/2)) ’

where n = p/m is the particle number density.
As an estimate for the superfluid fraction f; = ps/p we use
the fraction of particles in the BEC in an ideal Bose gas;

_fi-(&)", <
fs_{o, : T>T..

= (A.1)

(A2)

For the other thermodynamic quantities, such as pressure,
entropy, etc., we must consider them above and below T, sep-
arately. Both two-body and three-body interactions are given,
parameterized by g, and g3, respectively.

A1.T>T,

The pressure is given by

5/2,3/2 .
b gon® + NG/ T 22 23)7(:;‘;?) " Lis (eﬁ(”’zgz")) ,  two-body
- 5/2,,.3/2 . 2
4gsn’ + ﬁr(5/23)7<11§;3n "2 Lis/ (eﬁ(ll—ﬁt/sn >), three-body,

(A.3)

where I'(x) is the gamma function, Li,(x) is the polylogarithmic
function, 8 = 1/kgT, and the chemical potential u is determined
by the equation for the number density

- ‘252(%2) (kgT)*2m?*Liz (eﬁ (“_292”)) , two-body
‘/35752(;42) (ks T)*/*m*Lis (eﬁ(“_ﬁng)) , three-body.
(A4)
The entropy is
5 = 3£ —nB(u—2gon),  two-body AS)
~ 3£ - nB(u - 6g3n), three-body :
2T ) ;
and the internal energy is
U=ST-P+un. (A.6)

The sound speed used when determining the time-stepping
in the numerical scheme was

o= |5 kT
N3 m

In the limit of very high temperature, these reduce to the clas-
sical ideal gas.

(A7)
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A2.T< T,

The EOS below the critical temperature is given by the ideal
Bose gas plus some zero-temperature contributions due to inter-
actions;

Lan? +£5/2) (52)” (keT), two-body

P = 2 3/2 (A.8)
2g3m° +£(5/2) (325)"” ksT)*2,  three-body,
S = é47(5/2)(1)3/2 1*T32,  two-and three-body,  (A.9)
2 27h? B ’ ’ '
gon,  two-body
= A.10
K {ggnz, three-body, ( )

and the internal energy is again given by Eq. (A.6). The fastest
sound speed was approximated using

_ [465/2)5 kT
“TNG23 m

(A.11)
and the critical velocity given by
\/% [1 - (T/T)?], two-body
. =

e =

\/qu;nz [1 = (T/Te)¥?][1 +2(T/T.)*?], three-body.
(A.12)

There is a small discontinuity at the critical temperature, with
U = 2ng, above and u = ng, below for the two-body interaction
(and a similar jump in zero-temperature pressure and internal
energy). There should be a crossover region as the condensate
fraction increases, but during this crossover the thermal contri-
butions dominates and the discontinuity is negligible.

Appendix B: Numerical scheme

In this work, we employed a modified first-order FORCE scheme
(Toro 2006) — an incomplete Riemann solver — for the superfluid
hydrodynamic equations with source terms due to gravity and
from using spherical coordinates. The source terms were evalu-
ated at two stages during each time-step: once before the advec-
tion step, and once after, at which point the average of the two
evaluations was added to the solution. Gravity was also evaluated
with half a time-step when computing fluxes during the advec-
tion step. Finally, we enforced the critical velocity, which was
done in three stages; once when computing fluxes, once after
the fluxes from the advection step were applied, and a final time
after the source terms were applied. Further details are presented
below.

For spherical collapse, this scheme was found to be suffi-
cient since the solutions are mostly smooth, evolve slowly, and
are one-dimensional. For more complex and higher dimensional
cases where shock fronts arise and the solutions undergo fast
changes, this scheme is expected to perform suboptimally, pri-
marily because it is first-order. There is a well-known way to
increase the order and thus accuracy of the scheme through slope
reconstruction and slope limiters. However, instabilities arose
when the superfluid component was included, and adding fur-
ther restrictions to the reconstructed slopes with modified slope
limiters failed to fix this. Slope reconstruction was therefore not
used.
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B.1. First-order FORCE scheme

The FORCE scheme is a variant of Godunov’s method for solv-
ing partial differential equations. In this method, the domain is
divided into finite-volume elements, or cells, and the Riemann
problem at each cell interface is solved. The Riemann problem
is the initial value problem with two piece-wise constant ini-
tial regions connected by a discontinuity, then asking how this
evolves in time and what the net flux across the interface is.
The scheme for computing or approximating this flux is called a
Riemann solver and is what characterizes the different ways of
implementing Godunov’s method.

To see how this works, one can consider the m-component
state vector U that obeys the one-dimensional conservative equa-
tion
0, U+0,F(U) =0, (B.1)
where F is the flux. By integrating over the time interval [¢", 7'*1]
and cell-volume [x;_1/2, Xi+1/2], we get

At
U'.H'l:Ur-l——F,'_ - F; 5 B2
i ; Ax[ 12 +1/2] (B.2)
where
1 "Xit1/2
U= — Ulx, /") dx, (B.3)
Ax Xi-1/2
tn+]
Fip=— F(xjy12,1)dt. (B.4)

At tﬂ

In the first-order Godunov scheme, the state U is assumed to be
piece-wise constant in each cell, given by the cell average U?.
To compute F;.1/, the states on the left and right sides of the
interface is used, Uis1o. = U} and Uyor = Ul ,, and the
corresponding Riemann problem is solved or approximated. The
time-step is chosen so that no signal in the domain travels further
than one cell length Ax. This is given by a Courant-Friedrich-

Lewy (CFL) type condition

. A
Aty = CEFL—x,

Umax

(B.5)

where v,y is the maximum signal speed in the domain, and C

is a number less than one that controls how far across a cell the
fastest signal is allowed to move during each time-step. In sim-
ulations with gravity and expansion, additional constraints need
to be added to the time-stepping. For gravity, the free-fall dis-
tance in each cell, with acceleration g, must be smaller than the
cell lengths,

2Ax
Atg = CgFL 7,

(B.6)

and for expansion, the relative change in the scale factor is
restricted:

w 1
Atexp = Coy = (B.7)

Here, CgFL and CZ’;"L are also numbers less than one. In this

work, we used C&.; = 0.5, CfoFL = 0.5, and CE’;’L = 0.01. The

final value for the time-step is the smallest of the above,

At = min[Atq, Atg, Afexpl. (B.8)

The FORCE scheme approximates the interface flux F

(given the left and right states Uy, and Ug) as the average of the
Lax—Friedrichs flux and the two-step Lax—Wendroff flux;

JFORCE _ l[ FLF 4 FLV),
2

1 1 Ax
FY¥ = SIFUL) + FUR)] = 5 [Ur — U,
FLW - F(ULW),

1 1A
U™ = S+ Url - EA—I[F(UR) - F(UL)]. (B.9)
X

We modified this by enforcing the critical velocity on the inter-
mediate state U™V before computing the flux F-V.

B.2. Sources

Gravity and extra terms when using spherical coordinates and

super-comoving variables appear as source terms S in the super-
fluid equations. Continuing with the above example, we have

oU+0,F(U)=S. (B.10)

To modify our Godunov scheme to incorporate the sources in
the flux, we did the following: at the beginning of each time-
step, we had the states U?. To do the advection (the Godunov
step), we input the left and right states at each boundary i + 1/2;
Uivipr = Ui, Uiipr = Uiy But before we computed the
interface flux, we applied half a time-step of the source due to
gravity,

. 1
Uipr=UmpL+ EAI (S?+1/2,L)

grav’

* 1 n
Ui =Uiipr + 548 (Si+1/2,R)grav’ (B.11)

2

where 87, ,; and S, , are the left and right values for the
sources. In this work, we computed these using the average grav-
itational acceleration (VO)! ALR = %[(VCD);‘ + (VD)?,,1, and
the left and right states Uj.1/21/r. We then used U7, L and

U, /2R a8 the input states in the Godunov scheme to get Fj 12,
and updated the state vectors from the previous time-step:

At

1,%

Ut =U; - A_x[Fi—1/2 - Fipl.
This modification to the Godunov scheme was to include the

effect of gravity on the flux, but explicitly adding the sources to

the solution remains to be done. For this, we used the average

before and after the advection step;

(B.12)

1
U;H—l — U;H—l,* +AIE[S? +S?+1ﬂ*]. (B13)

B.3. Enforcing critical velocity

The critical velocity was enforced by iteratively converting
kinetic energy into internal energy and generated entropy in all
cells until w < v.. The scheme works as follows: we consider a
cell with the state vector U', where [ denotes the current step in
the iterative scheme to enforce v., and / = 0 is the initial state.
From this we get the fluid variables of the cell, v}, v/, S/, etc. If
w' < vl, the Landau criterion is satisfied and we do nothing. If
instead w! > vl, we apply a small change A’ to v/ to update it to
[+ 1 and decrease w,

A90, page 9 of 10
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I+1

ol =0l + A (B.14)

By keeping j constant and assuming that the change in the super-
fluid fraction is negligible compared to the change in velocity,
we get

!
Av, = —p—IsAvé.

n

(B.15)

n

Using conservation of energy the change in internal energy is
equal to the change in kinetic energy;

1 1
AU' = —AE., = —A(Epﬁlvﬁlz + el
= —p. @} —v)) - Avl. (B.16)

The change in entropy is AS’ = AQ'/T', where AQ' is the heat-
ing of the fluid, which in this case is just the change in internal
energy:

A90, page 10 of 10

_AQN AU el —m) - Ang

1
N = (B.17)
The updated entropy is
s = sl 4 AS'. (B.18)

We arrive at the state vector U'*! and repeat the above process
until w < v.. The only part that needs to be specified is Av/,
which was chosen as

AY = —Cwd', (B.19)
where
Cw) =[1072,107Jw. (B.20)

The numerical factor in Eq. (B.20) was tuned to give as smooth
w-profile as possible while keeping the scheme from becoming
too slow.
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