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ABSTRACT
We consider the possibility that dark energy and baryons might scatter off each other. The
type of interaction we consider leads to a pure momentum exchange, and does not affect the
background evolution of the expansion history. We parametrize this interaction in an effective
way at the level of Boltzmann equations. We compute the effect of dark energy-baryon
scattering on cosmological observables, focusing on the cosmic microwave background (CMB)
temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find
that even huge dark energy-baryon cross-sections σxb ∼ O(b), which are generically excluded
by non-cosmological probes such as collider searches or precision gravity tests, only leave
an insignificant imprint on the observables considered. In the case of the CMB temperature
power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power
(depending whether or not the dark energy equation of state lies above or below −1) at very
low multipoles, which is thus swamped by cosmic variance. These effects are explained in
terms of differences in how gravitational potentials decay in the presence of a dark energy-
baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated
Sachs–Wolfe power. Even smaller related effects are imprinted on the matter power spectrum.
The imprints on the CMB are not expected to be degenerate with the effects due to altering
the dark energy sound speed. We conclude that, while strongly appealing, the prospects for
a direct detection of dark energy through cosmology do not seem feasible when considering
realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in
perturbation theory.

Key words: cosmic background radiation – cosmological parameters – cosmology: observa-
tions – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The Universe is dark and full of terrifying unknowns. Various
independent astrophysical and cosmological observations (Zwicky
1933; Rubin & Ford 1970; Riess et al. 1998; Perlmutter et al. 1999;
Planck Collaboration 2018) indicate that most of the energy content
of the Universe resides in dark matter (DM) and dark energy (DE),
whose origin and composition remain unknown. A clustering DM
component is required to explain the inferred rotation curves of
galaxies and the formation of the observed large-scale structure
(LSS) of the Universe, while a smooth DE component is needed
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to explain the inferred late-time acceleration of the Universe. For
comprehensive reviews on DM and DE, see for instance Bergström
(2000); Sahni (2004); Bertone, Hooper & Silk (2005); Frieman,
Turner & Huterer (2008); Bamba et al. (2012).

The leading explanation for DM posits the existence of additional
particles and/or forces weakly coupled to the Standard Model (SM,
e.g. Jungman, Kamionkowski & Griest 1996; Cirelli, Fornengo &
Strumia 2006; Arkani-Hamed et al. 2009; Foot & Vagnozzi 2015a;
Hui et al. 2017), while in principle it is possible to attribute the
effects of DM to modifications of gravity (e.g. Milgrom 1983;
Chamseddine & Mukhanov 2013; Rinaldi 2017; Verlinde 2017;
Vagnozzi 2017). The leading paradigm for DE consists of a cos-
mological constant � (representing the zero-point vacuum energy
density of quantum field theory), whose theoretical value is however
in striking disagreement with observational inferences, an issue
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commonly referred to as the cosmological constant problem (Wein-
berg 1989). At present, it is unclear whether DE is the manifestation
of a new (possibly light) field (e.g. Ratra & Peebles 1988; Wetterich
1988; Caldwell, Dave & Steinhardt 1998; Linder 2008; Tsujikawa
2013; Yang et al. 2019b), a breakdown of general relativity (e.g. Li
2004; Nojiri & Odintsov 2007; Hu & Sawicki 2007; Myrzakulov,
Sebastiani & Vagnozzi 2015; Sebastiani, Vagnozzi & Myrzakulov
2017), or something else altogethether (for instance Räsänen 2004;
Rinaldi 2015; Nunes & Pan 2016).1

Is it possible to investigate the physics of the dark sector in
the laboratory? A huge experimental program has been dedicated
to detecting and characterizing the nature of DM. The leading
search strategies can essentially be divided into three categories:
collider production of DM, indirect detection of the products of DM
annihilation or decay, and direct detection of collisions between DM
and target nuclei; see e.g. Gaskins (2016), Marrodàn Undagoitia &
Rauch (2016), Kahlhöfer (2017) for reviews on these three exper-
imental strategies. The goal of direct detection experiments is to
search for the recoil energy deposited in collisions between galactic
halo DM particles and target nuclei in a detector (Goodman &
Witten 1985). In addition, one expects the signal to be modulated
on the scales of both a sidereal year (Drukier, Freese & Spergel
1986; Freese, Lisanti & Savage 2013) and a sidereal day (Collar &
Avignone 1992; Kouvaris & Shoemaker 2014; Foot & Vagnozzi
2015b) due to the revolution of the Earth around the Sun and
around its axis. Examples of leading direct detection experiments
include (but are not limited to) CoGeNT (Aalseth et al. 2013),
CRESST (CRESST collaboration 2020), DAMA-LIBRA (Bernabei
et al. 2008), LUX (Akerib et al. 2014), and XENON1T (Aprile
et al. 2018). Alternative direct detection strategies, involving
among others ancient minerals (Baum et al. 2018; Drukier
et al. 2019; Edwards et al. 2019), superfluid Helium (Schutz &
Zurek 2016), and DNA (Drukier et al. 2014), are also being
proposed.

At present, no parallel search for the (direct) detection of DE
is being carried out. Most of the motivation resides in the fact
that, while for the DM there exist several viable candidates such
as weakly interacting massive particles (WIMPs) (Roszkowski,
Sessolo & Trojanowski 2018), axions (Abbott & Sikivie 1983;
Dine & Fischler 1983; Visinelli & Gondolo 2009), primordial black
holes (Hawking 1971; Carr, Kuhnel & Sandstad 2016), or sterile
neutrinos (Dodelson & Widrow 1994; Boyarsky et al. 2019), the
situation with DE is much less clear since we do not even know
whether the latter is a manifestation of a theory of gravity beyond
general relativity, possibly in connection to string theory (Banerjee
et al. 2018), or the existence of new fields. In the latter case, it is
not even clear what the associated mass scale should be.2 Collider

1Although DM and DE are in principle independent components, each
evolving following a separate continuity equation, an interesting possibility
considered in the literature is that the two components might interact with
each other, as occurring in so-called interacting DE models. For examples of
such models, see e.g. Wetterich (1995), Amendola (2000), Farrar & Peebles
(2004), Burgess et al. (2005), Amarzguioui et al. (2006), Gavela et al. (2009),
Pan, Bhattacharya & Chakraborty (2015), Tamanini (2015), Yang, Pan &
Mota (2017), Yang, Pan & Barrow (2018a), and see instead Wang et al.
(2016) for a review.
2For instance, if DE is in the form of a very light axion (e.g. as in Arvanitaki
et al. 2010; Hložek et al. 2015; Visinelli & Vagnozzi 2019), its mass ma has
to be of order the Hubble rate today, ma ∼ H0 ∼ 10−33 eV, in order for
Hubble friction to efficiently freeze the motion of the particle and achieve
an effective cosmological constant-like EoS.

searches for DE have been studied in detail in a very limited number
of works (Brax et al. 2009, 2010; Brax & Burrage 2014; Brax,
Burrage & Englert 2015; Brax et al. 2016), including those recently
carried out by the ATLAS collaboration (ATLAS Collaboration
2019).

Most of the searches for DE properties have been conducted on
the cosmological side. These have focused on the DE equation of
state (EoS) wx and its time evolution, or on models of modified
gravity that can account for DE, by studying imprints on the back-
ground evolution and on the late-time growth of structure (see e.g.
Ishak, Upadhye & Spergel 2006; Mena, Santiago & Weller 2006; De
Felice, Mukherjee & Wang 2008; Giannantonio et al. 2010; Lom-
briser et al. 2012; Martinelli et al. 2012; Hu et al. 2016; Nunes et al.
2017a, b; Renk et al. 2017; Peirone et al. 2018; Vagnozzi et al. 2018;
Casalino & Rinaldi 2019; Du et al. 2019; Yang et al. 2019a), and
finally on the propagation of astrophysical gravitational waves (see
e.g. Baker et al. 2017; Creminelli & Vernizzi 2017; Ezquiaga &
Zumalacárregui 2017; Sakstein & Jain 2017; Boran et al. 2018;
Crisostomi & Koyama 2018; Ezquiaga & Zumalacárregui 2018;
Langlois et al. 2018; Visinelli, Bolis & Vagnozzi 2018; Casalino
et al. 2019). Future DE surveys such as DESI (DESI Collaboration
2016), Euclid (Amendola et al. 2013), WFIRST (Spergel et al.
2015), and LSST (LSST Dark Energy Science Collaboration 2012)
will use combinations of galaxy clustering, weak lensing, redshift-
space distortions, and cross-correlations between all these probes.
These will substantially improve our understanding of DE and may
rule out the cosmological constant �. However, much remains
to be understood about DE. One relevant example is related to
the H0 tension, the mismatch between high- and low-redshift
determinations of the Hubble constant H0 (Planck Collaboration
2018; Riess et al. 2019). It has been argued that such tensions might
be eased by introducing non-minimal physics in the DE sector (Di
Valentino et al. 2019b), in the form of phantom DE (Bernal, Verde &
Riess 2016; Di Valentino, Melchiorri & Silk 2016; Vagnozzi 2019),
DM–DE interactions (Li, Mota & Shaw 2008; De Felice, Mota &
Tsujikawa 2010; Di Valentino, Melchiorri & Mena 2017; Yang
et al. 2018c, b; Di Valentino et al. 2019a; Kumar, Nunes & Yadav
2019; Martinelli et al. 2019),3 an early DE component (Karwal &
Kamionkowski 2016; Mörtsell & Dhawan 2018; Agrawal et al.
2019; Poulin et al. 2019), vacuum metamorphosis (Di Valentino,
Linder & Melchiorri 2018), or running vacuum (Solà, Gómez-
Valent & de Cruz Pérez 2017; Gómez-Valent & Solá Peracaula
2018; Rezaei, Malekjani & Sola 2019; Sola et al. 2019), whereas
other possibilities such as a phase transition in the DE (Di Valentino
et al. 2019c) or a negative cosmological constant (Dutta et al. 2020;
Visinelli, Vagnozzi & Danielsson 2019) do not appear to alleviate
the problem.

The current ‘asymmetry’ between experimental searches and
cosmological surveys for investigating DM and DE has motivated
this study, aiming at answering the following questions: what if DE
scattered off baryons? What signature would such an interaction
leave on cosmological observables, as the cosmic microwave
background (CMB) or the distribution of the LSS? Is cosmological
direct detection of dark energy, analogous to direct detection of DM,

3Note, however, that a possible drawback in this case is that the reason why
the H0 tension is alleviated is often due to increased degeneracies between
cosmological parameters, which broaden all the constraints including the
ones on H0. Therefore, introducing additional data sets which can break
these degeneracies (usually low-redshift data sets) typically leads to the H0

tension reappearing (see e.g. Martinelli et al. 2019).
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even remotely possible? Admittedly, adding interactions between
DE and baryons is a risky procedure, since such a new interaction
might lead to long-range forces (Brax, Valageas & Vanhove 2019)
and variations in the fundamental constants (Uzan 2003), which are
severely restricted by observations and potentially dangerous (Bar-
row & Magueijo 1998; Barrow & Mota 2002; Mota & Barrow 2004;
Uzan 2011; Martins 2017). While this threat certainly holds for
specific DE models such as quintessence (as shown in Carroll 1998),
it does not have to be a danger in general. On a more fundamental
level, (scalar) fields which might play the role of DE are ubiquitous
in extensions of the SM. In this case, it is inevitable that they will
couple to baryons to some extent, either through a direct tree-level
Lagrangian coupling or at the loop level (unless such a coupling is
forbidden by a fundamental symmetry), or indirectly through the
Ricci scalar (see e.g. Wetterich 1988; Damour, Gibbons & Gundlach
1990; Biswas et al. 2006). Therefore, from a field theory perspective
it is quite hard to imagine how DE and baryons can be completely
decoupled.

Earlier analyses considered the possibility of scattering between
DM and DE and showed that in principle rather large DM–DE scat-
tering cross-sections are allowed by cosmological data (Simpson
2010). In that work, it was also conjectured that scattering between
DE and baryons is allowed with very large cross-section, albeit such
a conjecture was not further justified. Another related earlier work is
that of Calabrese et al. (2014), which studied the cosmology of DE
interacting with the electromagnetic sector of the SM of elementary
particles. Motivated by such questions, one of our major goals in this
work is to check whether such a speculation over a large DE-baryon
interaction is indeed correct. We will therefore allow for DE and
baryons to scatter. We introduce an effective scattering term between
the two components at the level of Boltzmann equations. Certainly,
such a scattering progress can be expected to lead to changes in
cosmological observables, and our goal here is to understand what
these changes are, and whether such changes might in principle be
visible in current or future surveys, opening up a new window on
to the physics of DE. In other words, our aim is to undertake the
possibility of a cosmological direct detection of DE.

The rest of this paper is then organized as follows. In Section 2,
we describe how the standard Boltzmann equations are modified in
the presence of a DE-baryon scattering process. We also provide
a rough estimate for how large the scattering cross-section can be
given current non-cosmological probes, such as collider searches.
In Section 3, we discuss how standard cosmological probes such as
the CMB and matter power spectra are modified in the presence of
a DE-baryon scattering. For pedagogical purposes, in order to boost
the effect of the DE-baryon scattering, we will focus on extremely
large cross-sections, of order barn, where recall the barn is defined as
1 b ≡ 10−24 cm2. We will show that even such large cross-sections
lead to tiny modifications to the cosmological observables. Section 4
presents the physics behind the imprints of DE-baryon scattering
on cosmological observables. In the case of the CMB, these are
directly related to changes in the late-time integrated Sachs–Wolfe
effect. Finally, we conclude in Section 5 summarizing our results
and discussing future prospects.

2 DA R K E N E R G Y- BA RYO N SC AT T E R I N G

We begin by discussing how the standard Boltzmann equations are
modified in the presence of a DE-baryon scattering process. We then
provide rough estimates of how large the scattering cross-section is
allowed to be given current non-cosmological probes, focusing on
collider searches for DE as well as on precision tests of gravity.

2.1 Boltzmann equations

We work in the synchronous gauge (Lifshitz 1946), which is the
gauge adopted by the Boltzmann solver CAMB (Lewis, Challinor &
Lasenby 2000). In this gauge, the perturbed Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) line element is given by

ds2 = a2(η)
[−dη2 + (δij + hij )dxidxj

]
, (1)

with η denoting conformal time. Within this gauge, our goal is to
track the evolution of the Fourier-space baryon density contrast and
the velocity divergence δb and θb, and the DE density contrast and
the velocity divergence δx and θ x, in the presence of a DE-baryon
scattering process, characterized by a cross-section σ xb quantifying
the strength of DE-baryon scattering.

A few comments are in order at this point. We will be considering
a purely elastic scattering process, i.e. a process in which there is
no energy transfer coming along with momentum transfer. Conse-
quently, these models are quite different from the interacting DM–
DE models we described in Section 1, where energy transfer occurs
between DM and DE, and the background evolution is modified by
such a process. In contrast, in our scenario the background evolution
remains unaltered, whereas it is only the evolution of perturbations
which is affected. As a further clarification, when we say that the
background evolution remains unaltered, what we mean is that it
is unaltered with respect to the background evolution in the same
cosmology without DE-baryon scattering. The latter may or may
not be a � cold dark matter (�CDM) cosmology. In fact, in this
work, we will only consider non-�CDM cosmologies where the
DE EoS is wx �= −1 (so-called wCDM cosmologies). The reason,
as we shall see later when we write down the Boltzmann equations
in equations (2–5), is that only when wx �= −1 can DE-baryon
scattering modify the Boltzmann equations. To put it differently,
baryons cannot scatter off a cosmological constant. The background
evolution in a wCDM cosmology with DE-baryon scattering is the
same as that in the original wCDM cosmology without DE-baryon
scattering.

Such a scenario may be argued to be unnatural. However, given
the low DE density and the non-relativistic baryon velocities, such
an interaction could be regarded as natural. In general, elastic
scattering can be a valid approximation as long as the mass/energy
scale of one particle (in this case that associated to the DE
component, for which we expect E � O(eV)) is much smaller
than the mass/energy scale of the other (in this case baryons, for
which E � O(eV)), as is the case for instance with Thomson
scattering. Similar examples of elastic scattering with dark sector
components have been considered in the literature, for instance in
the context of DM-photon scattering (Wilkinson, Lesgourgues &
Boehm 2014a; Kumar, Nunes & Yadav 2018; Stadler & Bœhm
2018), DM-neutrino scattering (Mangano et al. 2006; Serra et al.
2010; Wilkinson, Boehm & Lesgourgues 2014b; Escudero et al.
2015; Stadler, Bœhm & Mena 2019), DM–DE scattering (Simpson
2010; Xu, Wang & Abdalla 2012; Baldi & Simpson 2015; Skordis,
Pourtsidou & Copeland 2015; Baldi & Simpson 2017; Kumar &
Nunes 2017; Asghari et al. 2019), DM-baryon scattering (Boddy &
Gluscevic 2018; Boddy et al. 2018; Gluscevic & Boddy 2018;
Fialkov, Barkana & Cohen 2018; Xu, Dvorkin & Chael 2018), and
DM–DM scattering (Cyr-Racine et al. 2016; Vogelsberger et al.
2016; Archidiacono et al. 2017; Buen-Abad et al. 2018; Archidia-
cono et al. 2019). We follow a purely phenomenological approach
here: as argued in earlier works (Simpson 2010; Xu et al. 2012),
this choice is justified since the macrophysics involved in shaping
the cosmological observables we are interested in is expected to
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be, to a more than reasonable approximation, independent of the
microphysics involved in the scattering process.

With the above discussion in mind, we now modify the standard
Boltzmann equations to account for an elastic DE-baryon scattering
process quantified by a cross-section σ xb, in the spirit of what was
done earlier in Simpson (2010) and later in Xu et al. (2012), Baldi &
Simpson (2015), Skordis et al. (2015), Baldi & Simpson (2017),
Kumar & Nunes (2017), and Asghari et al. (2019), for elastic DE–
DM scattering. In the synchronous gauge, these equations read:

δ̇b = −θb − ḣ

2
, (2)

θ̇b = −Hθb + c2
s k

2δb + 4ργ

3ρb

aneσT (θγ − θb)

+ (1 + wx)
ρx

ρb

aneσxb(θx − θb), (3)

δ̇x = −(1 + wx)

(
θx + ḣ

2

)
− 3H(c2

s,x − wx)δx

− 9H2(c2
s,x − wx)(1 + wx)

θx

k2
, (4)

θ̇x = −H(1 − 3c2
s,x)θx + c2

s,xk
2

1 + wx

δx + aneσxb(θb − θx). (5)

Here, h is the usual synchronous gauge metric perturbation (see
e.g. Ma & Bertschinger 1995) and σT ≈ 6.7 × 10−25 cm2 = 0.67 b
is the Thomson scattering cross-section between baryons and
photons (where 1 b = 10−24 cm2 defines the barn measurement
unit). Moreover, ρb, ργ , and ρx are the baryon, photon, and DE
energy densities, respectively, wx is the DE EoS, c2

s is the baryon
sound speed squared, and c2

s,x is the DE sound speed squared.
Finally, a is the scale factor and ne is the number density of electrons.

With little loss of generality, we shall fix from now on c2
s,x = 1.

In writing equations (4) and (5), we have also set the time variation
of the DE EoS to zero, so that the DE adiabatic sound speed squared
reads c2

a = wx (Hu 1998). Note that the equations for the density
contrasts are unaltered, given that a momentum transfer process is
only expected to modify the equations for the velocity divergences.
Of course, any modification to the baryon and DE velocities due
to the scattering will in turn modify the density contrasts by
backfeeding into equations (2) and (4). When introducing the DE-
baryon scattering term in equation (3), the pre-factor (1 + wx)ρx/ρb

has been introduced in order to conserve total momentum during
the DE-baryon scattering, as expected during an elastic scattering
process. This is completely analogous to the 4ργ /3ρb pre-factor
appearing in equation (2) when describing Thomson scattering
between baryons and photons (see e.g. Ma & Bertschinger 1995).
The new term in equations (3) and (5) is effectively describing a
drag term for the DE velocity, with neσ xb(θb − θ x) representing the
fraction of DE quanta which are subject to scattering off baryons
per unit time. The above equations also clarify our earlier statement
that, when wx = −1 (i.e. when DE is in the form of a cosmological
constant), DE and baryons cannot scatter. In fact, the DE-baryon
scattering term in equation (3) shuts off when wx = −1, due to the
(1 + wx) pre-factor. Moreover, a cosmological constant is smooth
and does not feature perturbations, thus equation (5) is not tracked
when wx = −1.

Our aim is now to implement the modified Boltzmann equations
described above in a Boltzmann solver, such as CAMB (Lewis et al.
2000). Following standard notation (e.g. Ma & Bertschinger 1995),
we define the photon-to-baryon density ratio R ≡ 4ργ /3ρb and
the Thomson scattering opacity τ c ≡ (aneσ T)−1. Analogously, we

define the DE-to-baryon density ratio Rx ≡ (1 + wx)ρx/ρb and the
DE-baryon scattering opacity τ x ≡ (aneσ xb)−1. It is numerically
convenient to work with the dimensionless quantity αxb given
by the ratio of the DE-baryon interaction cross-section to the
Thomson cross-section, αxb ≡ σ xb/σ T = τ c/τ x. We refer to αxb

as the ‘Thomson ratio’. Having defined these quantities, and setting
c2
s,x = 1 as we discussed earlier, we can now rewrite equations (3)

and (5) as

θ̇b = −Hθb + c2
s k

2δb + Rτ−1
c (θγ − θb) + Rxτ

−1
c αxb(θx − θb), (6)

θ̇x = 2Hθx + k2

1 + wx

δx + τ−1
c αxb(θb − θx). (7)

The most immediate question at this point is: what values of αxb are
allowed by non-cosmological probes such as collider searches or
precision gravity tests? We will address this question in Section 2.2,
before moving on to the cosmological constraints presented in
Section 3.

2.2 How large can the dark energy-baryon cross-section be?

In this section, we estimate the size, allowed by non-cosmological
probes, of the DE-baryon cross-section or, equivalently, of the
Thomson ratio αxb. While a model-independent bound is very hard
to derive, we shall argue that on quite general grounds one can
generically expect αxb � 1 to hold. We remind the reader that
αxb 	 O(1) would correspond to a large nuclear-scale cross-section,
of order barn and comparable to the Thomson cross-section. If such
a large DE-baryon interaction exists, it will be extremely hard to
conceive how it might have escaped detection. For instance, it is
hard to imagine how such a process would not have been seen at
colliders, or even in experiments devoted to the direct detection of
DM. In the latter case, even though the local DE density is much
lower than the local DM density, this would be completely offset by
the much larger cross-section. The only possibility would be if such
an interaction were screened, for instance through the Vainshtein
mechanism (Vainshtein 1972) which invokes non-linearities in the
vicinity of matter sources. However, again it would be challenging
to screen such a large interaction, especially on cosmological scales,
where gravitational potentials are typically much smaller than those
available locally.

Let us be more concrete and study possible collider limits on the
Thomson ratio αxb. Focusing on the rather general case where DE is
described by a scalar field φ with a mass comparably smaller than
collider energy scales, one might consider an effective field theory
(EFT) description of all possible interactions between φ and the SM
particles. Such an approach was pioneered in a number of works,
including the very comprehensive analysis of Brax et al. (2016),
which takes into account a set of effective operators containing
several well-known DE models as a subset, such as chameleon DE,
symmetron DE, quintessence, and galileons. It is worth warning
the reader that an EFT approach is strictly speaking valid only
if the energy scales probed in the relevant experiment are far
from the scale where new physics comes into play, or in other
words if resonances and thresholds are unresolved. Should this
not be the case, one needs to revert to specific UV completions.
In our case, we expect new gravitational physics (which would
complicate the analysis significantly due to the non-linearity and
non-renormalizability of gravity) to come into play well above the
TeV scale probed by the LHC, making an EFT approach somewhat
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justified.4 In the following, we shall follow this approach and
consider for concreteness two specific EFT operators.

Following Brax et al. (2016) and ATLAS Collaboration (2019),
we consider shift-symmetric EFT operators (i.e. EFT operators
invariant under a transformation φ → φ + const), which thus couple
to the SM through derivative interactions. Shift-symmetry breaking
operators are instead tightly constrained by precision gravity tests
and thus are not expected to leave signatures in colliders, nor to be
cosmologically relevant (Joyce et al. 2015). There are nine shift-
symmetric operators, but for conciseness we consider only the two
leading ones, i.e. the two least suppressed. These two dimension-
8 operators, L1 and L2, are usually referred to as kinetically
dependent conformal and disformal operators, respectively, and are
given by

L1 = ∂μφ∂μφ

M4
1

T ν
ν , (8)

L2 = ∂μφ∂νφ

M4
2

T μν, (9)

where M1 and M2 are two suppression scales and Tμν is the energy–
momentum tensor of the SM fields. The first operator couples to the
trace of the energy–momentum tensor and hence to the conformal
anomaly. Of interest to us here will be fermionic fields ψ i of mass
mi, for which T ν

ν = miψ̄iψi . The most sensitive production channel
for the first operator thus involves DE production in association with
t t̄ (as the top quark is heaviest fermion of the SM), whereas the most
sensitive production channel for the second operator involves jets
and missing transverse energy, given that the coupling to the energy–
momentum tensor of the SM fields implies that the production
cross-section will be proportional to their momenta.

The analyses of ATLAS Collaboration (2019) set limits of
about M1 � 200 GeV and M2 � 1.2 TeV, whereas the earlier results
of Brax et al. (2016) with less data had set weaker but comparable
limits. It is then instructive to compute the typical cross-sections
associated to the operators in equations (8) and (9), which we refer
to as σ 1 and σ 2, respectively. Up to factors of order unity or at most
O(10), irrelevant for the subsequent discussion, we find

σ1 ∼ p4
φm2

i

M8
1

, (10)

σ2 ∼ p4
φp2

i

M8
2

, (11)

where pφ denotes the DE momentum, mi denotes the mass of the
SM particle produced in association with the DE, and similarly
pi denotes the momentum of the SM particle or jet produced in
association with the DE. Inserting numbers into equations (10)
and (11) and using the upper limits on M1 and M2 derived in ATLAS
Collaboration (2019) we notice that, even in the most optimistic
scenario, the relevant cross-section is going to be well below the barn
scale. In other words, this implies that αxb � 1. More concretely,

4We wish to clarify to the reader that the EFT approach we are discussing
is distinct from, albeit related to, the EFT of DE description developed
in Gubitosi, Piazza & Vernizzi (2013), Bloomfield et al. (2013), and
Piazza & Vernizzi (2013). The latter is used to describe all single-field
DE and modified gravity models in terms of the most general action
written in unitary gauge and considering operators compatible with residual
symmetries of unbroken spatial diffeomorphism, along the spirit of the EFT
of inflation (Cheung et al. 2008), and is implemented in Boltzmann solvers
such as EFTCAMB (Hu et al. 2014; Raveri et al. 2014). See e.g. Frusciante &
Perenon (2019) for a review on the EFT of DE.

in Brax et al. (2015) and ATLAS Collaboration (2019), it is shown
that ATLAS and CMS exclude production cross-sections in relation
to the two operators in question of order pb-fb. This means that
we can expect αxb � 10−12 from the non-observation of DE in
colliders.

Two comments are in order at this point. The considerations we
have made are strictly speaking only valid for the two EFT operators
of equations (8) and (9). We expect none the less that they should
extend quite generally to many realistic DE models, given the non-
observation of DE at colliders, the fact that the effective operators
considered contain several well-known DE models as a subset, and
the two operators we considered are the two least-suppressed, as
considering more suppressed operators would only strengthen our
conclusions. The second comment is that the rough upper limits on
the Thomson ratio αxb we have derived strictly speaking would only
hold on ≈TeV scales. They can be safely extrapolated to the energy
scales relevant for cosmology only in so far as we do not expect
the DE-baryon coupling to run significantly with energy. It is not
possible to quantify whether one should expect a significant running
in the absence of a UV complete model, but again we generically
expect that αxb � 1 should hold.

So far, we have discussed collider searches, but what about
other non-cosmological tests? In Mota & Shaw (2007), the authors
have argued that a combination of terrestrial tests such as the Eot-
Wash experiment (Hoyle et al. 2001; Kapner et al. 2007; Wagner
et al. 2012), measurements of the Casimir force, constraints from
the physics of compact objects (such as white dwarfs), weak
equivalence principle violation constraints, and precision tests of
gravity within the Solar system, generically lead to the expectation
that the dimensionless coupling between DE and baryons should be
weaker than 10−5. This leads again to the expectation that αxb �
1. As shown in Jain et al. (2013), on Mpc scales one also expects
the dimensionless coupling between DE and baryons to be weaker
than 10−5, and hence again αxb � 1 (see also Burrage & Sakstein
2018).

While, as stated in the beginning of this section, a model-
independent constraint is extremely hard (if not impossible) to
derive, non-cosmological probes, such as our non-observation of
DE in colliders or in precision tests of gravity, robustly establish
that αxb � 1. The question we shall address is then the following
one: can cosmology give us more information on the Thomson
ratio αxb? As we shall illustrate, we find that the answer is, very
surprisingly and quite unfortunately, no. We find that αxb ∼ O(1)
or even αxb � O(1), at strong odds with non-cosmological lim-
its, is completely consistent with current measurements of CMB
anisotropies and the clustering of the LSS.

3 R ESULTS

Here, we discuss the impact of varying the Thomson ratio αxb on
the CMB temperature anisotropy power spectrum and the matter
power spectrum. Before doing so we need to take a closer look at
equations (3) and (5). From equation (3), we see that if we consider
a cosmological constant �, for which wx = −1, then DE-baryon
scattering has no effect on the baryon velocity equation. This is
a consequence of the conservation of momentum leading to the
appearance of the (1 + wx) factor in the DE-to-baryon energy
density ratio Rx. Moreover, a pure cosmological constant has a
smooth value over our Hubble patch, without spatial perturbations.
These considerations imply that we need to move beyond wx =−1 if
we want to see an impact of DE-baryon scattering on cosmological
observables. In particular, the effect of the DE-baryon scattering
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1144 S. Vagnozzi et al.

would depend on the sign of (1 + wx), in other words on whether
the DE EoS lies in the quintessence regime (wx > −1) or in the
phantom regime (wx < −1).

We begin by considering the case where the DE EoS lies in the
quintessence regime, i.e. wx > −1, which is somewhat theoretically
favoured over the phantom regime. We find that for physically
acceptable values of the Thomson ratio αxb � 1 as discussed in
Section 2.2, adding a DE-baryon coupling leads to virtually no effect
on the CMB temperature power spectrum. We could in principle try
to boost the effect of the DE-baryon scattering by allowing the DE
EoS wx to deviate significantly from −1. However, this is not a
reasonable approach to take, given that late-time measurements of
the expansion rate from baryon acoustic oscillations (BAO) and
Type Ia Supernovae, in combination with CMB measurements,
tightly constrain the DE EoS to be close to that of the cosmological
constant �. How much of a deviation from wx = −1 can be tolerated
is to some extent a data-dependent statement, depending for instance
on which BAO measurements one chooses to adopt, whether one
chooses to include a prior on the local measurement of H0, or
whether one includes CMB lensing reconstruction measurements.
Recall that the CMB in itself is a poor probe of wx due to the
well-known geometrical degeneracy, i.e. the fact that at linear level
(without including CMB lensing) cosmological models with iden-
tical spectra of fluctuations, matter content, and angular diameter
distance to last-scattering will lead to nearly indistinguishable CMB
spectra (see e.g. Efstathiou & Bond 1999). It follows that, at least
in principle, CMB measurements alone allow for rather extreme
values of wx, particularly in the phantom region. Indicatively,
combinations of CMB and late-time measurements can approxi-
mately tolerate deviations from the cosmological constant EoS of
|�wx| ≈ 0.2, see for instance the discussions in section 7.4 of Planck
Collaboration (2018).

Therefore, for purely pedagogical purposes, to boost the DE-
baryon scattering signal as much as possible while not upsetting
late-time measurements too much, we begin by fixing the DE EoS to
wx = −0.8. Still, for purely pedagogical purposes, we then consider
values of αxb ofO(1) or slightly smaller, which we remind the reader
are in principle in tension with non-cosmological measurements.
Our rationale is that if we can show that, for αxb ∼ O(1), even in the
most optimistic case (by maximizing �wx consistently with what
is allowed by current cosmological data sets), the resulting changes
in the CMB and matter power spectrum are too small to ever be
observed, we can conclude that cosmological direct detection of
DE will not be feasible.

Our results are shown in Fig. 1, where we compare the resulting
CMB temperature anisotropy power spectra to the baseline power
spectrum obtained for the case with no DE-baryon interactions
(αxb = 0). As the upper panel of Fig. 1 clearly shows, the changes
induced by the DE-baryon scattering, even for the extreme case
αxb = 1, are not appreciable by the naked eye. The lower panel
of Fig. 1 shows the relative deviations of the resulting CMB
spectra from the baseline case, showing that scattering between
a quintessence-like DE component and baryons enhances the CMB
power spectrum by at most O(1 per cent). In fact, we find that for
wx = −0.8 the maximum relative change in the power spectrum
occurs at � ≈ 5 and is well approximated by �C�/C�|max ≈ αxb/100.
We have checked that this holds even for more extreme values of
αxb � O(10), whose results for the sake of conciseness we do not
show here.

Leaving aside the fact that αxb ∼ O(1) is unrealistically large
as we argued in Section 2.2, detecting changes as small as those
shown in Fig. 1 is by all means impossible. In fact, the variations

Figure 1. Impact of increasing the Thomson ratio αxb, which gives the
ratio between the DE-baryon scattering cross-section to the Thomson cross-
section, on the CMB temperature power spectrum. Upper panel: CMB
temperature anisotropy power spectra for αxb = 0 (black curve), 0.1 (red
curve), 0.5 (blue curve), and 1.0 (green curve). All cosmological parameters
are fixed to their best-fitting values given the Planck 2018 results (Planck
Collaboration 2018), with the exception of the DE EoS which is fixed to wx =
−0.8, in the quintessence region. Notice that, as per standard convention
in the field, the quantity plotted on the y-axis is T 2

CMBD� ≡ TCMB�(� +
1)C�, with TCMB ≈ 2.725 K the CMB temperature today. The light blue
band indicates the uncertainty budget arising from cosmic variance, which
gives �D�/D� ∼ 1/fsky

√
2/(2� + 1), where we have set the observed sky

fraction to fsky = 1. Lower panel: since the differences between the different
curves in the upper panel are too small to be appreciated by the naked eye,
we plot the relative change in power with respect to the baseline model with
αxb = 0.0, with the same colour coding as above. The increase in power
at low multipoles is due to an enhanced late-time integrated Sachs–Wolfe
effect, as we explain in Section 4.

in the CMB power spectrum with respect to the baseline αxb = 0
cosmology occur at extremely large angular scales (low multipoles
�), where cosmic variance completely dominates and blows up
the measurement error bars (see for instance Planck Collaboration
2018), very strongly undermining any hope of seeing such a signal.
See the light blue band in the upper panel of Fig. 1 for the
contribution of cosmic variance to the measurement uncertainty,
which goes as �C�/C� ∼ √

2/(2� + 1) for a full-sky survey. It is
none the less interesting to consider the physics underlying the
changes we find in Fig. 1. We expect them to be due to a change in
the strength of the late-time integrated Sachs–Wolfe (LISW) effect,
and will discuss these further in Section 4.

Aside from affecting the CMB temperature power spectrum, DE-
baryon interactions are also expected to affect the clustering of the
LSS, thus possibly leaving a signature in the power spectrum of
matter fluctuations. We thus check the effect of increasing αxb on the
matter power spectrum P(k) at redshift z = 0. Our results are shown
in Fig. 2. Again, as the upper panel of Fig. 2 shows, the effect of αxb

on P(k) leads to changes which are not distinguishable by the naked
eye. In fact, in the lower panel of Fig. 2, we show the relative changes
of the power spectra within the interacting DE-baryon cosmologies
with respect to the baseline case of αxb = 0, and find these changes
to be extremely tiny, with �P (k)/P (k) < 0.1 per cent over most of
the wavenumber range. These changes are too tiny to be observable
by current or near-future LSS surveys. We expect these changes
to be due to an overall suppression of structure growth due to the
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Scattering between dark energy and baryons 1145

Figure 2. As in Fig. 1 but considering the matter power spectrum at redshift
z = 0. Note that we have plotted the linear power spectrum. Again the
differences between the curves in the upper panel are too small to be
appreciated by the naked eye. The decrease in power seen over all scales is
due to a slowing down of structure growth, due to the DE-baryon drag term
and leading to a minuscule decrease in σ 8, as we explain in Section 4.

DE-baryon drag, which should effectively lead to a lower value of
σ 8. We will discuss this further in Section 4.

Note that in Fig. 2 the quantity plotted is the linear matter
power spectrum. Therefore, the plots are truly reliable only up
to kmax ≈ 0.1 hMpc−1, the approximate non-linear wavenumber
today. Non-linear corrections to the power spectrum are typically
computed using HALOFIT (which essentially consists of a fitting
function calibrated to N-body simulations) or more generally em-
ulating N-body simulations including hydrodynamic and baryonic
effects. Due to the fact that no existing N-body simulation includes
the effect of the DE-baryon scattering, which to the best of our
knowledge is being studied here for the first time, we have no way
of estimating how non-linear corrections behave within our model.
In particular, it is possible that the contribution of baryonic effects to
non-linear corrections might be strongly affected by the DE-baryon
scattering: however, there is currently no way of telling. The only
way to settle this issue is to run dedicated simulations, which is
way beyond the scope of this work. However, should it turn out that
structure formation in the non-linear regime is strongly affected by
DE-baryon scattering, one could hope to probe such a scattering
process using measurements of non-linear clustering in the LSS,
a possibility otherwise precluded by other cosmological probes as
we are showing in this work. We hope to address this issue in a
follow-up work.

We now move on to the case of a phantom DE component.5 As
for the quintessence-like DE case, for purely pedagogical purposes
we fix wx = −1.2. Examining equation (3), we can expect the
effects of the DE-baryon scattering to be comparable in magnitude
to those we found in the quintessence-like case, albeit reversed

5We remark that phantom DE components are typically problematic from a
theoretical point of view, due to their violating the strong energy condition,
which leads to instabilities (Vikman 2005; Sawicki & Vikman 2013). None
the less, it is in principle possible to obtain phantom DE components which
are effectively stable, for instance within modified gravity models (see e.g.
Elizalde, Nojiri & Odintsov 2004; Jhingan et al. 2008; Setare & Saridakis
2009; Deffayet et al. 2010; Cognola et al. 2016; Casalino et al. 2018; Dutta
et al. 2018).

in sign. We confirm that this is indeed the case in Fig. 3, where
we plot the resulting CMB temperature power spectra and relative
deviations from the baseline case of αxb = 0 for the same choices
of αxb as in Fig. 1, and in Fig. 4 where we do the same for the
matter power spectrum. We again expect these changes to be due
to a reduced LISW effect and an overall enhancement of structure
growth, and shall comment more on these effects in the following
section.

4 PHYSI CAL EXPLANATI ON O F R ESULTS

We now turn to explain the results we found in the previous sections,
summarized in Figs 1, 2, 3, 4. There are two key questions we
need to address. The first one is: what is the physics underlying
the changes we found? The second one is: why, somewhat counter-
intuitively, are the changes so small even for so large cross-sections?
After addressing these questions, we study whether the DE-baryon
scattering signatures are degenerate with signatures of the DE sound
speed, which would complicate the prospects of identifying DE-
baryon scattering signatures even further, finding that the answer is
fortunately no.

Let us first consider the physics responsible for the changes in
the CMB temperature anisotropy power spectrum (lower panels of
Figs 1 and 3). Earlier, we raised the suspicion that these minuscule
changes were due to changes in the LISW effect, with the direction
of these changes being dependent on whether wx > −1 (enhanced
LISW effect) or wx < −1 (suppressed LISW effect). Recall first of
all that the integrated Sachs–Wolfe effect is a source of secondary
anisotropies in the CMB, and is driven by time-variations in
the gravitational potentials, which can only be present when the
Universe is not matter-dominated (Sachs & Wolfe 1967). To linear
order in temperature perturbations, the contribution of the LISW
effect to temperature anisotropies � at a multipole � from a mode
with wavenumber k, �LISW

� is given by

�LISW
� (k) =

∫ η0

η1

dη e−τ (η)
[
�̇(k, η) − �̇(k, η)

]
j�(k(η0 − η)), (12)

where � and � are the two Newtonian gravitational potentials
(note that in writing equation 12 we have temporarily switched
to the Newtonian gauge), τ is the optical depth, η0 is the current
conformal time, η1 is the conformal time at an arbitrary point in time
well into the matter-domination era, and j� is the Bessel function of
order �. Therefore, LISW contributions to the CMB anisotropies are
important only when DE starts dominating, making the gravitational
potentials decay.

To confirm that the relative changes we are seeing in the lower
panels of Figs 1 and 3 are indeed due to a modified LISW effect,
we consider again the comparison between a cosmology with αxb =
1 and αxb = 0 at fixed wx = −0.8 (the former corresponding to
the green curve in Fig. 1), but this time switching off the ISW
source term in CAMB. In the upper panel of Fig. 5, we plot the
CMB power spectra for the four resulting cosmologies: αxb = 1
with (green curve) and without (blue curve) ISW source term, and
similarly αxb = 0 with (black curve) and without (red curve) ISW
source term. In the lower panel of Fig. 5, we then plot the relative
changes between the αxb = 1 and αxb = 0 power spectra for the
case with (green curve) and without (blue curve) ISW source term
(note therefore that the green curve in Fig. 5 corresponds to the
green curve in Fig. 1). As is clear from Fig. 5, once the ISW
source term is removed, the residual changes between cosmologies
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1146 S. Vagnozzi et al.

Figure 3. As in Fig. 1, but considering a phantom DE component with EoS fixed to wx = −1.2. Again the differences between the curves in the upper panel
are too small to be appreciated by the naked eye. In this case, the decrease in power at low multipoles is due to a suppressed late-time integrated Sachs–Wolfe
effect, as we explain in Section 4.

Figure 4. As in Fig. 2 but considering a phantom DE component with EoS
fixed to wx = −1.2. Again the differences between the curves in the upper
panel are too small to be appreciated by the naked eye. The increase in
power seen over all scales is due to a speeding up of structure growth, due
to the DE-baryon drag term and leading to a minuscule increase in σ 8, as
we explain in Section 4.

with different αxb are virtually erased.6 A completely analogous
plot, not shown here for the sake of conciseness, is obtained when
considering a phantom DE component. The results shown in Fig. 5
perfectly agree with our interpretation of the changes induced in
the CMB temperature anisotropy power spectrum by increasing
the Thomson ratio αxb as being completely due to a change in the
late-time integrated Sachs–Wolfe effect, and hence to changes in
the behaviour of the decaying gravitational potentials during the
DE-domination era.

6Note that the tiny remaining changes barely visible by eye in the blue curve
in the lower panel of Fig. 5 are well below the precision of CAMB and hence
are completely compatible with numerical noise.

Figure 5. Impact of increasing the Thomson ratio αxb on the CMB temper-
ature power spectrum, highlighting the contribution from the integrated
Sachs–Wolfe (ISW) effect. Upper panel: CMB temperature anisotropy
power spectra for αxb = 0 with (black curve) and without the ISW source
term (red curve) and αxb = 1 with (green curve) and without the ISW source
term (blue curve), with the DE EoS fixed in all the cases to wx = −0.8.
Lower panel: in the upper panel, the differences between the green curve
and the black curve, as well as between the blue curve and the red curve, are
too small to be seen by the naked eye. Therefore, we plot the relative change
in power between the αxb = 1 and baseline αxb = 0 cosmologies, for the
case where the ISW source term is included (green curve), and for the case
where it is removed (blue curve). For clarity, we remark that the lower panel
green curve shows the relative difference between the upper panel green and
black curves, and similarly the lower panel blue curve shows the relative
difference between the upper panel blue and red curves. The figure shows
how the changes in the CMB temperature power spectrum coming from the
DE-baryon scattering are entirely due to a variation in the ISW effect (since
once the ISW effect is removed there are no residual changes in cosmologies
with different αxb), and more precisely in the late ISW (LISW) effect, as
discussed in Section 4.
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Scattering between dark energy and baryons 1147

Let us focus on the quintessence-like case, wx > −1. As we
have seen in Figs 1 and 5, the presence of a DE-baryon interaction
has led to an enhanced LISW effect. From equation (12), we see
that an increased time variation in the Newtonian potentials (more
precisely, an increased potential decay, given that potentials decay
during the DE-dominated era) leads to an enhanced LISW effect.
We expect this to be due to a decrease in the DE perturbations. In
fact, it is well known (see e.g. Weller & Lewis 2003; Calabrese
et al. 2011) that DE perturbations help preserving potentials (in
other words, they obstruct the potential decay). Hence, reducing
the DE perturbations eases the potential decay and enhances the
LISW effect. From a mathematical point of view, the DE-baryon
scattering term in equation (5) tends to increase the DE velocity,
θ x. In the quintessence-like DE case where wx > −1, the sign of
the term proportional to θ x/k2 on the right-hand side of the DE
density contrast equation, equation (4), is such that this increase in
θ x leads to a decrease in δx with respect to the baseline case of no
interactions. The decrease of δx during the DE domination epoch
leads to an increased decay of the gravitational potentials, and hence
to an enhanced LISW effect.

In the phantom-like case where wx < −1, similar considerations
hold, albeit with the net effect on δx being reversed due to the
presence of the (1 + wx) factor in front of the θ x/k2 term on the right-
hand side of the DE density contrast equation, equation (4). In this
case, δx increases with respect to the baseline case of no interactions,
helping in preserving the gravitational potentials from decay and
thus reducing the LISW effect. There is another interesting point to
be noted by comparing Fig. 1 for the quintessence-like case with
Fig. 3 for the phantom-like case. We see that at a fixed deviation of
the DE EoS from wx = −1 (|�wx| = 0.2), and at a fixed value of
αxb, the magnitude of the DE-baryon scattering effect is larger for
wx > −1 than for wx < −1. This finding is completely consistent
with earlier findings in (Weller & Lewis 2003), who investigated the
effect of DE perturbations on the ISW effect for both quintessence-
and phantom-like DE. It was found that the magnitude of the ISW
effect is larger for wx > −1 than for wx < −1, due to the different
behaviour of DE perturbations (and in particular whether they are
of the same sign of the matter perturbations) and of the decay
of potentials in response to the different background behaviour
of the DE component, whose energy density is increasing with
the expansion for the phantom-like case, and decreasing for the
quintessence-like case. We refer the reader to Weller & Lewis (2003)
for more details.

Having explained the physics underlying the changes in the
CMB temperature anisotropy power spectrum due to the scattering
between DE and baryons, we now turn to examine the shifts induced
by these processes on the matter power spectrum. We saw earlier
that, in the quintessence-like case wx > −1, the net effect of
the DE-baryon scattering was to suppress DE perturbations, hence
easing the decay of gravitational potentials and enhancing the LISW
effect. In the case of the matter power spectrum, we expect that the
increased decay of the gravitational potentials is going to slightly
suppress structure formation, as baryon and cold DM overdensities
are related to the gravitational potentials via the Poisson equation.
In addition, DE-baryon scattering leads to a drag term in the baryon
velocity equation, equation (3), which also slows down the growth of
structure. This is analogous to the DE–DM drag studied in Simpson
(2010) in the context of DE–DM scattering. However, the effect
we find is much smaller than that found by Simpson (2010) simply
because baryons are subdominant compared to the DM, with the
latter dominating the structure formation dynamics. We therefore

expect our effects on the matter power spectrum to be suppressed
approximately by a factor of (�b/�c)2, which is a quantity of
O(10−2), with respect to the effects found by Simpson (2010).

The combination of the two effects described earlier (the in-
creased decay of the gravitational potentials also responsible for the
enhanced LISW effect, and the drag term in the baryon velocity
equation) leads to an overall suppression of the matter power
spectrum, which we observe in Fig. 2. In addition, we expect the
effects of the DE-baryon scattering to lead to a slightly lower value
of σ 8. Indeed, we find this to be the case, although the induced
changes are tiny. For αxb = 1, we find that the differences in σ 8

with respect to the baseline case with αxb = 0 occur at the fourth
decimal digit, and hence are observationally impossible to detect
even with the most ambitious future LSS surveys (see e.g. LSST
Dark Energy Science Collaboration 2012; Amendola et al. 2013;
Spergel et al. 2015; DESI Collaboration 2016). Obviously, such
a small reduction of σ 8 is also completely unable to address the
tension between CMB and low-redshift (redshift-space distortions
and cosmic shear) determinations of σ 8 (Di Valentino & Bridle
2018). In the phantom-like case wx < −1, we expect the effects of
DE-baryon scattering on the matter power spectrum to be reversed
in sign, due to the reduced decay of the gravitational potentials,
as well as the drag term in the baryon velocity equation appearing
with the opposite sign. These two effects act to enhance structure
growth, and hence the amplitude of the matter power spectrum. This
explains the results we illustrate in Fig. 4.

In conclusion, we find that for αxb � 1, the reduction or enhance-
ment of power in the matter power spectrum (depending on whether
DE is quintessence-like or phantom-like) is too small to ever be
detected. Moreover, such a suppression is expected to be strongly
degenerate with both σ 8 and the (possibly scale-dependent) bias of
the LSS tracer in question (recall that we have considered the matter
power spectrum, but in reality one observes the power spectrum of
LSS tracers, which is biased with respect to the underlying matter
power spectrum), although the latter degeneracy might be mitigated
by jointly considering cross-correlations between LSS clustering
and CMB lensing (see e.g. Giusarma et al. 2018). Moreover, we
also expect the effects of the DE-baryon scattering to be completely
negligible both in polarization and CMB lensing. We have checked
this explicitly by computing the E mode, B mode, and CMB lensing
power spectra for the cosmologies discussed in this section, and
found them to be even smaller than those we have observed in
the temperature and matter power spectra, and hence virtually
undetectable. For the sake of conciseness, we do not show these
results here.

Having addressed the question of what is the physics responsible
for the changes we found in the CMB and matter power spectra,
we now turn to the question of why such changes are so tiny even
when considering a huge DE-baryon cross-section, αxb ∼ O(1),
comparable to nuclear cross-sections. In order to leave a significant
imprint on the CMB temperature anisotropy power spectrum, DE-
baryon scattering should impact the pre-recombination dynam-
ics of the baryon fluid, and hence generate significant primary
anisotropies. However, it is clear from equation (3) that, even
considering αxb ∼ O(1) and hence σ xb 	 σ T, the effect of DE-
baryon scattering is completely subdominant with respect to that
of Thomson scattering as it is suppressed by two terms. The first
is the ratio ρx/ρb � 1, reflecting the fact that DE is completely
subdominant at the pre-recombination epoch, and hence there is
no target for DE-baryon scattering to occur. The second is the (1
+ wx) term, which suppresses the effect of DE-baryon scattering
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the more DE behaves as a cosmological constant, as indicated
by data.

Therefore, for αxb � 1, the only possibility for DE-baryon
scattering to leave an imprint on the CMB is through secondary
anisotropies, such as the LISW effect as we have seen earlier.
However, these effects are again strongly suppressed by the fact
that wx is close to −1 (the closer wx is to −1, the smaller DE
perturbations are) and that baryons are strongly subdominant at late
times, when it is DM that is playing the dominant role in structure
formation. As argued earlier, this also explains why the effects of
DE-baryon scattering on the matter power spectrum are so small.

These considerations hold even at late times, when the ratio ρx/ρb

is no longer small, but of O(10). Note that this ratio only enters the
baryon velocity equation, equation (3), but not the DE velocity
equation, equation (5). The effect of DE-baryon scattering on the
CMB is still small since the process can only generate secondary
anisotropies. More importantly, these secondary anisotropies (such
as the LISW effect) are governed by the behaviour of gravitational
potentials: their evolution is mostly controlled by the DE overden-
sity and velocity, whose governing equations do not contain the
ρx/ρb factor.

With regard to the matter power spectrum, it is true that the term
ρx/ρb could in principle affect the baryon velocity equation in a
significant way (note, however, that the matter power spectrum is
directly sensitive to the baryon overdensity, whose main source
term at late times comes from the metric perturbations h). How-
ever, baryons contribute a subdominant fraction to gravitational
potentials. To put it differently, the contribution of baryons to the
linear matter transfer function is suppressed by �b/�c, with �b

and �c the baryon and cold DM density parameters. Therefore,
the contribution of baryons to the linear matter power spectrum
is suppressed by a factor (�b/�c)2. The suppression factor is of
O(0.01), so it acts to offset the potential large effect of the ρx/ρb

factor on the matter power spectrum. This is true at linear level, but
we could expect that at the non-linear level DE-baryon scattering
could significantly modify the baryon transfer function, possibly
leading to visible effects. This further motivates a follow-up work
devoted to running dedicated N-body simulations to study the effect
of DE-baryon scattering in the non-linear regime.

4.1 A possible degeneracy with the dark energy sound speed

We have already seen that the effect of DE-baryons scattering on
cosmological observables is tiny for reasonable values of the DE-
baryon cross-section and this alone would be enough to conclude
that these effects are virtually undetectable not only with current
surveys but also with future ones. One may also worry that the
effects of DE-baryon scattering might be degenerate with those of
other cosmological parameters, such as σ 8 in the case of the matter
power spectrum. In the case of the CMB power spectrum, the fact
that DE-baryon scattering only affects the LISW effect raises the
suspicion that αxb might be degenerate with some other DE property
which leaves comparable imprints on the LISW effect, such as the
DE sound speed squared, c2

s,x , which earlier we fixed to c2
s,x = 1. In

fact, from the discussions in Calabrese et al. (2011) and especially
Fig. 1 therein, one might legitimately suspect that the imprint of
αxb on the LISW effect would be completely degenerate with that
of c2

s,x .
Physical values of the DE sound speed should lie in the region

0 ≤ c2
s,x ≤ 1. Outside of this region, one faces tachyonic/gradient

instabilities and/or instabilities connected to superluminal propa-
gation. In the standard scenario, one fixes c2

s,x = 1. Therefore, we

need to check what is the impact of reducing the DE sound speed
squared to values as low as 0, and whether the resulting effects on
the CMB can be mimicked by DE-baryon scattering. One important
point to note is that in order to study the effect of the DE sound
speed, one must again consider values of the DE EoS wx �= −1,
since a cosmological constant has no perturbations and hence a
cosmology with DE in the form of a cosmological constant has no
sensitivity to the DE sound speed. The impact of the DE sound
speed on the CMB power spectrum has been discussed in detail
in Calabrese et al. (2011). There, it was found that the effect of
decreasing c2

s,x from 1 to 0 is to suppress the LISW effect when the
DE EoS satisfies wx > −1, but for wx < −1, decreasing the sound
speed results in an enhancement of the LISW effect. Heuristically, at
least for the case where wx > −1, this can be understood as follows:
the more we decrease c2

s,x , the more DE can cluster and effectively
behave as ‘cold’ DE. Clustering enhances the DE perturbations,
which as discussed earlier protect the potentials from decaying,
thus leading to a smaller contribution to the LISW effect as can
be seen from equation (12). We refer the reader to Calabrese et al.
(2011) for a mathematically rigorous discussion of the effect of c2

s,x

on the CMB. See also e.g. DeDeo, Caldwell & Steinhardt (2003),
Hannestad (2005), Mota et al. (2007), Xia et al. (2008), Carbone,
Mena & Verde (2010), de Putter, Huterer & Linder (2010), and
Archidiacono, Lopez-Honorez & Mena (2014) for further works
examining the effect of c2

s,x on cosmological observations.
To understand whether the effect of c2

s,x can be to some extent
degenerate with that of αxb, we again consider a baseline cosmology
with αxb = 0, c2

s,x = 1, and wx = −0.8. We then compare the
resulting CMB and matter power spectra with the power spectra
of the cosmology with αxb = 1 and c2

s,x = 1 we already discussed
earlier (Figs 1 and 2), as well as with those for a cosmology with
αxb = 0 and c2

s,x = 0. We show our results in Fig. 6 for the CMB
temperature anisotropy power spectrum, and in Fig. 7 for the matter
power spectrum. As is clear from the lower panels of these figures,
where we plot the relative changes with respect to the baseline
cosmology, the effects of DE-baryon scattering and the DE sound
speed on both probes are actually quite distinct. In particular, in the
case of the CMB as shown in Fig. 6, this easily follows from the
discussions in Calabrese et al. (2011), where decreasing c2

s,x for wx

> −1 was found to lead to a suppressed LISW effect as discussed
above, whereas increasing αxb for wx > −1 leads to an enhanced
LISW effect as we discussed in Section 4. The effects are opposite
in sign and hence, at least in principle, distinguishable, barring the
fact that both are extremely small and show up on very large scales
where cosmic variance completely swamps the signal. The effect
of the DE sound speed on the matter power spectrum as shown
in Fig. 7 is also quite distinct with respect to that of DE-baryon
scattering, since the former changes sign at intermediate scales,
whereas the latter gives a nearly scale-independent suppression.
Similar conclusions hold when we consider a phantom-like DE
component with wx < −1, with all effects reversing sign but being,
in principle, distinguishable between each other.

5 C O N C L U S I O N S

In this paper, we have considered the possibility that DE and
baryons might scatter off each other. We have quantified the strength
of the DE-baryon scattering by the dimensionless parameter αxb,
given by the ratio of the DE-baryon cross-section to the Thomson
cross-section. We have argued that, on purely general grounds, we
expect αxb � 1 from non-cosmological probes, given the non-
observation of DE in colliders or precision tests of gravity. This
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Figure 6. Comparison of the effects of the DE-baryon scattering and of
changing the DE sound speed squared c2

s,x . Upper panel: CMB temperature
anisotropy power spectra for αxb = 0 and c2

s,x = 1 (black curve), αxb =
1.0 and c2

s,x = 1.0 (red curve), and αxb = 0 and c2
s,x = 0 (blue curve).

All cosmological parameters are fixed to their best-fitting values given the
Planck 2018 results (Planck Collaboration 2018), with the exception of the
DE EoS which is fixed to wx = −0.8, in the quintessence region. Lower
panel: relative change in power with respect to the baseline model with αxb =
0.0 and c2

s,x = 1.0, with the same colour coding as above. In both cases, the
relative changes are due to an enhanced late-time integrated Sachs–Wolfe
effect in the case where αxb is increased, or to a suppression in the same
effect when c2

s,x is decreased. Similar effects, although reversed in sign, are
observed when considering a phantom DE component (not shown here).

Figure 7. As in Fig. 6 but considering the linear matter power spectrum at
redshift z = 0. Similar effects, although reversed in sign, are observed when
considering a phantom DE component (not shown here).

does not exclude the possibility that one might construct a specific
UV complete model wherein αxb ∼ O(1) or larger is allowed,
appropriately screened, and consistent with all experimental tests,
albeit highly challenging. The question we have addressed in this
paper is then: what signatures would a DE-baryon scattering leave
on cosmological observables?

We have found, surprisingly, that even for αxb ∼ O(1) or larger,
DE-baryon scattering leaves minuscule imprints on the CMB tem-
perature anisotropy power spectrum and the matter power spectrum.
The size of these imprints also depends on how much the DE EoS wx

deviates from that of a cosmological constant, with the direction of
these imprints depending crucially on whether DE is quintessence-
like (wx > −1) or phantom-like (wx < −1). Considering a
quintessence-like DE component, we have found that the effect
of DE-baryon scattering is to decrease the DE perturbations, which
in turn eases the decay of gravitational potentials at late times.
This leads to an enhanced late-time integrated Sachs–Wolfe effect,
and suppresses the late-time growth of structure. These effects
show up as an enhancement of power in the CMB low-� tail, as
well as a nearly scale-independent suppression of the matter power
spectrum P(k), leading to a tiny reduction in σ 8. For a phantom-
like DE component, the sign of all these effects are reversed, thus
leading to a suppressed LISW effect and an enhanced matter power
spectrum.

We have found that for αxb ∼ O(1), all these effects are too
small to be observable both in current and future surveys. For the
CMB, DE-baryon scattering leads to sub- per cent changes at very
low �, in a regime where cosmic variance completely hinders the
possibility of detecting such a signal. In the matter power spectrum
the signatures are more than an order-of-magnitude smaller than
those in the CMB, and hence well below the projected uncertainty
of even the most optimistic future LSS survey. We have also studied
whether the signatures of DE-baryon scattering might be degenerate
with signatures of the DE sound speed: we have showed that the
two effects are quite distinct both on the CMB (where they work in
opposite directions) and on the matter power spectrum, and hence
in principle distinguishable if it were not for the fact that both are
extremely tiny.

In conclusion, we have confirmed the suspicion raised in Simpson
(2010) that huge interaction cross-sections between DE and baryons
are allowed without disrupting the CMB or structure formation.
We remind the reader that αxb ∼ O(1) corresponds to barn-scale
cross-sections, which are extremely large and comparable to nuclear
cross-sections. For comparison, current limits on DM-baryon scat-
tering from DM direct detection experiments can be as constraining
as 10−22 b (i.e. 10−46 cm2) depending on the DM mass. Therefore,
while alluring, the prospect of cosmological direct detection of
DE appears to be a remote one, unless Nature has endowed DE
and baryons with a huge interaction cross-section well above the
barn scale, and managed to make it surpass all non-cosmological
searches. One important caveat is that our analysis was performed at
linear order in perturbation theory. It is possible that baryonic effects
on non-linear corrections to the matter power spectrum might carry
a visible imprint of DE-baryon scattering. The only way to find
out for sure is to run dedicated N-body simulations. This is beyond
the scope of this paper, and we hope to address this issue in future
work. Should non-linear effects significantly enhance the imprint
of DE-baryon scattering on the matter power spectrum, it might be
possible to probe such scattering by studying the clustering of the
LSS in the non-linear regime.

There are in principle avenues for further exploration along this
line. The most strongly motivated follow-up work would look at
running dedicated N-body simulations to study the effect of DE-
baryon scattering in the non-linear regime and check whether the
impact of baryonic effects on non-linear corrections to the matter
power spectrum is significantly affected by DE-baryon scattering.
On the model-building side, it would be interesting to try and
construct a model or class of models featuring huge DE-baryon
interactions on cosmological scales, which might thus leave visible
imprints in cosmological observables, while still being consistent
with terrestrial experiments. On the data analysis side, it could be
interesting to investigate a DE-baryon interaction scenario with
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more freedom in the DE sector, for instance considering time-
varying DE. In fact, it would be quite unnatural or at least surprising
if a DE component featuring interactions with baryons had an EoS
constant in time. Furthermore, given how DE-baryon scattering
leaves its largest signature in the CMB on large scales by affecting
the LISW effect, it might be worth thinking about more efficient
ways of isolating this signal, for instance by considering cross-
correlations between temperature fluctuations from future CMB
surveys (e.g. Abazajian et al. 2016; Ade et al. 2019; The Simons
Observatory Collaboration 2019) and maps of overdensities in fu-
ture LSS surveys (see e.g. LSST Dark Energy Science Collaboration
2012; Amendola et al. 2013; Spergel et al. 2015; DESI Collaboration
2016), see for instance Bean & Dore (2004), Hu & Scranton (2004),
Corasaniti, Giannantonio & Melchiorri (2005), Ho et al. (2008),
and Ferraro, Sherwin & Spergel (2015) for earlier works along
this line of research. Likewise, if DE interacts with baryons but
not with DM, this will lead to a ‘baryon bias’ which might be
constrained using motions of tidally disrupted stellar streams of
merging galaxy clusters (see e.g. Amendola & Tocchini-Valentini
2002; Kesden & Kamionkowski 2006; Randall et al. 2008). Finally,
if cosmic variance is the true killer of any prospect for cosmological
direct detection of DE, it would be worth investigating whether it
is possible to find signatures of DE-baryon scattering which can
beat cosmic variance. Even if, as argued in our work, DE-baryon
scattering affects structure formation ever so slightly, this will leave
an imprint in the bias of LSS tracers such as galaxies. Since the bias
of a given LSS tracer is not a random field, one can use it to beat
cosmic variance provided a dense enough LSS tracer sample can
be found (see e.g. Seljak 2009; McDonald & Seljak 2009; LoVerde
2016). If a DE-baryon scattering signal is truly imprinted in the
LSS bias, it would be worth investigating whether one might ever
be able to extract it. We shall investigate these and related issues in
future work.
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Hložek R., Grin D., Marsh D. J. E., Ferreira P. G., 2015, Phys. Rev. D, 91,

103512
Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Phys. Rev.

D, 78, 043519
Hoyle C. D., Schmidt U., Heckel B. R., Adelberger E. G., Gundlach J. H.,

Kapner D. J., Swanson H. E., 2001, Phys. Rev. Lett., 86, 1418
Hu W., 1998, ApJ, 506, 485
Hu W., Sawicki I., 2007, Phys. Rev. D, 76, 064004
Hu W., Scranton R., 2004, Phys. Rev. D, 70, 123002
Hu B., Raveri M., Frusciante N., Silvestri A., 2014, Phys. Rev. D, 89, 103530
Hu B., Raveri M., Rizzato M., Silvestri A., 2016, MNRAS, 459, 3880
Hui L., Ostriker J. P., Tremaine S., Witten E., 2017, Phys. Rev. D, 95, 043541
Ishak M., Upadhye A., Spergel D. N., 2006, Phys. Rev. D, 74, 043513
Jain B. et al., 2013, preprint (arXiv:1309.5389)
Jhingan S., Nojiri S., Odintsov S. D., Sami M., Thongkool I., Zerbini S.,

2008, Phys. Lett., B663, 424
Joyce A., Jain B., Khoury J., Trodden M., 2015, Phys. Rep., 568, 1
Jungman G., Kamionkowski M., Griest K., 1996, Phys. Rep., 267, 195
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