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Abstract

Accurate knowledge of the seabed is of vital importance for many human endeav-
ors. Applications range from safe navigation to climate change models. Swath
sonars are a key tool for e�cient and high-resolution mapping of the seabed.
This thesis aims to improve the quality of swath sonars by improving the beam-
former, which is a key part of current signal processing. We explore two methods:
Adaptive beamforming and autocalibration.

Adaptive beamforming improves the beamforming process by adapting the
beamforming to the received signal. We investigate how the adaptive Capon
and Low Complexity Adaptive (LCA) beamformers can improve swath sonar
beamforming on both simulated and �eld data, and their e�ect on the water
column image and bathymetry. The Capon beamformer is well-tested and can give
high performance, but has a high computational load and may have robustness
issues. LCA is a recently developed and related adaptive beamformer which may
be more robust and faster, with similar performance in many ways.

We �nd that both beamformers improve resolution, edge de�nition and side-
lobe level in the water column, and give more accurate amplitude detections. This
leads to better de�ned features, better separation of features from the background,
and sometimes detection of features not visible with the conventional delay and
sum (DAS) beamformer. Capon has better resolution, somewhat better edge
de�nition, and somewhat higher sidelobe level than LCA. We also �nd that an
adaptive beamformer may improve interference rejection for phase detection,
but generally reduces accuracy in the current con�guration. This seems to be
a side e�ect of the improved edge de�nition, and the e�ect can be reduced by
recon�guring the beamformers.

Autocalibration estimates calibration errors without external reference sources.
The errors, which particularly limit the sidelobe level, may then be compensated
for. We model the errors by a complex factor per element and estimate them using
data available during normal surveys. The method is based on the Generalized
Interferometric Array Response. On simulated data, we are able to lower the
sidelobe level below 50 dB. On �eld data, the sidelobe level is generally reduced,
but the e�ect is much smaller. However, some sidelobes are unchanged and new
sidelobes occasionally appear. We suggest that the reduced performance in the
�eld is due to an insu�cient calibration model.
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Chapter 1

Introduction

1.1 Motivation1

Accurate knowledge of the seabed is of vital importance for many human endeav-
ors. Historically, the use has sometimes been straightforward, as the creation
of maps for safe navigation, sometimes fundamental, like when contributing to
the development of plate tectonics. As our in�uence of the planet and use of the
sea expands, the need for accurate maps of the seabed grows. At a local scale,
applications include habitat mapping or preparation for building operations. At a
global scale seabed maps are used to create ocean circulation models, which are
central for modeling the climate.

Currently, under 20 % of the ocean is mapped with modern survey equipment.
Global depth maps are based on satellite altimetry, which has much lower resolu-
tion than current echosounders. The Nippon Foundation–GEBCO Seabed 2030
Project (Mayer et al., 2018) aims to map the ocean deeper than 200 m with swath
sonars within the coming decade. Currently 15 % coverage is achieved (Seabed
2030 Project, 2019). Surveying at a massive scale will be required to cover the
rest. Much of this data will be collected by swath sonars, which is a key tool for
e�cient and high-resolution mapping. Improving the quality of swath sonars is
therefore of great interest, both for mapping surveys and for other uses of swath
sonars.2

One way to improve swath sonars is by improving the swath sonar signal
processing, where the delay-and-sum (DAS) beamformer is a core component

1The motivation is heavily based on (Mayer et al., 2018; Wöl� et al., 2019).
2See Wöl� et al., 2019 for more examples.
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(de Moustier, 1988; Lurton, 2010, Ch. 8.3.2). Improvements to the beamformer
may improve all swath sonar data products, since they are all derived from the
beamformed data. High-resolution alternatives to the DAS beamformer has
existed for decades (Krim & Viberg, 1996) and the potential for use on swath sonar
has been noted (de Moustier, 1993; Lurton, 2010, Ch. 5.4.9-10). However, they have
not been widely used in swath sonars, partially due to high computational load
and robustness concerns (Lurton, 2010, Ch. 5.4.10). The continuous improvements
in processing power, in addition to the development of new robust and e�cient
techniques (Synnevåg, Austeng, & Holm, 2011), mitigate these concerns and
warrant new attempts.

1.2 Aims & claims

The aim of this thesis is to improve the quality of swath sonar data products
through improving the receive beamforming, preferably using methods that are
relatively easy to implement. We have approached this in two ways, through
adaptive beamformers and calibration. The results have been evaluated on how
they a�ect the bathymetry, since it is the main data product of swath sonars, and
the water column image, both since it is useful to explain the bathymetric results
and due to its use as a separate data product. We have developed a simulator to
do controlled experiments and more easily explore particular cases. We consider
a swath sonar operating around 300 kHz, largely due to data availability.

The main emphasis of this thesis is adaptive beamforming, which is treated in
Paper I-IV. We have studied the relatively new Low Complexity Adaptive (LCA)
beamformer, due to its robustness and low computational demands. We also
consider the Capon beamformer, since it is well-studied, has high performance,
and LCA is strongly related to it.

Paper I examines how the LCA beamformer a�ects the water column image
and bottom detections for a smooth sea�oor. It also introduces the use of Field II
to simulate swath sonar time series data. We �nd that LCA appears to reduce
the mainlobe width and sidelobe level, and improves most bottom detections. In
a similar way, Paper II examines the e�ect of the LCA beamformer for a more
complicated scene with a wreck. LCA again appears to reduce the mainlobe width
and sidelobe level, both e�ects improve amplitude detections.

Paper III extends the results with the Capon beamformer, extensive simula-
tions, and further �eld examples. A key result is that reducing the mainlobe for

2



DAS causes two e�ects which are uncoupled with the adaptive beamformers: res-
olution and edge de�nition. LCA mainly improves edge de�nition, while Capon
improves both. We show that edge de�nition is a key property for improving
the amplitude detections over large parts of the sea�oor. We also �nd that the
improvement in sidelobe level is better for LCA than for Capon, and signi�cantly
lower for our �eld data than for our simulated data.

Paper IV analyzes the e�ect of the LCA and Capon beamformers on phase
detections. Motivated by �eld examples that indicate lower phase detection
accuracy, we use simulations and properties of the adaptive beamformers to
understand the e�ects. We show that an adaptive beamformer may improve
phase detection accuracy with interference, but in the con�gurations from Paper
III they tend to reduce the accuracy in general. We show indications that better
overall performance may be possible with adapted con�gurations.

Paper V studies a method for autocalibration, motivated by the limited side-
lobe level improvements for �eld data in Paper III. We estimate phase and
amplitude errors for each element through the coherence based “Generalized
Interferometric Array Response” (GIAR) method, and correct for them before
the DAS beamformer. This works very well on simulated data and gives some
improvements on �eld data. We �nd indications that an extended error model
may be needed to improve the �eld results.

Chapter 2 gives a brief background for the methods we use and describes
previous work. The included publications are summarized in Chapter 3 and
discussed in Chapter 4. Chapter 5 gives suggestions for further work, followed
by the included papers.
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Chapter 2

Background

This chapter provides background material for the research in this thesis. Parts
of the material has been adapted from the included publications. This has been
done to make it easier to read the thesis independently of the publications, while
keeping the description of the content uni�ed.

2.1 Fundamentals of swath sonars

This section brie�y describes the most relevant features of swath sonars for this
thesis. See for example Lurton, 2010, Ch 8.3 or de Moustier, 1988, 1993 for a more
thorough treatment.

The core of a swath sonar is a linear transmitter array mounted along-track
and a linear receiver array mounted across-track on a boat. The transmitter emits
sound in a fan which is narrow along-track and wide across-track. This ensoni�es
a across-track line, or thin strip, as illustrated by Figure 2.1. The receiver separates
the re�ected sound into di�erent beams, which contain the sound arriving from
small across-track angular regions. These beams are then used to estimate the
quantities of interest, for example the sea�oor depth across the ensoni�ed line.
As the boat moves forward a broad strip, typically around four times the water
depth (Mayer et al., 2018), is mapped. For full coverage of the seabed the boat
continues back and forth in a lawn mower pattern.

A swath sonar provides mainly three data products: Bathymetry, backscatter
and the water column image. As mentioned in the introduction, bathymetry has a
wide application area (Wöl� et al., 2019). Backscatter has been of growing interest
recently (Lamarche & Lurton, 2017), and a key use is to characterize the seabed

5



Figure 2.1: Illustration of swath sonar transmit sector. The bright sector illustrates
region covered by the transmitted sound. The white line across the sea�oor
illustrates the region of the sea�oor which is ensoni�ed and mapped by the
echosounder during this transmission. Illustration courtesy of Kongsberg Mar-
itime AS.
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type. The water column image is a more recent addition to swath sonars. It is
used both for bathymetric quality control and exploring the water column itself
(Clarke, 2006, 2017).

Swath sonar signal processing includes many steps (Lurton, 2010, Ch. 8.3.2).
The most important ones for this thesis are shown in Figure 2.2. Since this
thesis focuses on the beamformer, we have ensured that our processing chain
includes the processing steps important for comparing beamformers. We ignore
many factors that are less important when comparing beamformers but need
to be accounted for in active swath sonars, like the sound speed pro�le and
vessel motion (Clarke, 2003; Hare, 1995). In addition, we mostly ignore advanced
features like beam stabilization and multi-sector transmission.

As stated in Section 1.2 we have considered swath sonars based around 300
kHz. The theory presented below is in principle unchanged if frequency, array
size and related parameters are scaled correspondingly, so the results should in
principle also apply for swath sonars at other frequencies. However, di�erences
in noise or other characteristics may require adaptions.

Element
time series

Filter and
delay

DAS beam-
forming

Adaptive/
calibrated

beamforming

Water column
image

Bottom
detection

Figure 2.2: Overview standard and modi�ed processing chain. We replace the DAS
beamformer with either an adaptive beamformer or a calibrated DAS beamformer.
The alternative beamformers use the same data as the DAS beamformer, and the
results from each beamformer are processed in the same way. This ensures that
di�erences can be attributed to the beamformers. Figure adapted from Paper III.

2.2 Beamforming

The main task of the beamformer is to enhance a signal from an angle of interest,
the steering angle, compared to everything else. It is useful to divide “everything
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else” into interference, signals from other directions, and noise. This is conven-
tionally done by the DAS beamformer. It is fast, robust, and easily adaptable to
di�erent systems and situations. It is also optimal for some situations. However, a
trade-o� between desired qualities must be made to provide decent performance
across all cases.

Adaptive beamformers essentially use the received signal to �nd an (suppos-
edly) optimal con�guration for each situation. When it works well, this avoid
DAS’s trade-o� and improve performance. However, adaptive beamformers may
be less robust and degrade performance if the situation is not well known or
estimated. Through this thesis we have tried to exploit the advantages and limit
the problems, and evaluated the results.

We use two adaptive beamformers: The Capon and the Low Complexity
Adaptive (LCA) beamformer. The essentials of these and DAS are described
below. The e�ect of calibration errors on the beamformers is further described in
Section 2.4.

2.2.1 DAS beamforming

“ DAS beamforming algorithmically steers the array by delaying the signal
from each element such that the signal from the steering direction (far �eld) or
point (near �eld) add coherently, while others sum incoherently. The delays may
be approximated by phase rotation for narrow band signals and small enough
steering angles (Johnson & Dudgeon, 1993). The DAS beamformer is typically
weighted (also called shaded or tapered) to better suppress interfering signals by
lowering the sidelobe level. This reduces resolution and edge de�nition due to
a wider mainlobe (Harris, 1978). The resulting beam time series b(θ)(t) steered
toward the angle θ is given by

b(θ)(t) = wHs(θ)(t) =


w1

w2

...
wNEl


H

s

(θ)
1 (t)

s
(θ)
2 (t)

...
s

(θ)
NEl

(t)

 , (2.1)

where NEl is the number of elements, wi is the weight for element i and s(θ)
i is

the signal from element i at time t, after it has been delayed toward θ, and •H
indicates the complex conjugate transpose. The steering angle θ is 0 toward nadir
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and is equal to the incidence angle for a horizontal sea�oor. DAS’s advantages
are speed, simplicity and robustness.

Paper III, slightly adapted.”We have used a several di�erently weighted DAS beamformers in our research.
Most weights are from the Kaiser class (Harris, 1978), where the β parameter
controls the sidelobe-mainlobe trade-o�. The weights are uniform when β = 0,
increasing β widens the mainlobe and lowers the sidelobes and the white noise
gain (WNG).

2.2.2 Capon beamforming

“ The adaptive Capon beamformer (Van Trees, 2002, Ch. 6; Krim & Viberg,
1996) is known for having better resolution and interference rejection capabilities
than the standard DAS beamformer. The key di�erence between an adaptive
beamformer as Capon, and DAS is that the weights w(θ)

Capon(t) now depend on the
received signal. This allows for enhanced performance by dynamically adjusting
the beampattern to the present signal conditions.

Capon selects the weights by minimizing the variance of the beamformed
signal without distorting signals from the steering direction. For pre-delayed
signals this can be expressed as:

w
(θ)
Capon(t) = arg min

w
E
∣∣wHs(θ)(t)

∣∣2 (2.2)

= arg min
w

wHR(θ)(t)w, (2.3)

under the constraint that
NEl∑
i=1

wi = 1, (2.4)

where R(θ)(t) = E
(
s(θ)(t)s(θ)(t)H

)
is the steered covariance matrix (Krolik &

Swingler, 1989). The beam time series can then be obtained by (2.1).
Capon’s main drawbacks compared to DAS are potentially lower robustness

(Cox, Zeskind, & Owen, 1987) and higher computational demands (Lurton, 2010,
Ch. 5.4.10). The main sources of the robustness problems are signal model
mismatch and di�culties with estimating the covariance matrix R.

To ensure su�cient robustness we use spatial smoothing (Lo, 2004; Shan,
Wax, & Kailath, 1985; Synnevåg, Austeng, & Holm, 2009) over NEl/2 elements,
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forward-backward averaging (Lo, 2004; Rao & Hari, 1990; Rønhovde, Yang, Taxt,
& Holm, 1999) and diagonal loading (Carlson, 1988; Cox, 1973) equal to 5 % of
the mean signal energy. The signal statistics may change quickly for our case, so
we do not use time averaging (Llort-Pujol, Sintes, Chonavel, Morrison, & Daniel,
2012; Rønhovde et al., 1999). Based on earlier work (Austeng et al., 2008; Buskenes,
Hansen, & Austeng, 2017; Synnevåg, Austeng, & Holm, 2007) we consider this to
be a relatively robust set of parameters that will work well for our application.

Paper III, slightly adapted.”2.2.3 Low Complexity Adaptive beamforming

“ LCA (Buskenes et al., 2017; Synnevåg et al., 2011) is a relatively new adaptive
beamformer, �rst used in medical ultrasound. With a small weight set, LCA can
give a large part of the improvement from Capon without important drawbacks
(Buskenes et al., 2017; Synnevåg et al., 2011). It can be viewed as a hybrid
between Capon and DAS. LCA, as Capon, minimizes the variance and obeys the
distortionless constraint. The di�erence is that while Capon can select almost any
weight, LCA is restricted to a pre-selected weight setW = {w1,w2, . . . ,wNLCA},
where NLCA is the number of weights in the set. LCA beamforming may also be
interpreted as selecting the apparently best beam value from di�erently weighted
DAS beamformers according to the Capon optimality criteria.

The LCA weight set contains standard DAS weights and microsteered (Syn-
nevåg et al., 2011) weights. Microsteered weights mimic certain asymmetric
beampatterns used by the Capon beamformer, which particularly improves the
edge de�nition (Synnevåg et al., 2011). Microsteering requires that small, addi-
tional, delays are applied after beam steering. We apply them by phase rotation.

The pre-selected weight set makes LCA inherently more robust than Capon.
As an example, the limited weight set prevents signal cancellation (Synnevåg
et al., 2011), which is potentially detrimental for Capon (Van Trees, 2002). This
reduces the need for additional constraints on LCA (Synnevåg et al., 2011). In this
paper we use LCA without any of the modi�cations applied to Capon. The LCA
weight is selected by:

ŵ
(θ)
LCA(t) = arg min

w∈W

∣∣wHs(θ)(t)
∣∣2 . (2.5)
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Figure 2.3: Beamformer steered response for a simpli�ed scenario with 3 equal
strength sources and 10 dB SNR. The text above indicates which beamformer
property that is most important in each region. R: Resolution, ED: Edge De�nition,
SL: Sidelobe Level. Figure from Paper III.

LCA’s performance naturally depends on the weight set in use. Our preferred
variant has evolved during this thesis. The included publications describe the
weight set used in each case.

2.2.4 Comparison of beamformer properties

Paper III introduced three properties central for our analysis of beamformer
performance: Resolution, edge de�nition and sidelobe level. This section describes
the properties and how the beamformers a�ect them.

“ Figure 2.3 shows how the DAS, LCA and Capon beamformers work in a
simpli�ed case with three equal strength sources and 10 dB SNR. There are one
isolated and two closely spaced sources, their directions are shown by the black
vertical lines.

Resolution is the ability to separate closely spaced sources. It is illustrated by
the region marked “R” in Figure 2.3. Capon easily resolves the two points, Kaiser
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β= 0 DAS and LCA barely resolve the points, while Kaiser β = 2.5 DAS does not
resolve them.

Edge de�nition describes the steepness of the steered response at the sides
of an isolated point or object. For the DAS beamformer, resolution and edge
de�nition are both determined by the mainlobe width. For adaptive beamformers,
the two concepts are uncoupled, as the regions marked “ED” in Figure 2.3 show.
We see that although LCA has the same resolution as the best-case (β= 0) DAS,
the edge de�nition is almost as good as Capon’s.

A convenient way to describe the edge de�nition and resolution improve-
ments is that the adaptive beamformers reduce the e�ective beamwidth. For our
purposes the e�ective beamwidth has essentially the same role for the adaptive
beamformers as the beamwidth for DAS, for example in determining amplitude
detection accuracy. It is important to note that the e�ective beamwidth varies
across the scene.

Sidelobe level describes how strongly the beamformer suppresses signals from
directions di�erent from the steering direction and is illustrated in the sidelobe
region marked “SL” in Figure 2.3. The sidelobe level of the weighted (β = 2.5)
DAS beamformer is lower than the unweighted (β = 0), illustrating the trade-o�
with DAS weighting. The adaptive beamformers have much lower sidelobe levels
than both DAS beamformers, in addition to the edge de�nition and resolution
improvements described above.

Real transducers have errors which make the actual signal model di�erent
from the one presented earlier. This a�ects the beamformers, and properties
above, to a di�erent degree. For DAS, the mainlobe is very robust against such
errors, while the sidelobes are more sensitive (Steinberg, 1976, Ch. 13). In practice,
model mismatch e�ectively limits the lowest attainable sidelobe level.

LCA selects one of a set of DAS beamformers, therefore LCA’s sensitivity
is linked to DAS’s. Resolution and edge de�nition improvements are linked to
the mainlobe of the underlying DAS beamformers, and should therefore be less
sensitive to model mismatch than the sidelobe level. Model mismatch can be
detrimental for the Capon beamformer if not properly accounted for (Cox, 1973;
J. Li, Stoica, & Wang, 2003).

As this example shows, adaptive beamformers may avoid the trade-o� inherent
to DAS and may improve all properties simultaneously.
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2.2.5 Previous use of adaptive signal processing in swath
sonars

Using adaptive beamforming for swath sonars is not a new idea, however compu-
tational constraints and robustness concerns have prevented adoption until now
(Lurton, 2010, Ch. 5.4.9-10). Below I brie�y describe some earlier e�orts in more
detail, and how they compare to our work.

Alexandrou and de Moustier (1988) discuss an adaptive noise canceling method
that removes some sidelobes in their experiments. The method requires additional
post processing of the beams after identifying which beams are causing the
sidelobe interference. This identi�cation is challenging, and the method is also
complicated to initialize. The method also does not a�ect resolution or edge
de�nition, which our selected methods may do.

Pantzartzis, de Moustier, and Alexandrou (1993) and Rønhovde et al. (1999)
consider various adaptive methods and the results indicate that they may achieve
improved performance. However, the Capon beamformer is barely covered and
the range of examples is sparse.

Llort-Pujol et al. (Llort-Pujol, 2007; Llort-Pujol et al., 2012; Llort-Pujol, Sintes,
& Lurton, 2005, 2008) mainly focused on MUSIC and advanced phase detection
methods. They also considered the Capon beamformer, but did not achieve
satisfactory performance with realistic data (Llort-Pujol, 2007, Ch. C.4.2).

Mitchley and Sears (2014) consider the use of Capon and other high-resolution
methods for swath sonars, targeted toward mining applications. They compare a
wide range of methods for estimating the covariance matrix, and how the high-
resolution methods improve the ability to resolve a simulated sinusoidal sea�oor
with large amplitude waves. However, they do not consider phase detections,
even at high angles, or validate the results on �eld data. Amplitude detection
accuracy is averaged over the whole sea�oor, not viewed as a function over angle.

None of the works described above appear to utilize diagonal loading when
using Capon. This is a signi�cant omission since diagonal loading may greatly
improve the performance of the Capon beamformer, especially with few samples
in the covariance matrix estimate (Van Trees, 2002, Ch. 7.3.3). An examination of
a properly con�gured Capon beamformer for swath sonar, and its e�ect on the
water column image and the commonly used bottom detectors therefore seem
to be missing from the literature. In addition, LCA has not been considered for
swath sonar. The robustness and lower computational demand may make it an
attractive alternative, and therefore interesting to consider.
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2.3 Bottom detection

Bottom detectors transform the beamformed data to bathymetry This can be done
in many ways (Lurton, 2010, Ch. 8.3.3). Here I describe the most relevant details
of the two most common methods, which are the ones we have used. This is the
amplitude detector, which essentially estimates the instant with strongest echo
for each beam, and the phase detector, which estimates the arrival angle for each
instant.

The detectors have di�erent strengths and weaknesses, and together provide
accurate bathymetry across the swath. The following segment from Paper III
describes how they typically are used.

“ Commonly, amplitude detections are used near specular directions and phase
detections are used at higher incidence angles. Amplitude detections are also used
when the phase detector fails. For example, if there are multiple targets at the
same slant range, either within the beam or in a sidelobe that is not su�ciently
suppressed.

The location of the transition angle, where the system switches between
phase and amplitude detections, varies depending on system, signal-to-noise ratio
(SNR), scene, detector con�guration and transition criteria (Hare, Godin, & Mayer,
1995; Llort-Pujol et al., 2012; Lurton & Augustin, 2010). It may be as low as ±10◦

(Clarke, 2018), or as high as 45◦ (Lurton & Augustin, 2010).
Paper III”2.3.1 Amplitude detection

We have used two amplitude detection methods through our work. Paper I and
Paper II use the maximum amplitude detection method (Lurton & Augustin,
2010, Ch. 8.3.3), while Paper III uses a center of gravity (barycenter) detector.
This section describes the latter method.

“ The barycenter detector is based on the envelope between the -10 dB points
around the peak (Lurton & Augustin, 2010), and use a Hamming (Harris, 1978)
shaped averaging �lter with same length as the transmitted pulse for selecting
the -10 dB points.

For a given swath sonar con�guration, the amplitude detection accuracy is
determined by the envelope length after processing (Lurton & Augustin, 2010).
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The envelope length is determined by e�ective pulse length, beamwidth and
seabed geometry (Lurton, 2010, Ch. 8.3.3.2). The typical regimes for a �at sea�oor
are illustrated in Figure 2.4. A reduced beamwidth improves amplitude detections,
especially at high incidence angles.

Low sidelobe levels are important to avoid false detections with the amplitude
detector, which may happen when an echo in a sidelobe is stronger than the
sea�oor echo. Typical cases where this may be a problem is for strong specular
echoes or with large di�erences in scattering strength across the sea�oor (Lurton,
2010, Ch. 8.3.3).

Paper III, slightly adapted.”
Figure 2.4: Illustration of pulse- (left) and beam-determined (right) regimes for
received envelope length (not to scale). Blue arcs show the e�ective edges of the
pulse (after processing) at a given instant, δR shows the distance corresponding
to the received envelope length. At vertical incidence the whole beamwidth is
illuminated approximately simultaneously, and the pulse length determines δR.
At high incidence angles the pulse length is short compared to the footprint, and
the time needed for the pulse to travel across the beam footprint determines δR.
Figure from Paper III.

2.3.2 Phase detections

There exist multiple variants of phase detections. For swath sonars, they rely on
the phase di�erence between the beamformed signals on two subarrays of the
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Figure 2.5: Sketch of phase detection geometry. A andB are the receiver locations
with baseline d. P is the signal location with distance R from A and angle θ
relative to the interferometer normal. ∆R is the range di�erence between P and
B and P andA. For swath sonarsA andB represent the centers of two subarrays
of the receiving array. For far �eld signals ∆R is approximated by d sin θ. Figure
from Paper IV.

receiving array (Lurton & Augustin, 2010).

“ This phase di�erence indicates the di�erence in arrival time between two
receivers for a narrowband signal (Lurton, 2010, Ch. 5.4.8). Based on a known
receiver geometry, like in Figure 2.5, the delay can be related to a range di�erence,
and therefore arrival angle. When the signal originates from the far �eld, the phase
di�erence ∆Φ is related to the arrival angle θ by ∆Φ = 2π∆R/λ ≈ 2πd sin θ/λ,
where λ is the wavelength.

Paper IV, slightly adapted.”The phase di�erence can be used for bottom detection in multiple ways Lurton,
2010; Schmidt, Weber, and Lurton, 2014. In Paper IV we focus on properties of
the underlying phase di�erence instead of focusing on any particular method,
mainly because this is necessary to understand the observed e�ects. The following
segment from Paper IV describes the important factors for good phase detections
and relates them to the beamformers.

“ Regardless of method there are three central factors for determining the
detection accuracy Lurton and Augustin, 2010: Phase ramp steepness, phase
di�erence variance σ2

∆Φ and the number of samples used for the detection. The
number of samples scale the variance for a single sample detection, so it is
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not relevant when comparing beamformers. In Section 3.2 we show that the
steepness of the phase ramp is independent of the beamformer under fairly
general conditions. The key for comparing beamformer e�ect on phase detections
is therefore to understand how they a�ect σ2

∆Φ.
Without interference, the phase di�erence variance σ2

∆Φ basically depend on
SNR Lurton and Augustin, 2010. The relation is approximately

σ2
∆Φ =

2.5712 + ln SNR

SNR
, (2.6)

where SNR is the power-SNR measured at the interferometer input Lurton and
Augustin, 2010.

We have implicitly assumed a single dominating signal in the description
above. However, strong interference can corrupt the phase di�erence. Either
by increasing the variance such that the detections become unusable, or by
dominating the phase di�erence such that detections are misplaced Lurton and
Augustin, 2010; Pereira and Clarke, 2015. Subarray beamforming is supposed to
prevent this Lurton, 2010, Ch. 8.3.3.3.

This means that the beamformer has two, partially con�icting, tasks: Maximiz-
ing the SNR and minimizing interference. In current swath sonars this is generally
done by the DAS beamformer Lurton, 2010, Ch 8.3.2. If another beamformer can
do this better, phase detections should improve.

Paper IV”2.4 Calibration

Calibration means to estimate and compensate for di�erences between the ideal
and actual signal model, to improve performance. Through our research we
found indications that performance may be limited by such e�ects. We therefore
developed and tested a calibration procedure. The following segment describes
why calibration may be necessary, consequences and bene�ts, and possible alter-
natives.

“ The sidelobe level of the DAS beamformer can be set almost arbitrarily low by
weighting the beamformer (Harris, 1978). In practice, it is limited. The achieved
sidelobe level for swath sonars is typically no lower than 25 to 30 dB (Clarke, 2006;
Lurton, 2010, Ch. 5.4.6.3). This limit is caused by errors like element displacement,
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amplitude and phase mismatch, mutual coupling and non-linearities (Litva &
Lo, 1996, Ch. 4.1; Steinberg, 1976, Ch. 13; Butler & Sherman, 2016, Ch. 7, 12;
Krim & Viberg, 1996; Viberg, Lanne, & Lundgren, 2009). To achieve lower levels,
calibration is necessary.

Calibration may also be helpful for using adaptive beamformers with swath
sonars, as the adaptive beamformers are more sensitive to calibration errors (Krim
& Viberg, 1996; Lønmo et al., 2019b; Van Trees, 2002, Ch 6.6). We have recently
shown that adaptive beamformers may improve swath sonar performance (Lønmo
et al., 2015a, 2015b, 2019b), and calibration may increase that bene�t (Lønmo et al.,
2019b).

Most swath sonar calibration methods are targeted at system parameters like
mounting angles and beampattern. The patch test handles integration and mount-
ing parameters (Clarke, 2003; Guériot, Chèdru, Daniel, & Maillard, 2000). Other
methods are used to measure the overall beampattern and calibrate the back-
scatter level (Foote et al., 2005; Lamarche & Lurton, 2017). Although important for
their purposes, the corrections are applied after beamforming. Since sidelobes are
determined in the beamforming step, such calibration methods cannot improve
the sidelobe level. Other calibration methods are therefore needed.

There exist a range of possible methods for element calibration (Krim & Viberg,
1996; Y. Li & Er, 2006; Qiong, Long, & Zhongfu, 2003; Van Trees, 2002, Ch. 8.11),
with variable assumptions and error models. In principle, calibration could be
performed routinely in a tank. On the other hand, tank calibration would not
account for changed calibration values due to changes in the local environment,
for example acoustical interference from the ship-mount (Lanzoni & Weber, 2012)
or changed material properties due temperature or pressure (Butler & Sherman,
2016, Ch. 2.9 and 5; Lurton & Lamarche, 2015, Ch. 4.2.2). Calibration values
for backscatter may drift over time (Lurton & Lamarche, 2015, Ch. 5.2), so the
same may be expected for element calibration. Environmental e�ects are also
not included if calibrating via internal reference signals (Pocwiardowski, Yu�t,
Maillard, & Eriksen, 2006). A �eld calibration method which includes the whole
system is therefore desirable, preferably a method without the need for additional
equipment like reference sources.

Calibration without known source locations is known as autocalibration or
self-calibration (Viberg et al., 2009, Ch. 3). Autocalibration exists for general
arrays (Qiong et al., 2003; Viberg et al., 2009, Ch. 3.4; Van Trees, 2002, Ch. 8.11.5)
or for particular applications (Cervenka, 2015; Farquharson, Lopez-Dekker, &
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Frasier, 2013; Ng, Er, & Kot, 1994).
Paper V, slightly adapted.”We chose to autocalibrate with a method based on the Generalized Interfero-

metric Array Response (GIAR) for two reasons. Firstly, because it is the directly
proposed for swath sonars Cervenka, 2015, with Cervenka outlined how GIAR
could be used for autocalibration, with an example indicating meaningful results.
Secondly, because it seemed like the theoretically best suited method among the
ones we reviewed. We estimated a complex calibration value per channel, as done
in Cervenka, 2015. A detailed description of GIAR and our calibration method
can be found in Paper V. Below, I brie�y comment on the choice of method.

The typical received signal for swath sonar is di�erent from many related
applications, which appeared to invalidate many calibration techniques. One
example is that the assumption behind shear-averaging autofocus used in syn-
thetic aperture sonar break down if a strong target is present Callow, 2003, Ch.
7.7.1. Another example is that some phase aberration techniques from medical
ultrasound require signals from a limited angular region, enabled by focused
transmission Flax and O’Donnell, 1988. Neither of these methods are well suited
for a swath sonar where the signal is typically dominated by two strong signals
which are widely spaced in angle and have limited angular extent. In contrast, the
GIAR method essentially look for samples dominated by a point-like signal from
the steering direction. Since GIAR usually can su�ciently suppress the second
signal, when steered toward the �rst, such samples are often available.

2.5 Swath sonar simulations

Swath sonar simulations has been an essential part of our work. We have both
used them independently, to explore problems and test explanations, and with
�eld data, to understand and extend the results. We have used similar simulator
con�guration through all our papers. The following is a representative example,
from Paper III.

“ Our simulation program is built around Field II (Jensen, 1996; Jensen &
Svendsen, 1992), a point-based simulator well regarded in the medical ultrasound
community. Field II can provide element time series for a given set of scatterers
and transmit and receive arrays.
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We model the sea�oor segments as a collection of points with uniform direc-
tivity and Gaussian scattering strength. The points are initially distributed on a
grid to ensure an even coverage of every resolution cell. Random position changes
on the order of a wavelength are added to the point scatterers to emulate a rough
sea�oor. This assumes a sea�oor that is rough compared to the wavelength. The
point density is chosen to get fully developed speckle. We have not adjusted the
absolute scattering strength to physically meaningful levels since only relative
values are important for our analysis.

We model a swath sonar with the standard Mill’s cross geometry (Lurton,
2010, Ch. 8.3.2). For faster simulations we replace a long transmit-array with a
single element and model the transmit beampattern by limiting the along-track
extent of the sea�oor to 0.7◦. We transmit a 100 µs Hanning (Harris, 1978) shaped
pulse with center frequency of 300 kHz. We add Gaussian noise to the simulated
element data before doing receiver processing. The element SNR ranges from
roughly 20 dB at nadir to around -5 dB at 40◦. We have only seen minor changes
in accuracy when adjusting the noise level, and therefore use a constant value.
These and the remaining parameters are summarized in Table 2.1. The parameters
were chosen based on (Lurton, 2010) and historical survey data.

Paper III”Table 2.1: Simulation parameters for Paper III.
Parameter Value
Center frequency 300 kHz
Pulse length 100 µs
Pulse type CW
Pulse shaping Hanning (Harris, 1978)
Sound speed 1500 m/s
Depth ≈ 40 m
Number of elements 128
Element spacing λ/2
Attenuation 65 dB/km
Element SNR ≈ -5 to 20 dB
Simulation region 0.7◦ × 120◦
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Chapter 3

Summary of publications
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Figure 3.1: Illustration of swath sonar data products and how they are covered by
the papers. The bold roman numerals indicate which paper covers the topic above
best. The numerals in parenthesis list other papers that also cover the topic.

This chapter summarizes the motivation, methods and results for the included
publications. Figure 3.1 shows a quick overview of what the papers cover.
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Paper I

Lønmo, T. I. B., Austeng, A., & Hansen, R. E. (2015b). Low Complexity
Adaptive Beamforming Applied to Sonar Imaging (Invited). In J. S.
Papadakis & L. Bjørnø (Eds.), Proceedings of the 3rd International Con-
ference and Exhibition on Underwater Acoustics (pp. 653–658). Crete,
Greece. url: http://www.uaconferences.org/docs/Past_proceedings
/UACE2015_Proceedings.pdf

Paper I examines the e�ect of the LCA beamformer on the water column
image and bottom detection for smooth sea�oors. It also introduces the use of
Field II as a swath sonar simulator. The water column image and amplitude and
phase bottom detections are qualitatively evaluated for small and large angles,
both in a simulated and a �eld example. Amplitude detection is done by the
maximum amplitude instant, and phase detection by �nding the zero phase
di�erence instant. We use the original LCA weight set used by Synnevåg et al.
(2011). LCA is compared with two DAS beamformers, one uniformly weighted
and one with Kaiser weights with β = 3.

We show that the mainlobe appears narrower for LCA than both DAS beam-
formers. This e�ect is larger at the highest angles. The sidelobes also appear lower
with LCA, especially in the simulations. The mainlobe improvements leads to
amplitude detections that follows the sea�oor more closely. In particular, strong
points on the sea�oor often dominate the detection for several close beams with
DAS, while this is not the case for LCA. Phase detections appear more accurate
with LCA than DAS on the �eld data, but seem to be somewhat worse on the
simulated data.

Paper II

Lønmo, T. I. B., Austeng, A., & Hansen, R. E. (2015a). Interference
rejection by Low Complexity Adaptive Beamforming. In Proceedings
of the Institute of Acoustics (Vol. 37). Institute of Acoustics, Bath,
United Kingdom. url: http://www.proceedings.com/27961.html

Paper II further examines the e�ect of the LCA beamformer by investigating
the water column image and amplitude bottom detections for a �eld example
with a wreck. The performance is qualitatively evaluated via the water column
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image with detections and a scatterplot of all detections on the wreck. We do
amplitude detection via the maximum amplitude instant and use the LCA weight
set from Synnevåg et al. (2011) without the inverted weights. LCA is compared
with two DAS beamformers, one uniformly weighted and one Kaiser weighted
with β = 3.

As in Paper I, we show that both mainlobe and sidelobes seem to improve
with LCA, and this leads to improved amplitude detections. Uniformly weighted
DAS shows high sidelobes which cause false detections not present for LCA
and Kaiser weighted DAS. Kaiser weighted DAS broadens features in the water
column which cause the detector to miss details revealed by DAS and LCA. LCA
seems to have the best performance in both cases, and also generally has the
apparent best detections along the sea�oor.

Paper III

Lønmo, T. I. B., Austeng, A., & Hansen, R. E. (2019b). Improving
Swath Sonar Water Column Imagery and Bathymetry with Adaptive
Beamforming. IEEE Journal of Oceanic Engineering. Early access.
doi:10.1109/JOE.2019.2926863

Paper III extends the water column and amplitude detection results from
Paper I and Paper II with a larger set of simulated and �eld examples, quanti�-
cation of amplitude detection accuracy and the addition of the Capon beamformer.
It describes three key properties for understanding the performance of the beam-
formers: Edge de�nition, resolution and sidelobe level.

We show the average water column image and detection statistics for three
simulated cases: A �at sea�oor with steps and two sinusoidal sea�oors, one
with large low frequency waves, and one with small high frequency waves. In
addition, we show a cross section at a step from the �rst case and a sun-illuminated
view of all detections in the last case. We include two �eld examples, one over
a wreck and one over a �at sea�oor with a boulder. For the boulder example
amplitude detections are shown on the water column image and visualized with
a sun-illuminated view. LCA and Capon are compared with a DAS beamformer
weighted with Kaiser β = 2.5 weights. We use a custom weight set for LCA and
a center-of-gravity amplitude detector.

We show that the adaptive beamformers improve all three quality metrics.
On simulated data, the sidelobe level and edge de�nition are much better for both
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LCA and Capon. Resolution is also improved for both, but signi�cantly more with
Capon. Particularly the improved edge de�nition, determined by microsteering
for LCA, leads to lower depth error for the amplitude detections across large
parts of the swath. LCA and Capon often have similar performance, although
Capon is better in cases where resolution or particularly high edge de�nition is
important. The improvements compared to DAS increase as the incidence angle
grows. We show that these improvements allow LCA and Capon to resolve the
high frequency waves, which are mostly hidden for DAS.

We �nd that the �eld examples are consistent with the results from the sim-
ulations. The extent of the sea�oor and many features in the water column is
reduced to more realistic sizes. The amplitude detections appear to track the
sea�oor better, and seem less noisy. The improvement in sidelobe level is smaller
than for the simulated data, with somewhat better results for LCA than for Capon.
We suggest that the sidelobe level is degraded more in the �eld than resolution
and edge de�nition since the sidelobe level is more sensitive to calibration errors.

Paper IV

Lønmo, T. I. B., Austeng, A., & Hansen, R. E. (2019c). On Interferomet-
ric Phase Detections for Swath Sonars with Adaptive Beamformers.
IEEE Journal of Oceanic Engineering, in review, submitted October
31st.

Paper IV studies if the adaptive beamformers also improve phase detections.
Field examples illustrate observations which suggest degraded performance. We
use simulations to quantify the performance and explain the observed e�ects
by investigating how the adaptive beamformers a�ect the phase di�erence. We
mainly use the LCA and Capon con�gurations from Paper III, and compare them
with uniformly weighted DAS.

We show that LCA and Capon generally preserve the expected phase dif-
ference, but increase the variance. Increased phase di�erence variance leads to
lower depth accuracy. The e�ect is larger away from the beam direction. We
�nd that the use of low WNG weights is a cause of this. This reduces the signal
to noise ratio (SNR) and consequently increases the phase di�erence variance.
These weight choices improve the edge de�nition and are therefore bene�cial
for the water column image and amplitude detections. For LCA, microsteering is
linked to much of the degradation.
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We also show that an adaptive beamformer may prevent missed detections in
case of strong interference. Capon demonstrates a low phase di�erence variance
in a case where no detection is possible for DAS. Adjusting LCA by removing
the microsteered weights gives phase di�erence variance near DAS without
interference and also improves performance with interference. We conclude that
improved phase detections with adaptive beamformers may be possible. However,
to achieve that, the adaptive beamformers, the bottom detection method, or both,
need to be modi�ed.

Paper V

Lønmo, T. I. B., Austeng, A., & Hansen, R. E. (2019a). Data Driven
Autocalibration for Swath Sonars. IEEE Journal of Oceanic Engineering,
in review, comments received November 1st.

Paper V studies if data from normal swath sonar operation can be used to
estimate phase and amplitude errors via the GIAR, and if correcting for them
improve the sidelobe level of the DAS beamformer. This is motivated by the
limited sidelobe level improvement in Paper III. We show the e�ect of amplitude
and phase errors on the water column image, particularly the sidelobe level, and
how it improves after calibrating. The water column image, cross sections, and
calibration errors are shown for simulated data and two �eld examples. We also
show the e�ect of grouping the calibration samples across-track and along-track
on the estimation error.

We �nd that GIAR autocalibration reliably estimates calibration errors using
data from normal operation. The standard deviation of the calibration estimate
seems to consistently improve as 1/

√
NEl, reducing the sidelobe level to near

ideal levels on the simulated data. The estimate of the calibration error appears
unbiased for phase, and slightly biased for amplitude. The amplitude bias induces
a small extra weighting, not likely to signi�cantly in�uence the sidelobe level.
Our results also suggest that GIAR autocalibration works in low SNR situations,
although the fraction of data usable for calibration is reduced.

We show that GIAR calibration also improves the sidelobe level in the �eld.
However, the scale of the improvements is lower, and the results are mixed. The
sidelobe level is lowered over large areas, removing artefacts from the water
column image and allowing for better separation between features and the back-
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ground. However, the sidelobe level is sometimes unchanged and occasionally
higher.

We also show that the estimation error increases greatly when switching
from across-track to along-track grouping when using �eld data, while it is
relatively unchanged with simulated data. Together with the reduced sidelobe
improvements in the �eld compared to the simulations, this suggests that the
amplitude and phase calibration model is insu�cient, at least for the swath sonars
we tested.
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Chapter 4

Summary and discussion

This chapter summarizes the main contributions of this thesis and brie�y dis-
cusses aspects relevant for use on a general swath sonar. Finally, I illustrate the
total improvement of this thesis on the water column image by demonstrating
autocalibrated adaptive beamforming.

The main contributions of this thesis to swath sonar signal processing are:

• Demonstrate working con�gurations for the adaptive LCA and Capon
beamformer, and showing how they can improve the water column image
and amplitude detections on simulated and �eld data.

• Characterizing the DAS, Capon, and LCA beamformers in terms of resolu-
tion, edge de�nition, and sidelobe level.

• Demonstrating the usefulness of the beamformer characteristics for ana-
lyzing performance, improving adaptive beamformer con�guration, and
transferring experience from simulations to the �eld.

• Demonstrate that and discuss why the adaptive beamformers preserve the
expected phase di�erence used in phase detections, but typically increase
the phase di�erence variance.

• Demonstrate that an adaptive beamformer may improve interference rejec-
tion for phase detection, and that the increased phase di�erence variance
can be reduced by recon�guration.

• Demonstrate that the demands of di�erent data products di�er, which
suggest di�erent optimal adaptive beamformers for each data product.
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• Demonstrate that swath sonar beamforming can be improved via GIAR
autocalibration on �eld data collected during normal operation.

• Identifying that the phase and amplitude error calibration model may be
insu�cient.

• Introduce and demonstrate the usefulness of Field II as a swath sonar
simulator.

Swath sonars exist in a range of di�erent con�gurations, and are used in
widely di�erent scenarios. This thesis has only considered a very limited subset.
A key remaining question is how these results will transfer to other systems and
scenarios. A related question is if autocalibration and adaptive beamforming
support modern features like multi-sector and multi-swath transmission. My
discussion of these questions below is also based on all my experience of using
adaptive beamformers and autocalibration on swath sonars through this work.
This includes examples from more systems, modes, and sectors than what is
included in the publications.

I have observed similar improvements as in the publications when using
data from di�erent sectors, modes, and transducers. Therefore, I expect similar
improvements when using the methods from this thesis on a comparable system
with multi-sector and/or multi-swath enabled, for all frequency modes. Capon
is a broadband method, and both Capon and LCA were used on a much higher
fractional bandwidth pulse in (Synnevåg et al., 2011). Therefore, this should also
apply to FM modes.

In principle, the proposed methods are largely frequency independent,1 so a
�rst approximation is that changing to a system with another operating frequency
should not change the results. In practice, I expect that this will e�ectively change
features that may a�ect performance. For example, the relative importance
of noise sources will change, which may change the typical structure of the
covariance matrix. Therefore, I think that larger di�erences are more likely when
switching to systems with di�erent operation frequencies.

Predicting performance in new scenarios can in many cases be done via the
beamformers properties resolution, edge de�nition, and sidelobe performance
as described in Paper III. As long as the received signal is dominated by signals
from relatively few angles, I think this will be accurate in most cases. The
di�erence in beamformer properties may also be used to help decide if LCA

1Assuming frequency, array size, and other parameters are scaled correspondingly.
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performance is good enough or if it is worth the extra e�ort to implements Capon.
In addition, the properties may guide modi�cations of the adaptive beamformers
for further improvements. For example, if better edge de�nition is needed, increase
microsteering for LCA.

This applies for scenarios like the ones shown in the paper, which brie�y
described are scenarios where the signal predominantly arrives from a few small
angular regions at each instant and, most signi�cantly, fairly high SNR. The low
SNR performance is important since it determines the achievable swath width,
which can greatly a�ect mapping e�ciency. Autocalibration may improve SNR,
however the improvement would be relatively small with the scale of our calibra-
tion errors. Therefore, it is more important to know the low SNR performance of
the adaptive beamformers. The reduced SNR observed in Paper IV is the most
related result from the published work. This would suggest lower performance of
the adaptive beamformers. However, this result may not be relevant since Capon
can perform better in cases with lower SNR (Van Trees, 2002, Ch. 7.3). Therefore,
I think further research is needed to make reliable predictions for the low SNR
case.

Another open question is the e�ect of adaptive beamforming on backscatter.
The processing is dependent on properties of the DAS beamformer, like beamwidth,
which is not well de�ned for adaptive beamformers. This means that backscatter
processing likely must be modi�ed when using adaptive beamformers. Prelimi-
nary results from Paper VI indicate that LCA may slightly lower the mean power
and change the backscatter distribution. Larger and better controlled studies,
which also include Capon, are needed before adaptive beamformers may be used
for backscatter.

I would also like to note that it might be reasonable to use autocalibration
more widely than the adaptive beamformers in the current state. The bene�t of
autocalibration is lower than from adaptive beamforming, however the potential
downsides are also much lower since the induced changes are relatively small. If
the current improvements seem attractive, I expect autocalibration can be applied
broadly with low risk.

To increase the bene�t of autocalibration a better error model is needed. There
exist many causes for calibration errors (Steinberg, 1976, Ch. 13; Litva & Lo, 1996,
Ch. 4.1; Viberg et al., 2009), which leads to di�erent error models. When designing
a calibration procedure, we need a calibration model that is simple enough to
allow e�cient estimation and compensation, but su�ciently complex to capture
enough of the calibration errors to provide useful improvements. The simplest
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extension of the current model may be to add mutual coupling. Mutual coupling
may be the simplest extension, since it essentially extends the calibration model
from a diagonal matrix to a full matrix, or at least a matrix with more non-zero
elements. Our calibration method can estimate and compensate for errors with
coupling with few changes. Another natural extension is to include position
errors. This is more complicated and will signi�cantly increase the computational
demand, since the beam delay depends on the element positions and must be
included in the optimization loop. Position errors can also not be completely
compensated for, and the perturbed array shape may change the ideal sidelobe
level. However, these methods are relatively simple compared to other options,
like non-linear e�ects, and may improve performance.

Through all our research we have used the Field II simulations. The controlled
experiments and ease of con�guration that the simulator provides has been
essential for our work. Similar simulators exist (Etter, 2013, Ch. 10.7), however,
none appeared available to us at the start of this project. The introduction of Field
II, which is freely available, for swath sonar simulation may therefore also be
valuable for other researchers. The general value is increased by Antoine Blachet
who has reworked the simulator and integrated it with the UltraSound ToolBox
(USTB) (Rodriguez-Molares et al., 2017). These developments have been presented
in Paper VIII and (Blachet et al., 2019). The latter shows that the simulator can
generate data which are representative of a real case and provide a fully functional
example.

In short, this thesis has demonstrated that adaptive beamformers can improve
several aspects of the swath sonar data products. We have also shown that di�erent
con�gurations are likely needed for di�erent data products. In the current state
adaptive beamforming needs to be a supplement to, not a replacement of, the
DAS beamformer. Autocalibration may likely improve DAS beamforming in a
broader set of cases. In addition, the next section shows that autocalibration
further increase the improvements of adaptive beamforming. Assuming that
the improvements we found in this thesis are realized, applying these methods
across a huge initiative like Seabed2030 would lead to large bene�ts. It seems
unlikely that most of the areas mapped in Seabed2030 would be resurveyed rapidly,
therefore the application of adaptive beamformers and autocalibration could bring
a net bene�t for a long time.
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4.1 Autocalibrated adaptive beamforming

Our work has sought to improve the swath sonar beamformer through adaptive
beamforming and autocalibration. The methods are intended to work best to-
gether. However, this has not been examined by the included papers. I therefore
show a brief example of autocalibrated adaptive beamforming here.

Figure 4.1 shows autocalibrated adaptive beamforming on one of the �eld
examples from Paper V. It shows Kaiser weighted DAS with β = 2.5 as the
baseline,2 uncalibrated LCA, calibrated LCA, and calibrated Capon. The latter
two illustrate, in a sense, the total improvement of the water column image from
this thesis.

As in the included papers the adaptive beamformers show smaller features
in the water column image and lower sidelobes. The main additional e�ect of
calibration is further reduction of the sidelobes. Several remaining streaks of
sidelobes are removed when LCA is calibrated in Figure 4.1. This shows that
adaptive beamforming and autocalibration can be combined for further bene�ts.

2Paper V used β = 5. I use β = 2.5 here since this gives a more reasonable mainlobe-sidelobe
trade-o�.

31



Figure 4.1: (Part 1 of 2) Autocalibrated adaptive beamforming example on �eld
data. (Top) Uncalibrated Kaiser β = 2.5 weighted DAS. (Bottom) Uncalibrated
LCA con�gured as in Paper III.

32



Figure 4.1: (Part 2 of 2) Autocalibrated adaptive beamforming example on �eld
data. (Top) Calibrated LCA con�gured as in Paper III. (Bottom) Calibrated Capon
con�gured as in Paper III.
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Chapter 5

Further work

Further work is needed to validate these results and improve remaining data
products. Some relevant research tasks are:

• Validate improvements with users of swath sonars
Some examples are: Acquire data from areas with known features at the
resolution limit and check if they are better resolved with adaptive beam-
formers. Perform full motion compensation and other corrections such that
amplitude detection improvements may be veri�ed through a patch test.

• Check robustness and performance in remaining cases
Particularly with low SNR.

• Extend improvements to other systems and modes
Both check performance for systems in other frequency ranges, and validate
that the adaptive beamformers support FM, multi-sector, and multi-swath
modes.

• Adapt and optimize LCA and Capon con�gurations
Develop new con�gurations suitable for phase detections, and investigate
optimal con�gurations for the water column image and amplitude detec-
tions.

• Investigate how LCA and Capon a�ect backscatter
Backscatter is a data product of high and growing interest. It is important
to check if adaptive beamformers is incompatible with existing backscatter
processing and how to account for this, if needed.
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• Evaluate autocalibration with an extended error model
Using a calibration model which can account for the apparent across-track
di�erence in calibration values.

• Investigate if autocalibration is more e�ective for aging transduc-
ers
We investigated new transducers. Errors and bene�ts may be higher for
older arrays which show e�ects of aging.

In a wider perspective, this thesis also illustrates the bene�ts of collecting
even more data during swath sonar surveys. During my time at the Center for
Coastal and Ocean Mapping at the University of New Hampshire I became familiar
with the principle “Map once, use many times”. One realization of this is that
backscatter and water column imagery may be logged even if bathymetry is
the feature of interest for the particular survey. This is relatively inexpensive
compared to a new survey, and enables further use of the data later. The next
step is to also log element data, before beamforming. This would enable past
surveys to bene�t from improved beamforming methods, like the ones examined
in this thesis. This would likely increase the amount of data logged by an order of
magnitude. The increased data rate will be challenging to handle, but should be
manageable with current technology. If this is applied to all new surveys across
a large project like Seabed2030, imagine the bene�ts of gradually being able to
discover new features as signal processing improves.
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Low Complexity Adaptive Beamforming
Applied to Sonar Imaging

Tor Inge Birkenes Lønmo, Andreas Austeng, and Roy Edgar Hansen.

Abstract

Modern sonars provide high-resolution acoustic imaging for a range of applica-
tions, including pipeline inspection, harbor surveys and seabed mapping. Central
in the signal processing of the sonar data is the beamforming, where conventional
(�xed) aperture tapering (or weighting) typically is used to set the equipment’s
resolution and robustness to appropriate values. This means that there are pre-
de�ned weights, not necessary optimally chosen, that express a compromise
between resolution and sensitivity to noise and interference.

In this work, we show how we can increase the resolution of bottom detections,
without reducing the robustness, by applying Low Complexity Adaptive (LCA)
beamforming. LCA can be viewed as a low computational cost version of the
minimum variance distortionless response (MVDR) beamformer. It is easy to im-
plement and improves the imaging process by adaptively choosing an appropriate
weight for any point in time and space.

We apply LCA beamforming on measured and simulated data. The simulated
data are generated by the freely available ultrasound simulator “Field II”. The
measured data was collected by a commercial echosounder.

LCA beamforming gives signi�cant reduction of the mainlobe width and
sidelobe level over conventional beamforming. LCA also gives clear improvements
for amplitude detections, and phase detections on measured data. The phase
detections on simulated data are partially worse. We expect to get the same
improvement for both datasets after minor modi�cations of the LCA algorithm.

Keywords: adaptive beamforming, underwater mapping, bathymetry, sonar

1 Introduction

High-resolution acoustic methods bring advantages for many applications. One
way to get increased resolution from existing equipment is with adaptive beam-
forming. In this work, we investigate if one adaptive method, Low Complexity
Adaptive (LCA) beamforming, can improve the resolution of bottom detections.
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LCA was �rst introduced by Synnevåg, Austeng and Holm (Synnevåg, Austeng,
& Holm, 2011), and it can be viewed as a low complexity version of the Minimum
Variance Distortionless Response (MVDR), also called Capon, beamformer (Van
Trees, 2002). It has been used successfully on a vertical array in shallow water by
Blomberg, Austeng, Hansen and Synnes (Blomberg., Austeng, Hansen, & Synnes,
2013), and on a sidescan sonar by Buskenes, Austeng and Nilsen (Buskenes,
Austeng, & Nilsen, 2011).

The low complexity follows from using a discrete search space and only using
one sample for its decision. This also reduces the signal suppression e�ects known
to a�ect the MVDR beamformer when coherent signals are present.

To evaluate the performance, we apply LCA beamforming to simulated and
measured data, and do bottom detection on the results. We compare this with
the results we get with conventional and kaiser weighted delay-and-sum (DAS)
beamforming. Bottom detection is done via both amplitude and phase.

2 Low Complexity Adaptive beamforming

The minimum variance distortionless response (MVDR) beamformer minimizes
the variance of the beamformer output while passing signals from the steering
direction through undistorted (Van Trees, 2002). It often needs to use diagonal
loading and spatial smoothing to make it robust against errors in estimation of
the covariance matrix and coherent signals. This reduces the resolution of the
beamformer (Synnevåg, Austeng, & Holm, 2007). Solving for the MVDR weights
also needs a matrix inversion, which may make the method too computationally
expensive for some applications

Low Complexity Adaptive (LCA) beamforming uses the same optimization
criteria but a discrete search space consisting of a prede�ned set of weights. In
practice this means that we apply ordinary delay-and-sum beamforming for all
weights and choose the minimum beam value. The discrete search space leads to
a complexity of orderNElNw instead ofNEl

3, whereNEl is the number of elements
and Nw is the number of weights in the search space. It also eliminates the
need for spatial smoothing and diagonal loading, since the method does not have
enough freedom to create signal suppression. This means that it is signi�cantly
faster and may perform better than MVDR (Blomberg. et al., 2013; Buskenes et al.,
2011).

Weight selection is grounded in observation of how MVDR achieves its results.
MVDR can for example use an asymmetric mainlobe, which gives sharper edges,
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and low sidelobes in regions with strong signals. We use the weight set from
Synnevåg et al. (Synnevåg et al., 2011), which includes both e�ects. The set
consists of the following twelve weights: uniform weights, kaiser weights with
β = 2, 3, 4, inverted kaiser weights for β = 2, 4, and kaiser weights with β = 3

steered to 1/2, 3/4, and 1 times the distance to �rst zero of the uniform window
(in both directions). All the weights are normalized such that the sum of the
weights equals one, to satisfy the distortionless constraint.

3 Data collection and simulation

We simulated a seabed mapping echosounder via the ultrasound simulation
program Field II (Jensen, 1996; Jensen & Svendsen, 1992). It uses linear system
theory to calculate the response from a distribution of point scatterers. The
program simulates the elements by subdicing the array into rectangles (which
may be smaller than an element) and uses a far �eld approximation for each
rectangle.

The simulated receiver is a 300 kHz λ/2 line array with 128 elements. We
transmit with one element and model the e�ect of transmission beampattern
by restricting the bottom to a strip. The bottom is modeled by a collection of
randomly distributed point scatterers. We use enough point scatterers to get fully
developed speckle. Attenuation is set to 65 dB/km. White noise is added to the
data before any receiver processing. We chose a noise level that was comparable
to what we got in the measurements described below.

Field measurements were done by a commercial echosounder with geometry
comparable to the simulated system. Both cases use a shaped single frequency
pulse with center frequency 285 kHz.

4 Processing

We processed both datasets the same way, i.e. we used the same �lters and
beamforming algorithms. Beam steering was done via time delays.

For each beam, we performed bottom detection via amplitude and phase. Am-
plitude detection chooses the strongest sample in a beam, while phase detection
�nds the zero instant of the phase di�erence between the beams formed on two
subarrays (Lurton, 2002). We used LCA independently on the two subarrays and
used the amplitude detection instant as a starting point for phase detection.
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5 Results and discussion

We applied DAS, weighted DAS, and LCA beamforming to simulated and measured
data in two areas around the bottom. Fig. 1 and Fig. 2 show the resulting beam
amplitudes and bottom detections. All plots have the same dynamic range of 70
dB, and are normalized to the strongest beam value across the three beams.

The most striking e�ect is that the main lobe width for LCA is narrower
than for DAS. This causes the amplitude detections to lie closer to the bottom
(presumed bottom in the measured case). For the two DAS cases strong speckle
points at the bottom lead to an erroneous detection for neighbor beams. This
e�ect essentially disappears with LCA. The reduction in main lobe width is largest
for high angles.

The sidelobe region for LCA is also the lowest of the three methods. This is
especially clear in Fig. 6.2(a).In this case, it does not a�ect the detections, but if
the bottom has inhomogeneous backscatter-strength this may have a signi�cant
e�ect.

LCA is clearly better for phase detections for the measured data shown in
Fig. 2. The detection sequence seems smoother and closer to the high amplitude
area that indicates the presumed bottom.

A few detections deviate signi�cantly from the others. In most of the cases
we have investigated this is caused by the relatively simplistic phase detection
algorithm we have used. A more sophisticated algorithm would improve or
discard these detections. The other cases were for low angles in the simulated
data, where there were no zero crossing in the right area. We do not pay closer
attention to these in this study, since phase detection is known to perform worse
for low angles.

For the simulated data at high angles, the LCA detection seems to have a bit
higher variance than the detections from the two DAS methods, even after we
disregard the outliers. We have not been able to track down the reason for this
with certainty yet, but suspect it is connected to our LCA implementation. In
general, the phase di�erences between the LCA subbeams are much more irregular
than for the other methods. Our LCA implementation uses LCA independently on
both subbeams, which means that di�erent weighting may be selected. We expect
that the phase will stabilize if LCA is forced to choose the same weighting for
both subbeams. The selection can be done per sample, or by the most frequently
selected weight in an area, as done by Buskenes et al. (Buskenes et al., 2011).
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Figure 1: Beam amplitude and bottom detections for di�erent beamforming
techniques on simulated data. Black dotted line shows actual bottom location.
Blue crosses are amplitude detections, red circles are phase detections. The
colormap represents relative power in dB.
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Figure 2: Beam amplitude and bottom detections for di�erent beamforming
techniques on measured data. Blue crosses are amplitude detections, red circles
are phase detections. The colormap represents relative power in dB.
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6 Conclusions

We have seen that LCA produces water column plot with a narrower bottom
region and less energy in the sidelobe region for both measured and simulated
data. This leads to higher resolution for bottom detection via amplitude. The
e�ect is larger at high angles.

LCA bottom detection is better than DAS for measured data, but partially
worse for simulated data. We expect LCA to be better in both cases after an
adjustment of the algorithm.

In total, LCA shows great potential to improve the resolution in seabed map-
ping applications. The complexity is also low enough that it is feasible to imple-
ment in a real time system.
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Interference Rejection for Sonars via Low
Complexity Adaptive Beamforming

Tor Inge Birkenes Lønmo, Andreas Austeng, and Roy Edgar Hansen.

1 Introduction

Accurate mapping of the seabed using active high frequency sonar is of importance
in many applications, for example in inspection of underwater infrastructure
and environmental seabed mapping. The delay-and-sum (DAS) beamformer is
commonly used for beamforming. However, it su�ers from high sidelobes, which
make it susceptible to masking of weak signals when there are strong interfering
signals present. This may cause serious problems as low quality data, loss of data,
and range reduction.

Conventional aperture shading is used to mitigate this, with a trade-o� against
resolution. By adjusting the beampattern in real time, adaptive methods promise to
provide increased sidelobe suppression while keeping or improving the resolution.
This is done by adjusting the beam pattern to have low gain in the directions with
interference and allowing large sidelobes in directions without signal.

In this work, we investigate the interference rejection capabilities of the
Low Complexity Adaptive (LCA) beamformer, which is a computationally cheap
version of the Minimum Variance Distortionless Response (MVDR) beamformer.
It uses a discrete search space and bases its decision on a single sample. The
discrete search space also make LCA resistant to signal suppression, which is a
serious issue for MVDR in active applications.

In earlier work, we have shown that LCA outperforms the DAS beamformers
for simulated and measured data over a �at sea�oor(Lønmo, Austeng, & Hansen,
2015). This time we test LCA further by applying it to data collected by a high-
resolution echosounder over the wreck of an oil tanker. The wreck has sharp
edges and big di�erences in backscatter level, which are common challenges
for the DAS beamformer. We investigate how LCA performs compared to the
unweighted and a weighted DAS beamformer.
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2 Low Complexity Adaptive beamforming

The adaptive Minimum Variance Distortionless Response (MVDR) beamformer
minimizes the variance of the beamformer output while passing signals from
the steering direction through undistorted (Van Trees, 2002). It may need to
use diagonal loading and spatial smoothing to make it robust against errors
in estimation of the covariance matrix and coherent signals. This reduces the
resolution of the beamformer (Synnevåg, Austeng, & Holm, 2007). Solving for
the MVDR weights also require inversion of the sample covariance matrix, which
makes the method too computationally expensive for some applications.

Low Complexity Adaptive (LCA) beamforming(Synnevåg, Austeng, & Holm,
2011) uses the same optimization criteria but a discrete search space consisting of
a prede�ned set of weights. In practice this means that we apply ordinary delay-
and-sum beamforming for all weights and choose the minimum beam value. The
discrete search space lets LCA avoid the need to estimate and invert the covariance
matrix. It also eliminates the need for spatial smoothing and diagonal loading,
since the method does not have enough freedom to create signal suppression. The
computational complexity for LCA is therefore of order NElNw instead of NEl

3,
where NEl is the number of elements and Nw is the number of weights in the
LCA weight set. This means that it is signi�cantly faster and may perform better
than MVDR (Blomberg., Austeng, Hansen, & Synnes, 2013; Buskenes, Austeng, &
Nilsen, 2011).

MVDR uses a variety of e�ects to achieve its good results. We have chosen
a weight set for LCA that captures the most important e�ects. MVDR can for
example use an asymmetric mainlobe, which gives sharper edges, and low side-
lobes in regions with strong signals(Synnevåg et al., 2011). Our set consists of
the following ten weights: Uniform, kaiser with β = 2, 3, 4, and kaiser with
β = 3 steered to 1/2, 3/4, and 1 times the distance to �rst zero of the uniform
window (in both directions). This is a subset of the weight set from Synnevåg et
al. (Synnevåg et al., 2011). We excluded two weights since they seemed to reduce
the performance. All weights are normalized such that the sum of the weight
equals one to satisfy the distortionless constraint.

3 Data collection and processing

We collected data with a high-resolution seabed mapping echosounder over
the wreck of an oil tanker called Holmengraa, located outside Horten, Norway.
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Holmengraa was a Norwegian 1500 dwt oil tanker. Allied airplanes sank it in 1944,
while it was sailing under a German �ag. The wreck is approximately 68 meters
long and 9 meters wide, and lies in a slope at almost 80 meters depth. Figure 1
shows an interferometric SAS image of the wreck. The wreck has common
challenging features as small and strong scatterers and sharp edges.

Our data were collected using a high-resolution seabed mapping echosounder.
The echosounder uses a Mill’s cross setup(Lurton, 2010) with two linear arrays:
A transmitter with .5 degree opening along-track and a receiver with 1 degree
opening angle across-track (for the used frequency). A tapered 285 kHz single
frequency pulse was used. The data were collected on a calm and sunny day,
without any rain or signi�cant wind or waves.

For each channel in the received data, we do bandpass and matched �ltering.
Then we steer toward the wanted angle via time delay and do beamforming
and bottom detection on the results. Later in this paper we compare di�erent
beamforming methods. The beamforming is then the only step to be changed, all
the other processing steps stay the same.

Our processing is somewhat simpli�ed since it assumes a homogeneous ocean
and that all vessel movements are along track (no motion stabilization). Because of
the calm data collection day and near vertical beams we expect these inaccuracies
to be small and that they will not a�ect the conclusions from this study.

We do bottom detection via the maximum amplitude instant method, com-
monly used near vertical incidence(Lurton, 2010). The technique uses the max-
imum amplitude instant as the arrival time for the bottom echo. Using this
instant, combined with beam direction and propagation speed, we can calculate
the bottom location.

4 Results and discussion

We applied uniformly weighted (or unweighted) DAS, kaiser (β = 3) weighted
DAS, and LCA beamforming to the echosounder data across Holmengraa. Un-
weighted and kaiser weighted DAS are selected to give two versions of the reso-
lution-sidelobe tradeo�. Uniform DAS gives good resolution at the cost of high
sidelobes, while kaiser DAS (β = 3) gives medium sidelobe level (24 dB) and
reduced resolution.

Figure 2 show all detections across Holmengraa for the three methods. We
have calculated beams for every 0.3 degrees. This is approximately a factor 3
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Figure 1: Interferometric SAS image of Holmengraa. Image by the Norwegian
Defence Research Establishment (FFI).
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Figure 2: Scatterplot of amplitude detections from whole swath. Color indicate
depth and brightness beam level for the detection instants. The along track
distance has been approximated by moving each line according to the mean ping
rate and vessel speed. Note that the average depth di�er from Figure 1. This may
be due to lack of tidal correction and/or transducer depth correction. Axis labels
are the same in all three plots.

63



oversampling, which we have done since adaptive methods can achieve higher
resolution than conventional methods.

The most apparent di�erence between the plots is that uniform weighted DAS
have some outliers. Apart from the plots are very similar, but the keen eye may
see a couple outliers for LCA that are not present for kaiser DAS. To explain the
outliers and look closer on other e�ects we will examine three pings, shown in
Figure 3, Figure 4 and Figure 5, in detail.

Figure 3 show a case with very strong backscatter from some areas. This give
strong sidelobes for the uniform DAS beamformer, visible as light blue arcs at
certain ranges. The sidelobes are stronger than the bottom echoes in this case,
which causes misdetections and outliers in Figure 2. The distant misdetections
are easy to identify, but the ones close to the right side of the wreck may be hard
to identify.

By applying kaiser weighted beamforming we greatly reduce these sidelobes
and consequently remove these misdetections. However, the widened mainlobe
smear out the details and miss other features. For example, the hole at around 5
meters across track distance that were picked up by the uniform beamformer, is
lost by the kaiser beamformer.

When using LCA we can get the best of both worlds. We get good sidelobe
suppression, better than for the kaiser weighted DAS, while picking up the hole.
LCA also gets signi�cantly smaller extension, even when compared to uniform
DAS, of what appears to be small sources at 2 meters across track distance and
slightly above deck at 8 meters cross track distance (no detection on the latter
for LCA). This enables the LCA detections to provide a better contour for the left
side of the ship.

We see the same e�ects in Figure 4. There are strong sidelobe arcs for the
uniform beams, which are lower or nonexistent for the kaiser and LCA beams.
LCA seems to be able to resolve more details. Localized scatterers as the one to
the top left of the deck have smaller extent for LCA. The LCA detections also give
an more likely right edge for the wreck, while uniform and kaiser weighted DAS
seem to be dominated by strong points in neighbor beams.

On the bottom to the left LCA seems to give a more probable shape for the
seabottom than the other methods. The uniform and kaiser detections seem to lie
in groups at constant range, indicating that neighbor beams are dominated by a
strong center beam. To the far right we see a few outliers for LCA, more than for
the kaiser weighted beams. The next �gure has a clearer example of this.

Figure 5 shows an example were LCA seems to perform worse. At 15 meters
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Figure 3: Beam power and bottom detections for di�erent beamforming techniques
on measured data, ping 33. Red crosses are amplitude detections. The colormap
represent normalized beam power in dB. The strongest beam sample across the
three beams is set to 0 dB.
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Figure 4: Beam power and bottom detections for di�erent beamforming techniques
on measured data, ping 74. Red crosses are amplitude detections. The colormap
represent normalized beam power in dB. The strongest beam sample across the
three beams is set to 0 dB.
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Figure 5: Beam power and bottom detections for di�erent beamforming techniques
on measured data, ping 69. Red crosses are amplitude detections. The colormap
represent normalized beam power in dB. The strongest beam sample across the
three beams is set to 0 dB.

67



cross track distance we see a two meter vertical spread in the LCA detections
while the uniform detections follow a straight line. A few of the kaiser detections
are a meter above the line, which seems to be bad but still better than LCA.

A probable explanation for this is that there is a spot in the seabottom with
weak backscatter caused by low speckle. LCA choose weights steered towards
this spot since it gives lower beam values. Therefore LCA gets very low beam
values and badly localized detections, since we have not removed low-amplitude
detections. The uniform detections are much better since the bottom lie at almost
constant range. Therefore, the weak spot is �lled in by sidelobes and we coinci-
dentally get good detections. The wide mainlobe of the kaiser weighted DAS �lls
in the edges of the soft spot and gives only one location for the misdetections.
Therefore, the LCA image may represent the bottom better, although these detec-
tions should be discarded. A more sophisticated bottom detector would probably
identify this as bad detections and then it will be a separate task to �ll the gap.

The examples we have shown are extreme cases that represent the e�ects we
see throughout the dataset. For example, the strong sidelobe arcs for the uniform
beams are prevalent in most pings, but usually do not result in the amount of
misdetections we saw in Figure 3.

5 Conclusions

Accurate mapping of the seabed using active high frequency sonar is of impor-
tance in many applications. In this paper we have considered three di�erent
beamformers: Uniformly weighted (or unweighted) DAS, kaiser weighted DAS
and LCA. We have compared their performance on data collected by a seabed
mapping echosounder of a scene containing a shipwreck. As in our previous
work(Lønmo et al., 2015), LCA seems give the best performance.

Uniform DAS gives high-resolution because of a relatively narrow mainlobe
but have high sidelobes, which give misdetections and false features in the water
column plot. Kaiser weighted DAS avoids the misdetections with lower sidelobes
but misses other features and smear out edges because of a wider mainlobe. LCA
appear to simultaneously give better resolution than the uniform weighted DAS
and better sidelobe supression than kaiser weighted DAS. We see this as less
sidelobes in the images, bottom detections that look more like a wreck contour and
less like one beam dominating the neighbors, and smaller extension of localized
targets.
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LCA gives worse detections in some low amplitude areas, while uniform and
kaiser weights DAS seem to perform better. However, it seems likely that LCA still
gives a more representative image of the bottom, and that a more sophisticated
detection algorithm would remove these detections.

Since we lack a true reference to verify this, these conclusions depend on our
ability to guess the true structure of the scene. We feel that our interpretations
are reasonable, but not infallible. Obtaining and comparing our result with high
quality reference data is therefore a high priority for further work.
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Improving Swath Sonar Water Column
Imagery and Bathymetry with Adaptive

Beamforming
Tor Inge Birkenes Lønmo, Andreas Austeng, and Roy Edgar Hansen.

Abstract

Modern swath sonar is a mature technology today and has reached a very high
level of sophistication including techniques to increase area coverage rate, data
quality, and resolution. There is, however, often a need to explore features at
the limit of what is resolvable. It is therefore of interest to consider alternative
signal processing techniques for a given physical system. For the traditional
Delay-And-Sum (DAS) beamformer there is a tradeo� between angular resolution
and sidelobe suppression. Using either the Capon or the Low Complexity Adap-
tive (LCA) beamformer, the water column edge de�nition, sidelobe level, and
resolution are improved compared to a moderately weighted DAS beamformer.
These improvements are similar to recent results for sector-scanning sonar. This
leads to improved performance for the amplitude-based center-of-gravity bottom
detector. The Capon beamformer performs best, while LCA has a large part of
the improvement with higher robustness and easier implementation. We use
simulations to show the improvements of the adaptive beamformers from nadir
up to 42◦ across track, and validate the results using �eld data. The improvements
in the water column increase the separation between features and noise and
collapse the apparent size of features down to more realistic dimensions. These
improvements allow the adaptive beamformers to reveal features that are hidden
for the DAS beamformer.

Keywords: Adaptive beamforming, seabed mapping, bathymetry, swath sonar,
low complexity adaptive beamforming, LCA, Capon.

1 Introduction

Swath sonars are a central tool for exploring the oceans. Among their uses are
collecting bathymetric data at large scales (Mayer et al., 2018), water column
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(Clarke, 2006, 2017) and backscatter imagery (Lamarche & Lurton, 2018). A
common challenge is that the scales of features of interest often are at, or close
to, the limit of what can be resolved (Clarke, 2018). Artifacts from beamforming
(sidelobes) may also introduce false detections and hide features in the water
column (Clarke, 2006). Too large beamwidth may prevent satisfactory target
detection at high incidence angles (Pereira & Clarke, 2015). It is therefore of
continuous interest to improve the performance of swath sonars.

Current swath sonar processing includes a delay-and-sum (DAS) beamformer
and two bottom detection methods: amplitude and phase (split beam interfer-
ometry) (Lurton, 2010, Ch. 8.3.3). The driving factor for the amplitude detection
uncertainty is the received envelope length (Lurton & Augustin, 2010). It is largely
determined by the beamwidth, e�ective pulse length and sea�oor geometry. The
DAS beamformers have an inherent tradeo� between beamwidth and sidelobe
level (Harris, 1978), while improvements to both are desirable.

The Capon beamformer, also known as the Minimum Variance Distortion-
less Response (MVDR) beamformer, has for long been used in passive sonar to
enhance performance (Cox, Zeskind, & Owen, 1987). It can improve resolution
and interference rejection compared to DAS (Van Trees, 2002, Ch. 6). More
recently, it has been applied to active sonar (Blomberg, Austeng, & Hansen, 2012;
Lo, 2004) and medical ultrasound imaging (Synnevåg, Austeng, & Holm, 2009).
The Capon beamformer has been used on swath sonars (Mitchley & Sears, 2014;
Pantzartzis, de Moustier, & Alexandrou, 1993; Rønhovde, Yang, Taxt, & Holm,
1999), but robustness concerns and high computational load have limited the
adoption (Lurton, 2010, Ch. 5.4.10).

The related robust and computationally inexpensive “Low Complexity Adap-
tive” (LCA) beamformer has also been proposed in medical ultrasound (Synnevåg,
Austeng, & Holm, 2011) and used for sector-scanning and other sonars (Blomberg.,
Austeng, Hansen, & Synnes, 2013; Buskenes, Hansen, & Austeng, 2017). It provides
a large part of the gain of the Capon beamformer while having a computational
load and robustness close to DAS (Blomberg. et al., 2013; Buskenes et al., 2017;
Synnevåg et al., 2011). Swath sonars have many common features to sector-
scanning sonars. It is therefore interesting to investigate if improvements like
in (Buskenes et al., 2017) can be achieved for swath sonars, and how they a�ect
bottom detections. Results from preliminary studies indicate that both swath
sonar water column imagery and bottom detections can be improved (Lønmo,
Austeng, & Hansen, 2015a, 2015b).

In this study, we show that the Capon and LCA beamformers can simultane-
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Figure 1: Overview standard and adaptive processing chain. The adaptive beam-
formers use the same data as the DAS beamformer, and the results from each
beamformer are processed in the same way. This ensures that di�erences can be
attributed to the beamformers.

ously improve resolution, edge de�nition and sidelobe level in the water column
image from swath sonars. This reduces bias and variance for amplitude detections
and brings better resolution and edge de�nition. The improved edge de�nition
of the adaptive beamformers is central to these results, and we have adapted
the LCA beamformer to take advantage of this. We argue that these gains can
improve swath sonar bathymetry from the specular direction until a delayed
phase detection transition, and where phase detections fail. We show that the
adaptive beamformers may reveal features which are hidden when using the DAS
beamformer. We validate the adaptive beamforming techniques on data collected
by a state-of-the-art swath sonar.

We initially describe our processing chain and the essentials of our beamform-
ers and detector. Then we describe the simulation method, scenes and results,
followed by �eld results and discussion.

2 Signal processing

We process our data with a standard swath sonar processing chain (Lurton, 2010,
Ch 8.3). We vary the beamforming step as described below while keeping all the
other parts identical. This is illustrated in Figure 1.

Below we give a brief description of the beamformers we use, swath sonar
bottom detection and a comparison of the relevant beamformer properties.
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2.1 Classical DAS beamforming

DAS beamforming (Johnson & Dudgeon, 1993) is the standard beamforming
method for current swath sonars (Lurton, 2010, Ch 8.3.2). It algorithmically steers
the array by delaying the signal from each element such that the signal from
the steering direction (far �eld) or point (near �eld) add coherently, while others
sum incoherently. The delays may be approximated by phase rotation for narrow
band signals and small enough steering angles (Johnson & Dudgeon, 1993). The
DAS beamformer is typically weighted (also called shaded or tapered) to better
suppress interfering signals by lowering the sidelobe level. This reduces resolution
and edge de�nition due to a wider mainlobe (Harris, 1978). The resulting beam
time series b(θ)(t) steered toward the angle θ is given by

b(θ)(t) = wHs(θ)(t) =


w1

w2

...
wNEl


H

s

(θ)
1 (t)

s
(θ)
2 (t)

...
s

(θ)
NEl

(t)

 , (8.1)

where NEl is the number of elements, wi is the weight for element i and s(θ)
i is

the signal from element i at time t, after it has been delayed toward θ, and •H
indicates the complex conjugate transpose. The steering angle θ is 0 toward nadir
and is equal to the incidence angle for a horizontal sea�oor. DAS’s advantages
are speed, simplicity and robustness.

We use Kaiser weights with β = 2.5 for our DAS beamformer. This weight
set has a decent tradeo� between sidelobes and mainlobe. The variations we have
observed between di�erently weighted DAS beamformers are small compared to
the di�erences between DAS and the adaptive beamformers.

2.2 Capon beamforming

The adaptive Capon beamformer (Van Trees, 2002, Ch. 6), (Krim & Viberg, 1996) is
known for having better resolution and interference rejection capabilities than the
standard DAS beamformer. The key di�erence between an adaptive beamformer
as Capon, and DAS is that the weights w(θ)

Capon(t) now depend on steering angle
and time. This allows for enhanced performance by dynamically adjusting the
beampattern to the present signal conditions.

Capon selects the weights by minimizing the variance of the beamformed
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signal without distorting signals from the steering direction. For pre-delayed
signals this can be expressed as:

w
(θ)
Capon(t) = arg min

w
E
∣∣wHs(θ)(t)

∣∣2 (8.2)

= arg min
w

wHR(θ)(t)w, (8.3)

under the constraint that
NEl∑
i=1

wi = 1, (8.4)

where R(θ)(t) = E
(
s(θ)(t)s(θ)(t)H

)
is the steered covariance matrix (Krolik &

Swingler, 1989). The beam time series can then be obtained by (8.1).
Capon’s main drawbacks compared to DAS are potentially lower robustness

(Cox et al., 1987) and higher computational demands (Lurton, 2010, Ch. 5.4.10).
The main sources of the robustness problems are signal model mismatch and
di�culties with estimating the covariance matrix R.

To ensure su�cient robustness we use spatial smoothing (Lo, 2004; Shan, Wax,
& Kailath, 1985; Synnevåg et al., 2009) over NEl/2 elements, forward-backward
averaging (Lo, 2004; Rao & Hari, 1990; Rønhovde et al., 1999) and diagonal loading
(Carlson, 1988; Cox, 1973) equal to 5 % of the mean signal energy. The signal
statistics may change quickly for our case, so we do not use time averaging (Llort-
Pujol, Sintes, Chonavel, Morrison, & Daniel, 2012; Rønhovde et al., 1999). Based
on earlier work (Austeng et al., 2008; Buskenes et al., 2017; Synnevåg, Austeng, &
Holm, 2007) we consider this to be a relatively robust set of parameters that will
work well for our application.

2.3 Low Complexity Adaptive (LCA) beamforming

LCA (Buskenes et al., 2017; Synnevåg et al., 2011) is a relatively new adaptive
beamformer, �rst used in medical ultrasound. With a small weight set, LCA can
give a large part of the improvement from Capon without important drawbacks
(Buskenes et al., 2017; Synnevåg et al., 2011). It can be viewed as a hybrid
between Capon and DAS. LCA, as Capon, minimizes the variance and obeys the
distortionless constraint. The di�erence is that while Capon can select almost any
weight, LCA is restricted to a pre-selected weight setW = {w1,w2, . . . ,wNLCA},
where NLCA is the number of weights in the set. LCA beamforming may also be
interpreted as selecting the apparently best beam value from di�erently weighted
DAS beamformers according to the Capon optimality criteria.
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Table 1: Weight parameters for our LCA weight set. The Kaiser β parameter
controls sidelobe level and φ describe the amount of microsteering compared
to the 3 dB beamwidth φ3dB(β) with the given β. Full description in (Buskenes,
Hansen, & Austeng, 2017), which proposed this weight set class.

Kaiser β Microsteering amount (φ/φ3dB(β))
0 (Rectangular) 0, ±0.9, ±1.8
2.5 0, ±0.9, ±1.8
5 0, ±0.9, ±1.8

The LCA weight set contains standard DAS weights and microsteered (Syn-
nevåg et al., 2011) weights. Microsteered weights mimic certain asymmetric
beampatterns used by the Capon beamformer, which particularly improves the
edge de�nition (Synnevåg et al., 2011). Microsteering requires that small, addi-
tional, delays are applied after beam steering. We apply them by phase rotation.

The pre-selected weight set makes LCA inherently more robust than Capon.
As an example, the limited weight set prevents signal cancellation (Synnevåg
et al., 2011), which is potentially detrimental for Capon (Van Trees, 2002). This
reduces the need for additional constraints on LCA (Synnevåg et al., 2011). In this
paper we use LCA without any of the modi�cations applied to Capon. The LCA
weight is selected by:

ŵ
(θ)
LCA(t) = arg min

w∈W

∣∣wHs(θ)(t)
∣∣2 . (8.5)

Our weight set is described in Table 1. The set was initially selected based
on existing examples (Buskenes et al., 2017; Synnevåg et al., 2011), and tuned
for swath sonars based on observed performance. The main di�erence from
(Buskenes et al., 2017; Synnevåg et al., 2011) is increased microsteering.

2.4 Bottom detection

Swath sonars may use multiple bottom detection schemes (Lurton, 2010, Ch. 8.3.3).
Commonly, amplitude detections are used near specular directions and phase
detections are used at higher incidence angles. Amplitude detections are also
used when the phase detector fails (Lurton, 2010, Ch. 5.4.10). For example, if
there are multiple targets at the same slant range, either within the beam or in a
sidelobe that is not su�ciently suppressed.

The location of the transition angle, where the system switches between

78



Figure 2: Illustration of pulse- (left) and beam-determined (right) regimes for
received envelope length (not to scale). Blue arcs show the e�ective edges of the
pulse (after processing) at a given instant, δR shows the distance corresponding
to the received envelope length. At vertical incidence the whole beamwidth is
illuminated approximately simultaneously, and the pulse length determines δR.
At high incidence angles the pulse length is short compared to the footprint, and
the time needed for the pulse to travel across the beam footprint determines δR.

phase and amplitude detections, varies depending on system, signal-to-noise ratio
(SNR), scene, detector con�guration and transition criteria (Hare, Godin, & Mayer,
1995; Llort-Pujol et al., 2012; Lurton & Augustin, 2010). It may be as low as ±10◦

(Clarke, 2018), or as high as 45◦ (Lurton & Augustin, 2010).
We use a center of gravity (barycenter) detector based on the envelope between

the -10 dB points around the peak (Lurton & Augustin, 2010). We use a Hamming
(Harris, 1978) shaped averaging �lter with same length as the transmitted pulse
for selecting the -10 dB points.

For a given swath sonar con�guration, the amplitude detection accuracy is
determined by the envelope length after processing (Lurton & Augustin, 2010).
The envelope length is determined by e�ective pulse length, beamwidth and
seabed geometry (Lurton, 2010, Ch. 8.3.3.2). The typical regimes for a �at sea�oor
are illustrated in Figure 2. A reduced beamwidth improves amplitude detections,
especially at high incidence angles.

Low sidelobe levels are important to avoid false detections with the amplitude
detector, which may happen when an echo in a sidelobe is stronger than the
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Figure 3: Beamformer steered response for a simpli�ed scenario with 3 equal
strength sources and 10 dB SNR. Text above indicates which beamformer property
that is most important in each region. R: Resolution, ED: Edge De�nition, SL:
Sidelobe Level.

sea�oor echo. Typical cases where this may be a problem is for strong specular
echoes or with large di�erences in scattering strength across the sea�oor (Lurton,
2010, Ch. 8.3.3).

2.5 Comparison of beamformer properties

To prepare for later analysis we provide a comparison of the most important
beamformer properties for our study: Resolution, edge de�nition and sidelobe
level.

Figure 3 shows how the DAS, LCA and Capon beamformers work in a simpli-
�ed case with three equal strength sources and 10 dB SNR. There are one isolated
and two closely spaced sources, their directions are shown by the black vertical
lines.

Resolution is the ability to separate closely spaced sources. It is illustrated by
the region marked “R” in Figure 3. Capon easily resolves the two points, Kaiser
β= 0 DAS and LCA barely resolve the points, while Kaiser β = 2.5 DAS does not
resolve them.
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Edge de�nition describes the steepness of the steered response at the sides
of an isolated point or object. For the DAS beamformer, resolution and edge
de�nition are both determined by the mainlobe width. For adaptive beamformers,
the two concepts are uncoupled, as the regions marked “ED” in Figure 3 show.
We see that although LCA has the same resolution as the best-case (β= 0) DAS,
the edge de�nition is almost as good as Capon’s.

A convenient way to describe the edge de�nition and resolution improve-
ments is that the adaptive beamformers reduce the e�ective beamwidth. For our
purposes the e�ective beamwidth has essentially the same role for the adaptive
beamformers as the beamwidth for DAS, for example in determining amplitude
detection accuracy. It is important to note that the e�ective beamwidth varies
across the scene.

Sidelobe level describes how strongly the beamformer suppresses signals from
directions di�erent from the steering direction and is illustrated in the sidelobe
region marked “SL” in Figure 3. The sidelobe level of the weighted (β = 2.5)
DAS beamformer is lower than the unweighted (β = 0), illustrating the tradeo�
with DAS weighting. The adaptive beamformers have much lower sidelobe levels
than both DAS beamformers, in addition to the edge de�nition and resolution
improvements described above.

Real transducers have errors which make the actual signal model di�erent
from the one presented earlier. This a�ects the beamformers, and properties
above, to a di�erent degree. For DAS, the mainlobe is very robust against such
errors, while the sidelobes are more sensitive (Steinberg, 1976, Ch. 13). In practice,
model mismatch e�ectively limits the lowest attainable sidelobe level.

LCA selects one of a set of DAS beamformers, therefore LCA’s sensitivity
is linked to DAS’s. Resolution and edge de�nition improvements are linked to
the mainlobe of the underlying DAS beamformers, and should therefore be less
sensitive to model mismatch than the sidelobe level. Model mismatch can be
detrimental for the Capon beamformer if not properly accounted for (Cox, 1973;
Li, Stoica, & Wang, 2003).

As this example shows, adaptive beamformers may avoid the tradeo� inherent
to DAS and may improve all properties simultaneously. We will use the results
from this example to explain the improvements of the adaptive beamformers in
the simulated and �eld examples below.
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3 Simulation method

Our simulation program is built around Field II (Jensen, 1996; Jensen & Svendsen,
1992), a point-based simulator well regarded in the medical ultrasound community.
Field II can provide element time series for a given set of scatterers and transmit
and receive arrays.

We model the sea�oor segments as a collection of points with uniform direc-
tivity and Gaussian scattering strength. The points are initially distributed on a
grid to ensure an even coverage of every resolution cell. Random position changes
on the order of a wavelength are added to the point scatterers to emulate a rough
sea�oor. This assumes a sea�oor that is rough compared to the wavelength. The
point density is chosen to get fully developed speckle. We have not adjusted the
absolute scattering strength to physically meaningful levels since only relative
values are important for our analysis.

We model a swath sonar with the standard Mill’s cross geometry (Lurton,
2010, Ch. 8.3.2). For faster simulations we replace a long transmit-array with a
single element and model the transmit beampattern by limiting the along track
extent of the sea�oor to 0.7◦. We transmit a 100 µs Hanning (Harris, 1978) shaped
pulse with center frequency of 300 kHz. We add Gaussian noise to the simulated
element data before doing receiver processing. The element SNR ranges from
roughly 20 dB at nadir to around -5 dB at 40◦. We have only seen minor changes
in accuracy when adjusting the noise level, and therefore use a constant value.
These and the remaining parameters are summarized in Table 2. The parameters
were chosen based on (Lurton, 2010) and historical survey data.

4 Simulation results

In this section we introduce simulated results from three scenarios intended to
highlight di�erent aspects of beamformer and detector performance relevant for
swath sonars. All these results are based on 100 simulated pings. For each ping we
perform beamforming and bottom detection for every 0.1◦ between nadir and 40◦.
We oversample in angle since adaptive beamformers may attain higher resolution
(Åsen, Austeng, & Holm, 2014). The water column plots are incoherently averaged
to reduce speckle and better show the performance trend.

82



Table 2: Simulation parameters
Parameter Value
Center frequency 300 kHz
Pulse length 100 µs
Pulse type CW
Pulse shaping Hanning (Harris, 1978)
Sound speed 1500 m/s
Depth ≈ 40 m (See Figure 4)
Number of elements 128
Element spacing λ/2
Attenuation 65 dB/km
Element SNR ≈ -5 to 20 dB
Simulation region 0.7◦ × 120◦

4.1 Flat, stepped sea�oor. Step width 5 m, step height 1 m.

The simulated sea�oor is shown in Figure 4. This case establishes baseline perfor-
mance on a �at sea�oor while also highlighting performance at sharp edges.

Figure 5a shows the mean water column image for the Kaiser weighted DAS
beamformer with β = 2.5, and the adaptive LCA and Capon beamformers. The
adaptive beamformers show a much thinner apparent sea�oor, while simultane-
ously reducing the sidelobe level. The thinning e�ect is larger at higher steering
angles (larger across track distance). Capon produces a somewhat thinner sea�oor
than LCA.

Figure 6 shows that DAS, LCA and Capon separate most distant sea�oor
segments by 4.1 dB, 7.7 dB and 22.7 dB respectively. It also shows that both LCA
and Capon have a much sharper decay at the outer edges of the segments. Note
the similarity to the resolution example in Figure 3.

Figure 5b shows the mean detected depth and root-mean-square depth er-
ror (RMSE) for the amplitude detections. The mean depth is similar across all
beamformers, but not identical.

We note two subtle di�erences. The DAS beamformer tends to smooth the
edges compared to the adaptive beamformers. In addition, the mean value for the
DAS beamformer is somewhat noisier at the highest steering angles.

The RMSE curves in Figure 5b roughly consist of near-linear trends with
intermittent peaks for all beamformers. The trends represent the �at-sea�oor
performance, while the peaks are due to the steps.
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Figure 4: Sketch of part of stepped sea�oor (not to scale). Black lines show the
areas where points are located. The thin red line shows a beam direction with
steering angle θ. Red part of the sea�oor is removed due to shadowing, L is the
length of each sea�oor segment, H is the step height and d is the depth of the
lower part of the sea�oor. We use L = 5m, H = 1m, and d = 40m.

All beamformers have similar RMSE near nadir. DAS starts to have a barely
higher RMSE than the adaptive beamformers after the �rst peak, a di�erence that
quickly grows as the steering angle increases. LCA starts to have barely higher
RMSE than Capon around the third peak. The di�erence grows with steering
angle, but slower than for DAS, so the LCA RMSE trend stays closer to Capon
than to DAS.

The main deviation from these trends is the peaks in the RMSE around the
steps. The peaks are wider for DAS than for the adaptive beamformers, and LCA
has slightly wider peaks than Capon.

LCA also has a rise in RMSE around the peaks near the 30◦ and 40◦ steps.
The angles a�ected correspond to the ranges where echoes from the neighboring
sea�oor segment interfere. Capon has a similar, but smaller, rise only at the latter
step.

4.2 Sinusoidal sea�oor. Period 5 m, amplitude 1 m.

This case highlights the beamformer performance on gradually varying sea�oors
and the e�ect of di�erent slopes.

Figure 7a shows the mean water column image. As before, the adaptive
beamformers show a thinner apparent sea�oor, with advantage to Capon, and
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(a)

Figure 5: (Part 1 of 2) (a) Incoherently averaged water column power (dB). Stepped
sea�oor as sketched in Figure 4 with L = 5 m step width and H = 1 m step
height. Based on 100 simulated pings. Absolute power level is arbitrary. The
dashed line to the right of the DAS plot in (a) indicates the location of the cross
section in Figure 6. [This �gure has a part (b) below.]
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Figure 5: (Part 2 of 2) (b, top) Mean depth and (b, bottom) RMSE for the detections.
When stepping up, as at 30◦, a few beams do not hit any sea�oor segment and
thus have no true depth. These beams have been omitted in the RMSE plot. The
RMSE in the high peaks are not representative for the accuracy, due to detections
on both the upper and lower segment. However, the width of the peaks indicates
the edge de�nition. [This �gure has a part (a) above.]
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Figure 6: Slant range cross section at the most distant sea�oor step of Figure 5a.
Location shown by the dashed line in Figure 5a. Note the similarity to the
resolution example in Figure 3.

lower sidelobes. However, in this case the di�erence in apparent sea�oor thickness
oscillates instead of the gradual increase seen in the previous case. The changes
follow the oscillation of the sea�oor, with only minor di�erences at the up-slope
and largest di�erences at the down-slope.

Figure 7b shows the mean detected depth and RMSE for this case. The mean
depth is similar for all beamformers. The di�erences in RMSE also oscillate. They
follow the di�erences in apparent sea�oor thickness from Figure 7a. The peaks
in the RMSE oscillation are much lower for the adaptive beamformers compared
to DAS, and Capon is better than LCA.

4.3 Sinusoidal sea�oor. 1 m period , 10 cm amplitude.

This case highlights the beamformer performance close to the DAS resolution
limit. The wave dimensions correspond to ∼ 2.5% and ∼ 0.25% of depth, which
are at the lower limit of features of interest for swath sonars (Clarke, 2018).

Figure 8a shows the mean water column image. As before, the adaptive
beamformers show a thinner apparent sea�oor and lower sidelobes. The thin-
ner apparent sea�oor allows the adaptive beamformers to reveal the sinusoidal
sea�oor structure, which is hard to see with the DAS beamformer.

Figure 8b shows the mean detected depth and RMSE. The detections are
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Figure 7: (a) Incoherently averaged water column power (dB), (b, top) mean depth
and (b, bottom) RMSE for the detections. Sinusoidal sea�oor with 5 m period and
1 m peak-to-peak amplitude. Based on 100 simulated pings. Absolute power level
is arbitrary.
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Figure 8: (a) Incoherently averaged water column power (dB), (b, top) mean depth
and (b, bottom) RMSE for the detections. Sinusoidal sea�oor with 1 m period and
10 cm peak-to-peak amplitude. Based on 100 simulated pings. Absolute power
level is arbitrary. Figure 9 shows the e�ect of these improvements at a glance.
Note that the axis limits di�er from the previous �gures.
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Figure 9: Sun-illuminated plot of stacked detections from 100 simulated pings over
a sinusoidal sea�oor with period 1 m and peak-to-peak amplitude 10 cm. Nadir is
to the left, the right edge is at 42◦ steering angle. Same data as in Figure 8. The
sinusoidal sea�oor structure is clearly visible with LCA and Capon, while hard
to see with DAS. Capon has a few outliers, which we believe a more advanced
detector would avoid.

biased toward the average depth for all beamformers, however the bias is quickly
reduced for the adaptive beamformers as the steering angle increases. Capon
converges to lower bias than LCA. Similarly, the RMSE is lower for the adaptive
beamformers after about 3◦ steering angle with an advantage to Capon at the
highest angles. Capon also has lower bias and somewhat lower RMSE in the
immediate neighborhood of nadir.

Figure 9 shows the e�ect of the detection improvements at a glance. The
wave pattern on the seabed is largely hidden by the DAS beamformer and clearly
shown by the adaptive beamformers. It is barely visible for all beamformers near
nadir.

Capon has larger outliers than LCA in Figure 9. We found them to be artefacts
due to a lack of threshold �ltering in our amplitude detector.
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5 Field results

To complement and validate our simulated results, we have used the same beam-
formers on �eld data collected with a swath sonar comparable to the one simulated.
Data courtesy of the Canadian Hydrographic Service. Collected August 2016 near
Sidney, BC, Canada .

5.1 The wreck of HMCS Mackenzie

(a)

Figure 10: (Part 1 of 3) (a): HMCS Mackenzie while in service. HMCS Mackenzie
now serves as an arti�cial reef and the red box indicates the area imaged. (b, c, d):
Water column power (dB) for DAS and the adaptive beamformers respectively.
The water column images show parts of the rear mast, cables attached to the
mast, deck and likely a davit (lower left part of deck). The wreck is surrounded
by what we expect to be marine organisms. The dotted red ellipses show two
regions with high density of them. Absolute power level is arbitrary. Photo by
PH2 M. Correa, U.S. Navy, via Wikipedia:HMCS Mackenzie. Data courtesy of the
Canadian Hydrographic Service.

Figure 10 shows the water column image of a ping over the wreck of HMCS
Mackenzie. It illustrates many of the e�ects observed in the simulations and
shows how the di�erent beamformers perform on complicated scenes. Wrecks
are also often targets of particular interest and are cases where the water column
image may be needed to supplement the bathymetric detections (Wyllie, Weber,
& Armstrong, 2015).
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(b)

(c)

Figure 10: (Part 2 of 3) Caption with part 1.
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(d)

Figure 10: (Part 3 of 3) Caption with part 1.
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In contrast to the simulated water column plots, Figure 10 is not averaged,
and therefore shows speckle e�ects. The ping shows parts of the rear mast, deck
and presumably a davit. The wreck is surrounded by what we expect to be marine
organisms, particularly in the regions marked by the dotted red ellipses.

The adaptive beamformers reduce the apparent width for many features in
the water column down to more realistic dimensions. This e�ect is largest for
features with limited angular extent, like the davit. The di�erence in apparent
thickness for the deck is much smaller.

The sidelobe level is reduced by the adaptive beamformers as for the simulated
data. For example, at both sides of the deck and around the point-like features
indicated by a red arrow in the DAS plot of Figure 10.

The appearance of the marine organisms is similar with DAS and Capon,
although Capon has more well-de�ned points. It appears somewhat patchier and
has a lower average level with LCA.

5.2 Smooth sea�oor with boulder

Figure 11 shows excerpts of the water column image over a smooth sea�oor with
a boulder and accompanying amplitude detections. The few point targets in the
water column are expected to be �sh.

As before we see lower sidelobes and a thinner apparent sea�oor for the
adaptive beamformers. The apparent size of the �sh is reduced, and they are
better separated from the background.

The detections for the adaptive beamformers form a smoother curve than
the detections from DAS, especially at larger across track distances. Figure 12
shows a sun-illuminated view of the detections around this ping. It shows that the
smoother curve manifests as less noisy bathymetry for the adaptive beamformers.

The boulder appears to be better de�ned in the water column with the adap-
tive beamformers, and there are visible di�erences in the detections shown in
Figure 11 and 12. However, without ground truth we cannot reliably decide which
beamformer is the most accurate.

6 Discussion

First we connect the results to the properties we saw in section 2.5. Then we
discuss the consequences of the improvements.
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Figure 11: Water column power (dB), one ping over a boulder with presumed �sh
in water column. Red dots are amplitude bottom detections. Absolute power level
is arbitrary. Field data courtesy of the Canadian Hydrographic Service.
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Figure 12: Sun-illuminated bathymetry of boulder area. Correspond to data from
15 pings with steering angles between 0◦ and 40◦. Vessel track is along the
short edge to the right. Mean depth is 26.3 m. Plot made by stacking detections
along-track based on the ship’s average speed, disregarding other vessel motion.
Weather during data collection was calm. One clear outlier has been removed for
Capon. Field data courtesy of the Canadian Hydrographic Service.

6.1 Edge de�nition

The narrowing of the sea�oor with the adaptive beamformers is largely due to
edge de�nition improvements. At the highest steering angles in Figure 5a the
pulse illuminates only a small area compared to the beamwidth. For each instant,
the received signal is like the edge de�nition example in Figure 3, and the smaller
e�ective beamwidth of the adaptive beamformers narrows the apparent sea�oor
width by a large amount. For normal incidence, the pulse length determines the
length of the echo, and therefore also the apparent sea�oor thickness (Lurton,
2010, Ch. 8.3.3). As the adaptive beamformers operate in the across track angular
domain, they cannot improve this, and the performance is similar to DAS. The
gradually growing advantage of the adaptive beamformers follows from the
continuous transitions between these two extremes. A couple of deviations from
the gradual trend are due to resolution. These are discussed in the next section.

The extent of the narrowing oscillates in Figure 7a since the e�ect described
above for Figure 5a is linked to the incidence angle, not the steering angle. The
sinusoidal shape changes the incidence angle and therefore the narrowing by the
adaptive beamformers. Similar arguments explain most of the narrowing in the
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remaining examples.
The amplitude detection accuracy is determined by the envelope length after

processing (Section 2.4). Since the apparent sea�oor is narrower, the envelope
is shorter, and the RMSE is improved. Consequently, the scale of the RMSE
improvement follows the extent of the narrowing in the water column.

The shorter envelopes also imply more independent amplitude detections, and
therefore better bathymetric resolution. This is because shorter envelopes mean
smaller footprints of the detection windows, and consequently shorter separation
until a detection with no common footprint can be formed.

The adaptive beamformers also improve the edge de�nition of detected objects.
This can be seen by the faster transitions of the mean value and narrower RMSE
peaks in Figure 5b.

As microsteering is the main contributor to edge de�nition for LCA, micros-
teered weights are essential for the improved performance.

6.2 Resolution

Resolution has the largest in�uence at the most distant step in Figure 5, where
the sea�oor segments are relatively close compared to the beamwidth. The cross
section in Figure 6 shows that LCA resolves the segments slightly better than
DAS, while Capon resolves them much better. With the results from the previous
section, we have veri�ed that LCA has edge de�nition similar to Capon and
resolution similar to DAS, as observed in Figure 3.

Figure 5b shows that this causes higher RMSE for LCA. The extra �exibility
allows Capon to largely suppress the echo from the interfering sea�oor segment,
without major changes in performance.

In a similar way, we expect resolution e�ects to explain the slight rise in RMSE
for LCA around the step at 30◦ steering angle, and the better bias and RMSE for
Capon near nadir in Figure 8b.

6.3 Sidelobe level

Water column images from both simulated and �eld data show that the adaptive
beamformers lower the sidelobe level compared to DAS. Since the adaptive beam-
formers simultaneously improve resolution and edge de�nition, it means that
they avoid the tradeo� of DAS.
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The sidelobe levels for all beamformers appear worse in the �eld examples
than the simulated examples. One cause of this di�erence is that the �eld water
column image has not been averaged, therefore we see the peaks instead of
the average level. We believe model mismatch is the dominant factor for the
remaining di�erence. This will limit the achievable sidelobe level for LCA and
Capon.

6.4 Signi�cance of the improvements

Figure 8a and Figure 9 show that the adaptive beamformers may reveal seabed and
water column features that are hidden or barely visible with the DAS beamformer.
As sea�oor features of interest often are at the limit of achievable resolution
(Clarke, 2018) this can increase the areas available for surface surveys. It may
provide more information from each survey or, in edge cases, reduce the need for
expensive AUV or ROV surveys.

For the general case, the better de�ned features and the lower sidelobes of
the adaptive beamformers will ease the interpretation of the image. This includes
localizing features, estimating sizes and separating real features from artifacts.

The observed improvements in RMSE show that the adaptive beamformers
may improve amplitude detection accuracy signi�cantly compared to DAS. This
does not matter if other error sources like transducer alignment dominate (Clarke,
2003; Hare, 1995). However, for a well aligned and integrated system, detector
accuracy matters (Clarke, 2018). The accuracy gain in practice will also be limited
by phase detection accuracy, when applicable.

Since the RMSE improvements are larger at higher angles, we expect larger
gains in accuracy for cases where the amplitude-phase detection transition hap-
pens at high angles. An expected e�ect of this is that the peak depth uncertainty,
typically occurring at the transition (Lurton & Augustin, 2010), is reduced.

The highest potential for improvements is after the transition angle in cases
where the phase detector fails. Both since the RMSE di�erences are larger at
higher angles, and since this tends to happen at objects which may be more
interesting. In these cases, like in section 4.1, the adaptive beamformers may
reduce the RMSE greatly and resolve the object(s) better. If the DAS amplitude
detection uncertainty would be too high, the detections may be rejected. For
those cases, the adaptive beamformers may prevent missing data. Note that other
solutions to the missing data problem have been proposed (Kraeutner & Bird,
1999; Pereira & Clarke, 2015).
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Since the amplitude detection accuracy is improved, this must be accounted for
when modelling the bathymetric uncertainty (Hare, 2001; Mohammadloo, Snellen,
& Simons, 2018). For DAS the beamwidth is central for modeling the amplitude
detection uncertainty (Hare, 2001; Lurton, 2003). For the adaptive beamformers
the e�ective beamwidth and other parameters change depending on the received
signal. Modelling amplitude detection accuracy for adaptive beamformers will
therefore be more complex and need to account for new factors, which are out
of scope for this paper. However, due to the simple signal condition, the edge
de�nition example in Figure 3 should show the best-case e�ective beamwidth
for the adaptive beamformers. A best-case accuracy estimate may therefore be
calculated by using the e�ective beamwidth from such a case in the existing
modelling methods.

The lower sidelobe level should reduce the frequency of false detections.
LCA and Capon show similar performance improvements in the �eld as in the

simulations. This suggests that they are robust enough for practical use. However,
the lower sidelobe level improvement in the �eld indicates that reducing model
mismatch, e.g. via calibration, may enable further improvements.

The adaptive beamformers operate across track and thus do not improve along
track density, which may be a limiting factor for object detection (Clarke, 2018).

6.5 A note about backscatter

Backscatter processing relies on a number of corrections tailored to the DAS
beamformer (Lurton & Lamarche, 2015). The adaptive beamformers may change
backscatter statistics (Li & Stoica, 1996; Synnevåg et al., 2011) and may therefore
require di�erent processing. Existing backscatter performance can be preserved by
continuing to use DAS for backscatter, restricting LCA and Capon to bathymetry
and water column imagery. This is particularly easy with LCA, since the required
DAS beams are computed as part of the LCA computation.

7 Conclusions

In this work, we have considered three di�erent beamformers for swath sonar
processing: the traditional delay-and-sum (DAS) beamformer, the Low Complexity
Adaptive (LCA) beamformer; and the adaptive Capon beamformer. We have
found that the adaptive beamformers LCA and Capon improve amplitude bottom
detection accuracy and water column imaging for swath sonars compared to the
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Table 3: Summary of observed performance for the adaptive beamformers LCA
and Capon versus weighted DAS (Kaiser β = 2.5).

Performance vs DAS
Property LCA Capon
Resolution Better Much better
Edge de�nition Much better Much better
Sidelobe level Better Better
Amplitude detection accuracy

– near specular Similar/Better Similar/Better
– far from specular Much better Much better
– around objects Much better Much better

Computational load Higher Much higher
Implementation complexity Higher Much higher
Phase detection accuracy Further study needed
Backscatter Further study needed

traditional DAS beamformer. Table 3 summarizes the most important properties
for the three beamformers.

LCA and Capon improve the resolution and edge de�nition of features in the
water column, both in simulated and �eld data, while simultaneously reducing
the sidelobe level. This can allow the adaptive beamformers to reveal features
hidden for DAS. Edge de�nition causes most of the improvements, with similar
performance for both LCA and Capon. This means that high levels of micros-
teering are very important for LCA performance. Capon has the best resolution.
The adaptive beamformers e�ectively reduce the angular extent of many water
column features to a more realistic size. The extent of the improvement depends
on the e�ect of reducing the beamwidth.

The narrower features in the water column give shorter detection envelopes
for the adaptive beamformers, which improve amplitude detection accuracy and
resolution. We expect this to be a net bene�t from near nadir until the extended
phase detection transition, and when phase detections fail. In the latter case, the
adaptive beamformers may prevent holes in the bathymetric data.

Capon’s better performance compared to LCA comes at the cost of a higher
computational load and implementation complexity. Existing backscatter and
phase detection performance can be preserved by running the current DAS beam-
former in parallel with the adaptive beamformer.
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