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Individual Movement - Sequence Analysis Method (IM-SAM): 35 

Characterising Spatio-Temporal Patterns of Animal Habitat Use across 36 

Landscapes 37 

We present methodological advances to a recently developed framework to study 38 
sequential habitat use by animals using a visually-explicit and tree-based 39 
Sequence Analysis Method (SAM), derived from molecular biology and more 40 
recently used in time geography. Habitat use sequences are expressed as 41 
annotations obtained by intersecting GPS movement trajectories with 42 
environmental layers. Here, we develop IM-SAM, where we use the individual 43 
reference area of use as the reference spatial context. To assess IM-SAM’s 44 
applicability, we investigated the sequential use of open and closed habitats 45 
across multiple European roe deer populations ranging in landscapes with 46 
contrasting structure. Starting from simulated sequences based on a mechanistic 47 
movement model, we found that different sequential patterns of habitat use were 48 
distinguished as separate, robust clusters, with less variable cluster size when 49 
habitats were present in equal proportions within the individual reference area of 50 
use. Application on real roe deer sequences showed that our approach effectively 51 
captured variation in spatio-temporal patterns of sequential habitat use, and 52 
provided evidence for important behavioral processes, such as day-night habitat 53 
alternation. By characterising sequential habitat use patterns of animals, we may 54 
better evaluate the temporal trade-offs in animal habitat use and how they are 55 
affected by changes in landscapes.  56 

Keywords: sequence dissimilarity; dendrogram; ungulates; spatio-temporal 57 
habitat use; mechanistic movement model.   58 

Introduction 59 

Understanding which habitat features are used by animals through space and time is 60 

important to establish cost-effective and flexible policies that are essential for species 61 

conservation and wildlife management purposes. For example, several ungulate species 62 

show higher activity and intensified movement at dusk and dawn, resulting in more 63 

road-crossings (Kämmerle et al. 2017) and, hence, vehicle collisions during twilight. 64 



Similarly, by alternating between access to food and cover resources over the day, 65 

several wild species have adapted to agro-ecosystems (Aulak and Babinska-Werka 66 

1990; Cibien et al. 1989; Hewison et al. 2001, Podgórski et al. 2013) or even urbanised 67 

areas (i.e., the phenomenon of ‘urban wildlife’; Magle et al. 2012). Most animal 68 

movement methods have predominantly focused on how to analyse the spatial 69 

component so far, while the temporal dependence of habitat use is often analysed less 70 

elegantly by pooling samples into classes, such as night/day and active/inactive, 71 

typically ignoring the sequential nature of habitat selection. Consequently, we need 72 

robust methodological approaches to understand the sequential temporal patterns in the 73 

use of complementary habitats in order to take appropriate conservation and 74 

management actions.  75 

Habitats provide the resources (e.g. food, cover, thermal protection) that species 76 

need for survival and reproduction (Manly et al. 2002). European-level mapping 77 

products (e.g. Corine Landcover, Copernicus; see eea.europa.eu) are often used by 78 

movement ecologists to quantify such resources (e.g. forest cover) by linking these 79 

maps with GPS locations obtained from animal tracking projects. Improved spatio-80 

temporal resolution and range of both remote sensing products and animal tracking 81 

datasets are allowing ecologists to derive ever more detailed animal trajectories 82 

annotated with habitat information, and, hence, facilitate the study of the animal-habitat 83 

relationship over time (Cagnacci et al. 2010, Demšar et al. 2015, Kays et al. 2015).  84 

In geo-informatics, such habitat information is referred to as biological and 85 

environmental context and the integrated analysis of movement trajectories in relation to 86 

such contexts are termed context-aware movement analysis (Andrienko et al. 2011; 87 

Dodge et al. 2013; Demšar et al. 2015). Geo-informaticians and ecologists have 88 

together developed several context-aware methods to visualise and analyse movement 89 



in relation to habitat type (see Demšar et al. 2015 for overview). The concept was first 90 

proposed and applied to animal movement data by Andrienko et al. (2011). In a case 91 

study using roe deer GPS movement data, the latter presented several methods to 92 

visualise aggregated hourly use of open habitats for spatial clusters of locations. Xavier 93 

and Dodge (2014) developed DYNAMO (Dynamic Multivariate Visualization of 94 

Movement), a tool for animating trajectories annotated by habitat variables. Demšar et 95 

al. (2015b) proposed a 3D-visualisation of a home range, where the x,y-plane is space, 96 

and the z-axis is time, and aggregated information of used habitats could characterise 97 

the space-time cube. Toor et al. (2016) developed a trajectory segmentation algorithm 98 

based on temporal changes in habitat use using random forest models. All these context-99 

aware approaches, one way or another, investigate how the contextual information is 100 

used through time. 101 

One way of considering time dependency is to investigate sequentiality, which 102 

takes into account the temporal order in which behavioral, environmental or movement 103 

states occur. In the field of movement ecology, and especially for the study of recursions 104 

(i.e., revisitations of the same places), several promising methods have been proposed, 105 

often relying on approaches developed in different research fields or by combining 106 

several concepts (Berger-Tal and Bar-David 2015). Fourier and wavelet transforms have 107 

been used to simultaneously detect recursions at multiple temporal scales (Wittemyer et 108 

al. 2008, Bar-David et al. 2009, Polansky et al. 2010, Riotte-Lambert et al. 2013, 2017). 109 

Minimal conditional entropy was used to identify the temporal scale of repetitiveness in 110 

resource patch visitation and to quantify the degree of predictability in movement 111 

sequences (i.e, traplining, Riotte-Lambert et al. 2017). The latter study also presented an 112 

algorithm based on time-lag matrices (Goto 2003) to mine for repeated movement sub-113 

sequences. Utilisation distribution in combination with residence time was also 114 



proposed to identify areas of high recursion rate from movement data (Benhamou and 115 

Riotte-Lambert 2012). Recently, model‐based continuous‐time movement metrics were 116 

suggested to find recursion signatures (Péron et al. 2017), as well as periodograms 117 

(Péron et al. 2016). 118 

The Sequence Analysis Methods (SAM) approach was recently developed to 119 

measure similarity between temporally ordered sequences of habitat use within 120 

individuals or populations (De Groeve et al. 2016). SAM is a tree-based approach 121 

developed in computer science to measure dissimilarity between multiple strings of 122 

characters (Wagner and Fischer 1974) and has subsequently been used in different fields 123 

of study. It was first adopted to measure dissimilarity between DNA and protein 124 

sequences (Needleman and Wunsch 1970). The popularity of the technique in molecular 125 

biology resulted in several applications in other fields such as in sociology to study life 126 

courses (e.g. Abbott 1995, Wilson 2006, Gabadinho et al. 2011), in time geography for 127 

transportation science (Wilson 2008), in tourism research (Shoval and Isaacson 2007), 128 

in indoor navigation (Delafontaine et al. 2012), in choreography research (Chavoshi et 129 

al. 2015), in human mobility (Brum-Bastos et al. 2018); and, recently, in the field of 130 

animal movement ecology (De Groeve et al. 2016). 131 

De Groeve et al. (2016) showed that, for a given proportion of habitat used, 132 

animals can show very different sequential space use patterns. For example, while 133 

animals may equally use open and closed habitats over a given time-window, their 134 

sequential use patterns were markedly different (from random to day-night alternating 135 

patterns). We describe here a methodological framework building on De Groeve et al. 136 

(2016), where we analyse sequential patterns of habitat use of animals, while accounting 137 

for individual-level variability in landscape heterogeneity, or IM-SAM (Individual 138 

Movement - Sequence Analysis Method). In essence, the baseline SAM-framework uses 139 



simulated sequential habitat use patterns to determine the classification of real habitat 140 

use sequences, where simulated sequential habitat use patterns were generated based on 141 

a biased and correlated random walk movement model. De Groeve et al. (2016) 142 

generated the patterns of sequential habitat use in artificially generated landscapes that 143 

mimic habitat composition and structure of an animal’s movement context. Instead, in 144 

IM-SAM we generated these sequential patterns in the real landscape context for an 145 

individual animal, or individual reference area of use, and hence accounted for the true 146 

variation in habitat composition and structure among individuals.  147 

In this analysis we use IM-SAM to expand sequential habitat use analysis from 148 

animal trajectories derived from a single local context (i.e. single-population) to a 149 

continental scale (i.e. multiple-populations at the European level), specifically using 150 

GPS trajectories of 404 individual European roe deer (Capreolus capreolus) from nine 151 

populations with contrasting landscape structure across Europe. As roe deer are 152 

generally described as a forest species, but often feed on rich resources available in 153 

more open habitats (e.g. meadow, crop), we described sequential use of two simple 154 

habitat classes, open and closed, converting regularised animal trajectories into multiple 155 

character sequences, where each character in the sequence corresponds to the habitat 156 

used at a given timestamp. 157 

Material and methods – habitat use sequential analysis 158 

To describe sequential use of open and closed habitats for individual animals, we 159 

followed a workflow modified from De Groeve et al. (2016) that can be summarised in 160 

four steps (Fig. 1). First, we produced an exploratory tree for each individual roe deer 161 

based on biweekly trajectories annotated with habitat categories and used to formulate 162 

hypotheses of expected patterns of sequential habitat use (Fig. 1a). The number of 163 

sequences per individual exploratory tree depends on the monitoring period of the 164 



individual. Next, we generated stochastic movement rules for such expected patterns of 165 

sequential habitat use and ran the movement models within each individual’s reference 166 

area of use (here computed as the 100% MCP) in order to produce individual specific 167 

simulated trajectories (Fig. 1b), and individual-level simulation trees (Fig. 1c). 168 

Simulation trees were therefore based on the true landscape context where each 169 

individual actually ranged. Finally, we combined real and simulated trajectories to 170 

produce trees where real and simulated habitat use sequences with a high degree of 171 

similarity were grouped together. After computing the proportions of simulated patterns 172 

in each cluster, we could define sequential habitat use cluster types and assign these 173 

identified tags to the real sequences included in that cluster (Fig. 1c/d). Finally, we 174 

pruned the output tree and visualised only the classified real trajectories, to facilitate 175 

interpretation (Fig. 1d). We now describe each step in detail. [Figure 1 near here] 176 

Real trajectories – exploratory trees (Fig. 1a) 177 

We extracted roe deer trajectories from the EuroDEER database (Cagnacci et al. 2011, 178 

euroungulates.org) and subsampled them into 16-day GPS trajectories with a fixed four-179 

hour relocation interval (0, 4, 8, 12, 16 and 20h) over a fixed yearly schedule starting on 180 

January 1st (e.g. 01/01-16/01, 17/01-01/02, etc.). To increase the sample size, we also 181 

included relocations within one hour from the above four-hour intervals, after a 182 

sensitivity analysis verified that this did not affect exploratory tree clustering (see 183 

Appendix S2). If multiple GPS-positions were within this time window, we selected the 184 

closest one in time to the reference time stamp. Otherwise, if no fix was obtained for a 185 

reference time stamp, we annotated the gap with a missing value (NA). The number of 186 

sequences per individual ranged between 2 and 52 and depended on the monitoring time 187 

and completeness of the individual trajectory. We annotated each 16-day trajectory with 188 

the percentage tree cover (0-100%) extracted from the High-Resolution Layer-Tree 189 



Cover Density 2012 (TCD, EEA 2012, 20m spatial resolution), thus obtaining the 190 

biweekly sequences of habitat use. We reclassified TCD into two distinct classes, using a 191 

cut-off point for pixel-level tree cover density of 50%, distinguishing closed (C, ≥50%) 192 

and open (O, <50%) habitats. The final dataset consisted of 5402 biweekly habitat use 193 

sequences of 404 animals (236 females and 168 males) from nine European roe deer 194 

populations characterised by varying forest composition (see map in Appendix S1: 195 

Southcentral Norway, NK5; Southwest France, FR8; Switzerland, CH25; Southern 196 

Germany, DE15, DE31; Southeast Germany, DE1; Northern Italy, IT1, IT24; Eastern 197 

Austria, AU17). After processing, the dataset consisted of 14,607 missing values 198 

(2.82%) and 503,985 true GPS locations (97.18%), of which 273,230 (52.69%) were 199 

classified as open and 230,755 (44.50%) as closed habitat. See Appendix S2 for the 200 

complete data preparation procedure. 201 

We generated an initial visualisation of the habitat use patterns by creating 202 

exploratory trees separately for each individual (Fig. 1a). These trees were used to 203 

describe sequential patterns and helped to build hypotheses for expected models of 204 

sequential habitat use (see below). Sequence Analysis Methods use a dissimilarity 205 

algorithm to compute the distance between all possible pairs of sequences. All these 206 

pairwise distances are written into a dissimilarity matrix. Here, we computed the 207 

pairwise distances using the Hamming dissimilarity algorithm (HD), which calculates 208 

the minimum number of character substitutions (i.e., O and C) required to match a 209 

number of sequences of equal length (Gabadinho et al. 2011). From the HD 210 

dissimilarity matrix, we subsequently calculated dissimilarity trees using a hierarchical 211 

clustering algorithm (Ward's method, Gabadinho et al. 2011, De Groeve et al. 2016). 212 

The above described analytical steps were performed using the R-package TraMineR 213 

(Gabadinho et al. 2011).  214 



From SAM to IM-SAM 215 

a. Individual-specific simulated trajectories (Fig. 1b) 216 

We computed individual reference areas of use as 100% Minimum Convex Polygons 217 

(MCP) for each roe deer separately as a simple representation of the available space in 218 

which movement of that individual could occur, including occasional excursions outside 219 

the usual range. We then intersected each MCP with the TCD raster re-classified as 220 

open/closed habitat as described above, and characterised all MCPs by their habitat 221 

proportions. For illustrative purposes (i.e. Fig. 2), we also classified MCPs into 5 222 

classes (0.1 to 0.5) of ‘relative proportion of open/closed habitat’. So, for example, the 223 

0.1 class indicates both 10% open - 90% closed, and 10% closed - 90% open habitat.  224 

Within each MCP we simulated sequential habitat use patterns using a simple 225 

spatially explicit stochastic movement model to express expected sequential habitat use 226 

patterns that were determined by a memory-based movement model with parametrized 227 

selection coefficients for open and closed habitats (see Appendix S3 for the full 228 

description). In particular, according to the exploratory trees obtained from real 229 

sequences with six locations per day (Fig. 1a), we identified six characteristic patterns 230 

of sequential habitat use (Fig. 1b): homogeneous use of closed habitat, or pattern 'C', the 231 

resulting day-night sequence (DS) being: DS=CCCCCC; homogeneous use of open 232 

habitats, or pattern 'O' (DS=OOOOOO); and three patterns of day-night alternating use 233 

of both open and closed habitats, or patterns 'A'. The alternating patterns were generated 234 

on the assumption that roe deer use open and closed habitats in relation to the daylight 235 

cycle, with use of open habitat more prevalent at night (Mysterud et al. 1999; Bonnot et 236 

al. 2013). In addition, we accounted for variation in day length over the different sites 237 

and seasons included in the study. In particular, to account for spatial and temporal 238 

variation in day length, we distinguished the following three patterns: dominant use of 239 



open habitat from 16:00 to 08:00 (pattern 'a24', DS=OOCCOO; winter condition in 240 

most sites), equal use of both habitats - open from 20:00 to 08:00, closed from 08:00 to 241 

20:00 (pattern 'a33', DS=OOCCCO; fall and spring in most sites), and dominant use of 242 

closed habitat from 04:00 to 20:00 (pattern 'a42', DS=OCCCCO; summer in most sites). 243 

In the pattern names, the character ‘a’ refers to daylight-night habitat alternation, where 244 

the first number refers to the number of four-hour time periods spent in closed habitat 245 

during daytime and the second to the number of four-hour time periods spent in open 246 

habitat during the night. Finally, we defined a pattern of random use of the landscape 247 

(hence reflecting its structure), or pattern 'U', as a control (i.e. constant selection 248 

coefficient for open and closed, see Appendix S3). The seeds of stochastic simulations 249 

were random release locations within each individual MCP, whereas successive steps 250 

were based on six sets of habitat selection rules matching the aforementioned sequential 251 

behaviours. For completeness, we ran the movement simulations with three selection 252 

coefficients for each selection pattern to account for behavioral variability (selection 253 

coefficient ratios: low, 1:0.2; intermediate, 1:0.1; high, 1:0.01). Each movement 254 

simulation was repeated 50 times for each parameter set (i.e., six habitat selection rules 255 

by three selection coefficients), varying release location between repetitions but holding 256 

release location constant across parameter sets for any given repetition. We thus 257 

obtained 900 simulated sequences per individual MCP (six habitat selection rules by 258 

three selection coefficients by fifty repetitions). 259 

b. Individual-specific simulation trees (Fig. 1c) 260 

We obtained 404 individual dissimilarities trees (see above) based on individual-specific 261 

simulated sequences, thus illustrating the dissimilarity among expected habitat use 262 

sequences for each individual separately. Note that HD can be customised by assigning 263 

weights to character substitutions when comparing sequences. For example, in De 264 



Groeve et al. (2016) substitution weights were derived from spatial autocorrelation of 265 

habitat classes within simulated landscapes. However, in IM-SAM we considered 266 

substitution weights to be redundant because simulated sequences were modelled within 267 

each individual MCP and habitat was classified as a binary category. Hence, spatial 268 

structure, and thus spatial autocorrelation, was directly accounted for by using this 269 

individual-specific modelling approach.  270 

c. Robust classification of individual-specific simulation trees: defining the cut-off 271 

distance 272 

In the obtained trees, the leaves are the sequences, and remaining nodes represent 273 

clusters (groups of sequences) for which the branch lengths measure the extent of 274 

dissimilarity. In other words, the longer the branch length, the higher the dissimilarity 275 

between clusters. Hence, the number of clusters that are identified in a tree depends on a 276 

cut-off value that should be selected to obtain the most robust dissimilarity tree (Hennig 277 

et al. 2007). To assess robustness, an iterative procedure of sequence re-clustering such 278 

as bootstrapping is generally used. Bootstrapping metrics express the consistency in 279 

reclassification of sequences in the same clusters. The same procedure can be repeated 280 

for different cut-off values (and therefore number of clusters) using the optimisation of 281 

bootstrapping metrics as a criterion to decide upon the best cut-off point. In IM-SAM, 282 

we propose a standardised procedure to identify the most robust and informative tree.  283 

For the trees based on real trajectories only (Fig. 1a) we did not include any cut-284 

off, since we used them for exploratory purposes only. For the clustering of simulated 285 

trajectories only, and both simulated and real trajectories in the final classification (Fig. 286 

1c), instead, we allowed all cut-off values (that correspond to distances from the last 287 

common node) that generated from a minimum of 2 to a maximum of 20 clusters per 288 

tree. For each cut-off value, we computed the Jaccard bootstrapping index for each 289 



cluster using bootstrap resampling of n number of sequences (BJ, or bootmean; see 290 

Hennig 2007, R-package fpc, clusterboot) using 1000 iterations (De Groeve et al. 291 

2016), and then we computed the median BJ of all clusters (BJMD € [0, 1]), and the BJ 292 

interquartile range (BJIQ € [0, 1]). We finally defined a combined bootstrapping index 293 

(BJIQMD € [0, 1]) that we computed for each cut-off value: 294 

2
B J1B J

B J I QM D
I Q M D

)(+
=

−
 295 

To evaluate the optimised cut-off value, we used a semi-automated selection 296 

procedure based on the optimisation of the BJIQMD index. Specifically, we plotted BJIQMD 297 

in relation to the number of clusters for each individual (Fig. 2, top panel and Appendix 298 

S4, Fig. S4.3). In most cases, the plot showed two peaks: a primary peak, corresponding 299 

to a cut-off value that generated trees with two to three clusters, that separates 300 

sequences based on general dissimilarity (for example: homogeneous sequences from 301 

all others); and a secondary peak, corresponding to a cut-off value that generated trees 302 

with five to eight clusters, catching the complexity of the sequences, i.e. the diversity of 303 

sequential habitat use patterns generated by the simulations (see also De Groeve et al. 304 

2016). Hence, we excluded the primary peak and defined the cut-off value based on 305 

maximum values of BJIQMD within the secondary peak (Fig. 2, upper panel, light blue 306 

region). Then, we did a visual check of all trees derived from the cut-off values selected 307 

as above to identify potential inconsistencies, for example if some obvious clusters were 308 

overlooked by the cut-off criterion, or if the pruned tree of real trajectories (see below) 309 

showed a consistent structure. 310 

d. Identification of cluster types (‘cluster tagging’) 311 

Once we obtained the 'optimal' tree, we classified each cluster on the basis of the 312 

sequential patterns that composed the cluster (‘cluster tagging’). First, we calculated the 313 



proportion of each sequential habitat use pattern in each cluster. Then, to identify cluster 314 

types, we appended each pattern representing at least 10% of the cluster to a tag, 315 

ordered by abundance (first criterion) and giving priority to homogeneous patterns 316 

(second criterion). For example, if a cluster consisted of 40% a24 sequences, 30% a33 317 

sequences, and 20% a42 sequences, the resulting tag was a24_a33_a42 (first criterion); 318 

or, a composition of 30% of O sequences, 30% of a24, 20% of a33, and 15% of a42, 319 

was tagged as o_a24_a33_a42 (second criterion). We also used a simplified 320 

classification by retaining the most abundant sequential habitat use pattern only as the 321 

cluster tag (e.g. a24 and O in the two examples above, respectively). 322 

Simulated and real trajectories - classification trees (Fig. 1c/1d) 323 

In a final step, we obtained the classification tree for each individual by re-running the 324 

HD algorithm on both real and simulated sequences, and by using the cut-off distance as 325 

defined above. This way, simulated sequences were used as a guide for classification of 326 

real sequences to their most similar cluster type (real habitat use sequence tagging, Fig. 327 

1c). For visualisation purposes, we pruned the classification tree by only retaining real 328 

sequences (Fig. 1d). 329 

Results 330 

Classification of individual-specific simulation trees 331 

The application of the HD algorithm to simulated biweekly sequences generated 404 332 

trees, one per individual MCP. According to the simulation procedure (see above, From 333 

SAM to IM-SAM, par. a; Fig 1b), we expected trees to be composed of six clusters with 334 

150 sequences each. Instead, we found a substantial deviation from this expectation (see 335 

Appendix S5 for a sample of 35 trees) that we attributed to individual differences in the 336 



environmental context, and notably in the relative proportion of open vs. closed habitat 337 

within the individual’s MCP. 338 

Using the IM-SAM cut-off criterion (i.e., the second peak in the plot of BJIQMD 339 

for all cut-off values; Fig. 2, top panel), we automatically identified 394 simulation 340 

trees, mainly composed of five (164 trees, 40.59%), six (192 trees, 47.52%) or seven 341 

(38 trees, 9.41%) clusters, whereas trees with three or eight clusters were rare (7 and 3 342 

respectively, or 1.73% and 0.74%). The overall average BJIQMD of these trees was 343 

0.749±0.111 which corresponded to a high BJMD (0.850±0.066), indicating high inter-344 

cluster dissimilarity, and a low BJIQ (0.123±0.078), indicating low variability in inter-345 

cluster dissimilarity, thus confirming the robustness of the cluster classification. For 32 346 

trees, the number of clusters was manually adjusted to distinguish clear and obvious 347 

clusters (from five or six to six, seven, or eight clusters), but this resulted in negligible 348 

change in average BJIQMD (decrease of 0.007, 0.742±0.115). Furthermore, we noted that 349 

the relative proportion of open vs. closed habitat in the MCP affected cluster quality (i.e. 350 

clustering robustness). Specifically, BJIQMD increased when the proportion of closed and 351 

open habitats was more or less equal (Fig. 2, top panel: higher to lower values from 352 

dark to light trend lines). The corresponding BJMD values also increased when the 353 

proportions of open and closed habitats were similar (Fig. 2, top panel: purple shade on 354 

the trend lines), whereas the corresponding BJIQ values decreased (Fig. 2, top panel: 355 

orange to blue points along the trend lines). Despite these differences between classes of 356 

habitat proportion, the trend in BJIQMD was consistent, with a second peak for values of 357 

between five and seven clusters, with a rapid drop after that. [Figure 2 near here] 358 

The proportion of open vs. closed habitat in the MCP also affected the cluster 359 

size within simulation trees. When the proportion of open and closed habitat in the MCP 360 

was similar, the trees for simulated sequences were more evenly classified between 361 



different clusters. However, when a given habitat type was preponderant in the MCP, 362 

some clusters were composed of a larger number of sequences than others (Fig. 2, lower 363 

panel, e.g. median lower than 150, and more outliers for class 0.1).  364 

Identification of cluster types (‘cluster tagging’) 365 

We identified 16 main cluster types among the 404 simulated trees, each representing 366 

more than 0.5% of all clusters (Fig. 3, circles in the lower panel). The 2300 clusters 367 

consisted of one or more sequential habitat use patterns in differing proportions. 368 

Specifically, 1613 clusters consisted of one sequential habitat use pattern (70% of total 369 

number of clusters, Fig.3, top-left panel, and legend of cluster types in the lower part: 370 

a24, a33, a42, c, o, u, present in 378, 272, 286, 290, 170, and 125 clusters, respectively). 371 

513 (22%) and 139 (6%) clusters consisted of two or three sequential habitat use 372 

patterns, respectively (o_u, a33_a42, c_u, a33_a24, a24_a33, a42_a33, u_a33, o_u_a24, 373 

c_u_a42, present in 170, 125, 89, 52, 29, 21, 13, 66, and 27 clusters, respectively). The 374 

remaining 33 cluster types represented less than 3% of all clusters in total and were also 375 

used to classify real trajectories (these rare cluster types were omitted from the legend in 376 

Fig. 3; see Appendix S6 for the full set of classified cluster types). [Figure 3 near here] 377 

The number of sequential habitat use patterns occurring in clusters was affected 378 

by the relative proportion of open vs. closed habitat in the MCP (Fig. 3, top-left panel). 379 

That is, we observed clear-cut cluster identification (i.e., one pattern per cluster) for 380 

trees derived from MCPs with similar relative proportions of open and closed habitat. 381 

More ‘unclear’ cluster identification (i.e., with a mix of 3 to 4 sequential habitat use 382 

patterns) was observed for trees derived from MCPs with a preponderance of one 383 

habitat type only.  384 

Similarly, the occurrence and relative importance of cluster types within trees 385 

also depended on the relative proportion of open vs. closed habitat in the MCP (Fig. 3, 386 



top-right panel). Indeed, sequences with random and alternating habitat use patterns 387 

grouped together with homogeneous sequences when one habitat was prevalent in the 388 

MCP (Fig. 3, top-right panel; the patterns are mirrored for high proportion of open or 389 

closed habitat). Importantly, only a small proportion of alternating patterns clustered 390 

together with a random pattern of use, indicating that alternating patterns rarely 391 

occurred at random. 392 

To sum up, we showed that sequences of habitat use patterns generated using 393 

pre-defined habitat use processes within individual MCPs mostly clustered amongst 394 

themselves, as expected, but there was some variation in the pattern. Clusters were 395 

characterised by one or more sequential habitat use pattern, and this ‘cross-pattern’ 396 

clustering was dependent on the relative composition of open and closed habitats in the 397 

MCP. 398 

Classification of real animal trajectories into cluster types 399 

After classification of simulated sequences, we re-ran SAM also including real 400 

trajectories so that these were grouped with the most similar cluster types. After pruning 401 

(i.e., filtering out of the simulated sequences), we obtained the classification tree of the 402 

real sequences for each individual (See Fig. 1d for an example, and Appendix S7 for a 403 

sample of 35 trees). In total, 69.40% of the real habitat use sequences were classified 404 

into only six cluster types (i.e., o_u, o_u_a24, c_u, a33, a42, a24, Table 1, in bold), and 405 

97.55% of all real sequences into 17 cluster types (Table 1). The remaining 2.45% of all 406 

real habitat use sequences matched another 21 cluster types. All six a-priori simulated 407 

sequential habitat use patterns were represented amongst the real data sequences. 408 

Specifically, 40.11% of the sequences were classified as one of the six cluster types 409 

including a single sequential habitat use pattern (for example, 4.83% of the real 410 

sequences were classified as homogeneous closed, c, and 11.85% were classified as 411 



alternation a33, Table 1). Another 38.20% were classified into cluster types that 412 

included a combination of two patterns, especially a combination of homogeneous 413 

open/closed with random patterns (i.e., 29.40%, o_u, c_u, Table 1), or a combination of 414 

two alternating patterns (i.e., 8.26%, a33_a42, a33_a24, a42_a33, a24_a33). Finally, the 415 

remaining 21.69% of the real sequences were classified into cluster types that included a 416 

combination of three or more sequential habitat use patterns. When these results were 417 

considered with the most simplified classification (i.e. retaining the most abundant 418 

pattern only), the majority of the sequences were classified as homogeneous open (o, 419 

31.51%), and homogeneous closed (c, 24.38%). More than 40% of the sequences were 420 

classified as one of the three types of habitat alternation (a33, 18.68%; a42, 10.90%; 421 

a24, 10.07%), while the smallest proportion of habitat patterns corresponded to random 422 

sequential use of habitat (u, 4.46%). [Table 1 near here] 423 

Discussion 424 

In this paper, we propose an ecological application of Sequence Analysis Methods, IM-425 

SAM to describe sequential habitat use of animal trajectories applied to European roe 426 

deer across contrasting landscapes. Below, we first discuss the methodological advances 427 

of IM-SAM. Second, we consider the ecological relevance of the observed spatio-428 

temporal patterns of roe deer sequential habitat use across Europe. Finally, we discuss 429 

the broader applicability of IM-SAM for other ecological and geographical data. 430 

IM-SAM procedure 431 

IM-SAM provides a suitable method to detect similarity in sequential patterns in 432 

movement data of animal species. The IM-SAM framework involves three 433 

methodological steps. First, exploration trees are built using real sequences only (Fig. 434 

1a). Then simulation trees are generated taking into account the individual spatial 435 



context using simulated sequences only (Fig. 1b/c). Finally, classification trees are 436 

produced based on real and simulated sequences combined (Fig. 1c/d). While this three- 437 

step conceptual framework is identical to De Groeve et al. (2016), scaling up to a multi-438 

population approach involved several fundamental methodological adjustments which 439 

we summarise in Table 2, and that improved the procedure. One of the most important 440 

advances of IM-SAM compared to other previous ecological applications of the SAM 441 

framework (De Groeve et al. 2016) is to account for the individual spatial context in 442 

which an animal moves, by generating individual-specific, spatially-explicit simulated 443 

sequences. In this way, individual sequential patterns of habitat use can be identified in 444 

a comparable manner across a diversity of landscapes, as done here, facilitating multi-445 

population comparisons. Moreover, in this application, we generated simulations based 446 

on expected day-night habitat use patterns. While many natural processes follow 447 

alternating and repetitive rhythms (e.g. Wittemyer et al. 2008, Bar-David et al. 2009, 448 

Benhamou and Riotte-Lambert 2012, Polansky et al. 2010, Péron et al. 2016, 2017, 449 

Riotte-Lambert et al. 2013, 2017), this might not always be a pattern of interest for 450 

other studies. In general, the simulation rules must be based on the question addressed, 451 

on the behavioral traits of the species, and the spatio-temporal resolution of the study. 452 

For example, when studying migration-timing and the use of summer vs winter ranges, 453 

simulations might be better based on a weekly timeframe. [Table 2 near here]  454 

The IM-SAM procedure only detects sequential patterns that are coded within 455 

the simulation rules. While this appears to be a constraint at first sight, the approach 456 

based on simulated movement rules and exploratory trees enables classifying real 457 

trajectories within a hypothetical-deductive framework, i.e. based on reproducible 458 

expectations. In this sense, exploratory trees represent the empirical observations on 459 

which to build the set of hypotheses.  460 



The underlying behavioral choice mechanism of our movement model used to 461 

simulate sequential patterns within the individual reference area of use (MCP) is 462 

simultaneous (sensu Van Moorter et al. 2013), therefore a given habitat type will be 463 

used more with increasing availability. It is important to underline that the preference 464 

for the habitat is fixed, hence variable use with availability does not correspond to a 465 

functional response. An alternative behavioral choice mechanism, for instance 466 

hierarchical, could be integrated in the movement model. In such an approach, the use 467 

of a given habitat type would be independent of its availability (Van Moorter et al. 468 

2013). As of today, movement models have overwhelmingly used a simultaneous 469 

behavioral choice mechanism (Van Moorter et al. 2013). Although further research is 470 

required, empirical evidence suggests that simultaneous choice is appropriate (Schuck-471 

Paim and Kacelnik 2007). In terms of IM-SAM, the above indicates that it is easier to 472 

distinguish different sequential habitat use patterns when the relative proportion of 473 

habitats available to the individual is similar.  474 

In comparison with the simplified model used in De Groeve et al. (2016), we 475 

here simulated sequences within the true landscape context, giving more complex and 476 

variable patterns, and hence resulting in more complex dissimilarity trees, requiring 477 

methodological refinements to obtain robust classifications. In classification trees, the 478 

optimal number of clusters can be derived using many different approaches. Several 479 

SAM-applications (e.g. Shoval and Isaacson 2007) define the cut-off value by visual 480 

exploration of clusters in dissimilarity trees without considering the robustness of the 481 

clusters. More objective methods use within- and between-cluster quality assessments, 482 

such as silhouette plots (Rousseeuw et al. 1987) and the Calinski-Harabaz Index 483 

(Caliński and Harabasz 1974), or, as often used in DNA-analysis, cluster stability 484 

procedures based on bootstrapping (e.g. Jaccard bootstrapping, BJ). In our case, the 485 



sequences corresponded to simulated behaviors (i.e., discrete trajectories) that were 486 

obtained through a set of stochastic rules applied to real and highly heterogeneous 487 

environments. Hence, some variability in the output sequences, and so in the clustering, 488 

can be expected, especially when the proportion of alternative habitats is highly unequal 489 

within individual MCPs (see Fig. 3). For this reason, we extended the approach of De 490 

Groeve et al. (2016), based on median values in BJ, by combining a central tendency 491 

(BJMD), and a dispersion measure (BJIQ) of cluster quality into a unique index. We think 492 

that this procedure could be appropriate for other SAM applications, as it represents a 493 

semi-automated standardised approach. 494 

One of the most important advantages of IM-SAM is the possibility to express 495 

sequences as multi-level habitat categories, as showed in other studies (De Groeve et al. 496 

2016, Brum-Bastos et al. 2018). De Groeve et al. (2016) annotated trajectories with 497 

contextual information derived from two habitat variables (elevation and habitat 498 

openness) expressed as single character codes (i.e., high-open, high-closed, low-open, 499 

low-closed), and Brum-Bastos et al. (2018) instead generated character codes for each 500 

context variable which were then analysed as multi-channel sequences. Here, we used a 501 

simple case of two alternative habitat types (open vs. closed) that showed promising 502 

sequential pattern variability in a single roe deer population (De Groeve et al. 2016). 503 

Note that for continuous or discretised habitat variables, which are expected to be 504 

spatially correlated, substitution weights are essential to correct for classes that are more 505 

similar to each other. For example, in the case of four habitat classes with different 506 

forest cover density (<25%, 25-50%, 50-75%, >75%), a forest cover density of <25% is 507 

more similar to the 25-50% category than to the >75% one. In the R package TraMineR 508 

such substitution weights can be based on automatic computation of transition rates, 509 

probability or user-defined (Gabadinho et al. 2011). While automatic computation of 510 



substitution weights is sufficient for exploration trees, we recommend assessing them 511 

directly by measuring spatial correlation at the relevant scale (i.e., median step length; 512 

see De Groeve et al. 2016) for simulation and classification trees. However, while the 513 

exploration phase can handle a large number of classes, the complexity of simulated 514 

sequential habitat use patterns increases with the number of habitat categories, hence we 515 

suggest using the exploration phase to identify the most essential for simulation and 516 

classification. Multi-channel sequence analysis, as proposed by Brum-Bastos et al. 517 

(2018), offers interesting future avenues for more complex combinations of habitat (or 518 

contextual) variables.  519 

In IM-SAM, simulations of sequential habitat use patterns are performed in the 520 

individual reference area of use that were obtained with a simple geometric method 521 

(MCP 100 %). However, there is no limitation on using other methods to assess the area 522 

of use, for example, to overcome the sample size dependence of MCP (Spencer et al. 523 

1990, Powell et al. 2000).  524 

Ecological insights and geographical applications 525 

In our study, 40% of the real sequences from all roe deer populations were classified as 526 

alternating patterns between open and closed habitats. This suggests that not only the 527 

proportion, but also the sequential order in which open and closed habitats are used, is 528 

an important metric for characterising the space use strategy of individual roe deer. 529 

Activity and physiological circadian cycles, such as feeding-rumination, may explain 530 

the observed alternation between open and closed habitats. Indeed, roe deer are known 531 

mainly to select for forest and cover habitats during rumination and resting (Cederlund 532 

1981, Mysterud and Østbye 1995), and to favour edges and open areas during peak 533 

foraging activity, at twilight and during the night (Pagon et al. 2013). This pattern may 534 

be less pronounced in areas with less human disturbance, such as for a Canadian elk 535 



population (Ensing et al. 2014). Indeed, in human-dominated European landscapes, 536 

habitat alternation is likely a behavioral response of ungulates to both landscape 537 

heterogeneity and temporal variation in human activities. Because rich open landscapes 538 

are often associated with higher risk of predation or disturbance, in such human-539 

dominated environments, prey species must generally trade their acquisition of high-540 

quality resources against risk avoidance (Godvik et al. 2009). By alternating between 541 

rich open areas and more closed forest habitats, with less forage but a higher degree of 542 

shelter, prey may hence resolve the risk-resource trade-off (Fraser and Huntingford 543 

1986). In particular, wild ungulate species, including roe deer, generally use closed 544 

refuge habitats during daytime, when human disturbance is greater, and rich open 545 

habitats during night time (e.g. Bonnot et al. 2013; Padié et al. 2015).  546 

A large proportion of real habitat use sequences of roe deer were also classified 547 

as homogeneous open, meaning that a non-negligible number of deer intensively used 548 

human-exploited agricultural lands during both day and night (i.e., crops: South-France, 549 

Southern Germany; husbandry: Switzerland; Aulak and Babinska-Werka 1990). Indeed, 550 

agricultural areas may simultaneously provide both high-quality food and cover 551 

resources for roe deer, at least during certain parts of the year (Hewison et al. 2001, 552 

Cimino and Lovari 2006, Bjørneraas et al. 2011). Homogeneous closed sequences, on 553 

the other hand, were more common in forest landscapes, but also occurred in 554 

agricultural landscapes, suggesting that some individuals are strictly associated with a 555 

given habitat type. Finally, our results indicate that most of the time, the sequential use 556 

of open and closed habitats by roe deer was not random, since only a small proportion 557 

of real sequences were tagged with a random pattern of habitat use.  558 

A further step towards understanding the ecological significance of sequential 559 

habitat use would involve accounting for seasonal and individual variability, and to 560 



include further covariates, such as specific landscape features (e.g., fragmentation), or 561 

individual life-history traits (sex, age). IM-SAM ‘tags’ can be used with levels of a 562 

categorical variable in established statistical modelling frameworks, such as multivariate 563 

statistics (e.g. Jongman et al. 1995) or Generalised Linear Modelling (e.g. Pinheiro and 564 

Bates 2000; Zuur et al. 2009). SAM was originally applied to the ecological context as a 565 

spatio-temporal exploratory tool (De Groeve et al. 2016). IM-SAM takes this a step 566 

forward, opening up the potential to use spatio-temporal patterns as a variable in spatial 567 

ecological modelling.  568 

IM-SAM applicability 569 

While IM-SAM was applied here on animal habitat use sequences, human 570 

geography may also benefit from this novel framework. From a technical point of view, 571 

while several Sequence Analysis studies exist in time geography, to the best of our 572 

knowledge, robust classifications such as those obtained by bootstrapping and the use of 573 

BJIQMD have rarely been explored. Moreover, the routine applicability of IM-SAM could 574 

be supported by the use of a popular data analysis software (R version 3.4.1., R Core 575 

Team 2017; package TraMineR, Gabadinho et al. 2011). Conceptually, with the ongoing 576 

advances in human and animal tracking techniques, IM-SAM could ultimately be used 577 

as a tool to simultaneously compare patterns of space use in animals and humans. For 578 

example, mapping sequential animal and human space use in the same area could help 579 

understand if and how they differ or conflict. Alternatively, potential effects of traffic, 580 

recreation, hiking, cycling and other human activities could be assessed by modelling 581 

them as environmental drivers of sequential habitat use. Furthermore, after 582 

characterising animal and human sequential space use, one could explore the sequential 583 

pattern of non-movement related metrics obtained through biologging, such as activity, 584 

heart rate, body temperature, or food intake (see Ropert-Coudert et al. 2005).  585 
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Table 1. Percentage of real sequences classified into the 17 most common cluster types (different from 854 
the most common cluster types for simulated sequences), and in the simplified classification. See 855 
paragraph d. in Methods ‘Identification of cluster types’ for the description of the acronyms. 856 
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Table 2. Comparison between SAM and IM-SAM, distinguishing the general procedure (a), the three-step 876 
framework (exploration, b; simulation, c; classification, d) and the pivotal summarised advantage of IM-877 
SAM (e). The steps that were identical between SAM and IM-SAM are in italics.   878 

      SAM IM-SAM 

a 

Distance metric Hamming Distance Hamming Distance 

substitution weights Yes no 

Extendible to multiple variables Yes Yes 

Clustering Algorithm Hierarchical Clustering of Ward Hierarchical Clustering of Ward 

Bootstrapping Bootstrap median Bootstrap median & interquartile range 

b Exploration trees Population level tree Individual or population level tree 

c 

movement simulation context Nine simulated arenas * Real movement context (MCP) 

Movement model Biased and correlated random walk Biased and correlated random walk 

 Simulated patterns: a33, o, c, r Simulated patterns: a24, a33, a42, o, c, r § 

 single selection rule three selection rules 

Simulation trees Tree for each arena Tree for each individual 
Matching of real sequences to a 
simulation arena yes **  No need (individual trees) 

d Classification trees Sequences from multiple individuals  Sequences from single individual 

e Multi-population framework  No Yes 
* Nine simulated arenas that represent the distribution and composition of real home ranges.  879 
** Real sequences are matched to simulated arenas by measuring the proportion of available habitat at sequence level. 880 
§ Under the hypothesis that ungulates maintain a disturbance and predator avoidance strategy, using mainly open habitat during 881 
the night and closed habitat during the day, three types of alternation were simulated in relation to temporal and spatial variation in 882 
sunrise and sunset.  883 
 884 
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Figure 1. Workflow chart of the procedure to classify spatio-temporal habitat use patterns of individual 895 
animal trajectories using Individual Movement-Sequence Analysis Method (IM-SAM). Trees represent 896 
sequence dissimilarities between habitat use sequences, indicated by branch lengths. Each tree leaf 897 
corresponds to one biweekly sequence, which was visualised beside the tree, together with a colour-coded 898 
bar representing a variable related to each sequence. See main text for details.  899 

Figure 2. Top plot: Trend lines representing the combined bootstrap index BJIQMD (combining the 900 
bootstrap median BJMD and the bootstrap interquartile range BJIQ), for different cut-offs (2-20 clusters) in 901 
all 404 individual-based simulation trees. The output BJIQMD values are classified by the relative habitat 902 
proportion in the individual MCPs (gradient from light to dark gray, from 0.1 to 0.5). The plot also 903 
represents the contribution of BJMD and BJIQ to the combined index BJIQMD. Specifically, the thickness of 904 
the lines corresponds to BJMD; when BJMD is larger than 0.8, a purple shading is added to the gray BJIQMD 905 
trend lines. The colour of the dots along the trend lines represents BJIQ, with values decreasing from 906 
orange to blue (bright blue: BJIQ < 0.2). The transparent light blue region is the window corresponding to 907 
the second peak in BJIQMD that was chosen as the cut-off criterion for final simulation trees. Bottom plot: 908 
Boxplots visualise how the total 900 sequences simulated for each 404 MCPs are distributed between 909 
clusters, when the cut-off based on BJIQMD is used to define the corresponding simulated trees. The trees 910 
are classified by the relative habitat proportion in the MCPs (from 0.1, to 0.5- gradient of gray as in the 911 
top panel). When there is no habitat preponderance (i.e., relative habitat proportion of 0.4 or 0.5), the 912 
sequences are almost equally distributed between clusters (i.e., median cluster size close to 150, with very 913 
few outliers).  914 

Figure 3. Bottom panel - Cluster types: coloured circles represent all sixteen main cluster types 915 
identified in simulation trees, scaled by the number of clusters of that type (actual number of clusters in 916 
brackets). The colour is the legend for the top-right figure (see below). Top panel left – Cluster 917 
composition (a): frequency of occurrence of cluster types composed by up to five sequential habitat use 918 
patterns. The coloured gradient indicates the proportion of open habitat in MCPs on which simulation 919 
trees were based. Top panel right – Cluster composition (b): relative proportion of cluster types in 920 
simulated trees (main y-axis), plotted against the proportion of open habitat in MCPs (main x-axis). 921 

922 
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