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 99 
ABSTRACT 100 

Objective: To systematically review the effectiveness and safety of intravascular temperature management (IVTM) 101 

versus surface cooling methods (SCM) for induced hypothermia (IH).  102 

Methods: Systematic review and meta-analysis. English-language PubMed, Embase and the Cochrane Database of 103 

Systematic Reviews were searched on May 27, 2019. The quality of included observational studies was graded using the 104 

Newcastle-Ottawa Quality Assessment tool. The quality of  included randomized trials was evaluated using the Cochrane 105 

Collaboration’s risk of bias tool. Random effects modeling was used to calculate risk differences for each outcome. Statistical 106 

heterogeneity and publication bias were assessed using standard methods. 107 

Eligibility: Observational or randomized studies comparing survival and/or neurologic outcomes in adults aged 18 years 108 

or greater resuscitated from out-of-hospital cardiac arrest receiving IH via IVTM versus SCM were eligible for inclusion.  109 

Results: In total, 12 studies met inclusion criteria. These enrolled 1,573 patients who received IVTM; and 4,008 who 110 

received SCM. Survival was 55.0% in the IVTM group and 51.2% in the SCM group [pooled risk difference 2% (95% CI -111 

1%, 5%)]. Good neurological outcome was achieved in 40.9% in the IVTM and 29.5% in the surface group [pooled risk 112 

difference 5% (95% CI 2%, 8%)]. There was a 6% (95% CI 11%, 2%) lower risk of arrhythmia with use of IVTM and 15% 113 

(95% CI 22%, 7%) decreased risk of overcooling with use of IVTM versus SCM. There was no significant difference in 114 

other evaluated adverse events between groups.  115 

Conclusions:  IVTM was associated with improved neurological outcomes vs. SCM among survivors resuscitated 116 

following cardiac arrest. These results may have implications for care of patients in the emergency department and 117 

intensive care settings after resuscitation from cardiac arrest.  118 

  119 
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Background 120 

   Out-of-hospital cardiac arrest (OHCA) affects more than 400,000 individuals in the United States (US)(1) and 624,000 121 

individuals in Europe(Extrapolated from (2)) annually. Of these, nearly 90% die. Timely restoration of blood flow after the onset 122 

of cardiac arrest (CA) is critical to survival but the act of restoring flow is associated with cell injury, termed reperfusion 123 

injury.(3) Studies in animal models of CA demonstrated that mild therapeutic hypothermia, also referred to as induced 124 

hypothermia (IH) or targeted temperature management (TTM), reduces the inflammation and other harmful processes 125 

that occur immediately following reperfusion.(4-8)  Also, briefer time from the onset of arrest or initiation of therapeutic 126 

reduction of core body temperature to achieving moderate hypothermia is associated with significantly better 127 

outcome.(5, 9-12) In humans resuscitated from CA, briefer time to target temperature appears to be associated with better 128 

survival.(13-15) Two randomized trials have demonstrated that IH improves outcomes in comatose patients resuscitated 129 

from cardiac arrest, (16, 17) and mild therapeutic hypothermia between 32C and 36C is currently recommended by 130 

evidence-based practice guidelines for use in post-cardiac arrest care.(18-20) However, the optimal dose, duration and 131 

method for IH or TTM have not been fully determined.(21) 132 

   Multiple methods of IH are in clinical use in patients resuscitated from CA. Intravascular temperature management 133 

(IVTM), also sometimes referred to as endovascular temperature management, requires insertion of catheters into a large 134 

vein. Current commercially available catheters have multiple balloons on their external surface that provide a large 135 

surface area in contact with the patient’s blood. A console is used to circulate chilled saline in a closed loop, and heat 136 

exchange occurs between the surface of the balloons and the blood so as to induce and maintain IH. Surface cooling 137 

methods (SCM) require application of ice packs, cooling blankets or gel-adhesive pads to one or more areas of skin so as 138 

to induce and maintain IH. Each method has differing capabilities of extracting heat, which translate to different rates of 139 

achieving the intended target temperature. Methods of IH may also differ in their ability to maintain a consistent target 140 

temperature as well as to control the rewarming phase at the completion of the IH protocol.(22) The different methods of IH 141 

may also have distinct types and rates of adverse events. Small randomized trials have compared temperature control 142 

and outcomes in patients who received IH via IVTM vs SCM.(23-25) However, these trials lacked sufficient power to detect a 143 

small but potentially important difference in outcomes. To date, the effectiveness and safety of IVTM vs. SCM of IH in this 144 

high-impact population is incompletely defined. Therefore, we conducted a systematic review and meta-analysis to assess 145 

the effectiveness and safety of IVTM vs. SCM of IH in patients resuscitated from CA. We hypothesized that IVTM would 146 

be associated with improved survival and neurological outcome compared with SCM.  147 

Methods 148 
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   The methods of this review were registered prospectively (PROSPERO 2018 CRD42018112541).(26) A Boolean search 149 

strategy was applied to the PubMed database (See Online Supplement). In response to a request by a peer-reviewer, this 150 

was also applied to the Embase and Cochrane systematic reviews databases. This was supplemented by application of the 151 

Cochrane sensitivity- and precision-maximizing search strategy for randomized controlled trials, and modified for clinical 152 

studies of hypothermia devices rather than drugs.(27) 153 

    Included were observational or interventional studies that described use of IVTM and SCM of IH in adults aged 18 years or 154 

greater who were resuscitated from CA, and that reported survival and/or neurologic outcomes for both IVTM and SCM 155 

groups. Studies that described only IVTM or SCM without a comparison group were not included. If a study described use of 156 

multiple means of achieving IH (IVTM or SCM), these data were aggregated prior to inclusion in the systematic review. 157 

   Unique citations were reviewed to confirm eligibility by two individuals (GN, TV, EB), and relevant data extracted (GN, EB). 158 

The primary author of each included study was asked to confirm that the data had been extracted correctly. The primary 159 

author for one study was unable to do so,(28) so the data extracted for that study were confirmed by a second a member of the 160 

review team (EB). Differences in either study eligibility or data abstraction were resolved by consensus. The methodological 161 

quality of included observational studies was assessed independently by two individuals (GN, EB) with differences resolved by 162 

consensus using the Newcastle-Ottawa Quality Assessment form.(29) This is scored by a star system along the domains of 163 

representativeness of the groups, comparability of the groups and outcomes assessment, with a higher star score indicating 164 

better quality. Included randomized trials were evaluated in a similar manner using the Cochrane Collaboration’s risk of bias 165 

tool.(30) This includes seven domains of potential bias and is scored as low, high or uncertain risk of bias.   166 

   The primary outcome evaluated by this review was survival to hospital discharge. If vital status at discharge was not 167 

available, we substituted survival to 28 or 30 days or end of study follow-up. A key secondary outcome was good neurologic 168 

outcome at discharge (or 28 or 30 days or end of study follow-up). Good neurologic outcome was defined as Cerebral 169 

Performance Category 1 or 2 or modified Rankin score less than or equal to 3. Adverse events of interest included: shivering, 170 

temperature overcooling, local or skin injury, deep venous thrombosis (DVT), serious bleeding requiring transfusion, 171 

arrhythmias, pneumonia or sepsis (see Online Supplement for definitions). We sought to abstract sufficient information to be 172 

able to stratify outcomes by first recorded rhythm. If relevant data were not included in the primary publication, we contacted 173 

the primary author to request that they provide the missing information.  174 

   Results were summarized qualitatively and quantitatively by using standard meta-analytic techniques.(31) Analyses were 175 

performed for the overall results as well as grouped by randomized vs. observational design. Statistical heterogeneity was 176 

assessed using tau2, inconsistency index I2 and a test of heterogeneity with the related p value. A random effects model 177 

(DerSimonian-Laird) was used to calculate pooled risk differences for each outcome. All planned analyses delineated in the 178 



 

 
8 

prospectively registered systematic review protocol were performed. Additionally, rate of arrhythmia in IVTM vs SCM was 179 

included as a post-hoc analysis. Funnel plots were used to visually check for possible selection or publication bias in 180 

combination with a test for funnel plot asymmetry based on a linear weighted regression. Secondary analysis used a fixed 181 

effects model (Mantel-Haenszel) to calculate pooled risk differences for survival and neurologic outcome. The level of 182 

statistical significance was set a priori at alpha = 0.05. Meta-analysis was performed by using jamovi (Version 0.9, retrieved 183 

from https://www.jamovi.org) with its ‘major’ package. This was supplemented by using R (Version 3.5.0, retrieved from 184 

https://www.r-project.org/) with its ‘meta’ package.  185 

Results 186 

Literature Search 187 

  The results of the literature search are summarized in Figure 1. On May 27, 2019, 244 unique candidate citations were 188 

identified by the search strategy. Four additional candidate citations were identified by the authors of this meta-analysis 189 

based on their prior knowledge of the literature.(22, 24, 32, 33)  Of these 248 citations, 15 studies were identified as being 190 

eligible for inclusion. After full text review of each eligible article, three studies were excluded. One evaluated use of IH in 191 

patients with multiple disorders including but not limited to CA.(34) Another applied fever control methods but not active IH 192 

to patients who did not receive IVTM.(35) Another did not disaggregate outcomes by IVTM vs. SCM.(36) Twelve studies 193 

(overall n=5,581 patients) were included in the meta-analysis.   194 

Included Studies 195 

   The characteristics of included studies and their enrolled patients and outcomes are summarized in Table 1. Three 196 

studies were randomized trials;(23-25) four were prospective cohort studies;(22, 28, 32, 33) and three were retrospective case-197 

control studies.(37-39) Two were secondary analyses of randomized trials: one compared two target temperature ranges 198 

and another compared two protocols for duration of IH in patients resuscitated from CA.(40,41) Note that we considered 199 

outcomes in each temperature range and IH duration in these articles separately. All studies enrolled patients with OHCA; 200 

some also enrolled patients with in-hospital CA. Methodological quality was rated as moderate among included 201 

observational studies (Online Supplement). The risk of bias was rated as moderate among included trials. 202 

   The majority of included studies originated from outside the US. The SCM of IH that were used in each study varied, 203 

and consisted of ice packs, fans, tents, non-adherent cooling blankets or gel adhesive cooling pads. Some also 204 

administered chilled fluids intravenously. The majority of included studies used a target temperature of 32-34 C or less, 205 

but two randomized trials used a target temperature of 36 C.(24, 40) One cohort study used target temperatures of 32, 33, 206 

34 or 35 C, depending on patient characteristics and provider preference.(22) The age and gender distribution of enrolled 207 

patients was typical of patients with OHCA. Most studies predominantly enrolled patients with a first recorded rhythm that 208 
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was shockable. Insufficient information was available about patient characteristics, EMS processes of care, time from 209 

activation of emergency medical services to initiation of hypothermia or achievement of target temperature, use of 210 

sedation or paralytics to reduce shivering, or rate of rewarming to pool these data to make any inferences about the 211 

relationship between these factors and outcomes. As well, there was insufficient information regarding the precision and 212 

variability of induced hypothermia in each study to assess the association between these factors and patient outcomes.   213 

1,573 patients (28%) received IVTM; 4,008 received SCM (71.8%). Survival data were available for all patients included. 214 

Neurological outcomes data were available for 1,514 patients in the IVTM group and 3,962 in the SCM group. Survival 215 

was 55.0% in the IVTM group and 51.2% in the SCM group. Good neurological outcome was achieved in 40.9% in the 216 

IVTM and 29.5% in the SCM group. 217 

Pooled Effects 218 

   Pooled data from included studies demonstrated that use of IVTM was associated with an absolute 2% (95% CI -1%, 219 

5%) greater chance of survival as compared to SCM.  There was an absolute 5% (95% CI 2%, 8%) greater chance of 220 

good neurological outcome associated with use of IVTM compared to SCM. These results are summarized in Figure 2. 221 

   There was no significant statistical heterogeneity among studies that reported survival data (p value=0.74) or in those that 222 

reported the incidence of good neurological outcome (p value=0.82). There was no evidence of publication bias among 223 

studies that reported survival data (regression test for funnel plot asymmetry p value=0.24) or in those that reported the 224 

incidence of good neurological outcome (regression test for funnel plot asymmetry p value=0.94). 225 

    Secondary analysis using a fixed effects model demonstrated that use of IVTM was associated with an absolute 2% 226 

(95% CI -1%, 5%) greater chance of survival as compared to SCM (Online Supplement).  There was an absolute 5% 227 

(95% CI 2%, 8%) greater chance of good neurological outcome associated with use of IVTM compared to SCM using this 228 

method of analysis as well. 229 

   There was a 6% (95% CI 11%, 2%) lower risk of arrhythmia with IVTM versus SCM and an 15% decreased risk of 230 

temperature overcooling with use of IVTM versus SCM (95% CI 22%, 7%) (See Online Supplement). There was no 231 

significant difference between groups with regards to the risk of shivering, skin injury, clinically significant bleeding, DVT, 232 

pneumonia or sepsis.  233 

   There was no evidence of a differential effect of IVTM upon survival to discharge or neurological outcome at discharge 234 

in studies that employed a randomized vs. observational design. There were insufficient data available to evaluate for a 235 

differential effect of IVTM as compared with SCM in studies of US vs. ex-US origin, first recorded rhythm, no-flow time 236 

(EMS call to sustained restoration of flow in minutes), time to target temperature (EMS call to target temperature in minutes), 237 

use of feedback control, precision or overshoot.   238 
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   There were insufficient data available for a post hoc analysis to evaluate the differential effect of IVTM as compared to 239 

SCM of IH with target temperature 34C or less vs. 36 C. 240 

Discussion 241 

   This systematic review of randomized trials and observational studies from multiple geographically separate locations 242 

reported over a decade-long period suggested that IH using IVTM as compared to SCM is associated with a significant 243 

and important beneficial effect on neurological outcome in patients resuscitated from OHCA.  Treatment of 20 (95% CI 13, 244 

50) patients with IVTM as compared to SCM was associated with one more individual with good neurologic outcome. As 245 

well, there was a significant decrease in the rate of arrhythmias and of temperature overcooling with use of IVTM as 246 

compared to SCM. There was no significant difference in the rate of shivering, skin injury, serious bleeding, DVT, 247 

pneumonia, or sepsis between IVTM and SCM. Several of the latter comparisons were limited by sparse data. The overall 248 

quality of the included studies was moderate. There was no evidence of statistical heterogeneity or publication bias.  249 

   An insufficient number of patients resuscitated from CA (overall n=352) have been randomized to IH vs. normothermia 250 

to have sufficient power to detect small but important differences in outcome between the two interventions.(16, 17) Due to 251 

lack of clinicians’ equipoise,(18-20) a US-based trial of IH vs. normothermia is likely infeasible. In the absence of a larger 252 

amount of additional randomized evidence of the effect of IH vs. normothermia in patients resuscitated from CA, this 253 

systematic review and meta-analysis could inform ongoing debate among providers about whether IH improves outcomes 254 

compared to normothermia in patients resuscitated from CA. Prior randomized trials of IH as compared to normothermia 255 

in patients with CA yielded mixed results. Two trials that monitored adherence to IH and achieved target temperature 256 

quickly observed improved outcomes with IH vs. normothermia.(16, 17) In contrast, IH without early achievement of target 257 

temperature was not associated with benefit.(42, 43) These discordant results may be due in part to variation in the time to 258 

achieving target temperature between trials or drugs used to reduce shivering.(3)  259 

  Due to discordant information about whether a target temperature of 34C or less is necessary, many providers have 260 

adopted target temperature of 36C. However, multiple large retrospective analyses of data collected for reasons 261 

unrelated to IH (overall n=100,085) suggest that among patients resuscitated from CA, a target temperature of 36C is 262 

associated with worse outcomes as compared to a target of 34 C or less.(44-46) Although the present analysis had limited 263 

power to detect differences in outcome between different target temperatures, our observation that IVTM is associated 264 

with better neurological outcome than SCM of IH could provide indirect evidence that there is an association between 265 

active use of IH as opposed to normothermia and better outcomes in patients resuscitated from OHCA. 266 

   This study has some limitations. First, we considered only citations written in English. This reduced the number of 267 

eligible citations and hence the overall number of patients included in the analysis. However, reported effects may be 268 
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larger in non-English as opposed to English studies,(47) and restriction to English-language studies is unlikely to bias the 269 

results of a systematic review.(48) 270 

   Second, our strict eligibility criteria reduced the overall number of studies and patients included in our systematic review. 271 

While the present analysis was undergoing revision after its initial peer review, another systematic review the effect of 272 

different methods of IH was published.49 The latter included 22 studies (overall n=8,027). Of these, one study compared 273 

IVTM vs SCM and reported survival to discharge but not neurologic outcome in the English language (overall n=69).50 A 274 

post hoc analysis including this additional study did not suggest that IVTM significantly improved survival vs. SCM (details 275 

available from authors). In contrast to the other systematic review, we separated IVTM and SCM groups in trials of mild 276 

vs. moderate IH as well as brief vs. prolonged IH, and emphasized random effects rather than fixed effects analysis. Thus 277 

our methods avoid underestimating uncertainty (i.e., had wider confidence intervals in effect estimates) than the other 278 

analysis. As well, we evaluated differences in adverse events as well as effectiveness outcomes with IVTM vs. surface. 279 

Thus we believe that the results of the present study are more robust than those of the other systematic review. 280 

   Third, the majority of patients included in this analysis were enrolled in observational rather than randomized studies. As 281 

such, we can infer association between use of IH and outcomes after OHCA, rather than causation. However, a subgroup 282 

analysis of the results of data derived from randomized studies did not demonstrate a significant difference in effects 283 

found for either neurological outcomes or overall survival.  284 

   Fourth, multiple factors are associated with outcome after OHCA. There was insufficient information about time to target 285 

temperature in each study to be able to relate it to outcome. The SCM employed in studies included in this analysis were 286 

heterogeneous, but we were unable compare the effect of specific SCM.  In addition to method of IH, important prognostic 287 

factors may include initial rhythm (i.e., ventricular fibrillation versus pulseless electrical activity or asystole),(51) site of 288 

initiation of IH (pre-hospital or emergency department),(52-55) duration of IH,(52) and concurrent medications to reduce 289 

shivering and sedation. . Multi-center observational studies and a systematic review suggest that the outcomes of patients 290 

resuscitated from OHCA are associated with the components of care administered after transportation to a receiving 291 

hospital.(53-56) These include emergency coronary angiography and selective percutaneous coronary intervention, as well 292 

as deferred prognostic assessment and withdrawal of life-sustaining treatment in addition to IH. Included articles lacked 293 

information regarding these components of resuscitation after OHCA so we cannot draw conclusions about their relative 294 

contributions to patient outcomes based on the results of this systematic review and meta-analysis. 295 

   Fourth, there was a significant difference in neurologic outcome but not survival with IVTM vs. SCM. It is possible that 296 

the latter may be attributable to a lack of survival benefit from IH. Alternatively, the lack of significant survival benefit may 297 

reflect that effective post-resuscitation care has several necessary elements, and that the included studies generally did 298 
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not try to mitigate the competing risk of premature prognosis assessment and withdrawal of life sustaining treatments 299 

upon survival.(57) 300 

   This study has some strengths. First, to the best of our knowledge, the overall sample size of the present study is larger 301 

than any prior controlled assessments of use of IH in individual patients with CA. This yields more precise effect estimates 302 

than previous studies. Second, treatment effects were pooled using a random-effects statistical model. Meta-analyses 303 

commonly use a fixed effect or a random-effects model. The former assumes all studies are estimating the same (i.e., 304 

fixed) treatment effect, whereas the latter allows for differences in the treatment effect from study to study.(58) Although 305 

both methods are criticized,(59) random-effects models are less likely to overstate certainty (i.e., underestimate confidence 306 

interval around the pooled treatment effect). 307 

   Third, included studies were widely separated by geography, time and method of IH. Ordinarily, this would be expected 308 

to attenuate differences between treatment and outcome. Instead, we observed significant differences. We therefore infer 309 

that the observed differences are likely generalizable to other settings.   310 

Conclusions  311 
 312 
  Temperature management following CA using IVTM as compared to SCM is associated with a significant and important 313 

beneficial effect on neurological outcome but not on overall survival. Our findings suggest that use of IVTM may be 314 

preferable to use of SCM to reduce morbidity in this population. Future research on induced hypothermia after cardiac 315 

arrest should report cooling method(s) used, characteristics of cooling (including time to target temperature, temperature 316 

precision and duration of cooling) as well as the characteristics of EMS and in-hospital care. 317 

  318 
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Figure 1: PRISMA Flow Diagram of Included and Excluded Studies  319 

 320 

 321 

  322 

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-

Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 

 
For	more	information,	visit	www.prisma-statement.org. 
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Figure 2: Random-Effects Forrest Plots for Risk Difference in Survival and Good Neurologic Outcome 323 

A) Survival 324 

  325 



 

 
15 

B) Good Neurologic Outcome 326 

 327 

 328 

  329 
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 330 

Figure 3: Funnel Plots for Survival and Good Neurologic Outcome 331 

A) Survival 332 

 333 

 334 

 335 

  336 
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B) Good Neurologic Outcome 337 

 338 

 339 

 340 

 341 

  342 
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Table 1: Characteristics of Included Studies and Patients 343 

(See attached) 344 

 345 

Table 2: Outcomes 346 

(See attached) 347 

 348 

 349 
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