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A Structural Equations Modeling analysis of multiple groups often involves specification of
cross-group parameter equality constraints. In this paper, we present a technique for estimat-
ing the differences and equalities in parameters between groups using L1-penalized estima-
tion (also known as the Lasso). We present the general model formulation and provide an
algorithm for estimating the parameters across a range of penalization levels and a procedure
for determining the amount of penalization. We also provide two case studies, one with
a model including only observed variables, and one with a model with latent variables.
Further, we conduct a simulation study to investigate some properties of the method.

Keywords: Lasso, structural equations modelling, variable selection, regularization, multiple

group analysis

INTRODUCTION

Structural Equation Models (SEM) are a family of models used
to analyze complex relationships between variables (Mulaik,
2009). In one way, the SEM framework can be seen as an
extension of the familiar regression model, where we are not
limited to having a single response variable and response vari-
ables can themselves be predictors for other variables. In this
way, both direct and indirect associations can be modeled.
Another important part of the SEM methodology is the possi-
bility to incorporate latent variables. Latent variable models
include both regression-type models where some variables
can be latent and factor models where the focus is the relation-
ship between observed variables and unobserved constructs.
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A SEM analysis is usually confirmatory in nature, where
the two-fold goal is to estimate the parameters of
a prespecified model and to investigate how well the model
fits the data. As such it can be of interest to do subgroup
analyses to see if the model specification holds across groups
and parameter estimates are similar (Joreskog, 1971). A multi-
group analysis can involve adding constraints to some of the
parameters, so that they are estimated to be equal across
groups, while others are left to be estimated freely. This must
be done in a way that considers the balance between model fit
and model complexity. The freeing and constraining of the
parameters across groups is usually determined by the
researcher, guided by a combination of theoretical considera-
tions, goodness-of-fit tests, and various model fit indexes
(Cheung & Rensvold, 2002; Mulaik, 2009). A multi-group
SEM analysis will therefore often be more exploratory in
nature than a single group analysis.

Another strategy for balancing model complexity and
model fit is to use penalized estimation procedures.
Penalized estimation techniques extend the estimation cri-
terion by an additional term that is a function of the mag-
nitudes of the parameters, so that the parameter space
becomes constrained. This type of constraint differs from
the hard equality constraints that are usually employed,
whether it be equality across groups or equality to O,
since the constraint implied by the penalty applies to the
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overall structure of the parameters and not to specific para-
meters. The amount of penalty, or the amount of constraint,
can be adjusted via a few tuning parameters. These tuning
parameters then smoothly shift the model estimates from
good fit in complex models (possibly overfitted) to poorer
fit in less complex models that hopefully generalizes better
on new data. The tuning can be done using a data-driven
procedure such as cross-validation.

Different types of functions, with different properties, can be
used as penalties in the parameter estimation. The two most
popular penalty functions are the ridge and the lasso. The ridge
penalty is simply the sum of the squared parameters, and the
lasso penalty is the sum of the absolute values of the parameters.
Although they are superficially similar, their properties differ in
important ways. While both tend to decrease the overall magni-
tude of the parameters, the lasso tend to estimate some para-
meters to be exactly 0, while leaving others non-zero. This
property is sometimes desirable as this can be thought of as
a form of model selection. This is usually not the case when the
ridge penalty is used.

Penalized estimation has been used extensively in big data
applications such as machine learning and high-throughput
genomics, but has not been used much together with the SEM
methodology. A penalized estimate was recently been devel-
oped for two-stage least squares estimators (Jung, 2013) and for
covariance estimators (Jacobucci, Grimm, & McArdle, 2016)
(Huang, Chen, & Weng, 2017), and there have been applica-
tions in mediation analysis (Serang, Jacobucci, Brimhall, &
Grimm, 2017).

In this paper, we present a new data-driven methodology
for identifying group differences in structural equation
models using penalized estimation procedures.
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FIGURE 1

THE STRUCTURAL EQUATIONS MODEL

In the rest of this paper we will use the RAM notation to
describe and specify structural equations models
(McArdle & McDonald, 1984). With the RAM notation,
the model is specified using two matrices, A and S, and
a vector M, which contains all parameters. If the model
contains p variables, including both observed and latent
variables, then the A matrix is a p X p matrix encoding of
the asymmetric relations in the model graph. The asym-
metric relations are in this context regression coefficients
and factor loadings. In FIGURE 1 this is illustrated for
a simple example model. Similarly, the p x p matrix S is
the symmetric adjacency matrix of the undirected part of
the model graph, which specifies the variances (on the
diagonal) and the residual covariances (the off-diagonal
elements).

The p vector M contains the means (for the exogenous
variables) and intercepts (for the endogenous variables). An
additional £ x p filter matrix F helps extract the £ observed
variables of the model implied covariance matrix, so that it
can be compared to the observed k X k& data covariance
matrix C.

Given a set of RAM matrices, the model implied covar-
iance matrix X(0) is given as (Jacobucci et al., 2016)

2(0) =F(I —A)'S(F(I —4)™")" (1)
and the model implied mean vector is given as
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The A matrix encoding the directed relationships in an example model. (a) A graph displaying a toy model, excluding the self-arrows that

signify variances. (b) The A matrix encoding the directed relationships in the example model. The layout of the non-zero elements of A correspond to the
adjacency matrix of the model graph. (c) The S matrix encoding the undirected relationships in the example model, including the variances along the
diagonal. (d) Illustration of the A matrix in a group with the difference parameterization.
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The parameters are estimated by minimizing the negative
log-likelihood criterion for a multivariate normal model

f(Z,1,0) =log(|C|) + Tr(C +Z(0) ") — log(C)
—r+ (= pu(0))"2(0) (1 — u(0)) 3)

where r is the number of parameters.

Group SEM

A common situation is that the data can be divided into G
subgroups and it is of interest to see if the different groups
yield similar parameter estimates and model fit. The esti-
mation criterion can be extended as follows to account for
the group structure:

f(C,,u,G) :f(clwul’el) +f(C27/127€2) + .. +f(CGnqueG)

“)

where Cg is the observed covariance matrix, 4, is the vector
of observed means and 6, is the parameter vector, for group g.
A typical group SEM analysis will proceed in an itera-
tive fashion, where several models are fitted, with some of
the parameters constrained to be equal across groups, while
others are left to be estimated independently in each group.
Determining which parameters should be constrained and
free are decided by the researcher, and is typically judged
using a combination of goodness of fit indices and the
researcher’s knowledge of the subject that is studied.

THE LASSO GROUP SEM

Instead of relying on model fit indices and manual specifica-
tion of the constraints in the group SEM analysis, we will in
this section develop a penalized estimation procedure, using
the Lasso penalty (Hastie, Tibshirani, & Wainwright, 2015),
to identify the parameters that differ between subgroups.

Let, arbitrarily, the first group be the reference group. We
reparameterize the part of the model belonging to the other
groups to reflect how much the parameters depart from what
is the case in the reference group. Specifically, let

O, = 0 + 6, (5)

for g > 2. The 6, parameters represent how much the para-
meters in a group deviates from the corresponding para-
meters in the reference group. When d, = 0, then 0, = 6,
will be the same in the two groups. See FIGURE 1(d) for an
example of how the A matrix would look like with this
setup. The J, and the parameter parameters will be the
parameters of interest in the rest of the analysis.

With this parameterization, we can rewrite the criterion
in Equation 4 and extend it with the Lasso penalty

G
S(Eu,0) =F(Cropy,00) + > f(Cos g, O)
=2
J &
+hg Y |0gl (6)
J

where Ag > 0 is a constant and a tuning parameter that
is not directly estimated, and J is the number of Jg
parameters. The consequence of the additional penaliza-
tion term is that the absolute magnitude of the estimates
of dg will be smaller. For some values of A, some of
the parameters will be estimated to be exactly 0, thus
estimating those effects to be the same as in the refer-
ence group. A, acts as a tuning parameter that balances
between model fit and model complexity. When A, =0
for g=1,...,G the criterion become equivalent (apart
from the parameterization) with the unpenalized criter-
ion in Equation 4, and the estimates will be
ordinary ML estimates. The amount of penalty is the
same for each J parameter within a group, which
require the parameters to be on the same scale. To
ensure this the variables must be scaled before the
parameters are estimated.

As pointed out in (Jacobucci et al., 2016), there is no point
in penalizing the parameters in both the A and S matrices.
Furthermore, we can consider the means and intercepts as
nuisance parameters, and remove them from our analysis by
centering the variables in each group prior to the analysis. In
the following, we will therefore only penalize the parameters
in the A matrix, which we denote §°, and leave the para-
meters in the S matrix, 6°, unpenalized. [It can sometimes be
worthwhile to fix the parameters in S so that these do not vary
when the penalty changes, as this can compensate for lack of
fit caused by penalizing the parameters in A.]

In the rest of the paper, we discuss only the two-group
case, unless otherwise stated, and drop the group-indicating
subscripts. Extension to several groups is straightforward, but
with a caution in regard to the choice of reference group. In
the two-group case, the choice of reference group does not
matter, as should be evident from equation 5. Unfortunately,
this is not the case when there are more than two groups.

Parameter estimation

Here we describe an algorithm to minimize the penalized log-
likelihood criterion in equation 6 for a range of A values, and
then discuss how to find a good value for A. The algorithm
builds on the cyclic coordinate descent method where each
parameter estimate is updated in turn, until convergence. This
method is known to be efficient for computing the parameters
for a range of A‘s when the estimates from a given value of A
are used as the initial estimates for the next value of A (Hastie
et al., 2015).
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Before the model estimation, the data should be standar-
dized. Within each group, subtract the mean and divide by
the standard deviation of all the variables. This removes the
mean and intercept parameters from further considerations
and bring all variables to a common scale. This ensures that
the coefficients are directly comparable. Otherwise, we
would have to use a separate A for each coefficient.

1. Fit the model with the difference parameterization,
but without any penalization (A = 0). This gives us

the estimates 0; and ;%.

a. Use this to find A (see below). For a desired
number of distinct values of A, select evenly
spaced values between A" and 0.

2. Setall 6/ =0
3. Starting with A" and continue with successively
lower values of A, do the following steps:

a. With all 5]‘.’ parameters fixed to their current esti-
mates, estimate the parameters in S, 0°.

b. For each parameter 5}1, j=1,...,J, do the follow-
ing steps until convergence:

i. Find a provisional estimate 5]" of J} by
unpenalized ML, with all other ¢* parameters
fixed to their current estimates.

ii. (Soft Tresholding) Apply the soft thresholding
function before updating the current estimates:

9 = $).(5;) (7)

where

Si.(x) = sign(x) x max(0, [x| — &) ®)

The soft thresholding step of the algorithm (Equation 8) is
what causes the shrinking of the parameters. The soft
thresholding shrinks the magnitude of the provisional esti-
mate 51‘.’ by A If the intermediate estimate is smaller in
magnitude than A the new estimate becomes 0. The soft
thresholding function is shown in FIGURE 2.

Determining\™*

It is useful to determine an upper bound of the value of A
such that all 6* are estimated to be 0. Any value of A greater
than the upper bound, X, will just give the same result as
A" To find A" we start by fitting the group model with
the difference parameterization using maximum likelihood.
This step should be done anyway since it corresponds to
fitting the model with A = 0. Since the soft thresholding
function in equation 8 shrinks all parameters of smaller
magnitude than A to 0, then it is clear that values of A
greater than max(|0%|) will yield parameter estimates that
are all 0. Therefore, the upper bound A" = max(|6*|). In
our experience, however, the greatest value of A that yields
at least one non-zero estimate is often lower than A™*".

Model tuning

While it is useful to estimate the model for a range of A
values and see how the parameters change with it, this
does not give us any indication of which values of A give
a reasonable balance between model fit and complexity.
One way to determine the quality of the different

FIGURE 2 The soft threshold function. The soft threshold function shrinks the magnitude of the parameter estimates towards 0 by A. If the parameter is

smaller than A then the parameter is estimated to be exactly 0.
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estimates is to estimate how well the model will fit a new
data set that was not used for estimation. To do this we
use a cross-validation strategy where the data are split
randomly in k pieces and the model is estimated, for
a range of As, on k-1 of the pieces. The last piece is
withheld from model estimation and is used to gauge
how well the model generalizes outside the data used in
the estimation. To evaluate the out-of-sample model fit
we use the unpenalized likelihood function in equation 4.

Since the model fitting relies on the observed covariance
matrix, we want to avoid calculating this for small subsets
of the data since it is known to be unstable when the sample
size is small. We therefore split the data set in two (k = 2),
and repeat the procedure on different random two-splits of
the data (say, 5 times).

The data set is split within groups, so when k =2, about 50%
of the observations in each group are selected. This maintains
the relative sample sizes of each group and ensures that one of
the groups does not, by chance, become smaller than necessary.

EXAMPLE ANALYSIS

Example from affect valuation theory

In this example analysis, we fit a model from Affect
Valuation Theory, where the influences and consequences
about how people want to feel and how they actually feel
varies between cultures (Tsai, Knutson, & Fung, 2006). The
data set consists of responses to questionnaires gathered
from a sample of European Americans (n = 65), Asian
American (n = 67) and Hong Kong Chinese (n = 83). The
model is shown in FIGURE 3(a).

In this example we selected the European American group as
the reference group; thus, the J parameters are the differences in
the effects between the Asian American and Hong Kong
Chinese samples and the European American sample.

Based on the initial analysis we found that A™* in this
sample was approximately 0.58, but the smallest value of A
that estimated all 6 parameters to zero was about 0.45 for
the Hong Kong Chinese group and 0.27 for the Asian
American group. The evolution of the estimates for the &
parameters for a range of 20 values of A is shown in
FIGURE 3(b). We used the 50% data splitting repeated 5
times to find the optimal A, which was found to be A = 0.17
for both groups, see FIGURE 3(c). The ML estimates and
the penalized estimates with the optimal A on the full data
set are shown in TABLE 1.

The procedure identified three parameters that differed
between the European Americans and Hong Kong Chinese
and four that differed between the European Americans and
Asian Americans. In all cases, including the non-zero J°s,
the estimates are shrunk towards zero, as expected.

The ML estimates of the ¢ parameters for temperament
on rigorous activities (—0.4) in the Asian American group

are the parameter of second greatest magnitude in that
group, but was shrunk to 0 at the optimal A, while several
of the other parameters were shrunk, but not to 0. In other
words, the penalized 6 parameters do not seem to be
a simple function of the magnitude of the ML estimates.

As a sensitivity analysis of the method on these data set
we sampled the data with replacement and repeated the
estimation and cross-validation 100 times. The median A
that gave the Ileast cross-validation error was 0.27
(IQR:0.23-0.33) for the Asian American group and 0.22
(IQR: 0.15-0.27) for the Hong Kong Chinese group. The
proportion of times each of the J parameters was estimated
to be non-zero are listed in TABLE 1. It shows that the
parameters with non-zero estimates in the original data set
were the most commonly selected coefficients, and that this
applies to both groups. It is also interesting to note that
there is not a complete correspondence between the mag-
nitude of the ML estimates and the probability of having
penalized estimates shrunk to zero. This is especially seen
in the coefficients for the Hong Kong Chinese group, where
for instance the d-coefficient from Ideal Affect to Rigorous
Activities has an ML estimate of —0.20 and has about half
the probability of being selected as the coefficient for
Temperament to Depression, which has a ML estimate of
—0.16, which is closer to zero.

A model with latent variables

In this example, we analyze data from the Norwegian
election survey that was conducted after the 2013 general
election (Kleven, Aardal, Berghm, Hesstvedt, & Hindenes,
2015). We study how different levels of political interest
and participation influence how easy the respondents (n =
1522) felt it was to decide who to vote on. The respondents
were asked how often they discuss politics with friends and
family, participated in discussions online, how interested
they are in politics, whether they participated in
a demonstration, sign petitions and how much they cared
about which party won. The model has two latent variables,
political interest and political participation, and one
observed outcome variable. The model graph is shown in
FIGURE 4(a).

We fitted the model stratified on gender (756 women,
766 men), with men as the reference group. The evolution
of the J parameters is shown in FIGURE 4(b). From the
cross-validation we found that the best out of sample fit
was achieved with A = 0.28 (FIGURE 4(c)).

The estimated parameters are shown in TABLE 2.
Almost all 0 parameters were estimated to be 0, including
the parameters relating the latent variables to their observed
indicators. The only nonzero J parameter is the one for the
effect of participation on how easy it was to decide. This
parameter even changed sign between the ML estimate and
the penalized estimate, going from —0.07 to 0.03. This is
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FIGURE 3 The affect valuation model. (a) Path diagram of the Affect Valuation Theory model. (b) The are represented with ellipses, while the
parameters for a range of L. The rightmost part of the plot, where A = 0 are the ordinary ML estimates. The vertical gray lines indicate the values of A that
were evaluated. (c) Cross-validation results. The line shows the average out of sample error after five rounds of cross-validation for a range of A values. The

optimal A is 0.17.

probably related to the effect of the other predictor of the
response, “Interest”, which was drastically shrunk from
0.36 to zero.

A SIMULATION STUDY

To investigate some properties of the estimation and cross-
validation procedure under different settings and sample
sizes we did a simulation study. In order to have
a realistic model, we used the Affect Valuation Theory
model and data as the basis to simulate new data. We
used the same analysis setup as before, by using two-fold
cross-validation 5 times repeated with 20 values of A.

In the first simulation study, we investigated the proce-
dure under a typical null hypothesis setting where there are

no differences between groups. To simulate data for this
study we first fitted the Affect Valuation Theory model to
the complete scaled data set ignoring the groups. Then, 100
data sets were simulated for two groups with the same
parameters in each, with balanced sample sizes of 71,
150, 250 and 500 in each group. We chose to use
a sample size of 71 since this is the average group size in
the original AVT data set. The true parameter values used
in this simulation are shown in the top part of TABLE 3.
the second simulation study, we investigated the
procedure in the situation when most, but not all para-
meters, are the same across groups. To generate the
true model we fitted the AVT model to the scaled
data from the European American and Hong Kong
Chinese groups, with the parameters estimated freely
across the two groups. The parameter estimates from
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TABLE 1
Parameter Estimates for the Affect Valuation Theory Model on Scaled and Centered Data. The Column 8 Shows the Regression Coefficients for
the European American Group. The Column 6, Shows the Addition to the B Parameters that Yield the ML Estimates for the Hong Kong
Chinese Group. The Estimates Using the Optimal A Is Given in the d,_o ;5 Column. Four Parameters Were Estimated to Be Non-zero. The
Rightmost Column Show the Proportion of Times the Parameter Were Estimated to Be Non-zero across 50 Bootstrap Samples

Asian American HK Chinese

Response Predictor Bea =0 Or=0.17 P(6#0) Or—0 0r—0.17 P(6#0)
Ideal affect Attitudes 0.19 —0.16 —-0.01 0.35 0.03 - 0.21
Actual affect Attitudes 0.01 0.20 0.03 0.27 0.28 0.07 0.53
Rigorous activities Attitudes —0.18 0.06 - 0.10 0.12 - 0.25
Depression Attitudes 0.03 —0.04 - 0.08 0.06 - 0.14
Ideal affect Temperament 0.31 0.08 - 0.13 —-0.18 - 0.31
Actual affect Temperament 0.61 —0.08 - 0.03 —-0.36 —0.11 0.68
Rigorous activities Temperament 0.37 —0.40 - 0.21 —-0.19 - 0.44
Depression Temperament —0.40 0.08 - 0.20 —-0.16 - 0.46
Rigorous activities Ideal affect 0.21 —0.12 - 0.08 -0.20 - 0.22
Depression Ideal affect 0.05 —0.08 - 0.17 —-0.02 - 0.22
Rigorous activities Actual affect —0.38 0.55 0.10 0.53 0.53 0.28 0.94
Depression Actual affect -0.03 -0.24 -0.07 0.34 —0.02 - 0.21

TABLE 2 study, the proportion of times the procedure estimated

Parameter Estimates for the Election Survey Model. The Column f
Shows the Regression Coefficients for the Model Fitted to the
Responses from Men (The Reference Group). The Column 6,—
Shows the Addition to the p Parameters that Yield the ML Estimates
for Women. The Estimates Using the Optimal A Is Given in the
dr=0.28 Column. Four Parameters Were Estimated to Be Non-zero. *:
Parameters Fixed to 1 to Make the Latent Variables Identifiable

Response Predictor B Oh—o 03—0.28
Interest Interested in politics 1* - -
Interest Discuss politics with 0.79 -0.02 -
friends and family

Interest Care about who wins 0.76 0.06 -
Participation ~ Online discussion 1* - -
Participation  Signed petition 1.69 0.01 -
Participation =~ Demonstration 1.41 —0.18 -
Participation ~ Interest 0.20 0.09 -
Easy to decide Participation —-0.29 —-0.07 0.03
Easy to decide Interest 0.09 0.36 -

the European American group were then used as the
true parameters in both our simulated groups, except
for three parameters, in which the estimates from the
Hong Kong Chinese group were used: The coefficients
from Attitudes and Temperament to Actual affect, and
the coefficient from Actual affect to Rigorous activities.
We then simulated 100 data sets using the same sample
sizes as in the first simulation study. The true parameter
values used in this simulation are shown in the middle
part of TABLE 3.

The data were simulated using the simulateData function
in the lavaan package.

A summary of the results from the two simulation
studies is shown in TABLE 3. In the first simulation

the J-coefficients to something other than exactly 0
varied between around 55% and 70%, and the propor-
tion does not seem to be related to the sample size. In
other words, there seem to be at least a 30% chance
that a true 0 J parameter is estimated to something
other than 0. The Mean Squared Error (MSE) and
bias observed in the simulations are small for all sam-
ple sizes, indicating that the magnitude of the non-zero
0‘s are usually small.

In the second simulation study, the proportion of
times the procedure estimated the J-coefficients to
something other than 0 depended strongly on whether
the 0 parameters were truly zero or not. The truly non-
zero ‘s were usually estimated to be non-zero at least
97% of the times. The truly zero J‘s were however not
estimated to exactly zero as often as in the first simula-
tion study, usually in the range of 10 to 30 percent.

In both simulation studies, the mean squared errors of
the parameter estimates were small, but since the main
reason for using the Lasso technique is to estimate some
parameters exactly to 0, the results of the second simula-
tion study show that the optimal A based on cross-
validation might not penalize the estimates enough.
This is a known issue in the lasso literature, where
a “one-standard-error” rule might be used instead to set
the A (Hastie et al., 2015). The rule is to set a stricter A
that is within one standard error of the cross-validation
error. We therefore did a variant of the second simulation
study using this rule of thumb. The results are shown in
the bottom part of TABLE 3. The proportion of times the
true J‘s was estimated to exactly 0 were greater than in
the second study, but still lower than in the first, typically
in the 30 to 55 percent range.
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FIGURE 4 The Norwegian election survey model. (a) The path diagram for the model. The latent variables are represented with ellipses, while the
observed are rectangular. (b) The evolution of the estimates for the J parameters for a range of A. (c) Average out of sample error after five rounds of cross-
validation for a range of A values. The minimum out of sample error was achieved when A = 0.28.

DISCUSSION

In this paper, we have presented a method for doing group
analyses of structural equation models, with the goal of
identifying regression coefficients that differ between
groups. The method is based on the L1-penalization tech-
nique which we employ by parameterizing the coefficients
in a group by how much they differ from the coefficients in
an arbitrarily chosen reference group. The consequence of
the L1-penalization is that some of these differences are
estimated to be 0, indicating that the coefficients are equal
in the two groups.

The penalized method we have presented provides
a data-driven alternative to the commonly used manual
specification of the cross-group constraints. This represents
one possible application of the framework introduced in
(Jacobucci et al., 2016).

In our presentation of our two case studies, we have
emphasized the identification of the non-zero differences

between two groups. We also considered the resulting point
estimates and how they differed from the non-penalized
ML estimates. While these are interesting, they should be
interpreted with care. It is for instance difficult to obtain
standard errors from penalized estimates, which means that
standard methods for inference do not apply. Our method is
therefore best suited for exploratory analysis, and should
not be considered a substitute for testing specific
hypotheses.

On both case studies, the non-zero coefficients were not
simply the coefficients with the greatest magnitudes of
the ML estimates. This is because the penalized estimation
also takes into account the co-linearity among the variables.
This phenomenon can be witnessed in the plots showing the
evolution of the parameters when the penalization is chan-
ged. This is most evident in the analysis of the election
survey data, where the trajectories change as new non-zero
parameters enter the model. Accounting for co-linearity
when the model is manually re-specified with new
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TABLE 3
Summary of the Simulation Studies. The True Coefficients from Group 1 are Listed in the Columns 6, and the 6 Parameters are Shown in the ¢
Column. The Top Part Show the Results of Study 1, Where All 6 Parameters are Exactly 0. The Middle Part Show the Result of a Study Where
Some of the J's are Not 0. The Bottom Part Shows the Results of a Variant of the Second Study, but the Where the Final A Is Set Using the
Stricter “one-standard-error” Rule

N=71 N= 150 N =250 N =500

Mean Mean Mean Mean
Response Predictor 0, 6 P(0#0) MSE bias P(6#0) MSE bias P(6#0) MSE  bias P(6#0) MSE  bias
Depression Actual Affect —0.08 — 0.64 001 -0.00 0.69 0.00 —0.00 071  0.00 —0.00 0.63  0.00 0.00
Rigorous activties Actual Affect —0.00 — 0.59  0.01 0.00 0.67 0.00 —0.00 0.60  0.00 0.00 0.52  0.00 -0.00
Actual affect Attitudes 0.19 - 0.69 0.00 -0.00 0.70  0.00 -0.01 0.68 0.00 -0.00 0.61 0.00 —0.00
Depression Attitudes 0.04 - 0.63  0.01 0.01 0.66 0.00 —0.00 0.58  0.00 0.00 052 0.00 -0.00
Ideal affect Attitudes 017 - 0.57  0.01 0.01 0.66  0.00 0.00 0.55 0.00 -0.01 0.59  0.00 0.00
Rigorous activties Attitudes -0.10 - 0.63  0.00 -0.00 0.63  0.00 0.00 0.64 0.00 0.00 0.58 0.00 -0.00
Depression Ideal Affect 002 - 0.57 0.01 -0.01 0.69  0.00 0.00 0.65 0.00 -0.00 0.57 0.00 -0.01
Rigorous activties Ideal Affect 011 - 0.60 0.01 -0.00 0.60 0.00 —0.01 0.59  0.00 0.00 0.56  0.00 0.00
Actual affect Temperament 0.44  — 0.64  0.00 0.01 0.61  0.00 0.01 0.61 0.00 -0.00 0.71  0.00 0.00
Depression Temperament —0.47  — 0.69 0.01 0.00 0.73  0.00 0.00 0.70  0.00 0.00 0.62  0.00 0.00
Ideal affect Temperament 025  — 058 0.01 —0.01 0.67  0.00 0.01 0.63 000 -0.00 0.60 0.00 —0.00
Rigorous activties Temperament 0.15  — 0.61 0.01 0.01 0.62  0.00 0.01 0.57  0.00 —0.00 0.59  0.00 0.00
Depression Actual Affect —0.03 - 026 0.02 -0.02 0.20  0.01 0.01 0.17  0.01 -0.00 0.09  0.01 0.00
Rigorous activties Actual Affect —0.38 0.53  0.01  0.04 0.08 0.00 0.02 0.05 0.00 0.01 0.04 0.00 0.01 0.03
Actual affect Attitudes 0.01 028 0.01 0.02 0.03 0.00 0.01 0.01 0.00 0.01 -0.01 0.00 0.00 -0.02
Depression Attitudes 003 - 026 0.02 0.01 0.27 0.01 -0.01 024 001 -0.00 0.18  0.00 0.00
Ideal affect Attitudes 0.19 - 027 0.01 -0.02 0.14 0.01 0.00 020  0.00 0.00 0.17  0.00 0.01
Rigorous activties Attitudes -0.18 - 021 0.02 -0.04 021 0.01 -0.01 0.13 000 -0.02 0.16 0.00 -0.01
Depression Ideal Affect 005 - 0.17 0.03 -0.02 0.22 0.01 -0.00 023 0.01 -0.00 0.09 0.00 -0.01
Rigorous activties Ideal Affect 021 - 030 0.02 0.02 0.27  0.01 0.01 0.18  0.01 0.01 0.17  0.00 -0.01
Actual affect Temperament  0.61 —0.36 0.03 0.03 -0.09 0.00 0.01 -0.06 0.00 0.01 -0.04 0.00 0.00 -0.04
Depression Temperament —0.40 — 022 002 -0.00 0.18 0.01 -0.00 025 0.01 0.00 0.12  0.00 —0.00
Ideal affect Temperament 0.31  — 024 001 -0.01 0.28 0.01 -0.01 024 0.01 0.01 0.12  0.00 0.00
Rigorous activties Temperament 0.37 — 023 0.03 -0.01 022  0.01 0.01 0.27  0.01 0.02 0.14  0.00 0.02
Depression Actual Affect —0.03 - 062 0.01 -0.01 0.46  0.00 0.01 034 001 -0.01 0.30  0.00 0.00
Rigorous activties Actual Affect —0.38 0.53  0.05  0.06 0.16 0.00 0.03 0.10 0.00 0.01 0.07 0.00 0.01 0.05
Actual affect Attitudes 0.01 028 0.15 0.03 0.13 0.02 0.01 0.07 0.00 0.01 0.03 0.00  0.00 0.00
Depression Attitudes 003 - 0.64 001 -0.00 0.56  0.00 -0.01 0.42 0.00 -0.00 0.44  0.00 0.00
Ideal affect Attitudes 0.19 - 056 0.01 —0.01 0.47  0.00 0.00 041  0.00 0.01 0.43  0.00 0.01
Rigorous activties Attitudes -0.18 - 0.45 0.01 -0.03 0.44 000 -0.01 038 000 -0.02 0.44 000 -0.01
Depression Ideal Affect 005 - 052 0.01 -0.01 0.49  0.00 0.00 042 0.00 -0.00 034 0.00 -—0.00
Rigorous activties Ideal Affect 021 - 0.55  0.01 0.00 0.55 0.00 -0.00 039  0.00 0.00 0.40 0.00 -0.01
Actual affect Temperament 0.61 —0.36 0.15 0.05 -0.18 0.02 0.02 -0.12 0.00 0.01 -0.07 0.00 0.01 -0.06
Depression Temperament —0.40  — 0.49 0.01 -0.00 046 0.01 —0.00 0.45  0.00 0.00 0.39 0.00 -—0.00
Ideal affect Temperament 0.31  — 0.54 000 -0.01 0.59  0.00 -0.00 0.45  0.00 0.00 032 0.00 0.00
Rigorous activties Temperament 0.37  — 047 001 —0.01 0.51  0.01 0.00 045  0.00 0.01 040  0.00 0.01

constraints is a difficult task, and the penalized procedure
we have presented here seems to handle it.

Our simulation studies based on the Affect Valuation Theory
case study explore some properties of the procedure. They show
that non-zero J°s will often be estimated to be non-zero, but
whether exactly zero ‘s will be estimated as such, is not
necessarily easy to answer and depend on both the data and
model, as well as on the amount of penalization. In light of the
discussion of the case studies, it is worth repeating that the
procedure presented here is not intended as a replacement for
classical hypothesis testing, but could provide some interesting
exploratory results.

The R scripts and data sets used to compute the results
in this paper are available from www.github.com/jcl7/
group sem_lasso.
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