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Abstract
Consider the problem of minimizing a quadratic objective subject to quadratic
equations. We study the semialgebraic region of objective functions for which this
problem is solved by its semidefinite relaxation. For the Euclidean distance problem,
this is a bundle of spectrahedral shadows surrounding the given variety. We charac-
terize the algebraic boundary of this region and we derive a formula for its degree.
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1 Introduction

We study a family of quadratic optimization problems with varying cost function:

min
x∈Rn

g(x) subject to f1(x) = f2(x) = · · · = fm(x) = 0, (1)

where f = ( f1, . . . , fm) is a fixed tuple of elements in the space R[x]≤2 � R(n+2
2 )

of polynomials of degree two in x = (x1, . . . , xn). Even though problem (1) is hard,
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there is a hierarchy of tractable semidefinite programming (SDP) relaxations, known
as the Lasserre hierarchy [1,13,14]. In this paper we focus on the Shor relaxation [19],
which is the first level of the hierarchy. We are interested in the set defined by the Shor
relaxation:

Rf = {
g ∈ R[x]≤2 : problem (1) is solved exactly by its (Shor) SDP relaxation

}
.

We call Rf the SDP-exact region of the tuple f = ( f1, . . . , fm). We will slightly
change this definition in Sect. 3 by further imposing strict complementarity. This will

lead to an explicit description of Rf as a semialgebraic set in R[x]≤2 � R(n+2
2 ). We

refer to Definition 3.2.
The quadratic cost function that motivated this article is the squared distance to a

given point u ∈ R
n . In symbols, gu(x) = ||x−u||2. Here (1) is theEuclideanDistance

(ED) problem (cf. [6]) for the variety Vf = {x ∈ R
n : f1(x) = · · · = fm(x) = 0}.

By restricting Rf to the space of cost functions gu , we obtain a semialgebraic set
in R

n . This is the SDP-exact region for the ED problem, denoted Red
f , which was

investigated in [3].

Example 1.1 (ED problem for m = n = 2) The variety Vf consists of four points
in R

2. We seek the point in Vf that is closest to a given point u = (u1, u2). The
Voronoi decomposition of R2 characterizes the solution. The SDP-exact region Red

f
consists of four disjoint convex sets, one for each point in Vf . The convex sets are
bounded by conics, and are contained in the Voronoi cells of the points. Figure 1
illustratesRed

f for two configuration of points in R2: the cells on the left are bounded
by ellipses, and on the right by hyperbolas. Note that in both cases the conics touch
pairwise at the bisector lines (cf. Theorem 4.5).

Our second example is the Max-Cut Problem from discrete optimization. The SDP
relaxation of this problem has been the subject of several papers; see, e.g., [8,11,12].

Example 1.2 (Max-Cut Problem) Let m = n and fi (x) = x2i − 1, so Vf = {−1,+1}n
is the vertex set of the n-cube. We seek a maximal cut in the complete graph Kn where

Fig. 1 The variety of two quadratic equations in R
2 consists of four points. The SDP-exact region for the

ED problem consists of conics that are inscribed in the Voronoi cells. The conics can be ellipses (left) or
hyperbolas (right) depending on the point configuration
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the edge {i, j} has weight ci j . In (1) we take g(x) = ∑
i, j ci j xi x j where C = (ci j )

is a symmetric n × n matrix with c11 = · · · = cnn = 0. Note that these objective
functions live in a subspace of dimension

(n
2

)
in R[x]≤2. The dual solution in the SDP

relaxation is the Laplacian

L(C) =

⎛

⎜⎜⎜⎜⎜
⎝

−∑
j �=1 c1 j c12 c13 · · · c1n
c12 −∑

j �=2 c2 j c23 · · · c2n
c13 c23 −∑

j �=3 c2 j · · · c3n
...

...
...

. . .
...

c1n c2n c3n . . . −∑
j �=n c jn

⎞

⎟⎟⎟⎟⎟
⎠

.

The SDP-exact regionRf consists of 2n−1 spectrahedral cones in R(n2), each isomor-
phic to the set of matrices C = (ci j ) such that L(C) is positive semidefinite. The
boundary of this spectrahedron is given by a polynomial of degree n − 1, namely the
determinant of any (n − 1) × (n − 1) principal minor of L(C). By the Matrix Tree
Theorem, the expansion of this determinant is the sum of nn−2 monomials in the ci j ,
one for each spanning tree of Kn . Hence the algebraic boundary ofRf is a (reducible)
hypersurface of degree (n − 1)2n−1.

The Max-Cut Problem for n = 3 asks to minimize the inner product with
C = (c12, c13, c23) over T = {

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)
}
.

The feasible region of the SDP relaxation is the elliptope on the left in Fig. 2. It strictly
contains the tetrahedron conv(T ). The region Rf is the set of directions C whose
minimum over the elliptope is attained in T . It consists of the four circular cones over
the facets of the dual of the elliptope. That dual body is shown in green in Fig. 2, next
to the yellow elliptope. Thus Rf corresponds to the union of the four circular facets
of the dual elliptope. These four circles touch pairwise, just like the four ellipses in
Fig. 1. The algebraic boundary ofRf has degree 8 = (3 − 1)23−1.

The present paper is a sequel to [3], where the SDP-exact region for the ED problem
was shown to be full-dimensional in Rn . We undertake a detailed study ofRf and its
topological boundary ∂Rf . We define the algebraic boundary ∂algRf to be the Zariski
closure of ∂Rf . Our aim is to find the polynomial defining this hypersurface, or at least

Fig. 2 The elliptope (left) has four vertices, corresponding to the rank-one matrices. The rank-one region
consists of the linear forms for which the minimum is attained at a vertex. It is given by the cones over the
four circular facets of the dual convex body (right)
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to find its degree. This degree is an intrinsic measure for the geometric complexity of
the SDP-exact region.

The material that follows is organized into five sections. In Sect. 2 we introduce
the rank-one region of a general semidefinite programming problem. Building on the
theory developed in [17], we compute the degree of the algebraic boundary of this
semialgebraic set.

In Sect. 3 we turn to the quadratic program (1). We introduce its SDP relaxation,
and show thatRf coincides with the rank-one region of that relaxation. In Theorem 3.5
we determine the degree of ∂algRf under the assumption that f1, . . . , fm are generic.
That degree is strictly smaller than the corresponding degree for SDP, which appears
in Theorem 2.6.

Section 4 concerns the Euclidean distance problem and the case when the cost
function g is linear. Theorem 4.1 represents their SDP-exact regions in Rn as bundles
of spectrahedral shadows. Each shadow lies in the normal space at a point on Vf , and
is the linear image of a master spectrahedron that depends only on f . For linear g, the
regionRlin

f is determined by the theta body of Gouveia et al. [9]; see Proposition 4.7.
For the ED problem,Red

f is a tubular neighborhood of the variety Vf . Figure 1 showed
this when Vf consists of four points in R2. Analogs in R3 are depicted in Figs. 4, 8, 9
(for points) and Figs. 5, 6 (for curves).

In Sect. 5 we study the algebraic geometry of the SPD-exact region of the ED prob-
lem. Theorem 5.6 gives the degree of the algebraic boundary ∂algRed

f when Vf is a
generic complete intersection. It rests on representing our bundle as a Segre product
and projecting it into the ambient space of Vf . The abelian surface in Example 5.2
serves as a nice illustration.

Section 6 addresses the ED problem when f is not a complete intersection. Algo-
rithm 1 shows how to compute the SDP-exact region. Several examples demonstrate
what can happen. The dual elliptope on the right of Fig. 2 reappears in five copies in
Fig. 9.

2 The rank-one region in semidefinite programming

Consider a family of semidefinite programming problems with varying cost function:

min
X∈Sd

C • X subject to Ai • X = bi for i = 1, 2, . . . , l, and X � 0. (2)

Here C • X = trace(CX) is the usual inner product on the space Sd � R(d+1
2 ) of

symmetric d×dmatrices. The numbers b1, . . . , bl ∈ R and thematricesA1, . . . ,Al ∈
Sd are fixed in (2), whereas the cost matrix C varies freely over Sd . The rank-one
region RA,b is a semialgebraic subset of Sd that depends on A = (A1, . . . ,Al) and
b = (b1, . . . , bl). It consists of all matrices C such that (2) has a rank-one solution
and strict complementarity holds. See Definition 2.2 below. In this section we study
the rank-one regionRA,b and its boundary. The methods introduced here will be later
used in Sect. 3 to study the SDP-exact region Rf .
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The geometry of SDP-exactness in quadratic optimization

The feasible set of (2) is the spectrahedron �A,b = {
X∈Sd : X�0, Ai•X =

bi for 1 ≤ i ≤ l
}
. We assume that �A,b is non-empty and does not contain the zero

matrix. Then the region RA,b is the union of all normal cones at extreme points of
rank one in the boundary of �A,b.

Example 2.1 (d = l = 3) The convex bodies in Fig. 2 arise for Max-Cut with n = 3
in Example 1.2. The spectrahedron �A,b on the left is the elliptope. It is bounded by
Cayley’s cubic surface. The four nodes are the rank-one points in ∂�A,b. The dual
convex body, shown on the right, is bounded by the quartic Steiner surface and it has
four circular facets. The rank-one region RA,b is given by the interiors of these four
circles, viewed as cones in S3.

The semidefinite program that is dual to (2) has the form:

max
Y∈Sd , λ∈Rl

bT λ subject to Y = C −
l∑

i=1

λiAi and Y � 0. (3)

The following critical equations express the complementary slackness condition that
links the optimal solution X � 0 of the primal (2) and the optimal solution Y � 0 of
the dual (3):

Ai • X = bi for 1 ≤ i ≤ l and Y = C −
l∑

i=1

λiAi and X · Y = 0. (4)

Recall that strict complementarity holds if rank(X)+rank(Y )=d. The rank-one region
is the semialgebraic set given by the critical equations and strict complementarity, as
follows:

Definition 2.2 The rank-one regionRA,b is the set of all C ∈ Sd for which there exist
λ ∈ R

l and X ,Y ∈ Sd such that X ,Y � 0, rank(X) = 1, rank(Y ) = d − 1 and (4)
holds.

Remark 2.3 The above construction can be extended to define the rank-r region for
other values of r . It is an interesting open problem to investigate the geometry of these
regions.

The results that follow hold for generic instances of the matricesAi and the vector
b. This implies that the results hold for “almost all” instances of (A, b), i.e., outside a
set of Lebesgue measure zero. More precisely, a property holds generically if there is
a polynomial f in the entries of A and b such that it holds whenever this polynomial
does not vanish.

Genericity was also a standing assumption in the derivation of the algebraic degree
of semidefinite programming by Nie et al. [17, §2]. That degree, denoted δ(l, d, r), is
the number of complex solutions (X ,Y ) of the critical equations (4) for the SDP (2),
with l constraints for d×d matrices, assuming that rank(X) = d−r and rank(Y ) = r .
A formula for general r was given in [7]. The easier case r = d − 1 appeared in [17,
Theorem 11]:
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Proposition 2.4 The algebraic degree of rank-one solutions X to the SDP in (2) equals

δ(l, d, d − 1) = 2l−1
(
d

l

)
.

The following geometric formulation of SDP was proposed in [17, Eqn. (4.1)]. Let
V be the (l − 1)-dimensional subspace of Sd spanned by {A2, . . . ,Al}, and let U be
the (l + 1)-dimensional subspace of Sd spanned by {C,A1} and V . This specifies a
dual pair of flags

V ⊂ U ⊂ Sd and U⊥ ⊂ V⊥ ⊂ Sd . (5)

See [17, Eqn. (3.3)]. The critical equations (4) can now be written as

X ∈ V⊥ and Y ∈ U and X · Y = 0. (6)

The SDP problem (2) is equivalent to solving (6) subject to X ,Y � 0. The algebraic
degree δ(l, d, r) is the number of complex solutions to (6) with rank(X) = d − r and
rank(Y ) = r . The dual pair of flags in (5) will also play a critical role in our derivation
of the degree of the boundary of the rank-one region.

Remark 2.5 If thematricesAi and the scalarsbi are generic then strict complementarity
always holds [17, Corollary 8], and hence the following conditions are equivalent:

• The primal SDP problem (2) has a unique optimal matrix X of rank 1.
• The dual SDP problem (3) has an optimal matrix Y of rank d − 1.
• The system (6) has a solution (X ,Y ) with rank(X) = 1 and X ,Y � 0.

These conditions characterize the set of cost matrices C that lie in the
rank-one region RA,b.

Suppose that the rank-one region RA,b is non-empty. The topological boundary
∂RA,b is a closed semialgebraic set of pure codimension one in Sd . Its Zariski closure
∂algRA,b is an algebraic hypersurface, called the rank-one boundary. We view this

hypersurface either in the complex affine space C(d+1
2 ), or in the corresponding pro-

jective space P(Sd) � P(d+1
2 )−1. By construction, the polynomial defining ∂algRA,b

has coefficients in the field generated by the entries of A and b over Q. The rank-one
boundary degree is the degree of this polynomial:

β(l, d) = deg
(
∂algRA,b

)
.

Our main result in this section furnishes a formula for the degree of the rank-one
boundary.

Theorem 2.6 Let 3 ≤ l ≤ d and consider the SDP with generic A and b, as given in
(2). The degree of the hypersurface ∂algRA,b that bounds the rank-one region RA,b
equals
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Table 1 Algebraic degrees and
boundary degrees of SDP

l\d 3 4 5 6 7

Algebraic degrees δ(l, d, d − 1)

2 6 12 20 30 42

3 4 16 40 80 140

4 8 40 120 280

5 16 96 336

6 32 224

7 64

Rank-one boundary degrees β(l, d)

2 4 10 20 35 66

3 8 40 120 280 560

4 24 144 504 1344

5 64 448 1792

6 160 1280

7 384

β(l, d) = 2l−1(d − 1)

(
d

l

)
− 2l

(
d

l + 1

)
. (7)

Table 1 illustrates Proposition 2.4 and Theorem 2.6. It shows the algebraic degrees
of rank-one SDP on the top, and corresponding rank-one boundary degrees on the
bottom. The entry for l = d = 3 equals 8 = 2+ 2+ 2+ 2, as argued in Example 2.1
and seen in Fig. 2. The first row (l = 2) is not covered by Theorem 2.6. This case
requires special consideration.

Proposition 2.7 If l = 2 then the rank-one region RA,b is dense in the matrix space
Sd . IfA, b are generic then ∂RA,b = Sd\RA,b is a hypersurface of degree β(2, d) =(d+1

3

)
.

Proof The semialgebraic set RA,b is dense in the classical topology on Sd because
the Pataki range [17, §3] consists of a single rank for l = 2. This means that, for
almost all cost matrices C, there is an optimal pair (X ,Y ) that satisfies rank(X) = 1
and rank(Y ) = d−1. The boundary ∂RA,b is the set of C such that the optimal matrix
Y = C − λ1A1 − λ2A2 has rank ≤ d − 2. The polynomial in A1,A2, C that defines
this hypersurface is the Chow form of the determinantal variety {rank(Y ) ≤ d − 2}.
This variety has codimension three in P(Sd) and degree

(d+1
3

)
(see [10, Prop. 12(b)]).

This is the degree of the Chow form in the entries of C, and hence it is the degree of
our hypersurface ∂algRA,b. 	


The proof of Theorem 2.6 requires additional concepts from algebraic geometry.
We work with the Veronese variety P

d−1 ↪→ P(Sd). By [17, Proposition 12], its
conormal variety is

CV = {
(X , Y ) ∈ P(Sd ) × P(Sd ) : XY = 0 and rank(X) = 1 and rank(Y ) ≤ d − 1

}
. (8)
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As in [17, Theorem 10], we consider the corresponding class [CV ] in the cohomology
ring

H∗(
P(Sd) × P(Sd), Z

) = Z[ s, t ] /
〈
s(

d+1
2 ), t(

d+1
2 )

〉
. (9)

Its coefficients are the polar degrees of the Veronese variety. By Proposition 2.4,

[CV ] =
d∑

l=1

2l−1
(
d

l

)
· s(d+1

2 )−l t l . (10)

We represent CV by its pullback under the Veronese map x → X = xxT on the first
factor. Thus the conormal variety equals CV = {

(x,Y ) : Y x = 0 , det(Y ) = 0
}

in Pd−1 × P(Sd).
We note that the following boundary variety is irreducible of codimension one

in CV :

BV = {
(X , Y ) ∈ P(Sd) × P(Sd) : XY = 0 , rank(X) = 1 and rank(Y ) ≤ d − 2

}

� {
(x, Y ) ∈ P

d−1 × P(Sd) : Y x = 0 and rank(Y ) ≤ d − 2
}
. (11)

By the last item in Remark 2.5, the algebraic boundary ofRA,b is contained in BV .
Let Y = (yi j ) be a symmetric d × d matrix and x = (x1 x2 . . . xd)T

a column vector. Their entries are the variables of the polynomial ring T =
C[x1, . . . , xd , y11, y12, . . . , ydd ]. Subvarieties of Pd−1 × P(Sd) are defined by biho-
mogeneous ideals in T . The ideal of the conormal variety equals ICV = 〈Y x, det(Y )〉.
The ideal of the boundary variety equals IBV = ICV + Mind−1(Y ). The latter is the
ideal generated by the (d − 1) × (d − 1) minors of Y .

Proof of Theorem 2.6 Let C = (ci j ) denote the adjugate of Y . The entry ci j of this
d×d matrix is the (d−1)×(d−1)minor of Y complementary to yi j .We are interested
in the divisor in the smooth variety CV that is defined by the equation c11 = 0. We
claim that this divisor is the sum of the boundary divisor BV and the divisor defined
by x21 = 0.

To prove this claim, we consider the ideals I := ICV + 〈c11〉 and J := ICV +
Mind−1(Y ) · 〈x21 〉 in T . It suffices to show I = sat(J ), the saturation with respect to
〈x1, . . . , xd〉. Consider the d × (d + 1) matrix (x | C). The ideal M := Min2(x | C)

is contained in ICV . Combining two of its generators, we find ci j x21 − c11xi x j ∈ M .
Therefore the generator ci j x21 of J lies in M + 〈 c11 〉 ⊂ I . So J ⊆ I , and since I is
saturated, sat(J ) ⊆ I . For the reverse inclusionweneed to show that c11 ∈ sat(J ). This
followsbynoting that c11x2k−ckk x21 ∈ M , and thus c11x2k ∈ M+Mind−1(Y )·〈x21 〉 ⊂ J .
Therefore, I = sat(J ) and the claim follows.

We now compute the class of BV in the cohomology ring (9). Theminor c11 defines
a hypersurface of degree d −1 in P(Sd), so its class is (d −1)t . The class of {x21 = 0}
is twice the hyperplane class in P

d−1. It is the pullback of [{x11 = 0}] = s under the
Veronese map into P(Sd). Here x11 is the upper left entry in the matrix X = xxT . We
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multiply these classes with [CV ] as in (10), and thereafter we subtract. By the claim
we proved, this gives

[BV ] = [CV ∩ {c11 = 0}] − [CV ∩ {x21 = 0}]

= (
(d − 1)t − s

) · [CV ] =
d∑

l=2

β(l, d) · s(d+1
2 )−l t l+1,

where the coefficients of the resulting binary form are the expressions on the right
of (7).

The following argument shows that the class [BV ] encodes the rank-one boundary
degrees. Suppose the cost matrix C travels on a generic line in Sd from the inside
to the outside of the rank-one region RA,b. For almost all points C on that line, the
optimal pair (X ,Y ) is unique. Before C crosses the boundary ∂RA,b, the optimal pair
satisfies rank(X) = 1 and rank(Y ) = d − 1. Immediately after C crosses ∂RA,b, we
have rank(X) = 2 and rank(Y ) = d − 2. At the transition point, the optimal pair
(X ,Y ) lies in the variety BV .

Consider the intersection of BV with the product of the codimension-(l − 1) plane
P(V⊥) and the subspaceP(U ′) � P

l+1 spanned byA1, . . . ,Al and the line onwhich C
travels. The points in that intersection are the pairs (X ,Y ) ∈ BV that arise as C travels
along the line. The number of such complex intersection points is the coefficient of

s(
d+1
2 )−l t l+1 in [BV ].
We need to argue that the inclusion (5) poses no restriction on the products of

subspaces we intersect with, i.e., for generic flags V ⊂ U ′ with dim(U ′/V) = 3, all
intersections with BV are transverse and reduced. To this end, let X0 be the rank-one
d×d matrix with a single one in the first entry, and let Y0 be the diagonal d×d matrix
with two zeros followed by d − 2 ones. Then an affine neighborhood of (X0,Y0) in
P(Sd) × P(Sd) can be given as the direct sum of the spaces parametrized by

⎛

⎜⎜⎜
⎝

1 x12 · · · x1,d
x12 x22 · · · x2,d
...

...
. . .

...

x1,d x2,d · · · xd,d

⎞

⎟⎟⎟
⎠

and

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

y11 y12 y13 · · · y1,d−1 y1,d
y12 y22 y23 · · · y2,d−1 y2,d
y13 y23 1 + y33 · · · y3,d−1 y3,d
...

...
...

. . .
...

...

y1,d−1 y2,d−1 y3,d−1 · · · 1 + yd−1,d−1 yd−1,d
y1,d y2,d y3,d · · · yd−1,d 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

The linear terms in the coordinates of the matrix equation XY = 0 are

y11, y12, x13 + y13, . . . , x1,d + y1,d and x23, . . . , xd,d , (12)
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for a total of
(d+1

2

)−1 forms. To show that the intersection described above is transverse
for generic flags V ⊂ U ′, it suffices to find one instance for which BV ∩ (P(V⊥) ×
P(U ′)) = {(X0,Y0)} in the neighborhood of (X0,Y0) ∈ P(Sd)×P(Sd) defined above.

Let P(V⊥) be determined by the vanishing of the l−1 forms x12, . . . , x1 l−1, x22 −
x23 and P(U ′) by the

(d+1
2

)− l forms y1,l , . . . , y1,d , y22 + y23, y23, . . . , yd−1,d . Com-

bining these forms with those in (12), we get 2(
(d+1

2

) − 1) independent linear forms.
This (highly non-generic) choice yields a transverse intersection. We conclude that
the intersection BV ∩ (P(V⊥) ×P(U ′)) is transverse and reduced at (X0,Y0) also for
generic choices of V ⊂ U ′. 	


3 From semidefinite to quadratic optimization

Wenowmodel the quadratic optimization problem (1) as a special case of the semidef-
inite program (2). To this end, we set l = m+1, d = n+1, andwe use indices that start
at 0 and run tom and n respectively. LetA0 be the rank-one matrix E00 whose entries
are 0 except for the entry 1 in the upper left corner. The following two conditions are
equivalent:

A0 • X = 1, rank(X) = 1 and X � 0 ⇐⇒ X = (1, x1, . . . , xn)
T (1, x1, . . . , xn).

(13)

Setting b = (1, 0, . . . , 0) and imposing the rank constraint in (13), our SDP in (2) is
equivalent to minimizing a quadratic function in x subject to the constraintsA1 • X =
· · · = Am • X = 0.

To apply SDP to the problem (1), with m quadratic constraints in n variables, we
set

g(x) = xTCx + cT x and fi (x) = xT Ai x + 2aTi x + αi for 1 ≤ i ≤ m.

The matrices C, Ai ∈ Sn , the vectors c, ai ∈ R
n , and the scalars αi ∈ R, give the

entries in

C :=
[
0 cT

c C

]
, A0 :=

[
1 0
0 0

]
, Ai :=

[
αi aTi
ai Ai

]
∈ Sd . (14)

If we now also set X = (
1
x

)
(1 xT ) then (1) is precisely the SDP (2). In other words,

(1) is equivalent to (2) with the additional constraint rank(X) = 1. The SDP (2) is
called the Shor relaxation of the quadratic program (1). We say that the relaxation is
exact if the primal optimal solution X∗ of the SDP is unique and has rank one.

The SDP arising as a relaxation of a quadratic program has two distinctive features:
the matrix A0 is the rank-one matrix E00, and we fix the values b0 = 1, c00 = b1 =
· · · = bm = 0. The last m + 1 equations pose no restriction: they can be achieved by
adding multiples of A0 to C,A1, . . . ,Am . The only truly special feature of this SDP
is that A0 has rank one.
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Remark 3.1 The Shor relaxation of a quadratic optimization problem in R
n is a

semidefinite program in Sn+1 in which one constraint matrix A0 is rank-one.

We fix the identifications in (14) throughout this section. In particular, we will
define the SDP-exact region as the restriction of the rank-one region to SDP’s coming
from quadratic programs. Consider the Lagrangian function

L(λ, x) := g(x) −
m∑

i=1

λi fi (x). (15)

This polynomial is quadratic in x . Its Hessian with respect to x is the symmetric
n × n matrix

H(λ) :=
(

∂2L
∂xi∂x j

)

1≤i, j≤n
= C −

m∑

i=1

λi Ai . (16)

The entries of the matrix H(λ) are affine-linear in λ = (λ1, . . . , λm).
The SDP-exact region is obtained by specializing Definition 2.2 to the matrices

in (14):

Definition 3.2 The SDP-exact regionRf is the set of all matrices C ∈ Sn+1 such that

H(λ) � 0 and c −
m∑

i=1

λi ai + H(λ)x = 0 for some x ∈ Vf and λ ∈ R
m .

(17)

The condition (17) has a natural interpretation in the setting of constrained opti-
mization. It says that the Hessian of the Lagrangian is positive definite at the optimal
solution.

Remark 3.3 Definition 3.2 expressesRf as a union of spectrahedral shadows [18,20].
To see this, fix a point x in Vf . The constraints (17) define a spectrahedron Sx in
the space with coordinates (λ,C, c). The SDP-exact region for x is the image of Sx
under the projection onto the coordinates (C, c). This image is a spectrahedral shadow.
Definition 3.2 says thatRf is the union of these shadows. We shall return to this point
in Theorem 4.1.

The main result in this section is the extension of Proposition 2.4 and Theorem 2.6
to quadratic optimization. Let N = (n+2

2

)− 1 and consider the map π : PN ×P
N ���

P
N × P

N−1 that deletes the upper left entry y00 of the matrix Y . Let CV ′ = π(CV )

denote the closed image of the conormal variety CV in (8) under the map π , and
similarly let BV ′ = π(BV ) denote the closed image of the boundary variety in (11).
Algebraically, we compute these projected varieties by eliminating the unknown y00
from the defining ideals of (8) and (11).
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Proposition 3.4 The algebraic degree of (1) is given by [CV ′] in H∗(PN × P
N−1).

We have

[CV ′] =
n∑

m=0

2m
(
n

m

)
· s(n+2

2 )−(m+1)tm . (18)

Similarly, the degree of ∂algRf is given by the class of the projected boundary vari-
ety BV ′.

Proof The map π is the projection from the special point A0 = E00 in P
N . In the

proof of Theorem 2.6, we intersect CV and BV with products of complementary
linear spaces. The situation is the same here, except that we now require the linear
space in the second factor to contain the point A0. Thus, our counting problem is
equivalent to intersecting the projections via π by products of generic linear spaces of
complementary dimension. The formula in (18) is the algebraic degree of quadratic
programming, which is found in [16, Eqn. (3.1)]. 	


Theorem 3.5 Let m ≤ n and suppose that f1, . . . , fm are generic polynomials in
R[x]≤2. The algebraic boundary of the SDP-exact regionRf is a hypersurface whose
degree equals

βQP (m, n) = 2m
(
n

(
n

m

)
−

(
n

m + 1

))
. (19)

Table 2 illustrates (18) and Theorem 3.5. It shows the algebraic degrees of quadratic
programming and corresponding degrees of rank-one boundaries. Compare with

Table 2 Algebraic degrees and
boundary degrees for the QP
problem (1)

m\n 2 3 4 5 6

Algebraic degrees of QP

1 4 6 8 10 12

2 4 12 24 40 60

3 8 32 80 160

4 16 80 240

5 32 192

6 64

Boundary degrees βQP (m, n)

1 6 12 20 30 42

2 8 32 80 160 280

3 24 120 360 840

4 64 384 1344

5 160 1120

6 384
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Table 1. The diagonal entries (m = n) in Table 2 are similar to those in the Max-
Cut Problem (Example 1.2), but there is an index shift because the general objective
function g(x) is not homogeneous. We have βQP (n, n) = 2n · n, since the n quadrics
{ fi (x) = 0} intersect in 2n points, and each of these contributes a spectrahedron of
degree n to the SDP-exact region.

For the proof we shall use polynomial ideals as in Sect. 2, but now the ambient
ring is T = C[y00, y01, . . . , ynn, x0, . . . , xn]. Using this variable ordering, we fix
the lexicographic monomial order on T . In particular, y00 is the highest variable. Let
IBV = Minn

(
Y )+〈Y x〉 be the ideal generated by the (n+2

2

)
minors of Y of size n and

the n + 1 entries of vector Y x .

Lemma 3.6 The initial ideal in(IBV ) is radical. It is minimally generated by
(n+2

2

) +
∑n−2

t=0

(n+1
t+1

)
squarefree monomials, namely the leading terms of the n × n minors

of Y , and the monomials xt · y0k0 y1k1 · · · ytkt where t ∈ {0, 1, . . . , n − 2} and
0 ≤ k0 < k1 < · · · < kt ≤ n.

Proof It is well-known in commutative algebra that the n × n minors of Y form a
reduced Gröbner basis. We augment these to a reduced Gröbner basis for IBV by
adding the entries of the row vector xT Ỹ where Ỹ is a certain matrix with n + 1 rows
and many more columns. To construct this, we consider the T -module spanned by any
subset of columns of T . The circuits in such a submodule of T n+1 are the nonzero
vectors with minimal support. We consider all circuits whose support is a terminal
segment {t, t + 1, . . . , n, n + 1}. The columns of Ỹ are all such circuits. These are
formed by applying Cramer’s rule to submatrices of Y with row indices 0, . . . , t − 1
and t + 1 arbitrary columns. The resulting entries of xT Ỹ lie in IBV . They are linear
in x , of degree t + 1 in Y , and have the desired initial monomials. One checks that
their S-pairs reduce to zero, and that this Gröbner basis is reduced. 	


Corollary 3.7 The ideal I ′
BV obtained from IBV by eliminating the highest variable

y00 is generated by those n entries of Y x and n + 1 minors of Y of size n that do not
use y00.

Proof The elimination ideal I ′
BV is generated by elements of the lexicographicGröbner

basis that do not contain y00. These are elements whose leading monomials do not
contain y00. Each of these is a polynomial linear combination of the above 2n + 1
generators of IBV . 	


Proof of Theorem 3.5 Let N = (n+2
2

) − 1. As in the proof of Theorem 2.6, we identify
CV with its preimage in Pn ×P

N , that is, CV = {(x,Y ) | Y x = 0, rank(Y ) ≤ n}. Its
image CV ′ under π lives in P

n × P
N−1. The boundary BV ′ is the projection of BV

into Pn × P
N−1.

In Theorem 2.6, the boundary was found by intersecting CV with the divisor given
by the minor c00 of Y , and by removing the non-reduced excess component {x20 = 0}.
In the present case, we still have that excess component, but it is reduced, given by
x0 = 0. The class [{x0 = 0}] is half of the pullback of the hyperplane class s of Pn .
Using (18), this implies
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[BV ′] =
(

−1

2
s + nt

)
[CV ′] =

n∑

m=1

βQP (m, n) · s(n2)−(m+1)tm+1.

The coefficients βQP (m, n) of this binary form are the combinatorial expressions
in (19).

To see that the excess component is now {x0 = 0}, we argue as follows. Let
C ′ = (c0 j ) be the leftmost column of the adjugate matrix of Y . Consider the ideals
I ′ := I ′

CV + 〈c00〉 and J ′ := I ′
CV + 〈C ′〉 · 〈x0〉. We claim that I ′ = sat(J ′). Observe

that the (n + 1) × 2 matrix
(
x |C ′) satisfies Min2

(
x |C ′) ⊂ I ′

CV . This implies
c0 j x0 ∈ J ′ for all j ≥ 1. Then J ′ ⊆ I ′ and since I ′ is saturated, sat(J ′) ⊆ I ′.
The reverse inclusion is implied by c00 ∈ sat(J ′), which follows from the fact that
c00x j ∈ Min2

(
x |C ′) + 〈C ′〉 · 〈x0〉. By Corollary 3.7, the elimination ideal is I ′

BV =
I ′
CV + 〈C ′〉. So we may conclude that CV ′ ∩ {c00} = BV ′ ∪ (CV ′ ∩ {x0 = 0}). 	

Remark 3.8 (Lasserre hierarchy) It is natural to try to extend the SDP-exact region to
higher levels of the Lasserre hierarchy [1,13,14]. Consider equations f = ( f1, . . . , fm)

of degree ≤ 2d. We may define the d-th SDP-exact region Rd
f as the set of all g ∈

R[x]≤2d such that (1) is solved exactly by the d-th level of the hierarchy. By further
imposing strict complementarity,wemay derive a semialgebraic representation similar
to (17). Some illustrations of Rd

f were obtained in [4]. It is an open problem to
investigate the geometry of this region and, in particular, to compute the degree of its
algebraic boundary. This analysis might be significantly more complicated, since the
special structure of the moment matrix must be taken into account (so the dual pair of
flags is not generic).

4 Bundles of spectrahedral shadows

We fix f = ( f1, . . . , fm) as before. For any u ∈ R
n we consider the following two

problems:

• Linear Objective (Lin): Minimize uT x subject to x ∈ Vf .
• Euclidean Distance (ED):Minimize ‖x − u‖2 subject to x ∈ Vf .

These problems are special instances of the quadratic program (1), with the cost
matrices

Clinu =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 u1 u2 · · · un
u1 0 0 · · · 0
u2 0 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

un 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

and Cedu =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 −u1 −u2 · · · −un
−u1 1 0 · · · 0
−u2 0 1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

−un 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(20)
WewriteRlin

f andRed
f for the SDP-exact regions inRn of these two problems. They are

the intersections ofRf with the affine subspaces of Sn+1 given in (20). The punchline
of this section is that both regions are normal bundles of spectrahedral shadows over
Vf . Namely, we shall writeRlin

f andRed
f as a union of spectrahedral shadows, one for

each point x ∈ Vf .
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The lower right block ofClin andCed is independent ofu, and thus theHessianmatrix
H(λ) is independent of u. The spectrahedron defined by the constraint H(λ) � 0 is as
follows:

Slinf =
{

λ ∈ R
m :

m∑

i=1

λi Ai ≺ 0

}

and Sedf =
{

λ ∈ R
m :

m∑

i=1

λi Ai ≺ In

}

. (21)

The sets in (21) are called master spectrahedra. Observe that Slinf is a cone in R
m .

Also note that Sedf is full-dimensional because λ = (0, . . . , 0) is an interior point.
Let Jacf denote the Jacobian matrix of f . This matrix has format n × m, and its entry
in row i and column j is the linear polynomial ∂ f j/∂xi . At any point x ∈ Vf , the
specialized Jacobian matrix Jacf (x) defines a linear map R

m → R
n , whose range is

the normal space of the variety Vf at x . We consider all the images of the respective
master spectrahedra under these linear maps.

Theorem 4.1 The SDP-exact regions for (Lin) and (ED) are comprised of the images
of the corresponding master spectrahedra in the normal spaces of the variety Vf . To
be precise,

Rlin
f =

⋃

x∈Vf

( 1
2 Jacf (x) · Slinf

)
and Red

f =
⋃

x∈Vf

(
x − 1

2 Jacf (x) · Sedf
)
.

Moreover, the above unions are disjoint because our spectrahedra are relatively open.

Proof The result follows by substituting (20) into Definition 3.2. Disjointness holds
because any u in one of the parenthesized sets has the associated x as its unique optimal
solution. 	


One consequence of Theorem 4.1 is that the SDP-exact region for an ED problem
is always full-dimensional. This fact was observed in [3], where it was shown to
have interesting applications in computer vision, tensor approximation and rotation
synchronization.

Corollary 4.2 If x is a regular point of Vf , then Red
f contains an open neighborhood

of x.

Proof The regularity hypothesis means that rank(Jacf (x)) = codimx (Vf ). This
ensures that Jacf (z) · Sedf is full-dimensional in the normal space of Vf at any point z
close to x . 	


For finite complete intersections, the SDP-exact regions are finite unions of spec-
trahedra:

Corollary 4.3 Let f = ( f1, . . . , fn) be a complete intersection with k ≤ 2n real points.
Then

(a) Rlin
f consists of k spectrahedral cones, each of them isomorphic to the master Slinf .
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(b) Red
f consists of k full-dimensional spectrahedra, each isomorphic to the mas-

ter Sedf .

Proof The linear map Jacf (x) is injective and hence invertible on its image. Therefore,
the spectrahedral shadow Jacf (x) · Sf is actually a spectrahedron, linearly isomorphic
to Sf . 	


The spectrahedral cones inRlin
f are tightly connected to the first theta body of 〈f〉,

denoted TH1(f), introduced by Gouveia et al. [9]. The theta bodies of f are tractable
approximations to the convex hull of Vf , given by projecting the feasible set of the
Lasserre relaxation [13] onto the first order moments. Later in this section we will
show that Rlin

f consists of the normal cones of TH1(f).

Example 4.4 (m = n = 2) Consider two quadrics in two variables such that Vf consists
of four points in convex position in R2. The regionRed

f was illustrated in Fig. 1. The
region Rlin

f consists of four cones that sit inside the normal cones at the quadrilateral
conv(Vf ). We explain this for the specific instance examined in [9, Example 5.6]:

f = (x1x2 − 2x22 + 2x2, x
2
1 − x22 − x1 + x2), Vf = { (0, 0) , (0, 1) , (1, 0) , (2, 2) }.

The first theta body TH1(f) is seen in [9, Figure 3]. Our rendition in Fig. 3 show also
the SDP-exact regionRlin

f . It consists of the normal cones of TH1(f) at the four points
in Vf . For more details see Proposition 4.7.

It is interesting to examine Corollary 4.3 (b) whenm = n and Vf consists of 2n real
points. We know that Red

f consists of 2n full-dimensional spectrahedra of degree n.
We show that these hypersurfaces are pairwise tangent, and also tangent to the walls
of the Voronoi diagram. The case n = 2 was seen in Fig. 1, whereas the case n = 3 is
shown in Fig. 4.

For x ∈ Vf , we set Sx = x − 1
2 Jacf (x) · Sedf and we write ∂algSx for its algebraic

boundary.

Fig. 3 We consider two quadrics inR2 that meet in four points. The SDP-exact region for minimizing linear
functions over this intersection consists of four cones, shown in the left. These are the normal cones at the
first theta body TH1(f), as illustrated in the right
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Fig. 4 We consider three
quadrics in R

3 that meet in eight
points. The SDP-exact region for
the ED problem on this variety
consists of eight spectrahedra,
each around one of these points.
The algebraic boundaries of the
spectahedra are pairwise tangent

Theorem 4.5 Let m = n and f generic, so Vf is finite. Let x, x ′ ∈ Vf , and Sx , S′
x be the

corresponding spectrahedra, and let bsc ⊂ R
n be the bisector hyperplane of x and x ′.

There is a point u ∈ R
n at which the three hypersurfaces bsc, ∂algSx and ∂algS′

x meet
tangentially.

Proof Let p(λ) := det(In − ∑
i λi Ai ) be the defining polynomial of ∂algSedf . Then

px (u) := p(2 Jacf (x)−1u−x) is the defining polynomial of ∂algSx .We shall construct
a point ux in the hypersurface ∂algSx whose normal vector ∇u px (ux ) is parallel to
x − x ′. Notice that

∇u px = 2(∇λ p)Jacf (x)
−1 = −2 (A1 • M, . . . , Am • M) · Jacf (x)−1,

where M denotes the adjugate of In − ∑
i λi Ai . Since this matrix is supposed to be

singular,

(

In −
∑

i

λi Ai

)

M = 0, (A1 • M, . . . , Am • M) ∝ 1
2 (x ′ − x)T Jacf (x), rank(M) = 1.

(22)

We claim that M = (x ′ − x)(x ′ − x)T satisfies the constraint in the middle. This is
seen by showing that the i-th coordinate of the vector 1

2 (x
′ − x)T Jacf (x) equals

(x ′ − x)T (ai + Ai x) = x ′T Ai x + aTi (x ′ − x) − xT Ai x

= x ′T Ai x − 1
2 (x

′T Ai x
′ − xT Ai x) − xT Ai x = Ai • (− 1

2 )(x
′ − x)(x ′ − x)T . (23)

The desired vector λ is then determined by the equation (In − ∑
i λi Ai )(x ′ − x) = 0.

Now, (22) holds, and the point ux = x − 1
2 Jacf (x)(λ) has its normal at ∂algSx parallel

to x ′ − x .
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We similarly construct u′
x ∈ ∂algS′

x . By (23), we have (x − x ′)T Jacf (x ′) = (x ′ −
x)T Jacf (x). Hence the value of M that satisfies (22) is the same for both x and x ′, and
thus ux = u′

x .
Finally, let us show that ux lies on bsc. Since (In −∑

i λi Ai )(x ′ − x) = 0, we have

uTx (x ′ − x) =
(

x −
∑

i

λi (ai + Ai x)

)T

(x ′ − x)

= −
(

∑

i

λi a
T
i

)

(x ′ − x) + xT
(

In −
∑

i

λi Ai

)

(x ′ − x)

= −
∑

i

λi a
T
i (x ′ − x).

The difference ‖ux − x ′‖2 − ‖ux − x‖2 equals
‖x ′‖2 − ‖x‖2 − 2uTx (x ′ − x) = x ′T x ′ − xT x + 2

∑

i

λi a
T
i (x ′ − x)

= x ′T x ′ − xT x −
∑

i

λi (x
′T Ai x

′ − xT Ai x)

= (x ′ + x)T
(

In −
∑

i

λi Ai

)

(x ′ − x) = 0.

We see that ux is equidistant from x and x ′, i.e., ux belongs to the hyperplane bsc.
We have shown that our three hypersurfaces all pass through ux and have the same
normal vector. 	


We next illustrate how the normal bundle from Theorem 4.1 looks for a curve.

Example 4.6 Let f = (x2 − x21 , x3 − x1x2), so Vf is the twisted cubic curve in R
3.

This specific instance was examined in [3, Example 1.1]. The spectrahedron Sedf is
the interior of a parabola, namely {λ22 < 2λ1 + 1}. The image x − 1

2 Jacf (x) · Sedf
is a parabola in the normal plane at x . The boundary ∂Red

f is the union of all these
parabolas, as shown in Fig. 5.

We will elaborate more on the ED problem in Sect. 5. To conclude this section, we
briefly develop the connection between our SDP-exact region Rlin

f and the theory of
theta bodies [9]. By [9, Lemma 5.2], the first theta body of our instance f is

TH1(f) =
⋂

F∈〈f〉
F convex quadric

{
x ∈ R

n : F(x) ≤ 0
}
.

By [9, §2], the set TH1(f) is a spectrahedral shadow that contains the convex hull
of Vf .
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Fig. 5 The boundary of the SDP-exact region for the ED problem on the twisted cubic curve is ruled by
parabolas. This surface has degree eight. It is computed in Example 6.1

Proposition 4.7 Let B = TH1(f) be the first theta body for the problem (Lin). Then
the SDP-exact regionRlin

f is the union of the normal cones to B at all points in Vf . In
symbols,

Rlin
f =

⋃

x∈Vf
NB(x).

Proof Note that u ∈ NB(x) if and only if x = argmaxy∈B uT y. On the other hand,
the problem maxy∈B uT y is equivalent to the SDP relaxation of our QP (1). Then,

⋃

x∈Vf
NB(x) =

{

u ∈ R
n : (argmax

y∈B
uT y) ∈ Vf

}

= {u ∈ R
n : the solution of the SDP relaxation lies in Vf }.

By definition, this set is the SDP-exact region for (Lin). For an illustration see Fig. 3.
	


5 Boundary hypersurfaces inR
n

Wenow examine our degrees of the EDproblem. Following [6], the Euclidean distance
degree of Vf , denoted EDdegree(Vf ), counts the number of complex critical points for
the squared distance function gu(x) = ‖x − u‖2 on the variety Vf , where u ∈ R

n is a
generic point.

Proposition 5.1 The algebraic degree of the quadratic program (1) that solves the
ED problem for Vf is EDdegree(Vf ). This is bounded above by 2m

(n
m

)
. Equality holds

for generic f .

Proof The first statement is immediate from the definition of the ED degree. The last
two statements follow from [6, Proposition 2.6]. 	
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We next assume that f is generic. Hence Vf is a generic complete intersection. We
are interested in the degree βED(m, n) of the hypersurface ∂algRed

f ⊂ R
n that bounds

the SDP-exact region for the ED problem. Table 3 shows βED(m, n) for some small
cases.

Example 5.2 (m = 2, n = 3) Figure 6 shows the SDP-exact region for a generic
instance. Its boundary is an irreducible surface of degree 24. Themaster spectrahedron
is the convex region of a planar cubic (lower right in Fig. 6). The variety Vf is a space
curve of degree 4, obtained by intersecting two hyperboloids (upper right in Fig. 6).
We regard both curves as elliptic curves, the first in P

2 and the second in P
3. The

product of these two elliptic curves is an abelian surface, which has degree 24 under

Table 3 Algebraic degrees and
boundary degrees for the
ED problem

m\n 2 3 4 5 6

ED degrees for Vf
2 4 12 24 40 60

3 8 32 80 160

4 16 80 240

5 32 192

6 64

Boundary degrees βED(m, n)

2 8 24 48 80 120

3 24 96 240 480

4 64 320 960

5 160 960

6 384

Fig. 6 Upper right: space curve cut out by two quadrics. Left: The SDP-exact region for its ED problem.
Lower right: the elliptic curve that defines the master spectrahedron
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its Segre embedding into P2×P
3 ⊂ P

11. Our boundary surface ∂algRed
f is a projection

of this surface into P3. This explains βED(2, 3) = 24. The picture on the left in Fig. 6
shows ∂Red

f in real affine space R3. Each of the three connected components of the
curve Vf is surrounded by one color-coded component of that surface. These three
pieces of ∂Red

f are pairwise tangent along curves.

For the subsequent degree computations we record the following standard fact
from algebraic geometry. Example 5.2 used this formula for deriving the number
3 · 4 · (1+1

1

) = 24.

Lemma 5.3 Fix two projective varieties V ⊂ P
n and W ⊂ P

m. The projective variety
V ×W has degree deg(V ) deg(W )

(dim V+dimW
dimW

)
in the Segre embedding of Pn ×P

m

in P
(n+1)(m+1)−1.

We consider the product of our feasible set Vf with the algebraic boundary of its
master spectrahedron Sedf . This is the real algebraic variety Vf × ∂algSedf in Rn ×R

m .
We identify this variety with its Zariski closure in the product of complex projective
spaces Pn ×P

m . Under the Segre map, we embed Vf × ∂algSedf as a projective variety
in P(m+1)(n+1)−1.

Corollary 5.4 The variety Vf × ∂algSedf has dimension n − 1 and degree m 2m
(n
m

)
.

Proof The variety Vf has dimension n − m and degree 2m . The variety ∂algSedf has
dimensionm−1 and degree n. By Lemma 5.3, their product has degree 2m ·n ·(n−1

m−1

) =
m · 2m · (n

m

)
. 	


By Theorem 4.1, the boundary of the SDP-exact region is the image of Vf ×∂algSedf
under

ψ : R
n × R

m → R
n, (x, λ) → x − 1

2 Jacf (x)λ = x −
m∑

i=1

λi (ai + Ai x). (24)

The map ψ is bilinear. We consider its homogenization

� :Pn × P
m ��� P

n,
(
(x0 : x) , (λ0 : λ)

)

→
(

λ0x0 : λ0x −
m∑

i=1

λi (x0ai + Ai x)

)

. (25)

This map factors as the Segre embedding σ followed by a linear projection π :

P
n × P

m σ−→ P
(n+1)(m+1)−1 π��� P

n . (26)

Lemma 5.5 The restriction of π to (the image under σ of) Vf × ∂algSedf is base-point
free.
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Proof We show that L ∩ σ(Vf × ∂algSedf ) = ∅, where L ⊂ P
(n+1)(m+1)−1 is the base

locus of π . By (25), we know that L is contained in {λ0x0 = 0}. First, assume λ0 = 0
and x0 = 1. The equations from (25) simplify to

∑m
i=1 λi (ai +Ai x) = 0, whichmeans

Jacf (x)λ = 0. But this is impossible because Jacf (x) has full rank, by genericity of f .
Consider now the case x0 = 0. We may assume that m < n, as otherwise Vf does not
intersect {x0 = 0}. Setting the image in (25) to zero, we get λ0x −∑m

i=1 λi (Ai x) = 0.
Viewed as a system of linear equations in λ0, λ1, . . . , λm , this is overconstrained, so
by genericity it has no nonzero solution. 	


We now write π for the restriction to Vf × ∂algSedf . Lemma 5.5 and the dimension
part in Corollary 5.4 show that π is a dimension-preserving morphism onto ∂algRed

f .
The degree of this morphism, denoted deg(π), is the cardinality of the fiber of π over
a generic point in the image. By [15, Proposition 5.5], the degree of the source equals
the degree of the image times the degree of the map. Hence, Lemma 5.3 implies the
following result:

Theorem 5.6 The degree of the algebraic boundary ∂algRed
f of the SPD-exact region is

βED(m, n) = 1

deg(π)
· m 2m

(
n

m

)
.

We conjecture that deg(π) = 1 whenever our variety Vf is not a hypersurface,
i.e., whenever m ≥ 2. This was verified computationally in all cases that are reported
in Table 3.

Conjecture 5.7 If m ≥ 2 then the degree in Theorem 5.6 is βED(m, n) = m 2m
(n
m

)
.

Analogously to Proposition 2.7, the above formula fails in the case m = 1.

Proposition 5.8 If m = 1 then the SDP-exact regionRed
f is dense inRn. If f is generic,

then deg(π) = 2 and the algebraic boundary ∂algRed
f consists of n hyperplanes.

The topological boundary ∂Red
f = R

n\Red
f is contained in at most two of these n

hyperplanes:

• If Vf is an ellipsoid then ∂Red
f is the relative interior of an ellipsoid in a hyperplane.

• Otherwise, ∂Red
f spans two hyperplanes H1, H2, and ∂Red

f ∩ Hi is bounded by a
quadric.

• The boundary ∂Red
f coincides with the cut locus of the quadratic hypersurface Vf .

The cut locus of a variety V in Rn is defined as the set of all points in Rn that have
two nearest points on V . If V is the boundary of a full-dimensional region in Rn then
the part of the cut locus that lies inside the region is referred to as the medial axis. In
Fig. 7, the blue region is the medial axis. The red region is in the cut locus but not in
the medial axis.

For the varieties Vf in this paper, the cut locus is always disjoint from the SDP-
exact region Red

f . If m = 1 and f is generic then these two disjoint sets cover Rn , by
Proposition 5.8.
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Fig. 7 The cut locus of a
hyperboloid (yellow) lies in two
planes. It is the set shown in red
and blue. The complement of the
cut locus is the SDP-exact
region for the ED problem
(colour figure online)

Proof Proposition 2.7 implies that that Red
f is dense in R

n . We drop indices and set
f (x) = xT Ax + 2aT x + α. Let ω1 < · · · < ωn be the eigenvalues of A, and let vi
be the corresponding eigenvectors. We shall assume that ω1 < 0 < ωn . The master
spectrahedron is the interval

Sedf = {λ ∈ R : In − λA � 0} = (1/ω1, 1/ωm),

and thus ∂Sedf = {1/ω1, 1/ωn}. Let λi = 1/ωi and ψi (x) := ψ(x, λi ) = (In −
λi A)x − λi a. The image of ψi is the hyperplane Hi = {u ∈ R

n : vTi u + λiv
T
i a =

0}. The fiber of ψi over a point u ∈ Hi is a line. That line has a parametrization
φi : R → R

n , t → tvi + bu , where bu depends linearly on u. Then f (φi (t)) = 0 is a
quadratic equation in t with two solutions. This proves that the morphism π restricts
to a 2-to-1 map from Vf onto Hi , and thus deg(π) = 2. The boundary ∂Red

f ∩ Hi is
given by requiring that both solutions of f (φi (t)) = 0 are real. This is the solution set
to a quadratic discriminantal inequality for u ∈ Hi . Thus ∂Red

f ∩ Hi is bounded by a
quadric for i ∈ {1, n}. Since the Galois group for the n eigenvalues acts transitively,
the algebraic boundary is ∂algRed

f = ⋃n
i=1 Hi . 	


Remark 5.9 The derivation above leads to a formula for the cut locus of an arbitrary
quadratic hypersurface in R

n . For the special case of ellipsoids, this was found by
Degen [5].

We close this section with the analog to Theorem 5.6 for the problem (Lin) where
(1) has linear objective function g. Now the cone Slinf on the left of (21) is the master
spectrahedron. The linear map (24) gets replaced by ψ : R

n ×R
m → R

n, (x, λ) →∑m
i=1 λi (ai + Ai x). In contrast to (24), this map is now homogeneous in λ. Hence its

homogenization equals

� : P
n × P

m−1 ��� P
n−1,

(
(x0 : x) , λ

) →
m∑

i=1

λi (x0ai + Ai x).

The map � factors as the Segre embedding σ followed by a linear projection π :
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P
n × P

m−1 σ−→ P
(n+1)m−1 π��� P

n−1.

The following result transfers both Proposition 5.1 and Theorem 5.6 to the linear
problem.

Theorem 5.10 Let f be generic and m ≥ 2. The algebraic degree of (Lin) equals
2m

(n−1
m−1

)
. The degree of the algebraic boundary ∂algRlin

f of the SPD-exact region
equals

βlin(m, n) = 1

deg(π)
· 2mn

(
n − 2

m − 2

)
. (27)

Proof The first statement is [16, Theorem 2.2] for d0 = 1 and d1 = · · · = dm = 2.
The proof of (27) mirrors the proof of Theorem 5.6, but with m replaced by m − 1.
The analogue to Corollary 5.4 says that Vf ×∂algSlinf has dimension (n−m)+(m−2)
and degree 2mn

(n−2
m−2

)
. 	


Just like in (5.7), we believe that deg(π) = 1, so that βlin(m, n) = 2mn
(n−2
m−2

)
. There

are notable differences between (Lin) and (ED). First, it is preferable to assume that
Vf is compact, so that (1) is always bounded. Second, the SDP-exact region Rlin

f is a
cone in Rn , so its algebraic boundary ∂algRlin

f should be thought of as a hypersurface
in Pn−1.

Example 5.11 (m = 2, n = 3) Consider the curve shown in the upper right of Fig. 6.
After a projective transformation, Vf ⊂ R

3 is bounded with two connected com-
ponents. Its theta body TH1(f) is an intersection of two solid ellipsoids that strictly
contains conv(Vf ). The region Rlin

f consists of linear functionals whose minimum is
the same for the two convex bodies. Its algebraic boundary ∂algRlin

f is an irreducible
curve in P

2 of degree βlin(2, 3) = 12. This is analogous to Fig. 3, where n = 2 and
∂algRlin

f consists of 8 points on the line P1.

6 Computing spectrahedral shadows

The previous section focused on the case when f is generic. We here consider the
ED problem for overconstrained systems of quadratic equations. These are important
in many applications (e.g., tensor approximation, computer vision). For a concrete
example see [6, Example 3.7]. These cases do not exhibit the generic behavior. The
degree computed for generic f in Theorem 5.6 serves as an upper bound for the
corresponding degree when f is special.

In this section we discuss the SDP-exact region for the ED problem when the
constraints can be arbitrary equations of degree two. We change notation by setting
m = c + p and by considering a variety Vf of codimension c in R

n that is cut out by
c + p quadratic polynomials f = ( f1, . . . , fc+p) in x = (x1, . . . , xn). If p ≥ 1 then
Vf is not a complete intersection.

Recall from Theorem 4.1 that Red
f is a union of spectrahedral shadows, one for

each point x ∈ Vf . Each shadow lies in the c-dimensional affine space through x
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that is normal to Vf . Thus Rf is the union over an (n − c)-dimensional family of
c-dimensional spectrahedral shadows. The algebraic boundary ∂algRed

f can be written
in a similar way.

By [20, Theorem 1.1], the expected degree of the boundary of each individual
shadow is

δ(p + 1, n, ∗) =
∑

r

δ(p + 1, n, r),

where r runs over the Pataki range of possible matrix ranks. A key observation in
[20] is that this only depends on the codimension p of the projection and not on the
dimension of the spectrahedral shadow. Note that the latter dimension is c for regular
points x on Vf .

Wedefine the expecteddegreeof ourSDP-exact boundary ∂algRed
f to be the product

(
n − 1

n − c

)
· deg(Vf ) · δ(p + 1, n, ∗). (28)

This quantity should be an upper bound for the actual degree of the hypersurface
∂alg(Red

f ), and we think that this bound should be attained in situations that are generic
enough.

In what follows we present several explicit examples of SDP-exact regions where
p ≥ 1. We use x = (x1, . . . , xn) to denote points on Vf and we use u = (u1, . . . , un)
for points on ∂algRed

f . Our discussion elucidates formula (28) and connects it to sce-
narios seen earlier.

Example 6.1 (n = 3, c = 2, p = 0) The equations f1 = x2 − x21 and f2 = x3 − x1x2
from Example 4.6 cut out the twisted cubic curve Vf in R3. The master spectrahedron
Sedf is the parabola {λ ∈ R

2 : λ22 < 2λ1 + 1}. The normal plane at the point x =
(t, t2, t3) in Vf equals

{
(u1, u2, u3) ∈ R

3 : u1 + 2tu2 + 3t2u3 = 3t5 + 2t3 + t
}
. (29)

Since c = 0, the image x − 1
2 Jacf (x) · Sedf is a parabola in that plane, defined by the

equation u23 + 2u2 − 2(t3 − t)u3 + t6 − 2t4 − 2t2 − 1 = 0. Together with (29) we
now have two equations in four unknowns t, u1, u2, u3. By eliminating t from these
two polynomials, we obtain

64u62u
2
3 + 16u31u

3
2u3 + 408u21u

3
2u

2
3 − 64u1u

5
2u3 − 96u1u

3
2u

3
3 + 128u72 − 256u52u

2
3

−56u32u
4
3 + u61 − 30u51u3 − 80u41u

2
2 + 294u41u

2
3 − 416u31u

2
2u3

−880u31u
3
3 + 880u21u

4
2 − 876u21u

2
2u

2
3 − 588u21u

4
3 + 32u1u

4
2u3 + 256u1u

2
2u

3
3

−120u1u
5
3 − 576u62 + 304u42u

2
3 + 148u22u

4
3 − 8u63 + 1140u41u2

−1092u31u2u3 − 2544u21u
3
2 − 558u21u2u

2
3 + 192u1u

3
2u3 − 408u1u2u

3
3 + 1088u52

−138u2u
4
3 − 2670u41 − 600u31u3 + 2832u21u

2
2 + 207u21u

2
3 + 39u43
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−96u1u
2
2u3 + 120u1u

3
3 − 1120u42 − 228u22u

2
3 − 1332u21u2 − 108u1u2u3

+680u32 + 144u2u
2
3 + 189u21 + 54u1u3 − 244u22 − 27u23 + 48u2 − 4.

This irreducible polynomial of degree 8 defines the SDP-exact boundary ∂algRed
f

around Vf . This surface and the curve Vf are shown in the left of Fig. 5. The surface
is ruled by the parabolas in the normal bundle of the curve. This ruling is shown on
the right in Fig. 5.

Our next example shows that the SDP-exact region is not an invariant of the variety
Vf . It depends on the choice of defining equations. We can have Vf = Vf ′ but Red

f �=
Red

f ′ .

Example 6.2 (n = 3, c = 2, p = 1)We continue Example 6.1 and set f3 = x1x3−x22 .
Then f ′ = ( f1, f2, f3) defines the same twisted cubic curve as before. The master
spectrahedron Sedf ′ lives in R

3 and has degree 3, like the left body in Fig. 2. Planar
projections of such an elliptope have expected degree δ(2, 3, ∗) = 6. Here, the degree
drops to 4 because Sedf ′ is degenerate: it is singular at only two points (in P

3). The
spectrahedral shadow x − 1

2 Jacf ′(x) ·Sedf ′ around x = (t, t2, t3) is defined by a quartic
curve in the normal plane. The SDP-exact boundary ∂algRed

f ′ is an irreducible surface
of degree 9, with defining polynomial

5832u32u
6
3 + 27648u62u

2
3 − 62208u1u

4
2u

3
3 − 2916u21u

2
2u

4
3 + 15552u42u

4
3 − 5832u31u

5
3

+8748u21u
6
3 − 5832u22u

6
3 − 4374u1u

7
3 + 729u83 − 41472u21u

5
2

+86400u31u
3
2u3 + 27648u1u

5
2u3 + 60750u41u2u

2
3 − 41472u21u

3
2u

2
3 − 62208u52u

2
3

−106920u31u2u
3
3 + 85536u1u

3
2u

3
3 + 71442u21u2u

4
3 − 19656u32u

4
3

−19440u1u2u
5
3 + 3888u2u

6
3 − 84375u61 − 54000u41u

2
2 + 72576u21u

4
2

+202500u51u3 − 19440u31u
2
2u3 − 48384u1u

4
2u3 − 220725u41u

2
3 + 6912u21u

2
2u

2
3

+58032u42u
2
3 + 140454u31u

3
3 − 35424u1u

2
2u

3
3 − 54027u21u

4
3 + 8424u22u

4
3

+11178u1u
5
3 − 1161u63 + 40050u41u2 − 50760u21u

3
2 − 21132u31u2u3

+33840u1u
3
2u3 + 11880u21u2u

2
3 − 28744u32u

2
3 + 3708u1u2u

3
3 − 1314u2u

4
3

−7431u41 + 17736u21u
2
2 + 6112u31u3 − 11824u1u

2
2u3 − 3246u21u

2
3

+7976u22u
2
3 + 312u1u

3
3 + 37u43 − 3096u21u2 + 2064u1u2u3

−1176u2u
2
3 + 216u21 − 144u1u3 + 72u23.

The above polynomial is also the defining equation of the cut locus of the twisted cubic
curve. In fact, the SDP-exact region Red

f ′ is dense inR3 and only misses the cut locus.
This is similar to the behavior we saw in Proposition 5.8 for quadratic hypersurfaces.

Remark 6.3 Quadratic hypersurfaces and the twisted cubic curve share an important
geometric property. They are varieties ofminimal degree. Blekherman et al. [2] showed
that every non-negative quadratic form on a variety of minimal degree admits a sum-
of-squares representation. The converse holds as well. This property implies that Red

f
is dense in R

n whenever f spans the full system of all quadrics vanishing on such a
variety Vf in Rn .

123



The geometry of SDP-exactness in quadratic optimization

Our bundle of spectrahedral shadows is interesting even for finite varieties (c = n).
We demonstrate this for point configurations inR3. Aswe remove points from the eight
points in Fig. 4, the algebraic degree increases for the region around each remaining
point.

Example 6.4 (n = 3, c = 3, p = 1) Six general points in R
3 are cut out by four

quadrics, e.g.,

f = (9x1x3 − 5x2x3 − x23 + x3, 6x
2
2 − 13x2x3 + x23 − 6x2 − x3,

2x1x2 − 6x1x3 + x2x3 + x23 − x3, 6x
2
1 − 5x2x3 − x23 − 6x1 + x3),

Vf = {
(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (1, 0, 0) , (−2,−3,−2) ,

(− 1
2 ,− 1

2 ,−1
) }

.

Themaster spectrahedronSedf has degree n = 3 and it lives inR4. It is the convex hull of
its rank-one points, which form a rational curve of degree four. By [20, Example 1.3],
the projections of Sedf intoR3 are spectrahedral shadows of degree 6 = δ(2, 3, ∗), and
each shadow is the convex hull of a curve of degree four. Figure 8 illustrates the six
shadows. As predicted in (28), the SDP-exact boundary has degree 1 · 6 · 6 = 36.

Example 6.5 (n = 3, c = 3, p = 2) Five general points in R
3 are cut out by five

quadrics, e.g.,

f = ( x2x3 − x1, x1x3 − x2x3 + x1 − x2, x
2
2 − x23 , x1x2 − x3, x

2
1 − x23 ),

Vf = {(0, 0, 0), (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.

The master spectrahedron Sedf lives in R
5. It is an affine hyperplane section of the

cone of positive semidefinite 3× 3 matrices. Its projections into R3 look like the dual
elliptope in Fig. 2. Such a spectrahedral shadow has degree δ(3, 3, ∗) = 4+4, as seen

Fig. 8 The SDP-exact region for
the ED problem on six points in
R
3 consists of six spectrahedral

shadows. Each shadow is the
convex hull of a highlighted
curve of degree four
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Fig. 9 The SDP-exact region
Red

f for five points in R
3

consists of five dual elliptopes

in the left box of the p = 2 row in [20, Table 1]. Its boundary is given by four planes
and a quartic surface.

Thus the SDP-exact region Red
f consists of five dual elliptopes, as seen in Fig. 9.

They touch pairwise along their circular facets. For instance, the region around (0, 0, 0)
is bounded by the planes {2u1 + 2u2 − 2u3 = −3}, {2u1 − 2u2 + 2u3 = −3},
{2u1 − 2u2 − 2u3 = 3}, {2u1 + 2u2 + 2u3 = 3}, and the quartic Steiner surface
{u21u22 + u21u

2
3 + u22u

2
3 + 3u1u2u3 = 0}. Again, the prediction in (28) is correct, since

the boundary of Red
f has degree 1 · 5 · (4 + 4) = 40.

The algebraic computation of projections of spectrahedra is very hard (cf. [20,
Remark 2.3]). In our situation, it is even harder, since we are dealing with a family
of varying projections, one for each point x in the variety Vf . We demonstrate this in
Algorithm 1.

Examples 6.2 and 6.4were computedwithAlgorithm 1 as is. This works because Vf
is smooth in both of these cases. If Vf is singular then we must saturate the ideal given
in step 5 with respect to the ideal of c × c minors of Jacf (x) prior to the elimination
in step 6.

Algorithm 1 Computing SDP-exact boundaries for the ED problem (case p = 1)
Input: Quadratic polynomials f1, . . . , fc+1 defining Vf of codimension c in R

n .
Output: Polynomial ψ(u) = ψ(u1, . . . , un) that defines the algebraic boundary ∂algRed

f .

1: Compute the Jacobian matrix Jacf (x) of format n × (c + 1).
2: Compute the Lagrangian L(λ, x) in (15) and its Hessian H(λ) in (16).
3: Let h(λ) = det(H(λ)) and compute the gradient ∇λ(h), a row vector of length c + 1.

4: Let g(λ, x) be the vector of all maximal minors of the (n + 1) × (c + 1) matrix

[ ∇λ(h)

Jacf (x)

]
.

5: Construct the system of equations in (c + 1) + 2n unknowns (λ, x, u):

f(x) = 0, g(λ, x) = 0, h(λ) = 0 and u = x − 1
2 Jacf (x)λ.

� This is expected to cut out a variety of dimension n − 1 in R
c+2n+1.

6: Eliminate λ and x from the above system to get the desired polynomial ψ(u).
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Algorithm 1 can be modified to also work when p ≥ 2 but the details are subtle.
The polynomial h(λ) gets replaced by the ideal of (c + 2 − p) × (c + 2 − p) minors
of the matrix H(λ), and the first row ∇λ(h) in the augmented Jacobian in step 4 gets
replaced by the Jacobian matrix of that determinantal ideal. This requires great care
since these matrices are large.

Remark 6.6 It would be interesting to study the tangency behavior of the spectrahedral
shadows in our bundles. For instance, pairs of convex bodies meet in a point in Fig. 4,
they meet in a line segment in Fig. 8, and they meet in a common circular facet in
Fig. 9.
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