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Summary 

 

Seismic exploration in complex geological settings and 

shallow geological targets has led to a demand for higher 

spatial and temporal resolution in the final migrated image.  

Seismic data from conventional marine acquisition lacks 

near offset and wide azimuth data, which limits imaging in 

these settings. In addition, large streamer separation 

introduce aliasing of spatial frequencies across the 

streamers. A new marine survey configuration, known as 

TopSeis, was introduced in 2017 in order to address the 

shallow-target problem. However, introduction of near 

offset data has shown to be challenging for interpolation and 

regularization, using conventional methods.  In this paper, 

we investigate deep learning as a tool for interpolation 

beyond spatial aliasing across the streamers, in the shot 

domain. The proposed method is based on imaging 

techniques from single-image super resolution (SISR). The 

model architecture consist of a deep convolutional neural 

network (CNN) and a periodic resampling layer for 

upscaling to the non-aliased wavefield. We demonstrate the 

performance of proposed method on representative broad-

band synthetic data and TopSeis field data from the Barents 

Sea.  

 

Introduction 

 

In conventional 3D marine seismic surveys, the seismic 

wavefield is recorded by sensors placed uniformly on a 

spread of ten or more streamers that are towed by a single 

vessel utilizing two airgun source arrays in front of the 

streamers. The shot domain receiver seperation in the inline 

direction is typically in the interval of 12.5 m, and 100 m to 

75 m in the crossline direction. Data acquired in this way 

lack near offset and wide azimuth data. Thus limiting the 

amount of recorded reflected energy, especially in situations 

with large velocity contrasts in the shallow. Seismic imaging 

benefits from near offset data in order to record the narrow 

cone of reflected energy in these velocity-depth settings (Lie 

et al., 2018). In order to address the shallow-target seismic-

imaging issue, CGG and Lundin Norway proposed in 2017 

a tailored acquisition solution, known as TopSeis (Vinje et 

al., 2017), yielding improved recording of the the near 

offsets. This acquisition solution utilize a split-spread, 

source-over-cable configuration, reduced streamer 

separation (50 m), wider source separation and deploying 

more than two sources. However, near offset data are sparse 

and suffers from spatial aliasing, and necessary processing 

steps like interpolation and data-regularization have shown 

to be challenging using conventional methods. 

  

Several seismic interpolation methods exists. Some methods 

assumes local linearity, interpolating in the frequency-space 

domain using error prediction filters (Spitz, 1991; Crawley, 

2001; Naghizadeh and Sacchi, 2009; Naghizadeh and 

Sacchi, 2012). Other interpolation methods reconstruct the 

wavefield by means of sparse signal transform, such as 

Fourier (Zwartjes and Sacchi, 2007; Schonewille et al., 

2009; Naghizadeh and Sacchi, 2010a; Gao et al., 2013), 

Radon (Ibrahim et al., 2015), Curvelet (Naghizadeh and 

Sacchi, 2010b), Seislet (Gan et al., 2015) and Focal (Kutscha 

et al., 2010). In addition, utilizing information from 

multicomponent data in combination with sparse 

optimization, the crossline reconstruction beyond aliasing is 

possible (Robertson et al., 2008; Özbek et al., 2010; Özdemir 

et al., 2010; Vassallo et al., 2010). More recent studies using 

learning-based approaches such as dictionary learning 

(Turquais et al. 2018), support vector regression (Jia and Ma, 

2017)  and CNN (Wang et al., 2019).  

 

We investigate deep learning as a data driven approach for 

interpolation beyond aliasing, across the streamers in the 

shot domain. Our approach to the seismic interpolation 

problem could be seen as an analogy to inverse problems in 

image scaling for resizing low-resolution (LR) digital 

images to their corresponding high-resolution (HR) 

counterpart. These set of techniques are usually referred to 

as super resolution (SR) imaging (Yang et al., 2018). We 

start by training an interpolation function on streamers in the 

inline direction that are downscaled to imitate the crossline 

streamer seperation. With the assumption that the inline 

wavefield is representative for the crossline wavefield, we 

apply the trained function in the crossline direction. In our 

approach, the input to the CNN model is in LR-space, and a 

reconstructed counterpart in HR-space, through upscaling 

only in the output layer. The upscaling is done through a 

periodic resampling method similar to the SubPixel 

convolution layer in Shi et al. (2016). The synthetic data 

examples in addition to the TopSeis field data examples 

demonstrate the performance of our proposed method. 

 

Theory 

 

Consider training data  𝔇 = {𝒀𝑖
HR, 𝒀𝑖

LR}
𝑖=1

𝑀
, where 𝒀𝑖

HR is 

defined by a shot-cable pair in the inline direction in HR-

space and 𝒀𝑖
LR is the corresponding downsampled 

counterpart in LR-space. Our objective is then to design and 

train a function 𝑓 ∶  𝒀LR → 𝒀HR, which preserves the 

characteristics of the non-aliased wavefield. Let 𝑁𝑙 denote 

the number of features and 𝑘𝑙 = 1,2, … , 𝑁𝑙 denote the 𝑘’th 
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convolutional filter in layer 𝑙. The 𝑘’th non-linear output 

from an arbitrary layer to the next can be defined as  

 

𝒂𝑘𝑙

[𝑙]
= 𝜑[𝑙] (𝑾𝑘𝑙

[𝑙]
∗ 𝒂[𝑙−1] + 𝒃𝑘𝑙

[𝑙]
) (1) 

 

where 𝑾𝑘𝑙

[𝑙]
∈ ℝ𝑓𝑙×𝑓𝑙×𝑁𝑙−1 is the weights and 𝒃𝑘𝑙

[𝑙]
∈ ℝ are the 

biases, which defines the learnable parameters. In (1), 𝒂[𝑙−1] 

defines all non-linear outputs from layer 𝑙 − 1. The function 

𝜑[𝑙] provides non-linearity between the layers and is given 

in our case by the Leaky Rectified Linear Unit (Maas et al., 

2013). The output layer is given by what we will refer to as 

the spatial periodic resampling (𝑆𝑃𝑅) layer 

 

�̂�HR = 𝑆𝑃𝑅 (𝑾𝑘𝑙

[𝐿]
∗ 𝒂[𝐿−1] + 𝒃𝑘𝑙

[𝐿]
, 𝒂[0]) (2) 

 

where 𝑆𝑃𝑅(∙) is a periodic resampling process between the 

input and the feature maps in the last convolution layer.The 

proposed CNN has 𝐿 = 5 hidden layers. A conceptual sketch 

is shown in Figure 1. The model is fittet using an objective 

function given by the 𝐿1norm between the output and the 

target including 𝐿2 regularization on the weights 

 

ℒ(𝑾, 𝒃) = ‖𝒀HR − �̂�HR‖
1

1
+

𝝀

2
‖𝑾‖2

2 (3) 

 

where λ is the regularization parameter. For any 𝝀 > 0 the 

regularization term contributes to the objective function, 

constraining the weight values and therefore reducing the 

risk of overfitting. The optimization problem, i.e. finding 𝑾 

and 𝒃 which minimize ℒ(𝑾, 𝒃) was performed by a first-

order gradient optimization algorithm known as ADAM 

optimizer (Kingma and Ba, 2015). Our model is 

implemented in python using the Tensorflow package 

(Abadi et al., 2015). 

 

 

 

Synthetic data examples 

 

In this section, we demonstrate the performance of the 

proposed method by applying it on representative synthetic 

data. The data consist of diffraction modelled Broadband (2-

190 Hz) data, with field recorded noise (Vinje et al., 2017). 

The receiver interval in the inline direction is Δx =  12.5 m, 

and crossline streamer separation is Δy =  50 m. 

Considering M training examples, the training data consist 

of the HR examples and their corresponding downscaled LR 

example 𝔇 = {𝒀𝑖
HR, 𝒀𝑖

LR }
𝑖=1

𝑀
. The dimension of the training 

examples was 201 × 80 for 𝒀HR and 201 × 20 for 𝒀LR. The 

first and second dimension denote the number of time 

samples and number of receivers respectively. The second 

dimension implies a downscaling ratio of 𝑟 = 4. The 

training data consists of 500 shots, with each shot having a 

spread of 14 cables, yielding M = 7000 training examples. 

The training data is split into a training set, a validation set 

and a test set with a distribution of 60/20/20. The reason 

why we split them into three separate sets, is to have two 

datasets (training and validation) for training and tuning the 

model, and one dataset (test set) as unseen data, yielding an 

unbiased estimation for the final score. Furthermore, training 

deep models benefits from large training sets in terms of test 

loss and generalization error (Zhang et al, 2017). Therefore, 

we increase the training set size by data augmentation, which 

yielded a total of 33600 examples for the training set.  

 

When the model is fully trained we predict the HR data in 

the test set by running the model on the corresponding LR 

test data. The interpolation result from an arbitrary example 

in the test set (in the inline direction) is presented in time-

space domain in Figure 2 and in the frequency-wavenumber 

in Figure 3. As shown in Figure 2 and Figure 3, the results 

are encouraging when comparing to the target data. Visually, 

the target- and interpolated wavefield are close to equal. 

Even in the case of 75% missing traces, the trained model 

demonstrates that it is able to reconstruct and preserve the 

characteristics of the non-aliased wavefield, and able to 

handle linear, curved and interfering events. For a 

quantitative measurement we measured the recovered peak 

signal to noise ratio (PSNR), which gave for the test set 

example 32.60. The average PSNR for the data sets are 32.98 

(training), 33.05 (validation) and 32.99 (test), indicating 

reasonable recovery for the unseen test set. Since the main 

objective is to interpolate the missing traces in the crossline 

direction, we sort the test set to crossline direction, and apply 

the trained model. The results are shown in Figure 4 in the 

time-space domain, and the frequency-wavenumber domain 

in Figure 5. From the frequency-wavenumber domain, in 

Figure 3 and 5, we observe that interpolated result are similar 

to what we observe in the inline case.  

 

 

Figure 1: Conceptual sketch of the CNN architecture with the 

periodic resampling layer in the last layer with downscaling ratio 

of 𝑟 = 2. Adapted from Shi et al. (2016).          
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Field data examples 

 

In this section, we demonstrate the performance of the 

proposed method by applying it on TopSeis data from the 

Barents Sea. The training data consist of 1000 shots, with 

each shot having a spread of 14 cables. The setup in the field 

data example is equal to the synthetic example. The training 

data is split into a training set, a validation set and a test set 

with a distribution of 72/8/20 respectively. The training 

data is augmented, which yielded 80800 examples for the 

training set. We predict the HR data in the test set by 

applying the model (trained on field data) on the 
corresponding LR test data. The field data result from an 

arbitrary example in the test set, (in the inline direction), is 

presented in time-space domain in Figure 6 and in the 

frequency-wavenumber domain in Figure 7. Similar to the 

synthetic examples, the model demonstrates good 

performance in terms of PSNR recovery and reconstructs a 

promising non-aliased wavefield.  

 

 

The PSNR for the test set example is 26.39. The average 

PSNR for the data sets  are 27.33 (training), 27.46 

(validation) and 27.37 (test), indicating reasonable recovery 

for the unseen test set. However, in these examples the 

model struggles more with frequencies above 30 Hz 

compared to the synthetic example. Visually, the prediction 

contains less noise than the target, and it is likely that the 

some of observed difference in energy corresponds to the 

noise, which the model has not been able to interpolate. We 

 

Figure 2: Synthetic data reconstruction result from a shot-cable 

pair, from the test set in the inline direction. The target was 

downscaled by a ratio of 𝑟 = 4.        

 

Figure 3: Reconstruction result from a shot-cable pair from Figure 

2 in the frequency-wavenumber domain.    

 

Figure 4: Synthetic data reconstruction result from the test set in 

the crossline direction.   

 

Figure 5:  Synthetic data reconstruction result in the frequency-

wavenumber domain, from the test set shown in Figure 4.   
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also observe continuous events in the residual, which is not 

reconstructed by the model.  

 

 

Conclusions 

 

In this abstract, we propose a data driven approach for 

seismic interpolation across the streamer. We train a deep 

CNN model to learn the characterics of the wavefield in the 

inline direction, and apply the model to the crossline 

direction. We show that the trained models are able to 

interpolate beyond aliasing across the streamers, and 

preserve the characteristics of the non-aliased wavefield. In 

the synthetic example we were able to interpolate Broadband 

data with recorded field noise added, with minor residuals. 

However, the field data example show that the model 

struggles more with frequencies above 30 Hz, than in the 

synthetic example. It is likely that the non-interpolated 

energy could  both correspond to noise and/or events which 

is not contained within the input.  More work is necessary in 

order to address the high frequency issues.   
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Figure 6: Field data reconstruction result from a shot-cable pair, 

from the test set in the inline direction. The target was downscaled 

by a ratio of 𝑟 = 4. 

 

Figure 7: Field data reconstruction result from the shot-cable 

shown in Figure 6, in the frequency-wavenumber domain.    

 

Figure 8: Field data reconstruction result from the test set in the 

crossline direction.   

 

Figure 9:  Field data reconstruction result in the frequency-

wavenumber domain, from the test set shown in Figure 8.   
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