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Abstract: We study the influence of spatial and dynamical anisotropies in relativistic heavy-ion
collisions on the differential elliptic and triangular flows of charged hadrons and, simultaneously,
on the second- and third-order oscillations of the femtoscopic radii. Calculations of Pb + Pb collisions
at
√

s = 2.76 TeV were done within the HYDrodynamics with JETs (HYDJET++) event generator,
which allows one to investigate the role of each of the anisotropy kinds separately. It is found that
the bare geometric anisotropy provides either the wrong sign of elliptic and triangular flows or
out-of-phase oscillations of R2

out and R2
side, respectively. Dynamical anisotropy is able to describe

qualitatively both characteristics correctly. For the correct quantitative description of the data, one has
to employ both spatial and dynamical anisotropies.

Keywords: relativistic heavy-ion collisions; dynamical and spatial anisotropy; elliptic and triangular
flow; azimuthal oscillations of femtoscopic radii

1. Introduction

Anisotropic flow of hadrons in relativistic heavy-ion collisions is a very convenient tool to probe
the early stage of the collisions and to search for a new state of matter, quark-gluon plasma (QGP).
To quantify the flow, the particle distribution in the azimuthal plane is decomposed in Fourier series [1]:

dN
dφ

∝ 1 + 2
∞

∑
n=1

vn cos [n(φ−Ψn)] , (1)

with φ and Ψn being the azimuthal angle between the transverse momentum of a particle and the event
plane and the azimuth of the event plane of the nth component of the flow, respectively. The anisotropic
flow components are identified as coefficients of the Fourier expansion:

vn = 〈cos [n(φ−Ψn)]〉 , (2)

where one has to average over all particles in an event and over all event statistics. The first flow
harmonics are called directed, v1, elliptic, v2, triangular, v3, flow, and so on. The reasons causing
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the formation of anisotropic flow in the system of colliding nuclei can be subdivided into the spatial,
or geometric, anisotropies and the dynamical ones. In the first case, the spatial anisotropy εn of the
overlapping zone of two nuclei is translated into the momentum anisotropy vn during the expansion
of the fireball. Note that only elliptic and triangular flows seem to be directly proportional to ε2 and ε3,
respectively [2], mainly because of the non-linear contributions of the lower flow harmonics to the
higher ones [3,4]. On the other hand, the non-isotropic azimuthal dependence of transverse velocity
also causes the anisotropic flow even for spherically-symmetric sources [5]. This is an example of
dynamical anisotropy. To check what kind of anisotropy, spatial or dynamical, dominates in relativistic
heavy-ion collisions, one has to find another signal, which is influenced by both types of the anisotropy.
The very good candidates for such a signal are azimuthal oscillations of femtoscopic radii in the Ψ2

and Ψ3 planes. Recall that in the femtoscopy analysis [6–8], the 3D correlation functions depend on
the out, side, and long components of the relative momentum vector q = {qo, qs, ql} [9–11] of a pair of
particles and on the correlation radii Ro, Rs, Rl and their cross terms as:

CF(q, Φ)− 1 = λ exp
[
−R2

o(Φ)q2
o − R2

s(Φ)q2
s − R2

l (Φ)q2
l − R2

o,s(Φ)qoqs − R2
o,l(Φ)qoql − R2

s,l(Φ)qsql

]
. (3)

Here, radii Ro, Rs, Rl indicate the sizes of the emitting source, λ is the so-called correlation strength,
and Φ is the azimuthal angle of the pair momentum q with respect to the reaction plane. A sophisticated
modern analysis considers bins of ∆φn = Φ − Ψn defined in the range (0, π). The oscillations of
femtoscopic radii w.r.t. the reaction planes of elliptic flow Ψ2 and triangular flow Ψ3 were found
experimentally in heavy-ion collisions at energies of RHIC [12] and LHC [13,14]. For brevity, these
oscillations are dubbed second-order and third-order oscillations, respectively. The investigation of
interconnections between the femtoscopic oscillations and the source anisotropy was the subject of
several papers; see, e.g., [15–19] and the references therein. The studies agree well that the third-order
oscillations are mainly due to the dynamical anisotropy. The situation is not so obvious for the case
of second-order oscillations. The early study [15] hints that these oscillations are determined by
the spatial anisotropy, whereas recent investigations claim that both second-order and third-order
oscillations are dominated by the dynamical anisotropy.

Our analysis employs the HYDrodynamics with JETs (HYDJET++) model. Its basic features are
sketched in Section 2. Section 3 presents the main results of our study. Since HYDJET++ applies both
sources of the anisotropy for the description of v2 and v3 and allows us to switch these sources on
or off during the generation of events, it is very instructive to check the influence of mere spatial or
dynamical anisotropy on the simultaneous description of the flow components and the oscillations of
the femtoscopic radii. Conclusions are drawn in Section 4.

2. HYDJET++ Model

The abbreviation HYDJET++ means HYDrodynamics with JETs model, written in C++ [20].
The event generator consists of two parts responsible for the treatment of soft and hard processes,
respectively. The soft block employs the adapted FASTMC event generator [5,21]. It assumes the
sudden freeze-out scenario for the fireball at given temperature T and starts with the generation of
the whole system on chemical and thermal freeze-out hypersurfaces. The latter are obtained from the
parametrization of relativistic ideal hydrodynamics.

The block for description of hard processes relies on the jet quenching model PYQUEN [22].
Here, the collisional energy losses are calculated in the high-momentum transfer limit [23,24],
and the radiative energy loss of a parton is estimated within the framework of the BDMS
model [25–27]. The nuclear shadowing effect of parton distribution functions is obtained via the
impact parameter-dependent parametrization [28] calculated within the Glauber–Gribov theory.

The generation of elliptic and triangular flows in HYDJET++ is organized as follows. The spatial
elliptic modulation of the freeze-out hypersurface ε2(b) at given impact parameter b determines the
transverse radius of the fireball:
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Rell(b, φ) = R f (b)

√
1− ε2

2(b)√
1 + ε2(b) cos 2φ

, (4)

Rf(b) = R0

√
1− ε2(b) , (5)

where R0 is the freeze-out transverse radius for the collision at the zero impact parameter. Since each
of the fluid cells is carrying its own momentum, the spatial anisotropy of the source is transformed
into the momentum anisotropy. Dynamical anisotropy is controlled by the momentum flow anisotropy
parameter δ2(b), which links the azimuthal angle of the fluid cell velocity φcell to the azimuthal angle
φ via the relation:

tan φcell = tan φ

√
1− δ2(b)
1 + δ2(b)

. (6)

Note that if δ2 6= 0, even the spherically-symmetric source would develop non-zero elliptic
flow [5]. The parameter ε2 implicitly regulates the modulation magnitude of the radial velocity via its
dependence on a radial position of the fluid cell, whereas the parameter δ2 determines the non-zero
value of the tangential velocity and also influences the modulation magnitude of the transverse
velocity. The alternative approach implies the direct dynamical modification of the radial flow only
without changing the expansion direction of the fluid cell, φcell = φ. This option is also implemented
in our Monte Carlo generator; see [20]. After comparison with the experimental data, it appears,
however, that the latter parametrization poorly describes the momentum and centrality dependencies
of elliptic flow, although it provides the correct qualitative behavior of the flow and the femtoscopy
observables simultaneously.

Triangular flow in the model also depends on spatial and dynamical anisotropy parameters.
It is worth mentioning that according to experimental data, the event plane of the triangular flow is
randomly oriented in HYDJET++ w.r.t. the event plane of the elliptic flow. The modified radius reads:

Rtr(b, φ) = Rell(b)[1 + ε3(b) cos [3(φ−Ψ3)]] , (7)

where ε3(b) is the spatial triangularity of the fireball. Triangular dynamical anisotropy ρ3(b) leads to
triangular modulation of the velocity profile:

ρmax
u (b) = ρmax

u (0) {1 + ρ3(b) cos [3(φ−Ψ3)] + . . .} , (8)

with u being the four-velocity of the fluid cell. The attractive feature of HYDJET++ is that one can pick
up just one of the key parameters, ε2, ε3, δ2, or ρ3, whereas others are set to zero, and investigate the
influence of the particular anisotropy on the flow components and femtoscopic radii. Another feature of
the model is the rich table of resonances including the charmed ones. The model was further upgraded
to event-by-event (EbyE) fluctuations of the flow harmonics [29]. Its further details can be found
in [20]. Besides the EbyE fluctuations, HYDJET++ has been successfully tested for the description of
both elliptic [30,31] and triangular [32,33] flows, higher flow harmonics [4,34,35], azimuthal di-hadron
correlations [36], and the flow of mesons with hidden and open charm [37] in ultra-relativistic heavy
ion collisions at energies of RHIC and LHC.

3. Results of the Simultaneous Description of v2, v3, and Oscillations of Femtoscopic Radii

In what follows, the Pb + Pb collisions at
√

s = 2.76 TeV are considered. Let us summarize briefly
the experimental observations concerning elliptic and triangular flows and oscillations of femtoscopic
radii. Differential elliptic flow of charged particles, vch

2 (pT), is positive at pT ≥ 0.1 GeV/c. It increases
with rising transverse momentum. Distribution R2

side(∆φ2), ∆φ2 = φpair −Ψ2 reaches the maximum
at ∆φ2 ≈ π/2, whereas R2

out(∆φ2) has the minimum there. The last distribution, R2
long(∆φ2), seems

to have no distinct oscillations [13]. Differential triangular flow of charged particles, vch
3 (pT), is also
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positive and increasing with rising pT . Both R2
side(∆φ3), ∆φ3 = φpair −Ψ3 and R2

out(∆φ3) have maxima
at ∆φ3 = π/3, whereas R2

long(∆φ3) demonstrates no pronounced oscillations [14].
The convenient practical feature of the HYDJET++ model is that it permits one to switch off

all but one parameter responsible for the flow anisotropy in order to study the influence of this
particular factor on the development of flow and femtoscopic radii. The same is true for calculations
with and without decays of resonances. The plan of our study is as follows. Having a set of four
parameters, i.e., {ε2, δ2, ε3, ρ3}, we are generating about two million lead-lead collisions with centrality
20% ≤ σ/σgeo ≤ 30% at

√
s = 2.76 TeV with only one non-zero parameter, which can be positive

or negative. Eight cases will be investigated, namely {±0.3, 0, 0, 0}, {0,±0.3, 0, 0}, {0, 0,±0.3, 0},
and {0, 0, 0,±0.3}. Note, that the listed values are almost an order of magnitude stronger than
those employed usually for the description of the data. Our primary goal is to study the qualitative
correspondence of model results, such as the sign of the differential flow and the positions of the
oscillation extrema of femtoscopic radii, if any, to the experimental observations.

We start from the investigation of the role of elliptic anisotropy parameters. Firstly, only spatial
anisotropy is left. The calculations with ε2 = ±0.3 are displayed in Figure 1. ALICE data from [13]
for the momentum interval 0.5 < kT < 0.7 GeV/c are plotted onto the calculations also. Recall that
the main goal of our present study is the search for the influence of pure spatial and pure dynamical
anisotropies on the harmonics of anisotropic flow and femtoscopic radii. Direct comparison of
the model results and the data demands at least (i) an increase of the generated statistics by an
order of magnitude, because the data are measured in much narrower kT intervals ranging from
0.2 GeV/c–0.7 GeV/c, and (ii) application of both spatial and dynamical types of the anisotropy
together with the fine-tuning of the anisotropy parameters. This research is out of the scope of our
present investigation. Therefore, experimental data shown in Figure 1 and in other figures below
are for qualitative comparison only. Experiments show that the oscillation phases of the femtoscopic
radii are similar for all measured kT intervals, whereas the source radii, Rout, Rside, Rlong, increase
with the diminishing of the kT value. For a positive value of ε2, both R2

side(∆φ2) and R2
out(∆φ2) of

directly-produced particles have a maximum and a minimum, respectively, at ∆φ ≈ π/2. Resonance
decays, as was shown in [19], significantly increase the femtoscopic radii, but do not shift the phases of
the oscillations. R2

long(∆φ2) seems to have a weak minimum at ∆φ ≈ π/2. This qualitatively agrees
with the data; however, the differential elliptic flow appears to be negative within the whole interval
0 ≤ pT ≤ 3 GeV/c, which is definitely wrong. In contrast, for the negative value of ε2, the differential
elliptic flow of charged hadrons becomes positive. However, in this case, both R2

out(∆φ2) and R2
side(∆φ2)

oscillations are out-of-phase compared to the experimental distributions.
Next, we consider the non-zero dynamical elliptic anisotropy only, δ2 = ±0.3; see Figure 2.

A positive value of δ2 results in positive elliptic flow vch
2 (pT). Furthermore, R2

out(∆φ2) has a
maximum at ∆φ2 ≈ π/2, whereas R2

side(∆φ2) reaches here a local minimum, in accord with the
data. Distributions obtained for the calculations with negative δ2 provide us negative differential
elliptic flow of hadrons and out-of-phase oscillations of R2

side(out)(∆φ2). Thus, we may conclude that in
contrast to the earlier statement in [15], dynamical anisotropy dominates over the geometric one in the
simultaneous description of elliptic flow and azimuthal oscillations of femtoscopic radii. As in the case
with only the spatial anisotropy, decays of resonances increase the radii, but do not change the phases
of the oscillations.
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Figure 1. (a–c) The azimuthal dependence of R2
side(∆φ2), R2

out(∆φ2), and R2
long(∆φ2), respectively,

in the HYDrodynamics with JETs (HYDJET++) calculations of Pb + Pb collisions at
√

s = 2.76 GeV
with the centrality 20–30%. The kT range is 0.2–2.0 GeV/c. (d) The differential elliptic flow of charged
hadrons as a function of pT . The distributions show calculations with ε2 = 0.3 (solid circles) and with
ε2 = −0.3 (open circles). ALICE data from [13] for 0.5 < kT < 0.7 GeV/c are shown by crosses. Lines
are drawn to guide the eye.
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Figure 2. The same as Figure 1, but for calculations with δ2 = 0.3 (solid circles) and with δ2 = −0.3
(open circles).

Now, we turn to study the triangular anisotropy. All parameters except ε3, responsible for spatial
triangularity, are set to zero. Results of the calculations with ε3 = ±0.3 are shown in Figure 3. Similarly
to the study of elliptic anisotropy, for calculations of R2

out, R2
long, R2

side, we plot the distributions for
directly-produced particles only and for all hadrons after the decays of resonances. For a positive value
of the spatial triangularity, R2

side(∆φ3) demonstrates a maximum at ∆φ3 ≈ 0.75 rad and a smeared
minimum at ∆φ3 ≈ 1.75 rad. Distribution R2

out(∆φ3) has a minimum at ∆φ3 ≈ 1.3 rad, and a R2
long(∆φ3)

has very weak maximum at ∆φ3 ≈ 0.75 rad and a minimum at ∆φ3 ≈ 1.75 rad, although a linear fit is
still possible. Decays of resonances increase the absolute values of all three radii and make the the
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oscillations more pronounced. However, they do not shift the extrema positions, i.e., no phase shift at
all. This behavior is in line with the experimental observations [14] but unfortunately, the differential
triangular flow vch

3 (pT) is negative at 0 ≤ pT ≤ 3 GeV/c; see Figure 3d. The last result is obviously
wrong. In contrast, calculations with negative spatial triangularity, ε3 = −0.3, provide positive values
for v3(pT) and completely out-of-phase third-order oscillations of the femtoscopic radii squared. Again,
as in the case of bare elliptic spatial anisotropy, one cannot describe correctly the qualitative behavior
of both triangular flow and femtoscopic radii. The situation improves if one considers the non-zero
dynamical anisotropy parameter, ρ3 = ±0.3. Distributions corresponding to this case are depicted in
Figure 4. Although the magnitudes of the oscillations are relatively weak, calculations with positive ρ3

reproduce qualitatively the experimental results. Decays of resonances do not change the oscillation
phases. Calculations with a negative dynamical anisotropy parameter contradict the data for both
v3(pT) and R2

out,side,long(∆φ3). Note also that for a quantitative description of the radii oscillations,
we have to employ both spatial and dynamical anisotropy. One can see, however, that the relative
magnitude of the radii oscillations is reproduced fairly well. For instance, ∆R2

out and ∆R2
side between

the maxima and minima values do not exceed 15–20% for second-order oscillations [13] and 8–12% for
third-order ones [14]. HYDJET++ calculations nicely match these results.
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Figure 3. (a–c) The azimuthal dependence of R2
side(∆φ3), R2

out(∆φ3), and R2
long(∆φ3), respectively,

in HYDJET++ calculations of Pb + Pb collisions at
√

s = 2.76 GeV with the centrality 20–30%. The kT

range is 0.2–2.0 GeV/c. (d) The differential triangular flow of charged hadrons as a function of pT .
The distributions show calculations with ε3 = 0.3 (solid circles) and with ε3 = −0.3 (open circles).
Crosses denote the ALICE data for 0.5 < kT < 0.7 GeV/c from [14]. Lines are drawn to guide the eye.

Finally, we investigated the profiles of pion emission densities in the transverse plane for the
separated cases of dynamical and spatial anisotropies. To make the results more distinct, we opted for
the following values of the anisotropy parameters in HYDJET++: ε2 = 0.5 or δ2 = −0.3 for the elliptic
anisotropy and ε3 = 0.3 or ρ3 = 0.5 for the triangular anisotropy, respectively. Because pion emission
densities depend strongly on the emission angles, the selected angular areas are (1) 0 < φ ≤ π/4,
(2) π/4 < φ ≤ π/2, and (3) π/2 < φ ≤ 3π/4 for the elliptic anisotropy, and (1’) 0 < φ ≤ π/6, (2’)
π/3 < φ ≤ π/2, and (3’) 2π/3 < φ ≤ 5π/6 for the triangular anisotropy. HYDJET++ results for the
elliptic anisotropy are displayed in Figure 5 for the cases of bare spatial and bare dynamical anisotropy,
respectively. We see that the same-density contours of pion emission are sharper for spatial anisotropy
compared to the dynamical one. Spatial anisotropy demonstrates also a stronger difference between



Proceedings 2019, 13, 3 7 of 10

the emission zones at three different angles, thus explaining the stronger azimuthal dependence of
R2

side(∆φ2) and R2
out(∆φ2), which is seen in Figure 1. Nevertheless, for both cases, the emitting areas

have non-Gaussian shapes.
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Figure 4. The same as Figure 3, but for calculations with ρ3 = 0.3 (solid circles) and with ρ3 = −0.3
(open circles).
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Figure 5. Pion emission function in the transverse plane of HYDJET++ simulated Pb + Pb collisions at√
s = 2.76 TeV with centrality 20–30%. The left column displays calculations with only spatial elliptic

anisotropy ε2 = 0.5, whereas the right column presents results for non-zero dynamical anisotropy
δ2 = −0.3. Shaded contours are identical for each column and indicate the density of emitted pions.
Contour lines show the densities of pions emitted at angles 0 < φ ≤ π/4 (upper row), π/4 < φ ≤ π/2
(middle row), and π/2 < φ ≤ 3π/4 (bottom row), respectively.
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Calculations with non-zero triangular anisotropy parameters are shown in Figure 6. Similarly
to Figure 5, here, the left figures present the results for spatial anisotropy, whereas the right figures
show the influence of dynamical anisotropy only. Again, the difference for the emitting zones in three
angular directions is stronger for the geometric anisotropy. The contours of pion densities are far from
the Gaussians. The last circumstance seriously complicates the restoration of source’s sizes and shapes
by the standard methods of femtoscopic analysis.
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Figure 6. The same as Figure 5, but for calculations with non-zero geometric triangular anisotropy
ε3 = 0.3 (left column) and with non-zero dynamical triangular anisotropy ρ3 = 0.5 (right column).
Contour lines show the densities of pions emitted at angles 0 < φ ≤ π/6 (upper row), π/3 < φ ≤ π/2
(middle row), and 2π/3 < φ ≤ 5π/6 (bottom row), respectively.

4. Conclusions

We studied second- and third-order oscillations of the femtoscopic radii together the differential
elliptic and triangular flow of charged particles in Pb + Pb collisions at

√
s = 2.76 TeV within the

HYDJET++ model. The model has a set of parameters responsible for geometric and dynamical
ellipticity and triangularity in the colliding system. It provides the opportunity to study the role of
each of the anisotropy types separately. Our investigation reveals that the bare spatial anisotropy
cannot describe simultaneously the oscillations of the femtoscopic radii in both the Ψ2 and Ψ3 planes
and the correct sign of differential elliptic and triangular flows. Dynamical anisotropy qualitatively
reproduces both signals; however, to match the experimental data quantitatively, one has to employ
both sources of the anisotropy. Decays of resonances significantly increase the emitting areas in both
planes of elliptic and triangular flow. Furthermore, these decays make the radii oscillations more
pronounced, but they do not change the phases of the oscillations. Our results agree well with the
findings of other models [16,18]. The shapes of the emission areas of pions are found to be far from the
Gaussians, applied by default in standard femtoscopy analysis.
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