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Abstract: Outputs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 42 

models have been widely used in studies of climate changes related to scenarios at 43 

global and regional scales. However, CMIP5 outputs cannot be used directly in analysis 44 

of climate changes due to coarse spatial resolution. Here, we proposed a new statistical 45 
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downscaling method for the downscaling practice of the CMIP5 outputs, i.e. Bias-46 

corrected and station-based Non-linear Regression Downscaling method based on 47 

Randomly-Moving Points (BNRD). And up to now, there are only two global 48 

downscaled CMIP5 precipitation datasets, i.e. NASA daily downscaled CMIP5 49 

precipitation product and BCSD-based (Bias Correction Spatial Disaggregation) 50 

monthly downscaled CMIP5 precipitation product available online, which are both 51 

based on BCSD downscaling method. Hence, we evaluated downscaling performance 52 

of BNRD by comparing it with the downscaled CMIP5 outputs using the BCSD method 53 

in this current study. The results indicate that: (1) during the period for development of 54 

the model (1964-2005), the error between downscaled CMIP5 precipitation and GPCC 55 

ranges between -50mm~50mm at monthly scale. When compared to BCSD-56 

downscaled CMIP5 precipitation, BNRD-downscaled CMIP5 precipitation well 57 

reduces errors and avoids underestimation and overestimation of GPCC by BCSD-58 

downscaled CMIP5 precipitation; (2) during period for verification of the downscaling 59 

models (2006-2013), the maximum (182 mm), minimum (15 mm) and average (68 mm) 60 

RMSEs between BNRD-downscaled CMIP5 precipitation and GPCC are all lower than 61 

those between BCSD-downscaled CMIP5 precipitation and GPCC at continental scales. 62 

Besides, from the average precipitation viewpoint, BNRD-downscaled CMIP5 63 

precipitation is in higher correlation (around 0.75) with GPCC than BCSD-downscaled 64 

CMIP5 precipitation under RCP4.5 and RCP8.5 scenarios at continental scales; (3) 65 

BNRD resolved the negative relation to GPCC in the areas near equator, including north 66 

part of the South America, southern Africa, northern Australia. In all, BNRD 67 
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downscaling method developed in this study performs better in describing GPCC 68 

changes in both space and time when compared to BCSD and can be used for 69 

downscaling practice of CMIP5 and even potentially CMIP6 precipitation outputs over 70 

the globe. 71 

 72 

Key words: Statistical downscaling; BCSD; BNRD; CMIP5; Precipitation changes 73 

 74 

1. Introduction 75 

Global warming and relevant impacts on hydrological cycle have aroused growing 76 

human concerns in recent decades (Allen and Ingram, 2002; Zhang et al., 2013). 77 

Substantial evidences tend to demonstrate intensified precipitation-related extreme 78 

events such as drought and floods in both frequency and magnitude (Swain et al., 2018; 79 

Nangombe et al., 2018; Samaniego et al., 2018; Fischer et al., 2015). Assessment of 80 

potential future changes in water resources and hydrological extremes at regional and 81 

global scales is a critical step in understanding impacts of climate changes on 82 

hydrological cycle (Li et al., 2016). The outputs of the Coupled Model Intercomparison 83 

Project Phase 5 (CMIP5) models have been widely used for this purpose by a range of 84 

researches (Taylor et al., 2013; Donat et al., 2016; Li et al., 2017; Song et al., 2018).  85 

However, evaluation of impacts of climate change cannot use outputs of CMIP5 86 

directly due to coarse representation of orography and other elements (Schoof, 2015; 87 

Drijfhout et al., 2015). Original version of the outputs of CMIP5 is subject to 88 

overestimation and/or underestimation of the attributes (e.g. intensity, frequency and so 89 



https://doi.org/10.1016/j.scitotenv.2019.06.310 
 

5 
 

on) of climatic indicators (such as temperature, precipitation) at global and regional 90 

scales and at regional scale in particular (Fyfe et al., 2013; Su et al., 2013; Jiang et al., 91 

2015; Su et al., 2017; Polade et al., 2017; Ham et al., 2018) which necessitate 92 

downscaling procedure for CMIP5 outputs. Actually, there stands a range of 93 

downscaling methodologies and these methods can be classified into two categories, 94 

i.e. dynamical downscaling methods (Hemer et al., 2013; Emanue 2013; Knutson et al., 95 

2015; Jury et al., 2015; Zhang et al., 2018) and statistical downscaling methods 96 

(Villarini and Vecchi 2012; Timm et al., 2015; Boisier et al., 2015; Chen et al., 2016; 97 

Fyfe et al., 2017; Eum and Cannon 2017). The dynamical and statistical downscaling 98 

methods have their own strengths and weaknesses. For example, the dynamic 99 

downscaling methods tend to cost considerable computation power (Harding et al., 100 

2013; Glotter et al., 2014; Erler et al., 2015). Statistical downscaling methods can 101 

produce similarly accurate outputs when compared to those by dynamical downscaling 102 

techniques (Le et al., 2018). Hence, when it comes to downscaling workload at larger 103 

spatial scale such as continental and even global scale, statistical downscaling methods 104 

are preferred.  105 

There are various downscaled CMIP5 datasets with focus on continental and 106 

regional scales (i.e. U.S.), e.g. the ClimateNA developed by AdaptWest, NASA NEX-107 

DCP30 developed by NASA,  MACAv2-LIVNEH developed by Livneh’s team 108 

(Livneh et al., 2013), and these datasets are all for the North America (Jiang et al., 2018). 109 

So far, only one published downscaled CMIP5 dataset (https://gdo-dcp.ucllnl.org) was 110 

produced by the U.S. Department of the Interior, Bureau of Reclamation, using the Bias 111 
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Correction Spatial Disaggregation (BCSD) method. To enhance availability of the 112 

downscaled CMIP5 dataset and also availability of new downscaling technique, here 113 

we proposed a new statistical downscaling technique, i.e. Bias-corrected Non-linear 114 

Regression Downscaling method using Station-based Randomly-Moving Points 115 

(BNRD). Different from previous grid-by-grid statistical downscaling methods, we 116 

considered the altitude of randomly-generated spatial points and classified them into 4-117 

6 groups with moving window of size of 9°× 9°. From the viewpoint of computation 118 

cost, in comparison with dynamical downscaling methods, statistical downscaling 119 

methods, i.e. BNRD, own particular strengths in computation speed, which has been 120 

widely evidenced (Harding et al., 2013; Glotter et al., 2014; Erler et al., 2015; Le et al., 121 

2018). Besides, BNRD is based on sample points that are selected by locations 122 

(longitude and latitude) and altitude attributions within all of sub-windows that cover 123 

the continents over the globe. In this way, we only need to conduct the downscaling 124 

procedure for every single sample point, and then interpolate the sample-based 125 

downscaling results to grid scale with required spatial resolution. Hence, in comparison 126 

with downscaling for every single grid cell, BNRD, based on sample points with 127 

particular attributions, will save computation time.. Meanwhile, we also included the 128 

altitude information into the downscaling procedure and hence the downscaled 129 

precipitation data will involve impacts of topography on spatial patterns of precipitation 130 

changes. This point constitutes the major advantage of the newly-proposed downscaling 131 

method in this study over the standing downscaling methods. Besides, downscaling 132 

performance of the BNRD was verified by comparisons between downscaled 133 
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precipitation datasets by the BCSD, GPCC precipitation data (precipitation dataset 134 

produced by the Global Precipitation Climatology Centre) (Rudolf et al., 2009; Sun et 135 

al., 2018) and the BNRD.  136 

Therefore, the major objectives of this study are to (1) propose a new statistical 137 

downscaling method considering impacts of altitude and also reduction of cost power; 138 

(2) to verify the downscaling performance of the BNRD in comparison with 139 

downscaled precipitation datasets by BCSD and GPCC precipitation dataset; and (3) to 140 

produce a new version of the global downscaled CMIP5 precipitation datasets under 141 

RCP4.5 and RCP8.5 scenarios. This study can help to provide a new theoretical angle 142 

in downscaling analysis and also new downscaling procedure for downscaling practice 143 

of precipitation at global scale.  144 

 145 

2. Data 146 

In this study, 25 raw CMIP5 precipitation outputs (Table 1) (http://data.ceda.ac.uk) 147 

by the Centre for Environmental Data Analysis (CEDA) were included in the analyses 148 

(https://gdo-dcp.ucllnl.org/) with coarse spatial resolution and monthly temporal 149 

resolution. Besides, we also collected gauge-based reanalysis precipitation product 150 

produced by Global Precipitation Climatology Centre (GPCC), with spatial resolution 151 

as 0.5°×0.5° and temporal resolution as month (https://www.esrl.noaa.gov). And 25 152 

BCSD downscaled CMIP5 precipitation outputs have been developed by the U.S. 153 

Department of the Interior, Bureau of Reclamation, Technical Services Center and 154 

published online (https://gdo-dcp.ucllnl.org/). Up to now, global-downscaled CMIP5 155 
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precipitation products are rare. And there are NASA daily downscaled CMIP5 156 

precipitation product and aforementioned BCSD-based monthly downscaled CMIP5 157 

precipitation product available online. And they are all based on BCSD downscaling 158 

method, which demonstrates BCSD downscaling method is more practical than other 159 

methods. Hence, we directly employed this dataset as comparison group to verify and 160 

intercompare the performance and accuracy of BNRD downscaled CMIP5 precipitation 161 

on detecting the observed precipitation. The historical period in this study refers to the 162 

period of 1964-2005, and the validation period refers to the period of 2006-2013. 163 

3. Development of the new statistical downscaling method 164 

The developed BNRD technique includes the following modules: the randomly-165 

moving-points module, the station-based downscaling module and the bias correction 166 

module. Besides, we evaluated the downscaling performance of the BNRD using the 167 

Pearson correlation analysis and the root mean square error (RMSE) methods (Geil et 168 

al., 2013; Sheffield et al, 2013; Gagen et al., 2016; Aloysius et al., 2016; Lovino et al., 169 

2018).  170 

3.1 Randomly-moving-points mechanism 171 

Here, we proposed a new algorithm named Randomly-Moving Points (RMP), 172 

which is based on the spatial attributes of the points selected for computation such as 173 

longitude, latitude and altitude (Fig. 1). The first step of this algorithm is to extract a 174 

sub-window with size of 9°×9° based on the DEM map. In this study, we separated the 175 

land and ocean by assigning NA, i.e. not available, to the DEM value of oceanic area. 176 

On the second step, within the sub-window, we generated 500 random points by 177 
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generating random longitude and latitude values using rnorm function within R 178 

(Johnson and Kotz, 1970; Kinderman and Monahan, 1977), which obeys Gaussian 179 

distribution (Thomas et al., 2007), within the scale of sub-window. To screen out the 180 

points located in the oceanic regions, we selected the points with available altitude 181 

information. Further, considering relations between altitude and precipitation and poor 182 

performance of CMIP5 outputs in describing precipitation changes in mountainous 183 

zones (Su et al., 2013; Mehran et al., 2014), we grouped the land points within the sub-184 

window into four to six categories with equal step calculated based on difference 185 

between the maximum and minimum altitude value within the sub-window. However, 186 

the absolute maximum and minimum altitude values shift from one sub-window to 187 

another, therefore, altitude intervals were determined for each individual sub-window 188 

respectively. Final step is to select the points from each group with certain altitudes and 189 

the total number of points was limited to 7-10 for each sub-window. The sub-windows 190 

move along the latitudinal direction with steps of 3° and the total number of sub-191 

windows is 552 with exception of the sub-windows full of the oceanic regions. 192 

3.2 Station-based non-linear regression downscaling (SNRD) analysis 193 

In this study, the GPCC precipitation during 1964-2005 was used for model 194 

development and GPCC precipitation during 2006-2013 for model validation. The 195 

CMIP5 outputs during same periods were also used for model development and model 196 

validation. Preliminary analysis of relations between CMIP5 outputs and GPCC 197 

precipitation shows a nonlinear behavior. Therefore, we proposed a station-based non-198 
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linear regression (SNR) model to downscale CMIP5 precipitation outputs to the scale 199 

of sample point: 200 

𝑃𝑟𝑒𝑑𝑝𝑟(𝑖,𝑗,𝑧,𝑡) = 𝑎(𝑖,𝑗,𝑧,𝑡) ×
𝐶𝑀𝐼𝑃5𝑝𝑟(𝑖,𝑗,𝑧,𝑡)

2

1 𝑚𝑚
+ 𝑏(𝑖,𝑗,𝑧,𝑡) × 𝐶𝑀𝐼𝑃5𝑝𝑟(𝑖,𝑗,𝑧,𝑡) + 𝜀(𝑖,𝑗,𝑧,𝑡) (1) 201 

where Predpr(i,j,t) denotes the predictand of the zth raw CMIP5 precipitation output 202 

at the point j on the tth month under the ith RCP scenario and the unit is mm; 203 

CMIP5pr(i,j,z,t) is the zth original CMIP5 precipitation output at the point j on the tth 204 

month under the ith scenario (including historical scenario for model development and 205 

RCP4.5 and RCP8.5 scenarios for model validation), with unit as mm; εi,j,z,t denotes the 206 

residual and the unit is mm; a and b refer to the parameters of the function.  207 

3.3 Bias correction  208 

In bias correction analysis, we defined and used the monthly precipitation pattern. 209 

Based on the occurrence time of the maximum precipitation amount within a given year, 210 

we classified the monthly precipitation patterns into four types: January to March, April 211 

to June, July to September and October to December (Fig. 2). We compared the 212 

precipitation pattern of GPCC during 1964-1999 at aforementioned four types of 213 

sample points with that of CMIP5 precipitation outputs during 2064-2099 under 214 

RCP4.5 and RCP8.5 scenarios. It is interesting to find no significant differences in 215 

monthly precipitation pattern and monthly precipitation amount under historical, 216 

RCP4.5 and RCP8.5 scenarios for all sample points (Figs. 3-4). We can use historical 217 

monthly precipitation differences between GPCC and 25 CMIP5 indices to project the 218 

spatial and temporal pattern of the monthly precipitation differences between future in 219 

situ precipitation observations and 25 CMIP5 precipitation indices. Therefore, we can 220 
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generate the bias correction matrix based on the monthly precipitation pattern of the 221 

historical GPCC and 25 CMIP5 precipitation in this study.  222 

The procedure of the bias correction includes the following steps: (1) monthly 223 

historical precipitation pattern analysis of GPCC and 25 SNRD-processed CMIP5 224 

precipitation outputs to compute the monthly precipitation index from January to 225 

December during 1964-2005 at the sample points; (2) generation of bias correction 226 

vector using the difference between GPCC precipitation index and 25 CMIP5 227 

precipitation outputs reprocessed by the SNRD at the sample points; (3) generation of 228 

the bias correction matrix for the validation period (2006-2013) by iterating the 25-229 

CMIP5 bias correction vectors for all sample points; (4) bias correction by applying 25 230 

SNRD-processed CMIP5 precipitation indices and 25 CMIP5 bias correction matrices 231 

accordingly. Taking SNRD-processed ACCESS1-0 for an example (subB-a, c, e, g in 232 

Fig. 1), we firstly analyzed monthly GPCC and SNRD-processed ACCESS1-0 233 

precipitation patterns for all four types of sample points on behalf of aforementioned 234 

four specific precipitation patterns. Then, we assumed that the monthly precipitation 235 

patterns would not shift with time under different RCP scenarios and used the difference 236 

between GPCC monthly average precipitation during 1964-2005 and the SNRD-237 

processed monthly average precipitation under ACCESS1-0 to generate the bias 238 

correction vector within a year (from January to December). In addition, according to 239 

the time span for the validation period of BNRD downscaling model (2006-2013, 240 

monthly), we assumed that the bias correction vector would not change annually and 241 

then we generated the bias correction matrix (subB-b, d, f, h in Fig. 1 denote the bias 242 
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correction matrices of four sample points respectively) by repeating the aforementioned 243 

bias correction vector row by row with number of rows equals to the time span of 244 

validation period (2006-2013). Finally, we added the bias correction matrix to each 245 

SNRD-processed ACCESS1-0 precipitation index and the entire bias correction 246 

procedure was done. After the bias correction section, downscaling results were 247 

spatially interpolated to downscaled resolution (0.5°×0.5°) using Kriging interpolation 248 

method (Timm et al., 2015).  249 

3.4 Downscaling performance evaluation using statistical methods 250 

To evaluate the modeling accuracy of the BNRD-based downscaling precipitation 251 

results for 25 CMIP5 precipitation outputs, BCSD-based globally-downscaled 252 

precipitation products for 25 CMIP5 precipitation outputs have been taken as control 253 

group. Root mean square errors (RMSE) and Pearson correlation analysis method have 254 

been accepted to evaluate precipitation downscaling accuracy of the BNRD method 255 

(Geil et al., 2013; Sheffield et al, 2013; Aloysius et al., 2016; Gagen et al., 2016; Lovino 256 

et al., 2018). 257 

 258 

4. Results and discussions 259 

4.1 BNRD-downscaled CMIP5 precipitation outputs across the continent during 260 

1964-2005 261 

To evaluate the performance of the downscaling models considered in this study 262 

for 25 CMIP5 precipitation outputs, i.e. SNRD, BNRD and BCSD, we firstly calculated 263 

the average precipitation for each continent such as Africa, Asia, Europe, North 264 
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America, Oceania and South America based on 25 raw CMIP5 precipitation outputs 265 

and downscaled precipitation outputs by SNRD, BNRD and BCSD, respectively. 266 

Modeling accuracy of the downscaled 25 CMIP5 precipitation outputs can be evaluated 267 

based on the difference between the average CMIP5 precipitation minus GPCC 268 

precipitation. We can find overestimation and/or underestimation of the GPCC by the 269 

CMIP5 precipitation outputs due to coarse spatial resolution of the CMIP5 precipitation 270 

outputs (Fig. 5). Therefore, CMIP5 precipitation outputs cannot be used directly for 271 

climate variability analysis (Drijfhout, 2005; Schoof, 2015). In this sense, downscaling 272 

procedure of the CMIP5 precipitation outputs is technically critical.  273 

Here, we intercompared the precipitation biases of the downscaled precipitation 274 

outputs by three downscaling methods, i.e. SNRD, BNRD and BCSD during 1964-275 

2005 when compared to GPCC on the continent scale. The precipitation biases by the 276 

SNRD method tend to enlarged during certain months and those by BNRD method 277 

distribute evenly from one month to another in Africa, Asia, Europe, North America 278 

and South America. Besides, Fig. 5 also indicates the reduced precipitation bias by 279 

BNRD within -50 mm and 50 mm across continents with exception of the Oceania, and 280 

in Asia and North America in particular with precipitation bias of nearly 0 mm. 281 

Different from BNRD is the significant overestimation (Oceania and South America) 282 

and/or underestimation (Africa and Asia) of GPCC by the BCSD. BNRD method 283 

greatly reduces overestimation of the GPCC precipitation during May to September and 284 

produces statistically good estimation of the GPCC during January to April. In contrast, 285 

BCSD method enlarges overestimation tendency of the original CMIP5 precipitation 286 
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outputs from 0-75 mm to 100-150 mm during April-September in Oceania (Fig. 5). In 287 

this sense, BNRD performs better than BCSD in downscaling the original CMIP5 288 

precipitation outputs during 1964-2005 at continental scale.  289 

4.2 Intercomparison of RMSE between original and downscaled CMIP 5 290 

precipitation outputs during 2006-2013 on the continent scale 291 

We computed the RMSE between the 25 raw CMIP5 precipitation outputs, BNRD- 292 

and BCSD-downscaled CMIP5 precipitation outputs, and GPCC data within each 293 

continent during 2006-2013 under both RCP4.5 and RCP8.5 scenarios. Within each 294 

continent on the point scale, RMSEs have been analyzed for minimum, maximum and 295 

mean values. Fig. 6 indicates intercomparison of the RMSEs between the GPCC and 296 

the downscaled CMIP5 precipitation outputs using BCSD and BNRD, and the original 297 

CMIP5 precipitation outputs respectively under RCP4.5 and RCP8.5 scenarios. The 298 

RMSEs between BNRD-downscaled CMIP5 precipitation outputs and the GPCC reach 299 

the lowest values, e.g. around 15 mm, 182 mm and 68 mm under both RCP scenarios, 300 

which are far less than the RMSEs between GPCC and the original CMIP5 outputs, i.e. 301 

around 30 mm, 901 mm and 121 mm under both RCP scenarios, and the RMSEs 302 

between GPCC and the BCSD-downscaled CMIP5 outputs, i.e. around 164 mm, 420 303 

mm and 241 mm under RCP4.5 scenario and around 165 mm, 516 mm and 280 mm 304 

under RCP8.5 scenario. Therefore, BNRD has the better downscaling performance 305 

when compared to BCSD.  306 

Besides, we intercompared the averaged GPCC, the averaged 25 raw CMIP5 307 

precipitation outputs, and the averaged BCSD- and BNRD-downscaled CMIP5 308 
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precipitation outputs during 2006-2013 at the continental scale, i.e. the validation 309 

period for downscaling models considered in this study, under RCP4.5 and RCP8.5 310 

scenarios (Fig. 7). Fig. 7 shows that the averaged BNRD-downscaled precipitation data 311 

follow close to the GPCC for each continent. In contrast, BCSD-downscaled CMIP5 312 

precipitation outputs are close to the GPCC data in the North America and Europe only. 313 

When it comes to other continents, BCSD-downscaled CMIP5 precipitation outputs 314 

tend to significantly deviate the GPCC data, implying underestimation (Africa and Asia) 315 

and/or overestimation (Oceania and South America) of the GPCC. All these results 316 

clearly indicate better downscaling performance of BNRD than BCSD. Besides, BNRD 317 

has more reliable downscaling performance than BCSD. 318 

 319 

4.3 Pearson correlation between GPCC and downscaled CMIP5 precipitation 320 

outputs by BNRD and BCSD respectively during 2006-2013 on the continent scale 321 

Fig. 8 displays Pearson correlation coefficients (PCC) between BNRD- and BCSD-322 

downscaled CMIP5 precipitation outputs and GPCC under RCP4.5 and RCP8.5 323 

scenarios. In this study, significance of the PCCs was tested at 0.05 significance level. 324 

It can be seen from Fig. 8 that the lowest PCCs between BNRD-downscaled and the 325 

GPCC over all the continents under RCP scenarios are around 0.750, which is 326 

significantly larger than the lowest PCCs between BCSD-downscaled and the GPCC 327 

over all the continents under RCP scenarios, i.e. 0.14 under RCP4.5 and 0.034 under 328 

RCP8.5. To compare the PCCs between BCSD- and BNRD-downscaled CMIP5 329 

precipitation outputs and the GPCC in a direct way, we used the PCC matrix obtained 330 
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by difference between PCCs between BNRD- downscaled CMIP5 precipitation outputs 331 

and the GPCC (PCC-BNRD), and PCCs between BCSD-downscaled CMIP5 332 

precipitation outputs and the GPCC (PCC-BCSD) (Fig. 9). Fig. 9 indicates the 333 

difference of PCCs as mentioned above reaches the low-value ranges (< 0.2) in the Asia 334 

and the North America under RCP4.5 and RCP8.5 scenarios, implying that the BNRD 335 

method is similar to the BCSD in downscaling the tendency of the measured 336 

precipitation under RCP4.5 and RCP8.5 scenarios. However, PCC-BNRD values are 337 

greater than PCC-BCSD in the Oceania and South America, which demonstrates that 338 

BNRD-downscaled CMIP5 precipitation outputs can well capture changing properties 339 

of the measured precipitation as reflected by GPCC datasets.  340 

4.4 Intercomparison of PCCs in spatial distribution 341 

To compare PCCs between BNRD- and BCSD-downscaled CMIP5 precipitation 342 

outputs and GPCC under RCP4.5 and RCP8.5 scenarios (simply BNRD-GPCC, and 343 

BCSD-GPCC in the subsequent text) in spatial distribution, we interpolated the BNRD-344 

GPCC and BCSD-GPCC by Kriging interpolation method (Figs. 10-11 for RCP4.5 345 

scenario, Figs. 13-14 forRCP8.5 scenario). Further, comparison was done on the 346 

difference between BNRD-GPCC and BCSD-GPCC over the globe (Figs. 12 and 15). 347 

Under RCP4.5 scenario, both BNRD-GPCC and BCSD-GPCC are significantly 348 

high, e.g. BNRD-GPCC is higher than 0.7 and BCSD-GPCC is higher than 0.5 in most 349 

areas of North America, Europe and Asia (Figs. 10-11). However, in northern parts of 350 

the South America, most areas of the South Africa and northern parts of the Australia, 351 

BCSD-GPCC values are negative (Fig. 11). In contrast, BNRD-downscaled CMIP5 352 



https://doi.org/10.1016/j.scitotenv.2019.06.310 
 

17 
 

precipitation outputs describe the GPCC changes in a right way with BNRD-GPCC 353 

values of higher than 0.75 (Fig. 10), which is also highlighted by remarkable difference 354 

(greater than 1.0) between PCC-BNRD and PCC-BCSD (Fig. 12). Besides, in central 355 

parts of the Greenland, BCSD-GPCC values are negative, i.e. -0.5 - 0. In contrast, 356 

BNRD-GPCC are not negative in these regions. Therefore, BNRD performs better than 357 

BCSD in downscaling CMIP5 precipitation in most regions. Under RCP8.5 scenario, 358 

spatial patterns of the BNRD-GPCC and BCSD-GPCC under RCP8.5 are in good 359 

agreement with those under RCP4.5 scenario (Figs. 10-15). In general, under RCP4.5 360 

and RCP8.5 scenarios, in comparison with BCSD, BNRD greatly improves the 361 

downscaling results of the CMIP5 precipitation outputs from global viewpoint and the 362 

downscaled CMIP5 precipitation outputs by BNRD can well describe GPCC 363 

precipitation changes over the globe.  364 

 365 

5. Conclusions 366 

In this study, we proposed the BNRD downscaling method and the downscaling 367 

performance of BNRD was verified and corroborated via comparison with downscaling 368 

performance of the BCSD. We obtained interesting and important findings and 369 

conclusions as follows:  370 

(1) During 1964-2005, the period for model development, BCSD-downscaled 371 

CMIP5 precipitation is nearly the same as GPCC just in North America and Europe. In 372 

contrast, BNRD-downscaled CMIP5 precipitation can well describe the GPCC changes 373 
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over the globe and avoid overestimating (in South America and Oceania) and/or 374 

underestimating (in Asia and Africa) GPCC precipitation.  375 

(2) During the period for the model validation, i.e. 2006-2013 under RCP4.5 and 376 

RCP8.5 scenarios, the maximum, minimum and average RMSEs between BNRD-377 

downscaled CMIP5 precipitation and GPCC are respectively 182 mm, 15 mm and 68 378 

mm, and are all lower than that between BCSD-downscaled CMIP5 precipitation and 379 

GPCC. From the average precipitation viewpoint, during the period for model 380 

verification under RCP4.5 and RCP8.5 scenarios, the BNRD-downscaled CMIP5 381 

precipitation is in higher correlation with GPCC than BCSD-downscaled CMIP5 382 

precipitation. While, the BCSD-downscaled CMIP5 precipitation is in negative bias 383 

from GPCC across Africa and Asia and is in positive bias from GPCC across Oceania 384 

and South America. Therefore, BNRD-downscaled CMIP5 precipitation can better 385 

describe GPCC in both space and time when compared to BCSD.  386 

(3) We found higher correlation between BNRD-downscaled CMIP5 precipitation 387 

and GPCC than between BCSD-downscaled CMIP5 precipitation and GPCC globally. 388 

From a viewpoint of the spatial distribution of GPCC-BCSD minus GPCC-BNRD, the 389 

difference between GPCC-BNRD and GPCC-BCSD is even larger than 1 over north 390 

part of the South America, southern Africa, northern Australia, implying negative 391 

relations between BCSD-downscaled CMIP5 precipitation and GPCC. While, BNRD-392 

downscaled CMIP5 precipitation and GPCC is in positive correlation in these 393 

continents. All these results further corroborate greatly improved downscaling 394 

performance of BNRD when compared to that of BCSD. This study provides improved 395 
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downscaling technique for downscaling practice of CMIP5 and even CMIP6 396 

precipitation outputs over the globe. 397 
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 568 

Fig. 1 The algorithm frame of Moving-Random-Points generated and Bias-Corrected Station-based 569 

Non-linear Regression Downscaling model (BNRD for short). DEM refers to the digital elevation 570 

model and its spatial resolution is 0.5 degree. GPCC_Pr refers to the gridded measured precipitation 571 

datasets generated by the Global Precipitation Climatology Center (GPCC) and its spatiotemporal 572 

resolution is month and 0.5 degree respectively. CMIP5_Pr refers to the precipitation outputs of 573 

Coupled Model Inter-comparison Project 5 (CMIP5). In this paper, the precipitation outputs of 25 574 

CMIP5 models were majorly studied (detailed information refers to Table 1). DEMp refers to the 575 

DEM value at point-scale and GPCC_Prp refers to the GPCC_Pr at point-scale. To display the 576 

process of the Moving Random Points algorithm, Fig. 1subA was attached to Fig. 1. Besides, to 577 

shed light on the mechanism of bias correction, Fig. 1subB was attached to Fig. 1. And within Fig. 578 

1subB, 4-type of points were selected on behalf of 4-type of precipitation annual distributions 579 

(including maximum precipitation happening during January-March, April-June, July-September 580 

and October-December) 581 
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 582 

Fig. 2 Global classification of monthly patterns of precipitation and spatial-comparison between the 583 

annually maximum value of GPCC precipitation from 1964 to 1999 and the annually maximum 584 

value of 25 CMIP5 model precipitation from 2064 to 2099 by longitude and latitude respectively. 585 

 586 

 587 
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 598 

Fig. 3 Precipitation difference between GPCC monthly-mean precipitation and average values of 25 599 

CMIP5 monthly-mean precipitation outputs under RCP4.5. Figs. 3a-l exhibit spatial distribution of 600 

the precipitation difference at the point scale from January to December respectively. Fig. 3m sheds 601 

lights on the probability distribution considering precipitation differences of all sample points from 602 

January to December respectively. Besides, the table within Fig. 3m displays the 95% confidence 603 

interval of precipitation difference for each month.  604 

 605 

 606 

 607 

 608 

 609 

 610 
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 611 

Fig. 4 Precipitation difference between GPCC monthly-mean precipitation and average values of 25 612 

CMIP5 monthly-mean precipitation outputs under RCP8.5. Figs. 4a-l exhibit spatial distribution of 613 

the precipitation difference at the point scale from January to December respectively. And Fig. 4m 614 

sheds lights on the probability distribution considering precipitation differences of all sample points 615 

from January to December respectively. Besides, the table within Fig. 4m displays the 95% 616 

confidence interval of precipitation difference for each month. 617 
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 618 

Fig. 5 Intercomparison of bias between average precipitation indices of the original CMIP5 619 

precipitation, the BNRD-processed CMIP5 precipitation, BCSD-processed CMIP5 precipitation 620 

and GPCC from 1964 to 2005 at monthly scale at the continental scale. 621 

 622 

 623 

 624 
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 625 

Fig. 6 Intercomparison of RMSE (root mean square error) among the original SMIP5 precipitation, 626 

BNRD- and BCSD-downscaled 25 CMIP5 precipitation outputs on the continent scale under both 627 

RCP 4.5 and RCP 8.5 (RCP refers to the Representative Concentration Pathway) scenarios. 628 
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 629 

Fig. 7 Intercomparison between the BNRD-downscaled 25 CMIP5 precipitation outputs and GPCC 630 

indices and intercomparison between BCSD-downscaled 25 CMIP5 precipitation outputs and 631 

GPCC indices on the continent scale from 2006 to 2013 (validation period) under both RCP4.5 and 632 

RCP8.5 scenarios. 633 
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 637 

Fig. 8 Intercomparison of the Pearson correlation coefficients between BNRD- and BCSD-638 

downscaled 25 CMIP5 precipitation outputs and GPCC on the continent scale from 2006 to 2013 639 

(validation period) under both RCP4.5 and RCP8.5. Cor refers to correlation coefficients. 640 
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 650 

Fig. 9 Difference of the Pearson correlation coefficients between BNRD- and BCSD-downscaled 651 

25 CMIP5 precipitation outputs and GPCC on the continent scale from 2006 to 2013 (validation 652 

period) under both RCP4.5 and RCP8.5. Cor refers to correlation coefficients. 653 
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 668 

Fig. 10 Spatial pattern of Pearson correlation coefficients between GPCC precipitation and 25 669 

CMIP5 models precipitation downscaled by BNRD method under RCP4.5 during validation period 670 

(2006-2013). 671 

 672 

 673 
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 675 

Fig. 11 Spatial pattern of Pearson correlation coefficients between GPCC precipitation and 25 676 

CMIP5 precipitation downscaled by BCSD method under RCP4.5 during validation period (2006-677 

2013). 678 

 679 
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 680 

Fig. 12 Spatial pattern of difference of the Pearson correlation coefficients between BNRD-681 

downscaled CMIP5 precipitation and GPCC minus that between BCSD-downscaled precipitation 682 

and GPCC under RCP4.5 during the period for model validation (2006-2013). 683 
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 687 
Fig. 13 Spatial pattern of Pearson correlation coefficients between GPCC precipitation and 25 688 

CMIP5 precipitation downscaled by BNRD method under RCP4.5 during period for model 689 

validation (2006-2013). 690 
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 692 

Fig. 14 Spatial pattern of Pearson correlation coefficients between GPCC precipitation and 25 693 

CMIP5 precipitation downscaled by BCSD method under RCP8.5 during period for the model 694 

validation (2006-2013). 695 

 696 

 697 
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 698 

Fig. 15 Spatial pattern of difference of the Pearson correlation coefficients between BNRD-699 

downscaled CMIP5 precipitation and GPCC minus that between BCSD-downscaled precipitation 700 

and GPCC under RCP8.5 during the period for model validation (2006-2013). 701 

 702 
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Table 1 Resolution of raw CMIP5 precipitation outputs applied in this study 703 

 704 

Index Model Latitude Longitude 

1 ACCESS1.0 1.25 1.875 

2 ACCESS1.3 1.25 1.875 

3 BCC-CSM1.1 2.7906 2.8125 

4 BCC-CSM1.1(m) 2.7906 2.8125 

5 BNU-ESM 2.7906 2.8125 

6 CCSM4 0.9424 1.25 

7 CESM1(BGC) 0.9424 1.25 

8 CESM1(CAM5) 0.9424 1.25 

9 CMCC-CM 0.7484 0.75 

10 CNRM-CM5 1.4008 1.40625 

11 CSIRO-Mk3.6.0 1.8653 1.875 

12 CanESM2 2.7906 2.8125 

13 FIO-ESM 3.75° 1.8947° 

14 GFDL-CM3 2 2.5 

15 GISS-E2-R 2 2.5 

16 HadGEM2-CC 1.25 1.875 

17 HadGEM2-ES 1.25 1.875 

18 INM-CM4 1.5 2 

19 IPSL-CM5A-LR 1.8947 3.75 

20 IPSL-CM5A-MR 1.2676 2.5 

21 IPSL-CM5B-LR 1.8947 3.75 

22 MPI-ESM-LR 1.8653 1.875 

23 MPI-ESM-MR 1.8653 1.875 

24 NorESM1-M 1.8947 2.5 

25 NorESM1-ME 1.8947 2.5 

 705 

 706 


