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Abstract 31 

The conventional flood frequency analysis typically assumes the annual maximum 32 

flood series (AMFS) result from a homogeneous flood population. However, actually 33 

AMFS are frequently generated by distinct flood generation mechanisms (FGMs), 34 

which are controlled by the interaction between different meteorological triggers (e.g., 35 

thunderstorms, typhoon, snowmelt) and properties of underlying surface (e.g., 36 

antecedent soil moisture and land-cover types). To consider the possibility of two 37 

FGMs in flood frequency analysis, researchers often use the two-component mixture 38 

distributions (TCMD) without explicitly linking each component distribution to a 39 

particular FGM. To improve the mixture distribution modeling in seasonally snow 40 

covered regions, an index called flood timescale (FT), defined as the ratio of the flood 41 

volume to peak value and chosen to reflect the relevent FGM, is employed to classify 42 

each flood into one of two types, i.e., the snowmelt-induced long-duration floods and 43 

the rainfall-induced short-duration floods, thus identifying the weighting coefficient 44 

of each component distribution beforehand. In applying the FT-based TCMD to 45 

model the AMFS of 34 watersheds in Norway, ten types of mixture distributions are 46 

considered. The design floods and associated confidence intervals are calculated using 47 

parametric bootstrap method. The results indicate that the FT-based TCMD model 48 

reduces the uncertainty in the estimation of design floods for high return periods by 49 

up to 40% with respect to the traditional TCMD. The improved predictive ability of 50 

the FT-based TCMD model is attributed to its explicit recognition of distinct 51 



3 

 

generation mechanisms of floods, thereby being able to identify the weighting 52 

coefficient and FGM of each component distribution without optimization. 53 

Keywords: Flood frequency analysis; Two-component mixture distribution; Flood 54 

generation mechanisms; Flood types classification; Flood timescale; Norway 55 

56 
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1. Introduction 57 

The conventional flood frequency analysis is based on the assumption that the 58 

historical observations of an extreme hydrologic variable Z , denoted by 59 

 ( 1,..., )tz t m  at time t , are independent and identically distributed (IID) 60 

realizations of a fixed single-type probability distribution ( | )ZF z   whose moments 61 

and parameters are invariant. However, this IID assumption cannot be fulfilled for 62 

cases where hydrologic series exhibit more complex probabilistic structure (e.g., 63 

mixed populations and/or nonstationarity), and thus has been questioned by many 64 

researchers under either stationarity (Rulfová et al., 2016; Volpi et al., 2015; Baratti et 65 

al., 2012; Kochanek et al., 2012; Strupczewski et al., 2012; Singh et al., 2005; Klemeš, 66 

2000; Waylen and Woo, 1982) or nonstationarity conditions (Xu, et al., 2018; Jiang et 67 

al., 2018; Schumann, 2017; Yan et al., 2017a, 2017b; Milly et al., 2015, 2008; Vogel 68 

et al., 2011; Villarini and Smith, 2010; Khaliq et al., 2006; Katz et al., 2002; Jain and 69 

Lall, 2001; Olsen et al., 1999). 70 

Numerous studies have demonstrated the existence of flood records arising from 71 

distinct flood generation mechanisms (FGMs) due to combined actions of different 72 

meteorological conditions (e.g., thunderstorms, typhoon, cyclonic precipitation, 73 

convective precipitation and snowmelt) and basin properties (e.g., land-cover types, 74 

channel characteristics and soil moisture contents). Typically, different types of floods 75 

are mixed within a single annual maximum flood series (AMFS) with several 76 

particular FGMs dominating the flood regimes. Villarini and Smith (2010) and Smith 77 
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et al. (2011) reported that the flood events in the eastern United States are resulted 78 

from mixed populations which were dominated by landfalling tropical cyclones and 79 

extratropical systems. Barth et al. (2017) reported that the annual peak flow series in 80 

the western United States are generated from distinct FGMs, and particularly analyzed 81 

the contributions of atmospheric river to the peak flows based on 1375 stream gauge 82 

sites. Collins et al. (2014) analyzed distinct FGMs in New England and Atlantic 83 

Canada and found they were dominantly generated by storms from the Great Lakes 84 

and Coastal lows. Szolgay et al. (2016) analyzed 72 catchments in Northwest Austria 85 

and classified them into three different FGMs, i.e., rainfall-induced floods, flash 86 

floods and snowmelt-induced floods. Vormoor et al. (2015, 2016) found that two 87 

types of FGMs, i.e., rainfall-induced and snowmelt-induced floods, existed in most 88 

parts of Norway. Besides the rainfall-induced floods dominated western Norway and 89 

along the coast whereas snowmelt-induced floods dominated inland and northernmost 90 

Norway. 91 

To address the issue of mixed flood populations generated by distinct FGMs in 92 

flood frequency analysis, researchers have developed two frequently used methods for 93 

mixture modeling (Alila et al., 2002). Provided that different FGMs are mutually 94 

independent and occur sequentially in each year, the first technique is the 95 

multiplicative model, often used for seasonal maxima, where the component 96 

distributions are combined multiplicatively. The other technique is the additive model 97 

or the finite mixture distribution (FMD) for annual maxima. In this method, the 98 
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probability distribution of AMFS is defined as weighted sum of several single-type 99 

probability distributions. Compared with the single-type distributions, the FMD is 100 

able to better model different types of skewness and tail behavior through an 101 

appropriate selection of their component distributions (Alila and Mtiraoui, 2002; 102 

McLachlan and Peel, 2000; Rossi et al., 1984). Since the increase in the number of 103 

mixture components of FMD requires larger number of observations and tends to 104 

make the parameter estimation method less robust and accurate, researchers usually 105 

assume that the AMFS are generated by two FGMs and recommend the use of 106 

two-component mixture distributions (TCMD) with different kinds of component 107 

distributions (e.g., lognormal, gamma, Weibull, Gumbel, generalized extreme value 108 

(GEV) and log Pearson type III) (Yan et al., 2017a; Zeng et al., 2014; Yoon et al., 109 

2013; Evin et al., 2011; Villarini et al., 2011; Grego and Yates, 2010; Alila and 110 

Mtiraoui, 2002; Stedinger et al., 1993; Rossi et al., 1984; Singh and Sinclair, 1972). In 111 

the field of flood frequency analysis, often, TCMD is applied in cases where a prior 112 

identification of FGMs is not feasible due to the complexities of FGMs and the scanty 113 

long-term meteorological data needed for separating them (Evin et al., 2011; Grego 114 

and Yates, 2010; Alila and Mtiraoui, 2002; Rossi et al., 1984; Singh and Sinclair, 115 

1972). Consequently, the distribution parameters of TCMD must be jointly estimated 116 

from the overall AMFS. However, this will probably result in some component 117 

distributions with a high probability of generating negative discharges (Bardsley, 118 

2016) or lead to a larger standard error of the estimated quantiles (Strupczewski et al., 119 
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2012). Otherwise, based on a prior separation of FGMs, the flood series are more 120 

homogeneous within the flood samples belonging to each FGM. Thus, it is expected 121 

to improve the physical justification of the mixture distributions and reduce the 122 

standard error of the estimated design quantiles. However, to our knowledge in the 123 

field of flood frequency analysis, a prior separation of annual maximum flood series 124 

resulting from multi-source FGMs has not been incorporated into mixture distribution 125 

modeling in estimating flood quantiles. 126 

In fact, much attention has been paid to the identification and classification of 127 

distinct FGMs (Brunner et al., 2017; Fischer et al., 2017; Alipour et al., 2016; 128 

Antonetti et al., 2016; Berghuijs et al., 2016; Sikorska et al., 2015; Gaál et al., 2012; 129 

Bárdossy and Filiz, 2005; Loukas et al., 2000). Among which, a measure named flood 130 

timescale (FT), which is defined as the ratio of the flood volume to the flood peak was 131 

proposed by Gaál et al. (2012) to improve our understanding of the interaction of 132 

climate and basin processes. This event-based measure is closely related to the FGMs 133 

of a basin because it integrates a series of meteorological information and basin 134 

characteristics via a time parameter (Gaál et al., 2012). Fischer et al. (2016) first 135 

employed the flood timescale to separate short and long flood events in summer. 136 

Since the flood timescale is physically-based and does not require additional 137 

meteorological information, this approach opens a way to identify distinct FGMs, and 138 

determines the weighting coefficient and FGM of each component distribution 139 

without optimization in mixture modeling. In the utilization of this approach, each 140 
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subsample is fitted to a single-type distribution, and then they are summed up via a 141 

weighting coefficient estimated by the proportion of each subsample in the overall 142 

AMFS. 143 

In this study, we firstly try to identify and characterize distinct FGMs in a regional 144 

context. This is supported by the analyses of the flood seasonality and the relationship 145 

between flood volumes and peaks (flood timescale) based on 34 streamflow gauging 146 

stations throughout the entire Norway. In Norway, floods are primarily dominated by 147 

two major FGMs, i.e., the rainfall-induced floods and snowmelt-induced floods. Then 148 

we analyze the applicability and performance of the FT-based TCMD, denoted by 149 

TCMD-F. In the implementation of TCMD-F, we select four widely used flood 150 

probability distributions as the candidate component distributions, i.e., two-parameter 151 

lognormal (LN), Weibull (W), gamma (G), and generalized extreme value (GEV). As 152 

for parameter estimation of TCMD-F, we take the advantage of a prior separation of 153 

the observed AMFS into long-duration floods and short-duration floods based on a 154 

threshold of flood timescale. Finally, the design quantiles and associated confidence 155 

intervals (CIs), estimated by the parametric bootstrap method, of TCMD-F are 156 

compared with those yielded by a single-type distribution and the traditional TCMD, 157 

denoted by TCMD-T. 158 

The rest of the paper is organized as follows. Firstly, we describe the study area and 159 

the data used in this study in Section 2. Secondly, the methodology used in the paper 160 

is presented in Section 3. Thirdly, the results along with several discussions of 161 
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TCMD-T and TCMD-F models are demonstrated in Section 4. Finally, the 162 

conclusions are drawn in Section 5. 163 

2. Study area and data 164 

Norway is located in the western part of Scandinavian Peninsula of Northern 165 

Europe, which has an approximate drainage area of 385,251 km
2
 and lies between the 166 

geographical coordinates 57°-81°N and 4°-32°E (Fig. 1). The meteorological 167 

conditions in Norway exhibit large spatial variability due to its special geographical 168 

location, large latitudinal range and varied topography. The annual average air 169 

temperature (
empt ) varies from more than 6℃ at the southern and south-western 170 

coastal regions to lower than -3℃ in the high-altitude regions in central Norway and 171 

the inland regions of northern Norway (Vormoor et al., 2016; Hanssen-Bauer et al., 172 

2009). The annual average precipitation ( P ) varies from approximately 300 mm in 173 

north-eastern and central-eastern Norway to more than 3500 mm in western Norway. 174 

With respect to the seasonal variation of the precipitation, the maximum precipitation 175 

volumes often occur during autumn and winter periods in western Norway, which is 176 

particularly influenced by the North Atlantic Oscillation (NAO) (Uvo, 2003), while 177 

cases are different for the inland areas of eastern Norway which experience cold dry 178 

winter and the maximum precipitation volumes concentrate on summer period 179 

(Vormoor et al., 2016; Støren and Paasche, 2014). 180 

In most regions of Norway, both snowmelt and rainfall contribute to the runoff 181 

volume. However, due to the spatial variability of the temperature, the snowpack 182 
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volume and snow season vary considerably throughout the entire mainland of Norway, 183 

resulting in varying levels of importance of snowmelt volumes in forming high flows. 184 

Consequently, based on relative contributions of rainfall and snowmelt to floods, there 185 

are three FGMs in Norway: (i) rainfall-induced floods particularly dominated in 186 

western Norway and coastal regions during autumn and winter periods; (ii) 187 

snowmelt-induced floods dominated in inland regions and northernmost Norway 188 

particularly during spring and early summer; (iii) mixed rainfall and snowmelt driven 189 

floods occurring in both autumn/winter and spring/summer (Vormoor et al., 2016, 190 

2015). 191 

In this study, we selected 34 watersheds throughout the entire Norway to represent 192 

the three types of FGMs. It should be mentioned that only 8 of the 34 stations show 193 

significant trends and only 9 of the 34 stations show significant abrupt changes at the 194 

0.05 significance level, based on the results of Mann-Kendall trend test (Kendall, 195 

1975) and Pettitt change point test (Pettitt, 1979). The main characteristics of these 196 

watersheds, including the area, the annual mean runoff Q , precipitation recP  and 197 

temperature empt , are presented in Table 1. The daily average discharge and limited 198 

peak discharge data are provided by the Norwegian Water Resources and Energy 199 

Directorate’s hydrometric observation network.  200 

3. Methodology 201 

The methodologies used in the paper include: seasonality analysis method for 202 

examining the existence of distinct FGMs, classification method of distinct FGMs 203 
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based on flood timescale, the method of two-component mixture distributions, the 204 

parameter estimation method of TCMD, goodness-of-fit tests and model selection 205 

criteria. 206 

3.1. Identification of distinct FGMs by seasonality analysis 207 

It is worth noting that before conducting mixture distribution modeling, the 208 

existence of distinct FGMs should be identified to improve the physical understanding 209 

of mixture nature of floods (Yan et al., 2017a; Villarini and Smith, 2010; Alila and 210 

Mtiraoui, 2002; Klemeš, 2000). Analyses of flood seasonality have been widely used 211 

in characterization of different FGMs within the AMFS since both the meteorological 212 

conditions and basin properties exhibit seasonal variability, and consequently some 213 

types of FGMs occur only in a specific season (Slater et al., 2017; Slater and Villarini, 214 

2017; Yan et al., 2017a; Fischer et al., 2016; Beyene and Jain, 2015; Parajka et al., 215 

2010; Sivapalan et al., 2005; Rossi et al., 1984). In this study, the seasonality analysis 216 

is based on the circular statistics or directional statistics (Mallakpour and Villarini, 217 

2017; Villarini, 2016; Zhang et al., 2017; Dhakal et al., 2015; Chen et al., 2013; Burn, 218 

1997). The flowchart of circular statistics is shown in Fig. 2. 219 

In the circular statistics method, the date of occurrence of an annual maximum 220 

flood event  ( 1,..., )tz t m , denoted by 
tzD , can be transformed to a polar coordinate 221 

  on a unit circle using: 222 

2
     0 2

t t tz z zD
L


            (1) 223 

where L is the length of a year (L=365 or L=366 for a leap year); 
tz  is the angular 224 



12 

 

observation (in radians) of the flood event 
tz . It should be noted that radian 0 225 

represents January 1, and radian 2π  represents December 31. For the AMFS with 226 

m  flood events, 
tz  can be plotted on a unit circle to provide a visual representation 227 

of the flood seasonality. The direction representing the mean date of occurrence of m  228 

flood events, denoted by the polar coordinate  , can then be obtained by: 229 

1

1
cos( )

t

m

z

t

a
m




         (2) 230 

1

1
sin( )

t

m

z

t

b
m




         (3) 231 

arctan( )
b

a
          (4) 232 

The variability of date of occurrence of m  flood events can be characterized by the 233 

sample mean resultant length r  (Burn, 1997): 234 

2 2      0 1r a b r          (5) 235 

r  is a measure of the spread of the data, ranging from 0 to 1. Values equaling to 0 236 

indicate that the dates of occurrence of flood events are uniformly distributed 237 

throughout the year, while values equaling to 1 indicate that all the flood events occur 238 

on the same date. 239 

  and r  are able to provide a preliminary and simplified summary of floods 240 

variability (Dhakal et al., 2015). In addition, we need more robust analyses to improve 241 

our understanding of the nature of model types for circular data using several 242 

well-designed statistical tests. Detailed statistical inference procedure can be found in 243 

Villarini (2016). Typically, there are three different model types of circular data, i.e., 244 
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uniform model, reflective symmetric model and asymmetric model (Pewsey, 2013). It 245 

should be noted that the reflective symmetry model does not have much physical 246 

significance in hydrology, since we are particularly concerned with whether there is 247 

existence of seasonality (non-uniform model) or not (uniform model) when using 248 

circular statistics. So, it does not make more sense to distinguish asymmetric model or 249 

reflective symmetric model from non-uniform model. However, when we use 250 

seasonality to identify the existence of distinct FGMs, we are particularly interested in 251 

the existence of asymmetric models (multimodal) to characterize distinct FGMs. 252 

From the perspective of hypothesis test, if there is enough statistical evidence to reject 253 

the null hypothesis of uniform and reflective symmetry, the circular model is 254 

identified as asymmetry, including multimodal models, i.e., finite mixtures of 255 

unimodal symmetric and asymmetric models (Villarini, 2016). Therefore, in cases 256 

where the asymmetric model is recognized, the AMFS can be regarded as results of 257 

distinct FGMs. 258 

3.2. Classification of distinct FGMs based on flood timescale 259 

3.2.1. Flood timescale as an indicator for distinct FGMs 260 

For catchments where multi-source FGMs mixed within the AMFS, a variety of 261 

process indicators (e.g., timing of the flood events, snowmelt, storm duration, rainfall 262 

depth, catchment characteristics) for classifying distinct FGMs have been suggested 263 

by Merz and Blöschl (2003). However, for practical applications, these process 264 
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indicators require meteorological or catchment-specific information which may not be 265 

available in many related studies, particular the data of snowmelt and antecedent soil 266 

moisture content. Following Bell and Kar (1969), Gaál et al. (2012) introduced the 267 

event-based measure termed flood timescale, denoted by FT (in hours), as a 268 

characteristic of the flood duration. FT is defined as the ratio of flood volume 269 

(denoted by V, in millimeter) and flood peak (denoted by 
pQ , in millimeter/hour), 270 

which is given by: 271 

p

V
FT

Q
          (6) 272 

The flood timescale was controlled by both meteorological conditions and 273 

basin-specific flood process (Gaál et al., 2012). In addition, Gaál et al. (2015) 274 

explored the causal factors controlling the relationship between flood peaks and 275 

volumes and argued that a weak dependence between flood peaks and volumes 276 

strongly indicates the existence of multiple FGMs. As schematically shown in Fig. 3, 277 

for cases in which the slim-type and fat-type hydrographs mixed with each other, the 278 

peak-volume relationship is not consistent and the FGM corresponds to the slope of 279 

peak-volume relationship. The slim-type hydrographs result in lower FT values 280 

(gentler slope), while the fat-type hydrographs result in larger ones (steeper slope). As 281 

discussed above, the flood timescale has sufficient explanatory power to distinguish 282 

multi-source flood events into groups. Fischer et al. (2016) first applied the flood 283 

timescale to specify FGMs by estimating the linear regression models between flood 284 

peaks and volumes. 285 
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It should be noted that drainage area would play a large part in the overall shape of 286 

the hydrograph in addition to the flood generation mechanism, especially for the 287 

rainfall-induced short-duration floods. It has been found that the difference in FT 288 

between long and short summer floods declines with the increase of drainage areas 289 

(Fischer et al., 2016). Fischer et al. (2016) also found that the timescales of long and 290 

short floods in different seasons (winter and summer) are relatively similar. It should 291 

be mentioned that we conduct the mixture modeling based on annual maxima rather 292 

than seasonal maxima, so the interaction of responses of drainage area and 293 

rainfall-generated/snowmelt-generated hydrographs through different seasons is not 294 

considered in the scope of this study. 295 

3.2.2. Calculation of flood timescale based on disaggregated daily discharge 296 

Following the mathematical definition of the flood timescale in Eq. (6), for an 297 

annual maximum flood event, we should determine the flood peak/maximum 298 

discharge and flood volume to estimate the flood timescale corresponding to this 299 

event. In this study, we have two kinds of discharge data, i.e., the annual peak flows 300 

(at most 30 years) and the daily average discharges (long sequence). Since the length 301 

of the observed peak flows are too short, the maximum value derived from the annual 302 

time series of daily average discharges is employed as the annual maximum discharge, 303 

and then it is used to calculate FT value. It is worth noting that if the annual maximum 304 

discharge is derived from the instantaneous discharge, then how sensitive is this FT 305 

ratio to the two types of annual maxima (e.g., annual maximum daily average 306 
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discharge and instantaneous discharge) should be further investigated, which may 307 

play a role in determining which regression line that flood event belongs to (slim or 308 

fat). 309 

The practical calculation of the flood timescale closely depends on the estimation 310 

of flood volume associated with a flood event. To estimate the flood volume, the start 311 

and the end of a flood event should be identified. However, this is very difficult if 312 

only the daily average discharges are available, especially for small catchments whose 313 

runoff process is highly dynamic (Fischer et al., 2016; Wagner, 2012). There are 314 

several stochastic disaggregation methods for disaggregating discharge from daily 315 

scale to hourly scale (Koutsoyiannis, 2003), but in this study the case is simplified, 316 

since we focus on the disaggregation of just single flood event, not long-term 317 

disaggregation involving the simulation of wet and dry days. Therefore, in this study 318 

we use the semi-empirical approach proposed by Wagner (2012) to disaggregate daily 319 

discharges around the peak. Since the work of Wagner (2012) was written in German, 320 

here we would like to provide a brief description of this disaggregation procedure in 321 

Appendix A. 322 

Having obtained the derived hourly hydrograph, in the next step, we should identify 323 

the beginning and end of a flood event to estimate its corresponding flood volume. In 324 

this study flood events are identified using a tool implemented in the R add-on 325 

package seriesdist (https://bitbucket.org/heisterm/seriesdist). This package enables the 326 

detection of flood peaks as well as their associated flood durations by specifying 327 
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beginning and end of the core flood event using a prescribed threshold (Vormoor et 328 

al., 2016, 2015). It should be noted that there exist other methods for specifying the 329 

beginning and end of a flood event (Longobardi et al., 2016). However, it must be 330 

mentioned that these automatic detection methods, including the seriesdist package 331 

used in this study, for the determination of beginning and end of a flood event contain 332 

an inherent level of subjectivity, and usually need manual inspection of their results. 333 

In this study, the baseflow component is also included in the estimation of 334 

event-specific flood volume to account for the role of soil moisture content in flood 335 

generation process as done by Fischer et al. (2016). 336 

For a catchment of interest which has a sample of m  annual maximum flood 337 

events, a sample of m  flood timescales can be estimated based on the observed 338 

annual maximum discharge and their calculated flood volumes following Eq. (6). 339 

3.2.3. Classification of distinct FGMs 340 

The flood events in Norway are primarily dominated by the snowmelt-induced 341 

floods and rainfall-induced floods. The snowmelt-induced long-duration flood events 342 

(fat-type hydrographs) can typically be characterized by larger timescales than 343 

rainfall-induced short-duration flood events (slim-type hydrographs). In this study, a 344 

statistical procedure was employed to distinguish flood events from distinct FGMs 345 

into two groups according to different dependence structures between flood volumes 346 

and peaks, as proposed by Fischer et al. (2016). This classification method is based on 347 

a threshold 0FT  determined by the coefficient of determination of linear regressions 348 
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through the origin (RTO). For a sample of m  flood timescales corresponding to m  349 

annual maximum flood events, denoted by  ( 1,..., )iFT i m , if 
0iFT FT , it is 350 

assigned into the group of short-duration floods, otherwise it belongs to the group of 351 

long-duration floods. So, it is very important to calculate the threshold of the flood 352 

timescale 0FT  accurately. Firstly, 
iFT  are sorted in ascending order, i.e., 353 

(1) ( )... mFT FT  , then we calculate the coefficient of determination 2 (1, )R k  for the 354 

sample of first k  order statistics and 2 ( 1, )R k m  for the rest of samples. 
0FT  is 355 

the data point that maximizes 2 2(1, ) ( 1, )R k R k m  . See Fischer et al. (2016) for 356 

detailed information about this statistical procedure. 357 

In order to check whether the estimated threshold 
0FT  is influenced by outliers far 358 

from the center of other data, we recalculated the coefficient of determination for 359 

RTO and determined 
0FT  after removing existing outliers, and found little difference 360 

as reported by Fischer et al. (2016). Of course, this issue can also be addressed by 361 

using other robust coefficient of determination for goodness-of-fit test of regression, 362 

such as the method introduced by Renaud and Victoria-Feser (2010). 363 

3.3. The two-component mixture distributions 364 

For cases where the existence of distinct FGMs is identified, it is appropriate and 365 

reasonable to turn to the mixture distribution modeling. In the hydrology community, 366 

the concept of finite mixture distributions was first introduced by Singh and Sinclair 367 

(1972) to address the issue of mixed flood populations in the flood frequency analysis. 368 

For a thorough discussion of this topic, see McLachlan and Peel (2000). Here, the 369 
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basic definitions and mathematical interpretations of the finite mixture distributions 370 

are briefly described as follows. For the observations of the AMFS ( 1,..., ) tz t m , 371 

the corresponding probability density function (PDF), denoted by ( | , )wtf z , is the 372 

weighted sum of a finite number of probability distributions, which is given by: 373 

1

1

 ( | , ) ( | )

 1

n

t i i t i

i

n

i

i

f z w f z

w










 






 w

     (7) 374 

where ( | )i t if z   is the ith density component of mixture distributions with the 375 

vector of parameters set 
i . 

iw  is a weighting coefficient or mixing proportion 376 

(0 1)iw   representing the probability of tz  belonging to the ith density 377 

component. 
1{ ,..., }n    and 

1( ,..., )w nw w . n  is the number of mixture 378 

components. 379 

In practical applications, Alila and Mtiraoui (2002) emphasizes the number of 380 

mixture components should be determined and kept to a minimum, for the reason that 381 

the increase in the number of mixture components requires larger number of 382 

observations and tends to make the parameter estimation method less robust and less 383 

accurate. In cases where a priori subdivision of the AMFS is not feasible, typically 384 

researchers assume that the AMFS are generated by two distinct FGMs and resort to 385 

the traditional two-component mixture distributions (TCMD-T), which are given by: 386 

1 1 2 2( | , ) ( | ) (1 ) ( | )  TCMD T t t tf z w wf z w f z         (8) 387 

where w  and 1 w  are the probabilities of tz  belonging to an unknown flood 388 

population 1 and population 2, respectively. The vector of parameters set 389 
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1 2{ ,  }    represents the distribution parameters related to each component 390 

distribution. Correspondingly, the cumulative density function (CDF) of TCMD-T is 391 

given by: 392 

1 1 2 2( | , ) ( | ) (1 ) ( | )  TCMD T t t tF z w wF z w F z       (9) 393 

In practical applications, all the parameters of TCMD-T, namely 
1 2,  ,  ,  1w w  , 394 

must be jointly estimated because no priori separation is done. 395 

In this study, since we have classified the overall AMFS into two subsamples based 396 

on the flood timescale, it is reasonable to employ TCMD-F, whose PDF is given by: 397 

( | , ) ( | ) ( | )

( )

( )

 

  TCMD F t L L t L S S t S

L L L S

S S L S

f z w w f z w f z

w m m m

w m m m

  


 
  

    (10) 398 

where ( )Lf   and ( )Sf   refer to the PDFs for the long-duration floods component 399 

(L-component) and short-duration floods component (S-component), respectively. 400 

Lw  and 
Sw  denote the probabilities of tz  belonging to L-component and 401 

S-component, respectively. The vector of parameters set { ,  }L S    represents the 402 

distribution parameters corresponding to ( )Lf   and ( )Sf  , respectively. 
Lm  is the 403 

sample size of the L-component and 
Sm  is the length of the S-component. 404 

Correspondingly, the CDF of TCMD-F is given by: 405 

( | , ) ( | ) ( | )  TCMD F t L L t L S S t SF z w w F z w F z       (11) 406 

For the reason that the overall AMFS are classified into the L-component and 407 

S-component, the two parameter sets, i.e.,  L
 and  S

 can be separately estimated 408 

from the AMFS of each flood component. Besides, the weighting coefficients 
Lw  409 
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and 
Sw  can be easily estimated by the proportion of each subsample. 410 

It should be mentioned that TCMDs, including both TCMD-T and TCMD-F, are 411 

flexible tools which require neither the two component distributions belong to the 412 

same distribution family nor they have the same number of statistical parameters. The 413 

PDF of TCMD exists only if the component distributions are continuous (Egüen et al., 414 

2016; Fischer et al., 2016; Shin et al., 2016; Ouarda et al., 2015). Thus, in the 415 

implementation of TCMDs, three two-parameter distributions, i.e., two-parameter 416 

lognormal distribution (LN), Weibull distribution (W), gamma distribution (G), and 417 

one three-parameter distribution, i.e., generalized extreme value distribution (GEV), 418 

are served as the candidate component distributions (Table 3) on the right-hand side 419 

of Eqs. (6)-(9). Thus, a total of 10 types of mixture distributions are considered in this 420 

study, including 4 homogeneous mixture distributions (e.g., a mixture of LN and LN) 421 

and 6 heterogeneous mixture distributions (e.g., a mixture of GEV and LN) (Table 4). 422 

3.4. Parameter estimation of TCMD 423 

Parameter estimation is an important procedure in the standard statistical inference. 424 

In this study, the maximum likelihood estimation method (MLE) was applied for 425 

parameter estimation of single-type probability distributions. However, if we go 426 

further and consider parameter estimation of TCMD-T, the MLE and other 427 

conventional parameter estimation methods tend to become less robust not only 428 

because of the doubled statistical parameters of TCMD-T but also because of the 429 

complexity of the estimation of weighting coefficients. To address this issue, in this 430 
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study, we use the meta-heuristic maximum likelihood estimation (MHML), which 431 

incorporates simulated annealing algorithm and MLE, to estimate parameters of 432 

TCMD-T (Yan et al. 2017a; Shin et al., 2015, 2014). MHML has advantages in 433 

estimating the weighting coefficients and finding global maximum with small samples. 434 

In addition, it can also be flexibly applied to various kinds of mixture distributions 435 

with different component distributions. 436 

With regard to the parameter estimation of TCMD-F, we take the advantage of a 437 

prior classification of the observed AMFS into L-component, denoted by 438 

( ) ( 1,..., ) L Lz i i m , and S-component, denoted by ( ) ( 1,..., )S Sz i i m . Unlike the case 439 

of parameter estimation of TCMD-T, the weighting coefficients 
Lw  and 

Sw  were 440 

estimated by the proportions of L-component and S-component in the overall AMFS, 441 

respectively, without optimization (Eq. (10)), and the two parameter sets  and L S   442 

in Eq. (10) can be separately estimated from ( )Lz i  and ( )Sz i , respectively. Therefore, 443 

the issue of parameter estimation of mixture distributions becomes a simpler one 444 

similar to that of a single-type distribution. Just as in the case of single-type 445 

distribution, the MLE method was used to estimate the statistical parameters of each 446 

component distribution of TCMD-F. 447 

3.5. Goodness-of-fit tests and model selection criteria 448 

In this study, different types of extreme value distributions, including both the 449 

conventional single-type distributions and TCMD models with different component 450 

distributions were built to fit the AMFS. Therefore, to avoid model overfitting and 451 
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quantitatively evaluate the goodness-of-fit of these models, the Akaike Information 452 

Criterion (AIC) (Akaike, 1974), the adjusted coefficient of determination (
2

aR ) (Shin 453 

et al., 2016), and the bootstrapped Kolmogorov-Smirnov test statistic ( ksD ) (Sekhon, 454 

2011) were employed. 455 

3.5.1. Akaike Information Criterion 456 

The Akaike Information Criterion (AIC) is used to measure the performance of a 457 

model with the level of complexity, whose expression is given by: 458 

maxAIC 2 2l           (12) 459 

where 
maxl  is the maximized value of the log-likelihood function for each candidate 460 

model and   is the total number of independently adjusted parameters of the model. 461 

The penalty term 2  is introduced to consider model parsimony of the distribution 462 

models. The lower the AIC score is, the better is the performance of the model. 463 

3.5.2. Adjusted coefficient of determination 464 

The conventional expression of the coefficient of determination 
2

0R  is given by: 465 

2

2 1
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t m

t tt

t m
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F z F z
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




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




      (13) 466 

where ( )tF z  and ˆ ( )tF z  are the empirical and theoretical cumulative probabilities 467 

of the tth observation tz , respectively. F  is the average empirical cumulative 468 

probability of observations. To take model parsimony into account, Shin et al. (2016) 469 

proposed the adjusted coefficient of determination 
2

aR  by adding a penalty term for 470 

the number of parameters, which is given by: 471 
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
       (14) 472 

where m  is the number of observations and   is the number of independently 473 

adjusted parameters of the model. The closer the 
2

aR  is to 1, the better is the 474 

performance of the model. 475 

3.5.3. Bootstrapped Kolmogorov-Smirnov test statistic 476 

The conventional one-sample Kolmogorov-Smirnov test (K-S) is used to examine 477 

whether the sample is drawn from a specified distribution, and the K-S statistic is 478 

defined as: 479 

1

ˆmax ( ) ( )ks t t
t m

D F z F z
 

         (15) 480 

where ( )tF z  and ˆ ( )tF z  are the empirical and theoretical cumulative probabilities 481 

of the tth observation tz , respectively. Note that researchers should always keep in 482 

mind the underlying distribution must be fully specified when using K-S test. That 483 

means, if location, scale, and shape parameters of the distribution are directly 484 

estimated from the observation data, the critical region of the K-S test becomes 485 

invalid, thus leading to accept the null hypothesis that the sample is generated from 486 

the prescribed distribution (Croarkin et al., 2006). To solve this problem, in this study 487 

the K-S test statistics are determined using bootstrap simulation method proposed by 488 

Sekhon (2011). The lower the ksD  value is, the better is the performance of the 489 

model. 490 

3.5.4. Multi-criterion model selection measure 491 
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To comprehensively evaluate the overall performance of the employed model with 492 

respect to different goodness-of-fit measures and determine the optimal model, a 493 

multi-criterion measure is developed using the technique for order preference by 494 

similarity to ideal solution (TOPSIS) (Hwang and Yoon, 1981). TOPSIS is a widely 495 

used multi-criterion decision analysis approach which allows trade-off among 496 

different criteria, and is able to provide a ranking order for all alternative models. In 497 

this study, 
2

aR  is a benefit criterion which means larger values are more appreciated, 498 

while AIC and ksD  are cost criteria which are more concerned about lower values. 499 

Note that each criterion is treated as equal importance when calculating the weighted 500 

normalized decision matrix. This procedure can be implemented using R package, i.e., 501 

topsis (Yazdi, 2013). See Hwang and Yoon (1981) for detailed description of 502 

TOPSIS. 503 

4. Results and discussions 504 

4.1. Seasonality analysis of AMFS in Norway 505 

Robust analyses of seasonality were conducted following the flowchart in Fig. 2. 506 

The graphical representations of circular data are thought to be very helpful in 507 

visualization of clustering or seasonality. Fig. 4 summarized the preliminary analyses 508 

results of the floods seasonality via circular plots indicating the timing of AMFS. The 509 

seasonality of AMFS in Norway exhibited a spatial variability. For all stations in 510 

northern Norway or several stations in high-altitude area, flood events were 511 
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concentrated on the late spring or early summer (May and June) indicating that the 512 

flood regime was dominated by snowmelt-induced floods, while for most stations in 513 

western coastal Norway, flood events were usually concentrated on the summer 514 

and/or autumn seasons indicating that the flood regime was dominated by 515 

rainfall-induced floods. In the rest parts of Norway, AMFS were not concentrated on a 516 

particular season, especially in inland regions of southern and eastern Norway where 517 

AMFS can occur in both spring/summer and autumn/winter, indicating the existence 518 

of mixed FGMs. 519 

The sample mean direction   and mean resultant length r  can give information 520 

about the time in which AMFS tend to occur and how strong the seasonality is, 521 

respectively (Table 2). As shown in Figs. 5 (a) and (b), the AMFS of several stations 522 

located in western coastal regions, high-altitude or northernmost regions exhibited 523 

seasonality and clustered in May or June, whereas the other stations showed strong 524 

variability of seasonality with 0.6r  . In the latter cases there were no clusters in a 525 

particular season and mixed FGMs could exist. 526 

According to the results of statistical inferences of AMFS in Norway (Table 2), the 527 

null hypothesis of uniformity can be rejected at 0.05 significance level except for 528 

Kråkfoss and Fustvatn stations with Rayleigh test. Especially for Fustvatn, the AMFS 529 

showed strong seasonality variability with the floods nearly evenly distributed 530 

throughout the year (Fig. 4). Then, the test for asymmetric models was conducted, and 531 

the results indicated that the null hypothesis of reflective symmetry was rejected at 532 
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0.05 significance level for half stations (Table 2). Besides, the majority of the 533 

asymmetric models were located in high-altitude regions where floods can be 534 

influenced by snow-melt during spring/summer seasons (Fig. 5c). The identification 535 

of asymmetry model can be used as indicator of mixed FGMs (Yan et al., 2017a; 536 

Villarini, 2016). It should be noted that sometimes AMFS following reflective 537 

symmetric model can occur in contrasting seasons and showing multimodal pattern 538 

(e.g., 20.2, 133.7 and 152.4 stations). Then, we selected 12 stations with seasonality 539 

(in bold in Table 2), containing 6 stations showing asymmetric type and 6 stations 540 

showing reflective symmetric type (multimodal), for subsequent classification of 541 

FGMs and mixture modeling. 542 

4.2. Classification of FGMs 543 

4.2.1. Disaggregation of daily discharge to hourly resolution 544 

Fig. 6 provided a schematic diagram and illustrations of the disaggregation results 545 

using this semi-empirical approach. The results showed that the derived hourly 546 

hydrograph can reproduce the observed hourly hydrograph and preserve the daily 547 

volumes with satisfactory results. Besides, it is also obvious that the derived hourly 548 

discharge can improve the accuracy of volume estimation compared with using daily 549 

discharges. It is worth noting that this disaggregation approach does not guarantee the 550 

reproduction of flood peaks, and Fischer et al. (2016) recommended the use of 551 

observed peaks. However, for most stations in Norway we could only obtain observed 552 
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peaks with a length of at most 30 years, which is insufficient. Therefore in this study, 553 

we use the use the observed annual maximum daily discharge for the calculation of 554 

FT . 555 

4.2.2. Classification 556 

Based on the classification technique proposed by Fischer et al. (2016), a threshold 557 

0FT  can be determined taking account of the slopes of regression equations between 558 

flood volumes and flood peaks. Therefore, the AMFS of the selected 12 stations were 559 

grouped into two different FGMs, i.e., long-duration floods and short-duration floods 560 

(Fig. 7). The coefficient of determination of the regression lines for short-duration 561 

floods was larger than 0.9 for almost all stations, while for long-duration floods, there 562 

were 4 stations whose coefficient of determination were smaller than 0.9, indicating 563 

that there might exist more types of FGMs and more groups were required. 564 

Nevertheless, the increase of the number of groups would reduce the sample size 565 

within each group and lead to unreliable results in the subsequent statistical inference 566 

procedure. Thus, AMFS were classified into only two groups in this study. 567 

To further reveal the formation mechanisms associated with long-duration floods 568 

and short-duration floods, we also analyzed the dates of occurrence of the two types 569 

of floods using circular statistics in the Burn diagram (Burn, 1997). As shown in Fig. 570 

8, for 9/12 of the stations, the proportion of long-duration flood events concentrated in 571 

May and June is larger than 50%, to some extent, probably indicating the role of 572 

snowmelt in the early flood events in spring/summer. On the contrary, the 573 
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short-duration floods were more dispersed within a year. More specifically, consistent 574 

with the spatial and temporal pattern of rainfall in Norway, short-duration floods of 575 

coastal areas occurred throughout the year, but those of middle and north regions did 576 

not occur in winter season, probably indicating the role of rainfall in generating 577 

short-duration floods. 578 

4.3. Flood frequency analysis using mixture distributions 579 

To model the heterogeneous flood series of the selected stations, both TCMD-T and 580 

TCMD-F were applied on the basis of Eqs. (8) and (10). For each station, a total of 10 581 

kinds of TCMD-T mixture models and 16 kinds of TCMD-F mixture models were 582 

built considering different mixture types of component distributions. 583 

As shown in Fig. 9, for all stations the lowest AIC values were obtained from 584 

TCMD mixture models except for Krinsvatn station (ID: 133.7). In particular, the 585 

GEV-GEV mixture distributions gave the best performance for almost 2/3 of stations. 586 

Besides, compared with TCMD-F, TCMD-T led to better performance based on AIC 587 

values for all stations except for Rygenetotal station (ID: 19.127). Fig. 10 presented 588 

the boxplots of ksD  statistics, p-values of K-S test and 
2

aR  statistics for all the 589 

employed single-type and mixture distributions, respectively. Overall, all TCMD-T 590 

models performed better than the single-type distributions with higher 
2

aR , higher 591 

p-values and lower ksD  values, and meanwhile nearly half of TCMD-F models 592 

yielded comparable or higher 
2

aR  , p-values and lower ksD  values than the 593 

single-type distribution. In addition, LN-G, GEV-LN, GEV-G, and GEV-GEV mixture 594 
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models had good fitting qualities for both TCMD-T and TCMD-F according to 
2

aR , 595 

ksD  and p-values measures in this analysis. 596 

Given the above analysis, we have come to the conclusion that both TCMD-T and 597 

TCMD-F mixture models perform better than the single-type distributions. However, 598 

the performance of TCMD-F is not as good as that of TCMD-T. To further explore its 599 

possible causes, we also analyzed the differences between the estimated distribution 600 

parameters of TCMD-F and TCMD-T. Overall, the distribution parameters of 601 

TCMD-F tended to be larger than those of TCMD-T (Fig. 11). In particular, the 602 

largest over-estimations occurred in estimating the weighting coefficient w  of 603 

mixture distributions of LN and G for 12.228 station, while the largest 604 

under-estimations occurred in estimating the shape parameter   of mixture 605 

distributions of GEV and GEV for 72.5 station. Furthermore, the ranges of estimated 606 

distribution parameters of TCMD-T were generally lager than those of TCMD-F, 607 

particularly for the weighting coefficient w  which was fixed in TCMD-F (Fig. 12). 608 

Priori classification of FGMs for TCMD-F is the reason for the difference between the 609 

estimated distribution parameters of TCMD-F and TCMD-T. Therefore the imperfect 610 

performance of TCMD-F is mainly due to the uncertainties, which are resulted from 611 

the classification of FGMs and the parameter estimation procedure with reduced 612 

sample size. 613 

Fig. 13 presented the empirical frequencies and theoretical probability density 614 

function of the optimal single-type distribution, the top two ranked TCMD-T models, 615 
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and the top two ranked TCMD-F models based on TOPSIS for each station. There 616 

existed three different types of distributional characteristics of observed AMFS, 617 

including the skewed unimodal (e.g., stations 41.1 and 133.7), the kurtotic unimodal 618 

(e.g., station 72.5), and the asymmetric bimodal (e.g., stations 12.228, 16.23 and 619 

19.127). See McLachlan and Peel (2000) for detailed description of different types of 620 

distributional characteristics. Overall, TCMDs can describe different types of 621 

distributional characteristics of AMFS, especially the kurtotic unimodal type and the 622 

asymmetric bimodal type. Particularly, through an appropriate selection of its 623 

component distributions, TCMD-T is able to better model complex types of skewness 624 

and tail behavior, which seems difficult to be represented by single-type distribution. 625 

4.4. Comparison of design results 626 

To clearly demonstrate the differences in hydrologic design values between 627 

TCMD-T and TCMD-F, the applications and comparisons of these two models for 628 

estimating design floods and the associated CIs were demonstrated by using the 629 

AMFS of Kirkevollbru station (1906-2015) (ID: 16.23). Kirkevollbru station was 630 

selected as illustration for the reasons that it has a long discharge record of 108 years 631 

(discarding 2 abnormal years), and the sample sizes of the two classified flood groups 632 

were both larger than 45, i.e., 63 short-duration flood events and 45 long-duration 633 

flood events. 634 

Fig. 14a summarized the design floods for a range of return periods [2,200]T   635 

calculated by the optimal single-type (G), TCMD-T (LN-LN) and TCMD-F (LN-W) 636 
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models together with the return levels for the short-duration floods and long-duration 637 

floods calculated by LN and W, respectively. LN-W yielded similar design flood with 638 

G for [2,50]T  , while LN-LN yielded smaller design floods. Besides, the estimated 639 

return levels of the short-duration floods were the largest and the estimated return 640 

levels of the long-duration floods were the smallest for [2,200]T  , which was the 641 

result of the larger flood magnitudes of the short-duration floods (Fig. 14b). 642 

Quantifying uncertainty of design floods is an important procedure in conventional 643 

statistical inference techniques for hydrologic designs (Obeysekera and Salas, 2014; 644 

Coles, 2001). The delta method is a classical method to generate CIs. However, it 645 

relies on the derivation of the covariance matrix of the estimated statistical parameters, 646 

which would become further complicate and cumbersome for TCMD due to the 647 

increase of model parameters. Because of the difficulties in driving analytical 648 

solutions, CIs for design quantiles yielded by TCMD can be determined using the 649 

parametric bootstrap method (Efron, 1979) in this study (see Appendix B).  650 

Fig. 15 illustrated the return level diagram with 95% bootstrapped CIs for the 651 

Kirkevollbru station. The results indicated that for both LN-LN mixture models, the 652 

estimated deign floods of TCMD-F were larger than those of TCMD-T mainly 653 

because of its larger weighting coefficient w  and scale parameter   of the first 654 

component distribution (Table 5), while for LN-W mixture models, the estimated 655 

deign floods of TCMD-F were larger than those of TCMD-T mainly because of its 656 

lower w , higher   and lower   of the second component distribution. As for 657 
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uncertainty, the CIs of TCMD-F were always narrower than those of TCMD-T for 658 

[2,200]T  , with the largest reduction of 40%. The improved predictive ability of 659 

TCMD-F model is a result of its explicit recognition of distinct generation 660 

mechanisms of floods, thereby being able to identify the weighting coefficient and 661 

FGM of each component distribution without optimization. 662 

4.5. Discussions 663 

The above results confirmed the physical content of the motivation of mixture 664 

modeling and highlighted the advantages of TCMD-F models in reducing 665 

uncertainties of design floods during the statistical inference procedure. However, 666 

there are still three main comments should be made as follows: 667 

Firstly, it should be emphasized that despite different flood generation mechanisms 668 

that can occur in flood series, the population of all flood events can more-or-less be 669 

described by a single-type distribution. The classical single distribution based 670 

frequency analysis method is convincing and cost-effective planning strategies, which 671 

is still the mainstream method in practical engineering. It’s when the FGMs are 672 

markedly different from one another that we need to reevaluate our model 673 

assumptions and explore heterogeneous, mixture distribution approaches. Therefore, 674 

to strengthen the physical understanding of the mixture nature of floods, the existence 675 

of mixed populations must be identified before using mixture distributions. 676 

Conducting a statistical exercise without giving much attention to the physical process 677 

of floods is not recommended. 678 
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Secondly, it is worth noting that the reliability of statistical inference largely 679 

depends on the sample size of flood record. However, in this study when the overall 680 

sample of AMFS is divided into two subsamples based on flood timescale, the sample 681 

size of each subsample will inevitably be smaller. Although we select Kirkevollbru 682 

station which has a long flood record of 108 years as illustration in estimating flood 683 

quantiles, uncertainty still exists. Moreover, the uncertainties would be larger if we 684 

turn to nonstationary modeling, since nonstationary models are more complex and 685 

possess more parameters to describe the trends of statistical parameters. Thus the 686 

effects of nonstationarity is not considered in this study. In future, we plan to analyze 687 

seasonal maximum flood series based on the multiplicative model, and extend it to 688 

conduct nonstationary modeling. It has less model parameters (without weighting 689 

coefficients) and does not reduce the sample size. 690 

TCMD-T model, undoubtedly, provides accurate descriptions of AMFS with 691 

mixture distributional characteristics based on the goodness-of-fit measures. However, 692 

it fails to properly capture the underlying generation mechanisms and statistical 693 

properties of the flood populations, compared with TCMD-F model. As discussed by 694 

Bardsley (2016), TCMD-T pursues higher fitting qualities or some extra flexibility in 695 

modeling mixed flood populations, however, at the expense of losing hydrological 696 

mechanism. For instance, TCMD-T model is able to achieve better fit to the smallest 697 

annual maximum floods by assigning a very small weighting coefficient to the 698 

component distribution with smaller mean value, which may generate negative 699 
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discharges in some cases. Moreover, if so, it is inappropriate or even meaningless to 700 

utilize the mixture distributions since there actually exists only one dominant flood 701 

population. TCMD-F model, on the contrary, takes the advantage of a priori 702 

classification of flood types and is able to more effectively capture the underlying 703 

generation mechanisms and statistical properties of each flood population, and 704 

accordingly determine the weighting coefficient and FGM of each component 705 

distribution. 706 

5. Conclusions 707 

The main objectives of this study are to address the issue of mixed populations in 708 

the flood frequency analysis and further investigate the role of flood type 709 

classification on reducing uncertainty of design floods in the two-component mixture 710 

distributions modeling. For this purpose, ten types of mixture distributions are 711 

constructed to model the AMFS in Norway, which are classified into rainfall-induced 712 

short-duration floods and snowmelt-induced long-duration floods using flood 713 

timescale as indicator. Both the performance and design floods with 95% CIs of 714 

TCMD-F are compared with those of TCMD-T. The main conclusions of this study 715 

are drawn as follows: 716 

(1) The seasonality of AMFS in Norway exhibits spatial variability. Mixed flood 717 

populations or distinct FGMs are identified particularly for stations located in 718 

southern and eastern inland regions of Norway based on the robust seasonality 719 

analysis of AMFS. However, there are also several stations in western coastal，720 
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northernmost or high-altitude regions that exhibit strong clustering of seasonality, 721 

indicating that the flood regime is dominated by rainfall-induced floods or 722 

snowmelt-induced floods. 723 

(2) Flood timescale is an effective tool to characterize and distinguish distinct FGMs. 724 

The overall AMFS of the 12 selected stations in Norway are well classified into 725 

snowmelt-induced long-duration floods and rainfall-induced short-duration floods 726 

using the classification technique based on flood timescale. Overall, The 727 

coefficient of determination of the regression lines for short-duration floods is 728 

larger than 0.9, whereas there are 4 stations whose coefficient of determination 729 

for long-duration floods are smaller than 0.9, indicating that more FGMs may 730 

exist in long-duration floods. 731 

(3) Mixture distributions are effective tools to capture and explain different kinds of 732 

skewness and tail behavior. In general, both TCMD-T and TCMD-F mixture 733 

models perform better than the single-type distributions. However, the 734 

performance of TCMD-F is not as good as that of TCMD-T based on AIC, 
2

aR , 735 

ksD  and p-values, which is supposed to result from the uncertainties of 736 

classification of FGMs and the parameter estimation procedure with reduced 737 

sample size. Through an appropriate selection of its component distributions, 738 

TCMD-T is able to better model complex types of skewness and tail behavior. In 739 

addition, three kinds of heterogeneous mixture distributions (LN-G, GEV-LN and 740 

GEV-G), and one kind of homogeneous mixture distributions (GEV-GEV) 741 
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perform well for both TCMD-T and TCMD-F. 742 

(4) The estimated return levels of the short-duration floods are the largest and those 743 

of the long-duration floods are the smallest due to the larger flood magnitudes of 744 

the short-duration floods, whilst TCMDs can obtain return levels between them. 745 

Moreover, TCMD-F model is able to reduce the uncertainty in the estimation of 746 

design floods by up to 40% with respect to TCMD-T for high return periods. The 747 

improved predictive ability of TCMD-F model is attributed to its explicit 748 

recognition of distinct generation mechanisms of floods, thereby being able to 749 

identify the weighting coefficient and FGM of each component distribution 750 

without optimization. 751 
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Appendix A. Disaggregation of daily discharge into hourly discharge 761 

Fig. 6a presents a schematic diagram of this disaggregation procedure. In this 762 

approach, the hourly discharge ( )
ihQ t  at time step 

iht  (hourly time step within the 763 

current daily time step 
it ) is represented using a third-order polynomial, which is 764 

given by: 765 

3 2

3 2 1 0
( )

i i i i i i i ih h hhQ t a t a t ta a          (A1) 766 

where  ( 0,...,3)
ij

a j   are the four parameters of the third-order polynomial at the 767 

current daily time step 
it . To estimate the four parameters, four conditions should be 768 

satisfied for each time step: the initial value (
1it 
), the volume balance of the current 769 

time step (
it ), and the volume balance of two subsequent time steps (

1it 
 and 

2it 
). 770 

The starting value 
0Q  can be described by: 771 

3 2

3 2 1 00 1 1 1i i i ii i iQ a t a t ta a            (A2) 772 

For the current time step 
it , the daily total volume can be represented by the 773 

definite integral of Eq. (A1), which is given by: 774 
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
 (A3) 775 

where 
1/2it 

 and 
1/2it 

 are the beginning and end of current time step 
it , respectively. 776 

t  is the length of the current time step. Similarly the total volume of other two time 777 

steps can be obtained. The four conditions can be characterized by a linear equation 778 

system with a general form of K a c  , as follows: 779 
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This system of equations is established for each original daily time step and can be 781 

solved by 1a K c  . 782 

783 
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Appendix B. Estimation of confidence intervals for design quantiles using 784 

parametric bootstrap method 785 

The bootstrap method proposed by Efron (1979) is a feasible and convenient 786 

technique for generating CIs, which depends on computer simulations and resampling 787 

techniques to obtain CIs of statistical parameters and design quantiles, and has been 788 

recommended by many researchers for uncertainty analysis of hydrometeorological 789 

extremes (Rulfová et al., 2016; Serinaldi and Kilsby, 2015; Obeysekera and Salas, 790 

2014; Serinaldi, 2009; Kyselý, 2008). The bootstrap method strictly depends on the 791 

observed data without any hypothesis and can be easily implemented despite the 792 

model complexity (Yan et al., 2017b; Serinaldi and Kilsby, 2015). Generally speaking, 793 

there exist two versions of bootstrap, namely the nonparametric bootstrap based on 794 

resampling with replacement from the original sample and the parametric bootstrap 795 

built on randomly generated samples from a specified probability distribution fitted to 796 

the original sample (Monte Carlo simulations) (Kottegoda and Rosso, 2008; Davison 797 

and Hinkley, 1997). Kyselý (2008) provided a comprehensive comparison concerning 798 

the performance of both parametric and nonparametric bootstrap methods in 799 

estimating uncertainties for extreme value distributions, and recommended the use of 800 

parametric bootstrap particularly in cases with small to moderate sample sizes. Based 801 

on the previous discussion, we employ the parametric bootstrap to generate CIs for 802 

TCMD. To generate the CIs for design quantile qz  corresponding to return period T  803 

of TCMD-T, based on Serinaldi (2009) and Kottegoda and Rosso (2008), the detailed 804 
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and general procedure of the parametric bootstrap method for TCMD-T is 805 

summarized as follows: 806 

(1) Fit a TCMD-T model to the observed overall samples  ,  1,...,tz t m  and 807 

calculate the design quantile qz  corresponding to return period T  via 808 

1 2

1
(1 1/ | , , )

TCMD Tq F T wz 


    , based on Eq. (9). 809 

(2) Generate size-m bootstrap samples  ,  1,...,b

tz t m  based on the fitted model at 810 

step (1).  ( 1,..., )iu i m  are random realizations of a standard uniform 811 

distribution. If iu w , randomly generate a pseudo sample 
b

tz  by the inverse 812 

CDF of the unknown population 1, i.e., 
1

1 1
( | )F


  with statistical parameters 1 , 813 

else if iu w , randomly generate a sample by the inverse CDF of the unknown 814 

population 2, i.e., 
1

2 2
( | )F


  with statistical parameters 2 . 815 

(3) Refit the bootstrapped data 
b

tz  using the same TCMD-T model established at 816 

step (1). Estimate new model parameters set 1
b

, 2
b

 and bw , and compute the 817 

design quantile qz  for return period T  via 1

1 2
(1 1/ | , , )

b b b

TCMD Tq F T wz 


    . 818 

(4) Repeat steps (2) to (3) for a large number of times (e.g., 10000 in this study). 819 

(5) Determine the empirical frequency distribution of qz  and calculate the 820 

corresponding confidence intervals as the ( / 2)  and (1 / 2)  quantiles of 821 

the empirical frequency distribution of qz . 822 

As for generating the CIs for design quantile qz  corresponding to return period T  823 

of TCMD-F, we still take the advantage of a priori classification of the overall AMFS 824 

into L-component and S-component. The weighting coefficients Lw  and Sw  are 825 
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estimated directly from the observations and are assumed to be fixed during the 826 

process of parametric bootstrap. Consequently, to preserve the mixture probabilities of 827 

each component distribution, the above parametric bootstrap method should be 828 

modified to allow component distributions independently and simultaneously generate 829 

paired bootstrap samples { (1),..., ( ), (1),..., ( )}b b b b

L L L S S Sz z m z z m , in which the first Lm  830 

replicates are generated by the inverse CDF of the L-component 
1
( | )

L L
F


 , and the 831 

last Sm  replicates are generated by the inverse CDF of the S-component 
1
( | )

S S
F


 . 832 

The above discussion is also known as the two-sample problem in the area of 833 

bootstrap (Zieffler et al., 2011; Mudelsee and Alkio, 2007; Davison and Hinkley, 834 

1997). Efron and Tibshirani (1986) considered a case where the data sets consist of 835 

two independent random samples and modified the Monte Carlo simulations. 836 

Following Efron and Tibshirani (1986), the general procedure of the parametric 837 

bootstrap method for TCMD-F is summarized as follows: 838 

(1) Fit a TCMD-F model to the classified samples { (1),..., ( ), (1),..., ( )}L L L S S Sz z m z z m , 839 

and calculate the design quantile qz  corresponding to return period T  via 840 

1
(1 1/ | , , )

TCMD F L Sq F T wz 


   , based on Eq. (11). 841 

(2) Generate size-m bootstrap samples { (1),..., ( ), (1),..., ( )}b b b b

L L L S S Sz z m z z m  842 

( )L Sm m m   independently and simultaneously by 
1
( | )

L L
F


  and 

1
( | )

S S
F


 . 843 

(3) Refit the bootstrapped data { (1),..., ( ), (1),..., ( )}b b b b

L L L S S Sz z m z z m  using the same 844 

TCMD-F model established at step (1). Estimate new statistical parameters set 845 

 b

L  and 
b

S  separately and compute the design quantile qz  corresponding to 846 
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return period T  via 1
(1 1/ | , , )

b b

TCMD F L Sq F T wz 


   . 847 

(4) Repeat steps (2) to (3) for a large number of times (e.g., 10000 in this study). 848 

(5) Determine the empirical frequency distribution of qz  and calculate the 849 

corresponding confidence intervals as the ( / 2)  and (1 / 2)  quantiles of 850 

the empirical frequency distribution of qz . 851 

852 
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Table 1. Data Information of the 34 watersheds in Norway 

Station 

ID 
Name 

Area 

(km
2
) 

Longitude Latitude Data period Q (mm/yr) 
rec

P (mm/yr) empt (℃) 

2.268 Akslen 789.3 8.447 61.800  1934-2015 992.7  1195.6  -3.18  

2.279 Kråkfoss 435.2 11.080 60.133  1966-2015 613.0  1030.7  2.69  

2.291 Tora 262.1 7.866 62.008  1967-2015 1511.1  1542.5  -2.30  

2.32 Atnasjø 463.3 10.222 61.852  1917-2015 705.4  859.0  -2.10  

2.614 Rosten 1833 9.405 61.859  1917-2015 558.6  884.3  -1.31  

12.228 Kistefoss 3703 10.362 60.222  1917-2015 502.3  1035.5  1.11  

12.7 Etna 570.3 9.626 60.952  1920-2015 541.6  1177.0  -0.58  

15.21 Jondalselv 126 9.555 59.707  1920-2015 750.5  1212.8  2.26  

16.23 Kirkevollbru 3845.4 9.038 59.690  1906-2015 755.2  1475.4  -0.66  

19.127 Rygenetotal 3946.4 8.670 58.411  1900-2015 930.8  1512.7  3.43  

20.2 Austenå 276.4 8.101 58.840  1925-2015 1224.8  1872.1  2.42  

22.4 Kjæøemo 1757.7 7.528 58.120  1897-2015 1490.2  2266.3  3.62  

24.9 Tingvatn 272.2 7.223 58.401  1923-2015 1755.2  2628.5  3.56  

27.24 Helleland 184.7 6.149 58.534  1897-2015 2338.0  3430.2  4.69  

28.7 Haugland 139.4 5.648 58.693  1919-2015 1520.7  2082.9  6.31  

41.1 Stordalsvatn 130.7 6.010 59.683  1913-2015 3093.8  4029.7  3.93  

50.1 Hølen 232.7 6.746 60.357  1923-2015 1596.8  2671.5  0.33  

72.5 Brekkebru 268.2 7.114 60.850  1944-2014 1940.4  2383.8  -0.36  

75.23 Krokenelv 45.9 7.398 61.347  1965-2015 1537.7  1976.3  0.70  

76.5 Nigardsbrevatn 65.3 7.242 61.667  1963-2015 3082.0  3221.6  -1.34  

88.4 Lovatn 234.9 6.890 61.859  1900-2015 2148.7  2872.3  0.36  

122.11 Eggafoss 655.2 11.184 62.890  1941-2015 833.5  1160.1  -0.03  

122.17 Hugdalbru 545.9 10.246 62.994  1973-2015 750.2  1136.6  1.45  

122.9 Gaulfoss 3085.9 10.229 63.108  1958-2015 849.0  1182.3  0.78  

123.31 Kjeldstad 143 11.131 63.266  1930-2015 1608.0  1441.7  2.21  

133.7 Krinsvatn 206.6 10.232 63.804  1916-2015 1903.3  2337.0  3.80  

152.4 Fustvatn 525.7 13.308 65.905  1909-2015 1933.0  2365.0  1.60  

163.5 Junkerdalselv 422 15.411 66.815  1938-2015 1079.6  1294.2  -1.44  

191.2 Øvrevatn 526 17.941 68.858  1914-2015 1294.4  1642.6  -0.70  

223.1 Stabburselv 1067.3 24.883 70.176  1924-2015 641.1  697.7  -1.82  

224.1 Skoganvarre 940.7 25.085 69.837  1922-2014 504.0  598.2  -2.33  

234.18 Polmak 14161.4 28.016 70.070  1912-2015 379.1  527.9  -3.01  

247.3 Karpelva 128.9 30.384 69.660  1928-2015 556.9  668.5  -0.76  

311.6 Nybergsund 4424.9 12.322 61.259  1909-2015 493.2  894.3  -0.90  
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Table 2. Results of seasonality analyses of AMFS based on the circular statistical analysis. The 

zero direction is at radian / 2  from the mathematical origin corresponding to the positive 

horizontal axis. The stations in bold are selected for subsequent analyses. It should be noted that 
**

 

denotes p value < 0.05 and 
*
 denotes 0.05 < p value < 0.1. 

Station 

ID 

Basic circular statistics 
 

Tests for uniformity   
Tests for  

symmetry 

  

(radian) 
r  

 

Rayleigh Kuiper Watson 
Rao  

spacing 

 Asymptotic  

theory 

based test 

2.268 3.07 (26 Jun) 0.85  0.85
**

 6.08
**

 3.61
**

 245.27
**

  2.20
**

 

2.279 3.03 (24 Jun) 0.14  0.14 2.72
**

 0.47
**

 215.68
**

  2.09
**

 

2.291 3.02 (24 Jun) 0.94  0.94
**

 5.91
**

 2.91
**

 288.64
**

  0.75 

2.32 2.71 (6 Jun) 0.88  0.88
**

 7.38
**

 4.97
**

 265.44
**

  3.19
**

 

2.614 2.75 (8 Jun) 0.95  0.95
**

 7.93
**

 5.83
**

 284.94
**

  2.24
**

 

12.228 3.04 (25 Jun) 0.57  0.57
**

 4.62
**

 2.19
**

 202.64
**

  5.65
**

 

12.7 2.50 (25 May) 0.85  0.85
**

 7.67
**

 4.92
**

 280.94
**

  3.43
**

 

15.21 3.15 (1 Jul) 0.42  0.42
**

 4.03
**

 1.21
**

 190.65
**

  1.53 

16.23 3.16 (2 Jul) 0.53  0.53
**

 4.96
**

 1.99
**

 201.40
**

  5.08
**

 

19.127 4.48 (17 Sep) 0.27  0.27
**

 3.23
**

 0.80
**

 166.58
**

  6.82
**

 

20.2 3.58 (26 Jul) 0.29  0.29
**

 3.70
**

 0.82
**

 203.34
**

  0.40 

22.4 5.08 (22 Oct) 0.33  0.33
**

 3.14
**

 0.93
**

 164.95
**

  2.07
**

 

24.9 5.42 (11 Nov) 0.45  0.45
**

 4.20
**

 1.27
**

 179.34
**

  0.69 

27.24 5.56 (19 Nov) 0.59  0.59
**

 4.69
**

 2.22
**

 171.85
**

  0.38 

28.7 5.69 (27 Nov) 0.59  0.59
**

 4.48
**

 1.77
**

 180.61
**

  0.47 

41.1 5.12 (25 Oct) 0.51  0.51
**

 3.87
**

 1.52
**

 167.64
**

  1.31 

50.1 3.00 (22 Jun) 0.76  0.76
**

 6.44
**

 3.65
**

 245.15
**

  3.63
**

 

72.5 3.35 (13 Jul) 0.69  0.69
**

 4.63
**

 1.99
**

 222.02
**

  5.05
**

 

75.23 2.89 (16 Jun) 0.76  0.76
**

 4.87
**

 1.98
**

 253.73
**

  3.06
**

 

76.5 3.75 (6 Aug) 0.94  0.94
**

 5.65
**

 2.94
**

 266.01
**

  0.94 

88.4 3.61 (29 Jul) 0.92  0.92
**

 7.95
**

 6.05
**

 265.93
**

  2.58
**

 

122.11 2.61 (31 May) 0.92  0.92
**

 6.71
**

 4.21
**

 270.84
**

  2.51
**

 

122.17 2.54 (27 May) 0.86  0.86
**

 4.27
**

 1.65
**

 244.88
**

  2.20
**

 

122.9 2.77 (9 Jun) 0.81  0.81
**

 4.37
**

 1.84
**

 240.22
**

  3.59
**

 

123.31 3.33 (11 Jul) 0.35  0.35
**

 2.66
**

 0.62
**

 159.80
**

  2.31
**

  

133.7 0.26 (15 Jan) 0.34  0.34
**

 2.65
**

 0.64
**

 146.88
**

  0.94 

152.4 3.64 (30 Jul) 0.07  0.07 1.77
**

 0.23
**

 154.88
**

  0.51 

163.5 3.00 (23 Jun) 0.85  0.85
**

 5.72
**

 3.24
**

 234.26
**

  0.80 

191.2 3.07 (26 Jun) 0.63  0.63
**

 4.78
**

 2.39
**

 197.23
**

  1.00 

223.1 2.75 (8 Jun) 0.96  0.96
**

 7.98
**

 5.75
**

 293.52
**

  1.26 

224.1 2.72 (6 Jun) 0.96  0.96
**

 8.07
**

 5.77
**

 291.82
**

  1.54 

234.18 2.52 (26 May) 0.97  0.97
**

 8.78
**

 6.82
**

 304.14
**

  1.01 

247.3 2.49 (24 May) 0.93  0.93
**

 7.85
**

 5.29
**

 294.33
**

  1.33 
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311.6 2.52 (26 May) 0.78  0.78
**

 6.34
**

 4.05
**

 231.06
**

  0.35 

 



Table 3. Summary of the employed single-type distributions 

Distributions Probability density function (PDF) 
Number of 

parameters 

Lognormal 

(LN) 

2

2

1 1 (log( ) )
( | , ) exp

22

0, 0, 0

LN
LN LN LN

LNLN

LN LN

z
f z

z

z


 



 

 
  

 

  

 2 

Gamma 

(G) 

2 2

2

(1/ 1) /( )

21/2

1
( | , )

(1 / )( )

0, 0, 0

G G G

G

z

G G G

GG G

G G

z e
f z

z

  


 

 

 

 




  

 2 

Weibull 

(W) 

1

( | , ) exp

0, 0, 0

W
W

W

W
W W W

W W

W W

z z
f z

z







 

 

 

   
   
   

  

 2 

GEV 

 

( 1/ ) 1 1/

1
( | , , ) 1 exp 1

, , 0,

GEV GEV

GEV GEV GEV

GEV GEV
Z GEV GEV GEV GEV GEV

GEV GEV GEV

z z
f z

z

 

 
    

  

  

           
           

           

            
 

3 
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Table 4. TCMDs used to model the AMFS in the study 

Distributions Probability density function (PDF) 
Number of 

parameters 

LN-LN 1 1 2 2 1 1 2 2( | , , , , ) ( | , ) (1 ) ( | , )

0

LN LN LN LN LN LN LN LN LN LN LN LNf z w wf z w f z

z

          


 5 

G-G 1 1 2 2 1 1 2 2( | , , , , ) ( | , ) (1 ) ( | , )

0

G G G G G G G G G G G Gf z w wf z w f z

z

          


 5 

W-W 1 1 2 2 1 1 2 2( | , , , , ) ( | , ) (1 ) ( | , )

0

W W W W W W G W W G W Wf z w wf z w f z

z

          


 5 

GEV-GEV 
1 1 1 2 2 2

1 1 1 2 2 2

( | , , , , , , )

            ( | , , ) (1 ) ( | , , )

GEV GEV GEV GEV GEV GEV GEV GEV

GEV GEV GEV GEV GEV GEV GEV GEV

f z w

wf z w f z

z

     

     

 

 

   

 7 

LN-G 
( | , , , , ) ( | , ) (1 ) ( | , )

0

LN G LN LN G G LN LN LN G G Gf z w wf z w f z

z

          


 5 

LN-W 
( | , , , , ) ( | , ) (1 ) ( | , )

0

LN W LN LN W W LN LN LN W W Wf z w wf z w f z

z

          


 5 

G-W 
( | , , , , ) ( | , ) (1 ) ( | , )

0

G W G G W W G G G W W Wf z w wf z w f z

z

          


 5 

GEV-L 
( | , , , , , ) ( | , , ) (1 ) ( | , )GEV L GEV GEV GEV L L GEV GEV GEV GEV L L Lf z w wf z w f z

z

            

  
 6 

GEV-G 
( | , , , , , ) ( | , , ) (1 ) ( | , )GEV G GEV GEV GEV G G GEV GEV GEV GEV G G Gf z w wf z w f z

z

            

  
 6 

GEV-W 
( | , , , , , ) ( | , , ) (1 ) ( | , )GEV W GEV GEV GEV W W GEV GEV GEV GEV W W Wf z w wf z w f z

z

            

  
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Table 5. Summary of the estimated parameters of the optimal TCMD-T and TCMD-F models (in 

bold) and their comparison models fitted to the AMFS of Kirkevollbru station (ID: 16.23). 1  

and 1  are the distribution parameters belonging to the first component distribution, while 2  

and 2  are the distribution parameters belonging to the second component distribution. 

Optimal models w  
1  

1  
2  

2  

LN-LN (TCMD-T) 0.152 4.893 0.089 5.818 0.404 

LN-LN (TCMD-F) 0.583 5.873 0.428 5.423 0.461 

LN-W (TCMD-T) 0.868 5.799 0.418 135.5 16.50 

LN-W (TCMD-F) 0.583 5.873 0.428 288.4 1.891 

G (overall AMFS) -- 330.4 0.484 -- -- 

 

Table
Click here to download Table: Table5.docx

http://ees.elsevier.com/hydrol/download.aspx?id=1269715&guid=c0f64257-d6d7-4ecc-ba51-5fe7c21cd87e&scheme=1


 

Fig. 1. Location of the selected 34 hydrological stations throughout the entire Norway mainland. 

The inserted frame in the top left corner depicts the geographical location of Norway in the map of 

Nordic region. 

Figure



 

Fig. 2. Flow chart of exploratory analysis of circular data and statistical inference from circular 

model (adapted from Yan et al., 2017a). 

Figure



 

Fig. 3. Typical hydrographs (a) and the associated peak-volume relationships (b) of two types of 

flood events. 

Figure



 

Fig. 4. Circular data for the selected stations in Norway. The blue points around the circle 

represent the timing of observed annual maximum flood events and the red wedges in the circles 

are the rose diagrams. 

Figure



 

Fig. 5. Results of exploratory analysis and statistical inference of circular data for Norway. Maps 

of the sample mean direction (a), sample mean resultant length (b) and identified circular model 

types (c). 

Figure



 

Fig. 6. Schematic diagram of the water volume at different original and disaggregated time steps 

(a), and illustrations of the disaggregation results of three flood events at the Kjæøemo gauge 

station (station ID: 22.4) (b), the Atnasjø gauge station (station ID: 2.32) (c), and the Nybergsund 

gauge station (station ID: 311.6) (d). 

Figure



 

Fig. 7. Classification of the annual maximum flood events for the selected stations in Norway into 

either long-duration floods (blue points) or short-duration floods (red points) based on flood 

timescale. 

Figure



 

Fig. 8. Burn diagram of FT  values for the selected 12 stations. The red filled circles represent 

the short-duration floods; the blue filled circles represent the long-duration floods; the radial 

distance from the origin indicates FT  value. 
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Fig. 9. AIC values of the employed single-type distributions, TCMD-T and TCMD-F for flood 

series of the selected 12 stations. Note that there are two different heterogeneous mixture 

distributions when using TCMD-F. 

Figure



 

Fig. 10. Boxplots of the ksD  statistics (top panel), associated p-values (middle panel) and 
2

aR  

statistics (bottom panel) for all the single-type and mixture distributions. 
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Fig. 11. Heatmap of the relative change between each distribution parameter of TCMD-F and 

TCMD-T calculated by using parameter value of TCMD-F minus that of TCMD-T, and then 

divided by that of TCMD-T. 

Figure



 

Fig. 12. Boxplots of the parameters for all the mixture distributions. 

Figure



 

Fig. 13. Empirical frequencies and theoretical probability density function of the optimal 

single-type distribution, the top two ranked TCMD-T models, and the top two ranked TCMD-F 

models based on TOPSIS with respect to the three goodness-of-fit measures for each station. 

Figure



 

Fig. 14. Return level diagrams for the overall AMFS using optimal single-type, TCMD-T and 

TCMD-F models together with the return levels for the short-duration floods and long-duration 

floods at Kirkevollbru station (ID: 16.23) (a); The classified short-duration floods (red circle 

points) and long-duration floods (blue circle points) over the period of 1906-2015 at the 

Kirkevollbru station (b). 
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Fig. 15. Return level diagrams for the AMFS of Kirkevollbru station (ID: 16.23) estimated by (a) 

LN-LN mixture (the optimal TCMD-T model) and (b) LN-W (the optimal TCMD-F model) with 

95% bootstrapped confidence intervals. The solid lines are the design floods while the dashed 

lines are the upper and lower limits of the 95% confidence intervals. 
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