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Abstract

Data integration, i.e. the use of different sources of information
for data analysis, is becoming one of the most important topics in
modern statistics. Especially in, but not limited to, biomedical appli-
cations, a relevant issue is the combination of low-dimensional (e.g.,
clinical data) and high-dimensional (e.g., molecular data such as gene
expressions) data sources in a prediction model. Not only the different
characteristics of the data, but also the complex correlation structure
within and between the two data sources, pose challenging issues. In
this paper, we investigate these issues via simulations, providing some
useful insight into strategies to combine low- and high-dimensional
data in a regression prediction model. In particular, we focus on the
effect of the correlation structure on the results, whilst accounting for
the influence of our specific choices in the design of the simulation
study.

1 Introduction

During the last decades the amount of molecular data collected has increased
substantially. It is hoped that (multiple) omics profiles help to improve diag-
nosis, prognosis, therapy and more [42]. However, clinical data are generally
available and it is an important question whether the combination of clin-
ical and omics data in a joint model leads to better statistical properties
(such as smaller prediction errors). Combining low-dimensional clinical and
high-dimensional molecular sources of information in a prediction model,
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however, is not straightforward. Several issues arise due to their different na-
ture: the former is characterized by few variables whose significance is usually
well-validated in the biomedical literature; the latter by a large number of
variables and a low signal to noise ratio. When simply pulled together in a
procedure which involves variable selection, it is well known that the risk of
“losing” informative clinical predictors among the large number of molecular
variables is quite high [3, 4]. Correlation structures within and between the
data sources worsen this situation.

Different strategies have been introduced in the literature to address the
issue, nicely summarized by [4]. The main idea is to adapt statistical meth-
ods to fully exploit the clinical information notwithstanding the noise linked
to the molecular data. When these strategies, combined with several sta-
tistical methods, have been applied to real data [see, e.g., 7, 16], no clear
winner has emerged. This is not surprising, as comparably good statistical
procedures are usually designed to perform best in different specific situa-
tions. Among the limitations of comparisons based on real data [see also
5], the impossibility of controlling the data structure is arguably the most
severe: no clear recommendation can be provided to practitioners on which
procedure performs best in specific situations. To reach this goal, analyses
on simulated data must be performed. For example, Truntzer and colleagues
[40] reinforced their comparison on the predictive ability of new and exist-
ing models combining mass spectrometry data and classical clinical variables
on a binary outcome by conducting a simulation study. Using several ap-
proaches to derive models they conclude that the model based on only clinical
variables was less efficient than the model based on mass spectrometry only.
Nevertheless, they stated that “It is hard to decide which method is the best
one”.

From a slightly different prospective, Zhu and colleagues [46] investigated
the integration of clinical and multiple omics data for prognostic assessments
of fourteen tumour types. Their focus was on the diseases: they found that
in seven of them the difference between the c-indices from the clinical model
and the combined model was negligible (difference less than 0.01), while the
combined model had larger c-index values in the other seven cancers. Canuel
and colelagues [12], instead, focused on the translational research platforms
for managing and exploring the integration of clinical and omics data, giving
a critical review of seven possible solutions.

The goal of this paper is to perform an extensive simulation study con-
trasting several strategies for combining clinical and molecular information
in a regression prediction model, focusing on the effect of different correlation
structures. A simulation study in this context is by nature limited: even if
the design tries to generate data as realistically as possible, it is extremely
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difficult to fully reproduce the complexity of real data, and, even more so,
to simulate the whole spectrum of situations which could be experienced in
practice. Despite these limitations, or, better, by discussing the effect of
these limitations, this study provides relevant insight into the problem of
interest and into the use of a class of statistical methods, namely penalized
regression approaches, when both clinical and molecular data are available.

For better understanding, transparency and complete reporting, we sum-
marize key steps of the design and results in a two-part simulation profile
(see Table 1). This profile is adapted from the REMARK profile which was
introduced in the reporting recommendations for tumor marker prognostic
studies, following the idea that a structured display helps to provide a better
overview of the study and analyses. This therefore helps to avoid selective
reporting and makes strengths and weaknesses more explicit [1].

The paper is structured as follows: after a short review of the methods
used in the study (Section 2), the simulation design and the data generating
process are discussed in Section 3. Section 4 contains some remarks on the
correlation and its effect in the model estimation. The numerical results
and the related comments are provided in Section 5, while an illustrative
example on real data is shown in Section 6. Finally, some remarks and
recommendations are presented in Section 7. Further results and the R code
to reproduce the analyses are given in the Supplementary Material.

2 Methods

2.1 Strategies to combine clinical and molecular vari-
ables

As mentioned above, some care is necessary to combine clinical and molec-
ular data in a prediction model. Here we briefly outline four strategies as
previously described by [4] and [16].

2.1.1 Strategy 1: “naive”

The most straightforward and “naive” way to combine clinical and omics
variables is to simply treat them equally, i.e., to fully ignore their different
nature when estimating their coefficients. This strategy, indexed as ‘1’ from
now on, is very easy to implement, but has the major pitfall that clinical
information is potentially masked by the high number of omics variables
and might not be fully exploited by the model [3, 4]. Prior knowledge most
often tells us that clinical variables are on average more informative than
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a) Design

Question Comparing the prediction ability of strategies which combine
clinical and molecular variables (C and M variables)

Combinations Seven strategies to combine C and M variables, five methods
to construct a prediction model, preliminary screening (yes/no),
giving 70 strategy/method/screening combinations

Strategies Naive, Clinical offset, Favoring, Dimension Reduction. All
with/without clinical variable selection, apart from Naive

Methods Boosting, Lasso, Ridge, Elastic net, SCAD
Screening Sure Independent Screening (SIS). We tried with Iterative Sure

Independent Screening (ISIS), but it never converged. Will be
ignored

Variables 15 clinical variables (5 with and 10 without effect)
10000 molecular variables in 50 independent blocks, 28 variables
with effect (see Table 2)

Correlation Structured within blocks of C and M variables and between the
blocks (no [0], moderate [0.5], strong [0.8] correlation)
Nine settings (see Table 3), 3 settings presented in detail, others
in the Supplementary Material.

Sample Size 500 (100 and 1000 in the Supplementary Material)
Outcome Mean Square Prediction Error (MSPE), Sensitivity (true positive

rate) and Specificity (true negative rate).

b) Results
Setting MSPE Sens/spec Remarks

B1: set 1, no
correlation, no
pre-screening

Tab 5
for SCAD (Fig 1a)
for favor.2 (Fig 1b)
(ridge excluded)

For SCAD
clin. dat. (Fig 3)
mol. dat. (Fig 4)
for favor.2 (Fig 5)

SCAD/favor.2
best performance
MSPE

B2: set 2, high
correlation, no
pre-screening

Tab 6
for boosting (Fig 1c)
for dim.red.1 (Fig 1d)
(ridge excluded)

For boosting
clin. dat. (Fig 3)
mol. dat. (Fig 4)
for favor.2 (Fig 5)

Boosting/dim.red.1
best performance
MSPE

B3: set 3, mod.
correlation, no
pre-screening

Tab 7
for boosting (Fig 1e)
for dim.red.1 (Fig 1f)
(ridge excluded)

For boosting
clin. dat. (Fig 3)
mol. dat. (Fig 4)
for favor.2 (Fig 5)

Boosting/dim.red.1
best performance
MSPE

B4: effect of
pre-screening

Fig 6 Only beneficial for
ridge regression

B5: set 3 to 8 Suppl. Material Suppl. Material

Table 1: Simulation profile.
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omics variables, but this prior knowledge is not exploited. This may lead
to a model with a sub-optimal prediction accuracy, especially if the clinical
variables have strong effects.

2.1.2 Strategy 2: “clinical offset”

To prevent the “masking” of clinical variables, it is possible to force them
into the model. This can be done by first fitting a model to the clinical vari-
ables only, and then using the resulting linear predictor (hereafter denoted
as clinical linear predictor) as an offset (i.e. as a variable with coefficient
fixed to 1) in a prediction model fitted to the molecular variables. This
strategy is denoted as clinical offset strategy [16] and indexed as ‘2’ from
now on. Compared to the naive strategy, which ignores the different nature
of clinical and omics variables, this strategy can be seen as the other ex-
treme. Indeed, the estimates of the coefficients of the clinical variables are
not allowed to change when included in the combined model; therefore the
interplay between clinical and molecular variables may not be fully taken
into consideration—possibly leading to sub-optimal prediction accuracy.

This strategy may make sense when the effects of the clinical variables
are well validated in the literature. However, it may happen that other
clinical variables are provided, which may not all have a relevant effect. A
natural question is whether we should derive the clinical offset using all the
clinical variables or first apply a variable selection procedure (in this work,
backward elimination with AIC stopping criterion) to focus on the relevant
clinical variables. In this paper we assess both strategies, referring to them
as “2.1” (without variable selection) and “2.2” (with variable selection).

2.1.3 Strategy 3: “favoring”

A different strategy, which can be seen as a compromise between the naive
strategy and the clinical offset strategy, consists of fitting a model using both
clinical and molecular variables simultaneously, but giving more “weight” to
the former. This strategy is termed favoring strategy [4, 16] and indexed
as ‘3’ from now on. Since in our analysis all the regression techniques are
based on penalized regression in a broad sense, we can define the penalty
term in such a way that molecular variables are more strongly penalized.
More precisely, here we impose a penalty (obtained by cross-validation) only
to the molecular variables, leaving the clinical ones unpenalized. Similarly
to the clinical offset strategy, we consider a version of this strategy in which
all clinical variables are used (“3.1”) and one in which we only consider the
clinical variables selected by a variable selection procedure (“3.2”).
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2.1.4 Strategy 4: “dimension reduction”

Another possibility to tackle the difference in dimensionality between clinical
and molecular variable spaces is to summarize the molecular information
into a “score” (i.e., a linear combination of selected variables), that is later
included in a regression model along with the clinical variables. In this way,
the number of variables related to the molecular data is comparable to that
of the clinical variables. Similarly to strategies 2.1/2.2 and 3.1/3.2, we either
consider all clinical variables, i.e. we add the molecular score to the full
clinical model (“4.1”), or a selection of them, i.e. we add the molecular score
to the reduced model (“4.2”).

2.2 Methods to derive a prediction model

Among the large number of methods developed to handle high-dimensional
data, those based on penalized regression are among the most used. In this
section we quickly review the five approaches considered in this paper. They
have been selected due to their popularity and the presence of user-friendly
R [32] packages. Note that we strongly rely on the functions contained in
these packages to choose the values of the tuning parameters. In order to be
as fair as possible, we try not to modify the default procedures and settings,
as would probably be done by some analysts. An important exception is
made as far as the choice of the internal validation procedure is concerned.
For the purpose of better comparability, we apply the 10-fold cross-validation
technique for parameter tuning, thus avoiding that the accuracy of the cross-
validation technique influences the method performance. Further details on
the methods’ implementation considered in our paper are provided in the
respective sections.

2.2.1 Boosting

The boosting approach is based on the idea of repeatedly applying a weak
estimator to a modification of the data to minimize a loss function. Orig-
inally developed in the machine learning community as a classifier, it has
been translated to cope with numerous statistical problems [see, e.g., 35],
including, relevantly for this paper, linear regression. In the case of linear
regression, the commonly used loss function is the quadratic loss and the
weak estimator, in our case a penalized version of the least square estima-
tor, is repeatedly fitted to the residuals. The estimates of the regression
coefficients are updated in a forward stepwise manner, until a pre-specified
number of steps is reached. Since we deal with high-dimensional data, we im-
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plement the boosting procedure in its componentwise version [10], in which
only one regression coefficient is updated at each boosting step, namely the
one which generates the best improvement in terms of minimization of the
loss function. This componentwise boosting procedure yields a variable se-
lection as a by-product: non-relevant variables, indeed, are not selected by
the component-wise updating procedure and therefore their regression coef-
ficients remain equal to 0.

The choice of the number of boosting steps (tuning parameter) highly
influences the result of the procedure [30]. It controls both the sparsity of
the final regression model (the higher number of steps, the more variables
included in the model) and the amount of shrinkage applied to the regression
coefficients (the more steps, the less shrinkage). A second tuning parame-
ter, the amount of regularization applied to the least square estimator, has
negligible influence as long as its magnitude is correctly set [3, 9].

Software: To implement the boosting technique we rely on the package
mboost [28], which implements the model-based gradient boosting approach
[27]. We use the default value 0.1 for the penalty term as commonly rec-
ommended [9] and apply a 10-fold cross-validation procedure to choose the
number of boosting steps using the function cvrisk. To perform the favoring
strategy within boosting we use the package GAMBoost [2], which actually
implements a slightly different version of boosting [likelihood-based boosting,
see 41]. In the linear regression case, however, the two boosting approaches
provide exactly the same results if the penalty term is suitably chosen [14].

2.2.2 Lasso

The least absolute shrinkage and selection operator (“Lasso”) [39] is a popular
penalized regression technique based on an L1 penalty term. Assuming that
the vector (y1, . . . , yn)> and the vectors (x1j, . . . , xnj)

> (for j = 1, . . . , p) have
been centred and standardized, respectively, the estimates of β1, . . . , βp are
obtained by minimizing

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ||β||1,

where λ is a tuning parameter (“penalty”). As in all regularization tech-
niques, parameter estimates are shrunken towards 0 compared to least squares
estimation. The L1 penalty has the particularity that it makes some of the
estimated coefficients exactly equal to 0, i.e. it leads to an intrinsic variable
selection. Just as the result of the boosting procedure strongly depends on
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the tuning parameter “number of boosting steps”, the result of Lasso strongly
depends on the tuning parameter λ, which controls the amount of penalty.

Software: Lasso is implemented in several R packages, including penal-
ized [22] and glmnet [21]. In this paper we use the latter for the purpose
of computational efficiency. The 10-fold cross-validation procedure used to
choose the penalty parameter is implemented in the function cv.glmnet. For
consistency with the other considered techniques, we use the λ-value which
minimizes the mean cross-validation error.

2.2.3 Ridge regression

The ridge regression [26] is another penalized regression technique that uses
an L2 penalty term instead of the L1 penalty used by Lasso. The estimates
are obtained by minimizing

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ||β||22,

where λ is again a penalty parameter. This type of regularization has the
advantage that the estimator has a simple closed form. As for Lasso, param-
eter estimates are shrunken towards 0 compared to least squares estimation.
However, a major difference between Lasso and ridge regression is that ridge
regression does not perform any variable selection: some of estimates may
be very close to 0 due to shrinkage, but they do not equal exactly 0. An
advantage of ridge regression related to this property, however, is that it
tends to cope better with highly correlated variables (while Lasso typically
selects one of the correlated variables and sets the coefficients of the other
to 0, leading to instability). As for the previous techniques, ridge regression
requires choice of a tuning parameter, λ, which again regulates the amount
of penalty.

Software: The two R packages implementing Lasso mentioned above also
implement ridge regression. For the reasons already mentioned in the section
on Lasso, we use glmnet and choose the λ-value that minimizes the mean 10-
fold cross-validation error as implemented in cv.glmnet.

2.2.4 Elastic net

The elastic net technique [47], using both an L1 and an L2 penalties, can be
seen as a compromise between Lasso and ridge regression. The estimates are
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obtained by minimizing

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ{(1− α)||β||22 + α||β||1},

where α is an additional parameter controlling the respective weights of the
L1 and L2 penalties. Ridge regression is the special case α = 0, while Lasso is
the special case α = 1. While the L1 penalty term leads to variable selection,
the L2 penalty term allows a better handling of correlated variables. If one
does not want to restrict to the special cases Lasso and ridge regression, the
parameter α has to be tuned along with λ.

Software: For the implementation of the elastic net we rely again on the R
package glmnet. In this case, however, we need to choose two tuning param-
eters, λ and α. A two-dimensional grid 10-fold cross-validation procedure
is therefore implemented (with equidistant points (distance 0.05) between
0 and 1 for α and the grid chosen by cv.glmnet for λ), to identify which
instance of the pair (λ, α) results in the smallest mean cross-validation error.

2.2.5 SCAD

Another technique based on a penalized regression which aims at combining
the strengths of the ridge regression with a variable selection procedure is the
“smoothly clipped absolute deviation penalty” (SCAD) [18]. The estimates
are obtained by minimizing

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λI(||β||1 ≤ λ) +
(αλ− ||β||1)+

α− 1
I(||β||1 > λ),

where α is a parameter > 2 and (.)+ denotes the positive part. As can be
seen from the formula, this technique uses a special penalty function which
corresponds to a quadratic spline function with knots at λ and αλ. The idea
is to reduce the shrinkage applied to the parameters related to variables with
large effect while maintaining the shrinkage for variables with effect close to
0. As with boosting, in theory this technique requires choice of two tuning
parameters, α and λ, but one (α) is usually fixed in advance.

Software: We use the implementation of the SCAD technique available
from the R package ncvreg [8]. As mentioned above, the tuning parameter
α is fixed in advance, here to 3.7, the value suggested by the developers [18].
The value of the other tuning parameter, λ, is instead selected using the
function cv.ncvreg, by minimizing the cross-validation error.
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2.3 Evaluation criteria

Each combination of strategy and statistical method is evaluated, with vary-
ing correlation structures, in terms of prediction accuracy and ability to
identify the significant variables. The former is evaluated by mean square
prediction error (MSPE), the latter by a combination of sensitivity (true
positive rate) and specificity (true negative rate).

3 Simulation design

The most important part of a simulation study is certainly the simulation
design. As mentioned in Section 1, the focus of our study is the effect of the
correlation among clinical variables, among molecular variables and between
the two kinds of variables on the fitting of a regression prediction model.
The models are compared in terms of prediction ability (MSPE) and correct
identification of variables with (sensitivity) and without (specificity) an ef-
fect. Note that there is an extension to SIS, called ISIS, that is supposed
to mitigate the issues related to the marginal approach of SIS, but showed
strong convergence problems in our setting and thus was not further consid-
ered.

3.1 Data generation

As common in the simulation studies performed in a high-dimensional frame-
work, we generate the data in blocks, which, in our context, represent gene
pathways usually observed in the real data experiments. In particular, for
each block h, h = 1, . . . , H, we generate a “signal” from a multivariate Gaus-
sian distribution,

(Ch, Sh) ∼ Nkh((µc, µm)>,Σ2
h), (1)

where kh denotes the number of variables in the block, which is the sum of
kMh , the number of molecular variables belonging to the block h (Sh), and
kCh , the number of clinical variables related to these molecular variables (Ch).
Moreover, µc contains the means of the clinical variables, that we set equal
to 1 (i.e., here µc is a vector of 1 of length kCh ), and µm contains the means of
the molecular variables. In our simulation study, these means are all equal
to 6, as the average value of the means for the gene expression proposed by
[45].

11



Finally, Σh is the covariance matrix, constructed as a block matrix,

Σh =



σ2
c . . . ρCh σ

2
c ρBh σcσm . . . ρBh σcσm

...
. . .

...
...

. . .
...

ρCh σ
2
c . . . σ2

c ρBh σcσm . . . ρBh σcσm
ρBh σmσc . . . ρBh σmσc σ2

m . . . ρMh σ
2
m

...
. . .

...
...

. . .
...

ρBh σmσc . . . ρBh σmσc ρMh σ
2
m . . . σ2

m


,

where the first block is related to the clinical variables, the last to the molec-
ular ones, and the other two regulate the relationship between the two kinds
of variables. In detail:

• σc is the standard error for the clinical variables, in our simulations
set equal to 0.5;

• σm is the standard error for the molecular variables, here equal to
0.65 [see also 45];

• ρCh denotes the correlation among the clinical variables correlated with
the h-th block;

• ρBh denotes the correlation between the clinical and molecular variables
in the block h;

• ρMh denotes the correlation among the molecular variables of the block
h.

To simplify the construction, we allow only one value for each of the
correlation parameters (ρCh , ρBh and ρMh ) for each group. This means, for
example, that all the molecular variables belonging to the group h have the
same correlation with each other. It may happen that the Σh generated
is non-positive definite: in this case, we apply the Higham’s algorithm [25]
to compute the closest positive definite matrix (which is used as covariance
matrix instead of the original Σh).

Until now, the clinical variables differ from the molecular ones only for a
slightly larger precision (σc = 0.5, σm = 0.65). In order to better differentiate
the two kinds of variables and to make the data more realistic, we add some
noise to the molecular part. In particular, from the signal Sh we generate a
matrix of molecular data as

Gh = exp{Sh +Mh}+ Eh,
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where Mh is a multiplicative noise [e.g., variation between the pixel affecting
gene-expression measurements, see 44] and Eh an additive noise, representing
the typical technical noise. Following [45], we generate these terms from
Gaussian distributions, more precisely

Mh ∼ Nkh((0, . . . , 0)>, diag(φ)),

Eh ∼ Nkh(ν, diag(τ)),

where φ, ν and τ are vectors of length kh with all terms equal to 0.1, 10
and 20, respectively. These values are selected as suggested in the R-package
Umpire [44].

The final molecular data matrix G is created by concatenating all the Gh

after a quick normalization process that consists of assigning to the smallest
(smaller than 10) and the largest (> 16000) pseudo-observations a threshold
value (10 and 16000, respectively) and performing a (natural, in this case)
logarithm transformation.

Finally, we generate a response variable from a Gaussian distribution with
mean

Cβc +Gβm,

and a standard deviation σ which depends on the setting. Here C = (C1 . . . CH)
is the matrix of clinical data, while βc and βm denote the vector of the true
regression coefficients of the clinical and of the molecular variables, respec-
tively.

3.2 Settings

In our study, we consider several simulation settings, that we describe in
detail in this section. All the settings have in common the number of clinical
(15) and molecular (10000) variables generated, and the block structure in
which these variables are organized. In particular, we consider H = 50
blocks, with all but the last containing 10 molecular variables. The 50th

contain the remaining (9510) molecular variables, generated independently
to each other. The first 5 blocks also contain some clinical variables; in
particular: the first and the second blocks contain 3 clinical variables, the
third and the fourth 2 and the fifth 5. The remaining blocks include only
molecular data. Moreover, in each setting, we assign a value of ±3 to the true
regression coefficients of 5 clinical variables (relavant variables), while for the
molecular part we assign a value of ±3 to the true regression coefficients of 3
(strong effect) variables, ±2 to those of 5 (medium effect) variables and ±1
to the true regression coefficients of 20 (weak effect) variables. A schematic
summary can be found in Table 2. The decision of keeping fixed the values
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of true regression coefficient is coherent with the choice of focusing on the
effect of correlation, the goal of this paper.

Parameters morespace
block βc βm
h = 1 (3,−3, 0) (3,−3, 1,−1, 1, 0, 0, 0, 0, 0)
h = 2 (3, 0, 0) (2,−2, 2, 0, 0, 0, 0, 0, 0, 0)
h = 3 (−3, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
h = 4 (0, 0) (−3, 2, 1, 0, 0, 0, 0, 0, 0, 0)
h = 5 (3, 0, 0, 0, 0) (−1,−1,−1,−1,−1, 0, 0, 0, 0, 0)
h = 6 - (−2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
h = 7 - (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
h = 8 - (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
h = 9− 49 - (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
h = 50 - (0, . . . , 0)

Table 2: true effects of the clinical and molecular variables. The last block
contains the regression coefficients (all equal to 0) of the remaining 9510
molecular variables.

The parameters related to the correlation, ρCh , ρBh and ρMh , instead, as-
sume different values within the groups in the different simulations settings,
depending on the magnitude of the correlation that we want to investigate.
Table 3 shows the strength of correlation in the different settings. In partic-
ular, we use the values 0.5 and 0.8 to simulate weak and strong correlation,
respectively. For easy of reporting, in the following we focus on the three
“homogeneous” cases, namely settings 1, 2 and 9, in which ρCh = ρBh = ρMh ,
with σ = 6 (that corresponds to an R2 around 0.5) and sample size n = 500.
Results for different correlation structures, standard deviations and sample
sizes are available in the Supplementary Material.

MSPE, sensitivity and specificity are computed on a large (10000 obser-
vations) independent test set generated with the same design of the training
set. The results reported in Section 5 are based on 500 replications, those in
the Supplementary Material on 100 replications.

4 Illustration of key issues in a simplified ex-

ample

Before evaluating the effect of the correlation structure on the combinations
strategies/statistical methods, it may be useful to illustrate its influence on
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setting ρC ρM ρB situation
1 0.0 0.0 0.0 no correlation at all
2 0.8 0.8 0.8 strong correlation
3 0.5 0.8 0.8 moderate correlation among clinical
4 0.8 0.5 0.8 moderate correlation among molecular
5 0.5 0.5 0.8 strong correlation between clinical and molecular
6 0.8 0.8 0.5 moderate correlation between clinical and molecular
7 0.5 0.8 0.5 strong correlation among molecular
8 0.8 0.5 0.5 strong correlation among clinical
9 0.5 0.5 0.5 moderate correlation

Table 3: Simulation settings: different strengths of correlation in different
settings. The results for the settings in bold are reported in the paper, the
rest can be found in the Supplementary Material.

the estimation of the regression coefficients and the R2. For illustration
purposes, we show the results of a simplified example, in which we generate
a large number of observations (5000) from a design similar to that described
in Section 3.2, with the only modification concerning the total number of
molecular predictors, reduced to 2000 in order to be able to implement a
least squares estimator. In contrast to the main results of the paper, and
due to the solely illustrative purpose of the example, we do not consider a
test set, and all quantities are computed on the 5000 observations generated.

The results are presented in Table 4. For four scenarios (with and with-
out an effect of molecular variables, with and without correlations between
clinical and molecular variables) we present the estimates of the regression co-
efficients of some of the 15 clinical variables. In addition we report the value
of the R2 of the models using only clinical, only molecular or both kinds of
variables. Here the R2 is “adjusted” to penalize higher number of variables,
using the default R implementation adj.r.squared of summary.lm,

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

n− 1

n− p− 1
(2)

where ŷi is the estimate
∑p

j=1 β̂jxij and ȳ the simple average n−1
∑n

i=1 yi.
Regarding the regression coefficient estimates, we are computing them from
the “correct” model only when βmol = 0, i.e., in scenarios B and D). In
scenario B the parameter estimates vary around their true value, with an R2

of 0.24. The R2 of the molecular part should be 0, but it is slightly inflated
(0.01), an issue known for several decades [33]. In the combined model (that
including all 2000 irrelevant molecular variables) the R2 is again slightly
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ρ = 0 ρ = 0.8
Scenarios A: βmol 6= 0 B: βmol = 0 C: βmol 6= 0 D: βmol = 0

βtrue est se est se est se est se
β1 3 3.13 0.22 3.26 0.17 3.55 0.46 3.27 0.31
β2 -3 -2.97 0.22 -2.91 0.17 -2.74 0.46 -3.12 0.32
β3 0 -0.01 0.23 0.03 0.17 0.16 0.46 -0.23 0.32
β4 3 2.94 0.22 2.80 0.17 3.67 0.45 2.75 0.31
β5 0 -0.02 0.22 -0.07 0.17 0.71 0.46 0.02 0.31
β6 0 0.06 0.22 -0.11 0.17 0.90 0.46 -0.07 0.31
β7 -3 -3.01 0.23 -2.95 0.17 -2.37 0.42 -2.74 0.29
β8 0 -0.05 0.22 -0.13 0.17 -0.13 0.41 -0.11 0.28
β9 0 0.03 0.22 -0.19 0.17 -3.33 0.42 -0.00 0.29
β10 0 -0.32 0.23 -0.16 0.17 -3.57 0.42 0.07 0.29
β11 3 3.25 0.23 3.07 0.17 2.02 0.50 3.14 0.34
β12 0 0.09 0.23 0.25 0.17 -0.90 0.50 0.53 0.34
β13 0 -0.04 0.22 0.03 0.17 -0.56 0.50 0.05 0.34
β14 0 -0.23 0.22 -0.04 0.17 -1.67 0.49 -0.08 0.33
β15 0 -0.22 0.23 -0.24 0.17 -1.95 0.50 -0.55 0.34

R2 clin 0.16 0.24 0.23 0.17
R2 omic 0.37 0.01 0.61 0.11
R2 both 0.52 0.25 0.64 0.17

Table 4: Estimation of the regression parameters and the R2 in a linear
regression case. The results (except for those in the last 2 rows) are based
on the clinical model only. Here ρ = ρC = ρM = ρB. The heading βmol 6= 0
denotes the cases in which there actually is information on the molecular
part (which the clinical model cannot capture), βmol = 0 denotes that there
is none.

16



inflated (0.25 instead of the expected 0.24). Conversely, in scenario A the
molecular variables have an influence on the outcome and the corresponding
R2 is severely increased when correctly including both parts in the model
(0.52). But for a small random difference, it is the sum of the R2’s related
to the only clinical (R2 = 0.16) and only molecular (R2 = 0.37) models.
Note that the standard errors of the estimates increase from scenario B to
scenario A. Excluding relevant molecular variables from the model also leads
to a larger estimation of the standard errors for the regression coefficients of
the clinical variables, actually independent of whether the former and latter
variables are correlated (the same concept works when comparing scenarions
C and D). Since

Var(β̂) = (XTX)−1σ2,

its estimation (and that of its square root) depends on the estimation of the
residual variance,

σ̂2 =
1

n− p− 1

n∑
i=1

(yi − ŷi)2.

Since the response actually depends on variables not included, the model
cannot provide correct estimates, i.e., the values ŷi are farther with respect
to yi than the cases in which yi does only depend on the variables included
in the model. Therefore we have a larger estimation of the residual variance.

This also explains why the R2 for the clinical model is smaller when
there is actually information on the molecular variables, even if clinical and
molecular variables are uncorrelated (contrast the R2 clin’s in scenarios A
and B). It is again an effect of the larger prediction error, as it can be seen
in formula (2), where the quantity (yi − ŷi)2 is now in the numerator.

In scenarios C and D we added substantial correlation (both among clin-
cial/molecular variables and between the two kinds of variables). If the
molecular variables have no effect (scenario D) the model for the clinical
part has more uncertainty (larger standard errors and smaller R2 compared
to scenario B), but parameter estimates are still unbiased. In scenario C, in
contrast, the molecular variables have an effect and estimates of the “incor-
rect” clinical model are (substantially) biased. This is most obvious for the
estimates of β9 and β10 (correlated with the molecular variable 31, 32 and 33,
see Table 2) and, to a smaller extent, β12−β15 (correlated with the molecular
variable 41 − 45). The parameter estimate bias for scenario C is certainty
the most evident characteristic of the table. When relevant variables (in this
example, the molecular variables with an effect) are not considered in the
model, their effect is caught by the regression coefficients of those included
variables which are correlated with them, causing bias. As expected, in the
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other three scenarios there is no bias, either because the model is “correct”
(D), there is no correlation (B) or both (A).

Finally the R2 for the clinical model is the highest in scenario C, again
because the clinical variables, due to strong correlation, also capture infor-
mation belonging to the molecular ones. Conversely, the R2 in scenario D is
smaller than that in scenario B (although in both cases there is no informa-
tion in the molecular variables and so we are estimating from the “correct”
model) because the clinical variables can explain less variability due to the
high correlation (basically all of them contain the same – very similar – in-
formation).

5 Results

As already mentioned in the results part of the simulation profile we start by
concentrating on MSPE. Note that for better visualization we decided to ex-
clude all combinations with SIS and ridge from the plots, because the related
prediction error are not comparable to the other. A detailed explanation is
given in the Discussion. The numerical results are nevertheless reported in
Tables 5, 6 and 7 (without SIS).

5.1 Prediction error

Tables 5, 6 and 7 report the results in terms of MSPE in the three scenarios
under investigation (no correlation, high correlation and moderate correla-
tion, respectively). The column and the row corresponding to the best per-
formance (i.e., smallest MSPE) are highlighted in bold. The results for these
columns and rows are also reported in Figure 1.

Correlation. In general, we can affirm that the strength of the correlation
seems to highly affect the results. Larger correlation means a smaller pre-
diction error (see Figure 2). It is most probably a consequence of the fact
that, with increasing correlation, it is less critical if a variable with influence
is falsely excluded from the final model, as its effect is “taken over” by corre-
lated variables included in the model. In fact, this pattern (more correlation,
smaller MSPE) is true but, not surprisingly, for the ridge regression. As in
ridge regression all variables are included in the model, there is no advan-
tage in having correlated covariate, and the classical phenomenon of better
estimates in case of no correlation holds.

[Figure 2 approximately here]
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strategy
statistical naive clinical offset favoring dim. reduct.
method 1 2.1 2.2 3.1 3.2 4.1 4.2
scad 54.76 54.13 53.46 53.38 52.93 59.30 60.84

(2.97) (2.65) (2.63) (2.36) (2.32) (3.57) (3.76)

lasso 56.35 56.08 55.37 55.14 54.67 57.04 60.42
(2.24) (2.05) (2.09) (2.03) (1.99) (4.27) (4.41)

elastic net 56.72 56.31 55.65 55.39 54.94 58.48 62.09
(2.39) (2.20) (2.22) (2.20) (2.06) (5.03) (5.26)

ridge 91.50 66.21 65.68 65.92 65.47 96.69 96.68
(0.86) (0.85) (0.87) (0.78) (0.79) (0.88) (0.84)

boosting 57.26 56.07 55.39 55.44 54.93 54.98 58.06
(2.20) (1.92) (1.96) (2.00) (1.95) (2.41) (2.11)

Table 5: setting 1 (no correlation), MSPE for all combinations strate-
gies/statistical methods.

Strategies and correlation. There does not seem to be many differences
among the strategies. However, naive (1) and dimensionality reduction with
the reduced model (4.2) almost always have the two worst performances.
Dimensionality reduction with the full model (4.1) is the only strategy which
seems strongly affected by the amount of correlation, as it is among the worst
in case of no correlation, among the best in case of correlation. It is worth
noting, however, that in the latter case its performance is very close to that
of favoring (both with reduced and full clinical model) for the best statistical
methods (lasso, elastic net and boosting), while worse in combination with
SCAD and, very severely, with ridge regression. In contrast, the favoring
strategy (both considering the full and the reduced clinical models) is always
close to the best, if not the best, result, no matter the amount of correlation.

Statistical methods and correlation. Lasso, boosting and elastic net
have, not really surprisingly, very similar results, no matter the amount
of correlation. In addition, their performances are always among the best.
SCAD, instead, seems to perform really well in the case of uncorrelated vari-
ables, and slightly worse than the three aforementioned methods in case of
correlation. Finally, ridge regression has always the worst results. Care-
ful considerations of the simulation settings, reported in the discussion, can
explain this poor performance.

[Figure 1 approximately here]
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strategy
statistical naive clinical offset favoring dim. reduct.
method 1 2.1 2.2 3.1 3.2 4.1 4.2
scad 52.62 53.58 52.86 51.53 51.42 54.56 56.39

(2.48) (2.39) (2.43) (2.16) (2.22) (2.25) (2.45)

lasso 48.41 49.07 48.34 46.66 46.70 45.83 48.98
(1.78) (1.91) (2.07) (1.55) (1.71) (1.93) (1.96)

elastic net 48.58 49.23 48.47 46.83 46.81 46.17 49.39
(1.84) (2.10) (2.20) (1.69) (1.85) (2.39) (2.36)

ridge 96.10 78.52 77.84 77.18 76.85 94.81 94.88
(1.69) (1.55) (1.69) (1.41) (1.53) (1.87) (1.85)

boosting 48.81 48.83 48.09 46.83 46.75 44.92 48.09
(1.68) (1.85) (2.00) (1.51) (1.68) (1.15) (1.33)

Table 6: setting 2 (high correlation), MSPE for all combinations strate-
gies/statistical methods.

5.2 Sensitivity and specificity

In addition to the MSPE, we evaluate the ability of the combination strate-
gies/statistical methods to identify the relevant variables. We report the
results corresponding to the rows highlighted in bold in Tables 5, 6 and 7
(i.e., for the best statistical method) in Figures 3 and 4. The former con-
tains information on sensitivity and specificity for the clinical variables, the
latter for the molecular variables. In Figure 5 the same quantities, related to
the molecular variables, are reported for the favoring (with reduced model)
strategy, which is the best in the uncorrelated setting and has comparable
(sometimes even better) results in the correlated settings (it does not make
sense to consider the dimensionality reduction strategy, as the molecular
variables are summarized into a single score).

[Figure 3 approximately here]

[Figure 4 approximately here]

[Figure 5 approximately here]

5.2.1 Clinical data

We have 15 clinical variables, five of which have an effect on the outcome.
For the three versions without variable selection (strategies 2.1, 3.1 and 4.1)
results are by definition 1 (sensitivity) or 0 (specificity) and will be therefore
ignored in the following. Note that the variable selection procedure is com-
mon for strategies 2.2, 3.2 and 4.2 (backward elimination), so the contrast
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strategy
statistical naive clinical offset favoring dim. reduct.
method 1 2.1 2.2 3.1 3.2 4.1 4.2
scad 55.96 54.55 53.80 53.03 52.65 56.70 59.17

(2.56) (2.33) (2.43) (2.22) (2.34) (3.43) (3.29)

lasso 53.36 53.25 52.47 51.36 51.10 50.70 54.70
(2.25) (2.24) (2.35) (2.07) (2.14) (3.02) (2.92)

elastic net 53.63 53.50 52.65 51.53 51.33 51.42 55.47
(2.33) (2.43) (2.47) (2.10) (2.26) (3.43) (3.24)

ridge 97.95 77.02 76.38 76.44 76.01 99.44 99.47
(1.33) (1.28) (1.40) (1.15) (1.28) (1.46) (1.43)

boosting 54.78 53.25 52.45 51.53 51.17 49.09 53.16
(2.07) (2.15) (2.25) (1.99) (2.08) (1.74) (1.88)

Table 7: setting 9 (moderate correlation), MSPE for all combinations strate-
gies/statistical methods.

is fundamentally between them and the naive strategy. Figure 3 supports
the statement “clinical variables risk to get lost among the molecular vari-
ables” [3, 4] if not adequately treated. Especially in case of correlation (first
column, second and third rows) the percentage of relevant clinical variables
correctly identified is relatively small, in median less than 50% in the case
of strong correlation (setting 2). On the other hand, hardly any irrelevant
clinical variable is included in the model (right column). Actually, for the sit-
uation with no correlation (setting 1) sensitivity and specificity for the naive
approach are close to 1, but this excellent result is not relevant for practical
applications. For the two settings with correlation (settings 2 and 9), the
backward elimination procedure applied to the clinical data leads to median
sensitivity and specificity around 0.8, indicating that in most cases variables
were correctly included or excluded. For the naive strategy, instead, it is
between 0.4 (strong correlation) and 0.6 (moderate correlation).

5.2.2 Molecular data

In Figures 4 and 5 we show sensitivity and specificity of the models only
concerning the molecular data. Sensitivity relates to the inclusion of the 28
variables with an effect on the outcome, whereas specificity gives the rate of
correct exclusions of the 9972 variables without an effect. Consequently, a
specificity of 99% means that about 100 variables without effect were included
in the model. In Figure 4 we compare results for the different strategies.
Concerning sensitivity, differences are negligible (note that the two reduction
strategies 4.1 and 4.2 reduce the molecular information to a unidimensional
score and are therefore not relevant here). Note that the differences among
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strategies are minimal, and a small advantage for the naive strategy in setting
2 is the only relevant difference. Altogether, results clearly demonstrate that
a substantial part of the 28 relevant variables are not identified by any of
the strategies. More severe differences exist for the exclusion of variables
without any effect. For setting 1 (no correlation) the results are very similar
for all strategies (all with SCAD), with all distributions centred around 0.99,
implying that about 100 irrelevant variables were included. Results are a
bit worse for the naive strategy but the difference is not that large. For the
two settings with correlated variables, however, the specificity of naive seems
slightly better (around 0.998) than for the other. The median of the favoring
approach is a bit lower and in some cases specificity is below 0.99, which
means that more than 100 variables without effect were incorrectly included.
Corresponding plots comparing selection strategies (Figure 5) indicate more
differences. Concerning sensitivity, SCAD is slightly better than others if
variables are uncorrelated, but it has much lower values in the settings with
correlation. Sensitivity of lasso, elastic net and boosting are similar. For the
two correlated settings, elastic net has slightly lower specificity but altogether
differences are not that large (the values for ridge regression are not reported
in the plot as they are, by definition, 0).

5.3 Pre-screening

Some authors [e.g., 19] advise applying a pre-screening step which reduces
the number of irrelevant variables before actually implementing the main
statistical method. In this simulation study we implemented two well-known
procedures, the “sure independent screening” (SIS) and the “iterative sure
independent screening” (ISIS), both by [19]. The former is basically a uni-
variate method which is supposed to remove those variables which have no
association with the outcome. The marginal correlation between each vari-
able and the outcome is computed, and the d variables with the highest
correlation are kept. The latter procedure is a modification of the former
which aims at handling possible spurious correlation/multicollinearity issues.
In ISIS the variables are iteratively allowed to enter and exit the list of the
relevant ones, based on their correlation with the excluded (by the previous
step) variables and with the residuals of a model fitted using the variables
selected in the previous step.

In this simulation study. Both methods did not work very well in our
simulation study. ISIS, in particular, never converged, even when allowing
many more (ten times) iterations than the default value (10). Also consid-
ering the huge amount of computational time necessary to run it (probably
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not really problematic in a single study, an issue for extensive simulations),
we decided to exclude this procedure from the study. Results for SIS (here
implemented fixing d = 1000), instead, have not been reported in the analy-
ses above due to their bad performances. Figure 6 reports the results in one
specific case (in the case of strong correlation – setting 9 – but the results
are similar in the other scenarios). The only case in which SIS improves the
prediction is when ridge regression is applied. This can be easily explained
by the necessity of reducing the variance by removing the variables without
any effect from the prediction model. Ridge regression is, indeed, the only
statistical method here considered without intrinsic variable selection.

[Figure 6 approximately here]

6 Illustration on a real dataset

Here, we consider the data from [13] (available at the EMBL-EBI ArrayEx-
press database, www.ebi.ac.uk/arrayexpress, under accession number E-
GEOD-33070). They contain information about the percent of body weight
change of 26 kidney transplant recipients, together with some clinical infor-
mation (presence of diabetes, ethnicity and gender) and 28869 gene expres-
sions. Looking at the first 10 gene expressions measured (see Table S.1 in
the Supplementary Material), we note a situation similar to our second set-
ting. Some gene expressions (e.g., the 1st) are basically uncorrelated to the
others, while other gene expressions (e.g., the 2nd, the 3rd and the 5th) form
clusters of highly correlated gene expressions (the correlation between the
2nd, the 3rd and the 5th is around 0.8). It can be noted, however, that the
correlation structure is more complicated than in our scenarios: we discuss
the simulation design simplifications in Section 7.

In contrast to our settings, here the clinical variables are dichotomous.
Some are obviously correlated (e.g., diabetes before and after an operation),
some clearly not (see diabetes-pre-operation and ethnicity). About the rela-
tion with the gene expressions, let us consider as an example gender : Loosely
using the point-biserial correlation coefficient [17, it is impossible to check
the assumptions with only 26 observations], we can see that it is indepen-
dent of some gene expressions (e.g., 1st and 4th gene expression) and strongly
dependent on others (e.g., 8th).

Applying a specific split in training and test set, using boosting as a
statistical method we obtained a MSPE for the naive strategy equal to 58.31,
larger than the 32.69 obtained with strategy 4.1. Note that the sample size
is very small, so every split can lead to very different results (adding 10 more
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replications, we obtained an average MSPE of 62.50 and 61.51, respectively,
suggesting that there are splits in which strategy 4.1 performed even worse
than the naive strategy). Even with a larger sample size, however, one cannot
draw conclusions from a single (or a few) dataset(s) (it would mean a study
with n = 1), so this section must be understood only as an illustration.

Finally, since we do not know the truth, nothing can be said about sen-
sitivity and specificity.

7 Discussion

The results of this simulation provide some insight into the problem of in-
terest, confirming some well-known concepts (the necessity of treating the
clinical variables in a suitable way, the impact of the strength of the cor-
relation on the results, . . . ) and providing some unexpected evidence (e.g.,
summarizing all molecular information in a score to be added to the clinical
model can provide very good results). The limitations of this study, however,
are quite clear, as only two values for the correlation have been investigated,
only strong effects on the clinical part have been considered, and only de-
fault procedures to find the tuning parameters for the statistical methods
have been implemented.

In any case, one should be aware that a simulation study is limited by
nature, and, no matter how much “realistic” the data generating process is,
reality can be very different. Simplifications and specific choices for several
details are unavoidable, leading to a certain amount of arbitrariness [see e.g.
6]. An important exercise is to analyse the impact of the simulation design’s
characteristics on the results, in order to get useful information.

Sparse scenario. In this simulation study we only considered a limited
number of relevant variables (5 clinical and 25 molecular) and a large quantity
of completely irrelevant variables. This is most probably the reason why
ridge regression performs so poorly in our study, especially in contrast to
lasso. Tibshirani [39] showed that in the low-dimensional setting lasso has
better performances than ridge regression when there are only a few variables
with strong effect which carry the information. The contrary is true when
there are many relevant variables with small effects. Since ridge regression
has relatively good performance in many real data studies [see, e.g., 7], where
the signal may come from several low-effect variables, it is most likely that
the behaviour described in [39] also applies to high-dimensional settings.

Probably for the same reason, elastic-net seems to perform constantly
worse than lasso, although sometimes not by much. If the data are simu-
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lated in a way that is favorable to lasso, elastic-net can only get close to
its performance by heavily weighting the L1 term in its mixture penalty.
Figure 4, which shows very similar sensitivity and specificity for lasso and
elastic-net, seems to support this statement.

Linear and additive effects. Here we considered only linear and addi-
tive effects. While this is probably not realistic, the assumption is often
made in real data studies. It is worth noting that this characteristic may
be highly penalizing for pre-selection techniques like SIS and ISIS. A pre-
selection procedure like SIS may be highly effective, for example, in the case
of multi-modal marginal distributions in the case of classification of cluster-
ing [see, e.g., 15], while it seems unable to discriminate between relevant and
irrelevant variables in our simulation study. Again, considerations driven
from this simulation study must be taken as design-specific and not true in
general.

Simplified correlation structure. Another strong deviance from a real-
istic scenario is the regularity of our correlation structure. On the one hand,
this simplification (we have 50 blocks and for all blocks we have one sin-
gle value for the correlation among clinical variables, one for the correlation
among the molecular variables and one for the correlation between the two)
really helps understanding of the influence of the correlation strength on the
results. On the other hand, one would never experience a situation like this
in a real dataset. We saw in Section 6 that the correlation structure, even
limited to the first 10 gene expressions, is more complex. If, in contrast to us,
one is not interested in controlling the correlation structure, one may prefer
to use real data and only simulate the outcome [11].

Note that, with regard to our study, a simplified correlation structure may
represent an additional advantage for lasso in comparison to, for example,
ridge regression, as the latter is better than the former in dealing with cor-
relation among explanatory variables. Componentwise boosting also “bets”
on data sparsity.

Use of software default parameters. None of the statistical methods
has been optimized for the specific simulation, and our computations largely
rely on the default procedures implemented in the R packages. On the one
hand, this choice guarantees a fair comparison [43]. Familiarity with a specific
method, indeed, may result in its better optimization for the problem on
hand and, consequently, a competitive advantage against other approaches
[see, e.g., 5]. On the other hand, the use of default values does not allow
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fully exploitation of the potentialities of a statistical method. For example,
in our simulations, the value of the number of boosting steps, the most
important tuning parameter for boosting, was often selected as the largest
value (100) allowed by the default settings of the R routine used to perform
cross-validation. This issue may have had an impact on the results, for
example by favoring the dimensionality reduction strategy. In fact, when
combined with boosting, this approach performed better than the favoring
strategy, in contrast, for example, to what happens when using the usually
similarly-performing lasso (see, e.g., Table 6). Not having to update the
regression coefficients of the clinical variables, boosting could allocate all
the iterations to update the molecular variables and provide a very good
molecular score.

Another method which could have been penalized from the limited space
in which the tuning parameters have been investigated is elastic-net. For the
mixing parameter α we used a grid with intervals of 0.05. If the best value
would have been, let us say, 0.03, our tuning procedure would have selected
0.05. The results of elastic-net might have been closer to those of lasso if a
finer grid had been used.

The choice of the optimal tuning parameter in the context of data integra-
tion is an issue that certainly deserves further investigation. It is known to be
a key aspect of the method implementation [see, e.g. 20, 29, 30, 38], which
should take into consideration the goal of the analysis [24]. On the other
hand, excessive tuning may mean a reduced generalizability of the results, as
the choice of the tuning parameters may be driven by specific characteristics
of the dataset on hand [34].

Finally, note that for some tuning parameters the use of default values
is recommended by the authors of the methods themselves. This is the case
for the parameters α(= 3.7) of SCAD and the boosting step size ν(= 0.1) of
boosting. As long as their magnitude is reasonable, these parameters do not
affect the performance of the methods too much [18, 9]. There is no point,
therefore, to change them.

Evaluation criteria. Finally, we used classical criteria to evaluate the
performances of the combination strategies/statistical methods. A different
combination strategy/statistical method might have resulted the best when
using an absolute distance instead of a quadratic distance in the computa-
tion of the prediction error. More importantly, sensitivity and specificity,
although standard choices in biomedical applications, do not fully capture
the capacity of a combination strategy/statistical method to select the best
variables for prediction purposes. In particular, the selection of a variable
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correlated to a relevant one should be accredited when the former can easily
substitute the latter in the model. Criteria to capture this aspect, for exam-
ple that of [23], are worth investigation. Further discussion on this topic can
be found, among others, in [31],[36] and [37].

Final remarks. In this study we started by comparing 105 combinations
of strategies, statistical methods and pre-screening steps, to derive a com-
bined model. Since in our simulations ISIS did not converge, the description
in this paper only involves 70 of them. Furthermore we consider several set-
tings concerning the correlation structure. We consider this as a first study
to provide a general overview of some strengths and weaknesses of the consid-
ered approaches. Despite the limitations of the simulation design, significant
insights into the suitability of combination strategies/statistical methods and
early ideas about their advantages and disadvantages can be driven. Further
studies may start from these findings to perform a more detailed comparison
of the most promising combinations identified here.

Key Points

• Combining low-dimensional clinical and high-dimensional molecular in-
formation in a prediction model is beneficial but there are difficulties,
including handling complex correlation structures.

• Seven strategies to combine clinical and molecular variables and five
methods to derive a prediction model are contrasted, with and without
a pre-selection step, for a total of seventy strategy/method/screening
combinations.

• Depending on the correlation structure, specific combinations provide
better results in terms of prediction ability and selection of the relevant
variables.
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Figure 1: MSPE for the best statistical method (left column) and best strat-
egy (right column) in setting 1 (top row), 2 (middle row) and 9 (bottom row).
Results for ridge regression have been excluded for a better visualization.

Figure 2: Summary of the MSPE obtained with the several combinations
strategy/statistical method (excluding ridge) for the three selected scenar-
ios (coefficient of correlation between brackets). The box-plots report the
average MSPE for all combinations (ridge excluded) in 500 replications.

Figure 3: clinical data, sensitivity (left column) and specificity (right column)
for SCAD in setting 1 (first row), boosting in setting 2 (second row) and
boosting in setting 9 (third row).

Figure 4: molecular data, sensitivity (left column) and specificity (right col-
umn) for SCAD in setting 1 (first row), boosting in setting 2 (second row)
and boosting in setting 9 (third row).

Figure 5: molecular data, sensitivity (left column) and specificity (right col-
umn) for the favoring (with reduced clinical model) strategy in setting 1
(first row), setting 2 (second row) and setting 9 (third row). Sensitivity and
specificity for ridge regression are outside the plot limits, always equal to 1
and 0, respectively.

Figure 6: MSPE for the different combinations strategy/statistical method
with (grey) and without (white) a pre-selection step based on SIS.
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