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Datasets encountered when examining deeper issues in ecology and evolution are

often complex. This calls for careful strategies for both model building, model selection,

and model averaging. Our paper aims at motivating, exhibiting, and further developing

focused model selection criteria. In contexts involving precisely formulated interest

parameters, these versions of FIC, the focused information criterion, typically lead

to better final precision for the most salient estimates, confidence intervals, etc. as

compared to estimators obtained from other selection methods. Our methods are

illustrated with real case studies in ecology; one related to bird species abundance and

another to the decline in body condition for the Antarctic minke whale.

Keywords: bird species abundance, ecology, evolution, FIC and AFIC, focused model selection, linear mixed

effects, minke whales

1. INTRODUCTION

Only rarely will initial modeling efforts lead to “one and only one model” for the data at hand. This
simple empirical statement applies in particular to situations with complex data for complicated
and not-yet-understood mechanisms underlying the phenomena being studied, in ecology and
evolution, as well as other sciences. Thus, methods for model comparison, model selection,
and model averaging are called for. Not surprisingly there must be several such methods, since
the question “what is a good model for my data?” cannot be expected to have a simple and
clear-cut answer.

There are indeed several model selection schemes in the statistics literature, with the more
famous ones being the AIC (the Akaike Information Criterion) and the BIC (the Bayesian
Information Criterion; see Claeskens and Hjort, 2008b) for a general overview. The AIC and
BIC are able to compare and rank competing models for a given dataset, as long as they are
all parametric. These and yet other methods work in an “overall modus,” in appropriate senses
comparing overall fit with overall complexity, but they do not take on board the intended use of the
fitted models. This is where FIC (the Focused Information Criterion) comes in, along with certain
relatives. The FIC aims at giving the most relevant model comparison and ranking, and hence
also pointing to the best model, for the given purpose. What this given purpose is depends on the
scientific context. Indeed, two research teams might ask different focused questions, with the same
data and the same list of candidate models, and we judge it not to be a contradiction in terms that
three focused questions might have three different best models.

The present article gives an account of FIC and its relatives, including also certain extensions
of previously published methods. We do have models for ecology and evolution in mind, though
it is clear that the view is broader: we wish to find good statistical models for complex data, and
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can do so, once crucial and context driven questions are
translated to focus parameters. Our paper’s contribution is 2-fold.
(i) We aim at introducing the FIC methodology to researchers
in ecology and evolution. We have therefore strived to include
relevant examples, along with some R code. We also discuss
various topics of interest to applied researchers, particularly in
section 5. In this partly tutorial spirit, various technical details
have been placed in the Appendix. (ii) Our article also serves as
an outlet for a somewhat new FIC framework, termed the “fixed
wide model framework,” different from the “local asymptotics
framework” used in the majority of previous publications. Details
are in section 3, with material not been presented in this general
form before. In particular, the extension of this framework to
generalized linear models is novel.

To help fix ideas and some basic notation, we start with a
concrete application. We use the dataset from Hand et al. (1994)
regarding counts of the number of bird species on fourteen
areas, vegetation islands, in the Andes mountains with páramo
vegetation. In addition to the number of bird species y, there are
four covariates recorded for each such vegetation island: x1, the
area of the vegetation island in thousands of square kilometers;
x2, the elevation in thousands of meters; x3, the distance between
the area and Ecuador in kilometers; and x4, the distance from the
nearest island in kilometers.

y x1 x2 x3 x4
36 0.33 1.26 36 14
30 0.50 1.17 234 13
37 2.03 1.06 543 83
35 0.99 1.90 551 23
11 0.03 0.46 773 45
21 2.17 2.00 801 14
11 0.22 0.70 950 14
13 0.14 0.74 958 5
17 0.05 0.61 995 29
13 0.07 0.66 1065 55
29 1.80 1.50 1167 35
4 0.17 0.75 1182 75

18 0.61 2.28 1238 75
15 0.07 0.55 1380 35

Wemodel the number of bird species Y by a Poisson distribution
with mean exp(xtβ), where x in the widest model consists of the
constant 1 (modeling the intercept), all four covariates x1, . . . , x4
as main effects, and all six pairwise interactions between these
main effects. This amounts to a total of 11 parameters β0, . . . ,β10.
We wish to include the intercept parameter β0 in all candidate
models, and hence take it as a “protected parameter,” whereas
the other parameters are “open,” and can be pushed in and
out of candidate models. For this application, all submodels
of the largest 11-parameter model are considered, with the
further restriction that interactions between two covariates can
be included only if the two main effects are present. This results
in a total of 113 models.

The main distinction between FIC and various other
information criteria is the presence of a focus. This is a quantity
of interest that depends on themodel parameters and is estimable
from the data. The generic notation for the focus used in our
paper is µ. Its dependence on the model parameters might be
indicated by writing µ(β).

In the bird species study, our first focus concerns one of
the vegetation islands, Chiles. This area is the one among the
fourteen that is closest to Ecuador, and has covariate values x1 =
0.33, x2 = 1.26, x3 = 36, x4 = 14. We wish to select a model that
best estimates the expected number of bird species for this island,

that is, µ(β) = exp(xtβ) for the given covariate values for Chiles.
In our model search problem there are 113 models and hence
113 estimators forµ. Each such estimator, say µ̂M for a candidate
model M, comes with its own bias and variance, say bM and τ 2M .
Thus, for each candidate model there is a corresponding mean
squared error (mse)

mseM = τ 2M + b2M . (1)

The basic idea of the FIC is to estimate these mse values from
the data, for the wide as well as for each candidate model,
i.e., to construct

FICM = m̂seM = τ̂ 2M + b̂sqM , (2)

with the second term indicating estimation of the squared bias
bsqM = b2M . In the end one selects the model with the smallest
estimated mse.

For the bird species application, we use FIC for finding the
best model to estimate the expected number of bird species for
Chiles. We use the R package fic with the following lines of R
code, where we fit the wide model, specify the focus function, the
covariate value in which to evaluate this focus, and the specific
models that we wish to search through. In this example we restrict
the built-in all subsets specification to only using models that
obey the hierarchy principle (so out of the 210 = 1024 potential
submodels, only the 113 pointed to above are included).

library(fic)
wide.birds = glm(y~.^2, data=birds,
family=poisson)

focus1 = function(par, X) exp(X %*% par)
inds0 = c(1,rep(0,10)) # only the intercept
is in the narrow model

A = all_inds(wide.birds, inds0) # use all
subsets of the wide model

#exclude models with interactions that do
not have both main effects:

inds <- with(A,A[!(A[,2]==0 & (A[,6]==
1|A[,7]==1|A[,8]==1) |

A[,3]==0 & (A[,6]==1|A[,9]==1
|A[,10]==1) |
A[,4]==0 & (A[,7]==1|A[,9]==1
|A[,11]==1) |
A[,5]==0 & (A[,8]==1|A[,10]==1|
A[,11]==1)), ])

# specify the X used to evaluate the focus
function:

XChiles=model.matrix(wide.birds)[1, ]
fic(wide=wide.birds, inds=inds, inds0=inds0,
focus=focus1, X=XChiles)

For each of the 113 models we get via the output values of the
focus estimate, the estimated bias, standard error, and actually
two versions of the FIC of (2), corresponding to two related but
different ways of estimating the b2M part (for details, see section 2).
For FIC tables and FIC plots we prefer working with the square-
root of the FIC, i.e., estimates of the root-mse (rmse) rather than
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of themse, as these are on the original scale of the focus and easier
to interpret.

Table 1 is constructed from the output for a selection of
models, including the narrow model (1) which has a relatively
large (in absolute value) bias estimate of −19.035, a relatively
small standard error of 2.247 and a focus estimate of 20.71; the
wide model (113) with zero as the bias estimate though with a
large standard error of 6.051. This is a typical output: the wide
model contains 11 parameters to estimate which causes the
standard error to be large, the narrow model only contains the
intercept resulting in a small standard error. For the bias estimate
the scenario is reversed: the wide model has the smallest bias,
while the narrow model has a larger bias. The balancing act of
the FIC via the mean squared error finds a compromise. The
selected model (5) results in the smallest value of the square
root of the estimated mean squared error (rmse). Its indicator
sequence 10010,000000, with a one for β0 and β3, and zeroes
for the interactions, points toward the selected focus µ(β) =
exp(β0 + β3x3) with corresponding estimated focus value 38.88.
Using the widemodel would have resulted in a close 38.27 though
with a larger estimated root mean squared error. The wide model
only ranks at the 73rd place according to estimated rmse. Model
(20) is selected by the Bayesian information criterion BIC, it
consists of the intercept, all four main effects and the interaction
between x1 and x2. In the rmse ranking it comes at the 42nd
place. Model (67) is the one selected by the Akaike information
criterion, next to the intercept and all main effects it consists of
the interactions x1x3, x2x3, x2x4. This models ranks 32nd.

The second focus concerns the probability of having more
than 30 bird species, P(Y > 30 | x). Now we do not specify
a particular island but use the average FIC (see section 2.2),
with equal weights for the fourteen vegetation islands (non-equal
weights can easily be worked with too).

focus2 = function(par, X) 1-ppois(30,
lambda=exp(X %*% par))
Xall = model.matrix(wide.birds)
fic2 = fic(wide=wide.birds,inds=inds,
inds0=inds0,focus=focus2,X=Xall)
AVE = fic2[fic2$vals=="ave",]
which.min(AVE$rmse.adj)

The AFIC selects the following form for the mean: exp(β0 +
β1x1+β2x2+β4x4+β7x1x4). The averaged focus estimate of the

probability of observing over 30 bird species in the selectedmodel
equals 15.73%, while the wide model’s estimate is 21.83%, though
with a substantial larger estimated mean squared error due to
the estimation of 11 parameters instead of only 5 for the selected
model. Of course, AIC and BIC ignore any information regarding
the focus, and thus still recommend the very same models, model
(67) for AIC, with estimate 21.15%, and model (20) for BIC, with
estimate 21.59%. The AIC model ranks 16th, the BIC model is
now at the third place.

Figure 1 displays for these two foci the root-FIC and root-
AFIC values, as well as the estimated focus values, for all of the
113 models. The FIC or AFIC selected values, minimizing the
respective criteria, are indicated in red, while the wide model’s
values are in blue.

Several traditional model selection criteria, such as the AIC
and the BIC (see Claeskens and Hjort, 2008b, Chs. 2, 3) work
in an overall modus, finding models that in a statistical sense
are good on average, not taking on board the specific aims
of a study. The FIC works explicitly with such specific aims,
formalized via the focus parameters. Thus, FIC might find that
one model works very well for covariates “in the middle,” whereas
another model could work rather better for covariates outside
mainstream. Similarly, one model might work well for explaining
means, and another for explaining variances. We stress that the
FIC apparatus works for any specified focus parameter, and is not
limited to e.g., regression coefficients and the customary selection
of covariates from that perspective.

The generic FIC formula (2) cannot be immediately applied,
as efforts are required to establish formulae for approximations
to biases and variances, along with construction of estimators
for these quantities. Thus, the FIC formula pans out differently
in different situations, depending on the general framework, the
complexity of models, and estimators of the focus parameters.
A brief overview of general principles, leading to such
approximations and estimators, is given in section 2. This
also encompasses AFIC, ways of creating average-FIC scores
in situations where more than one focus parameter is at stake.

In section 3 we provide the general FIC formulae in the so-
called fixed wide model framework. The development of FIC
formulae ingredients in a somewhat different framework, with
local neighborhood models, is placed in Appendix. Generalized
linear models are used as examples, encompassing linear
regression, logistic and Poisson regression, etc. The more general

TABLE 1 | Bird species example.

Model Coef. indicators Focus Bias Se
√

FIC AIC BIC

1 10000,000000 20.714 −19.035 2.247 19.167 143.26 143.90

5 10010,000000 38.882 0.000 4.383 4.383 112.65 113.93

20 11111,100000 33.718 −2.156 4.670 5.143 91.91 95.74

28 11101,001000 26.356 −11.0468 3.674 11.642 98.54 101.74

67 11111,010110 39.784 0.000 5.296 5.296 91.44 96.55

113 11111,111111 38.269 0.000 6.051 6.051 95.72 102.75

This table is constructed from output of the R function fic for six of the 113 models, together with the AIC and BIC values. FIC selection takes place via the square root of the estimated

mean squared error of the focus estimator.
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FIGURE 1 | The two plots give values for a total of 113 Poisson regression models, related to two different focused questions. (A) FIC plot for estimating the expected

number of bird species for the Chiles region. (B) AFIC plot for estimating the probability of observing over 30 species, averaging over all 14 islands. The red dot and

line indicate the selected value, the blue triangle and line are for the wide model.

class of linear mixed models has proven important for various
applications to ecology, and in section 3.3 FIC formulae are
reached for such. In section 4 we use linear mixed effects models
with FIC for analyzing the body conditions of minke whales
in the Antarctic, where one focus parameter is the yearly decline
in energy storage. A general but brief discussion is then offered in
section 5. Here we touch on aspects of performance, along with a
few concluding remarks, some of which point to future research.

2. FOCUSED INFORMATION CRITERIA

The application concerning birds on vegetation islands in the
previous section was meant to provide intuition for the use of
FIC for model selection. Here we give a more formal, but brief,
overview of the FIC and AFIC schemes.

2.1. General FIC Scheme
Suppose we have defined a wide model which is assumed to
be the true data-generating mechanism. Estimating the focus
parameter using the wide model leads to µ̂wide, which under
broad regularity conditions will aim at µtrue, the unknown true
value of the focus parameter. Estimation via fitting a candidate
modelM leads to µ̂M , say, aiming for some least false parameter
µ0,M , typically different from µtrue, due to modeling bias. The
least false parameter in question relates to the best approximation
candidate modelM can manage to be, to the true model. There is
therefore an inherent bias, say

bM = µ0,M − µtrue,

associated with usingM.We saw estimates of this bias in the birds
application above, where small models could have larger biases.

The estimators will have certain variances. In most
frameworks, involving independent or weakly dependent
data, these tend to zero with speed 1/n, in terms of growing
sample size n. It is therefore convenient and informative to
write these variances as τ 2

wide
= σ 2

wide
/n and τ 2M = σ 2

M/n,
where the mathematics and approximation theorems associated
with different frameworks typically yield expressions for or

approximations to the σwide and σM . The mse of the focus
parameter estimators is the sum of the variance and the
bias squared,

msewide = σ 2
wide/n+ 02 and mseM = σ 2

M/n+ b2M . (3)

These quantities are measures of the risk, in the statistical sense,
associated with using each of the models for estimating µ. As
explained in the introduction, the FIC scores of (2) are estimates
of the mse of the focus parameter estimators, i.e., the µ̂M , for
a specific dataset, for each of the models under consideration.
Equation (3) is also an informative reminder that with more data,
variances get small, but biases remain. So using a model which is
not fully correct can still yield sharper estimators, as long as the
bias is moderate or small: |bM| < (σ 2

wide
− σ 2

M)1/2/
√
n. It is also

clear that with steadily more data, steadily more sophisticated
models can and indeed should be used. The FIC makes these
ideas operative.

In various cases the variance terms σ 2
M/n are easier to estimate

than the squared biases b2M . A starting point for the latter is

b̂M = µ̂M − µ̂wide, but the corresponding b̂
2
M will overshoot b2M

with about κ2
M/n, which is the variance of b̂M . With appropriately

constructed estimators of the quantities σwide, σM , κM (with
different recipes for different situations), this yields two natural
ways of estimating the actual mse values:

FICu
wide = σ̂ 2

wide/n+ 02 and FICu
M = σ̂ 2

M/n+ b̂2M − κ̂2
M/n,

FICwide = σ̂ 2
wide/n+ 02 and

FICM = σ̂ 2
M/n+max(̂b2M − κ̂2

M/n, 0).

(4)

The FICu scores are (approximately) unbiased estimates of the
mse, since b̂2M − κ̂2

M/n is (approximately) unbiased for b2M ,
whereas the FIC scores are adjusted versions, by truncating any
negative estimates of squared bias to zero, as we did in the first
example. If the true bias in question is some distance away from
zero, FICu

M will be equal to FICM . When faced with a specific
application one should decide on one of these two FIC versions,
and use the same choice for all models under consideration.
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In order to turn the general scheme (4) into clear formulae,
with consequent algorithms, we need expressions for or
approximations to the population quantities σM , bM , κM ,
followed by clear estimation strategies for these again. In most
cases we need to rely on large-sample approximations. Arriving
at clear formulae for σM etc. depends on the particularities of
the wide model, the candidate models, and the focus parameter.
We provide such FIC formulae, for two different frameworks
or setups. The first involves local asymptotics, with candidate
models being a local distance O(1/

√
n) away from the wide

model. This derivation is placed in Appendices A1 and A2. The
second avoids such local asymptotics and works from a fixed wide
model and a collection of candidate models (see section 3). It is
not a contradiction in terms that these two frameworks lead to
related but not identical FIC formulae, as different mathematical
approximations are at work.

2.2. AFIC, the Averaged-Weighted
Selection Scheme
The FIC apparatus above is tailored to one specific focus
parameter at a time. In a regression context this applies e.g., to
estimating the mean response function for one covariate vector
at a time, say µ(θ; x0). Often there would be active interest in
several parameters, however, as with such a µ(θ; x0) for all x0 in
a segment of covariates, or a probability P(Y ≥ y0 | x0) for a set
of thresholds, as in the birds study.

Suppose in general that an ensemble of estimands is of
interest, say µ(θ; v) with v ∈ V , and that a measure of relative
importance dW(v) is assigned to these. There could be only a few
such estimands under scrutiny, say µj for j = 1, . . . , k, along
with weights of importance w1, . . . ,wk. Estimation involving
all higher quantiles, or all covariates within a certain region,
however, would constitute examples where we need the more
general v ∈ V notation. Here we sketch the AFIC approach, for
estimating the relevant integrated weighted risk.

For each focus parameter in the ensemble of estimands there
is an associatedmse or risk, mse(v). The combined risk associated
with using modelM then becomes

rn(M) =
∫

mse(v) dW(v) =
∫
{σM(v)2/n+ bM(v)2} dW(v),

with the appropriate σM(v) and bM(v) = µ0,M,n(v)−µtrue(v). An
approximately unbiased estimate of this combined risk is

aficu(M) =
∫
{̂σM(v)2/n} dW(v)+

∫
{̂bM(v)2−κ̂M(v)2/n} dW(v).

This is the same as a direct weighted sum or integral of the
individual FICu(M, v) scores. The adjusted version, however,
where a potentially negative value of the estimated integrated
squared bias is being truncated to zero, is not identical to the
integral of the FIC(M, v) scores. It is rather equal to

afic(M) =
∫
{̂σM(v)2/n} dW(v)

+ max
[∫

{̂bM(v)2 − κ̂M(v)2/n} dW(v), 0
]
.

As with FIC, there are two related, but not identical,
approximation schemes, the fixed wide model setup and the
local asymptotics, of respectively section 3.1 and Appendix A1,
leading now to somewhat different AFIC formulae. For details
and applications (see Claeskens and Hjort, 2008a,b, Ch. 6).

There is a connection between Akaike’s information criterion
AIC and AFIC with certain model dependent weights (see
Claeskens and Hjort, 2008a, Sec. 6.2). Broadly speaking, the AIC
turns out to be large-sample equivalent to cases with AFIC where
“all things are equally important.”

3. FIC WITHIN A FIXED WIDE MODEL
FRAMEWORK

The FIC as used in the bird species example is the version as
derived in Claeskens and Hjort (2003), see also Claeskens and
Hjort (2008b, Ch. 6). For the estimation of bias and variance
a local asymptotic framework is used in which the parameters
of the true density of the data are assumed to be of the form
γ = γ0 + δ/

√
n, with n the sample size, see Appendix A1 for

more explanation. This assumptions means in practice that we
believe that all models are relative close to each other and to the
truth. Moreover, all models are submodels of a wide model. Since
the derivation of the FIC formulae is contained in the references
above, we only place a summary in the Appendix.

In this section we present the “fixed wide model” framework,
which is particularly useful if the set of candidate models are seen
as not being in a reasonable vicinity of each other. This second
framework allows candidate models of a different sort from the
wide model; in particular, a candidate model does not have to be
a clear submodel of the wide model. Keep in mind that the two
different FIC frameworks have the same aims and motivation;
the difference between them lies in the different mathematical
tools for estimating the relevant mse quantities, which lead to
different formulae. In the discussion section 5 we come back to
some differences between the two frameworks. Here we start in
section 3.1 by presenting the fixed wide model FIC in a general
regression setup. Then in the two following subsections we deal
with two specific model classes of general interest, generalized
linear models and linear mixed models, in more detail.

3.1. General Regression Models
In this subsection we use the familiar (xi, yi) notation for the
regression data, with xi the covariate vector in question. The FIC
machinery we develop here starts from the existence of a fixed
wide model. The development represents an extension of earlier
work of Jullum and Hjort (2017, 2019) for i.i.d. data and survival
analysis, Ko et al. (2019) for copulae models, Cunen et al. (2019)
for power-law distributions (with applications to war and conflict
data) and Cunen et al. (in review)1,2 for linear mixed effects
models (with application to whale ecology).

1Cunen, C., Walløe, L., and Hjort, N. L. (2019). Focused model selection for linear

mixed models, with an application to whale ecology. Ann. Appl. Stat.
2Cunen, C., Walløe, L., Konishi, K., and Hjort, N. L. (2019). Decline in energy

storage for the Antarctic minke whale (Balaenoptera bonaerensis) in the Southern

Ocean during the 1990s.
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Since we wish to estimate the mse of the focus estimator in
different models, we first consider the asymptotic distribution
of the parameter estimator in the wide model and next in the
other models of interest. The distributions are used to form the
mse’s of the focus estimators and finally we construct the fic as an
estimated mse and select the model with the smallest fic value.

Suppose a wide model density is agreed upon, of the
form f (yi | xi, θ), for a certain parameter vector θ , of length
p. We consider this to be the true model. This θ would
typically encompass both regression coefficients and parameters
related to the spread and shape of error distributions. Define
u(yi | xi, θ) = ∂ log f (yi | xi, θ)/∂θ the score function, and
Jn = n−1

∑n
i=1 Varwide u(Yi | xi, θtrue) the normalized Fisher

information matrix at the true parameter. Under mild regularity
conditions we have the following well-known result for the
maximum likelihood estimator θ̂wide,

√
n(θ̂wide − θtrue) ≈d Np(0, J

−1
n ). (5)

The notation indicates approximate multinormality to the first
order as the sample size grows, and can also be supplemented
with a clear limit distribution statement, in that case involving
a limit covariance matrix J for Jn. Consider now a candidate
model M, different from the wide one, perhaps also in structure
and form. With notation fM(yi | xi, θM) for its density, and
uM(y | xi, θM) for its score function, we have a maximum
likelihood estimator θ̂M , of length pM , maximizing the log-
likelihood function ℓn,M(θM) =

∑n
i=1 log fM(yi | xi, θM). If the

wide model is considered to be the truth, the estimator in
model M does not necessarily aim at the true parameter, but at
the least false parameter θ0,M,n, which is the minimizer of the
Kullback–Leibler distance from the data-generating mechanism
to the model; see details in Appendix A3. The estimator in the
candidate model has a limiting multinormal distribution, with a
sandwich type variance matrix,

√
n(θ̂M − θ0,M,n) ≈d NpM (0, J

−1
M,nKM,nJ

−1
M,n), (6)

where

JM,n = −n−1
n∑

i=1

Ewide
∂2 log f (Yi | xi, θ0,M,n)

∂θM ∂θ tM
and

KM,n = n−1
n∑

i=1

Varwide uM(Yi | xi, θ0,M,n).

The variance matrices here are defined with respect to the wide
model, at position θtrue.

From approximations (5–6) the delta method may be called
upon to read off relevant expressions for the approximate
distributions of the focus parameter estimators µ̂wide = µ(θ)
and µ̂M = µM(θM), where the latter is aiming for the least false
parameter value µ0,M,n = µM(θ0,M,n) associated with model M.
Crucially, we also need a multinormal approximation to the joint
distribution of (µ̂wide, µ̂M), in order to assess the distribution of
the bias estimator b̂M = µ̂M − µ̂wide; without that part we can’t

build an appropriate estimator for b2M . In Appendix A3, we go
through such arguments, and reach

(√
n(µ̂wide − µtrue)√
n(µ̂M − µ0,M,n)

)
≈d N2(0,6M,n). (7)

Here the 2 × 2 matrix 6M,n has diagonal terms ctJ−1
n c and

ctM,nJ
−1
M,nKM,nJ

−1
M,ncM,n, with gradient vectors

c = ∂µ(θtrue)/∂θ and cM,n = ∂µ(θ0,M,n)/∂θM

of lengths p and pM . The off-diagonal term of6M,n takes the form
ctJ−1

n CM,nJ
−1
M,ncM,n, with a formula for the required covariance

related term CM,n in the Appendix.
From (7) we can read off mse approximations,

msewide
.= ctJ−1

n c/n+ 02 and

mseM
.= ctM,nJ

−1
M,nKM,nJ

−1
M,ncM,n + b2M ,

with bias bM = µ0,M,n−µtrue. For the latter we use the estimator
b̂M = µ̂M − µ̂wide, where the result above also leads to a clear
approximation for the distribution of

√
n(̂bM − bM). This leads

to FIC formulae, unbiased and adjusted, as

FICu
wide = ĉt̂J−1

n ĉ/n+ 02 and

FICu
M = ĉtM̂J−1

M K̂M̂J−1
M ĉM/n+ b̂2M − κ̂2

M/n,

FICwide = ĉt̂J−1
n ĉ/n+ 02 and

FICM = ĉtM̂J−1
M K̂M̂J−1

M ĉM/n+max(̂b2M − κ̂2
M/n, 0).

(8)

Here ĉ and ĉM emerge by computing gradients of µ(θ) and
µM(θM) at their respective maximum likelihood positions, and
Ĵn, ĴM are computed as normalized observed Fisher information
matrices, for the wide and for the candidate model in question;
specifically, ĴM is 1/n times minus the Hessian matrix from
the log-likelihood, −∂2ℓn,M(θ̂M)/(∂θM∂θ tM). Also, the pM × pM
matrix K̂M is n−1

∑n
i=1 ûM,îu

t
M,i, with ûM,i = uM(yi | xi, θ̂M).

Finally, the κ̂2
M/n estimates involves also the p × pM matrix

ĈM , which is n−1
∑n

i=1 ûwide,îu
t
M,i. Model selection proceeds by

computing FICM , the estimated mse of the focus estimator µ̂M ,
for all models M of interest, and then selecting that model for
which this score is the lowest.

3.2. FIC for Generalized Linear Models,
With a Fixed Wide Model
We illustrate this FIC machinery for one popular class of
generalized linear models, namely the Poisson regressionmodels.
Generalizations to other generalized linear models are relatively
immediate. Suppose therefore that we have count data yi along
with a covariate vector xi of length p. For the fixed wide model
we take the Poisson regression model with yi ∼ Pois(ξi), with
ξi = exp(xtiβ) containing all covariate information; in particular,
there is also a true parameter βtrue there. Consider then an
alternative candidate model M which instead takes the means
to be ξM,i = exp(xtM,iβM), with xM,i of length pM , perhaps a
subset of the full xi, or perhaps with some entirely other pieces
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of covariate information. Here the log-densities take the form
−ξi + yi log ξi − log(yi!), which means

log f = − exp(xtiβ)+ yix
t
iβ − log(yi!) and

log fM = − exp(xtM,iβM)+ yix
t
M,iβM − log(yi!),

for the wide model and the candidate model, along with
score functions

u(yi | xi,β) = {yi − exp(xtiβ)}xi and

uM(yi | xM,i,βM) = {yi − exp(xtM,iβM)}xM,i.

From this we deduce

Jn = n−1
n∑

i=1

exp(xtiβtrue)xix
t
i ,

JM,n = n−1
n∑

i=1

exp(xtM,iβ0,M,n)xM,ix
t
M,i,

KM,n = n−1
n∑

i=1

exp(xtiβtrue)xM,ix
t
M,i,

along with the p× pM covariance matrix CM,n, defined as

n−1
n∑

i=1

Ewide {Yi − exp(xtiβtrue)}xi{Yi − exp(xtM,iβ0,M,n)}xtM,i

= n−1
n∑

i=1

exp(xtiβtrue)xix
t
M,i.

Consistent estimates of these populationmatrices are obtained by
inserting β̂wide for βtrue and β̂M for β0,M,n.

Notably, as long as there is a well-defined wide Poisson
regression model, as assumed here, the framework is sufficiently
flexible and broad to encompass also non-Poisson candidate
models. Using the FIC apparatus involves working with log-
likelihood functions and score functions for these alternative
models, leading to different but workable expressions for the
matrices JM,n, KM,n, CM,n above. The stretched Poisson models
used in Schweder and Hjort (2016, Exercise 8.18) are a case in
point; these allow both over- and underdispersion.

3.3. FIC for Linear Mixed Effects Models
Models with random effects, often called mixed effect models,
are widely used in ecological applications. In Cunen et al.
(in review)1 FIC formulae have been developed for the class
of linear mixed effect models (often abbreviated LME models).
Here we will give a brief description of that approach, which
also serves as a special case of the general FIC approach for a
fixed wide model framework, see (8). Generalizations to classes
of non-linear mixed effect models, and also to heteroscedastic
situations where variance parameters depend on covariates, can
be foreseen, following similar chains of arguments but involving
more elaborations.

Suppose we have n observations of yi, a vector of length
mi. The mi datapoints within each yi vector are assumed to be

dependent, and will often correspond to data collected in the
same space or time. Here we will refer to these data as belonging
to the same group. Each yi vector is associated with a regressor
matrix Xi of dimension mi × p for the fixed effects, and a design
matrix Zi of dimensionmi × k for the random effects. The linear
mixed effects model takes the form

yi = Xiβ + Zibi + εi for i = 1, . . . , n,

with the bi ∼ Nk(0,D) independent of the errors εi ∼
Nmi (0, σ

2Imi ). The model may also be represented as

Yi ∼ Nmi (Xiβ , σ
2(Imi + ZiDZ

t
i )), (9)

and its parameters are θ = (β , σ ,D). Note that the ordinary
linear regression model is a special case, corresponding toD = 0.
The log-likelihood contribution for this group of the data may
be written

ℓi(θ) = −mi log σ − 1
2 log |Imi + ZiDZ

t
i | − 1

2 (1/σ
2)(yi − Xiβ)

t

×(Imi + ZiDZ
t
i )
−1(yi − Xiβ).

The combined log-likelihood
∑n

i=1 ℓi(θ) leads to
maximum likelihood estimators and hence also to
µ̂wide = µ(β̂wide, σ̂wide, D̂wide) for any focus parameter
µ = µ(β , σ ,D) of interest.

In applied situations we will spend efforts and call on
biological knowledge to construct a well-motivated wide model,
of the form (9). This wide model will typically be based on our
knowledge of the system under study and, crucially, on how
the data were collected. Quite often the resulting model could
become big, in the sense that it includes a large number p of fixed
effects and also a large number k of random effects. Assume, as
we do throughout this paper, that our primary interest lies in the
precise estimation of some focus parameter µ, which could be
a function of the fixed effect coefficients β , and/or the variance
components (σ ,D). For such a µ = µ(β , σ ,D), can we find
another model which offers more precise estimates of µ than
µ̂wide = µ(β̂wide, σ̂wide, D̂wide) implied by the wide model?

FIC answers the question above; we can search among a set of
candidate models for one giving more precise estimates of µ. In
the simplest setting, the candidate model is defined with respect
to the same n groups as in the wide model in (9), and we write

yi ∼ Nmi

(
XM,iβM , σ 2

M(I + ZM,iDMZt
M,i)

)
.

This model has design matrices, XM,i and ZM,i, potentially
different from those of the wide model, and hence also a different
set of parameters, say θM = (βM , σM ,DM). Often, but not
necessarily, the candidate model will involve subsets of the
covariates (i.e., columns) included in Xi and Zi, respectively. Let
the covariate matrixXM,i have dimensionmi×pM , and ZM,i being
mi×kM . The focus parameter must then be represented properly
inside the candidate model, as µM = µM(βM , σM ,DM), leading
to the estimate µ̂M = µM(β̂M , σ̂M , D̂M).

In order to work out FIC formulae, we first need to study the
joint large-sample behavior of the estimator from the wide model
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µ̂wide and the estimator from the candidate model µ̂M . This is
as with Equation (7) in section 3.1, but the current framework is
more complicated and needs further efforts. Such work is carried
out in Cunen et al. (in review)1, and lead to

(√
n(µ̂wide − µtrue)√
n(µ̂M − µ0,M,n)

)
≈d N2(0,6M,n),

with all quantities defined analogously to what is presented in
section 3.1. These include matrices Jn, JM,n, KM,n, CM,n and
gradient vectors c and cM,n, defined similarly to those in section
3.1, but here involving more complicated details than for the
plainer regression models worked with there.

This work then yields the same type of FIC formulae as
for Equation (8), but with other recipes and formulae for the
required estimators for the quantities mentioned. Regarding
estimators for the matrices involved, we have three general
possibilities: (i) working out explicit formulae and plug in
the necessary parameter estimates; (ii) computing the matrices
numerically, involving certain numerical integration details; (iii)
via bootstrapping from the estimated wide model. In Cunen
et al. (in review)1 the first option is pursued, involving lengthy
derivations of log-density derivatives and their means, variances,
covariances, computed under the wide model. The resulting
formulae are too long for this review, but are fast to compute.
Options (ii) and (iii) have yet to be fully investigated, but will
likely be fruitful when extending this FIC approach to the wider
class of generalized linear mixed models (the so-called GLMMs).

The approach described here will be illustrated in section 4,
but we first offer some comments of a more general nature.
Readers familiar with linear mixed effects models will be aware
that there are two different estimation schemes for models of this
class, full maximum likelihood and so-called REML estimators,
for restricted or residual maximum likelihood. The REML
method takes the estimation of the fixed effects of the model into
account when producing estimators of the variance parameters.
For the computation of FIC scores the user might employ
either maximum likelihood or residual maximum likelihood
estimates, since these are large-sample equivalent; see for instance
Demidenko (2013, Ch. 3). As with the general FIC formulae (8)
there are two versions, the approximately unbiased estimates of
risks and the adjusted ones. In Cunen et al. (in review)1 it is
argued that the unbiased version

FICu
M = ĉtM̂J−1

M K̂M̂J−1
M ĉM/n+ b̂2M − κ̂2

M/n (10)

tends to work best for linear mixed effects models. The benefit
of this version is that good candidate models with small biases
earn more, compared to the wide model. Investigations show
that the FIC formulae of (10) work well, in the sense that they
accurately estimate the risk associated with the use of the different
candidate models. The FIC formulae are based on large-sample
arguments, which for the case of the linear mixed effects models
involves approximations to normality when the number n of
groups increases to infinity. These normal approximations work
well as long as the full sample size

∑n
i=1mi grows, particularly

for functions of the linear mean parameters. More care is

sometimes required when it comes to applications involving non-
linear functions of both mean and variance parameters, as with
estimates of probabilities µ = P(Y ≥ y0 | x0, z0).

4. APPLICATION: THE SLIMMING OF
MINKE WHALES

Our second application story concerns the potential change in
body condition of Antarctic minke whales over a period of 18
years. For a more thorough investigation consult Cunen et al.
(in review)2. Questions treated there have been discussed in the
Scientific committee of the International Whaling Commission
(IWC) for a number of years, and a full consensus has not been
reached. In the context of this review, therefore, the analysis
below should be taken as an illustration, and not necessarily the
last word on the topic of the decline in energy storage or body
condition for the minke whales.

Using data from the Japanese Whale Research Program under
Special Permit in the Antarctic (the so-called JARPA-1) we have
studied the evolution of fat weight in Antarctic minke whales
caught in 18 consecutive years, from 1988 and 2005. The main
biological interest lies in whether or not the whales experienced
a decline in body condition during the study period, and the
dissected fat weight (in tons or kg) is taken to be a proxy for
this body condition. Thus, there is a clear focus parameter in
this application: the yearly decline in fat weight (which we will
parametrize in a suitable fashion in the following).

The whales caught in each year are unevenly sampled with
respect to a number of covariates, for instance sex, body length,
age, and longitudinal region in the Antarctic ocean. Since all these
covariates may influence body condition we need to include them
in a model aiming at estimating the potential yearly decline in
the response. Based on lengthy and detailed discussions in the
Scientific Committee of the IWC, we have chosen a wide model
within the class of linear mixed effect models, see section 3.3.
In Cunen et al. (in review)2 we have used considerable efforts
to motivate the choice of covariates, interactions, and random
effect terms in the wide model, but these arguments are outside
the scope of the present article. In R-package-type notation, the
wide model can be given as

fatweight ∼ year+ year2 + bodylength+ sex

+diatom+ date+ date2 + age

+sex ∗ diatom+ diatom ∗ date
+diatom ∗ date2 + bodylength ∗ sex
+bodylength ∗ date
+bodylength ∗ date2 + sex ∗ date
+sex ∗ date2

+bodylength ∗ sex ∗ date
+bodylength ∗ sex ∗ date2

+age ∗ sex
+age ∗ date+ age ∗ date2

+age ∗ sex ∗ date+ age ∗ sex ∗ date2

+year ∗ sex+ year2 ∗ sex+ region
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+year ∗ region+ year2 ∗ region
+sex ∗ region+ diatom ∗ region
+region ∗ date
+region ∗ date2 + (1+ date

+date2 |year).

The region covariate reflects three different geographical
regions, associated with three regression coefficients summing
to zero.

The model defined above has p = 40 fixed effect coefficients.
The notation (1+ date+ date2 |year) specifies the random
effect structure; the groups are defined by a categorical version
of the year variable (so n = 18), and the Zi matrix has k = 3
columns (a column of ones for the intercept, date, and date
squared). According to prior biological knowledge, date is
assumed to be one of the most important effects governing the
fat weight. The variable refers to the day of the season when each
whale was caught, and since the whales are in the Antarctic to
gain weight the coefficient related to date is expected to be large
and positive. Also, the effect of date is expected to be different
from year to year, possibly due to fluctuations in krill production.
Hence, a random effect on date is included.We thus have a total
of 40 + 1 + 6 = 47 parameters to estimate. The total number of
observations, i.e.,

∑n
i=1 ni, was 683.

As mentioned above the main interest, for discussions at
several IWC meetings, has been the yearly decline in the
fatweight outcome variable. Since we have a quadratic year
term in our wide model, with that part taking the form βyearx +
βyear2x

2 for year x, a natural definition of the yearly decline is
µ = βyear + 2βyear2x0, with x0 the mean year in the dataset.
The focus parameter corresponds to the derivative of the mean
response, with respect to year, and evaluated in this mean year
time point. For candidate models with only a linear effect of year
the parameter simplifies to βyear only. Furthermore, for those
submodels where there is no year effect included, we have βyear =
0, a parameter value which then is estimated with zero variance
but with potentially big bias. For this example, we have limited
ourselves to investigating five candidate models only, in addition
to using the wide model itself; see Table 2.

We do not actually expect the mean level of decline in energy
storage to be either exactly linear or exactly quadratic over 18
years, but take this level of approximation to be adequate for
the purpose, since the decline over time curve is not far from
zero; also, our focus parameter is identical to the overall slope,
the mean curve evaluated at the end point minus its value at the
start point, divided by the length of time.

All the candidatemodels have a smaller number of fixed effects
than the widemodel. Note that the first candidate modelM1 has a
more complex random effect structure than the wide model itself
(with k = 6 giving a total of 21 random effect parameters). This
choice also demonstrates that there is nothing in the formulae
hindering us from having candidate models with more random
effects (or also more fixed effects) than the wide model. When
it comes to interpreting the results, it is usually more natural to
choose the wide model to be the largest possible plausible model,
however. The modelsM2 andM3 are very simple (with few fixed

TABLE 2 | Brief descriptions of the wide model and the five additional candidate

models, with the number of fixed effects, the number of random effects, and the

total number of parameters to be estimated, for each model.

Description p k d

M0 Wide model 40 3 47

M1 Less interactions, quadratic year effect 9 6 31

M2 Very simple, linear year effect 5 2 9

M3 Very simple, linear year effect 5 1 7

M4 Only linear year effect 2 1 4

M5 Like the wide, but without year effect 32 3 39

effects), and differ only in the their random effects. Model M4

includes only the linear year effect in addition to a single random
effect in the intercept. The last model, M5, is the model without
any year effect, so µM5 = 0. With the present focus parameter,
the FIC score of such a model will have zero variance and a bias
which only depends on the estimated focus parameter in the wide
model, and its estimated variance, so FICu

M5
= (0 − µ̂wide)

2 −
κ̂2
wide

/n, for the relevant κ2
wide

/n approximation to the variance
of µ̂wide. Thus, further specification of M5 is unnecessary; it
includes all possible LME models without any year effect. As the
candidate models worked with are not close enough to each other
to warrant the use of the local neighborhoods framework, we use
the “fixed wide model” approach.

After carefully constructing our wide model, and checked
that it passes various diagnostic tests, we can proceed to model
selection with the FIC. The results are given in the form of a FIC-
plot in Figure 2. We see that M2 gets the lowest FIC score, with
µ̂ = −7.76. The modelsM1 andM3 are close to the winning one,
both in terms of their FIC scores and their estimates of the focus
parameter. ModelM5, without the year effect had a considerably
larger FIC score than any of the other models (which can be seen
as an implicit test for the the null hypothesis of there being no
year effect). From the plot we can conclude that our best estimate
of the focus parameter is around−8 kg, or 80 kg loss of fat over a
decade. Furthermore, since the root-FIC values are about 1.50,
confidence intervals associated with these best point estimates
will clearly fall to the left of zero. A natural interpretation of
the FIC plot is therefore that the body condition decline, for the
Antarctic minke whales, has been negative and significant over
the study period.

To demonstrate the versatility of our approach, we have
investigated the same six models with respect to another focus
parameter, the probability of observing a whale with more than
a certain amount of fat, say 1.5 tons (1,500 kg), given some
covariate values: µ2 = P(Y ≥ 1.5 | x0, z0). Here we chose to
look at a 20 year old male whale, caught in 1991 in the eastern
region, of approximately mean length (8 m), and which is caught
toward the end of the season. Over the full dataset, the average
fat weight of a whale is close to 1.5 tons. The FIC scores and
estimates are given in Figure 2. We observe that the models give
widely different estimates, ranging from around 0.50 to 0.90, and
that the ranking of the models is very different from the ranking
when the focus was the yearly decline in fat weight. The smallest
modelM4 is considered the best for estimating the probability of
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FIGURE 2 | (A) Estimates of the yearly decline in fat weight, for the Antarctic minke whale population (vertical axis), along with root-FIC scores (horizontal axis), for the

wide model M0, marked in blue, and five additional candidate models M1, . . . ,M5. The scale is in kilograms of fat. (B) Root-FIC scores and estimates of the probability

of observing a whale with more than 1.5 tons of fat for the wide model (marked in blue) and the five candidate models.

observing a “medium fat” whale. Here, we see the typical bias-
variance trade-off at work: using M4 clearly gives an estimate
with some bias compared to the wide model (estimate of 0.60
instead of around 0.70), but the bias is compensated for by a
strong decrease in variance.

5. DISCUSSION

Our article hasmotivated, exhibited, developed, and extended the
machinery of Focused Information Criteria for model selection
and model ranking, with a few illustrations for ecological data.
Here we offer some general remarks.

1. The role of the wide model. The FIC idea is to
examine how different candidate models work regarding what
they actually deliver, in terms of point estimates for the
most crucial parameters of interest. This examination involves
approximations to and estimates of the risks, which for the
usual squared error loss function means mean squared error.
Quantifying the implied variances and biases relies on the
notion of a clearly defined (though unknown) data generating
mechanism. This is one of the roles of ourwide model. In the local
asymptotics framework of Appendix A1 this is the full model
f (yi | xi, θ , γ ) of (12), with p + q parameters; in the alternative
framework of section 3.1 it is what we term the fixed wide
model. Such a wide model needs to be well argued, as being
sufficiently rich to encompass the anticipated salient features
of the phenomena studied. Since quantification and consequent
estimation of variances and biases rest on the wide model being
adequate it ought also to be given a goodness-of-fit verification,
involving diagnostic checks etc.

One might inquire how sensitive the FIC scores are to the
choice of the wide model. In connection with the application
described in section 4 we have conducted some sensitivity checks
and found that moderate changes to the wide model had little
effect on the ranking of the different candidate models. Also,
for the wide models we have investigated, the estimate of the
focus parameter in the selected models was reasonably stable.

More radical changes to the wide model should be expected to
have greater effect, but we have not fully investigated this issue.
Fully guarding against all misspecification of the wide model is
unattainable, but extending our approach to even wider andmore
flexible wide models may lead to some improvements.

2. When should you use FIC? Practitioners may be interested
in model selection for different, overlapping reasons. On one
hand the goal might be to select the candidate model which
in a relevant sense is the closest to the true data generating
mechanism. Criteria based on model fit and some penalization
for complexity aim at this goal, for instance the well-known
AIC and BIC (see Claeskens and Hjort, 2008b) for a general
discussion. On the other hand, practitioners often seek a small
model offering precise estimates of the quantities they are
interested in. It is important to keep in mind that FIC specifically
aims at the second goal, and is not necessarily suitable for the
first goal. FIC offers a principled way to simplify a large, realistic
model which the user assumes to hold (i.e., to be realistically
and adequately close to the complicated truth). The goal of the
simplification is to obtain more precise estimates of quantities
of interest, say µ̂ for an underlying focus parameter µ. This
also includes producing predictions for not yet seen outcomes
of random variables, like the abundance of a certain species over
the coming twenty years. Here simplificationmust be understood
in a wide sense, as the candidate models do not necessarily need
to be nested within the wide model, as we have seen. The two
different motivations for model selection alluded to above partly
relate to the two goals for statistical modeling: to explain or to
predict, i.e., the “two cultures of statistics” (see Breiman, 2001;
Shmueli, 2010). For yet further perspectives on model selection
with focused views, coupled with model structure adequacy
analysis (see Taper et al., 2008).

Once a practitioner has decided to use FIC, she then has
to make a choice between the two FIC frameworks we have
discussed, using local asymptotics or a fixed wide model. As a
tentative guiding rule we advocate turning to the “fixed wide
model” setup if the set of candidate models are seen as not being
in a reasonable vicinity of each other. Also, we have seen that this
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framework allows candidate models of a different sort from the
wide model; in particular, a candidate model does not have to be
a clear submodel of the wide model. As stated before, the two
frameworks aim at the same quantities, and the choice may thus
also be guided by convenience. Note also that in many situations
the two frameworks may give similar results. For the special case
of linear regression models with focus parameters being linear
functions of the coefficients, the formulae turn out to be identical.
Also, for the classical generalized linear models, including logistic
and Poisson regressions, the formulae yield highly correlated
scores, as long as the focus parameters under study are functions
of such linear combinations xt0β + zt0γ . For more complicated
focus parameters, like probabilities for crossing thresholds, the
answers are not necessarily close, and will depend on both the
sample size and the degree to which the candidate models are
not close.

3. Model averaging. Model averaging is sometimes used as
an alternative to model selection to avoid the perhaps brutal
throwing away of all but one model. With model averaging
one computes the estimate of the focus quantity in all of the
models separately and then forms a weighted average which is
used as the final “model averaged” estimate of the focus. See for
example the overview paper about model averaging in ecology by
Dormann et al. (2018). Averaging estimates has as the advantage
that all models are used. The flexibility of choosing the weights
allows to give a larger weight to the estimate of a model that
one prefers most. Weights could be set in a deterministic way,
such as giving equal weights to all estimates, or could be data-
driven. It makes sense to use values of information criteria to
set the weights. Especially AIC has been popular (see Burnham
and Anderson, 2002) for examples of the use of “Akaike weights.”
Also FIC could be used to form weights that are proportional to
exp(−λ FICM/FICwide) for a user-chosen value of λ. One could
also try to set the weights such that the mean squared error of the
weighted estimator is as small as possible (Liang et al., 2011). Such
theoretically optimal weights need to be estimated for practical
use, which induces again estimation variability, and might lead to
a more variable weighted estimator as when simple equal weights
would have been used (Claeskens et al., 2016).

Model averaging with data-driven weights has consequences
for inference similar to the post-selection inference (see
below). Indeed, model selection may be seen as a form
of model averaging, with all but one of the weights equal
to zero and the remaining weight equal to one. Correct
frequentist inference for model averaged estimators needs to
take the correlations between the separate estimators into
account, as well as the randomness of the weights in case of
data-driven weights.

4. Post-selection issues. Model selection by the use of an
information criterion (such as FIC, or AIC) comes with several
advantages as compared to contrasting models two by two via
hypothesis testing.Withmodel selection there is no need to single
out one model that would be placed in a null hypothesis. All
models are treated equally. Multiple testing issues do not occur
because no testing takes place. The set of models that is searched
over can be large. The ease of calculating such information
criteria makes it fast and allows to include many models in

the search. However, there is a price to pay when one puts the
next step to perform inference using the selected model. Simply
ignoring that a model is arrived at via a selection procedure
results in p-values that are too small and confidence intervals that
are too narrow.

With a replicated study resulting in a dataset similar to but
independent of the current one, it might happen that a different
model gets selected, all the rest left unchanged. This illustrates
that variability is involved in the process of model selection.
One way to address such variability is via model averaging (see
e.g., Hjort and Claeskens, 2003, Claeskens and Hjort, 2008b,
Ch. 7, Efron, 2014). Berk et al. (2013) develop an approach for
the construction of confidence intervals for parameters in a linear
regression model that uses a selected model. Their approach is
conservative, in the sense that the intervals tend to be wide and
sometimes have a coverage that is quite a bit larger than the
nominal value. Other approaches to take the uncertainty induced
by the selection procedure into account is via selective inference
leading to so-called “valid” inference. See, for example, Tibshirani
et al. (2016, 2018). By using information about the specifics of
the selection method such inference methods result in narrower
confidence intervals as compared to the Berk et al. (2013)
method. The effect of increasing the number of models results in
getting larger confidence intervals (see Charkhi and Claeskens,
2018). Valid inference after selection is currently investigated for
several model selection methods. It is to be expected that more
results will become available in the future that guarantee that
working with a selected model happens in a honest way that takes
all variability into account.

It is well-known that estimators computed under a given
model become approximately normal, under mild regularity
conditions. It is however clear from the brief discussion above
that post-selection and more general model-average estimators
have more complicated distributions, as they often are non-
linear mixtures of approximately normal distributions, with
different biases, variances, and correlations. Clear descriptions
of large-sample behavior, for even complex model-selection
and model-average schemes, can be given inside the local
asymptotics O(1/

√
n) framework of Appendix A1, as shown in

Hjort and Claeskens (2003), Claeskens and Hjort (2008b, Ch. 7),
with further generalizations in Hjort (2014). Inside the general
framework of (12), with estimators µ̂M as in (13), consider the
combined or post-selection estimator

µ̂∗ =
∑

M

ŵ(M)µ̂M ,

with data-driven weights ŵ(M) summing to one. If these are
weights take the form w(M |Dn), withDn =

√
n(γ̂wide−γ0) as in

(15), there is a very clear limit distribution,

√
n(µ̂∗ − µtrue) →d 30 + ωt{δ − δ̂(D)}, where

δ̂(D) =
∑

M

w(M |D)GMD. (11)

This extends the master theorem result (17), to allow even for
very complicated post-selection and model averaging schemes.
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The q×qmatricesGM in this orthogonal decomposition are as in
(16). The result remains true also for schemes based on weights
involving AIC or FIC weights, as the appropriate weights can
be shown to be close enough to the relevant w(M |Dn). These
limiting distributions can be simulated, at any position in the δ

domain. Yet further efforts are required to turn such into valid
post-selection or post-averaging confidence intervals, however
see Claeskens and Hjort (2008b, Ch. 7) for one particular general
(conservative) recipe, and for further discussion of these issues.

5. Performance. It is beyond the scope of this article to
go into the relevant aspects of statistical performance of the
FIC methods. One may indeed study both the accuracy of
the final post-selection or post-averaged estimator, say for the
µ̂∗ above, and the probabilities for selecting the best models.
Such questions are to some extent discussed in Hjort and
Claeskens (2003) and Claeskens and Hjort (2008b, Ch. 7);
broadly speaking, the FIC outperforms the AIC in large parts
of the parameter space, but not uniformly. There are also
several advantages with FIC, when compared with the BIC,
regarding precision of the finally evaluated estimators. Notably,
all of these questions can be studied accurately in the limit
experiment alluded to above, where all limit distributions
can be given in terms of the orthogonal decomposition
30 + ωt{δ − δ̂(D)} of (11).

6. FIC for high-dimensional data.Whenmodels contain a large
number of parameters, perhaps even larger than the sample size,
maximum likelihood estimation might no longer be appropriate.
The use of regularized estimators, such as ridge regression, lasso,
scad, etc. requires adjustment to the FIC formulae. Even when
the regularization takes automatic care of selection, Claeskens
(2012) showed that selection via FIC is advantageous to get
better estimators of the focus. Pircalabelu et al. (2016) used
FIC for high-dimensional graphical models. For models with
a diverging number of parameters FIC formulae using a so-
called desparsified estimator have been obtained by Gueuning
and Claeskens (2018). FIC may also be used to select tuning
parameters for ridge regression. The focused ridge procedure of
Hellton and Hjort (2018) is applicable to both the low and high-
dimensional case and has been illustrated in linear and logistic
regression models.

7. Extensions to yet other models. The methods exposited in
section 3.1, yielding FIC machinery under a fixed wide model,
can be extended to other important classes of models. The
essential assumptions are those related to smooth log-likelihood
functions and approximate normality for maximum likelihood
estimators for the candidate models. Sometimes developing such
FIC methods would take considerable extra efforts, though, as
exemplified by our treatment in section 3.3 of linear mixed
effects models. In particular, the methodology extends to models
with dependence, as for time series and Markov chains with
covariates (see Haug, 2019). This involves certain lengthier efforts
regarding deriving expressions and estimation methods for the
KM,n and CM,n matrices of (6, 7). Analogous FIC methods for
time series are shown at work in Hermansen et al. (2016) for
certain applications in fisheries sciences. Similar remarks also

apply to the advanced Ornstein–Uhlenbeck process models used
in Reitan et al. (2012) for modeling complex layered long-term
evolutionary data. Specifically, these authors studied cell size
evolution over 57 million years, and entertained 710 candidate
models of this sort. An extension of our paper’s FIC methods
to their process models is possible and would lead to additional
insights in their data.

A challenge of a different sort is to develop FIC methods also
when the models used are too complicated for log-likelihood
analyses, but where different estimation methods may be used.
A case in point are models used in Dennis and Taper (1994), for
dynamically evolving times series models of the form yt+1 =
yt + a + b exp(yt) + σ zt , met in density dependence analyses
for ecology. These models do not have stationary distributions
and special estimation methods are needed to analyse the
candidate models.
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