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ABSTRACT Deep learning has delivered promising results for automatic polyp detection and segmentation.
However, deep learning is known for being data-hungry, and its performance is correlated with the amount
of available training data. The lack of large labeled polyp training images is one of the major obstacles in
performance improvement of automatic polyp detection and segmentation. Labeling is typically performed
by an endoscopist, who performs pixel-level annotation of polyps. Manual polyp labeling of a video
sequence is difficult and time-consuming. We propose a semi-automatic annotation framework powered
by a convolutional neural network (CNN) to speed up polyp annotation in video-based datasets. Our
CNN network requires only ground-truth (manually annotated masks) of a few frames in a video for
training and annotating the rest of the frames in a semi-supervised manner. To generate masks similar to
the ground-truth masks, we use some pre and post-processing steps such as different data augmentation
strategies, morphological operations, Fourier descriptors, and a second stage fine-tuning. We use Fourier
coefficients of the ground-truth masks to select similar generated output masks. The results show that it is
possible to 1) produce ~ 96% of Dice similarity score between the polyp masks provided by clinicians and
the masks generated by our framework, and 2) save clinicians time as they need to manually annotate only
a few frames instead of annotating the entire video, frame-by-frame.

INDEX TERMS Colonoscopy, polyp segmentation, convolutional neural networks, semi-automatic, anno-

tation, semi-supervised.

I. INTRODUCTION
Colorectal cancer (CRC) is the second and third most com-

monly diagnosed cancer in the world for females and males,
respectively [1]. Most cases of CRC originate from small
benign mucosal protrusions called adenomatous polyps.
Over time, some of these polyps can turn into cancer if
left untreated [2]. Colonoscopy is the preferred method
for the detection and removal of such polyps, alterna-
tively detecting early cancers when they can be successfully
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treated [3]. Colonoscopy is, however, operator dependent,
and polyp miss-rate is reported around 22%-28% during
colonoscopy [4].

Deep learning approaches, specifically convolutional neu-
ral networks (CNN), have demonstrated a strong performance
for polyp detection and segmentation [5S]-[12]. Not only do
such deep models outperform traditional machine learning
methods, but they also come with the benefit of not requiring
difficult feature engineering. However, deep learning is a
data-driven and data-hungry approach, i.e., its performance is
highly correlated with the amount of available training data.
The lack of large labeled polyp training images is one of the
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major obstacles in performance improvement of automatic
polyp detection and segmentation [12]-[16]. Although there
are some publicly available datasets (e.g. [17]-[21]), higher
quality and a larger quantity of fully annotated datasets of
polyp images and videos are highly desirable [14], [15].
Unlike a still frame dataset, a database of polyp videos can
preserve temporal dependencies among frames. This tem-
poral information is helpful to improve the performance of
polyp detection [9]-[11]. Collecting and anonymizing polyp
videos might not be as difficult as annotating them. Expert
endoscopists are required to interpret colonoscopy videos
and annotate them frame by frame. This process is time-
consuming, and unnecessary work has to be repeated for the
same polyp that appears in a sequence of neighboring frames.
This might be one of the main obstacles of not realizing a
large labeled database of polyp videos.

In this paper, we propose a framework powered by a new
CNN based network to semi-supervisingly segment out polyp
regions in video sequences and eliminate most of the unneces-
sary work needed for polyp annotation task. Our CNN has an
encoder to extract hierarchical features from the input images,
and multiple decoders (MDe) to restore the extracted features
into a mask image. Hence, we name our network MDeNet.
For each video, clinicians need to provide ground-truth of
only a few numbers of frames. We use the manually annotated
frames with their ground-truth to fine-tune a pre-train CNN,
our proposed network. We also use the ground-truth masks
as reference annotations to monitor outputs of the proposed
framework. Based on these references, the proposed frame-
work will generate masks for the rest of the remaining frames
in the video.

Il. RELATED WORK

There are many annotation tools [14] where an annotator
has to draw polygons around objects by numerous clicks on
the object boundary. Bernal er al. [14] used the datasets of
polyps from the Gastrointestinal Image ANAlysis (GIANA)
challenge! to qualitatively compare their labeling method
with other similar and popular annotation tools. These tools
are impractical for annotating video frames due to the massive
manual workload in terms of the required number of clicks
and time per frame.

Interactive segmentation methods for annotation aim at
reducing human interactions to a few clicks, and thereby
reducing the time costs required for each image. In a weakly
supervised manner, annotators can select objects of interest
by providing weak annotations such as strokes and bounding
boxes [22]-[24]. The conventional interactive segmentation
methods [25]-[27] typically look at low-level clues, such
as colors, texture, etc. to segment the target object, leading
to poor segmentation in cases of similar foreground and
background appearances. Recently, deep learning has played
an important role in the improvement of interactive segmen-
tation techniques [22]-[24]. Although the output of deep

lavailable at https://giana.grand-challenge.org/
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learning-based interactive segmentation approaches looks
much better than the conventional methods, they require sub-
stantial user interactions to produce satisfactory segmenta-
tion. This problem limits the use of those models for video
annotation.

Semi-supervised video segmentation is another approach
to annotate video frames in a more timely and efficient man-
ner. In this approach, a segmentation model tries to provide
annotations for the remaining frames of a video after it has
been exposed to manual labels of a few frames of the same
video. There are three trends to do this: propagation-based
methods [28]-[34], appearance-based methods [35]-[37],
and hybrid methods [38]. Propagation based methods lever-
age temporal coherence of object motion such as optical flow
to propagate ground-truth labels from labeled to unlabeled
frames. This approach seems to be vulnerable to temporal
discontinuities like occlusions and rapid motion. It can also
suffer from drifting once the propagation becomes unreli-
able [28]. To solve these problems, appearance-based meth-
ods have been proposed [35]-[37], in which a model learns
the appearance of the target object from a set of given labeled
frames, and then perform pixel-level detection of the target
object at each frame. This approach seems to be vulnerable to
appearance changes and object instances with similar appear-
ances. Hybrid models aim to benefit from the advantages of
both methods [38].

Our method falls in the line of hybrid research as we
use temporal information among neighboring frames to
strengthen an appearance-based model. Unlike other works
[28]-[31], [35]-[38], which often train a model on manual
labels of the first and/or the last frames, we recommend
selecting k frames for manual labeling. That is because
semi-automatic colonic polyp annotation in videos is chal-
lenging due to the complex environment of the inner lining
of the colon (mucosa) and the existence of various polyp-like
structures. In addition, when the endoscope moves in the
colon, the appearance of the same polyp changes in neigh-
boring frames. It will be difficult for a model to learn all the
scene changes from the ground-truth of the frame where the
targeted polyp first appears. We use the manually annotated
ground-truth to fine-tune a pre-train CNN (our MDeNet) to
learn the appearance changes of the target object from every
interval period T'. This is important for an annotation method
to avoid generating unreliable masks and produce accurate
segmentation so that they can be used as ground-truth images.
Our novel algorithm provides an essential tool to reduce
tedious manual labeling of video sequences. An annotator
has to draw polygons around the target objects (polyps in our
case) at the start, in some keyframes, and at the final frame.

ill. METHODS

A. NETWORK ARCHITECTURE OF MDeNet

We would like our MDeNet to 1) accurately segment out the
targeted polyps from the background with precise boundaries,
2) have a relatively small number of parameters so that it
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FIGURE 1. The network architecture of MDeNet. Every iteration, the network takes in a frame from the target video as the input RGB
image of size 256 x 256 x 3, and generates a corresponding binary mask of size 256 x 256 x 1. The cyan boxes correspond to the
encoder path, and the blue ones to the decoder paths. The resolution and the number of channels are denoted either at the bottom or
next to the boxes such that the first two numbers are width and height, and the third is the number of channels.

can easily converge on a limited amount of manual annota-
tion data, and have relatively fast inference times. Figure 1
illustrates the network architecture of MDeNet. It consists of
an encoder and multiple paths of decoders. The encoder has
four layers to extract different levels of features from the input
image. Ateach layer of the encoder, there is a decoder to inter-
pret the extracted features. In the encoder path, we lose some
spatial information due to the contraction. We use multiple
decoders to increase contextual and semantics information
by utilizing the features from different scales. This step also
increases the receptive field which helps to segment polyps
of different sizes more precisely [39], [40]. We concatenate
the outputs of the decoders by stacking them in a single
layer. We apply a convolutional layer with ranh activation
function on the concatenation layer to generate the output
mask. This concatenation helps combine lower and higher
levels of features in order to achieve accurate segmentation
with satisfactory boundaries for the targeted objects.

A 4 x 4 unpadded convolution with stride 2 is applied
for downsampling at each layer of the encoder path. Every
convolutional layer is followed by a leaky rectified linear
unit (Leaky ReLU) and batch normalization. We double the
number of feature channels and halve the resolution at each
down-sampling step. In each layer of the decoders, we up-
sample the feature maps by applying a 4 x 4 deconvolution
with stride 2, each followed by a rectified linear unit (ReLU)

VOLUME 7, 2019

and batch normalization. The decoder paths halve the number
of feature channels and double the resolution. To generate
binary polyp mask images, we concatenate the feature maps,
which have the same dimensions of the input image, of the
final layers of the decoder paths and apply a 3 x 3 padded
convolution followed by fanh activation function.

The ground-truth of the training data is binary mask
images, in which white pixels correspond to polyp pixels and
black pixels correspond to the background. Xue et al. [41]
showed that multi-scale L1 loss could force a CNN network
to learn spatial relationships between pixels when features
from multiple scales (i.e. multiple layers) are used to predict
the output. Similarly, we predict the output binary masks
from the concatenated feature maps decoded from multiple
layers. Therefore, we choose the pixel-wise L1 loss as the
objective function to update the network parameters in order
to generate a precise boundary for the target polyps. Later,
we evaluate other pixel-wise segmentation losses such as
dice and cross-entropy losses. L1 loss computes the absolute
error between the ground-truth mask X and generated output
binary mask Y as follows:

Cf] (W) =

Z ZIX Yil,

j 1 i=1
Y=MUI;W), (1)
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where M is the CNN model, 7 is the input RGB image, W is
the network parameters, m is the size of mini-batch, and # is
the number of pixels.

B. PARENT MODEL

A large amount of training data is desired to train a CNN
based network. If a limited number of training data is avail-
able, the network struggles to learn and find the global min-
ima. It is our ambition to use as few labeled images as possible
to reduce the amount of work required for manual polyp
annotation. To learn the generic notion of polyp appearances,
we use the binary masks of CVC-ColonDB dataset [18]
(explained in Section IV-A) to pre-train the parameters of
the CNN networks investigated in this study, including our
MDeNet. We augment the images by rotating, zooming in &
out, and shearing to increase the number of training images.
For our MDeNet, we use Adam optimizer with a learning rate
of 0.0002 and an exponential decay rate of 0.5 for 100 epochs.
For the other networks, we use hyper-parameters recom-
mended by the original papers for training. These pre-trained
networks might fail to segment polyps from unseen images
because they are unable to obtain generalization ability from
this small training dataset. However, their parameters have
some sort of knowledge of generic notion which helps the
convergence of the networks when they are fine-tuned on the
selected frames of the target videos.

C. FOURIER DESCRIPTORS

Polyp masks have a closed contour in the output binary image
of the network. The closed contour can be approximated to
an elliptical shape (see Figure 1). We use elliptic Fourier
descriptors (FD) proposed by [42] for the characterization of
closed contours. Even though the coefficients are invariant
with the starting point, rotation, dilation, and translation, they
contain precise information about the shape of the contour,
and thus can be used for shape discrimination in binary
images. Elliptic Fourier descriptors start from the chain code
that approximates a continuous contour by numbering eight
standardized line segments as follows

C = q1929394....9k , (2)

where each link g; is an integer number between 0 and 7 ori-
ented in the direction of (;r/4)q;. Fourier series expansion
is appropriate for the x and y projections of the chain code
because the code repeats on successive traversals of a closed
contour. The truncated Fourier expansion for a closed counter
can be written as

2n71 t

XNy = ag + Zan cos + b,, sin 3)

2nmt 2nmt
YN:c0+chcos " n

“

+ ¢, sin

N is the number of harmonics needed in the Fourier approxi-
mation. ag and co are DC components and excluded from the
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features vector. a,, by, c,, and b,, are the coefficients which
define the contour shape and can be calculated from the chain
code as follows

cn = 2n2 5 PX_: i);j :cos 2n¥tp — cos 2nlp ] @)
b = ot ,; %ﬁ s zmTT " sin 2 J®

where 7, is the time required to traverse the first p links in the
chain code, and x, and y, are, respectively, the projections on
x and y of the first p links of the chain code.

D. PROCEDURE OF THE PROCESS
Figure 2 illustrates the entire procedure of the proposed
framework, which consists of two trials. In the first trial,
for each specific video, we initialize the network parameters
from the parent model. We select a frame with a selection
frequency of T in the target video V

={fi. o 3. fas e it )

We set the selection frequency to be T = 50, i.e. a frame is
selected at every 50 consecutive frames. The selected frames
which we call them reference frames F, with their manual
masks M, respectively, are

Fr = {f1.£50: 100 f150 w-vvenvene i} (10)

M, = {ml,mSo,mloo,m15o, ........... ,m[}. (11

We always include the first and last frames in the set of the
selected frames. We apply different augmentation techniques
on the selected frames to improve the performance. We only
apply those augmentation strategies that may simulate differ-
ent scene variations in real colonoscopy videos. To remove
imperfections at the inner and outer boundaries of the gener-
ated masks, we perform morphological closing followed by
morphological opening using the same structuring element
of size 5 x 5. The closing operation can fill some small
holes that may appear inside the generated masks. We apply a
morphological filling-hole operation to eliminate this artifact
from the final output.

The results of the first trial may not be convenient and
accepted as ground-truth images. The same polyp may be
missed and producing irregular shapes is possible. We pro-
pose a second trial to enhance the results. We use shape
information of the reference ground-truth masks M, to collect
more frames with their generated masks in the target video
from the results of the first trial. We combine the reference
frames and the collected frames to enlarge the training data
for re-fine-tuning MDeNet. We perform a bidirectional scan

VOLUME 7, 2019
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FIGURE 2. The entire procedure of the proposed method. MDeNet is pre-trained on a dataset of polyp images to obtain the parent
model. The parent model is fine-tuned on a set of manually annotated reference frames (frames surrounded with green boxes) of
the target video. The fine-tuned model is applied to the entire frames in the video. Fourier descriptor is used to eliminate irregular
shapes generated by the model. More frames are collected (frames surrounded with red boxes) to further fine-tuning the parent
model. The re-fine-tuned model is applied to all frames again. Fourier descriptor is applied to select only those generated masks

similar to the reference masks.

on the generated masks from both sides of the reference
images F, to choose only those generated masks that are
similar to the manual annotations M,. We compute elliptic
Fourier coefficients for every mask generated by the model
and compare them with the coefficients of its corresponding
reference mask using Li-norm

Li(mi, mg) = | (FD(m;) — FD(my) |,
m; € M,
i=1,50,100,...... .1,
foreachi, g=1ix1,ix2,i£3, ... inexsprev- (12)

where m; is the reference masks and myg is the generated
masks. In other words, we used Eq. 12 to take into account
shape information and coherence information between the
reference masks and the masks generated for the consecutive
frames. Since Fourier descriptors are invariant to position,
we robust the Li-norm similarity measure by including the
center of object mass. Again, we apply the same augmenta-
tions on the collected frames, fine-tune the model, and feed-in
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the entire target video to the retrained network. On the results
of the second trial, we apply the same closing, opening, hole-
filling, and bidirectional scan to eliminate irregular masks and
imperfections.

IV. RESULTS AND DISCUSSION

A. DATASETS

We use two publicly available datasets: CVC-ColonDB
dataset [18] which consists of 300 images of 15 unique
polyps, and ASU-Mayo Clinic dataset [20] which consists
of 38 fully annotated videos. We use CVC-ColonDB dataset
to pre-train and initialize the parameters of the CNN net-
works in order to obtain their parent models as explained
in Section III-B. Originally, the authors in [20] divided
ASU-Mayo Clinic dataset into training and test subsets. They
assigned 20 videos for the training phase and 18 videos for the
test phase. We couldn’t get access to the 18 videos assigned
for the test phase due to licensing problems. Among the
20 videos assigned for the training phase, 10 are positive (with
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TABLE 1. Performance improvement of the proposed framework in a step-wise manner.

Methods MDeNet

Original v v v v v v v v v v
+Rotation v v v v v v v v v
+Zoom-In v v v v v v v v
+Zoom-Out v v v v v v v
+Darkness v v v v v v
+Brightness v v v v v
+Closing & Opening v v v v
+Filling holes v v v
+Fourier Descriptor v v
+2" trial v
Dice 0.649 0.745 0.765 0.778 0.783 0.793 0.820 0.822 0.854 0.946
improve by % 0 9.6 2 1.3 0.5 1 2.7 0.2 3.2 9.2
Jaccard 0.607 0.689 0.710 0.724 0.728 0.739 0.767 0.772 0.805 0.933
improve by % 0 8.2 2.1 1.4 0.4 1.1 2.8 0.5 3.3 12.8

polyps), and 10 negative (without polyps). In our test phase,
we only need to use 10 positive training videos to evaluate the
performance of the proposed framework. Although there exist
some mis-labelings in the ground-truth images, this dataset is
the only publicly available polyp dataset useful for quality
assessment of the proposed annotation framework. This is
because the polyp masks are polygon boundaries manually
drawn by endoscopists. This enables us to compare the qual-
ity of annotations obtained by the proposed algorithm to the
annotations provided by endoscopists.

B. EVALUATION METRICS

In order for any semi-automated annotation framework to
be practically useful, it has to generate labels similar to the
ground-truth provided by experts. In our case, we need to
compute the overlap percentage between the polyp masks
generated by the proposed method and manual reference
masks drawn by endoscopists. We use two well-known over-
lap ratio measures: Jaccard index (also known as intersection
over union, IoU), and Dice similarity score. Jaccard index
computes the intersection of generated masks, A, and refer-
ence masks, B, divided by the size of their union as follows:

|ANB| |ANB |
|AUB| |A|+|B|—|ANB|
Similarly, Dice computes the intersection of generated masks,

A, and reference masks, B, divided by the average size of A
and B as follows:

JA,B) = (13)

2|ANB|
|Al+ 1B
The two metrics are sensitive to misplacement of the seg-

mentation label, and that makes them very useful metrics for
performance evaluation of the proposed method.

Dice(A, B) = (14)

C. PERFORMANCE IMPROVEMENT

For each test video in the ASU-Mayo Clinic dataset,
we noticed that 100 epochs for the first trial and 30 epochs
for the second trial were enough to fine-tune the parent
model. Table 1 shows the performance improvement of the
proposed framework in a step-wise manner. With only the
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original reference frames as the training data, the proposed
method could obtain 64.9% of Dice and 60.7% of Jaccard.
When we increase the training data by applying different
augmentation strategies, the performance increases gradually.
We applied the following augmentations on the reference
frames: 1) rotations by 90°, 180°, 270°, horizontal and verti-
cal flips; 2) Zooming in and out by 5%, 10%, 15%, 20%, 25%,
and 30%; 3) brightening and darkening by 25% and 50%.

With these augmentations, we could enhance 14.4% and
13.2% of Dice and Jaccard, respectively. Morphological
closing and opening added 2.7% on Dice and 2.8% on
Jaccard. The improvement by the filling-hole operation is
small because MDeNet produced very small hole artifacts.
Closing and opening operations cannot remove FP objects
with irregular shapes which might be generated at ran-
dom places. We applied Fourier descriptors to choose only
those generated masks similar to the reference masks and
remove irregular shapes in the output images. With this post-
processing, we could improve Dice by 3.2% and Jaccard by
3.3%. Figure 3 illustrates a case where Fourier descriptors
could successfully eliminate those irregular shapes gener-
ated by MDeNet. After the second trial was applied, Dice
and Jaccard improved dramatically by %9.2 and %12.8,
respectively. Figure 4 shows the final output results of three
video sequences after applying the second trail and the
post-processing techniques.

D. WHY THE PARENT MODEL?
As discussed in Section III-B, the parent model has some
basic knowledge of the generic notion of polyp appearances,
but it is unable to segment polyps from unseen video frames
without fine-tuning it on several selected frames in the video
(see Table 2). Figure 5 demonstrates that the parent model
helps to speed up the fine-tuning progress. Without the parent
model, the network needs more time to learn. The time needed
for convergence differs for each video and depends on the
number of available reference frames for training.

For some videos when selection frequency T was 50,
the network without the pre-trained parameters could not
even converge after training for more than ten thousand

VOLUME 7, 2019
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TABLE 2. Performance evaluation of MDeNet with and without parent
model (pre-trained model).

Models ] First Trial _Second Trial
Dice  Jaccard Dice  Jaccard
Parent 0.381 0.351 - -
Fine-tuning parent model 0.854 0.805 0.946 0.933
Training without parent model | 0.727 0.693 0.804 0.792

TABLE 3. Effect of the number of reference frames on the performance of
the framework.

selection frequency T . First Trial Second Trial
Dice Jaccard Dice Jaccard
1 0.958 0.947 - -
10 0.892 0.859 0.955 0.946
25 0.860 0.816 0.948 0.938
50 0.854 0.805 0.946 0.933
100 0.807 0.762 0.872 0.856

epochs. To guarantee network convergence the parent model
becomes necessary. Table 2 shows that the results with the
parent model are also better compared to the results with-
out the parent model. That is because the model has never
converged for two of the videos. In summary, the parent
model helps the network converge in a very short time on
a small selection frequency 7', and improves the results for
annotation.

E. IS IT OVER-FITTING?

The way that we fine-tune the parent model to annotate the
polyp in the target video may arise a question. One may
ask ‘“are we really trying to over-fit the network for the
polyp in the target video?”” To answer this question, we first
fined-tuned the parent model for a polyp in one of the videos
in ASU-Mayo Clinic dataset, and then applied it to anno-
tate unseen polyps in other videos. Figure 6 shows that the
fine-tuned model can only successfully annotate the polyp in
the video used for fine-tuning, and fails to segment different
polyps in other videos. Therefore, we can assume that the
model gets over-fitted on the target video after the fine-tuning
training.

F. EFFECT OF THE NUMBER OF REFERENCE FRAMES

In the previous experiments, we chose a frame at every
50 consecutive frames. Table 3 demonstrates how the per-
formance improved when more frames were selected for the
fine-tuning phase of the first trial. As shown in Table 3,
selecting more frames for manual annotation could enhance
the results of the first trial. However, we did not achieve a
noticeable improvement in the performance of the second
trial. This is due to the collection of extra training frames from
the results of the first trial. When 7' = 100, the model was
unable to obtain good results compared to the other cases.
However, when T = 50, it seems to be enough for the
framework to achieve results close to the results of 7 = 10.
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FIGURE 4. The final output of the proposed framework for two target videos, each with a unique polyp. Each sub-figure (a and b) contains the foIIowing:
the 15t row shows the input RGB frames, the 2"d row is the output binary masks generated by the model after am}lying all the post-processings, the 3"

row shows the ground-truth masks provided by clinicians, in the ath row we overlay the output binary masks (2"

(15t row).

TABLE 4. Effect of using different loss functions for training MDeNet.

Models ] First Trial Second Trial
Dice  Jaccard Dice  Jaccard
L1_Loss 0.854 0.805 0.946 0.933
Dice Loss 0.82 0.766 0.912 0.897
Entropy Loss | 0.806 0.745 0.889 0.866

G. EFFECT OF USING DIFFERENT LOSS FUNCTIONS

In the previous experiments, we used L1 loss to train the
models. In this experiment, we compare the performance
of different pixel-wise loss functions, such as dice loss and
binary cross-entropy loss, which are commonly used for
image segmentation. Table 4 shows quantitative results of the
three loss functions. The results confirm that L1 loss is able
to generate better binary output masks from the concatenation
layer decoded from multiple layers. We also surmise that this
superior performance of L1 loss might be related to the reason
that the model somehow tries to over-fit on the target polyps,
and it seems that the L1 loss function is sufficient to help the
model achieve this goal with better results.
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FIGURE 5. Fine-tuning progress for a video with and without the
pre-trained parameters of the parent model.

H. PERFORMANCE COMPARISON OF MDeNet WITH
OTHER CNN NETWORKS

In this experiment, we evaluate the performance of different
well-known CNN architectures in our proposed framework
shown in Figure 2. We replaced our CNN (MDeNet) with a
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FIGURE 6. A case where the parent model was fine-tuned for the polyp
appearing in video (a), and applied to annotate to unseen polyps in video
(b) and (c). The fine-tuned models could successfully annotate the polyp
in video (a) because it was already seen during fine-tuning. It failed to
annotate the polyp in video (b). It could partly segment the polyp in video
(c) because it seems to have some features of the polyp in video (a).

TABLE 5. Results of MDeNet compared with other CNN architectures
used in the proposed framework.

Models ] First Trial Second Trial
Dice Jaccard Dice Jaccard
MDeNet 0.854 0.805 0.946 0.933
U-Net 0.838 0.790 0.912 0.901
FCN 0.827 0.779 0.891 0.882
Mask R-CNN | 0.812 0.761 0.876 0.818

fully convolutional neural network (FCN) [43], [44], a U-Net
like network, and Mask R-CNN [45]. We used a U-Net archi-
tecture consisting of 8 layers in each its encoder and decoder
paths. We used ResNet50 as the feature extractor network for
Mask R-CNN. Compared to these CNNs, our MDeNet has
less number of trainable parameters, meaning it has faster
convergence and inference times. Table 5 shows that MDeNet
has outperformed all the other three networks in both trials.
This can be evidence for the ability of MDeNet to accurately
segment out the target polyps from the background. Mask
R-CNN is the state-of-the-art object segmentation method,
however, it has performed poor for polyp annotation. There
could be two reasons for this: 1) Mask R-CNN is developed
for instance segmentation, not annotation, or 2) ResNet 50 is
designed in such a way that much effort has been spent to
prevent the model from over-fitting.

I. DISCUSSION
As noticed in the tables presented, in all cases the Dice
similarity index is higher than the Jaccard index. Jaccard
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(b)

FIGURE 7. Two examples of manual annotation errors for the same
polyps in three consecutive frames. Each sub-figure (a and b) contains
the following: 15t row frames are the input RGB, binary images in the 2"d
row are annotations provided by clinicians, and binary images in the 37
row are the final output of the model, in the 4th row we overlay the
output binary masks (3™ row) on top of the input RGB frames (15t row).
Note: The region bounded by the blue circle is an artifact from light
reflection that looks like a polyp. This artifact can also be considered as
an example of one of the challenges to differentiate between real and
fake polyps when it comes to polyp detection and segmentation.

is numerically more sensitive to mismatch when there is a
reasonably strong overlap. Therefore, the Dice index is cur-
rently more popular than the Jaccard overlap ratio.

As shown in table 3, even when T = 1 we struggled
to exceed 96% of Dice because the manual annotations by
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clinicians in ASU-Mayo Clinic dataset are not free from
human imperfections. Figure 7 illustrates two examples of
manual errors in the test dataset. Figure 7.a shows that clin-
icians draw masks with different sizes for the same polyp in
three consecutive frames whereas our model could give con-
sistent annotations. Figure 7.b shows that clinicians missed
the same polyp in two consecutive frames whereas the model
was successful to nicely segment it from the background in all
frames. This consistent segmentation is a clear advantage of
using deep learning for qualitative annotation. Approximately
30 seconds to 1 minute is required to manually annotate a
frame. With our framework and MDeNet, at least 2 hours can
be saved for a video clip of 300 frames as we need clinicians
to annotate only 6 frames to get satisfactory segmentation.

V. CONCLUSION AND FUTURE WORK

We proposed a semi-automatic framework for polyp anno-
tations in video-based datasets. For this, we developed
MDeNet, a convolutional neural network (CNN) based net-
work, which can be trained on a few manually annotated
frames and generate masks for the rest of the frames. The
aim was to reduce the time spent on the unnecessary repeated
work to annotate consecutive frames and thus speed up the
annotation process. This framework has the potential for
not only endoscopic image annotation but for other forms
of medical image semi-automatic segmentation. The results
showed that ground-truth images similar to the ones provided
by clinicians can be achieved with only a limited number
of manually annotated frames. For future work, we aim to
develop an efficient key-frame selection algorithm to choose
only those frames that identify abrupt changes in the target
video. The goal will be to select a few frames as possible
for manual annotation and still be able to achieve satisfactory
results.
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