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Abstract

Benth and Süss recently published a paper where they proposed a
continuous-time cointegration paradigm in a finite and infinite-dimensional
framework. Motivated by their article, we present a Hilbert-valued multi-
market forward rate model satisfying the Heath-Jarrow-Morton equation.
Also, we give some insight into the no-arbitrage condition in terms of the
covariance operator in the so-called Filipovic space. Moreover, we perform
an empirical study of the Norwegian yield curve as Nelson-Siegel smoothed
government bond observations in a functional data analysis setting. In
particular, we carry out a functional Kwiatkowski—Phillips—Schmidt-
–Shin test of stationarity following the lines of Horváth, Kokoszka and
Rice [24].
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1 Introduction

The topic of this thesis is to model the term structure of interest rates as a
curve taking values in a separable Hilbert space. The aim of this thesis is
twofold. Firstly, we construct a framework for studying forward interest rates
and cointegration in the Heath-Jarrow-Morton framework, loosely based on the
paper by Benth and Süss [4]. Secondly, we introduce the functional data analysis
(FDA) and perform an empirical study in terms of functional data analysis.
In particular, we carry out a functional Kwiatkowski–Phillips–Schmidt–Shin
(fKPSS) test of stationarity on Norwegian government bond data as Nelson-
Siegel smoothed curves in a functional time-series framework, following the
lines of Hórvath, Kokoszka, and Rice [24].

At the intersection of stochastic analysis and functional inference, we are
concerned with the inherent infinite dimensionality of continuous functions,
signifying the necessity of functional analysis in both stochastic analysis, prob-
ability, and even statistics. As such, there has been a tremendous development
in the field over last century, from the groundbreaking early works of Volterra,
Gateaux, Frechet, and Lévy 1, to the introduction of the axiomatic probability
theory by Kolmogorov in the 1930s [30]. Subsequently, Itô introduced the
stochastic integral and formulated the so-called Itô calculus, which is considered
the foundation of stochastic analysis. To this end, we provide the reader with
a swift yet comprehensive introduction to the infinite-dimensional stochastic
analysis.

HJM-modelling and forward curves

Our main theoretical concern in the modelling part, is the function-valued
stochastic differential equation

dX(t) = (AX(t) + f(X(t)))dt+B(X(t))dZ(t), X(t0) = X(0) (1.1)

where A is a densely defined unbounded operator which generates a C0-
semigroup on a Hilbert space H, f(X(t)) an H-valued function, B(X(t)) a
linear operator, and a Z(t) an U-valued noise process, where X(0) is a F0-
measurable random variable.

1See the preface of Huang and Yan [26] for a rigorous introduction to the history of
function valued stochastic processes
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1. Introduction

Such an equation is thoroughly studied in Peszat and Zabczyk [37], for
Z(t) = L(t) being a square integrable Lévy process, Carmona and Tehranchi
[13] for Z(t) = W (t), a cylindrical defined Wiener process, and in Prato and
Zabczyk [14] with Z(t) = W (t) a Q-Wiener process.

Let H and U denote two different separable Hilbert spaces. We will build a
forward rate model which evolves according to a Heath-Jarrow-Morton model,

df(t, T ) = α(t, T )dt+ 〈σ(t, T ), dZ(t)〉U.

Here, α is H-valued and σ is B(U,H)-valued, such that the forward curves are
H-valued. In order to obtain arbitrage-free dynamics of the forward rates, we
must ensure that the drift of the process, satisfies the so-called HJM-condition,
which is not a straightforward task. By arbitrage-free dynamics, we mean that
the discounted bond price process

P̂ (t, T ) = exp
(
−
∫ t

0
r(s)ds

)
P (t, T ), (1.2)

must be a local martingale under a risk neutral probability measure Q. Here
r(s) denotes the short rate process. We will, to some extent avoid the problem
of changing measures with the aid of well-established results on the no-arbitrage
condition. A surprising link between stochastic partial differential equations
and the HJM equation emerged when Musiela [33] parametrized the curves in
time to maturity instead of the maturity time, i.e., we set x = T − t, such that
T = t+ x. The forward rate dynamics is then,

df(t, t+ ·) = ( ∂
∂x
f(t, t+ ·) + α(t, t+ ·))dt+ σ(t, t+ ·)dZ(t), (1.3)

which puts us in the same situation as (1.1). Here ∂
∂x denotes the partial

derivative, which generates a C0-semigroup under certain conditions on H.
Now for the purpose of modeling forward rates, our state-space of choice

will be the Filipovic space Hw (see Filipovic [17]), a weighted Sobolev-type of
space, defined by functions satisfying

‖f‖2w = f2(0) +
∫ ∞

0
w(x)(f ′(x))2dx <∞, (1.4)

where f ′ is the weak derivative of f , w(0) = 1 and
∫∞
0 w(x)−1dx <∞. This

space has a plenitude of pleasant properties with regards to forward rate
modelling in Hilbert spaces, and is therefore the preferred state-space, and
noise space of choice later on.

We end the first part of the thesis by proposing a multi-market forward
rate model where the noise in the forward curves originates from a sum of an
idiosyncratic terms, Y (t), Z(t) and a shared term X(t). That is, we let f1 and
f2 denote two forward rates from different markets and define

f1(t, t+ ·) = X(t, t+ ·) + Y (t, t+ ·) (1.5)
f2(t, t+ ·) = X(t, t+ ·) + Z(t, t+ ·), (1.6)
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where X,Y, Z are three possibly correlated processes which evolves according
to (1.1), i.e.,

dX(t) = (A1X(t) + F1(X(t)))dt+ Σ1dW1(t)
dY (t) = (A2Y (t) + F2(Y (t)))dt+ Σ2dW2(t)
dZ(t) = (A3Z(t) + F3(Z(t)))dt+ Σ3dW3(t).

The next step is to study the properties of the multi-dimensional two-factor
model under the HJM framework. Let A1 = A2 = A3 = ∂

∂ξ , and consider the
H2-valued process,

d
[
f1(t)
f2(t)

]
=
( [ ∂

∂ξ 0
0 ∂

∂ξ

] [
f1(t)
f2(t)

]
+
[
F1,2(f1(t))
F1,3(f2(t))

] )
dt+

[
Σ1 Σ2 0
Σ1 0 Σ3

]dW1(t)
dW2(t)
dW3(t),


where Fi,j(·) = Fi(·) + Fj(·), for i = 1 and j = 2, 3. Then, we give a criteria
for obtaining arbitrage-free dynamics of df(t) = d(f1(t), f2(t))T , according to
the HJM-condition. In particular, we show that the no-arbitrage condition
for H = Hw-valued forward curves and U = Hw-valued noise, vanishes for a
time-independent non-random noise operator Σ, when the covariance operator
Q, of the Wiener-process in Hw is an integral operator.

The purpose of the last section in the study of forward curves and cointe-
gration, is to provide a connection between stationarity and invariant measures
in terms of the solutions of f(t), as presented in Tehranchi [47].

Functional Data Analysis and the functional KPSS test of
stationarity

Functional data analysis is concerned with statistical methods applied to
observations, which we regard as continuous functions. The term functional
data, first introduced by Ramsay [40] in 1982, extends the classical notion of
statistics to the more general framework in terms of functional analysis. The
idéa of applying statistical concepts and methods on continuous mathematical
objects is found already in 1950 Grenander [18], which studied inference on
stochastic processes. A walk-through of the history of functional data analysis
is found in the summary of Wang et al. [48].

We will introduce the basics of functional data analysis, including estima-
tion, principal component analysis, and functional data series. In particular, we
prepare the reader with the necessary background in order to perform the test
of functional stationarity. To that end, we also include some theory regarding
functional dependency, specifically m-dependency and Lp −m approximability.

We will study forward curves, which we often will call yield curves. They
are theoretically continuous in time and is therefore of interest to examine
in a functional data framework. We are using the Nelson-Siegel family of
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1. Introduction

parametrized functions to smooth discrete government bond observations to
obtain the yield curves. We apply the functional test of stationarity developed
by Hórvath et al. [24] on the obtained Norwegian yield curve. The null
hypothesis is formulated under the assumption of stationarity motivated by
the works of Kwiatkowski et al. [31], in contrast to Dickey and Fuller [15] type
of tests, which assumes the existence of a unit-root.

Given yield curves as functional data X1(t), X2(t), . . . , XN (t) ∈ L2([0, 1]),
the null-hypothesis is then,

H0 : Xj(t) = µ(t) + ηj(t), for 1 ≤ j ≤ N and 0 ≤ t ≤ 1 (1.7)

where µ(t) is the mean, and ηj(t) is a stationary process in terms of Bernoulli
shifts. The test statistic is defined as,

TN =
∫ 1

0

∫ 1

0
(SN (x, t)− xSN (1, t))2dtdx,

where

SN (x, t) = 1
N1/2

bNxc∑
i=1

Xi(t), 0 ≤ x, t ≤ 1.

Later on, we will see that the test statistic depends on the long-run covariance
of the error terms of (1.7). Consequently, we find that we cannot reject the
null-hypothesis of the fKPSS test applied to segments of the Nelson-Siegel
smoothed Norwegian yield curves. As far as we know, there has never been done
a similar functional test on the Norwegian yield curve. Besides, our findings
are contrary to Kokoszka and Young’s [29] suggestion of non-stationarity found
in the American yield curve. However, they smooth the bond observations
using splines directly, unlike our indirect Nelson-Siegel approach.

Regarding inference for functional data, the monograph by Bosq [11] is a
great unification of the theory of function-valued stochastic process and esti-
mation, although rather technical. Other thorough introductions to functional
data analysis are e.g., Ramsay [39], Horváth et al. [22], Hsing and Eubank
[25], which all aims at a frequentist and tractable approach to the subject.
Given the plenitude of possible approaches to the matter, we try to respectfully
introduce FDA without being too technical, in line with Horváth et al. [22].

The importance of interest rate modelling in the actuarial
sciences

This thesis is submitted under the master’s programme Stochastic Modelling,
Statistics and Risk, with a specialization in insurance. Therefore, we give some
motivation for why our contributions regarding the study of yield curves, may
be of interest in the actuarial sciences and insurance industry. In the study of
mathematical finance, we first encounter interest rates (either deterministic
or stochastic) in the money market account as part of the risk-free asset in

8



investment strategies. Hence, a financial engineer needs to handle the interest
rate, when for instance, pricing options.

Also, a practitioner in life insurance must deal with the pricing of products,
which depends on stretches over extended periods, for which it is crucial to
handle the time value of money. In practice, the companies must use the
yield curve constructed by the European Insurance and Occupational Pensions
Authority as part of Solvency 2 for discounting purposes. This scheme applies
to all countries in the European Union. Nevertheless, there is still a need to
assess the risk. Since we are not capable of foreseeing what the interest rate
might be decades forward in time, we are forced to model the uncertainty of
the interest rates mathematically, often done by SDE’s in terms of the short
rate or the forward rate, as mentioned before.
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1. Introduction

The writing process

After completing a course on interest rate modelling offered at the university,
we discussed the option of writing a thesis in which interest rate modelling
was a vital part. My supervisor handed me the paper by himself and Süss [4],
which proposed a continuous-time paradigm for studying cointegration in terms
of finite and infinite-dimensional valued stochastic processes. The starting
point of this thesis was, therefore, to investigate the cointegration properties
of forward curves from different markets, under the Heath-Jarrow-Morton
framework driven by Lévy noise.

Multiple choices needed to be taken at this point. What should be the
state space for the forward curves? Should the forward curves be finite or
infinite-valued? Lévy noise, Wiener noise? Cylindrical Wiener or Q-Wiener?
After some time, the choice of framework fell on the infinite-dimensional
Hilbert-valued configuration with Q-Wiener noise. This choice was motivated
by the troublesome hedging strategies emerging in finite-rank models, as shown
in section 2.4 in Carmona and Tehranchi [13]. In short, the finite rank models
do not incorporate maturity-specific risk in hedging contingent claims, and
there is not necessarily a unique hedging portfolio of zero-coupon bonds.

The Filipovic space Hw, is tailor-made for the function-valued HJM model,
and is, therefore, a natural choice of state space for the forward curves. A
drawback of the infinite-dimensional framework is that of the increased com-
plexity compared to the finite models. As a consequence, a big part of this
thesis consisted of learning the necessary functional analysis.

Motivated by the complex nature of interest rate products, I wanted to
get some hands-on experience by performing an empirical study of Norwegian
interest rates, in particular, yield curves. Since yield curves are intrinsically
infinite-dimensional, my supervisor introduced me to the field of "functional
statistics", called functional data analysis. In consultation with my supervisor,
we settled on performing a test of stationarity for functional data, proposed
by Hórvath et al. [24].

As time went by, the thesis turned into a two-part project, consisting of
HJM modelling and functional data analysis of the Norwegian yield curve,
with stationarity as the common denominator. In what follows, it will become
apparent that we conclude with the possibility of further study in several parts
of the thesis.
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List of Symbols

A σ-algebra of subsets of some set
1A Indicator function
B Banach space
BHS(H,E) Space of Hilbert–Schmidt operators from H toE
B(·) Borel σ-algebra of some set
δ(·) Evaluation operator
B(H,E) Space of bounded operators from H to E
C Hilbert–Schmidt operator on Hw

E σ-algebra on S∞
Df(·) Fréchet derivative of f
F Hilbert space
F σ-algebra of subsets in probability space
Ft Filtration with respect to F
g(t, ξ) Musiela notation forward curve, g(t, t+ ·)
H Hilbert space
Hn Product Hilbert space
Hw Filipovic space
L(H,E) Space of linear operators from H to E
L0

2 = L2(U0,H) Space of Hilbert–Schmidt operators from U0 to H
Lp2 Space of L2 functions satisfying vp(X) <∞
L2([a, b]) square integrable functions defined on [a, b]
N The set of natural numbers
Ω Nonempty measurable set
ΩT The product space [0, T ]× Ω
P Probability measure
PT Product Lebesgue measure
PX(H) The law of X
PT σ-algebra
P∞ σ-algebra
φX(y) Characteristic functional of X
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1. Introduction

Q Risk-neutral probability measure
Q Covariance operator
Q0 Integral operator form of covariance operator in Hw

R Set of real numbers
R+ Set of real numbers restricted to [0,∞)
Rn Product space of real numbers
Rn×m Set of real-valued m× n matrices
σ(·) Generator of σ-algebra
S(t) C0-semigroup on some space
S2(0, T ;L0

2) Space of stochastically integrable elements
SW (0, T ;L0

2) Space of stochastically integrable elements (with weakened conditions)
S∞ Infinite product sequence space
Ŝ2

PCA Projection sum in PCA
Σ Noise operator in HJMM equation
U Hilbert space
U0 = Q1/2(U) reproducing kernel of W (t)
V (t) Portfolio strategy at time t
W (t) Wiener process
Z Set of positive natural numbers
X Nonempty measurable set
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2 Preliminary Functional
Analysis and Probability
Theory

The theory of probability and stochastics in function spaces requires an un-
derstanding of general function and operator analysis. Since this is a thesis
considering interest rate modeling, it is not obvious for the reader to be familiar
with such theory. To that end, we put forth a generous preliminary chapter,
introducing some of the essential concepts in the theory of stochastic analysis
in function spaces. We give an introduction to operators in Hilbert spaces,
followed by integration theory, probability and stochastic differential equations.
Finally, we present some of the key tools from mathematical finance in the
functional setting.

2.1 Operators on Hilbert spaces

We briefly introduce some key concepts from function spaces, in particular
that of Hilbert and Banach spaces, which are complete inner product- and
normed spaces respectively. We will for the most part work in the Hilbert
framework, however, some of the results presented will be for Banach spaces,
which in turn, also applies for Hilbert spaces. This section is influenced by
Horváth and Kokoszka [22], and the appendix of Peszat and Zabczyk [37].

For mathematical convenience we will throughout this paper denote by
B and H, separable Banach- and Hilbert spaces respectively. Separability in
terms of Hilbert spaces implies the existence of a countable orthonormal basis.
Let E be a separable Hilbert space, then we denote by L(H,E), the space of
linear operators from H to E, which is also a separable Hilbert space. When
the codomain of Ψ is a field such as R, we call Ψ a linear functional, or just a
functional. We will in this thesis always assume that the inner products are
defined over the field R.

If Ψ satisfies the Lipschitz map ‖Ψ(x)‖E ≤ k‖x‖H for k ∈ R and h ∈ H,
we say that Ψ is bounded, and we denote by B(H,E) the space of all bounded
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2. Preliminary Functional Analysis and Probability Theory

linear operators, endowed with the operator norm

||Ψ||B(H,E) = sup
h∈H,h6=0

||Ψh||E
||h||H

, Ψ ∈ B(H,E).

For a continuous linear operator Ψ, the connection between bounded linear
operators and continuous linear operators is shown by the equivalence of the
following statements

(i) The linear operator Ψ is bounded.
(ii) The linear operator Ψ is continuous.
(iii) The linear operator Ψ is continuous at 0,

thus boundedness in this framework implies continuity of the linear operator
Ψ. By continuity, we mean the existence of a δ > 0 for all ε > 0 such that
‖x− y‖ < δ implies ‖Ψx−Ψy‖ < ε, for x, y ∈ H.

We define the dual space of H, denoted H∗ as the space of all bounded
functionals from H to R„ which is also a Hilbert space. For any orthonormal
basis {en}n > 0 in H, we have that ‖en‖H = 1 and 〈en, em〉H = 0 for n 6= m,
analogous to that of bases in Rn. Also recall that any element h ∈ H has the
representation

h =
∞∑
n=1
〈h, en〉Hen, h ∈ H, (2.1)

for any basis {en}n≤1 in H.
We say an operator Ψ : H → E is compact if the image under Ψ of any

bounded subset of H is a relatively compact subset, i.e. the closure is compact.
Denote by K(H,E) space of all compact operators from H to E.

Let Ψ ∈ L(E,H). We denote by Ψ∗ ∈ L(E,H) the adjoint of Ψ, uniquely
defined by the relation

〈Ψ∗h, x〉E = 〈h,Ψx〉H, for all h ∈ H, x ∈ E. (2.2)

An operator Ψ ∈ B(H) is self-adjoint if Ψ∗ = Ψ, and we say that Ψ is
positive-definite if it is self-adjoint and 〈Ψx, x〉H ≥ 0 for all x ∈ H.

Recall that for finite dimensional operators defined by matrices, we mean
by trace, the sum of the diagonal elements. We then define the trace for infinite
dimensional operators.

Definition 2.1.1. Suppose Ψ ∈ B(H,E), then

Tr(Ψ) =
∞∑
i=0
〈en,Ψen〉, (2.3)

is the trace of the operator Ψ.

We can now present the Hilbert–Schmidt operator, which is related to the
trace.
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2.1. Operators on Hilbert spaces

Definition 2.1.2. Let Ψ ∈ B(H,E). We say that Ψ is Hilbert–Schmidt if it has
finite Hilbert-Schmidt norm || · ||HS, that is

||Ψ||2HS := Tr(Ψ∗Ψ) =
∞∑
k=1
||Ψek||2H <∞, (2.4)

for any orthonormal basis {ek}k≥1 in H.

The space of all Hilbert–Schmidt operators BHS (H,E) from H to E, is again
a separable Hilbert space with inner product

〈Ψ1,Ψ2〉BHS(H,E) :=
∞∑
k=1
〈Ψ1ek,Ψ2ek〉H. (2.5)

And if Ψ is a symmetric positive-definite Hilbert–Schmidt operator, it admits
the spectral type of representation

Ψ(h) =
∞∑
j=1

λj〈h, vj〉vj , h ∈ H, (2.6)

for orthonormal eigenfunctions vj of T , that is,

Ψ(vj) = λjvj . (2.7)

We conclude this section with an example of a Hilbert–Schmidt operator.
First recall that a measure space is defined by the triple (Ω,A, µ), where Ω is
a non-empty set, A a σ-algebra of subsets of Ω, and µ is a measure.

A classic example of a Hilbert-Schmidt operator is the integral operator.
Consider the L2(Ω,A, µ;R) space of measurable functions f : Ω→ R satisfying∫

Ω f
2(t)µ(dt) <∞. For simplicity we let Ω = [a, b] be a compact set in R, and

µ the Lebesgue measure. By L2([a, b]) we mean the L2 space of measurable
functions from Ω the compact subset [a, b] of R with the Lebesgue measure µ.

Example 2.1.3. We define an integral operator as the map,

Ψ(f)(t) =
∫ b

a
K(s, t)f(t)dt, (2.8)

where K(·, ·): [a, b] × [a, b] → R is called the kernel of the integral operator.
The kernel in this case is understood as real-valued function, and is not
to be mixed up with the term kernel or nullspace from linear algebra. If∫ b
a

∫ b
a K

2(s, t)dt <∞, then Ψ(f)(·) is a Hilbert–Schmidt operator, and it can
be shown that the Hilbert–Schmidt norm of Ψ is

‖Ψ‖2HS =
∫ b

a

∫ b

a
K2(s, t)dt. (2.9)
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2. Preliminary Functional Analysis and Probability Theory

2.2 Integration theory

The object of this section is to make sense of integration where the integrand
is a Banach-valued variable. We will introduce the Bochner integral, developed
by Bochner [10], which extends the Lebesgue integral to account for Banach
valued functions. For that reason, we will assume that the reader is familiar
with some general measure theory. See for instance McDonald and Weiss [32]
for a thorough introduction.

Consider the measure space (X,A, µ). We denote by
∫

X fdµ, the Bochner
integral of f : X→ B with respect to the measure µ, from which we want to
define formally. Recall that for functions f : X→ R, the above integral is the
Lebesgue integral.

Despite our interest in Hilbert spaces, we present the Bochner integral for
Banach-valued functions following chap. 2.6 of Hsing and Eubank [25]. We
will see that the definition of the Bochner integral is similar to the Lebesgue
integral. For that reason, we include some of the steps which make up the
construction of the Bochner integral. We define the Bochner integral for simple
functions, and extend the integral to hold for measurable functions f : X→ B.

We conclude this section by providing some of the essential properties of
the Bochner integral. We will see that many of the features we know of from
Lebesgue integration, carry over to the functional-valued case. We start by
defining the Bochner integral of simple functions.

Definition 2.2.1. The function f : X → B is called simple, if it can be repre-
sented as

f(ω) =
n∑
i=1

1Ai(ω)fi, (2.10)

for some finite n ∈ N, Ai ∈ A and fi ∈ B. If in addition µ(Ai) < ∞ for all
A1, . . . , An, the Bochner integral of f is defined to be

∫
X
fdµ =

n∑
i=1

µ(Ai)fi. (2.11)

Moreover, we extend the Bochner integral to account for measurable func-
tions on Ω through the following theorem.

Theorem 2.2.2 ([10, Theorem 2.6.4]). If f : X→ B is a measurable function,
satisfying ∫

X
||f ||dµ <∞,

suppose there exists a finite-dimensional subspace Bn ⊆ B, such that

lim
n→∞

∫
X
||f − gn||dµ = 0,

16



2.2. Integration theory

for Bn-valued measurable functions {gn}n≥1. Then there exists a sequence of
simple integrable functions {fn}n≥1 such that

lim
n→∞

∫
X
||f − fn||dµ = 0.

The Bochner integral of f is then∫
X
fdµ = lim

n→∞

∫
X
fndµ.

Note that the Bochner-integral is a linear operator,

I(f)(·) =
∫

X
fdµ. (2.12)

We provide a result on linear operators applied on the Bochner integral.

Theorem 2.2.3 ([25, Theorem 3.1.7]). Let B1 and B2 be Banach spaces and
f : Ω→ B1 a Bochner integrable function. If Ψ ∈ B(B1,B2), then Ψ(f)(·) is
Bochner integrable, and

Ψ
( ∫

X
fdµ

)
=
∫

X
Ψfdµ. (2.13)

An example of the above theorem is that the functional 〈·, b〉 : B× B→ R,
satisfies

〈
∫

X
fdµ, b〉 =

∫
X
〈f, b〉dµ (2.14)

Since we will be working mostly with functions taking values in a separable
Hilbert spaces, we state the following theorem to ease the requirements for
being Bochner integrable.

Theorem 2.2.4 ([25, Theorem 2.6.5]). For any separable Hilbert space H, the
measurable function f : X → H, satisfying

∫
X‖f‖H dµ < ∞, is Bochner

integrable.

When we later on specify Bochner-integrability of an H-valued f , we
mean that the Lebesgue integral of the norm of such a function is integrable.
Moreover, we have that the property of dominated convergence also holds for
the Bochner integral.

Theorem 2.2.5 ([25, Theorem 2.6.6]). Let {fn}n≥0 be a sequence of Bochner
integrable functions, converging to some f ∈ B. If there exists a nonnegative
Lebesgue measurable function g satisfying the bound ‖fn‖ ≤ g for all n almost
everywhere. Then, we have that f is Bochner integrable and∫

X
fdµ = lim

n→∞

∫
X
fndµ. (2.15)
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2. Preliminary Functional Analysis and Probability Theory

Recall that by almost everywhere we mean that a property holds everywhere
except for a set of measure zero.

There also exist a bound for the norm of a Bochner integral, similar to the
monotonicity of the Lebesgue integral.

Theorem 2.2.6 ([25, Theorem 2.6.7]). For Bochner-integrable f : X→ B, the
following inequality holds,

‖
∫

X
fdµ‖ ≤

∫
X
‖f‖dµ. (2.16)

The main purpose of introducing the Bochner integral is for the sake of
computing expetations of function-valued random variables, which we will
discuss in the next section. In conclusion, we have for functions f : X → H
satisfying ∫

X
‖f‖Xdµ <∞,

the existence of a sequence of simple integrable functions {fn}n≥1 such that

∫
X
fdµ = lim

n→∞

∫
X
fndµ = lim

n→∞

kn∑
i=1

µ(Ai)fi,n, (2.17)

where kn is finite for all n.

2.3 Probability in Hilbert spaces

In this section we extend the notion of probability on Rn, to a possibly
infinite-dimensional separable Hilbert space H, following the axiomatic measure-
theoretic approach carried out by Kolmogorov in the 1930s 1. The state-space
of choice will be the separable Hilbert space H defined on reals. However we
will consider the complete probability space (Ω,F , {Ft},P) where Ft denotes
the filtration, i.e. {Ft}t is an increasing familiy of σ−algebras defined on the
σ-algebra F of subsets of Ω. By a complete probability space we mean that
for all F ∈ F satisfying P (F ) = 0 we must have Fsub ∈ F , for all Fsub ⊂ F .

We start this section by introducing the H-random variable, before we
introduce the expectation and covariance of H-random variables. Furthermore,
we present the stochastic processes, conditional expectation and different
notions of convergence. This section is influenced by the introductions of
Da Prato and Zabczyk [14] and Peszat and Zabczyk [37]. For a thorough
presentation of stochastic processes in Banach- and Hilbert spaces, see the
monologue of Bosq [11].

We denote by (H,H) a measurable space, which is a measure space without
specifying the explicit measure. Suppose H is a Let H = B(H) be the Borel

1See Shafer and Vovk [42].
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2.3. Probability in Hilbert spaces

σ-algebra, which is the smallest σ-algebra generated by the open sets of H.
Consider two measurable spaces (Ω,F) and (H,H), and recall that a measurable
function is a function f : Ω→ H if,

f−1(H) = {ω ∈ Ω|f(ω) ∈ H} ∈ F , for all H ∈ H.

We provide the definition of an H-valued random variable.

Definition 2.3.1. Suppose (H,H) is a measurable space. An H-valued random
variable, which we will call an H-random variable, is any measurable function

X : Ω→ H. (2.18)

Furthermore the law of X is denoted by

PX(H) = P
(
X−1(H)

)
, H ∈ H. (2.19)

The expectation of a random variable is defined in terms of an integral
over the sample space Ω, with respect to the probability measure P. Since we
assume that X is H-valued, we must resort to the Bochner integral in giving a
meaningful definition of the expectation.

Definition 2.3.2. Let X be a H-random variable. If X is Bochner-integrable
i.e.,

∫
Ω‖X‖HP(dω) <∞, the expectation of X is given by the Bochner integral

E [X] =
∫

Ω
X(ω)P(dω).

Equivalently, we can define the expected value identifying the unique element
µ = E[X] by the relation

E [〈x,X〉] = 〈x, µ〉, for all x ∈ H. (2.20)

It is also necessary to introduce the concept of conditional probability.

Proposition 2.3.3. [37, Proposition 3.13] Let G be a sub-σ-algebra of F , and let
X be a H-valued integrable random variable. Then there is a unique integrable
G-measurable H-valued random variable E [X|G] such that∫

G
X(ω)P(dω) =

∫
G
E [X|G]P(dω), for all G ∈ G, almost surely. (2.21)

Almost surely is the probabilistic notion of the having a property hold
almost everywhere. For the readers convenience we will for the most part omit
the ω-dependency of the random variables. We define the covariance operator
of a random variable.

Definition 2.3.4. Let X be an H-random variable satisfying E
[
‖X‖2H

]
< ∞.

The covariance operator of X is then given by

CX(x) = E [〈X − E [X] , x〉(X − E [X])] , for x ∈ H. (2.22)
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2. Preliminary Functional Analysis and Probability Theory

The covariance is inherently defined in terms of the linear tensor operator.
That is, let a, b ∈ H, then we define a ⊗ b(·) = a〈b, ·〉, which in turn means
that,

CX(x) = E [(X − E [X])⊗ (X − E [X])] . (2.23)

Moreover, we can now describe the variation between two random variables
as the correlation.

Definition 2.3.5. Let X and Y be two Bochner integrable H-random variables.
The correlation is then given by

Cor(X,Y ) = E [(X − E [X])⊗ (Y − E [Y ])] (2.24)

To each H-random variable X, there exists an unique characteristic func-
tional which completely determines the law of X, PX , just as in the finite-
dimensional case.

Definition 2.3.6. Let i denote imaginary unit. The characteristic functional
of X is then given by,

φX(h) =
∫

H
ei〈h,X〉P(dx), h ∈ H. (2.25)

Another constituent element of modern probability theory is a stochastic
processes.

Definition 2.3.7. Let I denote any time interval on R+, and B(I) the Borel
σ-algebra, which is the smallest σ-algebra containing all open sets of I. We say
that a stochastic process X(t) = {X(t)}t∈I , is any family of random elements
taking values in H.

The stochastic processes we encounter in this thesis will be assumed con-
tinuous, meaning that we notation wise will write {X(t)}t∈[a,b] for t ∈ [a, b]. If
t ∈ [0,∞) we just write X(t).

We say that X(t) is adapted (to the filtration Ft) if it is Ft-measurable.
We present some definitions related to stochastic processes.

Definition 2.3.8. Let X(t) be a H-valued stochastic process. If there exists a
H-valued stochastic process Y (t) such that

P(X(t) = Y (t)), (2.26)

for all t, we call Y (t) a modification of X(t).

Definition 2.3.9. We say that an H-valued stochastic process X(t) is stochas-
tically continuous if

lim
s→t

E (‖X(t)−X(s)‖H > ε) = 0,

for all ε > 0.
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2.3. Probability in Hilbert spaces

Moreover we define the martingale property for H-valued stochastic pro-
cesses. This property is of great importance in mathematical finance.

Definition 2.3.10. If E [‖X(t)‖H] <∞ for all t, then the H-valued stochastic
process X(t) is a martingale, if

E [X(t)|Fs] = X(s), a.s., (2.27)

for any t, s ∈ [0,∞) with s ≤ t.

We also introduce different notions of stochastic convergence of random
variables, namely almost surely convergene and convergence in probability.

Definition 2.3.11. Let X and {Xn}n≥1 be H-valued random variables. Then,
if

P
(
‖Xn(ω)−X(ω)‖H →

n→∞
0
)

= 1,

we say that Xn converges to X almost surely, which we denote by Xn →
a.s
X.

Moreover, we have that Xn converges in probability denoted Xn →
p
X if for

each ε > 0,
P
(
‖Xn −X‖H > ε

)
→

n→∞
0.

Notice that the the expectation and Bochner integral commute.

Lemma 2.3.12. Let X(s) be an Fs-measurable random process which is Bochner-
integrable for all s ≥ 1. Then

E

[∫
H
X(s)ds

]
=
∫

H
E [X(s)] ds. (2.28)

Proof. Let g by an element of H. We have,

〈E
[∫

H
X(s)µ(ds)

]
, g〉 = E

[
〈
∫

H
X(s)µ(ds), g〉

]
= E

[∫
H
〈X(s), g〉µ(ds)

]
=
∫

H
E [〈X(s), g〉]µ(ds) = 〈

∫
H
E [X(s)] , g〉µ(ds),

where we made use of the linearity of the Bochner integral with respect to
functionals, whereas the last equation follows by Fubini–Tonelli theorem for
Lebesgue integrals. �

Example 2.3.13. Consider the separable Hilbert space L2([a, b]), which has
inner product 〈x, y〉2 =

∫ b
a x(t)y(t)dt. We compute the covariance operator of

the L2([a, b])-valued mean zero Bochner integrable random variable X,

CX(x) = E [〈x,X〉2X]

= E

[∫ b

a
x(t)X(t)dtX

]

= E

[∫ b

a
x(t)X(t)X(s)dt

]
.
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2. Preliminary Functional Analysis and Probability Theory

Moreover we interchange the expectation and integral by Fubini-Tonelli, for
which we obtain

E

[∫ b

a
x(t)X(t)X(s)dt

]
=
∫ b

a
E [X(t)X(s)]x(t)dt (2.29)

=
∫ b

a
K(s, t)x(t)dt. (2.30)

Notice that the covariance operator is an integral operator with kernel K(·, ·),
which is just one of many pleasant properties of the L2([a, b]) space of functions.

We end this section by discussing normally distributed random variables
in infinite-dimensional spaces, in particular the Gaussian measure. We define
an H-random variable X to be centered Gaussian if for all x ∈ H, 〈X,x〉 is
a Gaussan random variable in R. Recall that we are familiar with Gaussian
measures on R as the probability density function of a (mean-zero) normal
random variable X,

fX(A) = 1√
2π

∫
A
e−y

2/2dy, A ∈ B(R). (2.31)

This motivates the definition of Gaussian measures on Hilbert spaces.

Definition 2.3.14. The probability measure µ is called Gaussian if for any
h ∈ H, there exists m ∈ R and σ ≥ 0 such that the quantity

µ(x ∈ H : 〈h, x〉 ∈ H) for all H ∈ B(R), (2.32)

has the law N (m,σ).

2.4 Fréchet Derivative

We extend the notion of differentiability for functions in finite-dimensional
spaces to possibly infinite-dimensional normed spaces, as presented in Hsing
and Eubank [25]. From elementary calculus we define the differential operator
of a function f : R→ R with x, h ∈ R, as the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

, (2.33)

for all x.
Now, if f ∈ L(H,E), and H,E are normed spaces over R with x, h ∈ H and

f(·) ∈ E, what can we say about the operator f ′(x)? Clearly, f ′(·) evaluated
in any point is an element of a normed space, not an operator. In addition, we
have that a fraction consisting of elements of a normed space is nonsensical,
which motivates a definition based on norms of the elements instead. However,
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2.5. Hilbert-valued Wiener Process and Stochastic Integrals

in order to obtain an operator acting on elements in H, simple computations
shows that (2.33) is equivalent to,

lim
h→0

f(x+ h)− f(x)− f ′(x)h
h

= 0.

The above can be lifted to account for elements in normed spaces, and functions
on normed spaces,

lim
‖h‖H→0

‖f(x+ h)− f(x)− f ′(x)h‖E
‖h‖H

= 0.

Thus our candidate for a differential operator on normed spaces is the term
f ′(x)h. We summarize the above in the following definition.

Definition 2.4.1. Let H and E be two normed spaces, and f : H→ E a function
defined on some open subset U of H. If f satisfies,

lim
‖h‖H→0

‖f(x+ h)− f(x)− f ′(x)h‖E
‖h‖H

= 0, (2.34)

then we call f ′(x) the Fréchet derivative of f(x), and denote by the Frechet
derivative Df(·).

2.5 Hilbert-valued Wiener Process and Stochastic
Integrals

The goal of this section is to give meaning to integrals on the form
∫ t

0
Φ(s)dW (s), (2.35)

where W (t) is a Wiener process taking values in Hilbert space H. We establish
the notion of such an integral following the formulation proposed in Da Prato
and Zabczyk [14].

The approach is similar to the construction of the stochastic integral for
Rn-valued Wiener process, the so-called Itô-integral. There are mainly two
ways of defining a Wiener process in a Hilbert space, namely the Q-Wiener
process and the cylindrical Wiener process. In this thesis, we will assume
that W (t) is a Q-Wiener process, i.e., a stochastic process taking values in a
possibly infinite-dimensional Hilbert space H with covariance of positive trace
class. Intuitively we want for all h ∈ H

〈W (t), h〉, t ≥ 0, (2.36)
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2. Preliminary Functional Analysis and Probability Theory

that the projection of W (t) is a real-valued Wiener process. Hence the law
W (t) should be a mean zero Gaussian measure. Moreover, we have for s ≤ t

E [〈W (t), h〉〈W (s), h〉] = E [〈(W (t)−W (s)) +W (s), h〉〈W (s), h〉]
= E [(〈(W (t)−W (s)), h〉+ 〈W (s), h〉)〈W (s), h〉]

= E [(〈(W (t)−W (s)), h〉〈W (s), h〉] + E
[
〈W (s), h〉2

]
= sE

[
〈W (1), h〉2

]
= s〈Qh, h〉,

where we used the property of independent increments. Using the same method
of reasoning one can show that

E [〈W (t), h〉〈W (s), k〉] = sE [〈W (1), h〉〈W (1), k〉] = 〈Qh, k〉, (2.37)

where Q is the associated covariance operator. The definition of the H-valued
Wiener process is as follows.

Definition 2.5.1. An H-valued process W (t), is called a Q-Wiener process if it
satisfies

(i) W (0) = 0
(ii) W (t) has continuous sample paths
(iii) W (t) has independent increments
(iv) The law of (W (t)−W (s)) is N (0, (t− s)Q),

where the covariance Q, is a positive trace class operator on H.

As with the Bochner integral, we outline the construction of the stochastic
integral, omitting some of the proofs and technicalities. For T <∞, we denote
by Φ(t), t ∈ [0, T ] an L(U,H) valued process. We say that φ(t) is an elementary
process if there exists a finite sequence 0 = t0 < t1 < · · · < tk = T and
φ0, φ1, . . . , φn−1 L(U,H) valued random variables also taking a finite number
of values so that each φk is Ftk -measurable and

Φ(t) = φk, for t ∈ (tk, tk+1], k = 1, . . . , n− 1. (2.38)

Thus we define the stochastic integral of an elementary process, as∫ t

0
Φ(s)dW (s) =

n−1∑
k=0

φk(W (tk+1 ∧ t)−W (tk ∧ t)), (2.39)

where a ∧ b = min{a, b}.
In the extension of Φ(t) from an elementary process to a general L(U,H)

valued stochastic process, we introduce the subspace U0 = Q1/2(U) ⊂ U being
the reproducing kernel of W (t), with inner product

〈u, v〉0 =
∞∑
k=1

1
λk
〈u, ek〉〈v, ek〉 = 〈Q−1/2u,Q−1/2v〉, for u, v ∈ U0,
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2.5. Hilbert-valued Wiener Process and Stochastic Integrals

which defines a Hilbert space.
Let L0

2 = L2(U0,H) be the space of all Hilbert–Schmidt operators from U0
to H equipped with norm

‖Ψ‖2L0
2

=
∞∑

j,k=1
|〈Ψgj , fk〉|2 =

∞∑
j,k=1
|〈Ψλjej , fk〉|2 =

∞∑
j,k=1

λ2
j |〈ej , fk〉|2

= ‖ΨQ1/2‖2HS = Tr
[
(ΨQ1/2)(ΨQ1/2)∗

]
,

where we let {gj}j≥1 = {λjej}j≥1 with {ej}j≥1 and {fj}j≥1 being complete
orthonormal bases in U0. Moreover, if Ψ(t), t ∈ [0, T ] is a measurable L0

2-valued
measurable process, define the norm

|||Ψ|||t =
(
E

[∫ t

0
‖Ψ(s)‖2L0

2
ds
])1/2

(2.40)

=
(
E

[∫ t

0
Tr
[
(Ψ(s)Q1/2)(Ψ(s)Q1/2)∗

]
ds
])1/2

. (2.41)

Proposition 2.5.2 ([14, Proposition 4.20]). If Φ is an elementary process and
|||Ψ|||T < ∞, then the process M(t) =

∫ t
0 Φ(s)dW (s) is a continuous, square

integrable H-valued martingale on [0, T ]. We also have that

E [M(t)]2 = |||Φ|||2t , for t ∈ [0, T ]. (2.42)

The above result can be extended to valid for any L0
2-predictable process.

Proposition 2.5.3 ([14, Proposition 4.22]). All elementary processes Φ are
L0

2-predictable. In addition, if Φ is an L0
2-predictable process such that |||Φ|||T <

∞, then there exists a sequence of elementary processes {Φn}n≥0 such that
|||Φ− Φn|||T → 0 as n→∞.

Hence, we have showed that the set of all L0
2-predictable processes Φ

with |||Φ|||T < ∞ forms a Hilbert space which we denote S2(0, T ;L0
2). The

elementary processes form a dense set in S2(0, T ;L0
2), such that we can justify

the generalization of the stochastic integralM(t), to all elements of S2(0, T ;L0
2).

Consequently, the identity (2.42) holds, and M(t) is a continuous, square
integrable H-valued martingale.

A natural starting point in order to study the integrands is to regard them
as random variables defined on the product space ΩT = [0, T )× Ω, equipped
with the product σ-algebra B([0, T ])× F . Denote by PT the product of the
Lebesgue measure on [0, T ], and the probability measure P. Note that if
T =∞, the above sets can be thought of as [0,∞).

To capture the adaptability of the stochastic process,let us denote by P∞,
the σ-algebra generated by the sets

(s, t]× F, 0 ≤ s < t <∞,
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2. Preliminary Functional Analysis and Probability Theory

for F ∈ Fs, including {0}×F for F ∈ F0. Hence, the class of integrable stochas-
tic processes is then the measurable maps from (Ω∞,PT ) into (L0

2,B(L0
2)).

Finally, we weaken the condition for stochastic processes to be integrable
by introducing the SW (0, T ;L0

2) -space, which is a linear space defined by Φ’s
satisfying

P
( ∫ T

0
‖Φ(s)‖2L0

2
ds <∞

)
= 1. (2.43)

All the elements of SW (0, T ;L0
2) are stochastically integrable 2.

Theorem 2.5.4. [14, Proposition 4.28] Given Φ1,Φ2 ∈ S2
W (0, T ;L0

2), then

E

[∫
Ω

Φi(s)dW(s)
]

= 0, (2.44)

E

[
‖
∫

Ω
Φi(s)d(s)‖2

]
<∞, (2.45)

with t ∈ [0, T ] for i = 1, 2. In addition, for t, s ∈ [0, T ], the correlation operator
is given by

Cor(
∫

Ω
Φ1(s)dW (s),

∫
Ω

Φ2(s)dW (s)) = E

[∫ t∧s

0
(Φ2(r)Q1/2)(Φ1(r)Q1/2)∗dr

]
.

The stochastic Fubini also hold.

Theorem 2.5.5 ([14, Theorem 4.33]). Let (H,H) be a measurable space. Let
Φ(t, ω, x) be a measurable map from (ΩT ×H,PT ×B(H)) into (L0

2,B(L0
2)). If∫

H
|||Φ(·, ·, x)|||Tµ(dx) <∞, (2.46)

then the following equation holds,∫
H

( ∫ T

0
Φ(t, x)dW(t)

)
µ(dx) =

∫ T

0

( ∫
H

Φ(t, x)µ(dx)
)
dW(t). (2.47)

We have now constructed the stochastic integral with respect to the Q-
Wiener process. However, it is possible to make sense of stochastic integrals
when the Wiener processes W (t) is not necessarily is of finite trace. The
stochastic integral with respect to a cylindrical Wiener process can be approx-
imated by a limit of stochastic integrals with respect to finite-dimensional
Wiener processes.

2.6 Hilbert-valued stochastic differential equations
and semigroups

In this section, we introduce the theory of function-valued stochastic equa-
tions (SDE’s), in particular, Hilbert-valued SDE’s. The framework of infinite-
dimensional stochastic differential equations differs substantially from the

2See section 4.2 in Da Prato and Zabczyk [14]
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finite-dimensional SDE theory, so we will carefully assemble the necessary
preliminaries.

Motivated by the finite-dimensional setting, we extend the framework to
account for Hilbert-valued state-space, forcing the drift and volatility terms to
be linear operators. Moreover, the solutions of such equations will depend on
a particular group of operations called semigroups.

From the Itô calculus, we are familiar with multidimensional stochastic
differential equations as Itô-processes, being on the form

dX(t) = α(t,X(t))dt+ σ(t,X(t))dW (t), (2.48)

or equivalently

X(t) = X(0) +
∫ t

0
α(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s). (2.49)

Here we assume that for T > 0, a(·, ·) : [0, T ]× Rn → Rn and b(·, ·) : [0, T ]×
Rn → Rn×m are measurable functions. If α and σ satisfy some Lipschitz
bound, we can prove existence and uniqueness of (2.48), see chapter 5 of
Oksendal [35]. Moreover, recall that there are different notions of a solution to
such an equation, namely, weak and strong solutions. Simply put, if X(t) is
a solution depending on the Wiener process W (t) given in (2.48) we have a
strong solution. A weak solution is the pair (X(t), W̃ (t)) of processes where
X(t) is adapted to the filtration F̃t, and W̃ (t) is a F̃t-Wiener process. Now, in
the case of infinite-dimensional stochastic equations, the functions α and σ are
now linear operators. This section is influenced by Da Prato and Zabczyk [14].

Before embarking on the introduction to the infinite-dimensional SDE’s we
illustrate some of the technicalities we may encounter through the deterministic
Cauchy problem or equation:{

f ′(t) = A0f(t), t ≥ 0
f(0) = x ∈ H,

(2.50)

where A0 is a possibly unbounded linear operator defined on a dense linear
subspace D(A0) of H, whereas f ′(t) denotes the strong derivative. By strong
derivative we mean the existence of limit,

f ′(t) = lim
h→0

f(t+ h)− f(t)
h

.

Definition 2.6.1. The Cauchy problem is said to be well-posed if it satisfies
the following properties:

1. For any x ∈ D(A0) there exists a unique strongly differentiable function
f(t, x) satisfying (2.50) for all t ∈ [0,∞).
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2. For any sequence {xn}n≥0 ∈ D(A), with lim
n→∞

xn = 0, we have

lim
n→∞

f(t, xn) = 0, (2.51)

for all t ∈ [0,∞).

Assuming the Cauchy problem is well-posed we define the operator S(t) :
D(A)→ H by

S(t)x = f(t, x), for all x ∈ D(A), t ≥ 0.

Notice that S(0)x = f(0, x) = x, thus we have that S(0) = I. Also
S(t)S(s)x = S(t)f(s, x) = f(t, f(s, x)), which by the assumption of uniqueness
of f(t, x) we have that f(t, f(s, x)) = f(t+ s, x). This motives the fact that
operator S should satisfy S(t+ s) = S(t)S(s). Lastly, we have that S(·)x is
continuous. We shall name such a bounded operator S(·) a semigroup.

Definition 2.6.2. A family of bounded operators {S(t)}t≥0 on a Banach space
B is called a C0−semigroup if the following holds

(i) S(0) = I

(ii) S(s)S(t) = S(s+ t), for all s, t ≥ 0.

(iii) For t ≥ 0, the mapping t 7→ S(t)x ∈ B is continuous for each x ∈ B, that
is

lim
t↓0
‖S(t)x− x‖ = 0,

for all x ∈ B.

Definition 2.6.3. Let S(t) be a C0-semigroup, and b ∈ B. The generator of
S(t) denoted by A is the limit

lim
t↓0

S(t)b− b
t

, (2.52)

if it exists. We denote by D(A), the set of all b ∈ B satisfying the above limit.

We give an example of a generator.

Example 2.6.4. Define the operation S(t)h(·) = h(·+ t), for a function defined
on some seperable Hilbert space where evaluation makes sense. Notice that
S(0)h(·) = h(·), and S(t+ s)h(·) = h(·+ t+ s) = S(t)h(·+ s) = S(t)S(s)h(·),
hence S(t) defines a semigroup. If limt↓0‖S(t)h − h‖ = 0, we have that the
generator A of S(t), defined on D(A) is given by,

A = lim
t↓0

S(t)h(·)− h(·)
t

= lim
t↓0

h(·+ t)− h(·)
t

= ∂

∂x
h(x). (2.53)
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2.6. Hilbert-valued stochastic differential equations and semigroups

The application of the C0-semigroup S(t) is understood by studying the
abstract Cauchy problem,

d

dt
u(t) = Au(t), u(0) = u0,

for which, has the solution t 7→ S(t)u0 if u0 ∈ D(A). See theorem 9.2 in Peszat
and Zabczyk [37], for the proof.

We specify the setting above to account for H-valued functions, and add
an additional term φ(t) which alters the above equation,

d

dt
u(t) = Au(t) + φ(t), u(0) = u0 ∈ H. (2.54)

Now if φ(t) is continuously differentiable and u0 ∈ D(A), the variation-of-
constants formula gives the mild solution to (2.54),

u(t) = S(t)u0 +
∫ t

0
S(t− s)φ(s)ds, t ≥ 0. (2.55)

However, the equation of main interest in this paper, is the linear affine
equation,

dX = (AX + β(X)) dt+ σ(X)dZ(t). (2.56)
Here X is taking values in H, the drift is split in two parts, one depending on
some possibly unbounded operator A with domain D(A) as the generator of
a semigroup S(t) on H, and a function β : D(β) → H. Moreover, the noise
σ : D(σ)→ L(H,H). is modeled by some square integrable stochastic process
Z(t). In order to discuss the solution of equations on the form (2.56), we must
establish the notion of a solution to such a system.

We assume that β and σ satisfies the Lipschitz conditions when acted on
by S.

Definition 2.6.5. Suppose D(β) and D(σ) are dense in H, and there exists
functions a, b : (0,∞)→ (0,∞) satisfying

∫ T
0 a(t)dt <∞ and

∫ T
0 b2(t)dt <∞

for all T <∞. Then we call β and σ respectively for semigroup Lipschitz if
for all t > 0, the following holds,

(β) For x, y ∈ D(β)

‖S(t)β(x)‖H ≤ a(t) (1 + ‖x‖H) , and
‖S(t) (β(x)− β(y))‖H ≤ a(t)‖x− y‖H.

(σ) For x, y ∈ D(σ)

‖S(t)σ(x)‖L2
0
≤ b(t) (1 + ‖x‖H) , and

‖S(t) (σ(x)− σ(y))‖L2
0
≤ b(t)‖x− y‖H.

29



2. Preliminary Functional Analysis and Probability Theory

Furthermore, we provide a concise definition of a solution to (2.56).

Definition 2.6.6. Suppose X0 is a square integrable Ft0-measurable random
variable in H. Then we say that X : [t0,∞) × Ω → H is a mild solution to
(2.56), starting at t0, if

sup
t∈[t0,T ]

[
‖X(t)‖2H

]
<∞, for all T ∈ (t0,∞),

and

X(t) = S(t− t0)X0 +
∫ t

t0
S(t− s)β(X(s))ds+

∫ t

t0
S(t− s)σ(X(s))dZ(s),

for all t ≥ t0.

We restate a result concerning the existence of a solution from Peszat and
Zybczyk [37].

Theorem 2.6.7. Given t0 ≥ 0, with X0 being a Ft0-measurable square integrable
random variable in H, and β and σ semigroup Lipschitz, then there exist a
unique solution X(·, t0, X0) of (2.56).

If restrict the noise to be driven by a Q-Wiener process and disregard the
X dependence in the volatility and put σ(X) = Σ ∈ B(U,H), Da Prato and
Zabczyk [14], gives the requirements for (2.56) to have a unique weak solution
in this weaker situation. A weak solution is a predictable H-valued process
X(t) which is Bochner integrable for all t ∈ [0, T ] and,

〈X(t), y〉 = 〈X(t), y〉+
∫ t

0

[
〈X(s), A∗y〉+ 〈β(t), y〉

]
ds+ 〈ΣW (t), y〉, P− a.s.

(2.57)
The equation is then

dX(t) = (AX(t) + β(t))dt+ ΣdW (t) (2.58)

Again we assume that A must generate a C0-semigroup in H and Σ ∈ B(U,H).
First, we provide some properties of the stochastic convolution with respect

to the Q-Wiener process,

WA(t) =
∫ t

0
S(t− s)BdW (s), t ≥ 0. (2.59)

For (2.59) be integrable we must have that∫ T

0
‖S(u)B‖2L0

2
du =

∫ T

0
Tr (S(u)BQB∗S(u)∗) du <∞. (2.60)

Hence, if WA(t) is integrable then

(i) The stochastic convolution WA(·)), is Gaussian.

30
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(ii) The covariance of WA(t), is given by

Cov(WA(t)) =
∫ t

0
S(u)BQB∗S∗(u)du, t ∈ [0, T ]. (2.61)

Theorem 2.6.8. [14, Theorem 5.4] If β(·) is predictable and Bochner integrable
on [0, T ], and X(0) is F0-measurable, then

X(t) = S(t)X(0) +
∫ t

0
S(t− s)β(s)ds+

∫ t

0
S(t− s)ΣdW (s), (2.62)

is a unique weak solution.

We have now shown the requirements for systems of linear affine type to
possess a solution in the case of a square-integrable martingale Z(t) and in
the particular case of Z(t) = W (t). Remark that we have only presented the
bare necessities to study solutions of the mentioned equation. For an in-depth
study of e.g., continuity and regularity of the solutions to (2.56), we refer the
reader to Peszat and Zabczyk [37] or Da Prato and Zabczyk [14].

2.7 Financial mathematics

One of the main goals of financial mathematics is to provide fair pricing of
financial objects such as bonds and options. A fair price is a price for which
neither the buyer nor seller admits an immediate opportunity to earn money
without taking any risk. We will describe fair pricing in terms of arbitrage,
and we will state the fundamental theorem of asset pricing. In this section we
follow section 2.5 from Carmona and Tehranchi [13].

Let {ψ(t), φ1(t), . . . φd(t)} be a d+ 1 dimensional stochastic process which
we call a trading strategy. Moreover, let B(t) denote a risk-free asset such as
the bank account, and define the financial market as the d + 1 dimensional
stochastic process {B(t), P1(t), . . . Pd(t)}, where the Pi’s for i = 1, . . . , d are
the underlyings. We will write for short the vectors φ(t) = {φ1(t), . . . φd(t)}
and P (t) = {P1(t), . . . Pd(t)}.

The portfolio strategy is then given by the formula

V (t) = ψ(t)B(t) + 〈φ(t), P (t)〉, (2.63)

where 〈·, ·〉 is the Euclidean scalar product in Rd.
Let 0 < t1 < · · · < td, be d deterministic times such that

φj(t) =
d∑
i=1

φj(ti)1(tj ,tj+1](t),

and require that each φj(ti) is Fti-measurable for all i = 1, . . . , d.
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2. Preliminary Functional Analysis and Probability Theory

Furthermore, the portfolio strategy must be self-financing, which means
that we do not allow for any external income or expense to influence the wealth
V (t). Therefore, we must have that

V (ti+1)− V (ti) = ψ(ti) (B(ti+1)−B(ti)) + 〈φ(t), P (ti+1)− P (ti))〉.

Moreover, we have by (2.63) for all ti, i = 1, . . . , d, that

ψ(ti) = 1
B(ti)

(V (t)− 〈φ(t), P (ti)〉) ,

which lets us establish,

V (ti+1)− V (ti) = 1
B(ti)

(V (ti)− 〈φ(t), P (t)〉) (B(ti+1)−B(ti))

+ 〈φ(t), P (ti+1)− P (ti))〉

= B(ti+1)
B(ti)

(V (ti)− 〈φ(t), P (t)〉)− V (ti) + 〈φ(t), P (t)〉

+ 〈φ(t), P (ti+1)− P (ti))〉.

now we divide by B(ti+1) and define V̂ (t) = V (t)
B(t) and P̂ (t) = P (t)

B(t) to be the
discounted wealth and asset prices respectively, such that

V̂ (ti+1) =V̂ (t)− 〈φ(t), P̂ (t)〉+ 〈φ(t), P (ti)
B(ti+1)〉

+ 〈φ(t), P̂ (ti+1)− P (ti)
B(ti+1)

〉,

hence
V̂ (ti+1)− V̂ (ti) = 〈φ, P̂ (ti+1)− P̂ (ti))〉. (2.64)

If we let d→∞, we obtain

V̂ (t) = V̂ (0) +
∫ t

0
〈φ(s), dP̂ (s)〉. (2.65)

For the stochastic integral to be well-defined, we must assume that the
discounted trading strategy process φj(t) is predictable and integrable for all
j, in addition to discounted price process P̂ (t) must be a semi-martingale.

If an investor has unlimited financial resources, this may allow for martingale
type betting strategies to always yield profit, since the debt amount is not
bounded. To avoid such paradoxes, we must provide a technical condition
called admissability.

Definition 2.7.1. The trading strategy {φ(t)}t≥0 is said to be admissible if the
stochastic integral, ∫ t

0
〈φ(s),dP̂ (s)〉,

is uniformly bounded from below for t ≥ 0 and ω ∈ Ω.
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Furthermore, we can now define arbitrage.

Definition 2.7.2. An admissible trading strategy {φ(t)}t≥0 satisfying

P(
∫ t

0
〈φ(s), dP̂ (s)〉 ≥ 0) = 1

P(
∫ t

0
〈φ(s), dP̂ (s)〉 > 0) > 0,

is said to admit an arbitrage or to have arbitrage opportunities.

We conclude this section by stating the fundamental theorem of asset
pricing.

Theorem 2.7.3. A trading strategy φ(t) does not admit any arbitrage opportu-
nities if and only if there exists an equivalent probability measure Q such that
P̂ under Q is a local martingale.

By equivalence of the measures P and Q we mean that Q(F ) = 0 if and
only if P(F ) = 0 for all F ∈ F , that is, the set of null sets in Q are equal to
that of P. The equivalent probability measure Q, is often called a risk-neutral
measure.

In practice, we are often in the setting of the historical probability measure
P. If we want to price options through the Black and Scholes [9] paradigm, we
must derive the explicit risk-neutral probability measure Q. In obtaining the
risk-neutral measure from P, we apply techniques of measure change such as
the Girsanov transform or the Esscher transform. We will not, however, spend
much time on that matter, but an H-valued version of Girsanov’s theorem is
stated in the appendix, for the sake of completeness.
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3 Interest Rates Models and
Cointegration

The object of this thesis is the study of the term structure of interest rates.
Providing models for the term structure is imperative for any financial in-
stitution by means of, for example, quantifying financial risk, pricing bond
securities such as swaps, caps, and floors. Besides, interest rates must also be
considered in the monetary policy as part of controlling inflation as well as
the issuance of municipal bonds. Moreover, we give an introduction to the
Heath-Jarrow-Morton (HJM) framework for modelling forward rates, as well
as the Filipovic space Hw, which has proven to be suitable a state-space in the
HJM paradigm.

We conclude this chapter by presenting a multi-factor model consisting
of linear affine processes taking values in some separable Hilbert space, from
which we fit the HJM framework. Finally, we provide some zero-coupon bond
prices across the different factors given the identity operator as a coefficient,
before we briefly say something about stationarity and HJM models.

We will be working in the continuous-time financial framework, and we
will be dealing with continuously compounding interest rates.

3.1 Zero-Coupon Bonds and Interest rates

The main contract of interest in this thesis is the so-called default-free zero
coupon bond, denoted {P (t, T )}t∈[0,T ], which describes the time t value of a
bond paying the holder one unit of cash at maturity T . By default-free, we
mean that we disregard the possibility for the borrower to not be able to
pay at maturity time. The bond prices can be expressed by the so-called
instantaneous forward rate functions {f(t, T )}t∈[0,T ], which in turn, are derived
from forward rate agreements.

Given three time points t, T and S, where t < T < S, we say the continu-
ously compounding forward interest rate at time t for the time interval between
S and T , denoted f(t;T, S), is the investment of P (t, T ) at time T producing
the cash flow P (t, S) at time S. The quantity f(t;T, S) is also known as a

35



3. Interest Rates Models and Cointegration

forward rate agreement, and is accordingly defined as,

ef(t;T,S)(T−S)P (t, S) = P (t, T ), (3.1)

or equivalently,
f(t;T, S) = logP (t, S)− logP (t, T )

S − T
. (3.2)

If we let S tend towards T we obtain what is called the instantaneous forward
rate with maturity T , prevailing at time t,

f(t, T ) = lim
S↓T

f(t;T, S) = − ∂

∂T
logP (t, T ). (3.3)

Motivated by (3.3), we define the zero-coupon bond price in terms of the
instantaneous forward rates.

Definition 3.1.1. The zero coupon bond prices, denoted P (t, T ), is given by

P (t, T ) = exp
(
−
∫ T

t
f(t, s)ds

)
, for t ∈ [0, T ]. (3.4)

The map T 7→ P (t, T ) is called the discount curve, which describes the
time value of cash, whereas t 7→ P (t, T ) is considered a stochastic process for
a fixed maturity.

Moreover, we define the short rate and two examples of short rate models.
The instantaneous short rate r(t) is given in terms of the forward rate at
maturity time t,

r(t) = f(t, t). (3.5)

The short rate appears as the integrand in the money-market account and
can be both deterministic and stochastic, the latter being a more realistic
description of the evolution of the interest rate. We can model the short rates
by stochastic differential equations, for example, the simple Vasicek model
which is of Ornstein-Uhlenbeck type, given by

dr(t) = α(β − r(t))dt+ σdW (t), (3.6)

where α, β, σ are constants, and W (t) is the Wiener process. It can be shown
that limt→∞E [r(t)] = β, meaning that the model holds the mean reversion or
property, and β being the mean level. A known drawback of this model is the
possibility of obtaining negative interest rates. The Cox-Ingersoll-Ross model
corrects the possibility of negative interest rates by requiring that 2αβ ≥ σ, in
the model

r(t) = α(β + r(t))dt+ σ
√
r(t)dW (t). (3.7)

But, in the light of recent monetary actions, it is not obvious why we always
should neglect the possibility negative interest rates. In fact, the aftermath of
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the 2008-2009 global financial crisis, lead to several central banks in Europe
in addition to Japan, upheld the implementation of a negative interest rate
policy(NIRP) 1. Nevertheless, this debate is beyond the scope of this thesis.

A disadvantage of modelling yield curves using short rate models, is that
they only admit one source of noise. Naturally, one cannot incorporate maturity-
specific noise in the yield curves in the case of a single source of noise. Hence,
there has been proposed models for the forward rate instead. Heath, Jarrow
and Morton [20] proposed the following model for the forward rate

df(t, T ) = α(t, T )dt+
d∑
j=1

σj(t, T )dWj(t), (3.8)

Here, the dynamics of T 7→ f(t, T ) are assumed to be Itô processes, where
the drift α(t, T ) takes values in R, and σj(t, T ) being an adapted stochastic
process on R and Wj(t) a d-dimensional Wiener process with d× d covariance
matrix Q.

We refer to (3.8), as the HJM framework. For pricing purposes, we want
the dynamics of the HJM equation to satisfy the so-called HJM drift condition,
which ensure that the discounted bond price process is a local martingale under
risk-neutral measure Q. In Heath, Jarrow and Morton [20], they found that in
order for the discounted bond proces process to be a local martingale under Q,
the drift of (3.8) must be on the form

α(t, T ) = 〈σ(t, T ), Q
∫ T

t
σ(t, u)du〉, (3.9)

where the inner product is just the scalar product, with
∫ T
t σ(t, u)du being a

d-dimensional vector integral.
For the sake yield curve modelling, the forward rate models provides us

with d sources of noise, which is an improvement of the aforementioned short
rate models. Theoretically, we would like d→∞, in order to model yield curve
as correctly as possible with respect to noise. This motivates the need for a
function space valued forward rate paradigm consisting of infinite-dimensional
noise, hence we chose to study the HJM equation for Hilbert-valued forward
rates. To this end, we introduce a suitable function space for studying forward
curves before we turn back to the HJM equation.

3.2 The Forward Curve Space Hw

A natural choice of state-space for modeling curves is the separable Hilbert
space L2(R+). However, Filipovic [17] introduced the so-called Filipovic space
providing a framework for studying forward curves. A shortcoming of the

1See Boungou [12] for a discussion of the economical motivation and implication of an
NIRP.
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classical L2-spaces, is that the elements are equivalence classes of functions,
making evaluation troublesome.

Let f(x), for x ∈ R+ denote any forward curve. It is natural to assume
some regularity in f ′(x), thus we let,∫

R+
|f ′(x)|2dx <∞,

moreover, in forcing a decaying or flattening structure of f(x), a weight function
w(x) is introduced, such that∫

R+
|f ′(x)|2w(x)dx <∞.

In order to define a norm without turning to equivalence classes, the constant
term of the squared short rate is added. We now give a formal definition of
the Filipovic space denoted Hw.

Definition 3.2.1. Let w : R+ → R+ be a monotonely increasing measurable
function satisfying w(0) = 1 and

∫∞
0 w(x)−1dx <∞. We define

||f ||2ω = f2(0) +
∫ ∞

0
w(x)(f ′(x))2 dx <∞, (3.10)

where f ′ is the weak derivative of f , with associated inner product

〈f, g〉w = f(0)g(0) +
∫ ∞

0
ω(x)f ′(x)g′(x) dx. (3.11)

We define

Hω = {f ∈ L1(R+)|There exists f ′ ∈ L1(R+) and ||f ||ω <∞}

For the rest of this section when we write 〈·, ·〉 we imply the Filipovic inner
product as in (3.11).

We list some of the properties of Hω, due to Filipovic [17].

(i) Hω equipped with || · ||ω defines a separable Hilbert space.
(ii) The shift operator S(t) : f 7→ f(t+ ξ) for t ≥ 0, defines a C0-semigroup

on Hω.
(iii) The evaluation map δ : f 7→ f(x) defines a linear functional on Hω.
(iv) Given the operatorWf =

√
wf ′, the map (δ0,W) : Hw → R×L2(R+), f 7→

(f(0),
√

(w)f ′) defines an isometric isomorphism of Hw and R× L2(R+).

In conclusion we have that Hw equipped with the norm || · ||w defines is a
separable Hilbert space which is isometric to R× L2(R+). The fact that the
shift operator defines a C0-semigroup on Hw is necessary for the existence of
solutions in the function valued HJM model we will present in the next section.
Moreover, since the evaluation operator δ is a linear functional on Hw, it is
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valid to evaluate functions h ∈ Hw, in contrast to the equivalence classes in
L2-spaces.

Moreover we want to characterize covariance operators on Hw. As we have
seen by property (iv) above, the space Hw resembles in some sense L2(R+).
Recall covariance operators in L2(R+) can be defined as an integral operator

Qf(x) =
∫ ∞

0
q(x, y)f(y)dy, (3.12)

for f ∈ L2(R+) and square-integrable kernel q(x, y). We should therefore
expect a similar covariance structure in Hw. The following result regarding
Hilbert–Schmidt operators in Hw is due to Benth and Krühner [2]. The idea
is that given a complete specification of the Hilbert–Scmidt operators in Hw,
we can use the fact that any positive semidefinite trace class operator is the
square of a symmetric Hilbert–Schmidt operator 2.

Theorem 3.2.2. Given a Hilbert–Scmidt operator C on Hw. Then there are
c ∈ R,and g, h ∈ Hw, where h(0) = g(0) = 0, and a square integrable function
b : R2

+ → R, such that

Cf(x) = cf(0) + 〈g, f〉+ f(0)h(x) +
∫ ∞

0
q(x, z)f ′(z)dz, (3.13)

where the kernel q is given by

q(x, z) =
∫ x

0

√
w(z)
w(y)b(y, z)dz

In addition we have that C is symmetric if b is symmetric and g = h.

We now state a corollary which describes all covariance operators on Hw.

Corollary 3.2.3. [2, Corollary 4.2] Assume the same specification on c, g, h, b, q
from Theorem 3.2.2. Let `(x, z) = h′(z)w(z) + q(x, z), . If `(0, ·)/

√
w ∈ L2(R)

and the map (x, z) 7→ w(z)
w(x)(∂1`(x, z))2 is symmetric and integrable, then class

of positive trace class operators on Hw are given by

Qf(x) =
(
f(0)c+

∫ ∞
0

`(0, z)f ′(z)dz
)(
c+

∫ x

0

`(0, z)
w(z) dz

)
(3.14)

+ f(0)
∫ ∞

0

`(x, z`(0, z))
w(z) dz (3.15)

+
∫ ∞

0

∫ ∞
0

`(x, z)∂1`(z, y)dzf ′(y)dy, (3.16)

Thus Q above gives a complete characterization of covariance operators
on Hw. We conclude with a technical result regarding the inner product -
covariance operator representation of 〈f(x), Q

∫ x
0 f(y)dy〉, which we later on

will recognize as the no-arbitrage condition in the HJM model.
2See Benth and Krühner [2]
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Proposition 3.2.4. Let Q denote the covariance operator in Hw. If f ∈ Hw,
together with the specifications from Theorem 3.2.2, then

〈f(x), Q
∫ x

0
f(y)dy〉 =

∫ ∞
0

w(t)f(x)(Qf)′(x)dx, (3.17)

with

(Qf)′(x) = h′(x)(〈h, f〉+ c) + f(0)
∫ ∞

0
h′(z)∂1`(x, z)dz +

∫ ∞
0

k(x, y)f ′(y)dy.
(3.18)

Proof. Let F (x) =
∫ x

0 f(y)dy. Note that 〈QF (x), f(x)〉 = 〈F (x), Qf(x)〉, by
the self-adjoint property of Q. Furthermore we compute the derivative of the
Q applied to f ,

(Qf)′(x) = `(0, x)
w(x) (

∫ ∞
0

`(0, z)f ′(z)dz + c) + f(0)
∫ ∞

0

`(0, z)∂1`(x, z)
w(z) dz

+
∫ ∞

0

∫ ∞
0

∂1`(x, z)∂1`(z, y)dzf ′(y)dy

= h′(x)(〈h, f〉+ c) + f(0)
∫ ∞

0
h′(z)∂1`(x, z)dz

+
∫ ∞

0

∫ ∞
0

∂1`(x, z)∂1`(z, y)dzf ′(y)dy.

Define k(x, y) = ∂1`(x, z)∂1`(z, y), hence

(Qf)′(x) = h′(x)(〈h, f〉+ c) + f(0)
∫ ∞

0
h′(z)∂1`(x, z)dz +

∫ ∞
0

k(x, y)f ′(y)dy.

Then we have

〈F (x), Qf(x)〉 =
∫ ∞

0
w(x)f(x)(Qf)′(x)dx

�

We will in this thesis work with the sub-class of the covariance derivative
of the operator Q in Hw, where we assume the h in Theorem 3.2.2 is such
that h′(x) = 0 for all x. Such an operator we denote by Q0. This in turn,
transforms the no-arbitrage condition to an integral operator depending on
w, f and Q. Moreover

Corollary 3.2.5. If k(x, y) = ∂1`(x, z)∂1`(z, y), so that

(Q0f)′(x) =
∫ ∞

0
k(x, y)f ′(y)dy, (3.19)

then for g(x) = k ∈ Hw for all x ∈ R+ we have (Q0g)′(·) = 0, which implies

〈F (x), Qf(x)〉 =
∫ ∞

0
w(x)f(x)(Qf)′(x)dx = 0. (3.20)

The above corollary states that the no-arbitrage condition defined by the
inner product is just zero, in Hw.
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3.3. Heath-Jarrow-Morton-Musiela Methodology

3.3 Heath-Jarrow-Morton-Musiela Methodology

We briefly introduced the Heath-Jarrow-Morton framework in 2.1, in this
section, however, we will consider the forward curves and Wiener noise as
Hilbert-valued functions, and therefore we will state a drift condition analogous
to (3.9).

We follow the notation from Peszat and Zabchyk [37] as well as their
treatise of the Lévy noise generalization of (3.8). We will, however, assume
that the state space of the forward curves is a separable Hilbert space H, and let
W (t) be a Q-Wiener process defined on the probability space (Ω,F , {Ft}t≥0,P)
taking values in a separable Hilbert space U. This alters the dynamics of the
equation studied in Peszat and Zabchyk [37], to that of

df(t, T ) = α(t, T )dt+ 〈σ(t, T ), dW (t)〉U, t ≤ T, (3.21)

or equivalently,

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )dt+

∫ t

0
〈σ(s, T ), dW (s)〉U. (3.22)

We suppose that α(t, T ) is H-valued, and σ(t, T ) ∈ B(U,H) are predictable
processes, with α(t, T ) = σ(t, T ) = 0 for t ≥ T and T ≥ 0. Furthermore, we
chose to study (3.22) with the second variable in terms of time to maturity,
hence we let x = T − t, the so-called Musiela parametrization, see Musiela
[33]. This reveals a surprising link between HJM modeling and stochastic
partial differential equations. Following Peszat and Zabchyk [37], we present
the derivation of the Heath–Jarrow–Morton–Musiela equation. Define

f(t)(x) = f(t, t+ x)
α(t)(x) = α(t, t+ x)
(b(t)u)(x) = 〈σ(t, t+ x), u)〉U,

and let S(t)g(x) = g(t + x) denote the shift semigroup. Then we transform
(3.22) to,

f(t, x) = f(0, t+ x) +
∫ t

0
α(s, t+ x)ds+

∫ t

0
〈σ(s, t+ x), dW (s)〉U

= f(0)(t+ x) +
∫ t

0
α(s)(t− s+ x)ds+

∫ t

0
b(s)(t− s+ x)dW (s)

= S(t)f(0)(x) +
∫ t

0
S(t− s)α(s)(x)ds+

∫ t

0
S(t− s)b(s)(x)dW (s),

hence we write,

f(t) = S(t)f(0) +
∫ t

0
S(t− s)α(s)ds+

∫ t

0
S(t− s)b(s)dW (s). (3.23)
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3. Interest Rates Models and Cointegration

Now, since the infinitesimal generator of the shift semigroup is given by A = ∂
∂x ,

we write (3.23) as the mild solution to

df(t) = ( ∂
∂x
f(t) + α(t))dt+ b(t)dW (s). (3.24)

For the discounted zero-coupon price dynamics to be local martingales, we
present the following theorem due to Peszat and Zabczyk [37], which provides
us with the arbitrage-free dynamics of (3.23).

Theorem 3.3.1. [37, Theorem 20.3] The discounted bond price process of (3.21)
are local martingales under Q if and only if∫ θ

0
α(t, u)du = J(

∫ θ

0
σ(t, u)du), (3.25)

where

J(y) = 1
2〈Qy, y〉U

for all θ < T , and P a.s. for t ∈ [0, θ].

The main part of their proof is applying Itô’s formula for Hilbert-valued
semimartingales to Ψ(〈1[0,T ], f(t)〉H), for Ψ ∈ C2(R).

Before we turn to the HJM condition for (??), we propose a result on the
Fréchet derivative of J(u) for the Q-Wiener process.

Proposition 3.3.2. Consider the Q-Wiener process W (t) with Laplace trans-
form given by J(u) = 〈Qu, u〉. Then the Fréchet derivative of J(u) is given
by

DJ(u)(·) = 〈Qu, ·〉. (3.26)

Proof. Direct computation gives that

J(z + h)− J(z) = 1
2〈Q(z + h), z + h〉 − 1

2〈Qz, z〉

= 1
2〈Qz, z + h〉+ 1

2〈Qh, z + h〉 − 1
2〈Qz, z〉

= 1
2〈Qz, h〉+ 1

2〈Qh, z + h〉

= 〈Qz, h〉+ 1
2〈Qh, h〉.

Thus we claim that DJ(z)(·) = 〈Qz, ·〉, and by definition we obtain

lim
‖h‖→0

‖J(z + h)− J(z)−DJ(z)(h)‖R
‖h‖U

= lim
‖h‖→0

|〈Qh, h〉U|
‖h‖U

. (3.27)

which by Cauchy-Schwarz ensures that 1
2〈Qh, h〉U ≤

1
2‖Qh‖‖h‖, proving the

assertion. �
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3.3. Heath-Jarrow-Morton-Musiela Methodology

The derivation of the HJMM equation in Peszat and Zabchyk [37] is
somewhat vague, when it comes to the no-arbitrage condition. To that end,
we carefully assemble the no arbitrage condition. With Q-Wiener noise, the
no-arbitrage condition simplifies to 〈b(t)(ξ), DJ

(∫ ξ
0 b(t)(u)du

)
〉H, and J(x) =

1
2〈Qx, x〉 where Q is the covariance operator of W (t). Hence

〈b(t)(ξ), DJ
(∫ ξ

0
b(t)(u)du

)
〉 = 〈b(t)(ξ), ∂

∂ξ

(
1
2〈Q

∫ ξ

0
b(t)(u)du,

∫ ξ

0
b(t)(u)du〉〉

)
.

Moreover, we illustrate differentiation on inner products, which is quite
similar to that of the product rule in single variable calculus. Let f, g ∈ H,
hence
d
dt〈f(t), g(t)〉 = lim

h→0

(〈f(t+ h), g(t+ h)〉 − 〈f(t), g(t)〉
h

)
= lim

h→0

(〈f(t+ h), g(t+ h)〉+ 〈f(t+ h), g(t)〉 − 〈f(t+ h), g(t)〉 − 〈f(t), g(t)〉
h

)
= lim

h→0

(〈f(t+ h)− f(t), g(t+ h)〉 − 〈f(t+ h), g(t+ h)− g(t)〉
h

)
= 〈f ′(t), g(t)〉+ 〈f(t), g′(t)〉.

Which for (3.28) implies,

∂

∂ξ

(
1
2〈Q

∫ ξ

0
b(t)(u)du,

∫ ξ

0
b(t)(u)du〉

)
=

1
2(〈 ∂

∂ξ
Q

∫ ξ

0
b(t)(u)du,

∫ ξ

0
b(t)(u)du〉+ 〈Q

∫ ξ

0
b(t)(u)du, ∂

∂ξ

∫ ξ

0
b(t)(u)du〉),

which with the assumption that the covariance- and differential operator
commute, we obtain by the fundamental theorem of analysis and the fact that
Q is self-adjoint,

1
2(〈Qb(t)(ξ),

∫ ξ

0
b(t)(u)du〉+ 〈Q

∫ ξ

0
b(t)(u)du, b(t)(ξ)〉)

= 〈b(t)(ξ),
∫ ξ

0
Qb(t)(u)du〉.

This is verified by another approach to the no-arbitrage theorem, where
we instead consider the Fréchet derivative of J(·). We identify the functional
b(t)(ξ)u = 〈σ(t, t+ξ), u〉 by the element σ̃(t, t+ξ), and identify the the Fréchet
derivative DJ(z)(·) = 〈Qz, ·〉 by the element D̃J(z) = Qz, hence

〈b(t)(ξ), DJ
(∫ ξ

0
b(t)(u)du

)
〉 = 〈σ̃(t, t+ ξ), DJ

(∫ ξ

0
σ̃(t, t+ ξ)du

)
〉

= 〈σ̃(t, t+ ξ), Q
∫ ξ

0
σ̃(t, t+ η)dη〉.
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3. Interest Rates Models and Cointegration

Consequently, we write η = t + η for short in the second argument, and
then we state the Heath-Jarrow-Morton-Musiela equation

dX(t, ξ) =
(
∂

∂ξ
X(t, ξ) + 〈σ̃(t, ξ), Q

∫ ξ

0
σ̃(t, η)dη〉

)
dt (3.28)

+ σ̃(t, ξ)dW (t),

If we choose U = H = Hw, we must specify that the Wiener process W (t) =
W (t, ξ) has two arguments after applying a semigroup operation.

3.4 Towards a cointegrated HJMM model

Motivated by Benth and Süss [4], we lay the grounds for further work within
a cointegrated interest rate model. Given two stochastic processes g1(t) and
g2(t) they may not alone be stationary, however, if there exist a, b such that
the linear combination ag1(t) + bg2(t) is stationary, we say that g1(t) and
g2(t) are cointegrated. We can think of the g(t)’s as a stochastic process
describing the forward curve of e.g., Norway, US, and EU, where t denotes
the date. For that reason, we present a multi-dimensional forward curve
process g(t) = (g1(t), g2(t), . . . , gn(t)), which we model according to the HJM
framework. Such a model can be fit to describe an international interest rate
marked, from which one can study the complex relationships between the
different forward curves.

Moreover, we let each forward rate process consist of two sources of risk,
defined as linear affine processes taking values in a Hilbert space H. For the
reader’s convenience, we first present a single-market two-factor model and
extend it to a multi-market two-factor model. We let the curves in section
evolve according to Musiela’s parametrization, i.e., by g(t, ξ), we mean g(t, t+ξ),
where the second argument is bounded by T .

Single market two-factor forward rate process

We model the forward curves as a sum of two H-valued linear affine processes.
We define the forward curve as

g(t, ξ) = X(t, ξ) + Y (t, ξ), (3.29)

where the dynamics of X and Y is given by

dX(t, ξ) = (AX(t, ξ)X(t, ξ) + FX(t)) dt+ ΣXdW1(t) (3.30)
dY (t, ξ) = (AY (t, ξ)Y (t, ξ) + FY (t)) dt+ ΣY dW2(t). (3.31)

For the sake of generality, we do not want to be too strict when defining
the above operators. We assume that AX , AY are two possibly unbounded
operators. The second drift terms FX and FY are assumed to depend on only t
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3.4. Towards a cointegrated HJMM model

initially, and taking values in H. The noise W1(t),W2(t) are possibly correlated
U -valued Q-Wiener processes, and ΣX ,ΣY ∈ L(U,H).

It follows that

dg(t, ξ) = (AXX(t, ξ) +AY Y (t, ξ) + FY (t) + FX(t)) dt (3.32)
+ ΣXdW1(t) + ΣY dW2(t).

We define the product Hilbert space V = U×U, and identify Σ ∈ V as the linear
map Σ(f, h) = ΣXf + ΣY h. Let the noise be given by the two-dimensional
noise process Z(t) = (W1(t),W2(t)) on V . We rewrite (3.32),

dg(t, ξ) = (AXX(t, ξ) +AY Y (t, ξ) + FY (t) + FX(t)) dt+ ΣdZ(t).

The no-arbitrage condition from the HJMM equation states that our drift
term FXY := FX + Fy must satisfy,

FXY = 〈Σ, Q
∫ ξ

0
Σ(η)dη〉V

= 〈ΣX , Q

∫ ξ

0
ΣX(η)dη〉U + 〈ΣY , Q

∫ ξ

0
ΣY (η)dη〉U ,

where the inner product is induced by the Hilbertianity of the product space
V .

If we also let AX = AY = ∂
∂ξ , we can write (3.32) as

dg(t, ξ) =
(
∂

∂ξ
r(t, ξ) + 〈ΣX , Q

∫ ξ

0
ΣX(η)dη〉U + 〈ΣY , Q

∫ ξ

0
ΣY (η)dη〉U

)
dt

+ ΣdZ(t).

Let now Hw be the state space of g(t, ξ) and the noise. Let ΣX(f) =
σX(·)f(·) and ΣY (f) = σY (·)f(·) with σX(·) = σY (·) = 1 and σX(·), σY (·) ∈
Hw. Suppose the covariance of the Wiener processes is Q = Q0. By identifica-
tion we have that

FXY = ξ〈1, Q1〉Hw + ξ〈1, Q1〉Hw = 2ξ〈1, Q1〉Hw .

which yields the following dynamics for the model,

dX(t, ξ) = (∂ξX(t, ξ) + ξ〈1, Q(1)〉) dt+ dW1(t, ξ)
dY (t, ξ) = (∂ξY (t, ξ) + ξ〈1, Q(1)〉) dt+ dW2(t, ξ),

where we simplify the derivative operator ∂
∂ξ = ∂ξ. Recall that the covariance

operator in Hw applied to constants is just zero, simplifying the above to

dX(t, ξ) = (∂ξX(t, ξ)) dt+ dW1(t, ξ)
dY (t, ξ) = (∂ξY (t, ξ)) dt+ dW2(t, ξ).
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3. Interest Rates Models and Cointegration

The mild solutions of X and Y are given by

X(t) = S(t)X(0) +
∫ t

0
S(t− u)dW1(u)

Y (t) = S(t)Y (0) +
∫ t

0
S(t− u)dW2(u),

where S(t) is the semigroup generated by ∂ξ. The mild solution of (3.29) is
then given by,

g(t) = S(t)g(0) +
∫ t

0
S(t− u)dW1(u) +

∫ t

0
S(t− u)dW2(u). (3.33)

We conclude this section by relating the forward rate pricing to the implied
short rates. We have that,

f(t, T ) = δT−tX(t, t+ ·) (3.34)

which brings us back to the price of a contract which delivers at maturity time
T . Moreover the implied short rates are given by

r(t) = δ0X(t, t+ ·). (3.35)

Notice that
δxS(t)g(·) = δxg(·+ t) = g(x+ t), (3.36)

which implies that δxS(t) = δx+t, thus,

δT−tg(t, t+ ·) = δT−tS(t)g(0, t+ ·) +
∫ t

0
δT−tS(t− u)dW1(u)

+
∫ t

0
δT−tS(t− u)dW2(u)

= g(0, T ) +
∫ t

0
δT−udW1(u) +

∫ t

0
δT−udW2(u)

Also, the implied short rate is straightforwardly computed,

δ0g(t, t+ ·) = g(0, t) +
∫ t

0
δt−udW1(u) +

∫ t

0
δt−udW2(u).

If we now let the volatility be constant, that is, σX(·) = σY (·) = σ ∈ Hw,
we obtain for the no-arbitrage condition

FXY = ξσ2〈1, Q(1)〉w + ξσ2〈1, Q(1)〉w = 2ξσ2〈1, Q(1)〉w,

which again is just zero. The only difference in this case is the volatility-term
in the stochastic integral, meaning we have the following mild solutions,

X(t) = X(0) + σ2
∫ t

0
S(t− u)dW1(u)

Y (t) = Y (0) + σ2
∫ t

0
S(t− u)dW2(u).
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Multi-market two-factor forward rate model

We extend the former model to account for two forward rate processes, g1(t, ξ)
and g2(t, ξ) given by

g1(t, ξ) = X(t, ξ) + Y (t, ξ)
g2(t, ξ) = X(t, ξ) + Z(t, ξ),

where we use the same X and Y as in (3.31), and define Z accordingly,

dZ(t, ξ) = (AZ(t, ξ)Z(t, ξ) + FZ(t)) dt+ ΣZdW3(t).

Following the same procedure as before forcing AX = AZ = AY = ∂
∂ξ , our

model has the dynamics,

dg1(t, ξ) =
(
∂

∂ξ
X(t, ξ) + ∂

∂ξ
Y (t, ξ) + FX(t) + FY (t)

)
dt

+ ΣXdW1(t) + ΣY dW2(t),

dg2(t, ξ) =
(
∂

∂ξ
X(t, ξ) + ∂

∂ξ
Z(t, ξ) + FX(t) + FZ(t)

)
dt

+ ΣXdW1(t) + ΣZdW3(t).

Thus we can write the equation on matrix operator form

dg = (
[
∂
∂ξ 0
0 ∂

∂ξ

] [
g1(t, ξ)
g2(t, ξ)

]
+
[
F1(t)
F2(t)

]
)dt+

[
ΣX ΣY 0
ΣX 0 ΣZ

]dW1(t)
dW2(t)
dW3(t)

 (3.37)

We define Σ : U2×3 → H2 and Z(t) = (W1(t),W2(t),W3(t))T , and let
ΣXY ,ΣXZ ∈ L(V,H) where ΣXY (f, h) = ΣXf + ΣY h and FXY = FX + FY .

dg(t, ξ) = (∂ξg(t, ξ) + FXY )dt+ ΣdZ(t) (3.38)

The operators ΣXZ and FXZ is defined analogously. To satisfy the no-
arbitrage condition in this model, the drift terms must be on the form

FXY = 〈ΣX , Q

∫ ξ

0
ΣX(η)dη〉U + 〈ΣY , Q

∫ ξ

0
ΣY (η)dη〉U

FXZ = 〈ΣX , Q

∫ ξ

0
ΣX(η)dη〉U + 〈ΣZ , Q

∫ ξ

0
ΣZ(η)dη〉U .

Let ΣX = ΣY = ΣZ = σ like in the previous forward rate model with
U = H = Hw. Thus

g1(t) = S(t)g1(0) + σ2
∫ t

0
S(t− u)dW1(u) + σ2

∫ t

0
S(t− u)dW2(u),

g2(t) = S(t)g2(0) + σ2
∫ t

0
S(t− u)dW1(u) + σ2

∫ t

0
S(t− u)dW3(u).
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This approach may be generalized to account for a finite number of curves,
say g1, . . . , gn with two sources of noise. In theory, there is no restrictions
in extending such a model to include additional sources of noise. Standard
methods of approximating yield curves, such as the Nelson-Siegel or Nelson-
Siegel-Svensson family, however, consists of three or four parameters, which
may suggest some redundancy in choosing too many noise components. We
will define the Nelson-Siegel functions later in this thesis.

Moreover, the multi-market two-factor forward curve model is defined as
follows. Let X(t, ξ) denote the common noise source, and Yi(t, ξ), the specific
risk corresponding to each curve for i = 1, . . . , n. Let X(t, ξ) be defined as in
(3.30) and suppose,

Yi(t, ξ) = ( ∂
∂ξ
Yi(t, ξ) + FYi(t))dt+ ΣYidW (t), for 1 ≤ i ≤ n.

Define Fi(t) = FX(t) + FYi(t) for i = 1, . . . , n so that we may put F (t) =
(F1(t), . . . , Fn(t))T : R+ → Hn

w. Furthermore, we define the matrix operator
Σ : (R+ → L(Hn×(n+1),Hn) by,

Σ =


ΣX ΣY1 0 0 · · · 0
ΣX 0 ΣY2 0 · · · 0
ΣX 0 0 ΣY3 · · · 0
...

...
... . . . ...

ΣX 0 0 · · · 0 ΣYn

 . (3.39)

whereas Z(t) = (W1(t), . . . ,Wn+1(t))T . We write the differential equation
similar to (3.38), which gives,

dg(t) = (∂ξg(t) + F (t))dt+ ΣdZ(t), (3.40)

where ∂ξ denotes the n× n operator matrix with the partial derivatives along
diagonal. Let g(t) = (g1(t), . . . , gn(t))T , then if F (t) and Σ satisfies the
semigroup Lipschitzianity and g(0) ∈ Hn

w, then there exists unique process
g(t) ∈ Hn

w, being the mild solution to (3.40) given by,

g(t) = S(t)g(0) +
∫ t

0
S(t− u)F (u)du+

∫ t

0
S(t− u)ΣdZ(u). (3.41)

The no-arbitrage condition forces F (t) = 〈Σ, Q0
∫ ξ

0 Σ(η)dη〉wn , which by
wn we mean the induced n-product Hilbert space on Hn

w, which implies that
we can show by identifying the constant element σ as the noise, we obtain the
mild solution for the each curve,

gi(t) = S(t)gi(0) + σ2
∫ t

0
S(t− u)dWi(u) + σ2

∫ t

0
S(t− u)dWi+1(u) (3.42)

for i = 1, . . . , n, which can be used to compute e.g. covariances and correlations
between different curves, and also pricing of zero-coupon bonds.
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3.5 Heath-Jarrow-Morton and Stationarity

A central topic of this thesis is the study of stationarity in yield curves. We,
therefore present a brief section regarding stationarity in the HJM model. It is
not straightforward to give a canonical definition of stationarity. Still, there is
a consensus that we, by strong stationarity for stochastic processes, mean shift
or translation invariance of the finite-dimensional distributions. Furthermore,
we link the property of stationarity to curves in the HJM framework, in terms
of invariant measures, as presented in Tehranchi [47]. For this section we
consider the probability space (Ω,A,P), unless otherwise mentioned.

Let X be a an H-valued random variable whose distribution is defined by
PX(A) = P(X ∈ A) for A ∈ A. We give the standard definition of strong
stationarity in terms of distributions.

Definition 3.5.1. An H-valued stochastic process {X(t)}t∈Z, is said to be
stationary if its finite dimensional distributions are shift invariant, i.e.,

PX(t+τ)(A) = PX(t)(A), for all A ∈ A, t ∈ Z, (3.43)

and all τ being in the set of all finite subsets of Z.

Motivated by Benth and Süss [4], we also define stationarity in terms of
convergence of measures.

Definition 3.5.2. Let {X(t)}t∈Z be an H-valued stochastic process. We say
that X(t) is stationary if there exists a probability measure µ on B(H) such
that PX(t) → µ, when t→∞. The convergence is in terms of measures, i.e.,∫

H
f(x)PX(t)(dx)→

∫
H
f(x)µ(dx), as t→∞ (3.44)

where f : H→ R is any bounded measurable function.

In the HJM model, we only know of the dynamics of the process, so it
might be challenging to study stationarity in terms of the solution. It is also
possible for the HJM to not have any solutions, for bad choices of parameters.
Another approach to stationarity is that of studying invariant measures. The
main attribute of an invariant measure, is related to the law of the forward
curves, or any stochastic process for that matter. Let f(0, ·) be an Hw-valued
F0-measurable random variable with law µ. If the law of f(t, ·) is unchanged
for all t ≥ 0, we say that µ is an invariant measure.

In Shalizi and Kontorovich [43], they provide a unification of stationarity
and shift-invariance, where they give a proof of the following equivalence

stationarity in terms of Definition 3.5.1⇔ shift invariance, (3.45)

which states that stationarity shift invariance are equivalent statements.
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Recall the HJM model in Hw from the last section. We specify an HJM
model as in (3.23), where we omit the spatial variable,

f(t) = S(t)f(0) +
∫ t

0
S(t− s)α(s)ds+

∫ t

0
S(t− s)b(s)dW (s), (3.46)

for f(0) ∈ Hw being a F0-measurable random variable. Now for time-
homogeneous HJM models on Hw, Tehranchi [47] showed that there exists an
infinite family of invariant measures on Hw with the following properties

(i) Given a specified HJM model which ensures the existence of a continuous
solutions in Hw. For every curve f(0, ·) with marginal distribution of the
initial long rate f(0,∞), given by ν, we there exists an unique measure
µν such that the law of f(t, ·) converges to µν .

(ii) For every bounded ψ : Hw → R such that |ψ(f)− ψ(g)| ≤ ‖f − g‖w, we
have that

|E [ψ(f)]−
∫

Hw

ψ(f)µν(df)| ≤ (1 + E [‖f(0, ·)‖Hw ])e−βt/2, (3.47)

for some finite β which acts as an upper bound in the technical specifica-
tion of the model which we have omitted.
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3.6 Closing remarks on HJM and cointegration

In the first part of this thesis, we have introduced the basics of functional
analysis and probability in Hilbert spaces. We put forth the necessary notions
for understanding Hilbert-valued stochastic differential equations, and applied
the theory on forward curves. We studied the forward curves as Hw-valued
mild solutions of the linear affine equations introduced in section 2.6, and
established a so-called no-arbitrage condition for the Musiela-parametrized
forward curves in the Heath-Jarrow-Morton framework. In conclusion, we have
in this chapter, laid the groundworks for further study in terms of cointegration.
In that manner, we propose several paths from which one can extend the study
of forward curves.

• The study carried out in this section could be extended to Lévy noise, or
cylindrically defined Wiener noise, although the no-arbitrage condition
becomes cumbersome.

• One could compute the covariance and correlation between the different
forward curves gi(t), gj(t) for i and j, and investigate the how the variation
depends on different time to maturities.

• Pricing options and zero-coupon bonds.

• Define an explicit function w(t) for the Hw-valued forward curves.

• There is plenitude of different other model-choices one can explore for
the forward curves. One could for instance propose a multi-market model
consisting of continuous-time autoregressive moving-average (CARMA)
process as defined in Benth and Süss [3], or as a functional autoregressive
process (FAR(1)) 3.

3We will introduce such a process in section 4.4
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4 Introduction to Functional
Data Analysis

In recent years, technological advancements have led to an enormous increase in
the amount of data being collected, whereas the complexity of modern hardware
has provided us with advanced computational power. This evolution has given
rise to increased attention to new methods of data analysis, including that
of considering statistical observations as continuous objects, which eventually
came to be the subfield of statistics called Functional data analysis. Typical
objects of study are weather data, growth functions, MRI images, and financial
data.

Dealing with continuous data, we are in a situation where the number of
measurements or data-points m, can be vastly greater than the number of
observations N . The large number of data-points poses a challenge in studying
the data, however, if we approximate each observation by using a building
block of smooth functions described by p < m coefficients, we can obtain a
substantial decrease in the complexity of the mentioned task.

The general idea is that we have a probability space (Ω,F ,P) and fix a
function space F. We consider observations as realizations of a random variable
X from the probability space taking values in F, that is

X1, X2, . . . , XN ∈ F. (4.1)

For our practical purpose, and in the literature for the most part, F is chosen
to be a separable Hilbert space. In particular, it is common to choose F =
L2([a, b]), more specifically, F = L2([0, 1]), which is the function space of choice
in the seminal monograph of Ramsay [39], but also in Hórvath and Kokoszka
[22] and Hsing and Eubank [25]. When we write F in the remaining chapters,
we mean a separable Hilbert space.

We begin by presenting the challenge of transforming discrete data to
continuous and some canonical results from finite-dimensional statistics, which
in some sense carries over to the infinite-dimensional framework. We also
present some preliminary results concerning the Filipovic space, Hw, which
we studied earlier on. After that, we give an introduction to inference in
function spaces and conclude with some theory on functional time series. For
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the functional time series section, we emphasize the concept of m-dependency
in the functional sense, introduced by Hörmann and Kokoszka [21].

4.1 Smoothing

In real life, we do not encounter intrinsically continuous observations. To that
end, we must carefully smooth the discrete set of points using some family
of functions. By smoothing, we mean fitting the data either by a function
which passes through all the data-points (interpolation), or regression-type
of methods which purpose is to minimize the error between the data-points
and family of functions. In the best case, we have a plenitude of discrete
observations, and thus there exists an underlying continuity. But more than
often, the collected data can be sparse, complicating the task of smoothing.

Smoothing can be done either by a parametric- or non-parametric method.
Typical parametric methods include basis function systems, which aims at
smoothing the observations yi(t) by a linear combination of K basis functions,

y(t) =
K∑
j=1

αjφj(t), (4.2)

where αj ∈ R and {φj(t)}j=1,...,K is a family of basis functions. Classical
examples of basis functions are, the Fourier basis {cos (jωt), sin (jωt)}j=1,...,K
for periodic data, and polynomial basis {tj−1}j=1,...,K for possibly erratic data.

A subset of the polynomial smoothing methods is the so-called splines.
In short, splines are piecewise polynomials defined on some set [a, b] taking
values in R. We will only encounter B-splines in this thesis. Thus we provide
a definition, following Joy [27].

Definition 4.1.1. A B-spline, is a polynomial spline function defined by

y(t) =
n∑
i=0

αjNi,j(t), (4.3)

where {αi}ni=0 is sequence of control points, k the order of the B-spline, and
Ni,j are the basis functions defined in terms of a nondecreasing sequence ti for
0, . . . , n+ k of knots, such that

Ni,1(t) =
{

1 if t ∈ [ti, ti+1]
0 otherwise,

and

Ni,j(t) = t− ti
ti+j − ti

Ni,j−1(t) + ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t).

For an in-depth study of smoothing in terms of functional data, see for
instance Ramsay [39].
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4.2 Estimation

Statistical analysis in the scalar sense relies on canonical asymptotic results
such as the law of large numbers (LLN) and the central limit theorem (CLT).
An important question to ask, is then, does there exist analog results for the
LLN and CLT in the case of F-valued random variables? We will briefly present
that, in fact, yes, there does exist F-valued versions of the major theorems in
statistics. In addition, we present what is meant by mean and covariance for
F-valued random variables, followed by their sample counterparts.

From introductory statistics we know that the central limit theorem con-
nects the asymptotic average of any sequence of iid random variables to the
normal distribution. The below theorem is the equivalent of the CLT for
random variables taking values in a separable Hilbert space. The proof can be
found in Bosq [11].

Theorem 4.2.1. Let {Xi}i≥1 be a sequence of iid mean zero random variables
taking values in some separable Hilbert space. If E

[
‖X1‖2

]
<∞, then

1√
N

N∑
i=1

Xi → Z,

with Z being a Gaussian with covariance operator C(x) = E [〈X1, x〉X1].

The LLN states that the average of an iid sequence of random variables,
converges in probability to the mean function µ(t). The proof of which can
also be found in Bosq [11].

Theorem 4.2.2. Let {Xi}i≥0 be sequence of iid random variables taking values
in a separable Hilbert space. If E

[
‖X1‖2

]
<∞, then the mean µ = E [X1] is

uniquely defined by 〈µ, x〉 = E [〈X,x〉] and

1
N

N∑
i=1

Xi → µ

Now that we have established the motivation for doing inference in separable
Hilbert spaces, we define the canonical parameters and their estimators.

Definition 4.2.3. Let X(t) be an F-valued random variable. We define mean,
covariance function and covariance operator as follows,

µ(t) = E [X(t)]
c(t, s) = E [(X(t)− µ(t))(X(s)− µ(s))]
C(·) = E [〈X − µ, ·〉(X − µ)] .

Moreover, we consider the observations X1(t), . . . , XN (t) as realization of an
F-valued random variable X(t). The naive estimators of the above parameters
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are then given by,

µ̂(t) = 1
N

N∑
i=1

Xi(t)

ĉ(t, s) = 1
N

N∑
i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s))

Ĉ(·) = 1
N

N∑
i=1
〈Xi − µ̂, ·〉(Xi − µ̂)

There is a striking resemblance between ordinary statistics and the func-
tional versions, the only apparent difference being the temporal dependence
in t. Note that, however, the sample covariance operator Ĉ(·) maps a possi-
bly infinite-dimensional element to a finite-dimensional subspace spanned by
X1, . . . , XN . This illustrates the limitations of estimation, when dealing with
function-valued objects.

A useful property to establish is the consistency of the estimators, that
being, we want the estimators to converge to the parameters in some sense.
Before showing that µ(t) is consistent in mean square, we provide an auxiliary
result,

Lemma 4.2.4. If X1, X2 ∈ L2([a, b]) are independent and E [X1] = 0, then

E [〈X1, X2〉] = 0.

Proof. This can be computed directly by interchanging integral and expecta-
tion,

E [〈X1, X2〉] = E

[∫ b

a
X1(t)X2(t)dt

]

=
∫ b

a
E [X1(t)]E [X2(t)] dt,

which by independence shows the assertion. �

The below theorem which states that µ̂(t) is a consistent mean square
estimator, can be found in Horváth and Kokoszka [22]. We provide a proof
where we fill some of the computational steps.

Theorem 4.2.5. Suppose {Xi}i≥1 is a sequence of iid random variables in
L2([a, b]). If E

[
‖X‖2

]
<∞, then µ̂ is an unbiased consistent estimator of µ

in L2 norm, i.e E [µ̂] = µ.

Proof. Let {Xi}i≥1 be sequence of realized random variables of X.First we
have that E [Xi] = µ(t) for i = 1, . . . and almost all t ∈ [0, 1]. Hence

E [µ̂] = E

[
1
N

N∑
i=1

Xi

]
= 1
N

N∑
i=1

E [Xi] = µ.
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Furthermore

E
[
‖µ̂− µ‖2

]
= E

[
〈 1
N

N∑
i=1

Xi − µ,
1
N

N∑
i=1

Xj − µ〉
]

= 1
N2

N∑
i=1

N∑
j=1

E [〈Xi − µ,Xj − µ〉]

= 1
N2

N∑
i=1

E
[
‖Xi − µ‖2

]
,

using Lemma 4.2.4. Since the Xi’s are independent realizations of X, we get
that

1
N2

N∑
i=1

E
[
‖Xi − µ‖2

]
= 1
N
E
[
‖X − µ‖2

]
→ 0

�

Since there has been done extensive research on the statistical properties
of the L2([a, b]) space, we put forth an example of what might happen in a
general function space.

Example 4.2.6. Let us consider observations in the Filipovic space Hw, which
we studied in the last chapter. Recall that

‖f‖2w = f(0)2 +
∫ ∞

0
w(x)f ′(x)2dx. (4.4)

We assume that X1, X2, . . . XN are iid realization of a random variable
X of finite expectation taking values in Hw with E [‖X‖w] < ∞. Again, we
consider the canonical estimator of the mean function,

µ̂(t) = 1
N

N∑
i=1

Xi(t), (4.5)

where t ∈ R+. Notice that the above estimator is, indeed, unbiased for any
choice of function space where E [Xi] = µ(t) exists for all t. Following the
same reasoning from the L2-proof, we obtain for the Hw observations,

E
[
‖µ̂− µ‖2w

]
= 1
N2

N∑
i=1

N∑
j=1

E [〈Xi − µ,Xj − µ〉w] . (4.6)

For i 6= j we have that

E [〈Xi(t), Xj(t)〉w] = E [Xi(0)Xj(0)] + E

[∫ ∞
0

w(x)∂xXi(x)∂xXj(x)dx
]

= E [Xi(0)]E [Xj(0)] +
∫ ∞

0
w(x)E [∂xXi(x)]E [∂xXj(x)] dx

= µ(0)2 +
∫ ∞

0
w(x)µ′(x)2dx = ‖µ‖2w.
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Above, we interchanged expectation and integral by Fubini-Tonelli in the
second term. Secondly, since the generator ∂x is closed in Hw, we interchange
expectation and differentiation. Thus,

E
[
‖µ̂− µ‖2w

]
= 1
N2

N∑
i=1

N∑
j=1
‖µ‖2w + 1

N2

N∑
i=1

E
[
‖Xi − µ‖2w

]
= ‖µ‖2w + 1

N
E
[
‖X − µ‖2w

]
,

which shows that the naive estimator of the mean in Hw, is not consistent in
square norm.

The problem above is that E [〈Xj − µ,Xi − µ〉] 6= 0 for i 6= j. However if
we assume X1, . . . , XN ∈ F, such that for independent X1 and X2 with the
condition E[X1] = 0, we have E [〈X1, X2〉F] = 0. If so, many of the properties
shown to hold for observations in L2 as in Horváth and Kokoszka [22], may also
hold for observations in any general separable Hilbert space F. In particular, we
have for E

[
‖X‖4F

]
<∞, that the following bounds for the covariance operator

holds

‖Ĉ‖2HS =
∞∑
i=1

λ2
i ≤ E

[
‖X‖4F

]
(4.7)

‖Ĉ − C‖2HS ≤
1
N
E
[
‖X‖4F

]
(4.8)

See Chapter 2 in Horváth and Kokoszka [22] for the proofs. The bounds above
asserts that the Hilbert–Schmidt norm of the estimator of the covariance is
bounded when E

[
‖X‖4F

]
is bounded. Moreover, the distance between Ĉ and

C in Hilbert–Schmidt norm gets smaller for large N . An implication of these
bounds is that for operators which are close, the eigenvalues are also close 1,
which we will use in the next section when discussing principal component
analysis.

4.3 Principal Component Analysis

In this section, we attempt to explain some of the basics of principal com-
ponent analysis (PCA) and how one can generalize the matrix framework
to that of Hilbert-valued functions. Functional principal component analysis
is an inferential tool, and depicts one of the central idéas of FDA, namely,
dimension reduction. We obtain a finite-dimensional approximation of the
infinite-dimensional observations X1, . . . , XN , by a so-called optimal empirical
orthonormal basis. A byproduct of this approach are the generated principal
components, which represents the functions which are most correlated with the
variability of the data.

1See Bosq [11] for the asymptotic bounds of the eigenvalues
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Basics of PCA

Given a symmetric p× p matrix C, we know that there exist an orthonormal
matrix U consisting of the eigenvectors of C in the sense that

U = [u1 · · ·up], (4.9)

where the ui’s are column vectors. Therefore, we have UTU = I, and Cuj =
λjuj , where λj is an eigenvector of C. By T , we mean the transpose of a
finite-dimensional vector or matrix. Moreover, we have that

UTCU = Λ = Diag(λ1, . . . , λp), (4.10)

where Λ denotes the p× p matrix consisting only of the diagonal eigenvalue
elements with λ1 > λ2 > · · · > λp.

The representation (4.10), implies that we can write C = UΛUT . We can
use this to find the vector x, which maximizes the quantity xTCx. Notice that

xTCx = xTUΛUTx = yTΛy, (4.11)

where y = UTx. By the orthonormality of U we can conclude that ‖x‖ = ‖y‖,
which shows that it is sufficient to find the y which maximizes ytΛy. Moreover,

yΛy =
p∑
j=1

λjy
2
j , (4.12)

thus for y = [1 0 · · · 0]T and x = u1 we end up with λ1 as maximum.
The above derivation can be lifted to the function setting. Recall that

spectral decomposition of an Hilbert–Schmidt operator (2.6), which is

Ψ(h) =
∞∑
j=1

λj〈h, vj〉vj , h ∈ H.

We also know that the covariance operator is a Hilbert–Schmidt operator.
Thus we want to maximize 〈T (h), h〉 subject to ‖x‖ = 1, but we have that

〈Ψ(h), h〉 = 〈
∞∑
j=1

λj〈h, vj〉vj , h〉 =
∞∑
j=1
〈λj〈h, vj〉vj , h〉 (4.13)

=
∞∑
j=1

λj〈h, vj〉〈vj , h〉 =
∞∑
j=1

λj〈h, vj〉2. (4.14)

By Parseval, we may write ‖x‖ = ∑∞
j=1〈x, vj〉2, which alters the optimiza-

tion to the following problem,

max
∞∑
j=1

λj〈h, vj〉2 subject to
∞∑
j=1
〈x, vj〉2 = 1. (4.15)
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Pick 〈x, v1〉2 = 1 and 〈x, vj〉 = 0 for all j 6= 1, thus 〈Ψ(x), x〉 is maximized at
±v1 with maximum λ1.

Furthermore, we maximize 〈Ψ(x), x〉 subject to ‖x‖ = 1 and 〈x, v1〉 = 0,
which is maximized at x = v2 with maximum λ2. This procedure may be
repeated and as summarized by Theorem 3.2 in Horváth, and Kokoszka [22],
we have that for any symmetric, positive definite Hilbert–Schmidt operator
satisfying λ1 > · · · > λp+1, that

sup
‖x‖=1,〈x,vj〉=0

〈Ψ(x), x〉 = λi, for 1 ≤ j ≤ i− 1, i < p (4.16)

where the supremum is obtained if x = vi. The element vj is unique up to a
sign.

Functional principal components

Consider the observations y1, y2 . . . , yN on some separable Hilbert space, and
define the sum

Ŝ2
PCA =

N∑
i=1
‖yi −

p∑
j=1
〈yj , uj〉uj‖2. (4.17)

If we can find an orthonormal basis u1, . . . , up which minimizes the above term,
we have a finite dimensional set of vectors which in some sense approximates
the set of observations yi for i = 1 . . . , N .

If we minimize ŜPCA subject to ‖uj‖ = 1 we get that,

Ŝ2
PCA =

N∑
i=1
‖yi −

p∑
j=1
〈yj , uj〉uj‖2

=
N∑
i=1
‖yi‖2 − 2

N∑
i=1

p∑
j=1
〈yi, uj〉2 +

N∑
i=1

p∑
j=1
〈yi, uj〉2‖uj‖2

=
N∑
i=1
‖yi‖2 −

N∑
i=1

p∑
j=1
〈yi, uj〉2,

by the assumption of orthonormality. The minima of Ŝ2
PCA is reached by

maximizing ∑N
i=1

∑p
j=1〈yi, uj〉2. Recall that,

〈Ĉ(u), u〉 = 〈 1
N

N∑
i=1
〈yi, u〉yi, u〉 = 1

N

N∑
i=1
〈yi, u〉2. (4.18)

Thus minimizing Ŝ2
PCA is equivalent to maximizing

N∑
i=1

p∑
j=1
〈yi, uj〉2 =

p∑
j=1
〈Ĉ(u), u〉

=
p∑
j=1

∞∑
k=1

λ̂k〈uk, v̂k〉2, (4.19)
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which by (4.16) gives that maximum of (4.19) is ∑p
k=1 = λk, and is obtained

when u1 = v̂1, u2 = v̂2, . . . up = v̂p.
Consequently, we define the empirical functional principal components

(EFPC’s) of given observations X1, . . . XN as the eigenfunctions v̂j of the
sample covariance operator Ĉ. In contrast, the functional principal components
are defined as the eigenfunctions vj of the covariance operator C. Let v̂i for
i = 1, . . . , N be a basis in RN , so that

1
N
〈Xi, x〉2 =

N∑
i=1

N∑
j=1
〈Xi, v̂j〉2 =

N∑
j=1

λ̂j , (4.20)

hence we say that the variance in the direction of v̂j is λ̂, in addition to the
amount of variance explained by v̂j is the fraction λ̂j/

∑N
k=1 λ̂k.

4.4 Functional Time Series

In this section, we give a short introduction to time series. Following the lines
of Shumway and Stoffer [45], we define expectation and autocovariance, before
we introduce the autoregressive models for time-series. Finally we give an
informal introduction to functional time-series, in particular the autoregressive
functional model of order one. We also provide a criteria for when a functional
autoregressive model admits a causal stationary solution.

Introduction to Time Series

First we consider some classical time-series theory. We let {xt}t∈Z be a R-
valued stochastic process. Such an object is called a time series due to the
temporal dependence in t. If ft(x) denotes the density of xt we define the
mean function of xt to be

µt = E [xt] =
∫ ∞
−∞

xft(x)dx.

A measure of dependency is the covariance between times of itself, which in
the realm of time series is called autocovariance. The definition is analogue to
the covariance parameter from before,

cov(xs, xt) = E [(xs − µs)(xt − µt)] . (4.21)

Under the assumption of weakly stationarity, time series are often modeled
by autoregressive-moving-average (ARMA) models. The ARMA models are a
combination of autoregressive and moving average type of models. Autoregres-
sive models depends linearly on its past including an error term, while moving
average models depend linearly on the past of a white noise process. Thus we
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denote white noise by wt, and let c be a constant, and φi, θi are real-valued
parameters. Then, we say that for finite p, q ∈ N,

xt = c+ wt +
p∑
i=1

φixt−i +
q∑
j=1

θiwt−i, (4.22)

is a model of order p,q, denoted ARMA(p, q). By white noise, we mean an iid
process with zero mean and variance σ2. A typical choice of a distribution for
the white noise is wt ∼ N (0, σ2).

However, we look into the autoregressive models, in particular, which is
when q = 0. In the case of an AR(1) time series, we have

xt = φxt−1 + wt = · · · = φkxt−k +
k−1∑
j=0

φjwt−j , (4.23)

iterating back in time, assuming finite variance we get

xt =
∞∑
j=0

φjwt−j , (4.24)

If |φ| < 1, the representation (4.24) exists, and is called the causal stationary
solution of the model.

Moreover, we may identify the order of an AR(p) or MA(p) model, through
its autocovariance function (ACF), or partial autocovariance function (PACF).
The order of the MA model is determined where the ACF displays a sharp
cut-off, whereas the AR model is determined where the PACF cuts-off sharply
2. By cutting-off, we mean an abrupt decrease such that the value is below
some threshold.

We conclude this section by introducing the Functional Autoregressive
Model of order one FAR(1). Let Φ ∈ B(H,H). The functional analogue of the
autoregressive process FAR(1), is defined by

Xn = Φ(Xn−1) + εn, (4.25)

where {Xn}n∈Z is a mean zero sequence of elements in L2([a, b]). The error
process {εn}n∈Z is assumed to be an iid mean zero sequence taking values in
L2([a, b]) with E

[
‖εn‖2

]
<∞.

Horváth and Kokoszka[22] shows that for the FAR(1) model, we can obtain
a stationary causal solution similar to (4.25), given by

Xn =
∞∑
j=0

Φj(εn−j), (4.26)

2See Shumway and Stoffer [45] for details.
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if there exists j0 ∈ Z, such that

‖Φj0‖ < 1. (4.27)

The series converges a.s. in L2-norm as well.
In Horváth and Kokoszka[22], they show how one can estimate Φ, as well

as performing methods of forecasting, using so-called predictive-factors. The
FAR(1) model is also used for change point detection, which aims at finding
abrupt changes in the observations. By means of change point detection
using FAR(1) models, one tests for changes in the linear operator through the
recursive scheme

Xn+1 = Ψn(Xn) + εn+1, (4.28)

for finite n, and observations Xn ∈ L2([a, b]) with zero mean εn−1 ∈ L2([a, b]).

4.5 Functional Dependency

In extending the notion of dependence to that of functional time-series, we
first define what is known as m-dependent time series. Moreover we define
Lp −m approximable functions, introduced by Hörmann and Kokoszka [21].
The section is concluded an example of approximability of the functional
autoregressive model.

Let {Xn}n∈Z be a sequence taking values in a function space F, denote
by F−h = σ(. . . , Xh−2, Xh−1, Xh) and F+

h = σ(Xh, Xh+1, Xh+2, . . . ) the σ-
algebras generated by the observations of {Xn}n∈Z, which is said to be m-
dependent if for any h, F−h and F+

h+m are independent. While few sequences in
practice exhibit this property, methods of approximating m-dependent series,
dates all the way back to Billingsley [7]. Even so, we will follow the approach
by Hórvath and Kokoszka [22], which is based on the formulation in Hörmann
and Kokoszka [21].

Definition 4.5.1. Let Lp2([a, b]), be the space of all L2([a, b])-valued functions,
which for all X satisfy,

vp(X) = E

[∫ b

a
X2(t)dt

]2/p
1/p

<∞ (4.29)

For the sake of defining Lp −m−approximability, let S = {1, . . . , N} for
N ≥ 2, and denote by S∞ the infinite Cartesian product, consisting of all
infinite sequences on the form,

ω = (z1(ω), z2(ω), . . . ), (4.30)

so that zj(ω) ∈ S for all ω ∈ S∞, and j ≥ 1. In fact, it is not trivial to construct
a probability space on S∞, therefore, we briefly discuss the procedure as given
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in Billingsley [8]. Let Sn = S×· · ·×S be the n-dimensional Cartesian product
of S, consisting of sequences on the form (y1, . . . , yn). The set

{ω : (z1(ω), z2(ω), . . . , zn(ω) = (y1, . . . , yn)},

depicts the event that the first n repetitions of S gives the outcome sequence
(y1, . . . , yn). Consider the cylinder set,

E = {ω : (z1(ω), z2(ω), . . . , zn(ω)) ∈ A}, (4.31)

where A ⊂ Sn. Let E0, be the class of all such finite sets, and define the
probability measure,

Pω(E) =
∑
A

py1py2 · · · pyn , (4.32)

which consists of the product of all possible outcomes (y1, . . . , yn) of A. In
Billingsley [8], it is shown that E0 is a σ-algebra on Sn, which by an extension
result can generate a σ-algebra, E on S∞. A similar extension can also be
performed for Pω, such that (S∞, E ,Pω) defines a probability space. Moreover,
we can then define an Lp −m−approximable sequence.

Definition 4.5.2. Let S denote a measurable space. A process {Xn} ∈ Lp2 is
Lp-m-approximable if each Xn can be represented as

Xn = f(εn, εn−1, . . . ),

where f : S∞ → F.

Let now {ε′
i}i∈Z be an independent copy of {εi}i∈Z, and define

X(m)
n = f(εn, εn−1, . . . , εn−m+1, ε

′
n−m, ε

′
n−m−1, . . . ), (4.33)

which implies
∞∑
m=1

vp(Xn −X(m)
n ) <∞. (4.34)

The X(m)
N ’s from (4.33) is not m-dependent, to this end Hörmann and

Kokoszka [21] instead use a so-called coupling construction. For each n, define
an independent copy {ε(n)

k } of {εk}, which we instead use in the construction
of (4.33), thus

X(m)
n = f(εn, εn−1, . . . , εn−m+1, ε

m
n−m, ε

m
n−m−1, . . . ). (4.35)

Then for each m ≥ 1, the sequence {X(m)
n }n∈Z satisfy (4.5.3), are strictly

stationary and m-dependent.
Consider a FAR(1) model, defined as in the last section,

Xn = Φ(Xn−1) + εn(t).
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Suppose that the model admits a stationary causal solutionXn(t) = ∑∞
j=1 Φj(εn−1),

and define the sequence

X(m)
n =

m∑
j=0

Φj(εn−1) +
∞∑

j=m+1
Φj(εn−1).

We want to show that ∑∞m=1 vp(Xm−X(m)
m ) <∞, and in doing so we need

an auxilary result on the vp(·) function.

Lemma 4.5.3. For Φ ∈ B(H) and Y ∈ L2([a, b]), we have the bound

vp(Φ(Y )) ≤ ‖Φ‖vp(Y ). (4.36)

Proof. Recall that for bounded Φ, we have ‖Φ(Y )‖ ≤ ‖Φ‖‖Y ‖. Thus,

vp(Φ(Y )) = E [‖Φ(Y )‖p]1/p (4.37)
≤ E [‖Φ‖p‖Y ‖p]1/p = ‖Φ‖vp(Y ). (4.38)

�

Now, using Lemma 4.5.3, Horváth and Kokoszka [22] computes the following
bound,

vp
(
Xm −X(m)

m

)
≤
∞∑
j=m
‖Ψ‖jvp(ε0), (4.39)

which means that ∑∞m=1 v2(Xm −X(m)
m ) <∞, since v2(ε0) <∞ by definition.

We define by a Linear process, any sequence {Xn}n≥1 ∈ L2([0, 1]) such
that

Xn =
∞∑
i=1

Ψi(εn−i), (4.40)

with iid zero mean errors εn ∈ L2([0, 1]).

Proposition 4.5.4. [22, Proposition 16.1] Let {Xi}i≥1 ∈ L2([0, 1]) with vp(ε0) <
∞ for p ≥ 2 be a FAR(1) process with operator Ψ. If the operator satisfies

∞∑
m=1

∞∑
j=m
‖Ψj‖ <∞, (4.41)

then the sequence {Xi}i≥1, is Lp-m-approximable.

The property of Lp-m-approximability relates to the long-run-covariance
of time series. Recall that for a weakly stationary scalar time series {xt}t∈Z,
the long-run-covariance is defined as

σ2 =
∞∑

i=−∞
Cov(x0, xj) =

∞∑
j=−∞

γj (4.42)

The long-run-covariance is related to the following central-limit theorem,
which proof can be found in Hamilton [19] .
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Theorem 4.5.5. Let {xt}t∈Z be a time series given by,

xt = µ+
∞∑
j=0

ψjεj , (4.43)

where the errors are iid random variables with E
[
ε2
j

]
< ∞ for all j ∈ Z. If∑∞

j=0|ψ| <∞, then

√
T (µT − µ)→

d
N (0,

∞∑
j=−∞

γj). (4.44)

We conclude this chapter with a result regarding the existence of a central
limit theorem for Lp-m-approximable sequences.

Theorem 4.5.6. [22, Theorem 16.3] Let {Xn}n∈Z be a mean zero Lp-m-approximable
sequence. Then

1
N

N∑
i=1

Xi →
d
Y, (4.45)

where Y is a gaussian process with

E [Y (t)] = 0,

E [Y (t)Y (s)] = E [X0(t)X0(s)] +
∞∑
i=1

E [X0(t)Xi(s)] +
∞∑
i=1

E [X0(s)Xi(t)] .
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5 Empirical study of the
Norwegian Yield Curve

5.1 Explorative Data Analysis

We present the data which is to be studied under the assumption of stationarity.
We want to test whether the Norwegian yield curve is stationary. However,
the choice of such underlying is not uniquely defined. The European Insurance
and Occupational Pensions Authority produce the risk-free interest rate, which
is used for modeling purposes under Solvency 2. On the other hand, it is useful
for financial institutions to measure the risk of the interest rate curve. To
that end, we choose to construct the yield curves independently, by smoothing
government bond observations using the Nelson-Siegel approach. Moreover,
the bonds issued by the Norwegian central bank is limited to having a time
to maturity of 10 years as their most lengthy product. Which is far from
capturing the asymptotic behavior of the yield curve. Therefore we will use
the smoothing method of Nelson-Siegel also to extrapolate the interest rate
curve to reach 60 years to maturity.

Data description

The data from Norges Bank [36] comprises 4082 trading days, from 08-01-2003
to 07-05-2019. The central bank of Norway, Norges Bank issues daily bonds
as securities with maturity of 3, 6, 9, 12 months and 3, 5, 10 years. The bond
prices in NOK are reported as annual effective yields, given in percent.

Analysis of the Bond data

We first perform some naive exploratory data analysis of the bond observations.
In Figure 5.1, we plot the 3-month bond price together with ACF and PACF-
plots. Recall that the ACF is used to determine if the time series is admits a
moving average property, while the PACF-plot describes the autoregressive
order of the time series. We see from Figure 5.1, the volatility of the 3-month
bond price around the time of the financial crisis differs from the rest of the
plot. The ACF plot is not interesting, meaning the 3-month bond price time
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Figure 5.1: Historical 3-Month bond price, together with its ACF and PACF

series is not of moving average type. However, the PACF-plot abruptly cuts
off at lag 2. A lag 2-cut-off may indicate that the time series may be modeled
as an autoregressive time series of order 2. We should also pay attention to
the sporadically significant lags at other times within the lag 50 window.

In Figure 5.2, we see the plots of the 6-month bond time series. The plot
resembles the 3-month bond time series to a great extent but differs slightly
around the time of the financial crisis by being marginally less volatile. This is
expected since the 6-month bond has a longer time to maturity. Again, we also
notice that there is no cut-off in the ACF-plot. The PACF-plot, however, cuts
off at lag 2, which indicates an autoregressive property of order 2 in the case
of a 6 -month-bond price time series. We omit the remaining ACF-plots of the
of the bond observations, as they show the same sluggish-decaying behavior as
the 3 and 6-month bonds..

The 9-month and 12-month bond observations seen in Figure 5.3 depicts
much of the same behavior as the other plots, but with significant values up
until lag-3. Notice that there are occurring some sporadically significant values.
For the 3-year bond shown in Figure 5.4, we notice a considerable change
in the dynamics of the time series. The overall shape is preserved, but the
volatility is significantly reduced, showing a more smooth plot in contrast to
the previous ones. The PACF-plot of the 3-year bond time series shows a
cut-off at lag 2, but the second lag being more subtle than the others.
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Figure 5.2: Historical 6-Month bond price, together with its ACF and PACF
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Figure 5.3: 9-Month and 12-month bonds

69



5. Empirical study of the Norwegian Yield Curve

2005 2010 2015

1
2

3
4

5

3 year bond

Date

P
ric

e

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
ar

tia
l A

C
F

Series  new_df$‘3 års \n3 year‘

Figure 5.4: 3-year bond

Finally, we have from Figure 5.5 the plot of both the 5 year and 10 year-
bond price time series. The time series plot of 3 year and 5 year bonds looks
similar, while the 10 year bonds, to some extent, seem less affected by the
financial crisis locally. This is not a surprise for an underlying with such a long
time to maturity. The PACF-plot of both the 5 year and 10 year bonds cuts
of at lag 2. Consequently, we provide in Table 1 a summary of the estimated
coefficients for order two autoregressive models for each time to maturity.
Recall that such a model can be represented as the time series

xt = φ1xt−1 + φ2xt−2. (5.1)

From table 1, we have listed the estimated coefficients for an AR(2) model,
as a compromise between order one, two or three. The σ2 term denotes the
variance of the error term. We notice that the bonds with a short time to
maturity have similar coefficient values, so do the products with a longer time
to maturity. This poses a challenge in modelling the entire yield curve as one
autoregressive model due to the temporal dependence.

5.2 Nelson-Siegel fitting the of the curves

In the paper of Nelson and Siegel [34], they present a parametrically par-
simonious model of the yield curve. Their motivation was to describe the
three shapes generally found in yield curves in practice: the level, hump, and
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Figure 5.5: 5 -year and 10-year bond

Estimated Autoregressive Models
Bond Coefficient

1
Coefficient
2

σ2

3 month 0.901 0.097 0.008984
6 month 0.8020 0.1963 0.00844
9 month 0.8556 0.1430 0.006643
12 month 0.8406 0.1579 0.00749
3 year 1.0426 -0.0438 0.004359
5 year 1.0628 -0.0641 0.004316
10 year 1.0471 -0.0485 0.004073

Table 5.1: Estimated AR(2) model for the bond observations.
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slope. We think of the level being the asymptote and the hump describing the
curvature - which is either convex or concave. Lastly, we have the slope, which
describes how fast the function decays. The Nelson-Siegel functions, given in
terms of time to maturity T , are

fNS(T ) = β0 + β1
1− exp(−λT )

λT
(5.2)

+ β2(1− exp(−λT )
λT

− exp(−λT )).

The asymptotic level of the yield curves are given by the constant term β0,
since

lim
T→∞

= β0,

hence β0 is called a long-term factor. Notice that the loading term on β1, is 1
at T = 0, as

lim
T→0

= 1− exp(−λT )
λT

= 1.

Thereafter, it decays quickly to 0, which motivates the fact that β1 is considered
a short-term factor, which represent the slope. The loading on coefficient β2,
can be shown to only affect the middle part of the functions, which coined
the name medium-term factor, or curvature. For a detailed discussion of the
Nelson-Siegel family of functions see Diebold and Rudebusch [16].

We now give some examples of fitted curves. See from Figure 5.6 a plot of
the bond observations together with the Nelson-Siegel curve. Notice that the
location of the bonds with a short time to maturity produced a hump early
on in the yield curve. In Figure 5.7, there is no such hump, and the growth
of the function slowly decays, which may indicate a healthy development of
economy. In contrast, we see that Figure 5.8 depicts the yield curve under the
financial crisis, which indicates an insecure money market a long time ahead.
Also notice that the model has some trouble with the fit, in comparison to the
prior fits.

It is known that the Nelson-Siegel model may have some trouble producing
highly accurate yield curves for certain types of observations. We will not dive
into the realm of error study, but instead, assume that the curves represent
meaningful yield curves. Our goal is merely to study the property of stationarity,
given the structure of the curves. If we were to predict future yield curves,
we would have had to take a closer look at the errors of fitting and how they
interfere with the predicted curves.

In Figure 5.9, we produced a surface plot of all the generated yield curves,
up until our last observation on 07-05-2019. By "Rate" in the z-axis we mean
annualized yield in percent. We notice the big spikes between 2007 and 2008,
which clearly illustrates the impact the financial crisis had on the Norwegian
yield curve. The most significant spike seems somewhat disproportionate to

72



5.2. Nelson-Siegel fitting the of the curves

0 10 20 30 40 50 60

0.
5

1.
0

1.
5

2.
0

2.
5

Norwegian Yield Curve

Years to maturity

ra
te

Nelson−Siegel fitted curve

bond observations on 2015−10−05

Figure 5.6: Example of Nelson-Siegel fitted data
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Figure 5.7: Example of Nelson-Siegel fitted data

the rest of the observations, which may suggest an imperfect fit. In the years
following, we see that the interest rates slowly decays.

In 1994, Svensson [46] extended the Nelson-Siegel model, which is now called
the Nelson-Siegel-Svensson model. This model includes a fourth term, which
can be thought of as a second hump, and is together with the Nelson-Siegel
model widely used by central banks to model the yield curve 1.

1See Aljinović et al. [1], for a review of methods used by several central banks across the
world.
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Figure 5.8: Example of Nelson-Siegel fitted data

Figure 5.9: The entire historic yield curve
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5.3 Mean, Variance and PCA of the Norwegian Yield
curves

Now that we have investigated the raw data, as well as the transition to smooth
curves, we are now applying the methods of estimation to the yield curves.
We continue our empirical pursuits by studying the mean and variance of the
Norwegian yield curves. Also, we put forth a brief functional principal compo-
nent analysis. Most of the plots from this section is due to the comprehensive
R package FDA by Ramsay et al. [38], which includes a plethora of vital tools
for performing functional data analysis.

Mean and Correlation

Starting with the mean function, recall that from Definition 4.2.3, the natural
estimator for the functional mean is given by

µ̂(x) = 1
N

N∑
i=1

Xi(x), for 0 ≤ x ≤ 60.

In Figure 5.10, we see that there are four plots of the mean function of the
observations. The blue dashed line denotes a confidence band consisting of the
5th and 95th percentile of the observations at a fixed time to maturity. Going
backward in time, we see that the confidence around the mean decreases, but
interestingly the most substantial gap, which is seen in the lower right plot - is
only at about 5 points. Notice also that the confidence bands for the recent
years seem relatively small, even back to 2016.

The empirical covariance and correlation with respect to matuarity times s
and t, are given by the equations

ĉ(t, s) = 1
N

N∑
i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s)),

ρ̂(t, s) = ĉ(t, s)√
ĉ(t, t)

√
ĉ(s, s)

,

for 0 ≤ t, s ≤ 60. As we can see from Figure 5.11, the correlation increases for
larger s and t. Nevertheless, as the s and t get further apart, the correlation
decays fast, but is never below 0.7. Looking closer at the correlation surface,
we notice some small irregularities around zero to three years to maturity,
which might be due to the majority of our bond observations are located before
three years to maturity.

Principal Component Analysis

We present a plot of the four first principal components, which we recall are
the estimated eigenfunctions ±v̂j for j = 1, . . . , 4 of the empirical covariance
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Figure 5.10: Historical estimated mean function of the Norwegian yield curves

(a) Sample covariance surface (b) Sample correlation surface

Figure 5.11: Dependency surface plots
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Figure 5.12: The first four principal components

operator Ĉ. The estimated functional principal components describes the
direction of noise which correlates the most with the data. In Figure 5.12, we
see the first four principal components of the yield curves. Recall that the
percentage of variability in the plots corresponds to the estimated eigenvalues
λ̂ of the covariance operator.

The first three components describe nearly all of the variance in the data.
This is to be expected since we smoothed the data with a three-parameter
family of functions. The first component is almost constant and represents the
average yield over the maturities. The second component describes the "hump",
whereas the third component, in some sense, captures the decay part of the
yield. The fourth component, which also has slight "hump" before reverting to
zero, accounts for 0.1% of the total variance and is therefore insignificant.

We notice that the third principal component admits a hump on a smaller
scale than in the second principal component. This may indicate that we can
smooth the data with the Nelson-Siegel-Svensson family of functions, which
admits the possibility of a second hump.
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5.4 The Functional KPSS test

Setting the scene

In this section we set the scene for the functional KPSS test, as formulated in
Horváth et al. [24]. The test assumes L2([0, 1])-valued observations, with the
usual norm and inner product.

We put forth some technical assumptions. Let f : S∞ → L2([0, 1]) be some
measurable function, and {εj}j∈Z a sequence of iid functions taking values in
S. Furthermore, let {ηj}j∈Z be a sequence of Bernoulli shifts,

ηj = f(εj , εj−1, . . . ), (5.3)

which implies that ηj is a well-defined stationary stochastic process. The term
in (5.3) is in itself a topic of several publications, see for instance Rosenblatt
[41], who first devised the construction.

Furthermore, we let E[η0(t)] = 0 for all t, and E[‖η0‖2+δ] <∞ for 0 < δ <
1, and the sequence {ηn}∞n=−∞ can be approximated by a so-called `-dependent
sequence {ηn,`}∞n=−∞ which satisfies

∞∑
`=1

(E
[
‖ηn − ηn,`‖2+δ

]
)1/k, (5.4)

for some k > 2 + δ. The above sequence ηn,` is defined as

ηn,` = g(εn, εn−1, . . . , ηn−`+1, ε
∗
n,`,n−`, ε

∗
n,`,n−`−1, . . . ), (5.5)

where the εn,`,i’s are independent copies of ε0 independent of{εi}i∈Z. We will
call the above statements, the stationarity assumptions.

The functional hypothesis test

Furthermore, we state the hypothesis test,

H0 : Xj(t) = µ(t) + ηj(t), 1 ≤ j ≤ N, (5.6)

with µ(t) ∈ L2([0, 1]). We are not testing for stationarity in the strict sense,
but for stationary about the mean function µ(t). The test hypothesis test is an
extension of the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, known from
econometrics. They constructed a test where the null-hypothesis is stationarity,
as opposed to the earlier works of Dickey and Fuller [15] which assumed the
existence of a unit root in H0.

The general alternative hypothesis is that H0 does not hold. But, in the
paper of Hórvath et al. [24], they propose three alternative hypotheses, making
this a so-called Portmanteau test. Also, they consider two test statistics, one
based on the curves themselves, TN , and one based on the finite-dimensional
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projections of the curves on the functional principal components, MN . Here,
we will also restrict ourselves only to pursue the first test statistic TN , as
well as simplifying the test to only account for the alternative hypothesis of
non-stationarity.

We define,

TN =
∫ 1

0

∫ 1

0
Z2
N (x, t)dtdx, (5.7)

with
ZN (x, t) = SN (x, t)− xSN (1, t), 0, x, t ≤ 1, (5.8)

where

SN (x, t) = 1√
N

bNxc∑
i=1

Xi(t), 0 ≤ x, t ≤ 1, (5.9)

where b·c is the floor function which maps a real number x to the greatest
integer less than or equal to x, for example b3.4c = 3. For Xj(t) = Xj , i.e., for
scalar observations, the test statistic TN coincide with the numerator of the
KPSS test statistic.

Furthermore, the limit distribution of TN depends on the eigenvalues of
the long run covariance of the errors,

C(t, s) = E[η0(t)η0(s)] +
∞∑
`=1

E[η0(t)η`(s)] +
∞∑
`=1

E[η0(s)η`(t)]. (5.10)

The long-run covariance function C(t, s) is positive definite, and thus there
exist 0 ≤ λ1 ≤ λ2 ≤ . . . and orthonormal functions {φj(t)}∞j=1 with 0 ≤ t ≤ 1,
such that the following holds,

λjφj(t) =
∫ 1

0
C(t, s)φj(s)ds, (5.11)

for 1 ≤ j <∞.
For the purpose of proving the asymptotic distribution of the test statistic,

we present the Gaussian process introduced in Berkes et al. [5]

Γ(x, t) =
∞∑
i=1

λ1/2Wi(x)φ(t). (5.12)

We can now present the theorem which characterizes the limit distribution
of TN . But before doing so, we must establish a preliminary theorem.

Theorem 5.4.1. [24, Theorem A.1] Assume that the stationarity assumptions
above holds. Then

∞∑
`=1

λ` <∞, (5.13)
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and for all N , we can define a sequence of Gaussian process ΓN (x, t) such that

ΓN (x, t) =
d

Γ(x, t), for 0 ≤ x, t ≤ 1, (5.14)

and
sup

0≤x≤1

∫ 1

0
(VN (x, t)− ΓN (x, t))2dt = O(1), (5.15)

where

VN (x, t) = N−1/2
bNxc∑
i=1

ηi(t). (5.16)

Clearly, we cannot in practice observe all covariances of C(t, s), hence the
need for an estimator arises. Note that under H0, we have that

C(t, s) = Cov(X0(t), X0(s)) +
∞∑
i=1

(Cov(X0(t), Xi(s)) + Cov(X0(s), Xi(t))) ,

for 0 ≤ t, s ≤ 1.
It is shown in Hórvath et al. [23] that we have for the estimator of the long

run covariance, ∫ 1

0

∫ 1

0
(ĈN (t, s)− C(t, s)))2dtds −→

P
0, (5.17)

where,

ĈN (t, s) = γ0(t, s) +
N−1∑
i=1

K
( i
h

)
(γi(t, s)− γi(s, t)), (5.18)

with

γi(t, s) = 1
N

N∑
j=i+1

(Xj(t)− X̄N (t))(Xj−i(s)− X̄N (s)). (5.19)

Here X̄N = 1
N

∑N
i=1Xi(t), and the function K(·) is a kernel function. Kernel

functions are heavily used in econometrics as a tool for discretizing the infinite
numbers of autocovariances. The function K(·) must satisfy the properties

(i) K(0) = 1
(ii) K(u) = 0 if u > c for some c > 0
(iii) K(·) is continuous on the compact set [0, c], given the c above.

The parameter h is called the window, or the smoothing bandwidth, which
depends on the number of observations in following way,

(i)
h(N)→∞

(ii)
h(N)
N
→ 0 as N →∞.
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Typical choices of kernels are e.g. the Parzen kernel, Bartlett kernel or flat
top kernel. Simulating functional autoregressive process, Hórvath et al. [24]
obtained satisfactory results using the flat top kernel,

K(t) =


1, 0 ≤ t < 0.1
1.1− |t|, 0.1 ≤ t < 1.1
0, |t| > 1.1

, (5.20)

with h = N1/2. However, the study of kernels and bandwidths has been of great
importance in the realm of econometric research, and choosing a combination
should therefore not be taken lightly. But an in-depth study of such choices is
beyond the scope of this thesis.

We can now formulate the relation

λ̂jφ̂j =
∫ 1

0
ĈN (t, s)φ̂j(s)ds, (5.21)

where λ̂1 ≥ λ̂2 ≥ · · · and φ̂1(t), φ̂2(t), . . . denotes the empirical eigenvalues
and eigenfunctions respectively.

For our application of the functional hypothesis test, we characterize the
asymptotic distribution of TN as presented in Horváth et al. [24]. We give the
same proof as they provide, but we include some of the computational gaps.

Theorem 5.4.2. [24, Theorem 2.1] Assume that H0 and the technical assump-
tion from before holds, then

TN −→
d

∞∑
i=1

λi

∫ 1

0
B2
i (x)dx, (5.22)

where the Bi(x)’s denote independent Brownian bridges, i.e.

Bi(x) = (Wi(x)|Wi(1) = 0), (5.23)

for standard Wiener processes Wi(x) where x ∈ [0, 1].

Proof. Let
V 0
N (x, t) = VN (x, t)− xVN (1, t),

where

VN (x, t) = N−1/2
N∑
i=1

ηi(t).

The partial sum definition of ZN yields,

ZN (x, t) = SN (x, t)− xSN (x, t)

= N−1/2
bNxc∑
i=1

Xi(t)− xN−1/2
Nx∑
i=1

Xi(t).
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By assumption, we have Xi(t) = µ(t) − ηi(t), which by straightforward
computations gives us that

ZN (x, t) = V 0
N (x, t) + µ(t)

(bNxc −Nx
N1/2

)
. (5.24)

Furthermore, we show that ZN can be approximated by V 0
N with an error

of order O(1),

sup
x∈[0,1]

||ZN (x, t)− V 0
N (x, t)|| = sup

x∈[0,1]
||µ(t)

(bNxc −Nx
N1/2

)
||

≤ ||µ(t)
( 1
N1/2

)
||

= 1
N1/2 ||µ||.

We may then rewrite (5.7) as,∫ 1

0

∫ 1

0
Z2
N (x, t)dxdt =

∫ 1

0

∫ 1

0

(
V 0
N (x, t)

)2
dxdt+O(1).

Define
Γ(x, t) =

∞∑
i=1

λ
1/2
i Wi(x)ϕi(t),

which by Theorem 5.4.1 implies

TN −→
d

∫ 1

0

∫ 1

0
(Γ0(x, t))2dxdt,

where Γ0(x, t) = Γ(x, t)− xΓ(1, t).
By the definition of Γ(x, t) we get that

Γ0(x, t) =
∞∑
i=1

λ
1/2
i Bi(x)ϕ(t),

where B1, B2, . . . are iid Brownian bridges.
Consequently

∫ 1

0

∫ 1

0
(Γ0(x, t))2dxdt =

∫ 1

0

∫ 1

0

( ∞∑
i=1

λ
1/2
i Bi(x)ϕ(t)

)2

dxdt

=
∫ 1

0

( ∞∑
i=1

λiB
2
i (x)

)
dx,

since φ(t) is a family of orthonormal functions. We interchange the sum and
integral by the Dominated Convergence Theorem, and the limit is proved. �
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The test statistic can then be approximated by quantity

T̂d =
d∑
i=1

λ̂i

∫ 1

0
Bi(x)dx. (5.25)

It remains to describe the distribution of
∫ 1

0 Bi(x)dx. In Hórvath et al. [24]
they suggest using an expansion from Shorack and Wellner [44], which leads
us to define the following approximation

T̂d,J =
d∑
i=1

λ̂i

J∑
j=1

Z2
j

j2π
, (5.26)

where the Zj ’s are iid standard normal random variables. In obtaining the test
statistic T̂d,J we will Monte Carlo simulate the above expression. Accordingly,
the null hypothesis if rejected if TN is larger than the 95th percentile of the
simulated distribution of T̂d,J .

5.5 Performing the Functional KPSS Test

In this section, we perform the functional KPSS test. We want to test if the full
history of the Nelson-Siegel smoothed Norwegian yield curves are stationary.
Recall that the data [36] comprises 4082 trading days, from 08-01-2003 to
07-05-2019. Following the lines of Horváth et al. [24] and Kokoszka and Young
[29], we separate the data into consecutive segments of length N = 50, 150 and
500 days.

When using tools from the R-package FDA, we must first transform our
multivariate data into a functional time series object. Such an object much be
defined through a basis in R. For simplicity, we use the B-spline basis provided
by the same R-package since our data is non-periodic. We found it sufficient to
pass the argument of 20 basis functions, in approximating the already smooth
yield curves, i.e., we approximate the yield functions by cubic splines with 20
basis functions and 18 knots.

We estimate the long-run covariance Ĉ(t, s) by (5.18), with the flat-top ker-
nel from (5.20) and bandwidth h =

√
N . We obtain the estimated eigenvalues

of Ĉ(t, s), through the relation

λ̂jφ̂j =
∫ 1

0
ĈN (t, s)φ̂jds.

The test statistic (5.7) is naively approximated as a Riemann-sum. We
found x = [0 0.01 0.02 · · · 1], to be sufficient for our study, i.e. x has 100
entries evenly distributed between 0 and 1. The variable t has 600 evenly
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Figure 5.13: P-values for N = 50, 150, 500
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distributed between 0 and 1, which means

TN =
∫ 1

0

∫ 1

0
Z2
N (x, t)dtdx (5.27)

≈ 1
100× 600

100∑
i=1

600∑
j=1

Z2
N (x, t). (5.28)

Then, we compute the distribution of the test statistic

T̂d,J =
d∑
i=1

λ̂i

J∑
j=1

Z2
j

j2π
,

under H0 with d = 10, and J = 100. Doing so, we obtain an empirical
distribution by Monte Carlo simulation of T̂d,J for each segment. Suppose
we have simulated observations of T1, T2 . . . TN , we, thereafter, establish the
empirical cumulative distribution function (ECDF) of each T̂

(i,N)
d,J for i =

1, 2 . . . 4082/N for N = 50, 150 and 500. We define the ECFD as

F
(i)
N (t) = 1

N

N∑
j=1

1(Tj≤t) (5.29)

Since this is a one-sided test, and we reject the hypothesis if 95 ≤ F (i)
N (TN )

we provide an overview of the empirical P-values in Figure 5.13. The P-values
are calculated from P (i,N) = 1− F (i)

N (TN ), where i = 1, 2 . . . 4082/N belongs
to each segment for N = 50, 150, 500. The red and blue line indicates the 0.10
and 0.05 rejection levels respectively.

In Figure 5.13 we chose d = 10 and J = 100 in simulating the distribution of
T̂

(i,N)
d,J . For N = 50, we reject 18/82 segments, and for N = 150 and N = 500,

we do not reject any of the time segments at the 0.05 level. This indicates
that for shorter time periods, the test is inclined to reject the hypothesis of
stationarity.

In Kokoszka and Young [29], they perform a functional KPSS test on raw
bond data from daily United States Federal Reserve yield curve rates defined
for maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120 and 360 months, without using
any financial smoothing method. Whereas they suggest the yield curves might
be non-stationary, we cannot conclude that the same deduction holds for the
Nelson-Siegel smoothed Norwegian yield curves. In Kokoszka and Young [29],
however, they perform a KPSS type of test, which under H0, the data are
assumed trend stationary in contrast to our level type of test. That is, their
null hypothesis is formulated as

Xj(t) = µ(t) + nξ(t) + ηj(t),

for 1 ≤ j ≤ N , where µ(t) and nξ(t) denotes the intercept and slope, respec-
tively.
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5.6 Concluding remarks

Throughout this chapter, we have presented the framework of functional data
analysis, extended the notion of scalar time series to that of functional time
series, let alone performed an empirical study of Norwegian yield curves. In
total, we could not reject the null-hypothesis of stationarity in the Norwegian
yield curves when conducting the functional KPSS test. The rejections of
the null-hypothesis in the small-segment test, suggests the existence of some
short term non-stationarity in our data. As opposed to the conclusion of
non-stationarity in Kokoszka and Young [29], we find no reason to reassess the
established notion of stationarity in yield curves, especially for the Norwegian
yield curves.

Regarding the untreated government bond observations, we found indi-
cations of an autoregressive structure of the bonds. Modelling the bonds
separately, we found it constructive to use an order of two or three, although
the slight difference between the short and long time to maturity may pose a
challenge in doing so. If we can accurately capture an autoregressive structure
of the bonds, one can, for instance, implement classical methods for forecasting.

Practitioners in the field of functional data analysis rarely use other spaces
than L2([a, b]), when dealing with observation taking values in a separable
Hilbert space. Due to the pleasant behavior of the classical L2-spaces, they
are heavily used in practice, often without taking into consideration the innate
equivalence-class construction of such spaces.

To that end, we suggest examining other choices for domains for the
observations. In the particular case of yield curves, we suggest an investigation
of the inferential properties of observations taking values in the Filipovic space,
Hw. It is not necessarily an easy task. We showed earlier in Example 4.2.6
that the natural estimator for the mean is not consistent in square norm for
Hw-valued observations. We, therefore, might need strict requirements on
the function space we are working within for the estimators to behave nicely.
A starting point for further analysis could be to construct a function space
consisting of all such spaces where, e.g., the mean is consistent, and expand
from thereon.

Additionally, there is the option of modeling yield curves as a functional
autoregressive model. If we can correctly represent the yield curve as an
FAR(1) process {Xn}n≥1 as in (4.25), we can use methods of functional time
series forecasting, for instance the predictive factor method as proposed in
Kargin and Onatski [28], or using so-called estimated kernels as in Besse et al.
[6]. The latter article also reports that the functional methods outperformed
the classical scalar time series prediction methods in their application on
geophysical data.

In summary, functional data analysis is still in the early stages of being
a branch of statistics. We have presented a few of the immediate links to
classical scalar statistics, as well as some justification for why the functional
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methods in theory succeeds, through the LLN and CLT. Already there exists
a sizable toolbox for different types of analysis of functional observations,
including testing for stationarity, independence, and change points, not to
mention two-sample inference for mean and covariance function, all of which
can be found in Horváth and Kokoszka [22]. The need for understanding
functional analysis might frighten practitioners in the field of data analysis;
however, we anticipate increased use of functional methods in the industry,
when standard software becomes accessible.
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6 Appendix

6.1 Additional Hilbert Space Properties

We present three fundamental properties of Hilbert spaces. Denote by H a
separable Hilbert space, with inner product 〈·, ·〉 and norm ‖·‖.

Theorem 6.1.1 (Riesz Representation Theorem). Consider the functional L ∈
B(H,R). There exists an unique element h ∈ H called the representer or the
identifier of L, defined by the relation

L(·) = 〈·, h〉 (6.1)

Theorem 6.1.2 (Cauchy–Schwarz inequality). Given two elements h1, h2 ∈ H.
Then the following inequality holds for all two elements h1 and h2,

〈h1, h2〉 ≤ ‖h1‖‖h2‖ (6.2)

Theorem 6.1.3 (Parseval’s identity). Given any orthonormal basis {ei}i≥1, we
have that the norm of x squared may be represented as a infinite sum of inner
products,

‖x‖2 =
∞∑
i=1
〈x, ei〉2. (6.3)
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6.2 Itô Formula

We present Itô’s formula for Hilbert-valued stochastic processes.

Theorem 6.2.1. [14, theorem 4.32] Let Φ be L2
0-valued process stochastically

integrable in [0, T ] and φ a H-valued Bochner integrable process on [0, T ] P-a.s.
If also X(0) is a F0-measurable H-valued random variable, then the following
process,

X(t) = X(0) +
∫ t

0
φ(s)ds+

∫ t

0
Φ(s)dsW (s), (6.4)

is well-defined for all t ∈ [0, T ]. Moreover, if F : [0, T ] × H → R and its
partial derivatives Ft, Fx, Fxx are uniformly continuous on bounded subsets of
[0, T ]× H, we have

F (t,X(t)) = F (0, X(0)) +
∫ t

0
〈Fx(s,X(s)), φ(s)dW (s)〉

+
∫ t

0

[
Ft(s,X(s)) + Fx(s,X(s), φ(s))

+ 1
2Tr(Fxx(s,X(s))(Φ(s)Q1/2)(Φ(s)Q1/2))

]
ds.
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6.3 Girsanov theorem

Girsanov’s theorem is used to transform a probability measure P to an equiva-
lent risk-neutral probability measure Q. The measure Q plays a crucial role in
the derivation of the celebrated Black-Scholes formula [9] for pricing options,
and in establishing arbitrage free dynamics in general.

Theorem 6.3.1. [14, Theorem 10.14] Let Ψ(·) be a U0-valued Ft-predictable
process such that

E

[
exp(

∫ T

0
〈Ψ(s), dW (s)〉U0 −

1
2

∫ T

0
‖Ψ(s)‖2U0ds)

]
= 1, (6.5)

then the Q-Wiener process, Ŵ (t) with respect to {Ft}t≥0 on the probability
space (Ω,F , P̂), is defined by the relation

Ŵ (t) = W (t)−
∫ t

0
Ψ(s)ds, (6.6)

where

P̂(dω) = exp
(∫ T

0
〈Ψ(s), dW (s)〉U0 −

1
2

∫ T

0
‖Ψ(s)‖2U0ds

)
dP(dω). (6.7)
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6.4 R-Code

library(YieldCurve)
library(readxl)
library(rmutil)
library(plot3D)
library(fastR)
library(fda)
library(tidyr)
library(plotly)
library(dplyr)
library(fChange)
library(qualityTools)
library(GeneralizedHyperbolic)
final_bond_data <- read_excel("~/MEGA/master_thesis/project/latex/projectv2

/final_bond_data.xlsx",
skip = 5,na = "")

new_df = na.omit(final_bond_data[,c(1,8,9,10,11,5,6,7)]) # changing the
order of the bonds and removing rows with NA

maturities = c(c(3,6,9,12)/12,3,5,10)
f_maturities = c(c(3,6,9,12)/12,3,5,10,15,30) # Toy-maturities

# Nelson-Siegel function output
NS = function(NSvector,t){
beta_0 = NSvector[1]
beta_1 = NSvector[2]
beta_2 = NSvector[3]
lambda = NSvector[4]
return (beta_0 + beta_1*((1-exp(-lambda*t))/(lambda*t))+beta_2*((1-exp(-

lambda*t))/(lambda*t)-exp(-lambda*t)))
}

##### --- Plots of bond observations along with acf and pacf --- #####
par(mfrow=c(2,2))
# 3 Month
plot(new_df$X__1, new_df$‘3 mnd
3 month‘, ylab = "Price",main="3 month bond",xlab = "Date")
acf(new_df$‘3 mnd
3 month‘)
pacf(new_df$‘3 mnd
3 month‘,lag.max = 50)

# 6 Month
plot(new_df$X__1, new_df$‘6 mnd
6 month‘, ylab = "Price",main="6 month bond",xlab = "Date")
acf(new_df$‘6 mnd
6 month‘)
pacf(new_df$‘6 mnd
6 month‘,lag.max = 50)

# 9 Month
plot(new_df$X__1, new_df$‘9 mnd
9 month‘, ylab = "Price",main="9 month bond",xlab = "Date")
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acf(new_df$‘9 mnd
9 month‘,lag.max=100)
pacf(new_df$‘9 mnd
9 month‘,lag.max=50)

# 12 Month
plot(new_df$X__1, new_df$‘12 mnd
12 month‘, ylab = "Price",main="12 month bond",xlab = "Date")
acf(new_df$‘12 mnd
12 month‘)
pacf(new_df$‘12 mnd
12 month‘,lag.max = 50)

# 3 Year
plot(new_df$X__1, new_df$‘3 års
3 year‘, ylab = "Price",main="3 year bond",xlab = "Date")
acf(new_df$‘3 års
3 year‘)
pacf(new_df$‘3 års
3 year‘,lag.max=50)

# 5 Year
plot(new_df$X__1, new_df$‘5 års
5 year‘, ylab = "Price",main="5 year bond",xlab = "Date")
acf(new_df$‘5 års
5 year‘)
pacf(new_df$‘5 års
5 year‘,lag.max = 50)

# 10 Year
plot(new_df$X__1, new_df$‘10 års
10year‘, ylab = "Price",main="10 year bond",xlab = "Date")
acf(new_df$‘10 års
10year‘)
pacf(new_df$‘10 års
10year‘,lag.max = 50)
##### ----------------------------------------------- #####

##### --- AR modeling of the bonds --- #####
ar(new_df$‘3 mnd
3 month‘,order.max = 2,se.fit=FALSE)
ar(new_df$‘6 mnd
6 month‘,order.max = 2)
ar(new_df$‘9 mnd
9 month‘,order.max = 2)
ar(new_df$‘12 mnd
12 month‘,order.max = 2)
ar(new_df$‘3 års
3 year‘,order.max = 2)
ar(new_df$‘5 års
5 year‘,order.max = 2)
ar(new_df$‘10 års
10year‘,order.max=2)
####------------------------------######
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###### --- Constructing Nelson-Siegel plot together with bond data ---
#####

day = 2890
yieldcurve = new_df[day,c(2,3,4,5,6,7,8)]
NSParameters = Nelson.Siegel(rate = yieldcurve , maturity=maturities)
NSfunc = NS(NSParameters,seq(from = 0, to = 60, by = 0.1))
mylegend = c("Nelson-Siegel fitted curve", paste0("bond observations on ",

as.Date(new_df[[day,1]])))
plot(seq(from = 0, to = 60, by = 0.1),NSfunc, type="l",main="Norwegian

Yield Curve",xlab="Years to maturity",ylab="rate")
legend("bottomright",legend=mylegend,col=c(1,2),lty=1)
lines(maturities,yieldcurve,col="2",type="p")
##### ------------------------------------------------------ #####

# Creating functional data object and plotting
nrows = dim(new_df)[1]
ncolumns = 60/0.1
yieldcurve = new_df[1,c(2,3,4,5,6,7,8)]
NSParameters = Nelson.Siegel(rate = yieldcurve , maturity=maturities)
NSfunc = NS(NSParameters,seq(from = 0, to = 60, by = 0.1))

f_ts = data.frame(format(as.Date(new_df[[1,1]]),"%d-%m%-%Y") = NSfunc[-1])
f_ts = data.frame(f_ts)
f_ts = NSfunc[-1]
for(i in 2:nrows) {
yieldcurve = new_df[i,c(2,3,4,5,6,7,8)]
NSParameters = Nelson.Siegel(rate = yieldcurve , maturity=maturities)
NSfunc = NS(NSParameters,seq(from = 0, to = 60, by = 0.1))
f_ts = cbind(f_ts,NSfunc[-1])

}
df = data.frame(f_ts)

#####---3D Plot of the yield curves---#####
N = 600
axx <- list(
title = "Time"

)
axy <- list(
title = "Time to maturity (in years)"

)
axz <- list(
title = "Rate"

)
y = seq(0.1,60,0.1)
p = plot_ly(x=~format(as.Date(new_df$X__1)[1:N],"%d-%m%-%Y"),y = ~y,
z = ~f_ts[,1:N],type = "surface",opacity=0.9,colorscale=’Picnic’) %>%

layout(scene = list(xaxis=axx,yaxis=axy,zaxis=axz))
p
###### ---------------------------- #######

###### --- Plots mean function of interest rate observations --- #####
###### --- together with 90% confidence band defined by the quantiles ---

#####
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###### --- x here is how far back in time we compute the mean from ---
#####

mean_function_plot = function(x,y){
lq = c()
hq = c()
for (i in 1:length(f_ts[,1])){
lq[i] = quantile(f_ts[i,x:y],c(0.05,0.95))[1]
hq[i] = quantile(f_ts[i,x:y],c(0.05,0.95))[2]

}
plot(seq(0.1,60,0.1),rowMeans(f_ts[,x:y]),ylim=c(-1,9),ylab="Interest

rate",
xlab="Time to maturity in years",type="l",
main=paste(format(as.Date(new_df[[x,1]]),"%d-%m%-%y"),"-",format(as.

Date(new_df[[y,1]]),"%d-%m%-%y"),sep=" "))
lines(seq(0.1,60,0.1),lq,col="blue",lty=2)
lines(seq(0.1,60,0.1),hq,col="blue",lty=2)
#legend(10,1,legend=c("Mean", "90% Confidence band"),

#col=c("black", "blue"), lty=1:2,cex = 0.5)
}

par(mfrow=c(2,2))
mean_function_plot(3097,2846)
mean_function_plot(2846,2594)
mean_function_plot(2594,2345)
mean_function_plot(2345,2092)

#####--------------------------------#####

##### --- Creating FDA object and plotting estimators --- #####
a = 255
b = 500
basis = create.bspline.basis(rangeval = c(0, 1), nbasis = 30)
Domain = seq(0, 1, length = nrow(f_ts[,a:b]))
f_data = Data2fd(argvals = Domain , f_ts[,a:b], basisobj = basis)
f_data_c = center.fd(f_data)

plot(f_data_c)
f_data_deriv = deriv.fd(f_data)
f_mean = mean.fd(f_data)
f_std = std.fd(f_data)
f_cov = var.fd(f_data)
f_pca = pca.fd(f_data_c,nharm =4)
f_cor = cor.fd(seq(0,1,0.01),f_data_c)
plot(f_pca$scores[,4])

par(mfrow=c(2,1))
plot(seq(0,60,length = length(f_std$coefs)),f_std$coefs)

axz1 <- list(
title = "Covariance"

)
axz2 <- list(
title = "Correlation"

)
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plot_ly(x = seq(0,60,length= nrow(cov$coefs)), y = seq(0,60,length= nrow(
cov$coefs)), z=~cov$coefs,type=’surface’)%>%layout(scene = list(zaxis=
axz1))

plot_ly(x = seq(0, 1, length = nrow(f_ts[,a:b])),y = seq(0, 1, length =
nrow(f_ts[,a:b])),z=cov$coefs,type=’surface’)

plot_ly(x = seq(0, 60, length = nrow(f_cor)),y = seq(0, 60, length = nrow(f
_cor)), z=~f_cor,type=’surface’)%>% layout(scene = list(zaxis=axz2))

par(mfrow=c(2,2))
plot.pca.fd(f_pca,pointplot=FALSE)

#####--------------------------------#####

### TESTING FOR STATIONARITY ###
format(as.Date(new_df[[86,1]]),"%d-%m-%y")
format(as.Date(new_df[[335,1]]),"%d-%m-%y")
format(as.Date(new_df[[586,1]]),"%d-%m-%y")
format(as.Date(new_df[[839,1]]),"%d-%m-%y")
format(as.Date(new_df[[1090,1]]),"%d-%m-%y")
format(as.Date(new_df[[1340,1]]),"%d-%m-%y")
format(as.Date(new_df[[1589,1]]),"%d-%m-%y")
format(as.Date(new_df[[1840,1]]),"%d-%m-%y")
format(as.Date(new_df[[2092,1]]),"%d-%m-%y")
format(as.Date(new_df[[2345,1]]),"%d-%m-%y")
format(as.Date(new_df[[2594,1]]),"%d-%m-%y")
format(as.Date(new_df[[2846,1]]),"%d-%m-%y")
format(as.Date(new_df[[3097,1]]),"%d-%m-%y")
format(as.Date(new_df[[3348,1]]),"%d-%m-%y")
format(as.Date(new_df[[3601,1]]),"%d-%m-%y")
format(as.Date(new_df[[3845,1]]),"%d-%m-%y")
yrs = c

(1,86,335,586,839,1090,1340,1589,1840,2092,2345,2594,2846,3097,3348,3601,3845)

sub = c(50,150,500)
#q = c()
t = c()
pvals = c()
par(mfrow=c(3,1))
for (j in sub){
yrs = seq(1,4082,by=j)
t = c()
for (i in 2:length(yrs) ) {
a = yrs[i-1]
b = yrs[i]
basis = create.bspline.basis(rangeval = c(0, 1), nbasis = 20)
Domain = seq(0, 1, length = nrow(f_ts[,a:b]))
f_data = Data2fd(argvals = Domain , f_ts[,a:b], basisobj = basis)
f_data_c = center.fd(f_data)
C = LongRun(f_data, h=(b-a)^{1/2}, kern_type = "FT",is_change=TRUE)
D= C$e_val
p = ecdf(sapply(1:1000, function(x) Tn_Distribution(D,10,100)))
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#q = c(q,quantile(sapply(1:1000, function(x) Tn_Distribution(D,5,100)),
0.95))

#t = c(t,test_statistic(f_ts[,a:b],0.1))
t = c(t,p(test_statistic(f_ts[,a:b],0.01)))

}
dyrs=head(yrs,-1)
d = format(as.Date(new_df$X__1[dyrs]))
d = (factor(d))
pvals=c(pvals,t)
plot(factor(d),1-rev(t),las=1,ylim=c(0,1),main=paste("P-values for N=",j,

sep=" "))
abline(h=0.05, col="blue")
abline(h=0.1, col="red")

}
1-t
dyrs=head(yrs,-1)
d = format(as.Date(new_df$X__1[dyrs]))
d = (factor(d))
plot(factor(d),1-rev(t),las=1,ylim=c(0,1))
abline(h=0.05, col="blue")
abline(h=0.1, col="red")
#####---------------------------###

###### ----- Computing sample covariance of yield curves ----- #####
centered_fts = f_ts[,1:1500] - rowMeans(f_ts[,1:1500])
Cov_fts = (1/1500)*centered_fts%*%t(centered_fts)
matplot(Cov_fts, type="l")
persp3D(seq(0.1,30,0.1),seq(0.1,30,0.1), Cov_fts,zlab="Covariance")
t = 100
X = f_ts[,1:253]
N = dim(X)[2]
plot(E, type ="l")
matplot(E,type="l")
TN_Dist = plot(sapply(1:1000, function(x) Tn_Distribution(D,4,100)))
sum(D[1:4])/sum(D)
##### ------------------------------------------ #####

##### ----- Computing the test statistic and the test statistic
distribution -----#####

test_statistic = function(X,resolution){
N = dim(X)[2]
x = seq(0,1, resolution)
Z = numeric(dim(X)[1])
for (j in x) {
Nx = floor(j*N)
if (Nx < 2){
sum1 = X[,1:Nx]

} else{
sum1 = rowSums(X[,1:Nx])

}
sum2 = j*rowSums(X[,1:N])
Z = cbind(Z,N^{-0.5}*(sum1-sum2))

}
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Tn = (1/dim(Z)[1])*(1/dim(Z)[2])*sum(Z^2)
return(Tn)

}

Tn_Distribution = function (lambda,d,J) {
Tn = 0
Z = rnorm(J, mean = 0, sd = 1)^2
numerator = (seq(from=1, to = J, by= 1)^2)*pi^2
for (i in 1:d) {
Tn = Tn + lambda[i]*sum(Z/numerator)

}
return (Tn)

}

##### ----------------------------------------------------------------
#####
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