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2Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia

3Department of Physics, University of Oslo, PO Box 1048 Blindern, 0316 Oslo, Norway
and A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg, Russia

4Chalmers University of Technology, Gothenburg 41296, Sweden
and Nizhny Novgorod State Technical University, Nizhny Novgorod 603951, Russia

(Received 7 July 2019; revised manuscript received 18 November 2019; published 17 January 2020)

We theoretically analyze two setups of low-energy single-photon counters based on Josephson junctions
(JJs). For this, we propose two simple and general models based on the macroscopic quantum tunneling
formalism (MQT). The first setup is similar to the photon counter based on the “cold-electron bolometer”
(CEB), where the JJ replaces the CEB in the center of the superconducting antenna. In the second setup, the
JJ is capacitively coupled to the antenna. We derive the Hamiltonians for the two setups, and we write the
Schrödinger equations, taking into account both the antenna and the JJ. The quantum particles of the MQT
models move in two-dimensional potential landscapes, which are parabolic along one direction and may have
the form of a washboard potential along another direction. Such a potential landscape has a series of local
minima, separated by saddle points. If the particle is prepared in the initial state in the metastable “ground state”
of a local minimum, then the photon absorption causes it to jump into an excited state. If the excitation energy
is bigger than the potential barrier seen by the quantum particle (the difference between the ground state and the
saddle point), the photon is detected. The models are simple and allow us to do mostly analytical calculations. We
show that the two setups are equivalent from the MQT point of view since one Hamiltonian can be transformed
into the other by changes in variables. For typical values of the JJ and antenna parameters, the setups may work
as counters of photons of wavelengths up to at least 1 cm. Dark count rates due to the phase particle tunneling
directly from the ground state into the running state have also been evaluated.

DOI: 10.1103/PhysRevB.101.024511

I. INTRODUCTION

Photon counters are required for a variety of applica-
tions, such as radiation-matter interaction, quantum optics,
astrophysics, atomic physics, and quantum information pro-
cessing [1–9]. Furthermore, the race to detect centimeter-
long-wavelength photons was intensified by the proposal that
axions—the elusive particles of the standard model that might
participate in the formation of dark matter [10–13]—could be
detected after they decay into such photons when they pass
through a region of high magnetic field [14,15]. Eventually,
the most promising technologies that may be employed for
detecting photons of centimeter-long wavelength are based
on superconducting devices [1–9,16–31]. However, to detect
axions these detectors have to be coupled to an antenna and
should monitor the environment for rare events—eventually,
one in a few hours. For example, the cold-electron bolometer
(CEB) [21–23] was proposed as a counter [24] for photons
of wavelengths up to 1 cm [32]. The CEB is capacitively
coupled to an antenna that absorbs the photon. The energy
of the photon is dissipated into the normal-metal island of the
CEB, causing a rise in the electron temperature in the normal
metal, which may be detected by the normal-metal-insulator-
superconductor (NIS) tunnel junctions [1,33,34].

Another method to detect microwave photons produced by
axions is using Josephson junctions (JJs) [35–37] as photon

counters [25–29]. At a bias current lower than the critical
current, the JJ may be in the superconducting (nondissipative)
regime, where its dynamics is described along the macro-
scopic quantum tunneling (MQT) formalism, as a quantum
particle in a washboard potential. Coupled to an antenna,
which can absorb the photon, the quantum particle represent-
ing the JJ may be excited and escape over the barrier created
by the washboard potential or may tunnel through it. Such a
process would put the system into the running state; the JJ
becomes dissipative, and the photon is detected.

We shall present two setups for the construction of the JJ
detector. The first setup is based on the design of the photon
counter with a CEB, such as the one proposed in [24,32]. In
this setup, the CEB is replaced by a current-biased JJ, which
is placed in the center of a superconducting antenna and is
electrically connected in series with it. In the second setup,
the antenna is capacitively connected to the JJ, as shown, for
example, in Ref. [29].

In this paper, we present the MQT description of the whole
system in both setups; that is, we include in the description
the JJ, as well as the antenna. The photon absorption is seen
as a single excitation of the system, which may (or may
not) drive the quantum particle over the potential barrier. To
simplify the description so that we can do mostly analytical
calculations and capture the essential physical phenomena, we
do not describe the environment of the JJ in full detail (i.e.,
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as a transmission line coupled to the JJ [29]), but we shall
model it as a simple LC circuit coupled to the JJ. We observe
that the MQT quantum particle moves in a two-dimensional
(2D) potential landscape. Depending on the parameters of the
system, the potential energy may look like a 2D washboard
potential (which is concave in a direction which is not along
the washboard potential), with an infinite number of local
minima and saddle points between them. The absorption of
a photon excites the MQT particle, which may be in the
metastable ground state of one of the local minima. If the
excitation energy (i.e., the photon’s energy) exceeds the dif-
ference between the ground-state energy (in which the MQT
particle stays) and the closest saddle point energy, then the
system gets into the running state, the JJ becomes dissipative,
and a voltage pulse is detected in the circuit, which counts
the photon. Certainly, the system may get into the running
state after the absorption of the photon by tunneling through
the potential barrier. In this paper, we focus on derivation of
the effective Hamiltonian of the device. Its quantum dynam-
ics, including an interplay between activation and tunneling,
as well as thermalization after an absorption event, will be
considered elsewhere. Such an analysis will allow estimating
the “dead time” of the detector after counting of a photon.
We shall see that the two experimental setups are equivalent,
as one can transform the Hamiltonian of one system into the
Hamiltonian of the other by a change in variables.

This paper is organized as follows. In the next section
we present the electric circuit diagrams for the two setups
and the corresponding quantum descriptions. By algebraic
manipulations, we bring the two Hamiltonian operators to
the same form and investigate the properties of the poten-
tial energy landscape. We find analytically the positions of
the minima, the saddle points, and the difference in energy
between consecutive minima and saddle points. To find the
(metastable) ground-state energy, we approximate the Hamil-
tonian around a local minimum with a harmonic potential and
calculate the energy of the ground state to finally calculate the
energy required to bring the system into the running state and
detect the photon. We investigate whether the system can be
realized using concrete physical parameters. The last section
is reserved for conclusions.

II. METHODS

The experimental setups that we are going to describe are
similar to the ones presented in Refs. [24] (first setup) and [29]
(second setup). In the first setup, the CEB is replaced with
the JJ, which is connected in series with the superconducting
antenna. In the second setup, the JJ is capacitively connected
with the antenna. In both cases, the antenna is described as
a simple LC circuit of inductance LA and capacitance CA.
Similarly, the JJ in both cases has the parameters Ec (charge
energy), capacitance CJ , critical current Ic, and instantaneous
current IJ . The two equivalent circuits are presented in Figs. 1
and 2.

A. First setup

The equivalent electrical circuit of the first setup [24]
is presented in Fig. 1. The JJ is placed in series with the

FIG. 1. The equivalent circuit of the detector in the first setup.
The current through the JJ is IJ , and the capacitance is CJ . The
superconducting antenna of impedance LA and capacitance CA is
connected in series with the JJ.

superconducting antenna and is current biased. The total
current through the circuit is the external current I and the total
voltage is VT . If the current through the junction IJ is smaller
than the critical current Ic, then the JJ is in the superconducting
state, and we can write IJ = Ic sin φJ , where φJ is the phase
drop on the junction. Similarly, the current through LA is IA;
the charges on the capacitors are QA = VT CA and QJ = VJCJ .
Then, the energy of the JJ is [36]

EJ = CJV 2
J

2
+ Ec(1 − cos φJ ) ≡ Q2

J

2CJ
+ Ec(1 − cos φJ , )

(1a)

whereas the energy in the antenna is

EA = CAV 2
T

2
+ LAI2

A

2
≡ Q2

A

2CA
+ LAI2

A

2
. (1b)

The total energy of the system is

E (1)
T = EJ + EA. (1c)

Since E (1)
T is not conserved because of the power supplied

from the external circuit, Pext ≡ IVT , we introduce the overall
phase

φT (t ) = 2e

h̄

∫ t

−∞
dt ′ VT (t ′) ⇔ φ̇T = 2e

h̄
VT (t ) (2)

FIG. 2. The equivalent circuit of the detector in the second setup.
The current through the JJ is IJ , and the capacitance is CJ . The
superconducting antenna of impedance LA and capacitance CA is
capacitively connected with the JJ.
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and write the Hamiltonian

H (1) = E (1)
T − h̄

2e
IφT , (3)

which is conserved and may be used in the MQT procedure
[37].

If we denote by VA the voltage on LA and since VT

is the voltage on CA, then we have VT = VJ + VA, which

implies

φT = φJ + φA, (4)

where

φA = 2e

h̄

∫ t

−∞
dt ′ VA(t ′). (5)

Putting together Eqs. (1)–(5), we obtain the total Hamiltonian
of the system in terms of φT and φJ ,

H (1) = CA

2

(
h̄

2e

)2

φ̇2
T + 1

2LA

(
h̄

2e

)2

φ2
T − h̄

2e
IφT + CJ

2

(
h̄

2e

)2

φ̇2
J + Ec(1 − cos φJ ) + 1

2LA

(
h̄

2e

)2

φ2
J − 1

LA

(
h̄

2e

)2

φT φJ . (6)

From Eq. (6) we calculate the conjugate momenta of variables φT and φJ ,

pT = ∂H (1)

∂φ̇T
= CA

(
h̄

2e

)2

φ̇T = CA
h̄

2e
VT ≡ h̄

2e
QA, (7a)

pJ = ∂H (1)

∂φ̇J
= CJ

(
h̄

2e

)2

φ̇J = CJ
h̄

2e
VJ ≡ h̄

2e
QJ . (7b)

We write the quantum-mechanical Hamiltonian as

Ĥ (1) = − h̄2

2CA

(
2e

h̄

)2
∂2

∂φ2
T

+ 1

2LA

(
h̄

2e

)2

φ2
T − h̄

2e
IφT − h̄2

2CJ

(
2e

h̄

)2
∂2

∂φ2
J

+Ec(1−cos φJ )+ 1

2LA

(
h̄

2e

)2

φ2
J − 1

LA

(
h̄

2e

)2

φT φJ .

(8)

It is more convenient to work with dimensionless quantities. If (LACA)−1/2 is the resonant frequency of the antenna, which
should be the same as the frequency of the absorbed photon, we may rescale the total Hamiltonian by what we shall call the
photon’s energy h̄/

√
LACA and introduce the dimensionless Hamiltonian

Ĥ (1)
d =

√
LACA

h̄
Ĥ (1) = −1

2

(2e)2

h̄

√
LA

CA

∂2

∂φ2
T

+ 1

2

h̄

(2e)2

√
CA

LA
φ2

T −
√

LACA

2e
IφT − 1

2

(2e)2

h̄

√
LACA

CJ

∂2

∂φ2
J

+ Ic
√

LACA

2e
(1 − cos φJ ) + 1

2

h̄

(2e)2

√
CA

LA
φ2

J − h̄

(2e)2

√
CA

LA
φT φJ .

We denote

φ̃T ≡
(

h̄

(2e)2

√
CA

LA

)1/2

φT , φ′
J ≡

(
h̄

(2e)2

√
CJ

LA

)1/2

φJ

to write Ĥ (1)
d in the simpler form

Ĥ (1)
d = −1

2

∂2

∂φ̃2
T

+ 1

2
φ̃2

T −
(

L3
ACA

h̄2

)1/4

Iφ̃T +
√

CA

CJ

⎧⎪⎪⎨
⎪⎪⎩−1

2

∂2

∂ (φ′
J )2

+ Ic
√

LACJ

2e

⎡
⎢⎢⎣1 − cos

⎛
⎜⎜⎝ φ′

J√
h̄

(2e)2

√
CJ
LA

⎞
⎟⎟⎠
⎤
⎥⎥⎦+ 1

2
(φ′

J )2

⎫⎪⎪⎬
⎪⎪⎭

−
(

CA

CJ

)1/4

φ̃T φ′
J . (9)

Introducing the variable φ̃J ≡ (CJ/CA)1/4φ′
J and the notations ωA ≡ (LACA)−1/2, Z0 ≡ h̄

(2e)2 , and ZA ≡ √
LA/CA, we write the

Hamiltonian (9) as

Ĥ (1)
d = −1

2

∂2

∂φ̃2
T

− 1

2

∂2

∂φ̃2
J

+ 1

2

(
φ̃T −

√
CA

CJ
φ̃J

)2

−
(

L3
ACA

h̄2

)1/4

Iφ̃T + Ic
√

LACA

2e

⎡
⎣1 − cos

⎛
⎝ φ̃J√

h̄
(2e)2

CJ√
LACA

⎞
⎠
⎤
⎦

= −1

2

∂2

∂φ̃2
T

− 1

2

∂2

∂φ̃2
J

+ 1

2

(
φ̃T −

√
CA

CJ
φ̃J − 1

2eωA

√
ZA

Z0
I

)2

+ Ic

2eωA

[
1 − cos

(
φ̃J√

Z0CJωA

)]
− 1

2eωA

1√
Z0CJωA

Iφ̃J

−1

2

1

(2e)2ω2
A

ZA

Z0
I2. (10)
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We observe that the quantum particle moves in a 2D poten-
tial, which is parabolic along the direction φ̃T − √

CA/CJ φ̃J

and has a washboard shape along the direction φ̃J .

B. Second setup

We analyze now the second setup, similar to the one in
Ref. [29]. A simplified version of the circuit is depicted in
Fig. 2. In this case, the Hamiltonian for the JJ remains the
same as Eq. (1a), with the modification that now the voltage
on the JJ capacitor is the total voltage, i.e., VJ ≡ VT . On the
other hand, the energy of the antenna is

EA = CAV 2
A

2
+ LAI2

A

2
≡ Q2

A

2CA
+ LAI2

A

2
. (11)

The total energy of the system is given again by Eq. (1c). The
total phase and the Hamiltonian are (2) and (3), respectively.
If, like in Sec/II A, IA is the current through the antenna, IJ is
the current through the JJ, and ICJ is the current through the
capacitance of the JJ, then the current conservation reads

I = IA + IJ + ICJ . (12)

Equation (12) couples the Hamiltonian of the antenna with the
Hamiltonian of the JJ.

Denoting by VLA the voltage on the antenna inductance and
by VCA the voltage on the antenna capacitance, we define the
phases

φLA ≡ 2e

h̄

∫ t

−∞
dt ′VLA (t ′) = 2e

h̄

∫ t

−∞
dt ′
[
VT (t ′) − QCA (t ′)

CA

]
,

(13a)

φCA ≡ 2e

h̄

∫ t

−∞
dt ′VCA (t ′) = 2e

h̄

∫ t

−∞
dt ′ QCA (t ′)

CA
, (13b)

φJ = 2e

h̄

∫ t

−∞
dt ′VJ (t ′) ≡ 2e

h̄

∫ t

−∞
dt ′VT (t ′) ≡ φT , (13c)

which have to be embedded into the total Hamiltonian of the
system,

E (2)
T = Q2

T

2CJ
+Ec(1 − cos φJ )+ Q2

CA

2CA
+
(

h̄

2e

)2 φ2
LA

2LA
− h̄

2e
IφT ,

(14)
where QT is the charge on the JJ capacitance. Using the
relation φLA ≡ φT − φCA , from (14) we obtain

E (2)
T = Q2

T

2CJ
+ Ec(1 − cos φT ) +

(
h̄

2e

)2
φ2

T

2LA
− h̄

2e
IφT

+Q2
CA

2CA
+
(

h̄

2e

)2 φ2
CA

2LA
−
(

h̄

2e

)2
φT φCA

LA
. (15)

From Eq. (15) we obtain the Hamiltonian

Ĥ (2) = − (2e)2

2CJ

∂2

∂φ2
T

+ Ec(1 − cos φT ) +
(

h̄

2e

)2
φ2

T

2LA

− h̄

2e
IφT − (2e)2

2CA

∂2

∂φ2
CA

+
(

h̄

2e

)2 φ2
CA

2LA

−
(

h̄

2e

)2
φT φCA

LA
. (16)

To make the Hamiltonian dimensionless, we divide Eq. (16)
by the photon’s energy and define

Ĥ (2)
d ≡ Ĥ (2)

h̄ωA
= −1

2

1

Z0CJωA

∂2

∂φ2
T

+ Ic

2eωA
(1 − cos φT )

+1

2

Z0

ZA
φ2

T − 1

2eωA
IφT − 1

2

ZA

Z0

∂2

∂φ2
CA

+ 1

2

Z0

ZA
φ2

CA

− Z0

ZA
φT φCA . (17)

Introducing the variables φ̃T = √
Z0CJωAφT and φ̃CA =√

Z0
ZA

φCA , we obtain

Ĥ (2)
d = −1

2

∂2

∂φ̃2
T

− 1

2

∂2

∂φ̃2
CA

+ 1

2

(
φ̃CA −

√
CA

CJ
φ̃T

)2

+ Ic

2eωA

[
1 − cos

(
φ̃T√

Z0CJωA

)]

− 1

2eωA

1√
Z0CJωA

Iφ̃T . (18)

We observe that (making the identification φ̃CA ≡ φ̃J ) the
Hamiltonian (18) is equivalent to the Hamiltonian (10), except
that in (10) the potential energy is shifted by the constant
value −(L3

ACA/2h̄2)
1/2

I2 and is translated in the direction
φ̃J − √

CA/CJ φ̃T by −√
ZA/Z0I/(2eωA). These differences

are irrelevant for the dynamics of the quantum particle, and
we shall see that all the physical results of the two setups are
identical.

III. RESULTS

Having derived the Hamiltonians for the two configura-
tions, we can calculate the local minima, the saddle points,
and the energy required to excite the system over the saddle
point.

A. Local minima and saddle points for the first setup

The particle described by the Hamiltonian Ĥ (1)
d (10) of the

first setup has a potential energy

U (1)
d ≡ 1

2

[
φ̃T −

√
CA

CJ
φ̃J − 1

2eωA

√
ZA

Z0
I

]2

− 1

2

1

(2e)2ω2
A

ZA

Z0
I2

+ Ic

2eωA

[
1−cos

(
φ̃J√

Z0CJωA

)]
− 1

2eωA

1√
Z0CJωA

Iφ̃J .

(19)

As noticed before, along the φ̃J direction we have a washboard
potential, whereas along the φ̃T − √

CA/CJ φ̃J direction we
have a harmonic potential. The minima and the saddle points
of these potentials are found by calculating the derivatives

∂U (1)
d

∂φ̃T
=
(

φ̃T −
√

CA

CJ
φ̃J

)
− 1

2eωA

√
ZA

Z0
I, (20a)

∂2U (1)
d

∂ (φ̃T )2
= 1, (20b)
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∂2U (1)
d

∂φ̃T ∂φ̃J
= −

√
CA

CJ
, (20c)

∂U (1)
d

∂φ̃J
= −

√
CA

CJ

(
φ̃T −

√
CA

CJ
φ̃J

)

+Ic
1

2eωA

1√
Z0CJωA

sin

(
φ̃J√

Z0CJωA

)
, (20d)

∂2U (1)
d

∂φ̃2
J

= CA

CJ
+ Ic

2eZ0CJω
2
A

cos

(
φ̃J√

Z0CJωA

)
. (20e)

From Eqs. (20a) and (20d) we obtain the relations which have
to be satisfied in the local minima and in the saddle points,

1

2eωA

√
ZA

Z0
I =

(
φ̃T −

√
CA

CJ
φ̃J

)
, (21a)

I

Ic
= sin

(
φ̃J√

Z0CJωA

)
. (21b)

As expected, we observe that Eq. (21b) has a solution if
and only if −1 < I/Ic < 1. If we choose only positive currents
(I � 0), then the local minima are at

φ̃J,min = √
Z0CJωA

[
arcsin

(
I

Ic

)
+ 2nπ

]
, (22a)

φ̃T,min = 1

2eωA

√
ZA

Z0
I +

√
Z0

ZA

[
arcsin

(
I

Ic

)
+ 2nπ

]
(22b)

(where n is an integer), whereas the saddle points are at

φ̃J,saddle = √
Z0CJωA

[
(2n + 1)π − arcsin

(
I

Ic

)]
, (23a)

φ̃T,saddle = I

2eωA

√
ZA

Z0
+
√

Z0

ZA

[
(2n + 1)π − arcsin

(
I

Ic

)]
.

(23b)

The second derivatives in the minima are

∂2U (1)
d

∂ (φ̃T )2
= 1, (24a)

∂2U (1)
d

∂φ̃T ∂φ̃J
= −

√
CA

CJ
= ∂2U (1)

d

∂φ̃J∂φ̃T
, (24b)

∂2U (1)
d

∂φ̃2
J

= CA

CJ
+ Ic

2eZ0CJω
2
A

√
1 − I2

I2
c

. (24c)

The values of the potential energy at the minima and the
saddle points are

U (1)
d,min(n) = −1

2

1

(2e)2ω2
A

ZA

Z0
I2 + Ic

2eωA

[
1 −

√
1 − I2

I2
c

]

− I

2eωA

[
arcsin

(
I

Ic

)
+ 2nπ

]
, (25a)

U (1)
d,saddle(n) = −1

2

1

(2e)2ω2
A

ZA

Z0
I2 + Ic

2eωA

[
1 +

√
1 − I2

I2
c

]

− I

2eωA

[
(2n + 1)π − arcsin

(
I

Ic

)]
, (25b)

respectively. The energy difference between a saddle point
and the closest local minimum is

U (1)
d,saddle(n) − U (1)

d,min(n)

= Ic

eωA

{√
1 − I2

I2
c

− I

Ic

[
π

2
− arcsin

(
I

Ic

)]}
. (26)

B. Local minima and saddle points for the second setup

For the second configuration, from Eq. (18) we obtain the
potential energy

U (2)
d = 1

2

(
φ̃CA −

√
CA

CJ
φ̃T

)2

+ Ic

2eωA

[
1−cos

(
φ̃T√

Z0CJωA

)]

− I

2eωA

1√
Z0CJωA

φ̃T . (27)

Since U (2)
d has the same shape as U (1)

d , but with different
variables, the analysis is similar to the one in Sec. III A. For
this reason, we state here only the main results. Along the
φ̃T direction we have a washboard potential, which has local
minima if and only if −1 < I/Ic < 1. We work again with
I � 0, and we have the coordinates

φ̃T,min = √
Z0CJωA

[
arcsin

(
I

Ic

)
+ 2nπ

]
, (28a)

φ̃CA,min =
√

Z0

ZA

[
arcsin

(
I

Ic

)
+ 2nπ

]
(28b)

for local minima and

φ̃T,saddle = √
Z0CJωA

[
(2n + 1)π − arcsin

(
I

Ic

)]
, (29a)

φ̃CA,saddle =
√

Z0

ZA

[
(2n + 1)π − arcsin

(
I

Ic

)]
(29b)

for saddle points. The second derivatives in the minimum
energy points are identical to the ones calculated in Sec. III A
(but with different coordinates), namely,

∂2U (2)
d

∂φ̃2
CA

= 1, (30a)

∂2U (2)
d

∂φ̃CA∂φ̃T
= −

√
CA

CJ
= ∂2U (2)

d

∂φ̃T ∂φ̃CA

, (30b)

∂2U (2)
d

∂φ̃2
T

= CA

CJ
+ Ic

2eZ0CJω
2
A

√
1 − I2

I2
c

. (30c)

024511-5



ANGHEL, KULIKOV, GALPERIN, AND KUZMIN PHYSICAL REVIEW B 101, 024511 (2020)

-10
0

-5

1

0

U
d(2

)

-5
0.5

(b)

b

5

a

0-10
-0.5

-15 -1

2-50

0

(a)

20

U
d(2

)

a

50

10 0

b

0

100

-10
-20 -2

FIG. 3. The potential energy U (2)
d in the rotated system of coordinates (φ1, φ2). The parameters take typical values Ic = 1 μA, CA = CJ = 1

pF [25,26], and ωA/(2π ) = 30 GHz. The value I/Ic ≈ 0.85 will be justified later. One can observe that the potential is very asymmetric in the
variables φ1 and φ2. The plot in (b) is a detail of the plot in (a), emphasizing a local minimum.

The values of the energy at the minima and at the saddle
points are

U (2)
d,min(n) = Ic

2eωA

[
1 −

√
1 − I2

I2
c

]

− I

2eωA

[
arcsin

(
I

Ic

)
+ 2nπ

]
, (31a)

U (2)
d,saddle(n) = Ic

2eωA

[
1 +

√
1 − I2

I2
c

]

− I

2eωA

[
(2n + 1)π − arcsin

(
I

Ic

)]
, (31b)

respectively. As expected, U (2)
d,min(n) − U (1)

d,min(n) = U (2)
d,saddle

(n) − U (1)
d,saddle(n) = (ZA/Z0)I2/[2(2eωA)2], which implies

that U (2)
d,saddle(n) − U (2)

d,min(n) = U (1)
d,saddle(n) − U (1)

d,min(n) [see
Eq. (26)].

IV. DISCUSSION

Although the Hamiltonians (8) and (16), which describe
the two schematic setups in Figs. 1 and 2, respectively, are
apparently different, we saw in Sec. III that, by dividing them
by h̄/

√
LACA and changing the variables, they can be reduced

to dimensionless Hamiltonians that represent quantum parti-
cles of unit mass in potential landscapes which are translated
with respect to each other. A small part of U (2)

d is presented
in Fig. 3. The system of coordinates is rotated to (φa, φb),
defined as

φa ≡ φ̃CA − √
CA/CJ φ̃T√

1 + CA/CJ
, φb ≡

√
CA/CJ φ̃CA + φ̃T√

1 + CA/CJ
, (32)

because in the original coordinates the local potential well is
too narrow to be clearly seen.

In the initial state (before the absorption of the photon), the
quantum particle may sit in the metastable ground state of the

local minimum represented in Fig. 3(b). The energy difference
between the local minimum and the nearest saddle point is the
same in both setups and can be obtained from Eq. (26), which
gives

ε
(1)
ph ≡ h̄ωA

(
U (2)

d,saddle − U (2)
d,min

) = h̄ωA
(
U (1)

d,saddle − U (1)
d,min

)
= 4eIcZ0

{√
1 − I2

I2
c

− I

Ic

[
π

2
− arcsin

(
I

Ic

)]}
. (33)

To calculate the energy of the photon required to excite the
system from the metastable ground state of a local minimum
over the saddle point, we approximate the potential energy
in the local minimum with a harmonic potential. The second
derivatives of the potential energies U (1)

d and U (2)
d in the

local minima are identical, Eqs. (24) and (30), so we can
analyze only one of them. If a local minimum is located at
(φ̃J,min, φ̃T,min), we denote φ1 ≡ φ̃J − φ̃J,min and φ2 ≡ φ̃T −
φ̃T,min. In the new variables and in the harmonic approx-
imation around (φ̃J,min, φ̃T,min), both Hamiltonians H (1)

d and
H (2)

d become (neglecting constant terms)

Ĥd ≡ −1

2

∂2

∂φ2
1

− 1

2

∂2

∂φ2
2

+1

2

(
CA

CJ
+ Ic

2eZ0CJω
2
A

√
1 − I2

I2
c

)
φ2

1

−
√

CA

CJ
φ1φ2 + 1

2
φ2

2 . (34)

Denoting

a ≡ CA

CJ
+ Ic

2eZ0CJω
2
A

√
1 − I2

I2
c

, (35a)

D ≡
√

(a − 1)2 + 4
CA

CJ
, (35b)
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FIG. 4. The ratio λ1/λ2 for Ic = 1 μA (solid line), Ic = 13.7 μA
(dashed line), CA = CJ = 1 pF, and ωA/(2π ) = 30 GHz (notice that
λ2 → 0 when I/Ic ↗ 1).

we define the orthogonal vectors

v1 ≡
φ1 +

√
CJ
CA

1−a+D
2 φ2√

1 + CJ
CA

(1−a+D)2

4

, v2 ≡
φ1 +

√
CJ
CA

1−a−D
2 φ2√

1 + CJ
CA

(1−a−D)2

4

,

(36)

which diagonalize the Hamiltonian (34), bringing it to
the form

Ĥd = −1

2

∂2

∂v2
1

− 1

2

∂2

∂v2
2

+ 1

2
λ1v

2
1 + 1

2
λ2v

2
2, (37a)

where

λ1 ≡ 1
2 (1 + a + D), λ2 ≡ 1

2 (1 + a − D). (37b)

The Hamiltonian Ĥd of Eq. (37a) may be split into two
Hamiltonians, Ĥd ≡ ĤdA + ĤdB, where

ĤdA ≡ −1

2

∂2

∂v2
1

+ 1

2
λ1v

2
1, ĤdB ≡ −1

2

∂2

∂v2
2

+ 1

2
λ2v

2
2 .

(37c)
We observe that at I/Ic = 1, λ1 = 2, and λ2 = 0 for any

values of the parameters. For I/Ic ∈ [0, 1), the ratio λ1/λ2 is
plotted in Fig. 4 for two values of Ic.

Using Eqs. (37) and taking into account the rescaling of the
Hamiltonians H (1) and H (2) by h̄ωA, we obtain their common
eigenvalues in the harmonic approximation,

εQMT(m, n) = h̄ωA
[√

λ1
(
m + 1

2

)+
√

λ2
(
n + 1

2

)]
. (38)

When λ1 � λ2 (see Fig. 4), mostly the first term will con-
tribute to the ground-state energy of the particle, whereas the
second term may play a role in the thermal excitation if the
device works at temperatures comparable to

√
λ2h̄ωA/kB but

much smaller than
√

λ1h̄ωA/kB.
If the system is prepared in the ground state in one of

the local minima of the potential, then the excitation energy

required to get into the running state over the potential barrier
(see Fig. 3) is calculated from Eqs. (33) and (38) to be

εph = ε
(1)
ph − εQMT(0, 0) ≡ �U . (39)

For typical values of the parameters Ic = 1 μA and
CA = CJ = 1 pF [25,26], choosing ωA/(2π ) = 30 GHz, from
Eq. (39) we obtain I/Ic ≈ 0.8523 (so the bias current is quite
close to the critical current). To be able to detect photons of
energy h̄ωA, the temperature T of the system and of the envi-
ronment should be significantly lower than TA ≡ h̄ωA/kB ≈
1.4398 K. The angular frequencies of the two independent
oscillators of Eq. (38) are ω1 ≡ λ1ωA and ω2 ≡ λ2ωA. For
the chosen parameters, λ1 = 2.0226 and λ2 = 0.0221, so
if T � h̄ωA/kB, oscillator 1 should be in the ground state
at temperature T . Nevertheless, since λ2 � λ1, oscillator 2
could be in an excited state if T is comparable to or higher
than T2 = λ2h̄ω2/kB. To check the harmonic approximation,
we compare εph with ε

(1)
ph , and we obtain εQMT(0, 0)/(h̄ωA) ≈

1.0080. This implies εQMT(0, 0)/ε (1)
ph ≈ εph/ε

(1)
ph ≈ 0.5, so the

harmonic approximation is reasonably well justified.
The choices of parameters of the JJ which meet the crite-

rion (39) are broad. For example, if the critical current is Ic =
13.7 μA [25,26], then from Eq. (39) we obtain I/Ic = 0.9729,
so the relative value of the bias current is much closer to 1
than in the previous case. In this case, λ1 ≈ 2.3523, and λ2 ≈
0.2605, so as can be seen in Fig. 4, the ratio λ1/λ2 is not as big
as for Ic = 1 μA. Furthermore, εQMT(0, 0)/(h̄ωA) ≈ 1.1094,
and εQMT(0, 0)/ε (1)

ph ≈ 0.5259, so the harmonic approxima-
tion is, again, quite well justified.

Dark counts

In the absence of the additional energy coming from the
photon or from the thermal bath, the easiest escape route
for the phase particle from the potential well is to tunnel
through the saddle point region. To estimate the escape rate,
we write the Hamiltonian H (2) using the variables φa and
φb (32) and emphasize the washboard potential. In these
variables, Eq. (18) becomes

Ĥ (2)
d (φa, φb) = −1

2

∂2

∂φ2
a

− 1

2

∂2

∂φ2
b

+ 1

2

(
1 + CA

CJ

)
φ2

a

+ Ic

2eωA

[
1 − cos

( −√
CA/CJφa + φb√

Z0CJωA(1 + CA/CJ )

)]

− I

2eωA

−√
CA/CJφa + φb√

Z0CJωA(1 + CA/CJ )
. (40)

From Eqs. (28) and (29) we see that the local minima and
the saddle points are located along the φb axis (φa = 0).
Along this axis (φa = 0)—multiplying the Hamiltonian by
h̄ωA to go back to H (2) in energy units and defining φ̃b ≡
2e/

√
2CJ h̄ωA(1 + CA/CJ )—we obtain

Ĥ (2)(0, φb) = − (2e)2

2CJ (1 + CA/CJ )

∂2

∂φ̃2
b

−Ec

[
I

Ic
φ̃b + cos

(
φ̃b
)]+ Ec, (41)

024511-7



ANGHEL, KULIKOV, GALPERIN, AND KUZMIN PHYSICAL REVIEW B 101, 024511 (2020)

which describes a (phase) particle in a washboard potential.
We notice that the “mass” of this particle became bigger than
the mass of the Josephson particle by 1 + CA/CJ (≈ 2 for our
choice of parameters) due to the presence of the antenna. In
such a situation, we shall estimate the order of magnitude
of the escape rates as usual in the model of Caldeira and
Leggett [38], considering the tunneling along this axis. A
more detailed analysis of the escape rate in a 2D potential will
be done elsewhere.

The escape rate, taking into account the dissipation, may
be calculated as [25,38]

	 = ω0

2π

√
B

2π
e−B, (42)

where B = �U/(h̄ω0)(7.2 + 8A/Q), Q = ω0RC is the quality
factor, A is a numerical parameter, R is the shunt resistance
of the junction, and �U = h̄ωA is the height of the potential
barrier at the saddle point given by Eq. (39); the angular
frequency ω0 = ωA

√
λ2 corresponds to the local minimum

of the one-dimensional potential (41). Using the numerical
values from [25] for an estimation (R = 0.44 k
 and A = 10),
we obtain

	1 ≈ 1.8 × 10−30 Hz (43)

for the first case (Ic = 1 μA) and

	2 ≈ 1.7 × 10−2 Hz (44)

for the second case (Ic = 13.7 μA). We observe that only in
the first case is the escape rate low enough to allow a counting
rate of one photon in a few hours. Therefore, the escape
rate imposes an additional constraint for the choice of the JJ
parameters, besides Eq. (39).

V. CONCLUSIONS

We studied theoretically the possibility of counting mi-
crowave photons with a detector consisting of a Josephson
junction coupled to an antenna. In this paper, we focused on
the derivation of the effective Hamiltonian of the device. Its
quantum dynamics, including the interplay between activation
and tunneling, as well as thermalization after an absorption
event, will be considered elsewhere. Such an analysis will
allow the estimation of the dead time of the detector after the
counting of a photon.

We analyzed two configurations. In the first one, the JJ
is connected in series with the antenna and is similar to the
photon counter with a cold-electron bolometer [24,32], in
which the CEB is replaced by the JJ. In the second configura-
tion, the JJ is capacitively coupled to the antenna and is similar
to the one used in [29], for example. For the two configura-
tions, we constructed simple equivalent electric circuits, and
we wrote the Hamiltonians in the macroscopic quantum tun-
neling formalism. In this formalism, the dynamics of the JJ is
described as a quantum particle moving in a two-dimensional
potential landscape. After appropriate changes of coordinates,
the Schrödinger equations describing the two setups were put
into equivalent forms, which implies that they have the same
quantum-mechanical properties.

The potential landscape in which the quantum particle is
moving has the shape of a washboard potential in one direc-

tion and is parabolic in another direction; these two directions
are not perpendicular to each other [see Eqs. (19) and (27)]. If
the bias current is smaller than the critical current of the junc-
tion, the washboard potential forms (as in the one-dimensional
case) an infinite chain of local minima, in which the quantum
particle can be placed in an initial metastable state (see Fig. 3).
The local minima are separated by potential barriers, and the
minimum of each potential barrier is a saddle point.

To calculate analytically the metastable states (especially
the “ground state”), in the vicinity of a local minimum we
approximate the potential energy by a harmonic potential. At
low temperatures, the particle is assumed to be initially in
the ground state of a local minimum. When the photon is ab-
sorbed, the particle is excited. If the excitation energy is larger
than the difference between the energy of the saddle point
and the ground-state energy in the closest local minimum,
then the system may get into the running state, and the photon
is detected.

We calculated the parameters of the device which would
allow it to detect 1-cm-wavelength photons. If the critical cur-
rent of the junction is Ic = 1 μA and CA = CJ = 1 pF, then the
bias current I should satisfy the condition 0.8523Ic � I < Ic

to ensure that the photon is able to excite the particle over the
potential barrier. As another example, we took Ic = 13.7 μA,
and in this case (keeping CA = CJ = 1 pF) we obtained
0.9729Ic � I < Ic to be able to detect the 1-cm-wavelength
photon.

The photon energy εph does not have to be larger than the
potential energy barrier �U to be detected. By exciting the
JJ to a state of higher energy, even if that energy is lower
than the potential barrier, the phase particle may get into the
running state by tunneling into the continuum. The tunneling
rate increases rapidly with the energy of the phase particle.

The tunneling process may also cause dark counts when
the phase particle tunnels the potential barrier directly from
the ground state, that is, in the absence of a photon. This
was estimated in Sec. IV, and it turned out that only in the
first case (Ic = 1 μA) is the dark count rate low enough to
permit the observation of one relevant photon (produced by
the axion’s decay) in a few hours, whereas in the second case
(Ic = 13.7 μA) the dark count rate is of the order of 1/min, so
the detector may not be used for axion detection. Therefore,
even if the parameters of the junction and the bias current may
be tuned so that the photon excites the phase particle above
the saddle point energy, the dark count rates impose stringent
conditions in setting up the working point of the JJ axion
(microwave photon) counter. Nevertheless, in experiments in
which the flux of incoming microwave photons is higher (so
that the dark count rate does not have to be so low), the JJ
single-photon counter offers much more flexibility.
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