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Statistics of the separation between sliding rigid rough surfaces:
Simulations and extreme value theory approach
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When a rigid rough solid slides on a rigid rough surface, it experiences a random motion in the direction normal
to the average contact plane. Here, through simulations of the separation at single-point contact between self-
affine topographies, we characterize the statistical and spectral properties of this normal motion. In particular,
its rms amplitude is much smaller than that of the equivalent roughness of the two topographies and depends
on the ratio of the slider’s lateral size over a characteristic wavelength of the topography. In addition, due to the
nonlinearity of the sliding contact process, the normal motion’s spectrum contains wavelengths smaller than the
smallest wavelength present in the underlying topographies. We show that the statistical properties of the normal
motion’s amplitude are well captured by a simple analytic model based on the extreme value theory framework,
extending its applicability to sliding-contact-related topics.
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I. INTRODUCTION

The interfacial separation d between the surfaces of two
solids brought close to one another is central to many in-
terfacial processes. Those include attractive forces when the
distance is small but finite (Van der Waals [1], electrostatic
[2], Casimir forces [3]), repulsive elastic forces when the
distance vanishes [4,5], heat transfer and noncontact friction
[6], electric conductivity [7], and permeability [7,8]. The
evaluation of d becomes difficult when the typical separation
becomes of the order of the surface roughness, because the
separation is now a random variable of the position along the
interface. In this case, d often refers to the average separation
between the mean planes of the two rough surfaces.

In the particular case when the two rough surfaces come
into contact, most of the literature has treated their normal
approach (see, e.g., Refs. [9,10]; also see [11] on the effect of
shear loading). For elastic bodies under sufficient compressive
pressure, a so-called multicontact is formed, made of myriad
individual microcontacts where mainly the highest antagonist
asperities are involved in the actual contact. This situation
is typical of elastomer contacts [11]. The average separation
between the two bodies is found to depend in particular on
the ratio p/E � of the applied pressure p to composite elastic
modulus E � and the spectral properties of the topography
[5,12]. When p/E � tends toward zero, i.e., when the pressure
becomes very low compared to the material stiffness, and
when the two surfaces are brought in contact through a pure
normal translation, those two surfaces touch on only one
point, which is the first to come into contact. Such single-point
contact situations, which are the focus of the present study,
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have previously been investigated in the context of the precise
measurement of dispersion forces [13,14] or of the contact
of metallic surfaces under light load [15]. In such cases the
measurable quantity is the separation of the two mean planes
for single-point contact, d0 (see Fig. 1). Note that if the two
solids are shifted one with respect to the other parallel to the
contact plane, then the measured value of d0 will likely vary,
because the single-point contact will involve a different couple
of antagonist asperities. Such a sensitivity to details of the
measurement procedure is responsible for significant uncer-
tainties in the evaluation of d0 [13,14]. d0 is also expected to
vary as soon as the solids are slid one on another, because
the point of contact will continuously change, and this is the
phenomenon of interest in the following.

From now on, we will consider that, in such a weakly
loaded, single-point contact situation, one body (the slider,
with a finite-sized area) is set to slide on the other (the track,
having a larger area). Due to the random nature of the an-
tagonist topographies, the slider will experience a roughness-
induced motion in the direction normal to the average contact
plane (z displacement), d0(u), with u the tangential displace-
ment (x displacement) of the slider, as shown on Fig. 1. In
the following, d0(u) is referred to as the normal motion. If the
sliding velocity was high enough, then the slider could loose
contact with the track and enter a bouncing regime [15–18].
In the following, we only consider slow sliding, in which
such inertia effects can be neglected. In those quasistatic
conditions, the time dependence of the normal motion is
irrelevant and the quantity of interest is d0(u). To characterize
this quantity, we perform direct numerical simulations of the
single-point contact between sliding rigid rough surfaces, as
described in Sec. II.

From the illustration of Fig. 1, it is natural to interpret the
single-point contact sliding process as a geometrical filtering
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FIG. 1. (a) Illustration of single-point contact on the example of
two 1D centered Gaussian white noises, Z1 and Z2. The separation
at single-point contact, d0, is measured between the mean heights
of the two processes. (b) Probability density functions (pdf) of both
processes.

in which the input signals are the two antagonist topographies,
Z1 and Z2, and the output signal is the roughness-induced nor-
mal motion, d0(u). In particular, one expects that the broader
the probability density function of the topographies, the larger
the average single-point contact separation. One also expects
the spectral properties of d0(u) to be dependent on in-plane
features of the topographies, like their spectral contents. This
is why our simulations explore a variety of power spectrum
densities (PSD) of the contacting topographies (Sec. II). In
Sec. III, we characterize in detail the relationship between the
properties of the topographies and that of the resulting normal
motion d0(u).

The height of single-point contact being directly related to
the altitude of the highest asperities of the antagonist surfaces,
it is tempting to use the concepts of extreme value theory
(EVT) [19–21] to estimate the statistical properties of d0. EVT
has been extensively used in various fields [22], including
rupture in disordered media [23], risk in finance or insurance
[20], or catastrophic natural events (preface of Ref. [21]).
EVT predicts the probability distribution of rare events and
is used in Sec. IV to predict the distribution of the maximum
height of the topographies and thus of d0. Those predictions
are quantitatively compared to the simulation results and used
to discuss the applicability of EVT to sliding-contact-related
topics.

II. DIRECT SIMULATIONS: METHODS

A. Properties of the topographies

To characterize the properties of the separation at single-
point contact between sliding surfaces, d0(u), we performed
direct simulations of a rough square slider (surface L × L)
moving quasistatically along a rough track (surface L1 × L,
L1 > 2L) and touching it in a single point for each of the
successive positions u of the slider. The two rotations of the
slider around the in-plane axis are forbidden and its translation
along the track is imposed. Its only free motion is that along
the out-of-plane z axis. The slider and track have the same
statistical roughness properties.

Two-dimensional (2D) Gaussian topographies, z, with var-
ious spectral properties have been generated, from their 2D
PSD. Assuming that the topographies are isotropic, they are

FIG. 2. Sketch of the radial profiles Szz(kr ) of the 2D PSDs
considered for the antagonist topographies and definition of the
corresponding parameters.

fully characterized by the radial profile of their PSD, Szz(kr ),
with kr the radial wave number. Knowledge of the PSD
allows one to calculate a variety of useful estimators of the
topographies’ properties, among which its rms roughness, Rq,
from

R2
q = M0, (1)

and its central wavelength, λ0, from

λ0 = 1

2

√
M0

M2
, (2)

with the radial spectral moments Mi defined by [24] Mi =
2π

∫ +∞
0 ki+1

r Szz(kr )dkr .
We used realistic PSDs corresponding to self-similar to-

pographies such as the one shown on Fig. 2. Such PSD can be
fully described using four parameters: S0 sets the amplitude
of the surface; kl , the low cut-off wave number, and ks, the
high cut-off wave number, set the wave number range over
which the topographies are self-similar; −α is the slope of
the self-similar part and is linked to the fractal dimension.
Indeed, α relates to the Hurst exponent H through [25–27]:
α = 2(H + 1). Note that, for a slider of size L, the lowest
accessible wave number is kL = 2π

L . With this choice of PSD
profile, the three first radial spectral moments Mi can be cal-
culated analytically (Appendix). Once injected in Eqs. (1) and
(2), Appendix provides the explicit expressions of Rq and λ0.

In summary, a given simulation corresponds to a given
set of five parameters: S0, kl , ks, α, and L. In practice, we
will use the following equivalent set of five parameters with
a more intuitive physical meaning: Rq, λ0, and L as three
characteristic length scales and α and b = kl

ks
as two shape

descriptors of the PSD radial profile.

B. Numerical topography generation

The surfaces are represented numerically by a (2� + 1) ×
(2� + 1) height matrix z. The location along a surface is iden-
tified by the vector xij = (xi, y j ) with i varying from −� to �

and j from −� to � such that xi = i�x and y j = j�y. Thus
z(xij) defines the altitude of the topography at each point. The
Fourier transform of z is F[z](kθψ ) = A(kθψ ) exp[iφ(kθψ )]
with A, the amplitude, and φ, the phase, two real functions.
The wave vector is kθψ = (kθ = θ

(2�+1)�x , kψ = ψ

(2�+1)�y ),
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FIG. 3. Typical topographies generated for various values of α

and b. In-plane size in units of λ0. Out-of-plane size (grayscale bar)
in units of Rq.

with θ varying from −� to � and ψ from −� to �. By
setting:

A(n, m) = A(−n,−m), (3)

φ(n, m) = −φ(−n,−m), (4)

we ensure that z is real and reads (after inverse Fourier
transform of A(kθψ ) exp[iφ(kθψ )]):

z(xij) = 1

2� + 1

1

2� + 1

×
∑

θ

∑
ψ

A(kθψ ) cos[φ(kθψ ) + kθψ · xij]. (5)

The amplitude A(kθψ ) can be expressed as a function of the
continuous PSD profile, Szz(kr ), as:

A(kθψ ) =
√

(2� + 1)(2� + 1)Szz(|kθψ |)
�x�y

. (6)

In order to produce numerical topographies obeying the
PSDs described in Sec. II A, we use Eq. (5) in which we insert
both Eq. (6) and phases φ randomly drawn from a uniform law
over [0 2π [, yielding a Gaussian distribution of heights.

Figure 3 represents four typical topographies obtained for
various values of α and b, the lateral length of all panels
corresponding to the same number of central wavelength, λ0.
One can see that the smaller b and α, the richer the spectral
contents of the topography, with b having the strongest effect.
The spectral bandwidth can be quantified by a spreading

parameter δz =
√

1 − M2
1

M0M2
inspired by Refs. [28–32]. δz can

vary between 0 and 1, with δz being close to 0 for a narrow-
band topography. Figure 4, which shows the evolution of δ as
a function of α, for various b, confirms the trends illustrated
in Fig. 3.

FIG. 4. Spectral bandwidth δz as a function of the shape descrip-
tors of the PSD considered here (Fig. 2), α and b.

C. Simulation parameters

The in-plane discretization �x = �y of the surface is
chosen such that 2π

2�x = 6ks. This ensures that the sinus cor-
responding to the largest wave number is well resolved, with
12 points per wavelength in the spatial domain. Sliding motion
is simulated by moving the slider along x with respect to the
track by one grid size at each step.

For each dimension of the topographies (out-of- and in-
plane) a reference length is chosen. For the out-of-plane
dimension, the rms roughness, Rq, is chosen, while for the
in-plane dimension, we chose the central wavelength, λ0. Note
that, in our case of normal approach of rigid bodies, the in- and
out-of-plane dimensions are uncoupled. In particular, dilating
only the in-plane dimension does not affect the value of the
normal separation, while dilating only the out-of-plane dimen-
sion does not affect the index of the topography points that are
involved in the single-contact. Simulations are thus defined by
three dimensionless parameters: two for the PSD shape, b and
α, and one for the slider size L̃ = L/λ0. The output quantity is
thus the dimensionless separation at single-point contact, d̃0 =
d0/

√
2Rq, as a function of the dimensionless sliding distance,

ũ = u/λ0. Note that, for the contact between two statistically
identical topographies, each with an rms roughness Rq, as is
the case in the present study, the normalizing quantity for d0,√

2Rq = R∗
q, represents the equivalent rms roughness of the

sum topography.
The value of b is varied from 0.05 to 1. Notice that b = 1 is

the case of a rectangular-shaped radial PSD, while for b = 0
the topography would be purely self-similar. α is varied from
3 to 4, corresponding to a Hurst exponent varying from 0.5
to 1. To investigate the effect of the slider size, L̃ is varied
from 43 to 760. The track size is then L̃1 × L̃. Note that we
have limited the range of variations of L̃ to values such that
(i) kL < kl so that there is a white noise part in the PSD
and (ii) L1 = 5L and L/�x is smaller than 17 000, to keep
topography matrices computationally tractable. Our compu-
tational resources allowed simulation of topographies with
any combination of parameters within the above-mentioned
ranges. An additional set of simulations has been performed
with α = 4 and b = 0.46, which allowed us to vary L̃ from
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1.5 to 1389, and thus to explore more widely the effect of the
slider size on the roughness-induced normal motion.

For each random draw of phases, a different topography is
generated, with the specified PSD. For each set of parameters
(α, b, and L̃), several draws of topographies are performed in
order to get converged statistical results for the separation at
single-point contact, d̃0. Tests have shown that with 15 draws,
the expected value of each of the three first statistical moments
(mean, standard deviation, and skewness) of d̃0 is measured to
better than 5% accuracy.

Finally, let us define the parameter N , which will be useful
in the following sections:

N = 4

π
L̃2. (7)

N represents the number of circular patches of diameter λ0

along the slider’s surface. For a narrow band process, it is
close to the number of asperities on the slider’s surface. Here
and in the following, the term asperity refers to any convex
portion of the topography.

III. DIRECT SIMULATIONS: RESULTS

In Fig. 5, an example of simulated separation at single-
point contact, d̃0(ũ), is plotted. In Fig. 6, typical probability
density functions (pdf) of d̃0 are shown. One can notice that
〈d̃0〉, the mean value of d̃0, is larger than 0 by several R∗

q
(typically 2 to 5, depending of the simulated topogaphies).
Note that d0(u) (the distance between the two mean planes
[see Fig. 1)] can be equal to 0 only if one topography would
be the exact complementary of the other at position u. Also,
the standard deviation of d̃0, σd̃0

, is always found smaller than
1. Finally, the skewness of the distribution, skd̃0

, is positive,
due to the fatter right tail of the pdf, implying that, unlike
the underlying topographies, the separation at single-point
contact, d0, is not a Gaussian process.

More quantitatively, Fig. 7 shows the normalized mean
value, standard deviation, and skewness, respectively 〈d̃0〉,
σd̃0

, and skd̃0
, for all simulations parameters used, as a

function of the slider area, represented by the number N .
Figure 7 clearly shows that the statistical moments of the

FIG. 5. Typical example of separation at single-point contact,
d̃0(ũ). α = 4, b = 0.46, L̃ = 327. Inset: Zoom showing cusplike
features.

FIG. 6. Typical pdf of the separation at single-point contact for
two different slider sizes, L̃ = 327 (N = 136118) and L̃ = 44 (N =
2423). α = 3.2, b = 0.46. Dashed lines: EVT model discussed in
Sec. IV.

dimensionless separation d̃0 only depend on N . Both 〈d̃0〉 and
skd̃0

are increasing functions of N , whereas σd̃0
is a decreasing

function. Note that the N axis is logarithmic, indicating that
the variations with N are relatively slow.

We now describe the spectral contents of the roughness-
induced normal motion of the slider. They are described by
the power spectrum density of d̃0(ũ), Sd̃0 d̃0

(see Fig. 8 for a
typical example). We find that the resulting PSDs are of the
self-affine type, with a white-noise part at low frequencies,
and a power-law decay of exponent −α� at high frequencies.
The crossover wave number is denoted k̃�

l .
As can be seen in Fig. 8, d̃0 has nonvanishing spectral

contents for wave numbers higher than k̃s, the topographies’
largest wave number. We measured the exponent −α� of the
power-law decay of the PSD, for wave numbers larger than
k̃s and found that it is always roughly equal to −4. Then, to
estimate the value of k̃�

l , we propose the following empirical
model for the PSD (see black line in Fig. 8):⎧⎨

⎩
S�

0 if k̃ < k̃�
l ,

S�
0

(
k̃�

l

k̃

)4
if k̃ > k̃�

l .
(8)

We then fit the value k̃�
l with the constraint that the moment

of order 0 of the model PSD (which is the rms value of the
signal) is equal to that of the simulated one, which amounts

to impose that S�
0 = 3

4

√
σ 2

d̃0
+〈d̃0〉2

k̃�
l

. Analysis of the dependence

of k̃�
l with the simulation parameters, α, b, and L̃, for all

the simulations performed, allowed us to find the following
empirical expression:

k̃�
l ≈ f1(b, L̃) =

(
5.18 × 10−5

b1.54
+ 0.0584

)
L̃0.0892. (9)

Figure 9 shows that Eq. (9) nicely predicts the value of k̃�
l

obtained from the simulations.
It is interesting to reformulate those results in terms of

the central wavelength and the spectral bandwidth of the
process d̃0, which are generic estimators of a PSD, also valid
in particular for non-self-affine PSDs. They are defined as
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FIG. 7. (a) Mean value, (b) standard deviation, and (c) skewness
of the pdfs of d̃0, for all simulations performed (circles). Error
bars represent the standard deviation over 15 statistically identical
simulations. For clarity, not all error bars are plotted. Lines: various
models discussed in Sec. IV. The marker size increases when b
decreases. Lighter gray denotes lower α. •, �, �, � denote L =
100, 250, 500, and 750, respectively. The two values of δz used in
Figs. 7(a) and 7(b) are the maximum and minimum values used in
our simulations.

λ̃�
0 = 1

2

√
m̃0
m̃2

and δ� =
√

1 − m̃2
1

m̃0m̃2
, respectively, with moments

m̃i = ∫ +∞
−∞ |k̃|iSd̃0 d̃0

(k̃)dk̃. Note that with such a definition
[28–32], odd moments do not vanish.

FIG. 8. Typical PSD of the separation at single-point contact and
its empirical approximation [Eq. (8)]. α = 3.6, b = 0.1, L̃ = 337.

We investigated the relationship between the spectral pa-
rameters of d̃0 and those of the contacting topographies and
found the results shown in Fig. 10. First, δ� is a function of δz
only, through [Fig. 10(a)]:

δ� ≈ 0.38δ2
z + 0.58. (10)

Second, λ̃�
0 depends on both δz and L̃, through:

λ̃�
0 ≈ f2(δz, L̃) = −0.178δz + 1.50

L̃0.0685
. (11)

Figure 10(b) shows that this expression is a good approx-
imation of λ̃�

0, for all the simulations performed. Finding
explanations for Eqs. (9), (10), and (11) would be the subject
of an interesting future work.

IV. DISCUSSION

A. Single-point contact as a geometrical filtering

The shape observed for the probability density function
of the interfacial separation (Fig. 6) can be understood as
a geometrical filtering of the antagonist topographies. This

FIG. 9. Simulated k̃�
l versus its approximated expression,

f1(b, L̃) [Eq. (9)]. Solid line: Equality line. The marker size increases
when b decreases. Lighter gray denotes lower α. •, �, �, � denote
L = 100, 250, 500, and 750, respectively.
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FIG. 10. Spectral parameters of the normal motion d̃0(ũ) as a
function of those of the contacting surfaces. (a) δ� vs. δz. (b) λ̃�

0

vs. f2(δz, L̃) [Eq. (11)]. Solid line: Equality line. The marker size
increases when b decreases. Lighter gray denotes lower α. •, �, �,
� denote L = 100, 250, 500, and 750, respectively.

filtering process is expected to strongly depend on the size
of the slider. In the limit of a pointlike slider (L vanishes), it
will be able to follow exactly the track’s topography, so that
its normal motion will be equal to that topography. In the case
of a finite-sized slider, the slider will not be able to penetrate
into the valleys of the track’s topography but will mainly
slide on the highest asperities. Hence, the slider is expected
to successively explore the shape of different asperities: the
ones with the smallest distance to the slider’s topography.
The switching between asperities in contact is expected to be
abrupt because the slider will intantaneously stop following
the shape of the previous asperity and start following the new
one. This scenario is in perfect agreement with the typical
normal motion shown in Fig. 5 (inset), in which one can
identify cusplike features at the local minima (when the slider
switches asperities) and smooth maxima (when the slider
follows the summit of one asperity).

Those features of the normal motion are fully consistent
with the observations made on the pdf and PSD of d̃0. The
asymmetry between minima and maxima in the normal mo-
tion explains the fatter tail of the pdf for large altitudes, which
are more probable than the small amplitudes (at the cusps),
and thus explains why skd̃0

> 0 [Fig. 7(c)]. It is interesting
to note that the PSD of a cusp-containing signal like |sin(x)|

is a Dirac comb with amplitude decreasing asymptotically as
1/k4, i.e., with an exponent close to the measured −α� � −4.
We suggest that the presence of the cusps is the origin of the
observed spectral enrichment (beyond ks) of the roughness-
induced normal motion. The observation that the standard de-
viation of d0 is always smaller than that of the sum topography
[Fig. 7(b)] is related to the fact that the slider cannot explore
the lowest parts of the track’s topography, due to its finite size.
Finally, the nonvanishing values of the mean of d̃0 are fully
consistent with the fact that the slider only touches the highest
asperities of the track [Fig. 7(a)].

As noted above, the slider’s normal motion only differs
from the track’s topography if the slider has a nonvanishing
size, which indicates that the geometrical filtering is intrin-
sically a finite-size effect. And indeed, the various statistical
properties of the normalized normal motion’s pdf only depend
on N (Fig. 7). Larger sliders have a larger probability to touch
a high asperity, so that 〈d̃0〉 is larger [Fig. 7(a)]. Similarly,
larger sliders penetrate less into the tracks’ valleys, so that σd̃0

is smaller [Fig. 7(b)].

B. Extreme value theory approach

Due to the large number of points used to represent the
topographies, the numerical simulations presented above are
computationally expensive and require large random access
memory for the reverse Fourier transform operation [for the
largest simulations, we used 512Gb of RAM for 3h30 on Bi-
Xeon E5-2640v3 (16 core 2.6 GHz)]. Thus being able to pre-
dict the statistical properties of the separation at single-point
contact, d0, directly from the properties of the topographies is
highly desirable. Remembering that the slider, due to its finite
size, can only get into contact with the highest asperities of
the track’s topography, it is tempting to investigate how the
framework of extreme value theory (EVT, see, e.g., [19–21])
can be applied to the present single-point contact problem.

We represent rough surfaces through N points which
are independent realizations of a centered Gaussian pro-
cess. Consider two antagonist such topographies, z1 and z2,
with identical rms roughness Rq, as sketched in Fig. 1.
Their separation at single-point contact, d0, is given by d0 =
− min(xi,y j ) [z1(xi, y j ) − z2(xi, y j )]. z1 and z2 having symmet-
ric distributions, (i) the distribution of their difference is then
statistically equal to the distribution of their sum and (ii)
the opposite of the minimum is statistically equivalent to
the maximum. We can thus work on the sum of the two
topographies, z = z1 + z2, which has a centered Gaussian
distribution with a standard deviation equal to R∗

q = √
2Rq,

and examine d0 = max(z).
Let P be the cumulative density function (cdf) of z and p

the associated probability density function (pdf). In our case:

p(z) = 1

R∗
q

√
2π

exp

(
− z2

2R∗
q

2

)
, (12)

P (z) = 1

2

(
1 + erf

z

R∗
q

√
2

)
. (13)

We will now follow the EVT approach described, e.g., in
Ref. [19]. The probability that the altitude at one point of z
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is smaller than a value Y is given by P (Y ). The probability
that all N altitudes of z are smaller than Y , meaning that
Y is greater or equal to the highest point of z, is the cdf
G(Y ) = P (Y )N . Thus, the pdf corresponding to the fact that
Y is the largest of the N altitudes, which is precisely the pdf
of the sliders’ height, reads:

g(Y ) = G′(Y ) = N p(Y )P (Y )N−1. (14)

Typical distributions g are shown in dashed lines on Fig. 6
for two values of N , which is analogous to two different sizes
of the slider. It appears that those EVT-predicted distributions
present similar qualitative features as the simulated distribu-
tions. In particular, the mean height of the slider also increases
with N , while the standard deviation of the slider’s height also
decreases with N . As in simulations, g is not a symmetric
distribution, but has a fatter tail for large values of Y (positive
skewness), which is typical of extreme value statistics. As
shown in Refs. [19,33], when N is increased, the distribution
of the maximum of a variable tends toward the Frechet,
Gumbel, or Weibull distribution depending on the pdf of this
variable. In particular, for a pdf with a right tail decaying faster
than a power law, as is the case for Gaussian distributions, the
pdf of the maximum will tend toward the Gumbel distribution.
As a consequence, we expect the Gumbel distribution to be
the limiting case of g for very large sliders (N 
 1). Yet the
convergence toward these limiting distributions is slow [34]
and thus they will not be reached here.

C. Comparison between methods

Once the topography’s pdf has been chosen to be Gaussian,
the EVT prediction [Eq. (14)] only depends on the parameter
N . So, quantitative comparison between the predictions of
EVT and the numerical simulations only relies on a relevant
choice of N . Remembering that in EVT, we represent the
topographies as a collection of N discrete, statistically inde-
pendent values, one looks for a number related to the number
of asperities present on the simulated slider’s surface. For a 1D
process, this number can be given [29] by dividing the length
of observation, L, by the central wavelength, λ0 [Eq. (2)],
so that N = L

λ0
. For the two-dimensional processes observed

here, the same path of thought can be followed with areas of
diameter λ0:

N = L2

π
λ2

0
4

= 4

π

(
L

λ0

)2

= 4

π
L̃2, (15)

which justifies the prefactor used in Eq. (7). Note that in
Ref. [13], a correlation length is used instead of λ0 to
define N .

Using this choice of N in the EVT approach, we overplot-
ted the analytical results of Eq. 14 on all panels of Fig. 7.
This comparison shows a rather good quantitative agreement
with our simulation results, confirming that the good match
observed on Fig. 6 is actually true for all the explored sim-
ulation parameters. Yet, an offset exists on 〈d̃0〉 between the
EVT prediction and the numerical results. We interpret this
offset as a side effect of the approximation of a continuous
topography by a set of discrete points: while the mean plane
of a single, continuous asperity always lies below its summit,
in the case of a pointlike asperity, the mean plane has the exact

same altitude as the summit itself. Hence, the mean planes of
two continuous topographies in contact are always separated
by a larger distance than those of two sets of discrete asperity
summits. The exact offset between the two situations depends
on both the amplitude and shape of the asperity. In our

case, an empirical correction of
R∗

q

2 seems to correctly capture
our simulation data. Note that in Fig. 6, the analytical pdfs
shown include this correction, while the solid line in Fig. 7(a)
does not.

We emphasize that such an agreement is a priori nontriv-
ial. First, the agreement quality significantly depends on the
definition of N , suggesting that the arbitrary definition used
[Eq. (15)] is adequate. Second, the prediction is based on
the EVT framework, which considers topographies made of
independent realizations of a Gaussian process. In constrast,
the topographies used in the simulations incorporate a finite
correlation length, due to the shape of the PSD used to
generate them. We believe that this difference is the main
reason for the slight discrepancies observed in Fig. 7 between
simulations and EVT predictions. To improve the agreement,
one would need to account for the deviations from EVT
induced by a finite correlation length.

This is what Preumont attempted in Ref. [29], on the
problem of finding the maximum value reached during a
certain time window by a correlated 1D Gaussian signal.
Assuming that the successive extrema of the signal form a
Markovian process, he was able to find an exact, but intricate
expression for the pdf of this maximum value. By fitting
this pdf with a Gumbel distribution, he was able to identify
semiempirical expressions of its mean value and standard de-
viation, as a function of N and the spectral bandwidth δ of the
process:

〈d̃0〉Preumont =
√

2 ln κuN + γ√
2 ln καN

, (16)

σd̃0 Preumont
= π√

6

1√
2 ln καN

, (17)

κu =
{

1.5(1 − e−1.8δ ) if δ < 0.5

0.94 if δ � 0.5,
(18)

κα =
{

7δ if δ < 0.5

4.05 if δ � 0.5,
(19)

with γ = 0.5772 being Euler’s constant. Note that the skew-

ness of the Gumbel distribution is equal to 12
√

6ζ (3)
π3 ∼

1.14 (ζ is Riemann’s ζ function), independently of N [see
Fig. 7(c)].

Those semiempirical expressions are overplotted on Fig. 7
using the value of δz for δ in Eqs. (18) and (19). Those
expressions appear to provide an excellent agreement with
our simulation data, in particular they capture the correct
amplitude of 〈d̃0〉. Such an improvement of the agreement
confirms that the discrepancies observed between EVT and
simulations are mainly due to the finite correlation of the sim-
ulated topographies. Yet, here again, such a good agreement
was not expected, since Eqs. (16)–(19) were obtained for 1D
processes, while our simulations use correlated 2D processes
(the topographies).
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D. Relation to experiments

There are very few experimental works in the literature
reporting measurements of the roughness-induced normal
motion of macroscopic sliding solids. A notable exception
can however be found in Refs. [35,36], where the authors
monitor the normal acceleration of mild-steel slider-buttons
of centimetric radius of curvature, during sliding on a rough
mild steel disk. In particular, they report large wave-number
tails of the normal displacement PSDs of the type k−4, in close
agreement with our numerical findings [see Eq. (8)].

An interesting comparison can also be made with the
literature about stylus measurements of rough surfaces. All
wavelengths of the topography that are smaller than the tip
size will be filtered-out through a geometrical filtering process
analogous to the one studied here, leading to erroneous topog-
raphy measurements (see, e.g., Ref. [37]). Indeed, in Ref. [38],
it is shown that while the amplitude of large wavelengths is
accurately measured, that of small wavelengths is underes-
timated. Thus, the rms value of the measurement is smaller
than that of the topography, consistently with our results of
Fig. 7(b). They also show that the crossover wavelength sep-
arating both regimes scales as R1/(2−H ), with R the curvature
radius of a parabolic tip and H the Hurst exponent. This result
indicates a size-dependence of the filtering process, which is
analogous to the L (or N) dependence that we observed. In
Ref. [39], the authors further showed that geometrical filtering
induces cusps in stylus measurement, and that those cusps are
responsible for a k−4 behavior of the large wave-number tail
of the PSD. Again, this is fully consistent with our results [see
Eq. (8)].

V. CONCLUSION

We addressed the question of the roughness-induced nor-
mal motion during sliding of two solids in the limit of van-
ishing normal load, i.e., when the contacting asperities do not
deform. We considered the simplified case of the quasistatic
evolution of the separation at single-point contact, when the
slider has no rotational degree of freedom. Systematic numer-
ical simulations assuming Gaussian self-affine topographies
with various power spectrum densities, and sliders with vari-
ous sizes have been performed. We found that the normal mo-
tion relates to the topographies through a geometrical filtering
process which depends on the size of the slider. We also found
that the resulting normal motion (i) has enriched spectral
contents in the high-wave-number range, (ii) is non-Gaussian
and (iii) has standard deviation much smaller than that of the
sum topography. We provided empirical expressions relating
the characteristics of the topography to that of the roughness-
induced normal motion. We demonstrated that the distribution
of the amplitude of the normal motion can be well predicted
within the framework of extreme value theory (EVT) as soon
as the number of points representing the topography of the
slider is taken equal (to a prefactor close to 1) to the surface
of the slider divided by the square of the central wavelength
of the topography.

These results are relevant whenever rough surfaces are
brought into light contact, that is, when there is no sig-
nificant deformation of the bodies. They can be useful not
only for sliding surfaces, but also to assess the variability of
static measurements made on statistically equivalent contacts
[13,14]. In particular, such a variability is expected to be
much smaller than the characteristic amplitude of the sum
of the two antagonist topographies. Our results are limited to
single-point contacts, when the two solids are brought into
contact through normal translation. In the case where a slider
would be free to tilt, it would, under gravity, settle on three
contact points to satisfy isostatic equilibrium. Accounting for
such an effect is an interesting topic for a future work.

The fact that EVT nicely predicts the simulation results
indicate that computationally expensive simulations like those
decribed here may not be necessary in the future. Indeed,
simple analytical formula [Eqs. (14)–(15)] or semiempirical
expressions [Eqs. (16)–(19)] are sufficient to evaluate most
of the relevant statistical descriptors of the roughness-induced
normal motion. Our results thus further extend the already
large range of applicability of EVT to rough contact situa-
tions.
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APPENDIX: SURFACES PARAMETER

For surfaces described with radial power spectrum densi-
ties as shown in Fig. 2, the three first radial moments M0, M1,
and M2 have the following expressions:

M0 = 2πS0

[
k2

l − k2
L

2
− kα

l

(
k2−α

s − k2−α
l

)
α − 2

]
(A1)

M1 =
{

2πS0
[ k3

l −k3
L

3 − kα
l (k3−α

s −k3−α
l )

α−3

]
if α �= 3

2πS0
{ k3

l −k3
L

3 + k3
l [ln(ks) − ln(kl )]

}
if α = 3

(A2)

M2 =
{

2πS0
[ k4

l −k4
L

4 − kα
l (k4−α

s −k4−α
l )

α−4

]
if α �= 4

2πS0
{ k4

l −k4
L

4 + k4
l [ln(ks) − ln(kl )]

}
if α = 4

(A3)
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