Level densities of 74,76Ge from compound nuclear reactions

A. V. Voinov,1,* T. Renstrøm,2 D. L. Bleuel,3 S. M. Grimes,1 M. Guttermoen,2 A. C. Larsen,2 S. N. Liddick,4,5 G. Perdikakis,5,6 A. Spyrou,5,7 S. Akhtar,1 N. Alanazi,1,† K. Brandenburg,1 C. R. Brune,1 T. W. Danley,1 S. Dhakal,1,‡ P. Gastis,6 R. Giri,1 T. N. Massey,1 Z. Meisel,1 S. Nikas,6,§ S. N. Paneru,1 C. E. Parker,1,∥ and A. L. Richard1,†

1Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
2Department of Physics, University of Oslo, 0316 Oslo, Norway
3Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
4Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
5National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
6Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
7Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

(Received 1 November 2018; revised manuscript received 3 January 2019; published 8 May 2019)

The level densities of 74,76Ge nuclei are studied with 68Zn(7Li, Xp) reactions. Proton evaporation spectra are measured at backward angles in a wide energy region, from about 2 to 25 MeV. The analysis of spectra allows for the testing of level density models used in modern reaction codes for practical cross-section calculations. Our results show that at excitation energies above the discrete level region, all level density models tested in this work overestimate the level densities that are needed to reproduce proton spectra from these reactions. The Gilbert and Cameron model, which includes the constant-temperature energy dependence of the level density, shows the best agreement with experiment, however, its parameters need to be adjusted to reflect the observed reduction of the level density at higher excitation energies.

DOI: 10.1103/PhysRevC.99.054609

I. INTRODUCTION

Nuclear level densities have been of renewed interest in recent years due to their wide use in calculations of astrophysical phenomena, which often require a large number of nuclear reaction rates as input. The majority of nuclear reaction rates used in astrophysical reaction rate libraries, e.g., JINA REACLIB [1] and BRUSLIB [2], are calculated using the Hauser-Feshbach reaction model [3], which requires accurate accounting of missing resonances, which are critically needed to guide models.

Phenomenological level density models used in modern reaction codes are mainly based on Fermi gas [12] or Gilbert and Cameron [13] prescriptions. Parameters such as the level density parameter a, the pairing shift Δ, the spin cutoff parameter σ, and the nuclear temperature T are found using experimental data on neutron resonance spacings [14] and the density of discrete low-lying levels known from spectroscopic experiments [15]. There are many different parameterizations developed to calculate the nuclear level density in a wide mass range. Some of them can be found in Refs. [13,15–20]. The vulnerability of such an approach consists of the fact that neutron resonance spacings are known only for a very limited spin and excitation energy range. Such limitations might lead to uncertainties in calculated level densities in other spin and excitation energy ranges important for reaction cross-section calculations. There are also uncertainties associated with analysis of neutron resonance data, which requires accurate accounting of missing resonances, which is not always a straightforward procedure [15]. The experimental information on spin and parity distributions at excitation energies above the discrete level region is scarce and so an approach based on theoretical models is used. Therefore it is obvious that in order to progress further towards constraining level density models, other experimental

*voinov@ohio.edu

*Present address: Physics and Astronomy Department, King Saud University, 12371 Riyadh, Saudi Arabia.

†Present address: Department of Physical Sciences Barry University, Miami Shores, Florida 33161, USA.

‡Present address: Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt, Germany, and GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany.

§Present address: Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA.

¶Present address: National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
data, beyond those on neutron resonance spacings, are needed.

The availability of microscopic calculations of the nuclear level density is also limited. The only results of global calculations for practical use are available in reaction codes such as TALYS [21] and EMPIRE [22]. These models are described in Refs. [23,24]. Despite the fact that the authors use a microscopic approach, model deficiencies are compensated with renormalization coefficients to match data on neutron resonance spacings and the density of discrete levels, just as phenomenological models do. There are calculations based on the shell model, such as the shell model Monte Carlo approach used in Ref. [25]. However, calculations have been done for a very limited number of nuclei, which do not include the nuclei studied in this work.

The technique known as the Oslo method to obtain both the level density and the γ-strength function [26,27] was initially based on measuring outgoing particle-γ coincidences with stable beams. It has now been expanded using β-radioactive nuclei produced with radioactive beams (it is referred to as the β-Oslo method in the literature). The latter method uses the summing 4π detector SuN to detect γ radiation following β decay [28]. This technique is designed to constrain (n, γ) reaction rates in astrophysics for nuclei away from stability because the level density and the γ-strength functions are the most uncertain parameters determining (n, γ) cross sections. Both the Oslo and the β-Oslo methods use simultaneous extraction of the level density and γ-strength functions from particle-γ (Oslo method) and β-γ (β-Oslo method) coincidences. In order to get absolute values, extracted functions have to be normalized to absolute values available from other experiments. In most cases, again, the neutron resonance spacings and density of discrete levels are utilized.

The general question we address here is whether level density model parametrizations based on available neutron resonance spacing data are able to reproduce differential cross sections of nuclear reactions. This is a key question which needs to be addressed to understand the source of uncertainties of level density models used as inputs for the reaction codes TALYS [21] and EMPIRE [22]. These models are described in Refs. [23,24]. Despite the fact that the authors use a microscopic approach, model deficiencies are compensated with renormalization coefficients to match data on neutron resonance spacings and the density of discrete levels, just as phenomenological models do. There are calculations based on the shell model, such as the shell model Monte Carlo approach used in Ref. [25]. However, calculations have been done for a very limited number of nuclei, which do not include the nuclei studied in this work.

The example of the first generated

\[\text{FIG. 1. Total } 68\text{Zn}(^7\text{Li}, Xp) \text{(solid line) and primary } 68\text{Zn}(^7\text{Li}, p) \text{ (histogram) proton evaporation spectra calculated with the EMPIRE code [22] for 16-MeV } ^7\text{Li \ projectiles.} \]

be populated with the first-stage (or primary) protons from the \[68,70\text{Zn}(^7\text{Li}, p)^{74,76}\text{Ge reactions. First-stage protons are protons that are the first particles emitted from a compound nucleus, as opposed to protons following other particles which come out first. The latter reactions are referred to as } (^7\text{Li}, Xp), \text{ where } X \text{ is any type and number of particles permitted by reaction } Q \text{ values.} \]

If the energy of the lithium beam is low, slightly above the Coulomb barrier, it is expected that the compound mechanism is dominant and the differential cross section is determined by the evaporation reaction mechanism. In this case, according to the HF compound nuclear theory [3], both the differential cross sections and the shape of the proton spectrum are determined by transmission coefficients of outgoing particles and the level density of the residual nuclei. It is assumed that transmission coefficients calculated from optical model potentials have much smaller uncertainties compared to level densities obtained from theoretical models (see Sec. IV for details). Therefore, particle evaporation spectra are used as a tool to test level density models.

In this work, proton spectra are measured from the \[70\text{Zn}(^7\text{Li}, Xp) \text{ as well as from the } 68,70\text{Zn}(^7\text{Li}, Xp) \text{ reactions. Proton spectra are compared with HF calculations using different level density model prescriptions. The level densities of both } ^{74}\text{Ge and } ^{76}\text{Ge are extracted from } 68,70\text{Zn}(^7\text{Li}, p)^{74,76}\text{Ge primary proton spectra and compared with level densities obtained with the Oslo method [30] for } ^{74}\text{Ge and with some theoretical models used as inputs for the reaction codes TALYS [21] and EMPIRE [22].} \]

II. EXPERIMENT

The experiment was performed at the Edwards Accelerator Laboratory [31] with the tandem electrostatic accelerator. A
16-MeV 7Li beam was directed on 3.5-mg/cm2 68Zn and 4-mg/cm2 70Zn metal foils enriched to 99.2% and 95.5%, respectively. Protons were registered with two methods. The first method used the time-of-flight technique. A Si detector was set up at a distance of 1 m from the target at 142$^\circ$ with respect to the beam direction. Both the time of flight and the energy deposited in the detector were used for particle identification. For this type of measurement the beam was pulsed and bunched at a repetition rate of 1.250 MHz and about 3 ns of a beam burst. With 1.5-mm-thick Si detectors, protons were registered in the energy range of about 2–15 MeV. The second method used a ΔE-E telescope consisting of two 0.25- and 5-mm-thick silicon detectors set up at -142° with respect to the beam direction and at distance of about 10 cm from the target. The direct current (d.c.) regime used for this method allowed us to increase the beam current considerably compared with the pulsed and bunched regime. Both the d.c. beam and the short target-detector distance were indispensable to be able to acquire sufficient statistics for high-energy protons, where the cross section drops exponentially as the proton energy increases. Count rates were maintained at about 800 and 50 counts/s for ΔE and E detectors, respectively. The pileup effect was estimated with computer simulations and found to be negligible (<1%). The telescope was able to detect protons in the energy range from about 8 MeV to 25 MeV. Example of the particle identification plot (ΔE-E) for the telescope detector is shown in Fig. 2. It shows no background in the high-energy region; the low-energy region contains some random background, but its relative contribution was estimated to be less than 1% so its contribution was neglected. Thus, the proton energy spectrum in the energy range from 2 to 25 MeV was obtained by combining the spectra from both the time-of-flight and the telescope detectors. The experimental energy resolution for protons in Si detectors was about 2%. The maximum energy of the outgoing protons in the laboratory system from these reactions is determined to be 24.06 MeV for the 68Zn target and 24.36 MeV for the 70Zn target. The energy calibration of the silicon detectors was determined from measurements of protons from 12C(7Li, p)18O and 27Al(7Li, p)33P reactions on thin natural carbon (about 0.05 mg/cm2) and aluminum (about 0.7 mg/cm2) foils. The first reaction gives a well-characterized peak structure in the energy range 6–18 MeV due to population of discrete levels of 18O. The second reaction allows us to use a similar structure at higher proton energies, around 22–25 MeV. This structure is due to population of discrete levels in 33P. Since it was difficult to calibrate the ΔE and E detectors separately, the spectra measured by only the E detector were used with the nonlinear calibration function. The calibrated proton spectra from reactions on carbon and aluminum are shown in Fig. 3. The same calibration was used for spectra measured from zinc targets. Because the large thicknesses of the zinc targets slowed down the lithium beam to about 13.5 MeV at the end of the target from its original 16 MeV, and because the reaction cross section decreases rapidly with the beam energy (see next section for details), the differential absolute proton yield $dY(\varepsilon_p)/d\varepsilon_p$ rather than the cross section $d\sigma(\varepsilon_p)/d\varepsilon_p$ was determined from this experiment. The uncertainty of the absolute proton yield is mainly determined by the uncertainties of the beam current integration (about 3%) and detector solid angle (about 10%). Experimental proton evaporation spectra from lithium-induced reactions on both 68,70Zn nuclei are shown in Fig. 4.
III. MODEL CALCULATIONS

The calculations of proton energy spectra have been performed with the reaction code EMPIRE [22] using the HF model available as an option for compound reaction calculations. According to the HF theory, the energy-averaged cross section for the reaction with the projectile nucleus \(a \) and the ejected \(b \) proceeding through states in a compound nucleus can be expressed as

\[
d\sigma/d\varepsilon_b(\varepsilon_a, \varepsilon_b) = \sum_{J\pi} \sigma_{CN}^{J\pi}(\varepsilon_a) \frac{\sum_i T_b(U, J, \pi, E, I, \pi) \rho_b(E, I, \pi)}{T(U, J, \pi)}
\]

with

\[
T(U, J, \pi) = \sum_{i'} \left(\sum_k T_b(U, J, \pi, E_k, I_k, \pi_k) + \sum_{I', \pi'} \int_{E_r}^{U-B_b} dE' T_b(U, J, \pi, E', I', \pi') \rho_b(E', I', \pi') \right).
\]

(1)

Here \(\sigma_{CN}^{J\pi}(\varepsilon_a) \) is the fusion cross section, \(\varepsilon_a \) and \(\varepsilon_b \) are the energies of relative motion for incoming and outgoing particles (\(\varepsilon_b = U - E_b - B_b \), where \(B_b \) is the separation energy of particle \(b \) from the compound nucleus), the \(T_b \) are transmission coefficients of the outgoing particle, and the quantities \((U, J, \pi) \) and \((E, I, \pi) \) are the energy, the angular momentum, and the parity of the compound and residual nuclei, respectively. \(\rho_b \) is the level density of residual nuclei. The energy, \(E_r \), is the discrete level cutoff, above which the number of levels is calculated using a level density model. For energies below \(E_r \), the known excitation energies \(E_k \) and spins, and parities of discrete levels are used. In practice, the \(E_r \) is already established in RIPL files [15] with discrete levels which are used as an input in EMPIRE and TALYS.

A. Fusion model

The HF formula, (1), consists of two global terms, the first, \(\sigma_{CN}^{J\pi}(\varepsilon_a) \), is a fusion cross section which is responsible for the formation of a compound nucleus and the second term determines its decay. The formation cross section determines the overall scaling of the double differential yield of outgoing particles. It also determines the \(J_b \) spin population in a compound nucleus. For light projectiles, the formation cross section is usually determined from optical model calculations, specifically from the imaginary potential of the optical model [22]. Optical model parameters are well established for light particles such as protons, neutrons, and, to a lesser extent, \(\alpha \) particles. For \(^7 \)Li projectiles, there is a compilation by J. Cook [32] but it does not include energies and nuclei of our interest. The optical parameters in Ref. [33] are established for \(^7 \)Li energies of about 30 MeV and higher. Therefore we used the coupled-channel model available in the EMPIRE code [22] as an option to calculate the fusion cross sections for projectiles heavier than \(\alpha \) particles. Before this model was used in our calculations it was benchmarked against experimental fusion cross sections for the \(^7 \)Li + \(^64 \)Zn reaction from Ref. [34] in the energy region of our interest. The calculated fusion cross section is compared with experimental data in Fig. 5. The good agreement suggests that the model is correct for fusion cross-section calculations for our \(^7\)Li + \(^{68,70} \)Zn reactions with 13.5–16 MeV (approximately 12.2–14.5 MeV in the center-of-mass system) for the projectile energy.

B. Test of level density models

We tested the following level density models, which appear to be most distinct from each other because of the different approaches that they use:

i. The back-shifted Fermi gas (referred to as the BSFG_RIPL_global) model, based on the Bethe formula [12],

\[
\rho(U) = \frac{\exp(2\sqrt{aU})}{12\sqrt{2\pi a^{1/4}U^{5/4}}},
\]

(3)
where the effective excitation energy \(U \) is determined through the actual excitation energy \(E \) and the backshift parameter \(\Delta \) as \(U = E - \Delta \). The level density parameter \(a \) is determined to be energy dependent according to the Ignatyuk expression from Ref. [16],

\[
a(U) = a \left[1 + \frac{\delta W}{U} (1 - \exp(-\gamma U)) \right], \tag{4}
\]

where \(\hat{a} \) is the asymptotic level density parameter, \(\delta W \) is the shell correction, and \(\gamma \) is the dumping parameter. Parameters are calculated according to the RIPL global systematics of Ref. [15]. The spin cutoff parameter, \(\sigma(U) \), is determined according to the following expression:

\[
\sigma^2(U) = 0.0138A^{5/3} \sqrt{U a(U) / \hat{a}}. \tag{5}
\]

ii. The global parametrization of the Gilbert and Cameron (GC) model (GCM_RIPL_global), which is also based on prescriptions from the RIPL compilation [15]. The GC model combines the constant-temperature and the Fermi gas functions. At low excitation energies, below the matching energy \(E < E_m \), the constant-temperature formula is used:

\[
\rho(E) = \frac{1}{T} \exp \left(\frac{E - E_0}{T} \right). \tag{6}
\]

The Fermi gas model \((3,4,5)\) is used for \(E > E_m \).

iii. The back-shifted Fermi gas parametrization according to Ref. [20] (referred to as BSFG_Egidy09). It uses the model of Eq. (3) with the energy-independent parameter \(a \). Parameters \(a \) and \(\Delta \) are obtained from fitting neutron resonance data and the density of discrete levels with Eq. (3) using a different spin cutoff formula which was derived in Ref. [20] from fit to discrete levels with known spins only. Data on neutron resonances have not been used for the spin cutoff parameter derivation. The final formula was obtained as

\[
\sigma^2(E) = 0.391A^{0.675} (E - 0.5P_d)^{0.312}, \tag{7}
\]

where \(P_d \) is the deuteron separation energy. This suggests that the spin cutoff parameter has a different excitation energy dependence (power of 0.312 instead of 0.5 as prescribed in Eq. (5)). It results in smaller level density parameters, \(a \), leading to a flatter level density excitation energy dependence. It is expected that according to Eq. (1), it should also result in proton evaporation spectra flatter than those calculated with the spin cutoff model of Eq. (5).

iv. The microscopic calculations based on the Hartree-Fock-Bogoliubov (referred to as HFB_2008) combinatorial model allow calculations of parity- and spin-dependent level densities [23]. This model is available as one of the input options in both the EMPIRE and the TALYS computer codes. For practical calculations, the model uses renormalization coefficients to bring initial microscopical calculations into agreement with data on neutron resonance spacings and the density of discrete levels.

The zinc foils used as targets in the measurements were thick such that the interaction of projectiles with target nuclei occurred as projectiles slowed from 16 MeV at the entrance to about 13.5 MeV at the exit of the target. According to EMPIRE calculations, the fusion cross section decreases from 302 down to 42 mb in this energy range (see Fig. 5).

In order to calculate the proton spectrum, the target was subdivided into slices, each one corresponding to the 0.5-MeV beam energy loss along the beam path. For each slice, the decrease in both the beam energy and the fusion cross section was taken into account, and the corresponding proton spectrum was calculated with the EMPIRE program in units of absolute proton yield \(dy(E_p)/dE_p \). Each proton spectrum, initially calculated in the center-of-mass system, was converted to the laboratory system using reaction kinematics formulas and then all spectra were summed to get the final proton spectrum in the laboratory system. This approach allows us to make a comparison between experimental and calculated spectra for thick targets in the laboratory system.

A comparison between calculated and experimental proton spectra measured at 142° is shown in Fig. 6. One can see that
the different model predictions result in more than an order of magnitude difference in proton yield, especially at higher proton energies. Generally, this indicates that the method based on experimental particle evaporation spectra is a good tool to benchmark level density models. Besides comparing absolute yields, it is also informative to compare shapes of spectra. As follows from the HF formula, (1), the shape of a proton spectrum is mainly determined by the shape (functional dependence) of the level density of nuclei populated in this reaction, especially the level density of the final nuclei populated by primary protons; in our case these are ^{74}Ge and ^{76}Ge from $^{68}\text{Zn}(^{7}\text{Li}, p)^{74}\text{Ge}$ and $^{70}\text{Zn}(^{7}\text{Li}, p)^{76}\text{Ge}$ reactions, respectively. It is shown in Fig. 6 that all calculations are unable to reproduce the shape of experimental proton spectra over the whole energy region. The common feature of all calculations is the rapid decrease in cross sections at higher proton energies, which is not supported by the data points. This indicates that the level density functions used in HF calculations are too steep for both ^{74}Ge and ^{76}Ge. This can be caused by the overestimation of the parameter a in the Fermi gas level density formula, (3), used in calculations. Because level density parameters for all models are based on neutron resonance data, this discrepancy might indicate some general problem in applying this parametrization to describe particle spectra from nuclear reactions, at least in some regions of the nuclear chart.

To verify that a decrease in the level density parameter \tilde{a} in Eq. (4) would help us to reproduce experimental spectra, we implemented calculations in which \tilde{a} was gradually decreased with the multiplication factor $m = (1.0 - 0.02n)$, where $n = 0, 1, 2, 3, \ldots$, and for each modified $\tilde{a}_{\text{mod}} = m\tilde{a}$, a calculated proton spectrum was compared to the experimental one by calculating the average relative deviation per experimental point,

$$\text{RD} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{dY^i(E_p)}{dE_p} - \frac{dY^i(E_p)}{dE_p}^{\text{th}} \right|,$$

(8)

in the proton energy range from 3 to 24 MeV. The values of the \tilde{a} parameter were decreased globally for all nuclei populated in these reactions including those populated by ($^{7}\text{Li}, n$), ($^{7}\text{Li}, \alpha p$), and ($^{7}\text{Li}, \alpha p$) decay channels. The best-fit calculated spectra, which correspond to the minimum RD values obtained at $m \approx 0.82$ for the GCM_RIPL_global model, are compared with our data in Fig. 7. The comparison indicates a good agreement. The best fit obtained with the BSFG_RIPL_global model is shown for $^{70}\text{Zn}(^{7}\text{Li}, Xp)$ only for comparison ($m = 1$). It underestimates data points at higher proton energies. This analysis is considered to be an approximation only, just to show in which direction models need to be modified. The specific values of parameters and their systematic uncertainties require a deeper analysis that is beyond the scope of this paper.

C. Pre-equilibrium mechanism

Since it is important to be confident that we consider proton spectra from purely compound reactions, the possible noncompound contributions, which are presumably due to

![Fig. 7. Proton evaporation spectra from $^{68,70}\text{Zn}(^{7}\text{Li}, Xp)$ reactions. Points are from experiment, as in Fig 4; solid lines are best-fit calculations with the GCM_RIPL_global level density model of Ref. [15] with the reduced level density parameter \tilde{a}. The dotted line is the best-fit calculation with the BSFG_RIPL_global model for $^{70}\text{Zn}(^{7}\text{Li}, Xp)$. See text for details.](image)

![Fig. 8. Proton evaporation spectra from $^{68}\text{Zn}(^{7}\text{Li}, Xp)$ calculated with the EMPIRE reaction code using the GCM_RIPL_global model. Lines show spectra calculated with the compound reaction model (dotted magenta line) and compound plus pre-equilibrium models (solid green line).](image)
that including the pre-equilibrium mechanism in calculations makes the agreement with the shape of experimental spectra worse in the higher energy region and does not help us to explain the discrepancy between experimental and model proton spectra shown in Fig. 6. Calculations were done for the angle integrated spectrum. Calculating of angular dependence is not implemented in the EMPIRE code. It is expected that at backward angles the contribution from noncompound mechanisms is much smaller. In the next sections, the pre-equilibrium contribution is assumed to be negligible when the level density for both 74,76Ge is extracted.

IV. UNCERTAINTIES DUE TO PROTON TRANSMISSION COEFFICIENTS

The HF model, Eq. (1), shows that both the shape and the absolute cross sections in proton spectra depend on both the level densities and the transmission coefficients of outgoing particles, which, in our case, are protons. Transmission coefficients are calculated from the optical model of nuclear reactions [36]. Most of the optical model parameters available in the literature are compiled in the RIPL database [15]. For protons, there are seven different compilations applicable in our mass and energy ranges (see Table I). Proton spectra from 68Zn(7Li, Xp) were calculated with different optical model parameters from those compilations. Calculations performed for two level density models are presented in Fig. 9. It shows that the ratio for each level density model, between the highest and the lowest cross sections, is a factor of about 2 in the lower energy region and it gradually decreases to about 15% (±7.5% on average) for higher proton energies. One can see that uncertainties due to uncertainties in proton transmission coefficients are much smaller in the high-energy region than uncertainties due to different level density models.

V. LEVEL DENSITIES FOR 74,76Ge

It was shown in the previous section that the level density parameter \tilde{a} of the GCM_RIPL_global systematics based on neutron resonance data has to be reduced by about 20% to reproduce the experimental proton evaporation spectra. In this section we attempt to estimate the actual level density functions for both 74,76Ge in the excitation energy region which is populated by primary protons. According to the model estimation shown in Fig. 1, the primary protons dominate for energies higher than about 12 MeV, corresponding to populating an excitation energy range up to about 13 MeV in a residual nucleus.

The technique is described in Ref. [29] and it was used in our previous publications [44–47]. It is based on the kinematics relation between the energy of the outgoing protons ε_p, the excitation energy E^* of the residual nucleus $A - 1$, and the Q value of the reaction

$$E_{cm} + (Q - E^*) = \frac{\varepsilon_p A - 1}{A} + \frac{E_{res} 1}{A},$$

where E_{cm} is the energy of the projectile in the center-of-mass system, E_{res} is the kinetic energy of the residual nucleus, and A is the atomic mass of the compound nucleus. The experimental level density function $\rho(E^*)_{exp}$ of the residual nucleus $A - 1$ can then be obtained by binwise renormalization of the input level density function $\rho(E^*)_{calc}$ used in calculations of $Y(\varepsilon_p)/d\varepsilon_p$ as

$$\rho(E^*)_{exp} = \rho(E^*)_{calc} \frac{(dY(\varepsilon_p)/d\varepsilon_p)_{exp}}{(dY(\varepsilon_p)/d\varepsilon_p)_{calc}} K_{norm},$$

where K_{norm} is a normalization coefficient calculated as the ratio of spectral integrals in the high-energy region between E_1 and E_2, where primary protons populate discrete levels, i.e., where the density of levels is known:

$$K_{norm} = \frac{\int_{E_1}^{E_2} dY(\varepsilon_p)/d\varepsilon_p|_{exp}}{\int_{E_1}^{E_2} dY(\varepsilon_p)/d\varepsilon_p|_{calc}}.$$
region corresponding to population of discrete levels in a residual nucleus. In this case the absolute normalization becomes possible using information on the density of discrete levels from the level scheme and applying the normalization coefficient of Eq. (11). In this work, difficulty arises from the large target thickness, which causes the experimental proton spectra to be the sum of spectra resulting from different \(^7\)Li beam energies due to the slowing-down of the beam in the target. Therefore, it is not possible to establish one-to-one correspondence between the energy \(\varepsilon_p\) of an outgoing proton and the excitation energy \(E^*\) of the residual nucleus populated by this proton as follows from Eq. (9). The lithium beam loses about 2.5 MeV in the target. For this reason, as a first approach, we used an approximation that consists of using \(Y(\varepsilon_p)/d\varepsilon_p\) for Eq. (10) to be an average spectrum calculated at an average lithium beam energy of 15 MeV (instead of the actual 16 MeV), which was calculated as the average of beam energies weighted with the fusion cross sections while the beam passes through the target. The level density functions extracted using this approach are shown by points in Figs. 10–12. For the second approach, we used Eqs. (9)–(11) to extract a set of 15 level densities for \(^{74}\)Ge and \(^{76}\)Ge. For different level densities in each set, the same experimental \(dY(\varepsilon_p)/d\varepsilon_p\) proton spectrum was used but the calculated \(dY(\varepsilon_p)/d\varepsilon_p\) was different, corresponding to a different projectile energy as the projectile slows down in the target. The level densities were extracted with a 0.1-MeV projectile energy step in the 14–to 16-MeV energy interval. The \(^{7}\)Li, \(p\) cross section at 14 MeV is about 5% of the cross section at the initial 16 MeV, so it is assumed that the remaining contribution has a negligible effect on the shape of the proton evaporation spectra. The variation between different extracted level densities in a set gives an estimation of uncertainties due to the large target thicknesses in our experiment. These uncertainties are shown in Figs. 11 and 12 by shaded bands, which include statistical uncertainties as well. The GCM_RIPL_global model with adjusted parameters was chosen for \(\rho(E^*)\) in Eq. (10) since it was shown in Fig. 7 that it allows one to reproduce experimental spectra sufficiently well.

A comparison with level density models used for proton spectral calculations presented in Fig. 6 is shown in Fig. 11. The comparison shows that all models have a much steeper excitation energy dependence compared to experimental data points and this is the reason for the discrepancy between the calculated and the experimental proton spectra in Fig. 6. This discrepancy implies an overestimation of the level density for model predictions at higher energies. It appears that level density models which are parameterized with available data on neutron resonance spacings are not able to reproduce experimental proton differential cross sections from compound reactions due to an overestimation of the level densities at higher excitation energies.

Comparison with data obtained from the Oslo technique

The level density for \(^{74}\)Ge has been studied in Ref. [30]. \(^3\)He-\(\gamma\) coincidences from the reaction of \(^{74}\)Ge(\(^3\)He, \(^3\)He\(\gamma\)) were analyzed with the Oslo method. The procedure of the level density extraction has been performed and the level density was normalized using the density of discrete levels at

![Graph](image-url)
It is important to note that experimental proton spectra obtained in this work are distinct from most of the similar spectra available in the literature in the sense that protons were measured over a wide energy region, spanning 2 to 25 MeV, which includes protons populating discrete states at low excitation energies of residual nuclei. Such spectra are very sensitive to the level density of populated nuclei. Availability of data points corresponding to the population of discrete levels allows one to estimate absolute values of level density functions.

It appears that proton spectra measured in this work are totally due to the compound reaction mechanism because of the following considerations: they were measured at backward angles and the possible contributions due to the pre-equilibrium reaction mechanism, which is an usual concern in such experiments, were estimated with the exciton model in the EMPIRE code [22] and found to be inconsistent with experimental data points. We do not exclude, however, that the pre-equilibrium model can be modified so it would be able to reproduce the high-energy part of the experimental proton spectra with available level density models. This is a subject for future development of nuclear reaction models. For the moment it is shown that only the reduction of level densities at higher energies allows one to describe experimental proton spectra well.

Two other possible effects which could, in principle, explain the high-energy increase of proton spectra have also been considered. The first is the pileup effect, where two consecutive pulses from a detector overlap and are registered as a single proton with a higher energy. The second effect is when two protons from the \((7Li, pp)\) reaction channel are registered by one detector at the same time. The pileup effect was estimated in Sec. II and found to be negligible. According to EMPIRE calculations, the cross section of the \((7Li, pp)\) channel constitutes about \(5 \times 10^{-4}\) of the cross section of the \((7Li, p)\) channel. Considering that the probability of registration of two protons simultaneously by the same detector is about \(10^{-6}\) with our geometry, this effect can be neglected as well.

All level density models currently used as input options in reaction codes are parameterized using the data on neutron resonance spacings, which are usually believed to be the only reliable data on level densities at the neutron separation energy. Even microscopic calculations in Ref. [23] use renormalization coefficients to bring initially calculated level densities into agreement with neutron resonance data. The data obtained in this work might indicate that the level density models parameterized with neutron resonance data overestimate the absolute level densities at neutron separation energies and higher. Depending on the model, a factor in the range from 2.2 to 3.7 is obtained for the \(^{74}Ge\) nucleus at the neutron separation energy of 10.196 MeV. More studies are needed to confirm this result.

The inability of level density models to describe reaction differential cross sections of lithium-induced reactions on \(68,70Zn\) isotopes raises the important general question of the degree of applicability of models parameterized with neutron resonances to describe reaction cross sections. The main question is in which excitation energy and atomic mass region
such models are applicable and where the disagreement can be observed. The available data and studies on this subject are scarce and not conclusive. The data obtained in this work might be the first indication of the problem. This should bring into focus the possible uncertainties of the level density model parametrizations, the most uncertain of which are related to the spin and parity distribution at the neutron separation energy. Also, some of the data on neutron resonance spacings might need to be revised. There is still a disagreement between different evaluations of the same data; specifically, for the 74Ge nucleus studied here the values of the level spacings for s-wave resonances were reported to be 124(14) eV [48], 99(10) eV [14], and 62(15) eV [15]. The s-wave resonance spacing which would be consistent with our estimate of the level density function is around 200 eV. This estimate is based on existing models of a Gaussian spin distribution with the spin cutoff parameter according to Eq. (5). All possible uncertainties stemming from resonance data analysis might lead to an incorrect estimation of level density parameters in certain mass ranges. Therefore it is important to include other experimental data in the analysis, specifically evaporation spectra of compound nuclear reactions which are sensitive to the nuclear level density. On the other hand, there is a need for the development of nuclear reaction models, specifically correct estimates of contributions from pre-equilibrium and other noncompound reaction mechanisms for different types of projectiles, their energies, and the angular distribution of ejectiles.

VII. CONCLUSION

Proton differential cross sections from 68,70Zn(7Li, Xp) reactions have been studied with a 16-MeV 7Li beam. Proton spectra were measured at the backward angle of 142° in the energy range from 2 to 25 MeV. Spectra were analyzed with the HF compound nuclear reaction theory to test level density models for 74,76Ge isotopes. Analysis shows that HF calculations with input level density models based on neutron resonance data are not able to reproduce experimental proton differential cross sections. Experimental data suggest that model level densities need to be reduced as the excitation energy increases in 74,76Ge isotopes. This can be achieved if the asymptotic level density parameter \tilde{a} is reduced by about 20% from that calculated with the systematics in Ref. [15]. The reduction of the level density parameter results in disagreement with data on neutron resonance spacings if the same form of the spin and parity distribution is used. This finding is considered to be important for further studies of level densities and their parametrizations in this and other mass ranges. Further studies need to be performed using an extended set of data including neutron resonances and particle evaporation spectra from compound reactions. It would allow a better understanding of the spin and parity distributions of the level density and lead to increased accuracy of reaction cross-section calculations for practical needs.

ACKNOWLEDGMENTS

The authors thank accelerator engineers D. Jacobs and D. Carter for help with electronic setup and smooth operation of the accelerator. This work was supported in part by the U.S. Department of Energy, Grants No. DE-NA0002905, No. DE-SC0019042, No. DE-FG02-88ER40387, No. DE-NA-0003221, No. DE-NA-0003180 (NSCC), and No. DE-AC52-07NA27344. A.C.L. and T.R. gratefully acknowledge financial support through ERC-STG-2014 under Grant Agreement No. 637686 and from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology).