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Abstract 

Accurate item calibration in models of item response theory (IRT) requires rather large 

samples. For instance, 𝑁𝑁 >  500 respondents are typically recommended for the two-

parameter logistic (2PL) model. Hence, this model is considered a large-scale application, 

and its use in small-sample contexts is limited. Hierarchical Bayesian approaches are 

frequently proposed to reduce the sample size requirements of the 2PL. This study compared 

the small-sample performance of an optimized Bayesian hierarchical 2PL (H2PL) model to 

its standard Inverse Wishart specification, its non-hierarchical counterpart, and both ULSMV 

and WLSMV estimators in terms of sampling efficiency and accuracy of estimation of the 

item parameters and their variance components. To alleviate shortcomings of hierarchical 

models, the optimized H2PL (a) was re-parametrized to simplify the sampling process, (b) a 

strategy was used to separate item parameter covariances and their variance components, and 

(c) the variance components were given Cauchy and exponential hyperprior distributions. 

Results show that, when combining these elements in the optimized H2PL, accurate item 

parameter estimates and trait scores are obtained even in sample sizes as small as 𝑁𝑁 =  100. 

This indicates that the 2PL can also be applied to smaller sample sizes encountered in 

practice. The results of this study are discussed in the context of a recently proposed multiple 

imputation method to account for item calibration error in trait estimation. 

 

Keywords: Bayesian, hierarchical models, item response theory, calibration, simulation, small 

samples 
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An Optimized Bayesian Hierarchical Two-Parameter Logistic Model for Small-Sample 

Item Calibration 

 Item response theory (IRT) models such as the two-parameter logistic (2PL) model 

are currently the state of the art of measuring individual competences. Because of their 

complexity, however, they are associated with high sample size requirements. For instance, 

for accurate item calibration a minimum sample size of  𝑁𝑁 =  500 is typically recommended 

for the 2PL (Baker, 1998; Liu & Yang, 2017). These sample size requirements pose a 

considerable challenge for applying the 2PL (or more complex models) to small-sample 

situations (De Ayala, 2009), such as university exams or computerized adaptive tests, and 

items are calibrated with sample sizes smaller than recommended, introducing error in the 

subsequent estimation of trait scores (De la Torre & Hong, 2010; Feuerstahler, 2017). 

 To reduce item calibration error in small-sample IRT modeling, Bayesian approaches 

are proposed as alternatives to Maximum Likelihood (ML) estimation (e.g., Fox, 2010; Kim, 

2001). The single-stage fully Bayesian estimation of IRT models, however, is criticized for 

being conceptually complex and computationally inefficient (Yang, Hansen, & Cai, 2012). 

Moreover, to increase the accuracy of item parameters in small samples, researchers are 

required to introduce prior information about the model parameters (or generally, about the 

population distribution of the parameters of interest) into the analysis (e.g., Swaminathan, 

Hambleton, Sireci, Xing, & Rizavi, 2003). When appropriate prior information is not 

available, a hierarchical approach to Bayesian estimation of IRT models offers a viable 

alternative; Swaminathan and Gifford (1985) and Mislevy (1986) were among the first to 

propose hierarchical versions of the 2PL (H2PL) model and to note their benefits for small-

sample item calibration. Hierarchical Bayesian IRT models, such as the H2PL, exhibit a 

hierarchical structure of the prior distributions for the item parameters (Fox, 2010). The first 

level consists of a (usually multivariate) prior distribution for the vector of item parameters 𝛏𝛏. 
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The hyperparameters of this distribution, the vector of grand means of the item parameters 𝛍𝛍𝛏𝛏 

and their variance-covariance matrix 𝚺𝚺 (which contains the covariance of the item parameters 

and their variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽), are not specified by the researcher directly but are 

given prior distributions themselves. These hyperprior distributions for 𝛍𝛍𝛏𝛏 and 𝚺𝚺 constitute 

the second level of the prior structure. This hierarchical structure yields more accurate 

parameter estimates in small samples than their non-hierarchical counterparts by pooling 

information across parameters of the same type, depending on 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 (e.g., Jackman, 

2009; Fox, 2010). This beneficial characteristic was demonstrated for the H2PL, for instance, 

by Sheng (2013) and Natesan, Nandakumar, Minka, and Rubright (2016). Moreover, the 

hierarchical structure requires researchers to specify prior distributions only for the 

hyperparameters 𝛍𝛍𝛏𝛏 and 𝚺𝚺. This is an important advantage because in non-hierarchical 

models, the benefits of the Bayesian approach in small samples can only be realized with 

adequate informative prior distributions (Sheng, 2010). Their specification, however, is not 

straightforward (Ames & Smith, 2018). Thus, utilizing a hierarchical approach alleviates this 

problem (Kim, Cohen, Baker, Subkoviak, & Leonard, 1994; Sheng, 2013). Nonetheless, the 

specification of prior distributions for 𝚺𝚺 and 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 still requires careful consideration. 

In the standard hierarchical 2PL, 𝚺𝚺 is commonly given a conjugate Inverse Wishart 

prior distribution with 𝑘𝑘 × 𝑘𝑘 scale matrix 𝑆𝑆 and degrees of freedom 𝜐𝜐, where 𝑘𝑘 equals the 

number of item parameters and 𝜐𝜐 > 𝑘𝑘 − 1. This is well-known to be problematic (for a more 

detailed summary, see Alvarez, Niemi, & Simpson, 2016) for three reasons: a) uncertainty for 

all variances is controlled only by the hyperparameter 𝜐𝜐; b) if 𝑣𝑣 >  1, the resulting marginal 

distribution for the variances has low density near zero, which biases associated estimates for 

variance components; and c) the distribution contains a-priori dependencies between 

correlations and variance components. The alternative is to separate covariance and variance 

components to give them individual prior distributions (Barnard, McCulloch, & Meng, 2000). 
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The use of the Inverse Gamma distribution as prior distribution for variance components, 

however, is discouraged in the recent Bayesian multilevel literature. Alternatives have been 

proposed in the form of the Cauchy and Exponential distributions: both are heavy-tailed with 

higher mass around zero, compared to the Inverse Gamma distribution, which is known to be 

problematic when variance components are close to zero (Gelman, 2006; Polson & Scott, 

2012). Using heavy-tailed distributions for variance components in hierarchical models in 

small-sample situations, however, has negative effects on the efficiency of the Markov Chain 

Monte Carlo (MCMC) sampling (Betancourt & Girolami, 2013). Sampling inefficiencies 

may lead to bias in item parameter estimates, counteracting the reduction of item calibration 

error promised by the hierarchical approach. In the context of IRT models, these alternatives 

to the Inverse Gamma distribution became the focus of attention only recently (Sheng, 2017; 

Liu & Yang, 2017), while alternatives to the Inverse Wishart distribution, or questions of 

sampling efficiency, were widely ignored. 

The main assumption underlying this paper is as follows. To utilize the full potential of 

the hierarchical approach for small-sample IRT modeling, an optimized H2PL is necessary 

that (1) increases the sampling efficiency when using heavy-tailed hyperprior distributions 

for 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽; (2) applies a separation strategy to 𝚺𝚺 instead of the standard Inverse Wishart 

distribution; and (3) avoids the Inverse Gamma distribution as hyperprior for 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽.  

Thus, the goal of the following simulation study, and its primary contribution, is to 

investigate and quantify the combined effect of these optimizations on the accuracy of 

estimation of the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽, item parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖, and trait scores 

𝜃𝜃𝑗𝑗 in small-sample IRT modeling, compared to its standard Inverse Wishart specification and 

its non-hierarchical counterpart. Additionally, two limited-information estimators, namely, 

the unweighted and weighted least squares estimators (ULSMV and WLSMV), were 

included in the simulation as popular counterparts for latent variable modeling with 
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categorical data. The results of the simulation study will provide answers to the question of 

whether the hierarchical approach to small-sample IRT modeling outlined above indeed 

offers an efficient way to estimate complex IRT models, yielding accurate parameter 

estimates even in smallest sample sizes. The optimized H2PL is described next. 

The Optimized Hierarchical Two-Parameter Logistic IRT Model 

Let 𝑦𝑦𝑖𝑖𝑖𝑖 ∈  {0,1} be the response of person j to item i, 𝜃𝜃𝑗𝑗 the ability of person j, and 𝛼𝛼𝑖𝑖 

and 𝛽𝛽𝑖𝑖 the discrimination and difficulty parameters of item i, respectively. The ability 

parameter is typically given a standard normal prior distribution, and the item parameters 

𝛏𝛏𝐢𝐢 =  �𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖� have a joint multivariate normal prior with mean vector 𝛍𝛍𝛏𝛏 = {𝜇𝜇𝛼𝛼,𝜇𝜇𝛽𝛽} and 

variance-covariance matrix 𝚺𝚺 =  �
𝜏𝜏𝛼𝛼 𝜎𝜎𝛽𝛽𝛽𝛽
𝜎𝜎𝛼𝛼𝛼𝛼 𝜏𝜏𝛽𝛽 �, where 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 are the variance components 

and 𝜎𝜎𝛼𝛼𝛼𝛼 and 𝜎𝜎𝛽𝛽𝛽𝛽 are the covariances of the item parameters. The log-transformation of 𝛼𝛼𝑖𝑖 

makes it possible to sample the transformed discrimination and difficulty parameters as 

correlated draws from a bivariate normal distribution (Glas & van der Linden, 2003). If the 

logit of a function x is defined by 

logit =
exp(𝑥𝑥)

1 + exp(𝑥𝑥), (1) 

then the first level of the optimized H2PL can formally be expressed as 

Pr �𝑦𝑦𝑖𝑖𝑖𝑖  =  1�𝜃𝜃𝑗𝑗,𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖� = logit�𝛼𝛼𝑖𝑖 �𝜃𝜃𝑗𝑗 − 𝛽𝛽𝑖𝑖�� (2.1) 

𝜃𝜃𝑗𝑗~ 𝑁𝑁(0, 1) (2.2) 

𝛏𝛏𝐢𝐢�  ~ 𝑁𝑁(0,1), (2.3) 

where 𝛏𝛏𝐢𝐢�  ~ 𝑁𝑁(0,1) is a vector of uncorrelated 𝑧𝑧-scores related to the item parameters. 

Equation 2.3 implies a reparametrization of the H2PL to simplify the sampling process 

and to increase the efficiency of the MCMC sampler, which is commonly found to be 

restricted in models with highly correlated posterior distributions, such as hierarchical 

models, irrespective of the MCMC sampler used (Betancourt & Girolami, 2013; 
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Papaspiliopoulos et al., 2007). Posterior distributions with correlated dimensions are 

frequently associated with convergence problems and low effective sample sizes (Turner, 

Sederberg, Brown, & Steyvers, 2013). The effective sample size (ESS) indicates the number 

of independent samples from the typical set of the target distribution included in an MCMC 

chain (Annis, Miller, & Palmeri, 2017). It is defined by 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑛𝑛
1+2∑ 𝜌𝜌(𝑙𝑙)∞

𝑙𝑙=1
, where 𝑛𝑛 is the 

total number of samples in the chain and 𝜌𝜌(𝑙𝑙) is the autocorrelation of two adjacent samples 

(Betancourt, 2018). Autocorrelation depends on the correlation in a joint posterior 

distribution and indicates sampling inefficiencies that negatively affect the ESS.  

The non-centered parameterization of the optimized H2PL alleviates sampling 

inefficiencies in two steps (following Betancourt and Girolami (2013) for general Bayesian 

hierarchical models). Firstly, it removes the cross-level dependency of the vectors of 

correlated item parameters 𝛏𝛏𝐢𝐢 and their grand means 𝛍𝛍𝛏𝛏, which is present when 𝛏𝛏𝐢𝐢 is sampled 

from a multivariate normal distribution 𝛏𝛏𝐢𝐢 ~ 𝑀𝑀𝑀𝑀𝑀𝑀�𝛍𝛍𝛏𝛏,𝚺𝚺�, by subtracting the grand means and 

factoring out the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽. Secondly, the reparameterization removes 

the remaining correlation between the item parameters 𝛏𝛏𝐢𝐢 by utilizing the general fact that 

draws from a multivariate normal distribution can be obtained by a Cholesky decomposition 

of the correlation matrix 𝐋𝐋𝛀𝛀 (with 𝛀𝛀 = 𝐋𝐋𝐋𝐋T, where 𝐋𝐋 is a lower triangular matrix). In the non-

centered H2PL, for each item 𝑖𝑖, 𝑖𝑖 =  1, … , 𝐼𝐼, a vector of uncorrelated 𝑧𝑧-scores 𝛏𝛏𝐢𝐢� = �𝛏𝛏𝟏𝟏� , … , 𝛏𝛏𝐈𝐈�� 

is drawn from a standard normal distribution. Each individual vector is then multiplied by 𝚲𝚲, 

the diagonal matrix of variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽, and the Cholesky factor 𝐋𝐋𝛀𝛀 to obtain 

the vector of item parameters 𝛏𝛏𝐢𝐢 for each item. The deterministic transformations 𝛏𝛏𝐢𝐢 =

(𝚲𝚲𝐋𝐋𝛀𝛀𝛏𝛏𝐢𝐢�)𝑇𝑇, 𝛼𝛼𝑖𝑖 = 𝜇𝜇𝛼𝛼 + ξαi and 𝛽𝛽𝑖𝑖 = 𝜇𝜇𝛽𝛽 + ξβi effectively remove all dependencies of the H2PL 

from the sampling process, leaving only the uncorrelated 𝜃𝜃𝑗𝑗  and 𝛏𝛏𝐢𝐢�  as actively sampled 

variables on the first level of the optimized H2PL. The resulting joint posterior distribution 
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has a much more convenient form, which the MCMC sampler is able to explore more 

efficiently, yielding lower autocorrelations and a higher ESS, because the parameter space is 

uncorrelated. A Stan implementation of the optimized H2PL is provided in the supplementary 

material. 

The second level of the optimized H2PL includes of the hyperpriors for 𝛍𝛍𝛏𝛏, that is, the 

grand means of the discrimination and difficulty parameters, the hyperprior for 𝐋𝐋𝛀𝛀, and for 

the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽: 

𝜇𝜇𝛼𝛼 ~ 𝑁𝑁(0,1)  (2.4) 

𝜇𝜇𝛽𝛽 ~ 𝑁𝑁(0,2) (2.5) 

𝐋𝐋𝛀𝛀 ~ 𝐿𝐿𝐿𝐿𝐿𝐿(4) (2.6) 

𝜏𝜏𝛼𝛼,𝛽𝛽 ~ 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑦𝑦(0,1). (2.7) 

The separation strategy based on 𝐋𝐋𝛀𝛀 in Equations 2.6 and 2.7 follows Barnard et al. 

(2000) and is implemented to avoid the well-known problems of the Inverse Wishart 

distribution as hyperprior for 𝚺𝚺 (Alvarez et al., 2016). It eliminates the a-priori dependencies 

between the variance components and the covariances and offers more flexibility in prior 

specification, that is, an increased control of the uncertainty associated with the variance 

components. In the optimized H2PL, 𝐋𝐋𝛀𝛀 is given a 𝐿𝐿𝐿𝐿𝐿𝐿(𝐋𝐋𝛀𝛀|𝜂𝜂) prior distribution with the 

shape parameter 𝜂𝜂 (Lewandowski, Kurowicka, & Joe 2009). For a 𝑘𝑘 × 𝑘𝑘 lower triangular 

Cholesky factor of a correlation matrix 𝐋𝐋𝛀𝛀 and 𝜂𝜂 > 0, this distribution is defined 

by 𝐿𝐿𝐿𝐿𝐿𝐿(𝐋𝐋𝛀𝛀|𝜂𝜂) =  ∏ 𝐿𝐿𝑘𝑘𝑘𝑘
𝐾𝐾−𝑘𝑘+2𝜂𝜂−2𝐾𝐾

𝑘𝑘=2  (Stan Development Team, 2018). The shape parameter 𝜂𝜂 

controls the degree of information contained in the prior distribution; as 𝜂𝜂 → ∞, extreme 

correlations become less probable. This prior distribution is currently widely used in 

Bayesian analyses involving covariance matrices a) because it provides direct control over 

how closely the sampled matrix resembles the identity matrix, and b) because of its numerical 



9 

stability compared to the standard Inverse Wishart distribution (Stan Development Team, 

2018). 

There are several alternatives regarding the choice of a weakly informative prior 

distribution for the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽. The Inverse Gamma 

distribution  𝐼𝐼𝐼𝐼𝐼𝐼�𝜏𝜏𝛼𝛼,𝛽𝛽|𝑎𝑎, 𝑏𝑏� =  𝑏𝑏𝑎𝑎

Γ(𝑎𝑎)
 𝜏𝜏𝛼𝛼,𝛽𝛽

−(𝑎𝑎+1) exp (− 𝑏𝑏
𝜏𝜏𝛼𝛼,𝛽𝛽

), with shape and scale 

hyperparameters 𝑎𝑎, 𝑏𝑏 >  0, is commonly used because of its conjugacy. However, if the 

variance component is estimated to be near zero, because of its relatively low mass around 

zero, inference is sensitive to the choice of the hyperparameters (Gelman, 2006). Thus, based 

on findings from the current methodological literature (e.g., Polson & Scott, 2012; Sheng, 

2017), the optimized H2PL utilizes the Cauchy distribution 𝐶𝐶𝐶𝐶𝐶𝐶�𝜏𝜏𝛼𝛼,𝛽𝛽|𝜇𝜇,𝜎𝜎� =

 1
𝜋𝜋𝜋𝜋

1
1+((𝜏𝜏𝛼𝛼,𝛽𝛽−𝜇𝜇)/𝜎𝜎)2

, with location 𝜇𝜇 and scale 𝜎𝜎. Due to its broad peak, it concentrates more mass 

around zero, leading to better performance around the origin, and because of its thick tails, it 

also allows larger values if necessary (Polson & Scott, 2012). This might be problematic in 

non-linear models with logit links, given possible floor and ceiling effects, because extreme 

values of the variance components are equally likely (McElreath, 2016). Based on the results 

of their simulation study on the utility of Cauchy prior distributions for logit link models, 

Ghosh, Li, and Mitra (2018) also state that for such (non-linear) models it may be necessary to 

consider alternatives to the heavy-tailed Cauchy distribution. The Exponential distribution 

𝐸𝐸𝐸𝐸𝐸𝐸�𝜏𝜏𝛼𝛼,𝛽𝛽�𝑏𝑏� = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(−𝛽𝛽𝜏𝜏𝛼𝛼,𝛽𝛽) with inverse scale 𝛽𝛽 > 0 is such a possible alternative. The 

peak around its mean is broader than that of the Inverse Gamma distribution, but thinner than 

that of the Cauchy distribution, and its tail is thinner, yielding estimates that are more 

conservative (McElreath, 2016). Figure 1 illustrates the difference in densities of these 

distributions, equivalently specified to match 𝜇𝜇 = 1 and 𝜎𝜎 = 1. These weakly informative 
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specifications can be found frequently in the context of the adaptive regularization of 

hierarchical models (e.g., McElreath, 2016). 

 

Figure 1. Densities of the Inverse Gamma (IVG), Cauchy (CAU), and Exponential (EXP) 

distributions. All three distributions are equivalently specified with 𝜇𝜇 = 1 and 𝜎𝜎 = 1. For each 

distribution, the 95% highest density interval (HDI) is shown. Since the variance components 𝜏𝜏𝛼𝛼 

and 𝜏𝜏𝛽𝛽 cannot be negative, but the Cauchy distribution has support on the real line, it is truncated at 

zero, that is, it is a Half-Cauchy distribution. 
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Simulation Study 

To examine the combined effect of the three optimizations, (1) sample size (𝑁𝑁 =

 50, 75, 100, 150, 200, 500), (2) test length (𝑘𝑘 =  25, 50), and (3) specification (hierarchical, 

non-hierarchical) of the 2PL model were manipulated in a simulation study. The hyperprior 

distributions (Inverse Gamma, Cauchy, Exponential) and the parameterization (centered, non-

centered) were nested in the specification factor. In total, the design consisted of 6 𝑥𝑥 2 𝑥𝑥 6 =

 72 cells. The design covered sample sizes typically regarded as suboptimal for item 

calibration under the 2PL, because deriving accurate parameter estimates was shown to be 

problematic (Stone, 1992; De Ayala, 2009). The sample size of 𝑁𝑁 =  500, which was 

considered the minimum sample size required for the 2PL, served as the baseline condition. 

Furthermore, the design covered test lengths that are commonly found in operational tests and 

prior research on Bayesian estimation of IRT models (e.g., Sheng, 2017). To give an even 

better indication of the performance of the optimized H2PL, it was furthermore compared to 

the standard Inverse Wishart specification of the H2PL and to two popular limited-

information estimators for categorical data (ULSMV and WLSMV). 

Data Generation and Analysis 

For each cell of the simulation design, 100 data sets were generated from a 

unidimensional 2PL model with correlated item parameters. Based on an analysis of 

descriptive statistics of item parameters from several large-scale assessments, and based on 

recommendations from the literature, generating values for the variance components were set 

to 𝜏𝜏𝛼𝛼 = 0.25 and 𝜏𝜏𝛽𝛽 = 1, and the correlation of the item parameters was set to 𝜌𝜌𝛼𝛼,𝛽𝛽 =  .30 

(e.g., Fox, 2010). These generating values reflect variance components and dependencies of 

item parameters typically found in operational tests. Thus, item parameters were drawn from 

a multivariate distribution with mean vector 𝛍𝛍𝛏𝛏 =  {0, 0} and covariance matrix 𝚺𝚺 =

 �0.0625 0.075
0.075 1.000�. This yielded typical item parameters (99% confidence intervals (CI) 
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[0.47, 2.17] and [−3.10, 3.08] of the generated discriminations and difficulties, respectively). 

Person parameters were drawn from a standard normal distribution 𝜃𝜃𝑗𝑗 ~ 𝑁𝑁(0,1), generating a 

99% CI [−3.11, 3.11] for the person parameters. Different sets of item and person parameters 

were drawn for each of the 100 data sets. 

The centered H2PL was specified with 𝛏𝛏𝐢𝐢 ~ 𝑀𝑀𝑀𝑀𝑀𝑀�𝛍𝛍𝛏𝛏,𝛀𝛀� instead of Equation 2.3. The 

equivalent specifications of the hyperprior distributions, as shown in Figure 1, represent 

weakly regularizing hyperprior distributions for variance components in general hierarchical 

models (McElreath, 2016). Given that 𝜏𝜏𝛼𝛼 , 𝜏𝜏𝛽𝛽 ≥ 0, the Cauchy distribution is a Half-Cauchy 

distribution truncated at zero. The standard Inverse Wishart H2PL was specified with 

𝜃𝜃𝑗𝑗~𝑁𝑁(0,1), 𝛏𝛏𝐢𝐢~𝑀𝑀𝑀𝑀𝑀𝑀�𝛍𝛍𝛏𝛏,𝚺𝚺�, 𝜇𝜇𝛼𝛼~𝑁𝑁(0,1), 𝜇𝜇𝛽𝛽~𝑁𝑁(0,2), and 𝚺𝚺~𝐼𝐼𝐼𝐼(3, 𝐈𝐈), where 𝐈𝐈 is the 

identity matrix. The non-hierarchical 2PL was specified with 𝜃𝜃𝑗𝑗~𝑁𝑁(0, 1), 𝛼𝛼𝑖𝑖~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(0, 1), 

and 𝛽𝛽𝑖𝑖~𝑁𝑁(0, 2). These prior configurations are widely used in Bayesian IRT modeling (e.g., 

Fox, 2010; Levy & Mislevy, 2018). 

Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, & 

Riddell, 2017) and its R interface 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (Stan Development Team, 2016) were used for 

Bayesian estimation. Four chains each with a length of 10,000 were set up with 5,000 burn-in 

cycles and a thinning interval of five, yielding a maximum ESS of 4,000 draws. Different 

random starting values were supplied to each of the four chains. Convergence was assessed 

using the Gelman-Rubin R-statistic (Gelman & Rubin, 1992), where 𝑅𝑅 <  1.05 indicated 

convergence. In the case of the centered specification of the H2PL, there was a small amount 

of non-convergent replications (under 10%). In the case of the non-centered specifications of 

the H2PL (and the standard Inverse Wishart specification), all replications converged. For the 

ULSMV and WLSMV estimation, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (Rosseel, 2012) was used with “Theta” 

parameterization; since lavaan uses the probit link, loadings and thresholds were transformed 

into discriminations and difficulties using the correct formulas given in Paek, Cui, Öztürk 
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Gübes, and Yang (2018). There were large amounts of non-admissible replications (non-

convergent, negative variances, not positive definite matrices) for both estimators across all 

sample sizes (up to 43%). Moreover, for 𝑘𝑘 =  50, there were no admissible solutions 

for 𝑁𝑁 =  50 and 𝑁𝑁 =  75. 

Dependent Measures 

Firstly, the sampling efficiency of the candidate hyperprior distributions for the 

variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 was investigated to quantify the benefit of the non-centered 

parameterization of the optimized H2PL. Sampling efficiency was indicated by the average 

ESS of the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 and the average number of divergent transitions. 

Divergent transitions indicate that the MCMC chain was not able to adequately explore a 

region of high curvature in the posterior distribution (Betancourt, 2018). It was expected that 

the non-centered parameterization would increase the average ESS and eliminate divergent 

transitions; this pattern was expected to be more distinct for the Cauchy and Exponential 

distributions, because of their thicker tails, compared to the Inverse Gamma distribution. 

Secondly, the three hyperprior distributions of the optimized H2PL and the standard 

Inverse Wishart specification of the H2PL were compared in terms of the accuracy of 

estimation of the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽. Accuracy of parameter estimation was 

indicated by the average bias (BIAS) and the root mean squared error (RMSE). Let 𝜏𝜏 be the 

true value of the variance component and 𝜏𝜏𝑟𝑟 its estimate in the rth replication (𝑟𝑟 = 1, … ,𝑅𝑅). 

Then 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜏𝜏 =  ∑ (𝜏𝜏𝑟𝑟− 𝜏𝜏)𝑅𝑅
𝑟𝑟=1

𝑅𝑅   and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜏𝜏 =  �∑ (𝜏𝜏𝑟𝑟− 𝜏𝜏)2𝑅𝑅
𝑟𝑟=1

𝑅𝑅
. Careful consideration must be given 

to the choice of hyperprior distribution because, given the borrowing principle (depending on 

𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽, information is pooled across parameters of the same type, yielding item parameter 

estimates balanced between their respective grand means and their item-specific estimates), 

bias in estimates of the variance components, may lead to bias in item parameter estimates. It 
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was expected that the Inverse Gamma distribution, due to its distinct peak, thin tail, and low 

mass in the region near zero, would perform worse than the Cauchy and Exponential 

distributions. 

Thirdly, the optimized H2PL was compared to the standard Inverse Wishart 

specification, its non-hierarchical counterpart, and the ULSMV and WLSMV estimators in 

terms of the accuracy of estimation of the item parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 and the accuracy of the 

trait scores 𝜃𝜃𝑗𝑗 estimated based on the estimated item parameters in the common two-stage 

approach. The BIAS and RMSE of 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, and 𝜃𝜃𝑗𝑗 were averaged across items and persons, 

respectively, for each replication; to obtain the final BIAS and RMSE values, these 

replication-specific summary indices were averaged across replications. It was expected that 

the optimized H2PL would perform best. This implies that IRT models behave differently 

from general hierarchical models: typical values of 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 fall into a quite narrow range, 

which restricts their variances to be relatively small. Therefore, bias introduced by shrinkage 

might be negligible, and the increased amount of information available may fully contribute 

to an increase in the accuracy of estimation. 

Results 

Non-centering the H2PL Increases Sampling Efficiency 

The non-centered parameterization is most beneficial for the optimized H2PL when its 

specification includes either the Cauchy or the Exponential distribution as hyperprior for the 

variance components. As illustrated in Figure 2 (showing the average number of divergent 

transitions for 𝑘𝑘 =  25), when using the Inverse Gamma distribution, the optimized H2PL 

exhibits hardly any divergent transitions, regardless of parameterization. Using either the 

Cauchy or the Exponential distribution, the centered parameterization is associated with a 

considerable number of divergent transitions for all sample sizes of 𝑁𝑁 <  500. When 𝑘𝑘 =

 50 (not shown), the average number of divergent transitions considerably increases for 𝑁𝑁 <
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 100. Thus, the Cauchy and Exponential distributions do not work well in smaller samples 

unless the H2PL is reparameterized. Non-centering the H2PL allows these alternative 

distributions to be utilized without restrictions in terms of validity of the parameter estimates 

when sample sizes are small. 

 

Figure 2. Sampling efficiency of the Inverse Gamma, Cauchy, and Exponential distributions across 

parametrizations and sample sizes for 𝑘𝑘 =  25.  

Note. The nominal ESS of 𝜏𝜏𝛼𝛼 was 4,000. 
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The increase in sampling efficiency in terms of decreasing average numbers of 

divergent transitions is further reflected by the increase in the average ESS. There is an 

increase in the average ESS across all hyperprior distributions; it is most pronounced in the 

case of the Cauchy and Exponential distributions, where the average ESS of the variance 

components is increased threefold for some sample sizes. Similar to the changes in the 

average number of divergent transitions, this indicates that the Cauchy and Exponential 

distributions do not work well in the centered H2PL. Figure 2 illustrates the increase in 

average ESS for 𝜏𝜏𝛼𝛼 across parameterizations for all hyperprior distributions and 𝑘𝑘 =  25; the 

increase is similar for 𝑘𝑘 =  50. In the case of 𝜏𝜏𝛽𝛽, the general pattern is also similar, but the 

increase in the average ESS is not as large. 

In sum, the Cauchy and Exponential distributions do not work well in terms of 

sampling efficiency, compared to the Inverse Gamma distribution, unless the H2PL is 

reparameterized. Non-centering the optimized H2PL, however, effectively eliminates sources 

of bias in parameter estimates related to the efficiency of the sampling process. Thus, the 

following sections are based on results from the non-centered H2PL. 

Using Alternatives to the Inverse Gamma Distribution Increases Accuracy of 𝜏𝜏𝛼𝛼 

Figure 3 illustrates differences in average BIAS and RMSE in estimates of the variance 

components between the candidate hyperprior distributions, compared to the standard Inverse 

Wishart specification of the H2PL, across sample sizes and test lengths. Differences in 

average BIAS are most pronounced in the case of 𝜏𝜏𝛼𝛼: except for 𝑁𝑁 =  500 and 𝑘𝑘 =  50, the 

Inverse Gamma distribution overestimates the variance of the item discriminations. The 

decreasing sample size introduces less bias in estimates of 𝜏𝜏𝛼𝛼 when using either the Cauchy 

or the Exponential distribution. Overall, the optimized H2PL yields more accurate estimates 

of 𝜏𝜏𝛼𝛼 compared to the standard Inverse Wishart specification of the H2PL across all test 
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lengths and sample sizes. In the case of the average BIAS of 𝜏𝜏𝛽𝛽 , the candidate hyperprior 

distributions perform equally well. 

 

Figure 3. Differences in the accuracy of estimation of the variance components 𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 between the 

Inverse Gamma, Cauchy, and Exponential distributions across sample sizes for 𝑘𝑘 =  25 (short) and 

𝑘𝑘 =  50 (long).  

Note. Error bars indicate ± 2𝑆𝑆𝑆𝑆. 
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Regarding 𝜏𝜏𝛼𝛼, the advantages of the optimized H2PL over the standard Inverse Wishart 

specification of the H2PL are also apparent in terms of RMSE. Differences between the 

Inverse Gamma, Cauchy, and Exponential distributions emerge for sample sizes 𝑁𝑁 <  150 

for 𝑘𝑘 =  25. The Inverse Gamma distribution exhibits a larger RMSE than the Cauchy or 

Exponential distributions. For 𝑘𝑘 =  50, the differences are negligible. In the case of 𝜏𝜏𝛽𝛽, 

however, the Inverse Gamma distribution shows smaller RMSEs across sample sizes for 𝑘𝑘 =

 25. For 𝑘𝑘 =  50, the largest differences in RMSE can be observed for sample sizes 𝑁𝑁 <

 100. The Cauchy distribution, however, shows the most consistent performance in terms of 

RMSE. 

In sum, using either the Cauchy or the Exponential distribution as hyperpriors for the 

variance components increases the accuracy of estimation for 𝜏𝜏𝛼𝛼 only. This leads, however, to 

a better adaptation of the item discrimination estimates to the amount of information in the 

data. Overall, the optimized H2PL outperforms the standard Inverse Wishart specification of 

the H2PL in the case of  𝜏𝜏𝛼𝛼 across all test lengths and sample sizes. 

The H2PL Yields Accurate Item Parameters and Trait Scores for Samples of N = 100 

Figure 4 illustrates differences in average BIAS and average RMSE in item parameter 

estimates across sample sizes and test lengths between the optimized H2PL, its non-

hierarchical counterpart, the standard Inverse Wishart specification, and the ULSMV and 

WLSMV estimators. The non-hierarchical 2PL underestimates the item discrimination for all 

sample sizes and test lengths, except for 𝑁𝑁 =  50 and 𝑘𝑘 =  25. For the smallest sample 

sizes, there are also differences in average BIAS between the candidate hyperprior 

distributions in the optimized H2PL and its standard Inverse Wishart specification. Both 

ULSMV and WLSMV estimators are outperformed by the hierarchical Bayesian H2PL 

specifications when 𝑁𝑁 <  500 for both test lengths. In the case of the item difficulty 

differences are less pronounced, both specifications perform equally well across sample sizes. 
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Taking 𝑁𝑁 =  500 as the nominal level, the average BIAS in item parameters does not 

considerably increase until 𝑁𝑁 =  100 in the case of the optimized H2PL. In terms of average 

RMSE, the candidate hyperprior distributions perform equally well. Overall, differences in 

the average RMSE are most distinct between the hierarchical and non-hierarchical 

specifications (including the ULSMV and WLSMV estimators) for both item parameters 

across all sample sizes and test lengths: the hierarchical specifications consistently show 

smaller average RMSEs in item parameters. 
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Figure 4. Differences in the accuracy of estimation of the item parameters between the optimized 

H2PL (with Inverse Gamma, Cauchy, and Exponential distributions) and its standard Inverse Wishart 

specification, its non-hierarchical counterpart, and the ULSMV and WLSMV estimators across 

sample sizes for 𝑘𝑘 =  25 (short) and 𝑘𝑘 =  50 (long).  

Note. Error bars indicate ± 2𝑆𝑆𝑆𝑆. 

Figure 5 illustrates if and how the increased accuracy of the item parameters translates 

into the accuracy of the trait scores for the Bayesian specifications of the 2PL. Overall, for 

both test lengths, the accuracy of the trait scores does not markedly decrease until 𝑁𝑁 =  100, 

in terms of average BIAS. There are no marked differences between the Bayesian 

specifications and the ULSMV and WLSMV estimators. Judging by the average RMSE, 

when 𝑁𝑁 <  100, the accuracy of the trait scores becomes sensitive to the choice of 

specification; moreover, there is a slight increase in accuracy in the case of the optimized 

H2PL for 𝑁𝑁 <  100 and 𝑘𝑘 =  25, compared to its non-hierarchical counterpart. Compared to 

the ULSMV and WLSMV estimators, the average RMSE of the trait scores is lower in the 

case of the longer test length and 𝑁𝑁 >  150. 
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Figure 5. Differences in the accuracy of the trait scores between the optimized H2PL (with Inverse 

Gamma, Cauchy, and Exponential distributions) and its standard Inverse Wishart specification, its 

non-hierarchical counterpart, and the ULSMV and WLSMV estimators across sample sizes for 𝑘𝑘 =

 25 (short) and 𝑘𝑘 =  50 (long).  

Note. Error bars indicate ± 2𝑆𝑆𝑆𝑆. 

Discussion 

The goal of this study was to investigate and quantify the effect of the optimized H2PL 

on the accuracy of estimation of the item parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 and their variance components 

𝜏𝜏𝛼𝛼 and 𝜏𝜏𝛽𝛽 in small-sample situations, and to investigate how this translates into the accuracy 

of trait scores 𝜃𝜃𝑗𝑗. The optimized H2PL included (1) a non-centered parameterization, (2) the 

use of the Cholesky factor 𝐋𝐋𝛀𝛀 to separate variances and covariances, and (3) the use of the 

Cauchy and Exponential distributions as alternative hyperprior distributions for the variance 

components. Non-centering the H2PL considerably increased the sampling efficiency in 

small sample sizes, especially when using the alternative hyperprior distributions for the 

variance components. It was further demonstrated that utilizing these alternative hyperprior 

distributions yields estimates of the variance components that are more accurate compared to 

the commonly used Inverse Gamma distribution. Moreover, when combining these elements 

in the optimized H2PL, this specification yields accurate item parameter estimates and trait 

scores even in sample sizes as small as 𝑁𝑁 =  100, which is considerably smaller than sample 

sizes recommended for item calibration or scoring (e.g., 𝑁𝑁 =  1,000 or 𝑁𝑁 =  500; Stone, 

1992). As the 2PL is often regarded as a large-scale application, while typically only the 

simpler Rasch model is applied to sample sizes of approximately 𝑁𝑁 < 500 (Stone & Yumoto, 

2004), this finding is of practical importance since it shows that the 2PL can also be applied 

to sample sizes commonly encountered in practice. 
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This enhanced applicability of the 2PL can be attributed to the increased accuracy in 

the estimation of the item discrimination parameter and its associated variance component. 

The bias introduced by the underestimation of the item discrimination parameter in the 

standard, non-hierarchical 2PL across all sample sizes and test lengths has consequences for 

the estimation of trait scores. The accuracy of the trait score estimates includes but is not 

limited to item calibration error (Feuerstahler, 2017). The optimized H2PL reduces item 

calibration error in smaller sample sizes; as the item discrimination parameter is important for 

the calculation of the test information under the 2PL model, it is to be expected that the 

standard error of measurement of the trait scores is reduced as well. As a first indication of 

this effect, this study demonstrates the better performance of the optimized H2PL in terms of 

the average RMSE of the trait scores. It has to be noted that its performance is furthermore 

similar to both the ULSMV and the WLSMV estimators, where the trait scores are estimated 

without considering item calibration error.  

Thus, the optimized H2PL may be most beneficial if applied to small-sample item 

calibration when item calibration error in the trait scores is to be accounted for. The common 

two-stage approach to trait estimation, where estimates of the item parameters are treated as 

true values without error, ignores the uncertainty carried over from the item calibration. 

Recently, a multiple-imputation based approach has been proposed, in which 𝑚𝑚 plausible 

item parameter values are drawn from a multivariate normal distribution with the ML-

estimates of the item parameters as means and their asymptotic covariance matrix as scale 

(Yang et al., 2012). An alternative may be to draw 𝑚𝑚 plausible item parameter values directly 

from their respective means and standard errors obtained under the optimized H2PL; the 

calculation of the asymptotic covariance matrix of the item parameters, based on the 

respective Fisher information matrix, would be no longer required (Liu & Yang, 2017). It 

may be promising to compare these two alternatives within the multiple-imputation based 
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approach to trait estimation, with a special focus on their performance in small samples. 

Nevertheless, the findings of this study indicate that the optimized H2PL could also be used 

in a single-stage approach to trait estimation; although item calibration error is taken into 

account, it yields an accuracy in the trait scores comparable to the ULSMV and WLSMV 

estimators. Its proposed use in the aforementioned two-stage approach, however, is 

conceptually easier to integrate into the standard operating procedures in applied testing 

situations (Yang et al., 2012). 

The advantage of the optimized H2PL over its non-hierarchical counterpart in terms of 

bias in estimates of the item discrimination parameter is somewhat surprising. A potential 

explanation involves its variance component. Shrinkage of parameter estimates towards their 

grand means, hence their bias, depends on the variance of a given parameter. The increased 

accuracy of the item discrimination parameter might indicate that its variance is at a level 

where the bias usually introduced by shrinkage is outweighed by the increased amount of 

information available for the estimation of the item discrimination parameter. Thus, this 

result indeed points out the possibility that IRT models behave differently than general 

hierarchical models because typical values of 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 fall into a quite narrow range, which 

restricts their variances to be relatively small. Future simulations could address this general 

idea and remedy one limitation of this study: its focus on a single set of true values of the 

variance components. Although the choice of their generating values is based on operational 

item sets, it might be promising to investigate this pattern for different sets of generating 

values. Another limitation of this study is the focus on a single specification for the candidate 

hyperprior distributions. Although it was chosen to make them comparable and to take up 

recommendations from the current methodological literature, it may be fruitful to investigate 

how sensitive the results are to different specifications of the distributions, especially in small 
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sample sizes. This may provide further evidence for their utility for small-sample IRT 

modeling. 

Finally, the results of this study contribute to the growing body of literature 

discouraging the use of the Inverse Gamma distribution (Gelman, 2006; Polson & Scott, 

2012). Even in a weakly informative specification it overestimates the variance of the item 

discrimination parameter across almost all sample sizes and test lengths. The advantages of 

both the Cauchy and Exponential distributions, as shown in this study, contribute to recent 

studies investigating these distributions as viable alternatives (Sheng, 2017; Liu & Yang, 

2017). However, the use of either the Cauchy or the Exponential distribution requires a 

reparameterization of the H2PL to ensure the validity of item parameter estimates. In 

summary, this study illustrates how to apply the 2PL model, usually considered a large-scale 

application, to small-sample situations. 
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optim_H2PL <- " 
 
data {                                // # data specification 
  int<lower=1> I;                     // items 
  int<lower=1> J;                     // persons 
  int<lower=1> N;                     // observations (responses) 
  int<lower=1, upper=I> ii[N];        // item for n 
  int<lower=1, upper=J> jj[N];        // person for n 
  int<lower=0, upper=1> y[N];         // correctness for n 
} 
 
parameters {                          // # parameter specification 
  vector[J] theta;                    // abilities 
  matrix[2,I] xi_tilde;               // z-score item parameters (Eq. 2.3) 
  vector[2] mu;                       // item parameter grand means 
  vector<lower=0>[2] tau;             // item parameter variance 
components 
  cholesky_factor_corr[2] L_Omega;    // Cholesky factor of Σ 
 
} 
 
transformed parameters {              // # parameter transformations 
  matrix[I,2] xi;                     // log_alpha, beta 
  vector<lower=0>[I] alpha;           // item discrimination 
  vector[I] beta;                     // item difficulty 
 
  xi = (diag_pre_multiply(tau, L_Omega) * xi_tilde)';   // Transformation 
1 
 
  for (i in 1:I) {                    // Transformation 2: 
   alpha[i] = exp(mu[1] + xi[i, 1]);  // Glas & van der Linden, 2003 
   beta[i] = mu[2] + xi[i, 2]; 
  } 
} 
 
model {                               // # model specification 
  theta ~ normal(0,1);                // Eq. 2.2 
  to_vector(xi_tilde) ~ normal(0,1);  // Eq. 2.3 (non-centering) 
 
  mu[1] ~ normal(0,1);                // Eq. 2.4 
  mu[2] ~ normal(0,2);                // Eq. 2.5 
 
  L_Omega ~ lkj_corr_cholesky(4);     // Eq. 2.6 (separation strategy) 
  tau ~ cauchy(0,1);                  // Eq. 2.7 (separation strategy) 
  
  y ~ bernoulli_logit(alpha[ii] .* (theta[jj] - beta[ii])); // Eq. 2.1 
} 
 
generated quantities {                // # calculate correlation matrix 
  corr_matrix[2] Omega; 
  Omega = multiply_lower_tri_self_transpose(L_Omega); 
}" 
 
 
 

Note. The basic 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅-specification of the two-parameter logistic model is based on Furr (2016). This 
code was written under 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Version 2.14.1. It was tested for functionality under the most recent 
version (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 2.17.3; Stan Development Team, 2018). Equations refer to the equations in the main 
document. 
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