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Abstract—Recent developments in the field of indoor Real-
Time Locating Systems (RTLS) using mobile devices stimulate
decision support for users. For instance, smartphone-based nav-
igation in shops can enable location-aware recommendations of
certain products to customers. An impeding factor to realize such
systems is that they need the exact position of products. Existing
product localization solutions, however, are based on tagging
or manual location registering which tend to be quite costly
and laborious. In this paper, we propose an automated product
localization approach solving this problem. Our system infers the
location of products based on the results of accumulating two sets
of customer data, i.e., the locations at which the customers stop
for picking up items as well as the list of the items, they purchase.
These two data sets are accumulated for a large number of
users, making it possible to build correct mappings between the
products and their positions. We introduce a basic version of our
localization algorithm and two extensions. One helps to improve
calculating the position of relocated products while the other one
fosters a faster localization using a smaller number of user data
sets. We discuss the results of various simulation runs which give
evidence that our system has a good potential to work in practice.

Index Terms—Automated Localization, Real-Time Location
Sensing, Intelligent Data Analysis, Mobile Services, Dynamic
Leaky Accumulation, Softmax-based Inference.

I. INTRODUCTION

In recent years, the rapid development of mobile technology
has created unprecedented opportunities to realise intelligent
environments. In particular, the wide presence of smartphones
in our daily life with their powerful sensors and processing
capabilities creates new opportunities to support the users
with context-aware systems [1]. These types of applications
use information gathered from the users’ environments to
support their decision making process in various fields, such
as mobile recommendations. A Mobile Recommender System
(MRS) analyzes information retrieved from the environment in
which a user is moving through, and uses the analysis results
to provide meaningful suggestions [2]. The recommendations
can be made based on the information collected from the
surrounding context and the user behavior.

A key element of context information for an MRS is the
real-time position of the user, which is basically the current
location of her/his smartphone. For context-aware outdoor
systems, global navigation satellite systems like GPS provide
this information, e.g., the pathfinding algorithm of Google

Maps [3]. Until recently, the development of indoor MRS
was hampered due to the lack of accurate smartphone-based
indoor positioning technology. However, new indoor Real-
Time Locating Systems (RTLS) are emerging that are able
to detect the exact location of a user’s smartphone with an
accuracy of a few centimeters. For instance, the ultrasound-
based Forkbeard technology [4] is a novel RTLS solution
promising to locate a smartphone with a precision of less than
10 cm.

A typical MRS application using an indoor RTLS is navi-
gation support in shops helping customers to find products as
well as giving them useful recommendations. Similar to the
navigation systems in vehicles, customers are provided with a
path that guides them to the places where desired goods are
stored. The realization of such a system, however, requires the
accurate position of products, while in many shops this type
of information is not available yet. The reason for that is that
only two solutions seem feasible [5] that are both not optimal:
One possibility is to attach special computer-readable tags to
the products in a store and use them to let the RTLS track
their exact positions. The provision of the products with such
tags, however, is a major cost factor. The other solution is
to register and update the position of the products manually.
Yet, this needs a lot of human effort, in particular, if products
are regularly relocated which is the case in many grocery
stores [6]. Considering indoor localization, existing work is
mostly focused on coarse-grained indoor navigation in stores,
e.g., to guide the customer by means of different sensor types
on the user’s smartphone and basic localization technologies
(e.g., signal strength measured at various places) [6]–[9].

In this paper, we aim at proposing a cost-efficient ap-
proach to automatically locate products in retail stores. Instead
of tagging products or registering their positions manually,
product localization is performed using two sets of customer
data: the set of positions at which the customer stops while
shopping, and the list of items purchased by her/him. Then,
we accumulate these data pairs over a large number of
customers. Since the customers can purchase products only
by passing through the location of products, the accumulation
reveals distinct correlations between items and places at which
their buyers stop. These correlations are utilized to infer
the positions of the goods. To realize this, we propose a
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Fig. 1: The scope of Product Locator: from processing cus-
tomer input data to potential applications

basic Customer Score Accumulation algorithm to accumulate
customer data and to infer product locations based on the
accumulation results. Further, we introduce two extensions
of the algorithm (i.e., Leaky Customer Score Accumulation
and Softmax-based Inference) to improve position calculation
for relocated products, respectively to reduce the number of
customers needed to infer the location of products.

Considering a significant number of errors in the customer
data sets, e.g., stopping at places without picking up items,
our simulation-based evaluation results show that 99.9% of
the 8,000 products in a typical large Norwegian grocery
store [10] can be correctly located after aggregating the data of
around 12,000 customers. Assuming 1,000 customers a day,
our algorithm needs to run about 12 days to calculate the
location of items, which seems practically feasible.

The rest of this paper is organized as follows: In Sect. II, we
give an overview of our aggregation and inference approach
and discuss its scope. Thereafter, we present the approach
in Sect. III followed by introducing both, the simulation
technology used and the results revealed by the various test
runs in Sect. IV. The article is completed with a discussion of
related work in Sect. V followed by some concluding remarks
in Sect. VI.

II. OVERVIEW AND SCOPE

The scope of our approach is shown in Fig. 1. Intelligent
location aware systems, such as mobile recommender systems,
product placement optimization, and customer guidance, rely
on the current position of users that can be obtained using
an RTLS. As mentioned in the introduction, MRS also needs
the location of the offered products which can be retrieved
with our Product Locator. For a large number of users, the
Product Locator collects data sets consisting of the places at
which the customers stop while passing through the store as
well as the list of items, they purchase. The customer stops
are deduced from the RTLS data, while the list of purchased
items can be obtained from the cashier systems or special apps

provided by the stores. In addition, the activities done by the
user during shopping can be a useful source of information
for the Product Locator. In the rest of this section, we discuss
these three sources of customer data and their relevance to our
approach.

A. User Activity Recognition

Interpreting sensor inputs of mobile phones to find out
certain activities is of growing importance, e.g., in health
care [11]. This is usually done by Human Activity Recognition
(HAR) systems that use pattern recognition algorithms to clas-
sify human activities from sensor data. Recently, the adoption
of machine learning algorithms in HAR research have shown
great results [12] such that HAR classifiers with an accuracy
of greater than 90% can now be provided (see [13]–[16]).

The development of HAR systems, however, tends to be
complex. In our context, it would be nice if one could detect
whether a product is picked up or not from the movements
sensed by the customer’s smartphone. Yet, to allow an HAR
system to learn the relation between sensor data and this
activity, one needs example data sets for the activity “item
pickup”. Unfortunately, we could not find any openly available
HAR data sets for this activity, and creating our own set would
be a highly complex and laborious challenge. Therefore, we
decided to use a much simpler way to recognize the picking
up of items in a shop.

We simply record stops performed by customers while
they are in the store. There are plenty of openly available
datasets containing the activity “stop” and/or “standing” such
that an HAR model trained on these datasets would provide
the required stop locations. Using an RTLS, however, even a
simpler approach might suffice: The stop activity is classified
as “staying within a small area for a certain amount of time”,
e.g., staying in an area of one meter diameter for at least
three seconds. Since customers perform those stops when they
pick up products to buy, this classifier seems to be a good
replacement for more complex activity recognitions.

Nevertheless, the price for the simplicity to just register
stops instead of using more complex HAR mechanisms is a
potentially larger number of errors in the customer data sets.
For example, customers can also stop at places at which they
only look at certain products but decide not to buy them,
or simply conduct other activities like checking their phones.
Moreover, they may pick up products without stopping such
that the location of a product pickup is not registered by the
RTLS. The simulations carried out, however, revealed that our
algorithm is sufficiently robust against these errors. The only
effect is that the number of customers needed to locate all
products correctly is slightly growing but, the errors do not
lead to false localizations (see Sect. IV-B).

B. User Position Detection

Most existing indoor RTLS are not sufficiently precise for
applications that need an accuracy at the level of less than
a meter. They are based on different radio communication
technologies such as UWB, RFID, Bluetooth, Ultrasound,



Visible Light, SigFox, and LoRA. Among these, Ultrasound-
based systems seem to be particularly promising since they
are less affected by interference from metallic objects than
electromagnetic methods. They are less influenced by opaque
objects in the environment than optical technology while
being cheaper to realize [17]. An RTLS usually comprises
of fixed units located at particular points in a closed room
which receive wireless signals from tags or badges attached
to persons or objects of interest. The units measure the arrival
times of a signal which vary due to the different distances
between the units and a tag transmitting the signal. From the
travel time spread and the knowledge about the locations of
the fixed units, the position of the signal transmitters can then
be computed using triangulation.

A practical and efficient solution to locate a user in a
confined area such as a retail store is to utilize the microphone
of his/her smartphone as a localization tag. This is, for
instance, done by the Forkbeard technology [4]. It uses fixed
units which are usually installed at the ceiling of a room and
emit ultrasound signals in precisely coordinated intervals. The
various signals are received by smartphones in the environment
which measure the time lags between the signals. Further, the
fixed units send their exact positions in the room such that the
smartphone can triangulate its own position. This technology
promises to reach a precision level of at least 10 cm. For retail
stores, this precision is more than enough since a location
accuracy of around 30 cm is sufficient to differentiate between
different product-containing compartments in the store.

The user stop detection mechanism is realized as follows:
An app in a customer’s smartphone measures constantly its
position using the RTLS. If the phone rests for a certain time
in an area as discussed in Sect. II-A, this is classified as a stop
and the position is stored in a data base. In this way, all places
at which the customer stops while shopping are retained. When
the shopping activity is finished, the data set will be sent in
anonymous form (to preserve the user’s privacy) to the server
running the Product Locator.

C. List of Purchased Items

The second data set to be used by the Product Locator is
the list of all items bought by the customer in the shopping
environment. A way to achieve this is to let the customer’s
smartphone retrieve the list from the cash register used for
paying. An alternative is to use special customer apps. Lately,
a trend among grocery stores has been to provide such
apps giving additional digital experiences to their customers,
e.g., systems providing bonuses, sales or discounts based on
products purchased [18], [19]. These apps register which items
each customer buys every time she/he visits the store. This
information can be easily used to create the list of products
purchased by a customer during a single store visit. Further,
it is simple to combine this list with the set of stops also
registered in the smartphone. From a judicial point of view,
this solution is also helpful since customers who do not want
their purchases being stored for inferring product locations,

can simply switch of the tracking functionality or avoid to use
this app at all.

III. PRODUCT LOCATOR

Before describing the product localization approach in de-
tail, we give a short introduction to the various designators
used in this section. We define a particular indoor Environment
of interest as E. The space covered by E is restricted by
artificial boundaries in which a finite set of positions and items
can be found. The set of all unique Positions in E is described
by the set P while I refers to all unique Items available in E.
The positions of the various items in E are described by the
Localization function L : [I → P ] that maps each item to its
actual position. L is not an one-to-one mapping such that a
position p can be assigned to several items.

Our approach accumulates the data of a large number of
customers C = {c1, c2, . . .} moving in E over time. For a
single customer c ∈ C, we define Pc ⊆ P as the trajectory
of positions, c passes while moving through E for shopping.
The set Sc ⊆ Pc is the set of positions at which the RTLS
registers Stops for c. Further, we define Ic ⊆ I as the set of
items purchased by customer c during a traversal through E.
Based on that, we can now define for a customer c the pair of
data sets dsc , 〈Sc, Ic〉 that will be utilized by the Product
Locator.

In the following, we describe how the user data sets dsc
are analyzed and processed in order to obtain the localization
mapping L for all items i ∈ I in E. Our inference algorithm
consists of three steps:

1) Calculate the score for each customer c ∈ C from her/his
data set dsc , 〈Sc, Ic〉.

2) Accumulate the scores of all users in C and store the
result in a data store.

3) Infer mapping L : [I → P ] from the computation in
step 2 by comparing the scores for each item that it is
placed at a certain location, and return the position that
has the highest score.

The three steps are described below. Thereafter, we introduce
two extensions of the score accumulation step. The one is
the Leaky Score Accumulation algorithm that weights newer
customer data higher than older. This makes the algorithm
more flexible against moving certain items to other positions
in a store. The second improvement of the score accumulation
is Softmax-based Inference. It uses the Softmax function [20]
which makes the inference of correct item-to-position map-
pings faster and more reliable.

To clarify the various aspects of our Product Locator al-
gorithm, we use a simple scenario. In a grocery store, bread
is at position p1, milk at p2, eggs at p3, and cheese at p4.
Further, we assume a user buying milk, bread, and eggs while
a second one purchases only milk and a third one milk, bread,
and cheese. For simplicity, we assume that all three customers
stop at all the positions at which their purchased products are,
and at no other positions. We can formalize that by using
the sets C = {c1, c2, c3} referring to the three customers,
I = {i1 (milk), i2 (bread), i3 (eggs), i4 (cheese)} describing the



Fig. 2: Matrices of the three customers c1, c2 and c3 in the
example.

four products, and P = {p1, p2, p3, p4} representing the four
positions of the products. The data sets for our three customers
can then be defined as follows:

dsc1 , 〈{p1, p2, p3}, {i1, i2, i3}〉, dsc2 , 〈{p2}, {i1}〉,
dsc3 , 〈{p1, p2, p4}, {i1, i2, i4}〉

A. The Basic Algorithm

Let us assume that our indoor environment E comprises n
different positions P , {p1, . . . , pn} at which products can
be stored and offers m different items I , {i1, . . . , im} for
sale.

1) User Score Calculation: In the first step, we take the
data gathered for a customer c and stored in form of the data
set dsc , 〈Sc, Ic〉. The set dsc is transformed into a matrix
Mc that contains a row for each item and a column for each
position. Using m items and n positions, this matrix has then
the size m×n. In Mc, we mark all matrix elements considering
an item purchased by c and a position at which c stopped as
1 and else as 0:

Mcxy
,

{
1 if ix ∈ Ic ∧ py ∈ Sc

0 else

For the three customers in our example, this leads to the three
matrices Mc1 , Mc2 , and Mc3 depicted in Fig. 2.

2) Accumulation of Customer Scores: In this step, the
customer matrices Mci are accumulated to a Data Store matrix
DS which can be achieved by simple matrix addition:

DS =
∑
c∈C

Mc

For our example, the following matrix is computed:

DS =


2 3 1 1
2 2 1 1
1 1 1 0
1 1 0 1

 (1)

An advantage of the algorithm is that not all customer scores
have to be received when running it. Instead, DS can be
calculated based on just the currently available customer data.
When data from a new customer cnew arrives, DS can be
augmented by adding the corresponding customer score matrix
Mcnew

to its previous version.

3) Inference of the Localization Mapping: The final step
of the algorithm is inferring the locations of the items in the
indoor environment from the data in matrix DS. To achieve
that, we attach to each item the position that according to DS
has the highest value.

Thus, we can define the localization mapping L : [I → P ]
as follows:

L[ix ∈ I] , choose p ∈ P | ∃y ∈ {1, . . . , n} : p = py ∧
∀l ∈ {1, . . . , n} : DSxy ≥ DSxl

If a product is placed at several positions in the store, we
will locate only one of them which, however, is sufficient for
indoor navigation and recommendation assistance.

Looking at our example data store DS (see eq. 1), we
can only unambiguously infer that item i1 is at position p2
while the exact positions of the other items are not clear-cut
after considering just three customers. The inferences would
be getting unambiguous if some more customer results were
considered. Nevertheless, we will see in Sect. III-C that there
are improvements to the accumulation process possible that
allow us to infer the correct positions even if only our three
customers are considered.

B. Leaky Customer Score Accumulation

The goal of this optimization of the customer score ac-
cumulation is to reduce the bias, the system has for older
data compared to newly collected customer scores. The data
registered for a product in DS, i.e., the value of element
exy for an item x at the position y, will become very large
over time as more customers purchase the product, and to
be able to do so, stop at its position. This can be seen as
positive as long as the position of the product is never moved.
If products, however, are regularly relocated which happens
often in grocery stores [6], the algorithm needs quite long until
inferring the correct position again. The reason is that many
customer scores considering the new location of the item have
to be accumulated until those considering the old place are
outpaced. The Leaky Customer Score Accumulation algorithm
allows us to mitigate this problem.

We define the so-called leaky factor α with 0 < α < 1.
When we now add the score matrix Mc of a new customer c
to the data store matrix DS, we reduce all the elements of DS
referring to items bought by c and places that she/he did not
visit. Using DSold to describe the value of DS before adding
Mc and DSnew for the one afterwards, we can express this
operation as follows:

DSnew
xy ,


DSold

xy +Mcxy if Mcxy 6= 0

DSold
xy · α if Mcxy = 0 ∧

∃l ∈ {1, . . . , n} :Mcxl
6= 0

DSold
xy else

The intuition for this improvement is that for all items i ∈ Ic
purchased by c, the correct position for the items will most
likely be among the positions p ∈ Sc at which the customer
stopped. Based on this assumption, all matrix elements in DS
that describe products in Ic, and positions not in Sc, are less



likely to refer to correct product locations. Thus, it is useful
to reduce the values of these matrix elements. If an item is
now moved to another place, there will be several customers
buying it but not stopping at its old location anymore. Thus,
the value for the old position will decline relatively quickly
such that it will be faster passed by the value for the new
location of the product.

Finding the right balance between prioritizing new over old
data was done by empirical experimentation. The value α =
0.985 achieved the best results in our tests.

The simulation of different values of α inspired us to a
further improvement that we call the Dynamic Leaky Score
Accumulation. Here we use a confidence level to indicate our
trust in the data of a single customer c that is allocated her/his
own leaky factor αc. For instance, a customer buying one
item and stopping at one location probably provides more
accurate data than a customer stopping at 20 locations to buy
a single product. Thus, the confidence level is based on two
parameters, the number of items purchased, i.e., |Ic|, and the
relation between the number of items purchased and number
of stops performed by the customer, i.e., |Ic||Sc| . Our simulation
runs showed the following dynamic leaky factor αc to provide
good results:

αc =


0.750 if 5 < |Sc| ≤ 10 ∧ |Ic||Sc| ≥ 0.5

0.650 if |Sc| ≤ 5 ∧ |Ic||Sc| ≥ 0.5

0.985 else

Thus, customers buying few products and stopping at most
twice as often as the number of items purchased, are granted
greater influence than other ones.

C. Softmax-based Inference

The intuition behind the second improvement strategy for
the score accumulation in Sect. III-A2 is to amplify the
differences between the values of the elements in our data
store DS. Moreover, we want to consider the general numbers
of stops at a certain position to evaluate the likelihood that a
certain product resides there. Look for instance on the third
row of the data store DS in our example (see eq. 1). There
we have the value 1 in all of the first three columns such
that we cannot claim a direct winner. On the other hand, the
sums of the values in the first two columns of DS are much
larger than the sum of the values in the third column. This
indicates that fewer people not procuring item i3 stopped at
position p3 than at p1 or p2 which makes it more likely that
p3 is, indeed, the place where i3 is placed. The extension
to the score accumulation algorithm presented here follows
this consideration. It is based on the Softmax function (see,
e.g., [20]) and will be carried out in three steps:

1) To amplify the more significant relations between items
and positions, we transform matrix DS to DSexp that
uses exponential values. A problem to be solved is that
the elements of DS may contain large numbers when
the inputs of many users are stored such that computing
the exponential value leads to an arithmetic overflow. To

Fig. 3: The three matrices DSexp, DSrow, and DSsm of our
example.

avoid that, we simply subtract the value dsmax of the
largest matrix element in DS from all elements. Thus,
no element will have a value larger than 0 and arithmetic
overflow is prevented. The matrix DSexp is computed
as follows:

DSexp
xy , eDSxy−dsmax

The use of the exponential value makes it possible to
get rid of the zeros in data store DS since a product
might be located in a position not yet visited.

2) Thereafter, we perform the last step of the Softmax
function by normalizing the rows of the exponential
matrix DSexp. This is done in order to find, for each
product, the probability distribution based on the stops
performed by customers buying this product. The matrix
reached in this step is named DSrow and computed as
follows:

DSrow
xy ,

DSexp
xy∑n

l=1DS
exp
xl

3) Finally, we normalize the columns of matrix DSrow

such that the sum of the values in each column is 1. The
resulting Data Store DSsm is computed as follows:

DSsm
xy ,

DSrow
xy∑m

k=1DS
row
ky

Thus, we realize the consideration discussed above, that
a product is more likely at a position if relatively few
people not buying it stopped there.

Then we take matrix DSsm instead of DS in the inference
step described in Sect. III-A3.

Starting with matrix DS of our example (see eq. 1), the
extended algorithm provides the matrices shown in Fig. 3.
In contrast to the result of the basic algorithm in eq. 1, the
adapted algorithm makes it possible to infer the mapping L
unambiguously since every row in matrix DSsm has a unique
maximum value (marked in green). Thus, the mapping L from
items to positions can be correctly determined:

L[i1] = p2, L[i2] = p1, L[i3] = p3, L[i4] = p4

For i1, i3, and i4, this localization mapping can even be
inferred if we demand a difference of 0.1 between the highest
and second highest value to prevent wrong localizations.



IV. EVALUATION

We evaluate the proposed approach through simulating the
data sets. The issue is that real data traces for the discussed
shopping use case are not currently available. For that, the
necessary RTLS hardware for high precision indoor location
sensing must be provided, and the existing store apps on the
smartphones of the customers have to be extended to provide
the list of purchased items per shopping. To evaluate the core
functionalities of our proposed solution, and to learn more
about it in order to fine-tune it (e.g., selecting the correct
leaky factor α, see Sect. III-B), we carried out hundreds of
simulations of various shop environments. To achieve that,
we developed a suitable tool simulating indoor environments
and the required customer data. For simulation, we considered
data sets based on several distributions in order to cover many
different realistic shopping scenarios. Therefore, we believe
that the reported simulation results provide practical and
relevant insights to our product localization solution. The first
subsection describes the three modules of the simulation tool,
in detail. Thereafter, we discuss the results of the evaluation
runs.

A. Simulator

Our simulation tool consists of a creator for the shop
environment, a creator for customer behavioral inputs, and the
simulator core.

The Environment Creator module creates models of an
indoor environment E to be simulated. For typical grocery
stores in Norway, 8,000 items offered at 800 positions are
realistic values to be used. The difference between the two
numbers results from the fact that many products are pooled
in shelves. From these inputs, the Environment Creator builds
the sets I and P (see Sect. III) as well as the data store matrix
variable DS (see Sect. III-A) with |I| rows and |P | columns.

The second module of the simulation tool is the Customer
Creator. It is used to simulate customers moving through the
simulated environment and purchasing the offered items. For
each simulated customer c, the Customer Creator generates a
random data set dsc = 〈Sc, Ic〉 (see Sect. III). To simulate
realistic customer behavior, the demand for certain goods
differs vastly. This reflects that some products like low-fat milk
are bought much more often than others, for example, mustard
with truffles. We also like the number of items purchased by
the customers to be in line with normal shopping behavior.
To solve these two requirements without having access to real
data of a retail store as a foundation for the simulations, the
Customer Creator uses a truncated gaussian distribution when
selecting the number of items purchased by a customer. This
distribution is also used to select with which likelihood the
customers buy a certain item.

As discussed above, we need to consider errors in the data
sets since customers may stop at positions without buying the
goods available there, and they might pick certain products
on the fly without being detected as a stop by the RTLS. To
consider these errors in our simulations, the Customer Creator
works as follows: When creating a new customer c, it first
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Fig. 4: Flow chart illustrating the simulation tool

determines the number of items the customer purchases using
the corresponding truncated gaussian distribution. Thereafter,
it selects which items the customer buys using the other
gaussian distribution. This leads to the set Ic, followed by
querying the Environment Creator for the correct locations
of the selected items. Using these data directly as Sc would
produce a “perfect” data set for the Product Locator, i.e., the
customer would stop at exactly the positions at which the
purchased products are located.

This perfect user set is then altered by an error function.
At first, a random number of additional locations from the
simulated environment is selected and added to set Sc. This
function follows a certain distribution that can be parameter-
ized prior to a simulation run. At second, to simulate the event
that the RTLS misses stops at places at which items are picked,
elements of Sc from the perfect data set are removed following
also a parameterizable function.

The third module is the Simulator Core which is responsible
for initiating both the Environment Creator and the Customer
Creator. Further, this module realizes the Product Locator and
feeds it with the data sets created by the Customer Creator. To
give meaningful information about the accuracy of the Product
Locator during the learning phase, i.e., its ability to predict the
correct location for the products, the core module compares
the produced function L with the real positions in predefined
intervals and stores this information.

The different steps performed during a simulation run are
depicted in Fig. 4. The simulation is started by the Envi-
ronment Creator building an indoor environment. If more
customers shall be simulated, the Customer Creator creates
a new data set that may contain errors followed by the three
steps of the Product Locator (see Sect. III-A). If the predefined
interval is finished, moreover, the accuracy of the location
mapping is checked and stored.

When all desired customers are simulated, the simulator



Fig. 5: The increase in accuracy as customer data is added to
the system depending on different error rates.

terminates by storing the accuracy measurements in a JSON
file. This data can be used to evaluate our proposed solution.
We report about some simulation results in the following.

B. Results

Our Product Locator was thoroughly tested through hun-
dreds of simulation runs, wherein various store configurations
were used to further analyze the system behavior in varying
environments. To evaluate the quality of our solution, we use
the accuracy metric acc. Be Iloc ⊆ I the set of all items that
can be unambiguously assigned a location, since in the rows
of the data store DSsm (see Sect. III-C) the largest value is
at least 0.1 larger than the second largest one. We then define
the accuracy as acc , |Iloc|

|I| . The accuracy is measured and
stored after adding the data of ten customers to the data store.
Some of the simulation results are discussed in the following.

1) Testing the Basic Product Locator: First, we show the
gradual increase in accuracy using what we claim to be
“realistic” parameters. We simulated a shopping environment
with 8,000 items, 800 positions, and 35,000 customers.

Besides stopping at the correct positions of the bought
items, each customer can stop at various places without pick-
ing up any products. We use the so-called 30/20/10 likelihood
pattern to select the number of such “erroneous” stops at
which no products are picked up. It means that we choose
a value between 0 and 10 erroneous stops with a probability
of 4

7 . A number of stops in the interval between 11 and 20
of such stops is selected with a likelihood of 2

7 , i.e., half of
the probability for the interval 0-10. With a likelihood of 1

7 ,
i.e., half of that for 11-20 stops, we select a value between 21
and 30 erroneous stops. When one of the three intervals has
been chosen, the exact value within this interval is selected
following a uniform distribution.

Fig. 6: The time to recover after moving 20% of the items in
the environment.

Further, we assume with a probability of 10% that a stop
at a correct position is not noted by the RTLS. Then, we get
the hyperbola depicted in Fig. 5 with the green curve. With
the simulation parameters described above, an accuracy of
99% is achieved after 8, 420 customers, 99.9% after 12, 170,
and finally, all products were correctly located after 18, 630
customers.

2) Increased Error Rates: The second group of simulations
intends to fathom the robustness of our algorithm by vastly
increasing the likelihoods of additional stops and not detected
pickings of products. We added the curves of these tests also
to Fig. 5. The red curve describes a likelihood of 40/30/20
for additional stops and 20% for not registering pick ups,
and the blue one is even more extreme assuming probabilities
of 50/40/30 resp. 30%. It is interesting that the increased
error rates do not change the hyperbola forms of the curves.
The Product Locator still locates all items in the simulated
environment, albeit with a slightly greater delay.

3) Handling Relocated Products: The third group of simu-
lations considers the behavior of our algorithm when products
are relocated. Figure 6 shows the results from simulations
in which 20% of the items in the store were moved to a
new location. All three simulations shown in the figure use
the simulation configuration with the “realistic” parameters
introduced in Sect. IV-B1. The green curve shows the results
from the Dynamic Leaky Accumulation algorithm, described
in Sect. III-B. The result using plain Leaky Accumulation is
plotted in as the red curve, while the blue one depicts the
results when using only the base algorithm without any leaky
accumulation. These curves clearly show that the Dynamic
Leaky Accumulation has a clear advantage against the simple
Leaky Accumulation and even more against the simple algo-
rithm when we have to expect significant relocation of items
during the lifetime of the Product Locator.

4) Comparing the Score Accumulation Variants: Finally,
we compare the customer score accumulation of the basic
variant (see Sect. III-A2) with the Dynamic Leaky Customer
Score Accumulation (see Sect. III-B), and the Softmax-based
Inference (see Sect. III-C) for our “realistic” shop scenario
without product relocations.

The green curve in Fig. 7 describes the behavior when
using both Dynamic Leaky Customer Score Accumulation and
Softmax-based Inference, while the red refers to customer



Fig. 7: Results of using different score accumulation variants.

score accumulation through Dynamic Leaky Customer Score
Accumulation alone. Softmax-based Inference alone, is shown
as a blue curve, and the basic algorithm is provided in
purple. The curves reveal that the differences between the
four scenarios are minimal. Just with relatively few customer
data sets like in the example used in Sect. III, the Softmax-
based extension gives a better accuracy score which becomes
nearly irrecognizable when the data sets of more than 15,000
customers are considered. On the other hand, Softmax-based
Inference has an advantage for localizing items that are
rarely purchased. Thus, if a store has a fair number of such
items, Softmax-based inference is more efficient than the basic
algorithm.

V. RELATED WORK

Being an important enabler for Mobile Recommender Sys-
tems (MRS), a fair amount of research has been conducted on
indoor navigation systems. With respect to locating products
in stores, most existing technologies propose manual tagging
or registration of product locations performed by employees
or system experts. To our best knowledge, previous work has
neither been done on the automated localization of products
in large stores nor on preserving the accurate location infor-
mation when products are subject to relocation. Below, we
discuss existing work of special interest.

Purohit et al. developed SugarTrail [6], a system providing
the location of items and guidance to them in indoor en-
vironments without depending on existing maps. SugarTrail
aggregates movement paths registered from users carrying
mobile nodes utilizing magnetometers in addition to collecting
data from stationary radios while traversing the indoor envi-
ronment. The aggregated paths are used to construct Virtual
Road Maps, which, in turn, can provide navigation assistance
to items for customers in the store. The main contribution of

SugarTrail is indoor navigation for stores, which is different
from the goal of this paper, i.e., product localization.

Some other approaches leverage technologies such as com-
puter vision, sensors and RSS to locate points of interests
in indoor environments. Travi-Navi [7] combines high quality
images and sensor readings from a Guiders smartphone and
packs them into a navigation trace. This can be done, e.g., by
a shop owner to provide navigation assistance to their stores.
While moving through the indoor environment, the followers
(customers) can follow the navigation trace defined by the
Guider to the point of interest. In Canoe [8], the Received
Signal Strength (RSS) is measured in various parts of a shop.
Then, the observed RSS values are compared for directing
users to points of interest. In Shopper Observer [9], the
Redpin indoor localization framework which allows its users
to create virtual fingerprints of locations, is used to find paths
of customers in a shop which can be utilized, e.g., for product
placement. In these approaches, the precision of localizations
is lower. Therefore, they are better suited for scenarios where
only relatively coarse-grain localization is needed.

In [21], Chia-Chen Chen et al. use RFID readers on smart
devices together with RFID tags on products to recommend
products to users according to their preferences, previous
purchasing records, and current location. The recommendation
mechanism works by a K-means algorithm, clustering cus-
tomers based on their shopping behaviors. Augmented Reality
(AR) is deployed in [22] to recommend healthy foods in
grocery stores. This approach utilizes the camera on customer
smartphones to both localize the customer within the store,
and to display AR overlay tagging recommended products.
The authors mention that product information is available in
electronic product databases, however, not necessarily asso-
ciated with their locations. This category of work is mainly
focused on algorithms and techniques on intelligent product
recommendation. In our view, the Product Locator proposed
in this paper can be a good add-on to these approaches
since it creates precise information about the position of
products that can be leveraged to provide more intelligent user
recommendations.

VI. CONCLUSION AND FUTURE WORK

The paper presents an algorithm for product location detec-
tion in indoor environments. Our approach only requires the
trajectory of stops and items purchased by customers while
they move through an environment. The data collection can
be done during the normal shopping routines of customers
without any other participation than installing an app on their
smartphones.

We developed a basic algorithm consisting of score calcu-
lation for individual customers, accumulation of the scores of
various customers, and inference of product locations from the
accumulated scores. Furthermore, we propose improvements
to the score accumulation algorithm by Static and Dynamic
Leaky Accumulation as well as Softmax-based Inference. Eval-
uating the various aspects of the algorithm, we found out
that the Dynamic Leaky Accumulation can be very helpful in



scenarios with relocated goods while Softmax-based Inference
is more efficient when rarely purchased items have to be
located and if only a relatively small number of customer data
sets are available.

The next step is to create a simulator that considers the
spatial aspects of a shopping environment. Using retail data
sets, we plan to create a simulated shop layout and let cus-
tomers “roam” through it simulating the trajectories performed
while shopping. In this way, we can simulate varying customer
behaviors, e.g., hasty purchases on the way home or cozy
strolling being inspired by the available products. Also spatial
aspects like the contorted ways performed when searching
a hidden product can be simulated in this way. Thus, the
extended simulator should allow us to test our approach with
more realistic customer data.

Finally, when the Forkbeard technology is fully imple-
mented, a prototype installation with a Norwegian grocery
store operator is planned. This will make it possible to find
out even more about user activity recognition, in particular,
how long the waiting time of a user in an area should be in
order to classify that as a stop. Moreover, we will investigate
the accuracy of the assumptions we made in the simulations
about the likelihood of errors in stop detection.
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