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Abstract Bayesian hypothesis testing procedures are constructed by means of test statistics
which are functions of the posterior distribution. Usually, the whole sample vector is selected
to form the sufficient empirical part of the posterior distribution. But, in certain problems,
one may prefer to use well-established one-dimensional sufficient statistics in place of the
sample vector. This paper introduces a Bayesian Monte Carlo procedure specially designed
for such cases. It is shown that the performance of this new approach is arbitrarily close
to the exact Bayesian test. In addition, for arbitrary desired precisions, we develop a the-
oretical rule of thumb for choosing the minimum number m0 of Monte Carlo simulations.
Surprisingly, m0 does not depend on the shape of loss/cost functions when those are used
to compound the test statistic. The method is illustrated for testing mean vectors in high-
dimension and for detecting spatial clusters of diseases in aggregated maps.
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1 Introduction

A statistical hypothesis is any statement about an unknown but fixed population parameter
θ ∈ RN , where N is a positive integer. In hypothesis testing, the goal is to decide which of
two hypotheses is true. The usual format of the hypotheses is H0 : θ ∈Θ0 against H1 : θ ∈Θ1,
where Θ0 and Θ1 form a partition of Θ , the parameter space.

In general, hypothesis testing demands to collect a n-dimensional sample X̃=(X1, · · · ,Xn),
which, supposedly, contains information about θ . But, before having a realization x̃0 of X̃,
the analyst might have some idea of what are the most and the less plausible values for
θ . Such a subjective uncertainty about θ can be mathematically translated in terms of a
probability measure, the so called ‘prior distribution’.

I. Silva
Department of Population Medicine, Harvard Medical School and Harvard
Pilgrim Health Care Institute, Boston, MA, USA
Department of Statistics, Federal University of Ouro Preto, MG, Brazil
E-mail: ivairest@gmail.com

R. Marques
Department of Statistics, University of Oslo, Oslo, Norway
Actuarial Division, Federal University of Alfenas, Brazil



2 Ivair R. Silva, Reinaldo Marques

In contrast to the widely used notation, ‘π(θ)’, here the prior distribution is instead
denoted by πθ (y), y ∈ RN . This new notation is more consistent with the fact that the ar-
gument, y, of the prior distribution, and the parameter to be inferred, θ , are by definition
two different apparatus. This is useful to avoid the misleading interpretation that θ is ran-
dom in Bayesian analysis. Such clarification is important for a proper comprehension of the
reasoning developed in this paper.

The exact Bayesian test consists on using a sufficient statistic for θ , say T (X̃), in order
to update the analyst’s uncertainty about the plausibility of each hypothesis. By ‘sufficient
statistic’ we mean that T (X̃) can be any mapping of X̃ (not involving θ ) from Rn to Rm,
with m ≤ n, such that the conditional distribution of X̃, given T (X̃), does not depend of θ .
For example, the usual sufficient statistic choice in Bayesian analysis is the whole sample,
that is T (X̃) = X̃. But, the data reduction principle can be invoked to justify usage of real-
valued sufficient statistics too, which is valid for Bayesian analysis without any logical or
philosophical flaws.

Given an observed sample X̃ = x̃0, the updated uncertainty, called posterior distribution,
is calculated through the Bayes rule as follows:

πθ (y|T (x̃0)) = fT (T (x̃0)|y)πθ (y)/m(T (x̃0)), (1)

where fT (T (x̃0)|y) is the likelihood with respect to T (x̃0), but evaluated for θ := y. The
denominator is sometimes called ‘predictive function’, and it is given by:

m(T (x̃0)) =
∫

y∈Θ

fT (T (x̃0)|y)πθ (y)dy. (2)

A Bayesian measure of evidence in favor of H0, say W (X̃), is then constructed as a function
of πθ (y|T (x̃0)). Large values of W (X̃) suggest that H0 should be taken as true. Otherwise,
H1 should be taken as true. A well-known measure of evidence is the Bayes factor:

BF(T (X̃)|πθ ) =
Pr

[
θ ∈Θ0|T (X̃),πθ

]
Pr [θ ∈Θ1|πθ ]

Pr
[
θ ∈Θ1|T (X̃),πθ

]
Pr [θ ∈Θ0|πθ ]

. (3)

The probability Pr
[
θ ∈Θi|T (X̃),πθ

]
in (3) refers to the posterior distribution given T (X̃),

while the probability Pr [θ ∈Θi|πθ ] refers to the prior distribution πθ (y), i= 0,1. For precise
hypotheses of the form H0 : θ = θ0 against H1 : θ = θ1, the prior distribution is conveniently
defined as a discrete distribution, which leads to a discrete posterior distribution. Therefore,
the Bayes factor can be calculated according to (3) for precise hypotheses too.

It is worth noting that, before observing the data, BF(T (X̃)|πθ ) is a random variable.
Thus, BF(T (X̃)|πθ ) takes the place of a test statistic with decision set of the form:

R(c) = {b ∈ R : b ≤ c} , (4)

with c > 0 arbitrary. Therefore, H1 is taken as true if BF(T (x̃0)|πθ ) ≤ c, otherwise, H0 is
taken as true. The choice of c can be guided by the scale suggested by Jeffrey (Jeffrey, 1961).
Basically, if − log10 BF(T (x̃0)|πθ )> 2 (same as c ≤ 0.01), then H1 is taken as true.

Alternatively, c can be established in a way to optimize some target performance mea-
sure, like, for example, to minimize the expected loss. The expected loss is a statistical
pre-experimental performance measure used to evaluate the performance of test procedures.
Section 2 offers a deeper discussion on this topic.

It merits remark that the posterior distribution is computable only if the probability dis-
tribution FT (t|θ) of T (X̃) has a known shape. If FT (t|θ) is unknown, but samples of T (X̃)
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can be somehow generated for fixed values of θ , Monte Carlo simulation can be used to per-
form the test. Monte Carlo plays a remarkable role in Bayesian analysis (Owen and Zhou,
2000; Besag, 2001; Pereira and Stern, 1999). The prominent methods designed specially
to approximate the posterior distribution are based on importance ratio techniques, like for
instance Importance Sampling, Metropolis-Hasting (MCMC), and particle methods (Chen
et al, 2012; Robert and Casella, 2013). Likelihood-free techniques are another example of
how important Monte Carlo is for Bayesian analysis, like the Approximate Bayesian Com-
putation (ABC), (Marin et al, 2014; Fearnhead, 2017; Price et al, 2017), and the hybrid
approaches ABC-MCMC, ABC-SMC, Resample-Move, Move-Reweighting, and Particle
MCMC, (Gilks and Berzuini, 2001; Sisson et al, 2007; Andrieu et al, 2010; Didelot et al,
2011; Marques and Storvik, 2013; Everitt et al, 2017).

In this paper, we introduce a Bayesian Monte Carlo test that, unlike previous approaches,
is not designed to approximate the exact test. The proposed method is a formal test proce-
dure that works for any sample size, for arbitrary prior distributions, and it is quite simpler
than Importance Sampling, Metropolis-Hasting, particle methods, and ABC algorithms. The
main contribution of the present manuscript is to favor Bayesian hypothesis testing for prob-
lems where: (i) T (X̃) is a real-valued function and (ii) the shape of the likelihood function
with respect to T (X̃) cannot be mathematically expressed, but Monte Carlo simulation for
T (X̃) is feasible.

As expected, the Monte Carlo variation affects the statistical performance of the Bayesian
Monte Carlo test. To resolve this problem, a simple expression is derived in order to relate
the number of simulations with the expected loss of the Monte Carlo approach relatively
to the expected loss of the exact (although intractable) Bayesian test. With this, the perfor-
mance of the proposed test can be made arbitrarily close to the exact Bayesian test using a
pre-defined finite number of simulations. Hence, the main advantage of the proposed method
is that it is not an approximation of the exact Bayesian test, neither requires asymptotic/con-
vergence arguments to present good performance. The method is a formal hypothesis test
procedure with performance arbitrarily close to the exact Bayesian test for any sample size.

The content of this paper is organized as follows: Next section offers an overview on
expected loss and risk functions. Section 3 introduces the proposed Bayesian Monte Carlo
test, and a road-map for applications involving tests of mean vectors in high dimension is
offered. Section 4 contains a comparison study against three of the main competing methods
found in the literature. Section 5 presents a real data example of application for spatial
cluster detection in aggregated geographical maps. Section 6 closes the paper with a brief
discussion.

2 Expected Loss

The statistical performance measure of interest in this paper is the so called ‘expected loss’,
also known by ‘risk function’. In decision theoretic analysis, the expected loss is a well-
established performance measure for evaluation of hypothesis test procedures. The idea be-
hind it is quite intuitive. The rationale is that some wrong decisions are more serious than
others.

For example, consider hypotheses of the form H0 : θ ≥ θ0 versus H1 : θ < θ0, where θ0
is a fixed constant. If θ ≥ θ0 and H1 is taken as true, a mistake has been made, i.e., the error
of the Type I has occurred. If θ < θ0 and H0 is taken as true, a mistake has been made, i.e.,
the error of the Type II has occurred. The other possibilities represent the correct actions. If
the Type I error occurs but θ is slightly bigger than θ0, then the mistake may not be very
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serious. But the mistake is possibly serious if θ is much bigger than θ0. The intensity of how
‘serious’ a mistake is, for each possible value of θ , can be transmitted through a function of
θ taking positive values in the real line, called ‘loss function’, and here denoted by l j(θ),
j = 1,2. For j = 1, l1(θ) represents the loss associated to the Type I error event. For j = 2,
l2(θ) represents the loss associated to the Type II error event. The expected loss is a function
of θ that combines the probability of wrong decisions with their implied losses.

In the general case of an arbitrary hypothesis test problem, let L(θ) denote the loss
function as a random variable, and let ψ

(
T (X̃)

)
denote a test function, i.e. ψ

(
T (X̃)

)
returns

1 when H0 is taken as true, but it returns 0 otherwise. For fixed θ , the expected loss, denoted
by r(θ ,ψ), is given by:

r(θ ,ψ) = Eψ [L(θ)] = l1(θ)×Pr[ψ
(
T (X̃)

)
= 1|θ ]× I{θ∈Θ0}(θ)+

+ l2(θ)×Pr[ψ
(
T (X̃)

)
= 0|θ ]× I{θ∈Θ1}(θ). (5)

For example, if the Bayes Factor is the selected test statistic, then the expected loss
associated to exact Bayesian test can be rewritten as:

r(θ ,ψ) = EBF [L(θ)] = l1(θ)×Pr[BF(T (X̃)|πθ )≤ c|θ ]× I{θ∈Θ0}(θ)+

+ l2(θ)×Pr[BF(T (X̃)|πθ )> c|θ ]× I{θ∈Θ1}(θ). (6)

3 Bayesian Monte Carlo Hypothesis Testing: our proposal

For simplicity, herein the expected loss of the exact Bayesian test is simply denoted by
r(θ). Let T (X̃) denote a real-valued statistic for an unknown parameter θ ∈ RN . In certain
problems, the use of a one-dimensional T (X̃) is not a choice, but an inevitable path that
the investigator has to follow due to particular characteristics of analysis. This is the case,
for example, in intensive computational procedures appearing in the context of big data
analysis. A practical example shall be offered in Section 3.1 for testing mean vectors in high
dimension.

Without loss of generality, the reasoning is developed assuming that T (X̃) has a contin-
uous probability distribution, but all results can be easily extended to the discrete case by
analogy. An application for real data analysis, in the context of spatial cluster detection, is
offered in Section 5 to illustrate the method for the situation where data follows a multivari-
ate discrete distribution.

The method introduced in the present section is valid for any of the following six pairs
of hypotheses:

for N = 1,

(i) H0 : θ = θ0 versus H1 : θ = θ1,

(ii) H0 : θ ≥ θ0 versus H1 : θ < θ0,

(iii) H0 : θ ≤ θ0 versus H1 : θ > θ0,

(iv) H0 : θ = θ0 versus H1 : θ 6= θ0, (7)

and for N > 1,

(v) H0 : θ = θ0 versus H1 : θ = θ1,

(vi) H0 : θ = θ0 versus H1 : θ 6= θ0. (8)
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Let T1, · · · ,Tm denote a Monte Carlo sample of T (X̃) somehow generated from FT (t|θ =
θ0), and use t0 to denote the observed value of T (X̃) for the actual observed sample x̃0,
i.e., t0 = T (x̃0). Obviously, if nuisance parameters are present, the process of generating
the Monte Carlo sample is supposed to be correctly adjusted for it. The details of how
to generate a Monte Carlo sample of T (X̃), and how to adjust it for nuisance parameters,
depend of each problem. Later in this section a detailed descriptions of how to deal with
nuisance parameters shall be offered for the problem of testing in high dimension.

Define the Monte Carlo measure of evidence, Lm, as follows:

Lm =

{
∑

m
i=1 I{Ti≥t0}(Ti), if T tends to be large under H1,

∑
m
i=1 I{Ti≤t0}(Ti), if T tends to be small under H1.

(9)

Let rm(θ)> 0 denote the expected loss of the Bayesian Monte Carlo test. Finally, we intro-
duce the following Bayesian Monte Carlo decision rule: the null hypothesis is to be taken as
true if ψ = 0, and the alternative hypothesis is taken as true if ψ = 1, where:

ψ =

{
0, if Lm > hm,
1, if Lm ≤ hm,

(10)

hm = b(1+ ε)(m+1)k/Pr[θ ∈Θ0|πθ ]c− 1, and k = {1+ c−1(1−Pr[θ ∈ Θ0|πθ ])/Pr[θ ∈
Θ0|πθ ]}−1.
The term ε > 0 is a tuning parameter representing the arbitrary upper bound for the relative
expected loss of the Monte Carlo test with respect to the exact test, i.e., the analyst can
ensure that rm(θ)/r(θ)−1 ≤ ε , where

rm(θ) = l1(θ)Pr[Lm ≤ hm|θ ]I{θ∈Θ0}(θ)+ l2(θ)Pr[Lm > hm|θ ]I{θ∈Θ1}(θ), (11)

where, again, c is the critical value for the exact Bayesian test given in the scale of the
Bayes factor. Observe that r(θ) and rm(θ) cannot be calculated in practice because such
computation requires a known FT (t|θ). Thus, a quite important property of the decision rule
in (10) is: there always exists a minimum value for m such that the bound ε is valid without
requiring any knowledge about the values of r(θ) and rm(θ). Surprisingly, this guaranteed
control over the performance of the Monte Carlo test does not depend on the shape of the
arbitrary loss function, l j(θ).

Theorem 1 Consider a hypothesis test problem having one of the forms (i) to (vi), and let
T (X̃) denote a real-valued sufficient statistic for θ . Use Θ0 and Θ1 to denote the subsets of
the parameter space under the null and the alternative hypotheses, respectively. Use r(θ) to
denote the expected loss of the exact Bayesian test constructed through the Bayes factor and
based on T (X̃). Let rm(θ) denote expected loss of the Bayesian Monte Carlo test defined in
(10). Thus, for ε > 0 arbitrary, there always exists m0 < ∞ such that, for any m ≥ m0, it is
valid that

rm(θ)/r(θ)−1 ≤ ε for each θ ∈Θ ,

and moreover:

m0 = min{m∗ ∈ N+ :
m∗

∑
g=hm∗+1

Cm∗
g γ

g(1− γ)m∗−g ≤ ε}, (12)

where Cm
g = m!/[g!(m−g)!], and γ = (Pr[θ ∈Θ1|πθ ]/c+Pr[θ ∈Θ0|πθ ])

−1 .
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Proof For a lighter notation, T (X̃) shall be referred simply by T , and the representation of
the prior probability of H0, Pr[θ ∈Θ0|πθ ], is replaced by the shorter notation ‘π0’. The test
based on the Bayes factor takes H1 as true if BF(t0|πθ ) ≤ c, where t0 is an observed value
of T . Define the event A(t0) = {x ∈ ℵ : T (x)≤ t0}, where ℵ is the sample space of X̃. Note
that BF(t0|πθ )≤ c iff BF(A(t0)|πθ )≤ c. Let Q denote the posterior probability of H0 before
observing a realization of T for a fixed π0, videlicet Q = Pr[θ = θ0|A(T ),πθ ], and use q to
denote a realization of Q after observing T = t0. Thus, the probability of taking H1 as true
is Pr[Q ≤ k|θ ] calculated with respect to the distribution of T , where k = [1+(cπ0)

−1(1−
π0)]

−1. Therefore,

q = Pr[θ = θ0|A(t0),πθ ]

=
∫

Θ0

Pr[A(t0)|θ = y]πθ (y)dy/Pr[A(t0)]

≥ π0Pr[A(t0)|θ = θ0]/Pr[A(t0)]

≥ π0Pr[A(t0)|θ = θ0] = p̂.

Now take the auxiliary random variable P̂ = π0Pr[A(T )|θ = θ0]. Observe that, due to the
inequalities above:

Pr[Q ≤ k|θ ]≤ Pr[P̂ ≤ k|θ ], for each θ ∈Θ .

Consider the second auxiliary function P = Pr[A(T )|θ = θ0], and denote the probability
densities of P̂ and of P by fP̂(p̂|θ) and fP(p|θ), respectively. For the difference between the
exact and the Monte Carlo tests probabilities of taking H1 as true, denoted by d(m,k), holds
the following:

d(m,k) = Pr[P ≤ k|θ ]−Pr[Lm ≤ hm]

≤
∫ k

0
fP̂(p̂|θ)d p̂−

∫ 1

0
fP(p|θ)Pr[Lm ≤ hm|P = p]d p.

By noting that p̂ = p× π0, and after an adequate adjustment for the variation of the inte-
grands, we have:

d(m,k)≤
∫ 1

0
fP(p|θ)

{
I{p≤k/π0}(p)−Pr[Lm ≤ hm|P = p]

}
d p (13)

Then, because Pr[Lm ≤ hm|P = p] is decreasing with p, the integrand in (13) is maximized
at p = k/π0, i.e.,

argmaxp∈(0,1)
{

I{p≤k/π0}(p)−Pr[Lm ≤ hm|P = p]
}
= k/π0,

impplying that:d(m,k)≤ 1−Pr[Lm ≤ hm|P = γ],where γ = k/π0. Therefore,

1−Pr[Lm ≤ hm]

1−Pr[P ≤ k]
≤ 1−Pr[Lm ≤ hm|P = γ],

⇒ rm(θ)

r(θ)
=

(1−Pr[Lm ≤ hm])l2(θ)
(1−Pr[P ≤ k])l2(θ)

≤ 1−Pr[Lm ≤ hm|P = γ].

The term Pr[Lm ≤ hm|P = γ] is increasing with (m+1) in the multiples of b1/γc. Thus, for
ε > 0 arbitrary, there always exists m0 such that, for m ≥ m0,

1−Pr[Lm ≤ hm|P = γ] =
m

∑
g=hm+1

Cm
g γ

g(1− γ)m−g ≤ ε. (14)
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Now, it is trivial to note that Pr[P≤ p|θ = θ0] = p, for p∈ (0,1), i.e., for θ = θ0, the variable
P follows an uniform probability distribution with support in the (0,1) interval. Also, the
maximum difference of the probabilities of taking H0 as true between the exact Bayesian
test and the Monte Carlo Bayesian test occurs for θ = θ0. Thus, for m ≥ m0,

rm(θ)/r(θ) ≤
∫ 1

0 Pr[Lm ≤ hm|P = p]d p∫ k/π0
0 d p

=

∫ 1
0 ∑

hm
g=0 Cm

g pg(1− p)m−gd p

k/π0

⇒ rm(θ)/r(θ) ≤ (hm +1)/(m+1)
k/π0

= (1+ ε). (15)

In conclusion, situations where the Monte Carlo test can present increased expected losses
in comparison to the exact test are properly bounded according to inequalities (14) and (15).

ut

Theorem 1 reveals that the number of simulations required to ensure the performance of the
Monte Carlo test does not depend on the shapes of the loss function and of the prior distribu-
tion, but it only depends on the amount of probability mass allocated to H0 through the prior,
and on the arbitrary critical value c. For example, suppose that a certain analyst does not ad-
mit an expected loss difference greater than 2% between the Monte Carlo and the exact test,
i.e ε = 0.02. If the adopted critical value in the Bayes factor scale is c = 0.01, in the Jeffrey’s
scale the critical value is equal to − ln10 0.01= 2. Also, suppose that the analyst’s uncertainty
sets up π0 = Pr[θ ≤ θ0|πθ ] = 0.1. Then, k = 1/[1+(1−0.1)/(0.1×0.01)]≈ 0.00111, with
γ = 0.00111/0.1 = 0.0111 and hm = b(1+0.02)× (m+1)×0.00111/0.1)c− 1. Solving
inequality (12) for m, the respective lower bound for the number of Monte Carlo simula-
tions complying with ε = 0.02 is m0 = 949,230, which gives hm = 10,745. Naturally, each
combination of ε and π0 gives a different m0 solution.

Table 1 Minimum number of Monte Carlo Simulations for an upper bound on the relative
loss of ε = 0.01,0.02,0.03,0.04,0.05,0.1, prior probabilities for the null hypothesis of π0 =
0.05,0.1,0.25,0.5,0.75,0.9,0.95, and critical value in the Bayes Factor scale equal to c = 0.01.

ε

0.01 0.02 0.03 0.04 0.05 0.1
π0 = 0.05 m0 5116795 1005480 377340 185440 105735 17195

hm 54370 10789 4088 2028 1167 198
π0 = 0.1 m0 4845060 949230 358650 176130 99540 16470

hm 54311 10745 4099 2032 1159 200
π0 = 0.25 m0 4040775 794625 299100 145725 83850 13275

hm 54234 10770 4093 2013 1169 193
π0 = 0.5 m0 2691050 530150 199450 97600 55550 9000

hm 53820 10707 4067 2009 1154 195
π0 = 0.75 m0 1345450 264400 98800 48825 28275 4400

hm 52772 10472 3951 1971 1152 187
π0 = 0.9 m0 538060 105420 39590 19400 11120 1910

hm 49856 9864 3740 1850 1070 191
π0 = 0.95 m0 268945 52645 19715 9685 5490 870

hm 45652 9024 3412 1692 967 160

Table 1 contains m0 solutions for π0 = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and ε = 0.01,
0.02, 0.05, 0.1. The critical values in the scale of Lm, hm, are presented in this table too.
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Observe that m0 is a decreasing function of π0 for fixed ε . Analogously, when π0 is held
fixed, m0 is decreasing with ε .

Although the Bayesian practice has been largely diffused as being limited to the partic-
ular and trivial choice T (X̃) := X̃, there is also a number of problems that are well solved
under different and more elaborated sufficient functions. Supported by the well-established
data reduction principle, a real-valued sufficient statistic can be used to solve interesting
multivariate problems. This is the case, for example, of the test statistic proposed by Nyblom
and Makelainen (1983) for testing random effects in state space models, of the cMaxSPRT
statistic for sequential analysis of adverse events with Poisson data (Li and Kulldorff, 2010),
and of the scan statistic for detection of spatial clusters Kulldorff and Nagarwalla (1995).
An important problem solved through usage of a real-valued sufficient statistics is testing
mean vectors in high dimension, which is described in details in what follows.

3.1 Testing Mean Vectors in High Dimension

A classical multivariate method for testing the mean vector, µ , of a P-variate normal ob-
servation X̃ j = (X j,1, · · · ,X j,P), j = 1, · · · ,n, is the Hotelling’s test, which is based on the
following sufficient statistic for µ:

T 2 = n(X̄ −µ0)
′S−1(X̄ −µ0), (16)

where n is the sample size, X̄ = ∑
n
j=1 X̃ j/n, and S = 1

n ∑
n
j=1(X̃ j − µ0)(X̃ j − µ0)

′. It is pos-
sible to prove that T 2 is an ancillary statistic for Σ , the unknown covariance matrix of X̃ j.
While S is an unbiased estimator of Σ , it is also singular when n < P. In practice, data can
lead to a high dimensional situation, i.e. n may be much smaller than P and so T 2 can-
not be calculated since S becomes singular. In order to obtain an invertible estimate of Σ ,
Maboudou-Tchao and Silva (2013) and Silva et al (2018) suggest to apply the so called ‘slic-
ing’ estimator, which by its turn was introduced by Akdemir and Gupta (2011). The idea is
decomposing Σ in the Kronecker product of two auxiliary matrices, the p-dimensional Ω

and the q-dimensional Ψ , that is Σ = Ω ⊗Ψ , where P = p×q. Consequently, the maximum
likelihood estimator of Σ−1 given by

Σ̂
−1
⊗ (X̃) = Ω̂

−1(X̃)⊗Ψ̂
−1(X̃)

can be used to construct the sufficient statistic T 2
s (X̃), obtained by replacing S−1 by Σ̂

−1
⊗ (X̃)

in (16):

T 2 = n(X̄ −µ0)
′
Σ̂
−1
⊗ (X̃)(X̄ −µ0), (17)

where X̃ is the (n×P)-dimensional matrix formed by the sample of n observations. Al-
though the distribution of T 2

s (X̃) is unknown, Maboudou-Tchao and Silva (2013) showed
that: (i) T 2

s (X̃) is ancillary for Σ , hence the expected loss associated to the Bayes factor hav-
ing T 2

s (X̃) as the empirical information is invariant with respect to the actual Σ ; and (ii) for
arbitrary µ∗, Monte Carlo samples of T 2

s (X̃) can be obtained by applying independent obser-
vations Z̃ j, j = 1, · · · ,n, in the function T 2

s (Z̃), where Z̃ j ∼ NP(µ
∗, IP). Hence, the Bayesian

Monte Carlo test can be naturally applied for arbitrary prior multivariate distributions for µ

without requiring a prior distribution for the nuisance matrix, Σ .
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4 Comparison Against Competing Methods

The performance of ABC methods depends on assumptions about the shape of the likelihood
and on asymptotic evaluations. Moreover, there is no general rules for the choice of the tun-
ing parameters called ‘discrepancy’ and ‘tolerance’ that are to be informed when an ABC
procedure is implemented. The best or worse tuning parametrization setting depends on the
shape of the likelihood, which is then a serious limitation when the likelihood shape is un-
known. Therefore, the main advantage of the Bayesian Monte Carlo test is its simplicity and
generality. As emphasized with Theorem 1, the tuning parametrization does not depend on
the likelihood shape, but solely on a logical, simple, and general rule. Moreover, the method
is valid for any sample size, i.e. its performance is not limited to asymptotic properties.

But, one could question if ABC would be preferable than the Bayesian Monte Carlo test
when tuning parametrization of ABC is also simple and safe to use. The simplicity of the
Bayesian Monte Carlo test should not penalize its performance in both, simple and complex
problems. Thus, the question arising is: is there some loss if we use the Bayesian Monte
Carlo test instead of conventional methods? Aiming to answer this question, in this section
we use a very simple Poisson testing problem to compare the Bayesian Monte Carlo test
(BMCT ) against the Importance Sampling (IS), the Move-Reweigthing (MR), and the Sin-
gle Auxiliary Variable Importance Sampling (SAV IS) algorithms (see (Marques and Storvik,
2013) and (Didelot et al, 2011) for description of the algorithms). Although BMCT is the-
oretically valid for the general case of any FT (t|θ) shape, it is important to clarify if it per-
forms well, comparatively to competing methods, for simple and classical testing problems
too.

Note that it is not fair to consider the Importance Sampling method in this comparison
study because it requires knowledge about the likelihood shape, and hence, unlike the other
three methods, IS is privileged with additional information that, in practice, is not available
when the shape of FT (t|θ) is unknown but BMCT , MR and SAV IS are feasible to use. But,
IS is included in this study to show that, even though BMCT requires much less information
to use, it is even comparable to a method such as IS that requires much information such as
knowledge about the likelihood shape.

Let X1, · · · ,Xn denote a random sample from a Poisson distribution with unknown pa-
rameter θ . The hypotheses of interest are:

H0 : θ ≥ 4 versus H1 : θ < 4. (18)

The choice θ0 = 4 serves merely to illustrate the type of results found if one uses this
simple and naive problem involving the Poisson distribution when comparing these meth-
ods. Actually, we have reached the same conclusions (results not shown here) after running
simulations for θ0 = 1, 2, · · · , 10.

Here we consider the simple conjugate prior distribution for Poisson data, the gamma
function:

πθ (y) =
ye−2y

2
I(y > 0). (19)

The statistical performance measure of interest in this comparison study is the expected
loss. For this, we use the following loss function:{

l1(θ) = (θ0 −θ)2I(θ ≥ θ0),
l2(θ) = (θ0 −θ)I(θ < θ0).

(20)

This loss function is simply for illustrative matters, hence here it does not represent any
practical unit in particular. According to Casella and Berger (2001), page 401, expression
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Table 2 Comparison of expected loss among Bayesian Monte Carlo test (BMCT ), Importance Sampling
(IS), Move-Reweigthing (MR), and Single Auxiliary Variable Importance Sampling (SAV IS). Each method
was settled to return zero loss at θ = θ0 = 4.

BMCT IS MR SAV IS
θ = 3.0 0.50060 0.51790 0.50890 0.47600
θ = 3.2 0.55760 0.56992 0.56328 0.54272
θ = 3.4 0.49932 0.50418 0.50274 0.49182
θ = 3.6 0.37128 0.37312 0.37208 0.36812
θ = 3.8 0.19454 0.19492 0.19470 0.19400

n = 20 θ = 4.0 0 0 0 0
θ = 4.2 0.00015 0.00012 0.00014 0.00017
θ = 4.4 0.00013 0.00011 0.00011 0.00013
θ = 4.6 0.00011 0.00011 0.00011 0.00007
θ = 4.8 < 10−6 < 10−6 < 10−6 < 10−6

θ = 5.0 < 10−6 < 10−6 < 10−6 < 10−6

θ = 3.0 0.07300 0.08140 0.08210 0.07820
θ = 3.2 0.21296 0.22184 0.22424 0.22064
θ = 3.4 0.33276 0.34002 0.34308 0.34038
θ = 3.6 0.32784 0.33000 0.33120 0.33124
θ = 3.8 0.18964 0.18982 0.18996 0.19010

n = 50 θ = 4.0 0 0 0 0
θ = 4.2 0.00007 0.00006 0.00005 0.00006
θ = 4.4 < 10−6 < 10−6 < 10−6 < 10−6

θ = 4.6 < 10−6 < 10−6 < 10−6 < 10−6

θ = 4.8 < 10−6 < 10−6 < 10−6 < 10−6

θ = 5.0 < 10−6 < 10−6 < 10−6 < 10−6

(8.3.13), this loss function shape was advocated by Vardeman (1987), and hence we just
follow it since it is well-accepted in the classical theory on loss functions.

The expected loss was evaluated for θ = 3, 3.2, · · · , 5, for moderate (n= 20) and regular
(n = 50) sample sizes. For each of these settings, the expected loss was estimated on a total
of 10,000 simulated n-dimensional samples. Also, each of the four methods were run for
m = 10,000. It is important to point out that the critical value used for each method was
settled in such a way that all of them returned with zero loss under θ = θ0.

Table 2 contains the main results of this simulation study. In general, the BMCT method
presents expected losses very close or even better than IS. This is curious since that the
tuning parametrization of BMCT does not require any knowledge about the likelihood shape
and, unlike ABC based approaches, there is a general and simple rule for setting the tuning
parametrization of BMCT , which follows from Theorem 1.

5 Real Data Analysis - spatial cluster detection

It is quite common to define the Bayes Factor for the particular statistic T (X̃) := X̃, which
leads to the likelihood corresponding to the product of the densities of the Xi′s and evaluated
at the observed sample, x̃. But, it is also possible to face problems where the interest is to
use a different and more elaborated function of the data for which the likelihood cannot be
expressed analytically. This is the case of the circular Scan statistic. The Scan statistic is
extensively used in the detection of spatial clusters. According to Cressie (1993), a spatial
cluster is a set of non-overlapping neighboring areas, indexed from 1 to K, of a region (map)
with elevated risk for the occurrence of a certain event of interest.
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For a given radium and centroid, let z to be the set of all areas with centroids inside the
circle. Let Ci, i = 1, · · · ,B, be the number of events inside a given circle zi. Suppose that Ci
follows a Poisson distribution with expectation equal to θiλNi, where Ni is the population
inside zi, λ is a base expectation associated to the nature of the problem, and θi is the relative
risk of occurring a case inside zi. If the possible increased risk is assumed to be under control
for all areas inside a cluster, the hypotheses to be tested are H0 : θ ≤ 1, for all i = 1, · · · ,B,
versus Ha : θ > 1 for some i in [1,B]. The test statistic proposed by Kulldorff and Nagarwalla
(1995) is defined as the maximum, denoted by Λ , among all the log-likelihood ratio (LLR)
statistics. Using N to denote the total population size of the map, the log-likelihood ratio
statistic for the circle zi is equal to:

LLR(zi) = ln

[(
Ci

Ni

)Ci
(

Ni −Ci

Ni

)Ni−Ci
]
+

+ ln

[(
C−Ci

N −Ni

)C−Ci
(
(N −Ni)− (C−Ci)

N −Ni

)(N−Ni)−(C−Ci)
]
−

− ln
[
CC(N −C)N−C/NN

]
, (21)

if Ci
Ni

> C−Ci
N−Ni

, and LLR(zi) is equal to zero, otherwise.
The Scan statistic is a powerful tool for detection and identification of spatial clusters.

Thus, the use of the Scan statistic in this original form is desired. But, the exact Bayesian
hypothesis test based on T (X̃) := Λ is not viable because the exact distribution of Λ is in-
tractable even for small maps, then the likelihood with respect to Λ is unknown. Fortunately,
the Monte Carlo test is feasible. Conditioning in the total number (C) of events observed in
the map, the joint distribution of the numbers of events in the areas is multinomial, where the
probability of having a event inside area k is equal to θkNk/(∑

K
l=1 θlNl). Thus, a sample of

Λ , under θ = θ0 = 1, can be generated by simulating events in the map from a multinomial
distribution.

5.1 Data Description

The Bayesian Monte Carlo test is illustrated for the extensively analyzed database of brain
cancer incidence in New Mexico, United States (‘http//www.satscan.org/datasets’). Beside
the spatial analysis, a temporal exploration is also possible because the data was collected for
the period 1973-1991. But, for simplicity, the cases of each area were concatenated in just a
single count. The map consists of 33 counties. In the period 1973-1991, it was registered a
total of 1,175 cases of brain cancer, and the total exposed population in the map at 1991 was
1,548,640. The geographical centroid location (latitude/longitude) of each county is also
available in the same site. A detailed description and full analysis for this data set is offered
by Kulldorff et al (1998). The map showed in the top of Figure 1 presents the observed
relative risks for each county.

5.2 Tuning Parameters Settings

For the prior distribution, assume that Pr[θ ≤ 1|πθ ] = Pr[θ > 1|πθ ] = 0.5. Concerning the
relative performance tolerance, set ε equal to 0.02. Following Jeffrey’s scale, the critical
value associated to the exact test in the Bayes Factor scale is settled at c = 0.01 (it cor-
responds to a value of 2 in the minus-log scale). These settings lead to k = 0.0099 and
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γ = 0.0099/0.5 = 0.0198. Using Theorem 1, and solving inequality (12) for m, the solution
is m0 = 530,150 Monte Carlo simulations. Finally, the resulting critical value in the scale of
the Monte Carlo measure of evidence is hm = 10,707.

Observed relative risks
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Fig. 1 Relative risk estimates for each county (top part) and for the detected cluster (bottom part).

For this data, the estimated relative risk was r̂ = 1.296, and the observed value of Λ

was t0 = 5.4587. The observed cluster is formed by the following counties: Chaves, Colfax,
Curry, DeBaca, Guadalupe, Harding, Mora, Quay, Roosevelt, San Miguel, and Union. This
detected cluster is highlighted with a different color in the map located in the bottom part
of Figure 1. With a population of 185,694 individuals, this zone gathered 179 cases. After
generating 530,150 values of Λ under θ = 1, the observed value of Lm was 1,937, which
is smaller than the critical value hm = 10,707. Thus, the evidence in favor of H1 is strong
enough for taking it as true according to the Bayesian Monte Carlo test. In conclusion, this
analysis reveals the existence of a spatial cluster in this map for the considered period.
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6 Concluding Remarks

Conventional approaches for dealing with Bayesian testing through Monte Carlo are funded
in the spirit of integrating the likelihood function with respect to the prior distribution. Such
approaches can be interpreted as indirect ways to approximate the entire posterior distri-
bution in order to construct an estimate of the adopted measure of evidence (test statistic).
Although intuitive, the idea of estimating the whole posterior distribution for approximating
the test statistic is not mandatory neither the only way for treating the cases where Monte
Carlo simulation is needed. This paper shows that the usual practice of generating observa-
tions from the prior distribution (in the spirit of integrating the likelihood with respect to the
prior) can be discarded in hypothesis testing. This result contradicts the belief among some
that a legitimate Bayesian Monte Carlo procedure must involve, somehow, samples gener-
ated from the prior distribution. The ultimate goal of a Bayesian Monte Carlo test is not to
figure out a way to estimate the posterior distribution. Unlike, for a given prior distribution
reflecting the investigator’s uncertainty about θ , the ultimate goal of a Monte Carlo testing
procedure is to provide statistical performance arbitrarily close to the exact Bayesian test.

With the procedure introduced in this paper, the true management of the relative ex-
pected losses implied by the Bayesian Monte Carlo test is proved for finite sample sizes
under arbitrary prior distributions. Besides the simplicity, the Bayesian Monte Carlo test fol-
lows the strict Bayesian reasoning in which concerns usage of the Bayes Factor for drawing
a decision, and it is virtually general in the sense of being valid for any unknown likelihood
shape. Therefore, when the likelihood function is unknown, and if simulating the test statis-
tic is a feasible option, there is no reason to deliberately base the hypothesis test decision on
methods that require specific prior distribution shapes elaborated to accomplish with math-
ematical conveniences. Hence, the method proposed in this paper ensures that the analyst’s
free-will for using its actual prior uncertainty about θ can be preserved when using Monte
Carlo methods for testing.
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